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ABSTRACT

Directed acyclic graphs (DAGs) are widely used to model the casual relationships
among random variables in many disciplines. One major class of algorithms for
DAGs is called ‘search-and-score’, which attempts to maximize some goodness-
of-fit measure and returns a DAG with the best score. However, most existing
methods highly rely on their model assumptions and cannot be applied to the
more general real-world problems. This paper proposes a novel Reinforcement-
Learning-based searching algorithm, Alpha-DAG, which gradually finds the op-
timal order to add edges by learning from the historical searching trajectories.
At each decision window, the agent adds the edge with the largest scoring im-
provement to the current graph. The advantage of Alpha-DAG is supported by the
numerical comparison against some state-of-the-art competitors in both synthetic
and real examples.

1 INTRODUCTION

Directed acyclic graph (DAG) models are widely used to represent directional relations or parent-
child relations among interacting units, which has been increasingly studied in diverse disciplines
including genetics (Sachs et al., 2005; Zhang et al., 2013), causal inference (Spirtes et al., 2000;
Peters et al., 2017), finance (Sanford & Moosa, 2012) and machine learning (Koller & Friedman,
2009). Learning the underlying DAG from an observed data has attracted tremendous attentions in
the past few decades and still remains an active research area especially in the situation when no
prior information is provided (Chickering et al. (2004); Yuan et al. (2019)).

Most existing DAG algorithms can be categorized into three main classes. The first class uses
some local conditional independence criterion to pairwisely test the causal relations (Spirtes et al.
(2000); Shimizu et al. (2006); Kalisch & Bühlmann (2007); Peters et al. (2014)) and returns the
most likely casual ordering/skeleton based on the observed data. The directed structures can be
determined up to the Markov equivalence class (Spirtes et al., 2000) without assuming specific
noise assumption. However, this kind of methods are usually computationally inefficient especially
when the size of the maximal neighborhood q is large. The multiple testing procedures they use
may also lead to some conflicting results (Hyttinen et al., 2014; Spirtes et al., 2000). Another class
of algorithms, known as the exact learning methods (Koivisto & Koivisto (2004); Campos & Ji
(2011); Van de Geer & Bühlmann (2013)), formulates DAG learning into a regularized framework
by adding some acyclicality constraints. One key disadvantage is that the total number of constraints
imposed to ensure acyclicality is extremely large which makes the graph reconstructing procedure
computationally infeasible (Van de Geer & Bühlmann, 2013; Yuan et al., 2019). Moreover, methods
in this class are usually extended from undirected Gaussian graphical model (Kalisch & Bühlmann
(2007); Van de Geer & Bühlmann (2013); Ha et al. (2016); Ghoshal & Honorio (2017); Nandy et al.
(2018); Yuan et al. (2019); Liu et al. (2019); Li & Zhou (2020)) and focus on the linear case, which
is somewhat restrictive and difficult to apply in practice.

The last class is the search-and-score-based algorithms (Chickering, 2003; Nandy et al., 2018; Zheng
et al., 2018; Zhu et al., 2020; Heckerman et al., 1995; Geiger & Chickering, 2002; Chickering &
Heckerman, 1997), which attempts to optimize some score functions over a feasible DAG space.
Yet, as pointed out by Chickering et al. (2004) and (Malone et al., 2004), the optimization problem
formulated by these score-based algorithms is usually NP-hard by adding the combinatorial acyclic-
ity constraint. The number of feasible DAGs also superexponentially increases with the number of
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nodes. A few attempts have been made to approach the global optimality in some special cases
(Cussens, 2011; Xiang & Kim, 2013; Cussens et al., 2017), most of which rely on local heuristics to
guarantee the acyclicity in the sense that all the directed edges need to be sequentially added. Zheng
et al. (2018) formulates the classical score-based optimization problem into a continuous optimiza-
tion task for linear DAG model and its subsequent work (Zheng et al., 2020) makes an extension to
learn sparse nonparametric DAGs by using some nonparametric estimators such as Neural networks.
Most recently, Zhu et al. (2020) proposes a Reinforcement-Learning-based method (RL) to search
for the DAG with the best score. At learning stage, it dynamically updates the adjacency matrix by
maximizing the global score, which is the weighted sum of a predefined score function and a smooth
characterization penalty (Zheng et al., 2018). Unfortunately, RL fails to ensure the acyclicity and
usually returns a dense DAG with many false edges especially when the total number of nodes is
large or the true DAG is sparse.

This paper proposes a novel Reinforcement-Learning-based searching algorithm, named Alpha-
DAG. It is motivated by the key idea that the Reinforcement Learning agent with stochastic policy
can gradually master the optimal direction to reconstruct the graph based on the value functions
learned from the collected searching trajectories. As opposed to some state-of-the-art algorithms,
such as GES, which strictly enforces acyclicity at a time, Alpha-DAG gradually finds the optimal
order to add edges and avoids generating cycles by learning from the historical failures. At each
decision window, the agent chooses to add the edge with the largest scoring improvement or stop
the searching process. The proposed algorithm is general in the sense that it can be applied to both
linear and nonlinear DAG models. The advantage of Alpha-DAG is supported by the numerical
comparison against some state-of-the-art competitors in both synthetic and real examples.

2 PROBLEM STATEMENT

Let X ∈ Rn×d be an empirical data matrix consisting of n random vectors x := [x1, x2, . . . , xd]
T ∈

Rd. Each variable xi is associated with a node i in a d-node Directed Acyclic Graph (DAG) (Hoyer
et al., 2009; Peters et al., 2014). We model xi by some unknown function of its parents together
with an additive random noise ni:

xi := fi(xpa(i)) + ni; i = 1, 2, . . . , d, (1)

where fi(·) denotes the casual relations, xpa(i) represents a set of variables xj’s such that there
exists a directed edge from each xj ∈ xpa(i) to xi in the graph, and the noises ni’s are assumed to be
jointly independent. Without adding further constraints on the forms of functions fi and/or noises
ni, we can assume faithfulness and identify only the Markov equivalence class of the graph (Peters
et al., 2014; Spirtes et al., 2000).

Given X, our goal is to infer the underlying DAG G ∈ D representing the joint distribution P (x),
where D denotes the (discrete) space of DAGs,G = (V,B), on d nodes. B ∈ {0, 1}d×d is the binary
adjacency matrix, such that B(i, j) = 1 if and only if node i ∈ pa(j). Therefore, the problem is
equivalent to finding the optimal adjacency matrix B, which recovers the true causality between
each node i with its parents pa(i) in the graph.

2.1 SCORE FUNCTION

A major class of causal discovery algorithms is to compute the value of the score function S(G) for
each feasible G, and then search over the space D to find the DAG with the best score:

min
G

S(G), subject to G ∈ D

In this work, we focus on the BIC score which is known to be not only consistent (Haughton,
1988) but also locally consistent for its decomposability (Chickering, 1996). By introducing a set
of functions F = {fi}′s to model the causal relationships associate with G, we can define the BIC
score as follows,

SBIC(G) = −2 log p(X;F ,B) + dG log n, (2)

where F denotes the causal relationships and dG denotes the number of edges in the DAG G. Note
that the explicit forms of fi’s and the distributions of ni’s are only required to be continuous.
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Specifically, the BIC score defined in equation (3) can be modified as

SBIC1(B) =

d∑
i=1

(n log(RSSi/n)) + #(edges) log n (3)

where RSSi =
∑n
k=1(xki − x̂ki )2 denotes the residual sum of squares for the i-th node. xki and x̂ki

represent the original value and the estimation of the i-th variable in the k-th sample given p̂a(i).
G is replaced by B here since the BIC score only depends on the graph connectivity, or to say the
adjacency matrix B given X and V . Note that first term in (4) is equivalent to the log-likelihood
objective used by GraN-DAG (Lachapelle et al., 2019), and the penalty term controls the number of
edges in the graph to prevent over-fitting. By assuming that all the d noises ni’s have equal variance
(which is a common assumption made by most DAG studies), we have the BIC score, denoted by
SBIC2

(B), to be defined as follows,

SBIC2
(B) = nd log((

d∑
i=1

RSSi)/(nd)) + #(edges) log n (4)

Note that the BIC scores defined in equations (3) and (4) do not require an explicit form of fi’s.
fi’s can be either linear or non-linear functions and their identifiabilities are all satisfied under some
conditions according to Peter & Bühlmann (2014); Chen et al. (2019); Shimizu et al. (2006; 2011)
and Peters et al. (2014).

3 FRAMEWORK OF ALPHA-DAG

In this section, we discuss the implementation details of the proposed RL based searching algo-
rithm, Alpha-DAG. In each decision window, the RL agent determines the optimal edge to be added
with the highest future return. Different from some state-of-the-art algorithms, such as the GES,
which strictly enforces acyclicity at a time, Alpha-DAG resets the searching process whenever the
acyclicity is violated. The agent with stochastic policy can gradually master the optimal direction
to add edges by learning from the historical failures. Figure 1 in the supplement describes the main
architecture of Alpha-DAG with some key components.

3.1 AN MARKOV DECISION PROCESS (MDP) FORMULATION

We consider the standard reinforcement learning setting where agent-environment interactions are
modeled as a Markov Decision Process (MDP) of a state space S , an action space A, a reward
‘function’ R : S × A → R, a transition kernel p : S × A × S → [0, 1], and a discount factor
γ ∈ [0, 1). The agent interacts episodically with the environment at some discrete time scale,
t ∈ T := {0, 1, 2, ..., T} until the terminal time step T is reached. Within each action window t,
the driver perceives the state of the environment, described by the feature vector st ∈ S, and on that
basis chooses an action at ∼ π(·|st) ∈ A. π : S ×A → [0, 1] here denotes a stochastic policy. As a
response, the environment produces a numerical reward rt for each intermediate step. In the context
of DAG discovery, we want to introduce the following specifics:

State, denoted as st, consists of the observed data X which is static and the dynamic adjacency
matrix Bt, i.e. st := (X,Bt). Bt(i, j) = 1 if an edge from node i to j has been added to the graph
until time t. B0 is a zero matrix for the initial state s0.

Action, denoted as at, represents the action the agent takes at st. Executing at results in a transition
from st to st+1 by following the transition dynamics p. The dimension of the whole action space A
is (d × d) + 1. At time t, the agent either adds a directed edge from a node i to another node j by
assigning value 1 to Bt(i, j), i.e. at = (i − 1)d + j, or to keep the adjacency matrix unchanged,
i.e. at = 0. Note that by taking action at, the transition from st to st+1 is deterministic. An action
at > 0 is feasible if and only if the two selected nodes have not been directly connected before time
t, i.e. Bt(i, j) = 0 and Bt(j, i) = 0. Moreover, we use v(o)

at and v(d)
at to represent the origin and

destination node of the newly added edge.

Termination, The searching process allows an edge directly from node j to i to be added if j can not
be reached by i through a multi-step path in the existing graph. The searching process is terminated
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whenever a cyclicity happens. To more quickly check this condition in each transition, we store the
connectivity information in a d× d matrix C, where the element c(i, j) in the i-th row, j-th column
is a binary variable to inform the connectivity between node i and node j. c(i, j) = 1 if there exists
a path from i to j. We let Ct be the connectivity matrix before executing at and initialize C0 as a
zero matrix. If at assigns 1 to Bt(i, j), we add the product of Ct(, i) and Ct(j, ) to Ct to obtain
Ct+1, where Ct(, i) and Ct(j, ) represent the i-th column and the j-th row of Ct, respectively. If
there exists a pair of nodes (i, j) to make ct+1(i, j) = 1 when i 6= j, the searching process stops.
Otherwise, it moves to the (t+1)-th decision step. C is restored to a zero-matrix when the searching
process has been terminated. Besides the cyclicity, the process is also terminated when at = 0. In
this case, no more edge can be added to increase the total return.

Reward, rt measures the change of BIC score after taking action at. We let RSSit and #(edges)t
be the residual sum of squares for the i-th variable at time t and the total number of edges in Gt =
(V,Bt), respectively. If at 6= 0, without loss of generality, we assume that the agent chooses to add
a directed edge from node j to node i at time t following the current policy, rt can be defined as
follows according to (4),

rt = SBIC1
(Bt)− SBIC1

(Bt+1)

=

d∑
l=1

(n log(RSSlt/n))−
d∑
l=1

(n log(RSSl(t+1)/n)) + (#(edges)t −#(edges)t+1) log n

= n log(RSSit/RSSi(t+1))− log n (5)

By assuming equal noise variances, we have

rt = SBIC2(Bt)− SBIC2(Bt+1)

= nd log((

d∑
l=1

RSSlt)/(
d∑
l=1

RSSl(t+1)))− log n (6)

On the other hand, rt = 0 when at = 0. In particular, we let rt = −∆ if at results in a cycle. ∆
here is a sufficiently large positive number, which is 1000 in this paper. To improve the computation
efficiency, we save all the RSSit’s in a d-length vector R, and update the i-th entry each time when
at > 0 and a(d)

t = i. R is reset to a zero vector whenever a new searching process begins.

The key advantage of our method is that the computation of only one RSSi(t+1) is required to get
the reward rt. However, all the d RSSit’ are re-calculated in Zhu & Chen (2019) to obtain either
SBIC1(Bt) or SBIC2(Bt) with all the d× d elements in Bt being updated each time.

Policy, π(a|s) specifies the probability of taking option a at state s regardless of the time step t. We
let Zπ(s, a) :=

∑T
t′=t γ

t′−trt be a random variable of the future return starting from (st, at) when
following policy π, whose expectation is denoted by Qπ(s, a). For the MDP defined above, we are
interested in finding an optimal policy π∗ to add edges, such that Qπ

∗
(s, a) > Qπ(s, a) holds for

any (π, s, a). All the possible optimal policies share the same optimal state-action value function
Q∗, which is the unique fixed point of the Bellman optimality operator (Bellman, 1966),

Q(s, a) = T Q(s, a) = E(r + γEs′∼p[max
a′

Q(s′, a′)] (7)

where r) is the reward obtained by taking action a at state s.

4 MODEL IMPLEMENTATION

4.1 DEEP Q-LEARNING

Based on the Bellman optimality operator provided in (7), Watkins & Dayan (1992) proposes the
Q-learning to learn the optimal state-action value function Q∗ for control. At each time step, we
update Q(s, a) as

Q(s, a)← Q(s, a) + α(r + γmax
a′

Q(s′, a′)−Q(s, a)) (8)

where α is a step size and (s, a, r, s′) is a transition. Mnih et al. (2015) combined Q-learning with
deep neural network function approximators to propose the Deep-Q-Network (DQN) framework. It
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is assumed that theQ function is parameterized by a network Θ. At each time step t, DQN performs
a stochastic gradient descent to update Θ by minimizing the loss functions L(Θ),

L(Θ) = Es,a∼π[(y −Q(s, a; Θ))2] (9)

where y = Es′∼p[r + γmaxa′ Q(s′, a′; Θ−)|s, a] and Θ− denotes the target network, which is a
copy of Θ and is synchronized with Θ periodically. Differentiating the loss function with respect to
the weights we arrive at the following gradient,

∇ΘL(Θ) = Es,a∼π;s′∼p[(r + γmax
a′

Q(s′, a′; Θ−)−Q(s, a; Θ))∇ΘQ(s, a; Θ)] (10)

In practice, we update the parameter Θ by stochastic gradient descent while the expectation in (10)
is estimated by a single sample. In our case, the transition probability p is deterministic after picking
an action a. Following the setting of (Mnih et al., 2013), we store the agent’s experiences at each
time-step, et = (st, at, rt, st+1) to build a memory set D = {e1, . . . , eN}. During the inner loop
of the algorithm, the update is employed on a small mini-batch drawn at random from the data pool.
By employing the experience replay, the agent executes an action according to an ε-greedy policy.

4.2 ESTIMATION OF Q-FUNCTIONS

To complete the whole procedure, we need to parameterize the Q function by a well-designed graph
autoencoder with input being the node observations X and the adjacency matrix Bt, output being the
Q-function. The architecture should infer the causal graph that best describes the data generating
procedure. We first reshape original data sample X ∈ Rn×d into X̃ = {x̃i}di=1 ∈ Rd×n where
x̃i ∈ Rn is the vector concatenating all the i-th entries of the vectors in {xl}nl=1. In this case, X̃ can
be treated as the node features, which satisfy the input format of any graph-based neural networks.

Encoder, we use a three-layer Graph Convolution Network (Kipf & Welling, 2016a) to build the
encoder structure. Specifically, for the l-th layer, we have

H
(l+1)
t = δ(D̃

− 1
2

t B̃tD̃
− 1

2
t H

(l)
t W

(l)
1 )

at time step t, where B̃t = Bt + Id is the adjacency matrix of the directed graph Gt = (V,Bt)

with added self-connections. Id is the identity matrix. D̃t(i, i) =
∑
j B̃t(i, j) and W

(l)
1 is a layer-

specific trainable weight matrix. δ(·) = ReLU(·) is an element-wise action function. H(l)
t ∈ Rd×Dl

is the matrix of activations in the l-th layer; H(0)
t = X̃. We use H̃t = H

(3)
t ∈ Rd×D3 to represent

the final output of the three-layer GCN encoder.

Decoder, learns the node relational information from the GCN embedding H̃t. and output the d×d
Q(st, ·) functions for all the d× d potential actions,

Q(st, ·; Θ) = H̃tW2H̃
T
t ∈ Rd×d (11)

where W2 ∈ RD3×D3 is the weight matrix to learn. Different from the Graph Auto-Encoder
proposed by (Kipf & Welling, 2016b), we add W2 here to make the output asymmetric. Θ =

{W(1)
1 ,W

(2)
1 ,W

(3)
1 ,W2} includes all the parameters to be learned associated with the whole

graph-based encoder-decoder architecture.

4.3 EXPLORATION

Since the policy learning may highly depend on the initial start and the searching order, we encour-
age the agent to explore unknown space during the early stage of the training process. We implement
the exploration strategy by adding a bonus term to the original Q function when picking the optimal
action, which tells the agent whether to try a new direction or continue doing the best thing it knows
so far. In this paper, we employ a modified UCB-like strategy (Auer, 2002; Auer et al., 2002) and
the optimal action is determined by

a = max
a

Q(s, a) + utσs (12)

ut = c
√

log t/t is the bonus rate which decays as the number of training epochs t getting large.
σs ∝

√
1/N(s) with N(s) being the number of times the agent reaches state s, Thus, a state with

lower occurrence frequency enjoys a higher exploration bonus.
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Algorithm 1 Alpha-DAG algorithm

Given maximal number of iterations, origin ε-greedy rate, target update frequency M , ε ,k
Initialize replay memory D with capacity N ; policy network Qpolicy with random weights Θ;
target network Qtarget with random weights Θ̂; UCB bonus rate u1

for episode m = 1, . . . ,M do
Initialise state s1 = (X,B1),R and C0

for t = 0, . . . , T do
if total steps mod k = 0 then

Θ̂← Θ
end if
With probability ε select a random action at
Otherwise, select at = maxaQpolicy(st, a; Θ) + umσs
Execute action at to compute the reward rt and obtain the next state st+1

Update Ct to get Ct+1; UpdateR
Store transition (st, at, rt, st+1) in D
Sample random minibatch of transitions (sj , aj , rj , sj+1) from D

Set yj =

{
rj for terminalsj+1;

rj + γmaxa′ Qtarget(sj+1, a
′; Θ̂) for non-terminalsj+1.

Perform a gradient descent step on (yj −Qpolicy(sj , aj ; Θ))2 according to equation (10)
end for

end for

5 NUMERICAL ANALYSIS

In this section, we examine the empirical performance of Alpha-DAG and some state-of-the-art
algorithms on both synthetic and real examples. Note that all the synthetic examples are identifiable
and thus the underlying DAG can be exactly reconstructed (Peters et al., 2017). The algorithms
being compared include the PC algorithm (Spirtes et al., 2000), LiNGAM (Shimizu et al., 2006),
GES (Chickering, 2003; Nandy et al., 2018), the Causal Additive Model (CAM) (Bühlmann et al.,
2014), NOTEARS (Zheng et al., 2018), DAG-GNN (Yu et al., 2019), and RL (Zhu & Chen, 2019),
whose implementation details and parameter settings are provided in the supplements. For all the
compared algorithms, their implementations are conducted by using the default hyper-parameters
unless otherwise stated. For pruning, we use the same thresholding method for ICA-LiNGAM,
NOTEARS, and DAG-GNN.

Alpha-DAG uses a three-layer GCN with [500, 1000, 500] hidden units as the graph encoder. The
target network is updated every 1000 training steps, and the learning rate decays to its 0.99 big after
every 1000 training steps. The batch size we use in this paper is 64. For the synthetic examples with
small d (d = 12), we set γ as 0.8, the learning rate as 1e-4, the maximal iteration time as 15000 and
the memory size as 100000. For ε-greedy, we initialize ε with 0.75 and let it decay to 0.01 linearly
within 11000 iterations. The bonus rate of UCB decays to 0 within 12000 iterations. For the case
d = 30, we set the starting learning rate as 5e− 5, the maximal iteration numbers as 30000 and the
memory size as 150000. The initial value of ε is still 0.75 but the decay period is set to be 25000. In
the last real example, the settings remain the same except γ is set to be 0.3.

For Alpha-DAG, we record all the graphs generated during the training process and output the one
with the highest score, which in practice may contain nonexistent edges and further pruning is
needed. We calculate the coefficients by fitting all the d models in (1), and delete those edges
with regression coefficient smaller than 0.3. On the other hand, since BIC is not sensitive to edge
directions, it is much likely to produce causally inverted edges at training stage. Thus, we adopt a
greedy approach to flip edges, which helps increase the total reward of the resulting graph. If the
flipped edges does not generate a cycle, we keep the flip. With these two postprocessing strategies,
the results can be significantly improved.

To evaluate the accuracy of the learned DAGs, we consider three metrics: False Discovery Rate
(FDR), True Positive Rate (TPR), and Structural Hamming Distance (SHD). A large value of TPR
and a small FDR indicate a good estimate. A smaller SHD implies the closeness of the estimated
graph and the true graph.
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5.1 LINEAR MODEL WITH GAUSSIAN AND NON-GAUSSIAN NOISE

We first evaluate the performance of Alpha-DAG and its competitors in the linear case, where
fi(xpa(i)) is a linear function of xpa(i) for each i = 1, ..., d, i.e.

X = BX + n,

with n = (n1, ..., nd)
T . The following two synthetic examples are considered.

Example 1. (Gaussian noise) We generate the true adjacency matrix B in the sense that all its upper
entries are sampled independently from Bern(p) with Bernoulli parameter p. Then, we reparame-
terize B by replacing all the entries of value 1 with a value randomly generated from the interval
[−2,−0.5] ∪ [0.5, 2]. All the noise terms are generated independently from N(0, 1).

Example 2. (Non-Gaussian noise) The generating scheme is the same as that in Example 1 except
that all the noise terms are generated randomly from Unif(-1,1), Exp(1) or Gumbel(0, 1).

To test the robustness of Alpha-DAG and its competitors on different graph structures, we consider
both sparse and dense directed acyclic graphs by setting p = 0.2 (p = 0.5 in the supplement). The
averaged performance of all the eight algorithms in the the 12 node case are obtained by using a
relatively small sample size n = 256. For our method, we set the maximal number of iterations to
15000 and use ucb-exploration for BIC1 score (AL1) and ε-greedy for BIC2 score (AL2).

The numerical results for Examples 1 and 2 are presented in Table 1. It is evident that Alpha-
DAG outperforms its competitors in most scenarios. AL2 is the best performer in terms of all
three measures, which almost fully recovers the true graphs. On the other hand, AL1 significantly
outperforms RL1. It is also interesting to point out that Alpha-DAG can definitely end up with a
DAG while the acyclicity can not be guaranteed by either RL1 or RL2. Note that RL1 and RL2
work well under the dense graph case as illustrated in the supplement but get worse in the sparse
graph. As opposed,the performance of Alpha-DAG is consistent in both sparse and dense graph
cases, largely due to novel adding edge strategy employed.

Table 1: Empirical results on linear-Gaussian and LiNGAM data models with 12-node prob-0.2.

AL1 AL2 RL1 RL2 CAM DAG-GNN GES LINGAM NOTEARS PC

LiG
FDR 0.23±0.09 0.03±0.05 0.59±0.32 0.04±0.06 0.53±0.30 0.22±0.10 0.18±0.01 0.38±0.05 0.04±0.08 0.35±0.02
TPR 0.78±0.08 1.00±0.00 0.42±0.36 1.00±0.00 0.46±0.31 0.90±0.05 0.96±0.07 0.72±0.10 0.94±0.11 0.66±0.09
SHD 3.7±1.50 0.3±0.60 11.0±6.9 0.7±1.2 10.3±7.6 4.3±2.1 3.0±1.0 6.3±2.1 1.7±2.9 7.3±3.2

LiNG
FDR 0.17±0.11 0.03±0.07 0.46±0.21 0.02±0.04 0.53±0.21 0.29±0.10 0.21±0.03 0.22±0.08 0.05±0.08 0.31±0.11
TPR 0.84±0.09 1.00±0.00 0.55±0.26 1.00±0.00 0.46±0.22 0.84±0.06 0.95±0.08 0.84±0.06 0.92±0.09 0.65±0.07
SHD 3.0±2.9 0.3±0.8 9.3±4.9 0.3±0.5 9.7±5.6 6.3±3.3 3.7±1.0 4.0±1.8 1.7±2.3 7.7±2.6

We also evaluate the performance of the compared algorithms in the d = 30 case. The settings
are the same as the low dimensional case except that the upper entries are independently sampled
from Bern(0.1) and the maximal number of iterations is set to be 30000. The numerical results for
Gaussian and non-Gaussian noise are reported in Table 2. We can see that the outperformance of
Alpha-DAG becomes more significant especially in FDR. AL2 achieve a very close performance
to the d = 12 case while RL2 performs much worse than before. The outstanding performance of
Alpha-DAG is largely due to its adding edge strategy. As a comparison, RL prefers to generate large
graphs and delete nonexistent edges by postprocessing. However, the pruning process does not work
well when d is large or the underlying graph is sparse. A more detailed comparison in terms of the
FDR and TPR change during the training process is illustrated in Figures 2 and 3 of the supplement.

Table 2: Empirical results on linear-Gaussian and LiNGAM data models with 30-node.

AL1 AL2 RL1 RL2 CAM DAG-GNN GES LINGAM NOTEARS PC

LiG
FDR 0.28±0.27 0.06±0.08 0.66±0.07 0.36±0.06 0.51±0.10 0.38±0.08 0.22±0.10 0.38±0.11 0.00±0.00 0.35±0.06
TPR 0.77±0.17 0.98±0.02 0.41±0.04 0.81±0.03 0.67±0.09 0.92±0.08 0.90±0.04 0.47±0.10 0.96±0.04 0.51±0.15
SHD 18.5±20.5 3.7±3.8 47.3±9.3 21.7±3.1 35.3±15.0 26.7±6.4 11.3±7.6 29.0±9.2 1.7±1.5 27.3±9.0

LiNG
FDR 0.43±0.01 0.13±0.12 0.62±0.14 0.32±0.13 0.72±0.06 0.41±0.12 0.17±0.05 0.36±0.10 0.02±0.04 0.33±0.07
TPR 0.68±0.13 0.96±0.05 0.48±0.14 0.82±0.06 0.40±0.06 0.89±0.04 0.89±0.06 0.47±0.08 0.96±0.03 0.56±0.10
SHD 25.3±5.5 8.3±7.2 48.0±23.3 29.0±18.5 53.7±13.6 29.8±11.1 8.2±3.7 29.0±7.5 2.3±2.8 25.0±7.9

5.2 NONLINEAR MODEL WITH QUADRATIC FUNCTION AND GAUSSIAN PROCESS

Now, we move from the linear case to the non-linear case. We consider two different formulations
of fi(xpa(i)) and the experiment designs are originally introduced in Zhu & Chen (2019).
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Example 3. (Quadratic function) We first assume that fi(xpa(i)) is modelled by a quadratic function
in which fi(xpa(i)) is linear in both first- and second-order terms of xpa(i). The generating scheme
is the same as Example 1 except that each coefficient of the first- and second- order term is randomly
generated from the interval [−1,−0.5] ∪ [0.5, 1] or 0 with equal probability. We remove the edges
whose coefficients are all 0.

The averaged performance of the eight algorithms are evaluated with n = 500, d = 10 and p =
0.5. We fit quadratic regression for any given casual relation to compute the BIC score and set the
thresholding value as 0.3 for the proposed pruning strategy. Then, an edge is removed if and only if
all the coefficients of the corresponding first- and second order terms are zero after thresholding. As
Zhu & Chen (2019) mentions, the pruning method will reduce FDR but have little effect on TPR.
Therefore, we only apply the pruning procedure to RL2 and compare it with the other algorithms.
The averaged numerical results are reported in Table 4. It is clear that AL2 outperforms all the other
competitors in all the scenarios.

Table 3: Empirical results on nonlinear models with 10-node using quadratic function.

AL2 RL2 CAM DAG-GNN GES LINGAM NOTEARS PC
FDR 0.05±0.05 0.11±0.06 0.45±0.04 0.12±0.12 0.35±0.14 0.29±0.06 0.33±0.29 0.07±0.07
TPR 1.00±0.00 0.86±0.13 0.65±0.10 0.24±0.14 0.25±0.03 0.35±0.06 0.30±0.17 0.39±0.14
SHD 1.0±1.0 6.3±5.2 18.3±2.9 17.0±3.0 18.3±3.2 16.3±1.2 5.3±1.5 13.3±2.5

Example 4. (Gaussian process) In this case, fi’s are sampled from a Gaussian process with RBF
kernel of bandwidth being one and all the d noises ni’s normally distributed. The data generation
method is the same as Zhu & Chen (2019).

The averaged performance of the eight algorithms are evaluated using the (n, d) = (512, 10) combi-
nation. The number of true edges is set to be 10. We fit Gaussian process regression for any potential
casual relation to compute the BIC score and the averaged numerical results are reported in Table 4.
Both our methods outperform the other competitors in all the scenarios.

Table 4: Empirical results on nonlinear models with 10-node using Gaussian process.

AL1 AL2 RL1 RL2 CAM DAG-GNN GES LINGAM NOTEARS PC
FDR 0.21±0.21 0.22±0.23 0.25±0.13 0.52±0.08 0.77±0.09 0.70±0.09 0.53±0.07 0.81±0.10 0.84±0.10 0.54±0.08
TPR 0.93±0.12 0.91±0.15 0.82±0.07 0.48±0.02 1.00±0.00 0.23±0.03 0.66±0.08 0.21±0.08 0.32±0.19 0.57±0.15
SHD 4.0±5.3 4.0±5.3 4.7±4.7 13.0±7.5 34.7±4.0 10.7±5.7 10.3±4.9 14.0±7.5 18.0±8.2 9.7±3.8

According to Examples 1, 2 and 4, we find that Alpha-DAG is less sensitive to the BIC selection
than RL and performs more stable for both BIC1 and BIC2 cases. This indicates that either AL1
or AL2 would be a better choice than RL in practice if no prior information has been provided.

5.3 REAL DATA

In this part, we evaluate the performance of Alpha-DAG on a real dataset Sachs et al. (2005), which
studies a protein signaling network based on expression levels of proteins and phospholipids. Note
that this dataset is a well-studied example and is a common benchmark in DAG studies. In this ex-
periment, we generate a sample data with 853 observation, and the true causal relations are modelled
by 11 nodes and 17 edges.

We use the same parameter configuration as Example 4 and fit Gaussian process regression to model
the causal relationship between different cells. The numerical results of all the competitors are
reported in Table 5. Both AL1 and AL2 achieve promising results in reconstructing the directional
relations, and are comparable with RL1 and RL2 but outperforms the other six competitors.

Table 5: Empirical results on Sachs data.

AL1 AL2 CAM DAG-GNN GES LINGAM NOTEARS PC RL1 RL2
Pred Size 10 10 11 15 14 8 20 16 10 10

Correct Eages 7 6 5 4 6 3 6 2 6 7
SHD 11 12 15 24 17 15 19 33 12 11
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