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Abstract

Document-level NER approaches use global
information via word-based key-value memory
for accurate and consistent predictions. How-
ever, such global information on word level
can introduce noise when the same word ap-
pears in different token sequences and has
different labels. This work proposes a two-
stage document-level NER model, ScdNER,
for more accurate and consistent predictions
via adaptive span-level global feature fusion. In
the first stage, ScdNER trains a binary classifier
to predict if a token sequence is an entity with
a probability. Via a span-based key-value mem-
ory, the probabilities are further used to obtain
the entity’s global features with reduced im-
pact of non-entity sequences. The second stage
predicts the entity types using a gate mecha-
nism to balance its local and global informa-
tion, leading to adaptive global feature fusion.
Experiments on benchmark datasets from sci-
entific, biomedical, and general domains show
the effectiveness of the proposed methods.

1 Introduction

Named entity recognition (NER) is an important
task for many natural language processing appli-
cations (Lample et al., 2016; Li et al., 2020; Yu
et al., 2020; Yan et al., 2019). Most NER models
process sentences independently, leading to a risk
of inconsistent prediction for the mentions of the
same entity. That is, they can produce different pre-
dictions for the same entity mentions in different
sentences depending on the contextual information
for each sentence. Consideration of document-level
features in entity representation learning is likely
to obtain more consistent and accurate predictions
since different occurrences of a specific token se-
quence within a document are likely to have the
same entity types (Krishnan and Manning, 2006).

Based on this idea, some document-level NER
(DL-NER) approaches (Luo et al., 2020; Gui et al.,
2021) proposed to fuse global features of tokens via

token-based key-value memory, where the features
of the same token are fused to produce document-
level encoding for token label prediction. However,
this token-level feature-sharing strategy may intro-
duce noise in global feature fusing, as the same
token occurrences in different contexts may not
carry the same labels. For instance, labels for token
“type” in the entity span “breast cancer type 1” and
the token sequence “a unique type of cancer” are
GENE-I and O, respectively (here, we call an entity
span as a token sequence with an entity type). Fus-
ing features of these two tokens will bring noise in
predicting their labels.

To address the problem of token-level fea-
ture sharing, this work proposes a span-based
consistency-aware DL-NER model (ScdNER) to
enable context feature fusing on the span level. In
particular, this work proposes a document-level
context feature fusion technique for the same en-
tity mentions. Given a document, we first extract
document-level contextual encoding for each enu-
merated token sequence. Based on contextual en-
coding, we propose a two-stage prediction frame-
work. In stage 1, a binary classifier is trained
to predict if a token sequence is an entity span
with a probability. Stage 2 employs a span-based
key-value memory to enable context feature fus-
ing of the same entity spans using probabilities
from Stage 1 to reduce the impact of non-entity
spans. The entity span features are updated by
fusing global information with a gate to balance
local and global features. Finally, the entity type is
predicted for an entity span.

2 Related Work

DL-NER approaches use document-level contextu-
alized information for more accurate and consistent
predictions. Qian et al. (2019) use word sequence
dependency structures to model non-local and non-
sequential dependency. Akbik et al. (2019) propose
to pool contextualized embeddings of each unique
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Figure 1: Illustration of the proposed ScdNER. In this example, “formal analysis” is a surface name shared by
two entity spans. Their features are updated via fusing the other’s contextual features, resulting in a “METHOD”
prediction.

string. Luo et al. (2020) employ a word-based
key-value memory to memorize word encoding,
and an attention mechanism computes each token’s
document-level representations. Gui et al. (2021)
design a two-stage label refinement network via a
word-based key-value memory network. However,
most existing works try to fuse word-level global
information, which introduces noise when the same
word in different entity spans has different labels.
This work proposes to use a span-level key-value
memory for global feature fusion.

3 ScdNER

Problem Definition. Given a document D =
[w1, . . . , wn] with wi representing the ith token, we
enumerate all contiguous token sequences in each
sentence as candidate spans sj = [wa, . . . , wa+k]
with k ∈ {0, 1, . . . ,K}, where a is the starting to-
ken position in sj and K is the maximum sequence
length of spans. For each span, we aim to predict
its label in {0, 1, . . . , C}, where 0 indicates it is a
non-entity and C is the number of entity types.
Our Model. ScdNER is a two-stage DL-NER
model. In the first stage, a binary span classifier
is trained to predict if a span is an entity. The sec-
ond stage uses a span-based key-value memory to
adaptively fuse global features of spans with the
same surface names for better span feature repre-
sentation learning. Figure 1 illustrates the proposed
ScdNER.

3.1 Document-Level Span Encoding
To encode candidate spans in the document, we
first encode tokens wi with the document as

context as follows. H = [h1, . . . ,hn] =
Encoder([x1, . . . ,xn]), where xi ∈ Rd1 is the
word embedding for wi and hi is its contextual en-
coding. We can use a pre-trained language model
such as BERT (Devlin et al., 2019) or LSTM model
(Hochreiter and Schmidhuber, 1997) as an encoder.
For a candidate span sj , its encoding is computed
by fusing token encoding:

hsj = AGG(ha, . . . ,ha+k),

where AGG(·) is an aggregation function such as
max-pooling and average-pooling. In the experi-
mental studies, we use max-pooling as the aggrega-
tion function to introduce more non-linearity (Yu
et al., 2014).

3.2 Stage 1: Binary Span Classification
In the first stage of ScdNER, we train a binary clas-
sifier to predict if a candidate span is an entity span.
When building a span-based key-value memory,
this binary classifier acts as a filter to reduce the
noise in global feature fusion of the same candidate
spans. For a candidate span si, the prediction is
based on its encoding hsi :

pi = σ1(W 1hsi + b1), (1)

where W 1 and b1 are trainable parameters and
σ1(·) is a sigmoid function. Using a threshold θ,
a candidate span si is predicted as an entity span
if its probability pi ≥ θ. By span filtering, stage 1
outputs a list of entity spans E = [e1, e2, . . . , et].
To train this binary span classifier, we create a bi-
nary label ybi for each span si. If span si is not an
entity of any type, ybi = 0; otherwise, ybi = 1.



3.3 Stage 2: Adaptive Global Feature Fusion
We propose a span-based key-value memory to
adaptively fuse features of the same entity spans.
Span-based key-value memory. The span-based
key-value memory records representations of spans
(keys) and their probabilities from Stage 1 (values).
In particular, we create a document-level memory
matrix U = [u1,u2, . . . ,um], where the ith slot,
ui, corresponds to span si and stores a pair of vec-
tors (hsi , pi). Suppose sq1 , sq2 , . . . , sqr are spans
under the same surface name phj . phj can cor-
respond to multiple slots, corresponding to a sub-
array memory matrix Uphj

= [uq1 ,uq2 , . . . ,uqr ].
Entity span feature update. Based on the span-
based key-value memory, each entity span ei up-
dates its features to fuse global features of the same
entity spans. If spans of the same surface name are
identified as entities, they are likely to share the
same semantic meanings. However, the assumption
does not hold for non-entity spans. Thus, we use
probabilities from Stage 1 to adjust the impacts of
spans in global features to emphasize entity spans.

Given an entity span ei, its features are updated
by fusing features of other spans sharing the same
surface name in the memory. To this end, we first
extract its corresponding sub-array memory matrix
Uphj

= [(hsq1
, pq1), . . . , (hsqr , pqr)]. The entity

span features are updated as:

hg
phj

=

(
r∑

k=1

pqkhsqk

)
/

r∑
k=1

pqk , (2)

gi = σ2(W 2hei + b2), (3)

h′
ei = gihei + (1− gi)h

g
phj

, (4)

where W 2, b2 are trainable parameters, and σ2(·)
is a sigmoid function. In Eq. (2), the global features
of a surface name phj are computed by weighted
average of all span features with their probabilities
as weights. Thus, the impact of non-entity spans is
reduced. Eq. (3) and Eq. (4) use a gate mechanism
to balance the span’s local and global features. If all
spans of a surface name are predicted as non-entity,
their features are not updated.

3.4 Entity Type Prediction Head
We use an entity type prediction head to predict
the entity types for entity spans from stage 1. Fol-
lowing previous methods (Eberts and Ulges, 2020),
we concatenate the entity span encoding and span
width embedding, which leads to the final encod-
ing for an entity span ei of width t: f i = [h′

ei ;dt],

where dt is the width embedding of t. We use a
multi-layer perceptron (MLP) to compute the pre-
diction values zi ∈ RC for all entity types, where
C is the number of entity types:

zi = W 4σ3(W 3f i + b3) + b4, (5)

where W 3,W 4, b3, b4 are trainable parameters,
and σ3 is an element-wise activation function.

During prediction, a span si will be predicted as
non-entity if pi < θ. Otherwise, it will be assigned
to entity type ci = argmaxj zi[j]. It is worth
noting that the value of ci can be 0, indicating that
a span initially predicted as an entity span in Stage
1 can ultimately be classified as non-entity.

4 Experiments

We evaluate the proposed ScdNER model on bench-
mark NER datasets from various domains. We
aim to study if span-level global feature fusing im-
proves span feature learning and NER results.
Experimental setups. We use BioBERT (Lee
et al., 2020), SciBERT (cased) (Beltagy et al.,
2019), and BERTbase (cased) (Devlin et al., 2019)
based on Huggingface’s Transformers (Wolf et al.,
2019) as document encoder for biomedical, scien-
tific, and general domain datasets, respectively. All
hyper-parameters are tuned on the validation sets
(See Appendix A for details). We report the aver-
age over 5 runs for ScdNER. Evaluation metrics
include Precision, Recall, and F1 scores.

4.1 Experiments on Biomedical Datasets
Dataset. We use three biomedical datasets to evalu-
ate ScdNER: CDR (Li et al., 2016), NCBI-disease
(Doğan et al., 2014), and ChemdNER (Krallinger
et al., 2015). The CDR dataset is tagged with 2 en-
tity types and contains 500, 500 and 500 abstracts
for train, validation, and test, respectively. The
NCBI-disease dataset contains 593, 100, and 100
documents for train, validation, and test, respec-
tively. It is tagged with 1 entity type: Disease.
The ChemdNER dataset, tagged with 1 entity type,
consists of 3,500, 3,500, and 3,000 abstracts for
training, validation and test, respectively. More
statistics can be found in the Appendix A.
Baseline Models. We compare ScdNER with
SOTA biomedical NER models including BiLSTM-
CRF (Luo et al., 2018), BioBERT, ConNER (Jeong
and Kang, 2022), HierNER (Luo et al., 2020), Do-
cLNER (Gui et al., 2021), and SpERT-Doc. SpERT-
Doc is developed based on SpERT (Eberts and
Ulges, 2020) using document-level encoding.



Model CDR NCBI ChemdNER
BiLSTM-CRF - 84.6 89.4
BioBERT 89.1 87.7 -
ConNER 89.9 89.1 -
DocLNER - - 90.7
HierNER - - 89.5
SpERT-Doc 90.1 88.8 92.1
ScdNER 91.2±0.07 90.4±0.32 93.1±0.11

Table 1: Results (F1 scores) on biomedical datasets.

Model P R F1
DyGIE-GloVe - - 65.20
DyGIE++-BERT - - 67.50
PURE-SciBERT - - 68.90
SpERT-SciBERT-Sent 70.87 69.79 70.33
SpERT-SciBERT-Doc 69.85 70.78 70.31
PL-Marker-SciBERT - - 69.90
ScdNER-SciBERT 71.60 71.43 71.44±0.20

Table 2: Results on SciERC dataset from the scientific
domain. We report the Precision, Recall, and F1 scores.

Main Results are summarized in Table 1. ScdNER
achieves consistently better performances than pre-
vious SOTA models on all datasets. ScdNER
outperforms previous best models by margins of
1.1%, 1.3%, and 1.0% on CDR, NCBI-disease and
ChemdNER, respectively, which demonstrates the
effectiveness of conducting span-level global fea-
ture fusion in span feature learning.

4.2 Experiments on Scientific Datasets

Dataset. We evaluate ScdNER on SciERC (Luan
et al., 2018) dataset, a scientific domain dataset
constructed from abstracts of 500 AI papers, which
are split into 350, 50, and 100 documents for the
training, validation and test sets, respectively. The
dataset is tagged with 6 scientific entity types.
Baseline Models. We compare with previous
SOTA span-based joint entity/relation extraction
models including DyGIE (Luan et al., 2019), Gy-
GIE++ (Wadden et al., 2019), PURE (Zhong and
Chen, 2021), SpERT, and PL-Marker (Ye et al.,
2022). For fair comparisons, we use the same RE
component and loss as SpERT during training.
Main Results are summarized in Table 2. From
the results, the proposed ScdNER achieves con-
sistently better performances than previous SOTA
models on all metrics. In particular, ScdNER sig-
nificantly outperforms previous models by at least
1.11% in terms of F1.

4.3 Experiments on General Domain Datasets

Dataset. We use the English portion of OntoNotes
5.0 dataset with gold-standard named entity annota-

Model Level F1
CVT-GloVe Sent-level 88.88
DocLNER-GloVe Doc-level 88.49
PoolNER-BERT Sent-level 89.71
DocLNER-BERT Doc-level 90.28
HierNER-BERT Doc-level 90.30
SpERT-BERT Sent-level 90.24
SpERT-Doc-BERT Doc-level 90.34
ScdNER-BERT Doc-level 90.80±0.06

Table 3: Results (F1 scores) on OntoNotes 5.0 dataset.

Model P R F1 #Type INC
SpERT-Doc 89.7 90.5 90.1 80 (4.6%)
ScdNER 90.6 91.3 90.9 58 (3.3%)

Table 4: Prediction inconsistency study on the CDR
dataset. We report the inconsistent rate of predictions.

tions with 18 entity types. It consists of 2,483, 319,
and 322 documents for the training, validation, and
test sets, respectively.
Baseline Models. We compare with sentence-level
NER models: CVT (Clark et al., 2018) and Pool-
NER (Akbik et al., 2019), and document-level NER
models: HierNER, DocLNER, and SpERT-Doc.
Main Results. We summarize the comparison re-
sults in Table 3. The proposed ScdNER outper-
forms the existing best model by a margin of 0.5%
in terms of F1 score. Although entity repeating
in the general domain is not as severe as in the
biomedical domain, our method can still boost per-
formance by better fusing global information. Error
analysis of ScdNER is provided in Section 4.7.

4.4 Prediction Consistency Study

We study if ScdNER can address prediction incon-
sistency problem for entities of the same surface
same on the CDR dataset. We use SpERT-Doc as
baseline, which uses document-level context with-
out considering label consistency. The results are
summarized in Table 4. Compared to the baseline
model, ScdNER can effectively reduce the rate of
prediction inconsistency for entities of the same
surface name, which shows the advantage of con-
sidering label consistency.

4.5 Ablation Study of ScdNER

We conduct ablation experiments on the NCBI-
disease and SciERC datasets to study the contribu-
tion of each component in ScdNER. Based on
ScdNER model, we remove key-value memory
(stage 2) and entity filtering (stage 1) at a time.
We also remove both to test the overall contribu-
tion of the adaptive global feature fusion module.



Model NCBI SciERC
ScdNER 90.39 71.44
(-) Key-value memory 89.28 70.36
(-) Entity filter 89.49 70.64
(-) Both 88.77 69.84

Table 5: Ablation study results on NCBI-disease and
SciERC datasets. We report F1 (%) scores.

The ablation results are summarized in Table 5. We
can observe that each component makes a signif-
icant contribution. In particular, when removing
the span-level key-value memory, the performances
drop by 1.11% and 1.08% on NCBI-disease and
SciERC, which shows the benefit of conducting
span-level global feature fusion for better span rep-
resentation learning. When removing the entity
filter while keeping the key-value memory, the per-
formance drops by 0.90% and 0.80% on NCBI-
disease and SciERC, which means the non-entity
spans can introduce significant noise in adaptively
fused global features, and it is necessary to reduce
the impact of non-entity spans when fusing global
information. Removing both leads to 1.52% and
1.60% performance drops on NCBI-disease and
SciERC, respectively, demonstrating the overall
contribution of the proposed methods.

4.6 Label Consistency on Datasets

The proposed methods are based on the assump-
tion that the entities sharing the same surface name
are highly likely to be assigned the same entity
types. We examine this assumption on benchmark
NER datasets from various domains. The statis-
tics are summarized in Table 6. We calculate the
number and rate of entities repeated in the docu-
ment (shown at “#Entity REP” column) and the
number and rate of entities with label inconsis-
tency (shown at “#Type INC” column). We can ob-
serve high entity repeat rates and low type inconsis-
tency rates, especially on biomedical NER datasets,
which strongly supports the proposed methods.

4.7 Error Analysis

To better understand the bottleneck of ScdNER, we
analyze the errors that ScdNER makes on the Sci-
ERC and OntoNotes datasets. We identify five ma-
jor types of errors as follows: 1) Missing (M): The
model predicts no entity type for an entity span in
the ground truth; 2) Extra (E): The model predicts
an entity type for a span that does not exist in the
ground truth; 3) Wrong Boundary Correct Type
(WC): The model predicts the same entity type as
that of an entity span in the ground truth with over-

Dataset #Entity #Entity REP #Type INC
CDR 4,605 1,854 (40.3%) 0 (0.0%)
NCBI Disease 2,982 1,019 (34.2%) 0 (0.0%)
ChemdNER 15,911 5,345 (34.2%) 0 (0.0%)
SciERC 4,959 991 (19.9%) 28 (5.6%)
OntoNotes 58,177 10,766 (18.5%) 173 (1.6%)

Table 6: Label consistency statistics on benchmark
datasets.

lapping spans; 4) Wrong Boundary Wrong Type
(WW): The model predicts a different entity type
as that of an entity span in the ground truth with
overlapping spans; 5) Correct Boundary Wrong
Type (CW): The model predicts a different entity
type for an entity span in the ground truth.

The errors distribution of the ScdNER is shown
in Table 8. Compared to the baseline model,
ScdNER can significantly reduce the errors in “Ex-
tra” category. The proposed binary span classifier
can greatly help with such kind of errors. Most
errors of the ScdNER involve incorrect boundaries
and incorrect entity type. The errors of incorrect
boundaries come from these categories: Missing,
Extra, Wrong Boundary Correct Type, and Wrong
Boundary Wrong Type. The wrong entity type
errors include Wrong Boundary Wrong Type and
Correct Boundary Wrong Type. From the error
distribution, the errors of incorrect boundaries are
major and need to be addressed in the future. In
particular, “Missing” and “Extra” contribute the
most to the errors on both datasets. Table 10 in the
appendix illustrates some examples.

5 Conclusion

This work proposes a two-stage DL-NER model,
ScdNER, to enable more accurate and consistent
NER prediction via global feature fusion of the
same entity spans. In stage 1, ScdNER trains a
binary span classifier to classify a span with a prob-
ability. Stage 2 uses a span-based key-value mem-
ory to adaptively fuse global features of the same
entity spans. The probabilities in stage 1 are reused
to reduce the impacts of non-entity spans. Empiri-
cal results on document-level NER datasets from
various domains demonstrate the effectiveness.
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Limitations

In this work, we use SciERC (Luan et al., 2018)
as one of the datasets to evaluate the proposed
model. The kappa score for annotating entities
in SciERC is only 76.9%, which indicates that only
35%-63% data are reliable (McHugh, 2012). Low-
quality dataset can introduce noise and undermine
the model performance. There is a chance that the
performance gain from ScdNER model is due to
over-fitting to the noise in annotation.
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P R F1 AUC
SciERC 81.41 82.52 81.96 97.77
OntoNotes 91.32 93.82 92.55 99.71

Table 7: Evaluation of the binary classifier. We report
Precision (%), Recall (%), F1 (%), and AUC scores.

A Experimental Setups

The threshold θ = 0.5 is used in the bi-
nary span classifier. We use the AdamW opti-
mizer (Loshchilov and Hutter, 2018) with a linear
warmup. The learning rate starts from 5e-5 and
is reduced by a linear decay learning rate sched-
ule until 0. We mostly use the hyper-parameters
in (Eberts and Ulges, 2020) with minor adjustments
to better suit each dataset. We provide more hyper-
parameters of ScdNER on five benchmark NER
datasets in Table 9. We train all models using a
Tesla V100 GPU. For the baseline model results we
produced, we used the hyper-parameters reported
in the original paper, albeit with slight fine-tuning.

B Performance Study of Binary Classifier

We use a binary classifier in the proposed ScdNER
model to reduce the impact of noises and conduct
first-stage prediction. The errors in this binary clas-
sifier may be propagated to the second stage, mak-
ing a critical impact on the overall performance.
We conduct experiments to study its effectiveness
on the SciERC and OntoNotes 5.0 dataset, with re-
sults summarized in Table 7. From the results, we
observe that the binary classifier achieves 81.96%
and 92.55% F1 scores on two datasets, which is
highly accurate. Thus, using binary classifier as an
entity filter has the risk of error propagation, but
can bring more benefits than errors from the results
of ablation study. Future work can include soft
punishment to avoid the error propagation issue.



SciERC OntoNotes
ScdNER SpERT ScdNER SpERT

Missing 188 197 350 265
Extra 142 205 473 632
Wrong Boundary Correct Type 120 103 327 322
Wrong Boundary Wrong Type 60 46 131 128
Correct Boundary Wrong Type 184 206 228 246

Table 8: Error distributions on SciERC and OntoNotes datasets.

Dataset Context Pretrained
LM

Batch Size Learning
Rate

Training
Epoch

Threshold Max Span
Size K

CDR Document BioBERT 6 5e-5 30 0.5 8
NCBI-disease Document BioBERT 6 5e-5 30 0.5 10
ChemdNER Document BioBERT 6 5e-5 30 0.5 10
SciERC Document SciBERT 4 5e-5 30 0.5 10
OntoNotes Document BERT 4 5e-5 30 0.5 10

Table 9: Hyper-parameters of the named entity recognition settings.

Category Document
M . . . Since we know that Jingguang Bridge is located in the CBD district, well there are

many office buildings, ah, a lot of them, as well as quite a lot of friends who get up early
in the morning to go to work. . . .

early in the morning: TIME
E . . . In Taiwan, in recent years the Ministry of Economic Affairs, the National Science

Council and the National Health Research Institutes have been strongly pursuing "biochip"
research programs. . . .

recent years: DATE
WC . . . Well, ah, if there is an accident, from the time it occurs until the time all traffic is

cleared, it probably takes about half an hour to an hour during peak periods. . . .

about half an hour | about half an hour to an hour: TIME
WW However, southern North China and the Huang-Huai area will bid farewell to the snow

tonight, ah. Tomorrow during the day, snowfall in the Jiang-Huai area will stop, and there
will also be less snow in Northwest China. . . .

Tomorrow: DATE | Tomorrow during the day: TIME
CW . . . Judy Miller acknowledges that at Louis Libby’s request this is the Dick Cheney aide

she agreed to refer to him and in stories not as a senior administration official but as a
former Hill aide because he had once worked on Capitol Hill. . . .

Capitol Hill: ORG | LOC

Table 10: Case study of NER results on the OntoNotes dataset. Here, green texts and blue texts indicate predictions
with correct and wrong boundaries, respectively. The predicted entity types in green box and blue box indicate
predictions with correct and wrong types, respectively.


