
Under review as submission to TMLR

Understanding Accelerated Gradient Methods:
Lyapunov Analyses and Hamiltonian-Assisted Interpreta-
tions

Anonymous authors
Paper under double-blind review

Abstract

We formulate two classes of first-order algorithms more general than previously studied
for minimizing smooth and strongly convex or, respectively, smooth and convex functions.
We establish sufficient conditions, via new discrete Lyapunov analyses, for achieving ac-
celerated convergence rates which match Nesterov’s methods in the strongly convex and
convex (not necessarily strongly convex) settings. Our results identify, for the first time, a
concrete sufficient condition on gradient correction for accelerated convergence. Next, we
study the convergence of limiting ordinary differential equations (ODEs), including high-
resolution ODEs, and point out currently notable gaps between the convergence properties
of the corresponding algorithms and ODEs, especially regarding the role of gradient correc-
tion. Finally, we propose a new class of discrete algorithms, called the Hamiltonian-assisted
gradient method, directly based on a Hamiltonian function and several interpretable oper-
ations, and then provide specific interpretations of our acceleration conditions in terms of
the momentum variable updates.1

1 Introduction

Optimization plays a vital role in machine learning, statistics, and many other fields. In the optimization
literature, there exists a striking phenomenon where after suitable modifications of a first-order method,2 the
convergence guarantee can be improved, often attaining the complexity lower bound, with a similar compu-
tational cost as before. Such acceleration has been widely studied since the seminal work of Nesterov (1983),
which improves gradient descent for minimizing smooth convex functions. Examples include constrained
optimization (Nesterov, 2018), mirror descent with a non-Euclidean norm (Krichene et al., 2015), composite
optimization with a proximable function (Beck & Teboulle, 2009), primal-dual splitting (Chambolle & Pock,
2011), stochastic gradient methods (Zhang & Lin, 2017; Allen-Zhu, 2018), and others.

Despite extensive research, the scope and mechanism of acceleration remain to be fully understood, even
including the original acceleration of gradient descent for smooth convex optimization. Typically, a class
of algorithms is constructed, and their convergence proofs are provided using suitable techniques. Among
them, Lyapunov analysis has been a prevalent approach for studying convergence properties of discrete
algorithms, once those algorithms are defined. In fact, Nesterov (1983) used a potential function or a
Lyapunov function to establish the convergence of an accelerated algorithm, although Nesterov’s later work
turned to the technique of estimate sequences for studying gradient methods (Nesterov, 1988; 2018). See
Bansal & Gupta (2019) and d’Aspremont et al. (2021) for overviews of Lyapunov-based proofs for gradient
methods. The central step in Lyapunov analysis is to construct an appropriate Lyapunov function that is used
to deduce the desired convergence. Recently, a promising framework for constructing Lyapunov functions
systematically is via linear matrix inequalities (LMI) and semidefinite programming (SDP) techniques. The
core idea is to transform the existence of a quadratic Lyapunov function into the feasibility of an SDP,

1The code and numerical results are available at: https://github.com/ffpphh/acc_grad
2First-order methods refer to methods using function values and gradients only, whereas second-order methods additionally

rely on the Hessian matrices or their approximations.

1

https://github.com/ffpphh/acc_grad

Under review as submission to TMLR

which involves solving for a positive definite matrix subject to linear matrix inequalities. Currently, there
are two distinct methodologies under this framework, namely the performance estimation problem (PEP)
and integral quadratic constraints (IQC). The PEP method is motivated by finding an objective function
for which the given optimization algorithm has a worse performance, and has been adapted for Lyapunov
analysis (Taylor et al., 2018; Taylor & Bach, 2019; Upadhyaya et al., 2025). On the other hand, the IQC
method is motivated from a control-theoretic perspective of optimization algorithms, as originally proposed
in Lessard et al. (2016) and later extended by Fazlyab et al. (2018). More recently, the IQC method has
been leveraged to analyze a family of Nesterov optimization methods by Sanz Serna & Zygalakis (2021),
whose results are further improved by Dobson et al. (2025).

Although being a major technical tool for establishing convergence rates, Lyapunov analysis itself may not
explain conceptually when and how acceleration can be achieved. Various efforts have been made for the
latter purpose. For example, geometric formulations are proposed by coupling gradient descent and mirror
descent (Allen-Zhu & Orecchia, 2017), and by averaging two minimizers of an upper and a lower quadratic
bound for the objective function (Bubeck et al., 2015; Drusvyatskiy et al., 2018). Another useful approach is
to relate discrete algorithms to their continuous limits as ordinary differential equations (ODEs), obtained by
letting the stepsize in the discrete algorithms tend to zero. ODEs are usually more tractable to study than
their discrete counterparts by exploiting a rich set of analytical tools from continuous-time dynamical systems
and control theory. The analyses and properties of the limiting ODEs can provide insights about those of the
original discrete algorithms, for example, to facilitate the construction of Lyapunov functions for the discrete
algorithms (Qian, 1999; Su et al., 2016; Yang et al., 2018; Sun et al., 2020; Shi et al., 2022). Recently,
stochastic differential equations (SDEs) are leveraged to understand the interplay between the learning
rate, gradient noise, and gradient compression in distributed stochastic gradient methods (Compagnoni
et al., 2025a;b). Conversely, ODEs can be directly formulated, and then their numerical discretizations are
studied (Wibisono et al., 2016; Wilson et al., 2021; Sanz Serna & Zygalakis, 2021). It has been argued that
acceleration can be attributed to suitable discretizations of ODEs, such as the Runge–Kutta integrator and
its variants (Zhang et al., 2018; Dobson et al., 2025), and the symplectic integrators (Shi et al., 2019; França
et al., 2020; Muehlebach & Jordan, 2021).

However, the approach based solely on ODEs is insufficient to account for whether acceleration is achieved.
For example, for minimizing strongly convex functions, both Nesterov’s accelerated gradient method (NAG-
SC) and Polyak’s heavy-ball method (HB) admit the same limiting ODE, but only NAG-SC achieves ac-
celerated convergence while HB provably does not (Goujaud et al., 2025). To address this limitation, Shi
et al. (2022) proposed a new approach based on high-resolution ODEs. These ODEs are derived by retaining
certain terms from the discrete algorithms that would otherwise vanish in the continuous-time limit as the
stepsize tends to zero. In particular, the high-resolution ODE for NAG-SC includes an additional Hessian
term, which is absent in the ODE for HB. The Hessian term stems from the gradient correction term in the
NAG-SC algorithm, which is defined as linear in the difference between the current and previous gradients.
By translating the Lyapunov analysis of high-resolution ODEs back to their discrete counterparts, Shi et al.
(2022) established accelerated convergence for NAG-SC and non-accelerated convergence for HB. Their anal-
ysis suggests that gradient correction plays a crucial role in achieving acceleration. This raises two interesting
questions. First, can we quantify the magnitude of gradient correction for achieving acceleration by discrete
algorithms? Second, can high-resolution ODEs themselves provide insight into such a quantification?

We take a direct approach to studying the scope and mechanism of gradient correction for acceleration of
discrete algorithms. Our work has three main contributions, summarized as follows. See Appendix A for a
detailed comparison of our work and the literature, including LMI/SDP techniques, Sanz Serna & Zygalakis
(2021), and Shi et al. (2022).

• We formulate two general classes of algorithms and establish sufficient conditions for when the
algorithms achieve accelerated as well as non-accelerated convergence for the strongly convex and
convex settings, respectively (see Sections 2 and 3). Our results, for the first time, identify a
concrete sufficient condition on the magnitude of the gradient correction term to achieve acceleration,
thereby answering the first question raised above. Our proofs are based on hand-crafted Lyapunov
analysis relying on neither connections with ODEs nor the LMI/SDP framework. See Section 6 for
a comparison of our and existing Lyapunov analyses.

2

Under review as submission to TMLR

• We study high-resolution ODEs derived from our classes of algorithms and compare convergence
rates of these ODEs with those of their discrete counterparts. We find that high-resolution ODEs
from our classes converge at the same rate, even though the corresponding discrete algorithms exhibit
different acceleration behaviors. This provides new evidence that even high-resolution ODEs may be
insufficient for explaining acceleration, thereby suggesting a negative answer to the second question
above. See Section 4 for a more detailed summary.

• To provide further understanding of the sufficient conditions on gradient correction, we propose
a new class of discrete algorithms called the Hamiltonian-assisted gradient method (HAG), which
leads to specific interpretations for these conditions in terms of momentum variable updates in both
the strongly convex and convex settings. See Section 5.2 for a more detailed summary.

Before discussing our main technical findings, we introduce necessary notation that is largely adopted from
Nesterov (2018). For a smooth and convex function f : Rn → R, consider the minimization problem

min
x∈Rn

f(x). (1)

Throughout this paper, we assume that the minimum in (1) is finite and attained, i.e., arg minx∈Rn f(x) ̸= ∅.
Denote by x⋆ ∈ arg minx∈Rn f(x) one of the minimizers, and f⋆ = f(x⋆). When f is strongly convex, x⋆

uniquely exists, so that f⋆ is always finite and attained. For m ≥ 1, let Fm be the set of functions that are
convex and m times continuously differentiable on Rn. Moreover, we define Fm

L ⊂ Fm which further requires
that f is L-smooth, that is, the gradient ∇f is L-Lipschitz continuous, ∥∇f(y) − ∇f(x)∥ ≤ L∥y − x∥ for
x, y ∈ Rn, where L > 0 is the Lipschitz constant and ∥ · ∥ denotes the Euclidean norm. For µ > 0 we define
Sm

µ ⊂ Fm which further requires that f is µ-strongly convex, that is, f(y) ≥ f(x)+⟨∇f(x), y−x⟩+ µ
2 ∥y−x∥2

for x, y ∈ Rn. Let Sm
µ,L = Fm

L ∩ Sm
µ . For additional properties of smoothness and strong convexity, readers

are referred to, for example, Appendix A in d’Aspremont et al. (2021). Throughout this paper, we use s to
denote a fixed step size in discrete algorithms.

Our main technical findings are highlighted by the following two propositions, stated in a self-contained
manner. Further interpretations of the technical results are provided in Section 5.2. In the strongly convex
setting, Proposition 1 can be deduced from Corollary 1 to give sufficient conditions for a simplified class of
algorithms to achieve an accelerated convergence bound matching NAG-SC.

Proposition 1. Suppose that f : Rn → R is a function in S1
µ,L for 0 < µ ≤ L. Let {xk} be the iterates from

the following algorithm:

xk+1 = xk − s∇f(xk) + (1 − c1
√

µs)(xk − xk−1) − c̃2 · s(∇f(xk) − ∇f(xk−1)), for k ≥ 1,

where x1 = x0 −s∇f(x0); c1 and c̃2 are scalar parameters. Then there exist constants C0, C1 > 0, depending
only on c1 and c̃2, such that for 0 < s ≤ C0/L, the iterates {xk} satisfy the bound

f(xk) − f⋆ = O
(
L∥x0 − x⋆∥2(1 − C1

√
µs)k

)
,

provided that c1 > 2 and c̃2 ≥ 1
2 .

The conditions in Proposition 1 are in terms of c1 and c̃2, which controls the momentum term xk − xk−1
and the gradient correction term s(∇f(xk) − ∇f(xk−1)), respectively. To our knowledge, this is the first
time that explicit conditions have been established for the acceleration of a general class of algorithms in
the strongly convex setting. In addition, Corollary 1 indicates that when 0 ≤ c̃2 < 1

2 , an algorithm in the
above form is proved to only have a convergence rate matching the vanilla gradient descent. Previously,
such comparative results were only known for two specific algorithms, NAG-SC and HB (Shi et al., 2022).
For a numerical illustration, Figure 1 (a) presents the optimality gap by applying the iterative algorithm in
Proposition 1 to an ill-conditioned quadratic function, with s = 0.1, x0 = c(1, 1), c1 = 3 > 2, and varying
c̃2. It can be seen that using c̃2 ≥ 1/2 significantly improves convergence.

In the convex setting, Proposition 2 can be deduced from Theorem 4, to give sufficient conditions for a
simplified class of algorithms to achieve an accelerated convergence bound matching NAG-C (the analogue
of NAG-SC in the convex setting).

3

Under review as submission to TMLR

0 200 400 600 800 1000

f(x
k)

−
f ∗

Iteration k

10−120

10−100

10−80

10−60

10−40

10−20

100

c1 = 3 , c~2 = 0
c1 = 3 , c~2 = 0.5
c1 = 3 , c~2 = 1
c1 = 3 , c~2 = 1.5
c1 = 3 , c~2 = 2
c1 = 3 , c~2 = 2.5

(a) f(x) = 5 × 10−3x2
1 + x2

2

0 500 1000 1500 2000

f(x
k)

−
f ∗

Iteration k

10−10

10−5

100 r = 2 , c~2 = 0
r = 2 , c~2 = 0.5
r = 2 , c~2 = 1
r = 2 , c~2 = 1.5
r = 2 , c~2 = 2
r = 2 , c~2 = 2.5
r = 2 , c~2 = 3

(b) f(x) = 20 log
∑200

i=1 exp{(aT
i x − bi)/20}

Figure 1: Optimality gaps in minimizing strongly convex and convex objectives with varying coefficients of
gradient correction. Parameters ai ∈ R200 and bi ∈ R in the log-sum-exp function are i.i.d. draws from
the standard Normal distribution. The minimum f⋆ of the log-sum-exp function is approximated by the
minimum value that the algorithm achieves.

Proposition 2. Suppose that f : Rn → R is a function in F1
L with L > 0. Let {xk} be the iterates from the

following algorithm

xk+1 = xk − s∇f(xk) + σk+1(xk − xk−1) − σk+1c̃2 · s(∇f(xk) − ∇f(xk−1)), for k ≥ 1,

where x1 = x0 − s∇f(x0); c̃2 is a scalar parameter; σk+1 = (αk − 1)/αk+1, and {αk > 0} with α0 = 1 is a
scalar sequence such that αk = Ω(k), αk+1(αk+1 − 1) ≤ α2

k, {αk+1/αk} is monotone (either non-increasing
or non-decreasing) in k and limk αk+1/αk = 1. Then for 0 < s ≤ C0/L with C0 = 1

4 ∧ 2c̃2−1
2c̃2

2
, the iterates

{xk} satisfy the bound

f(xk) − f⋆ = O

(
∥x0 − x⋆∥2

sk2

)
,

provided that c̃2 > 1
2 .

Proposition 2 is more general than the related result in Shi et al. (2022) corresponding to specific choices of
αk = k+r

r and σk+1 = k
k+r+1 with r ≥ 2. For a numerical illustration, Figure 1 (b) presents the optimality

gap by applying the iterative algorithm in Proposition 2 to the log-sum-exp function, which is convex but
not strongly convex, with s = 1, x0 = 0, r = 2, and varying c̃2. Similar to the strongly convex case, it is
observed that using c̃2 > 1/2 significantly improves convergence.

By comparing Propositions 1 and 2, we observe a common condition requiring c̃2, the coefficient for gradient
correction s(∇f(xk) − ∇f(xk−1)), to (asymptotically) surpass an explicit threshold of 1

2 . Such a unified
condition on gradient correction is identified for the first time for acceleration. It remains an open question
to study whether this condition is also necessary for acceleration. After presenting the main results in Sections
2 and 3, we present further numerical results to illustrate different performances of the algorithms whose
parameters either satisfy or violate the sufficient conditions for acceleration. It is found that algorithms with
parameters satisfying (or lying on the boundary of) these conditions exhibit better performance. Overall,
the numerical results align well with our theoretical findings. All proofs are deferred to Appendix C–F.

Asymptotic Notation. Given two sequences {ak} and {bk}, we write ak = O(bk) if there exist constants
C > 0 and K ≥ 1, such that ak ≤ Cbk for k ≥ K. Similarly, we write ak = Ω(bk) if ak ≥ Cbk for k ≥ K. We
write ak = Θ(bk) if both ak = Ω(bk) and ak = O(bk), and write ak ∼ bk if limk ak/bk = 1. More generally,
for a set of pairs (g, h), we write g = O(h) or g ≲ h if there exists a constant C > 0 such that g ≤ Ch for
(g, h). Similarly, we write g = Ω(h) or g ≳ h if g ≥ Ch for (g, h). We write g ≍ h if both g ≲ h and g ≳ h.

For convenience, a summary of the notation used is provided in Table 3 (Appendix B).

4

Under review as submission to TMLR

2 Acceleration for strongly convex functions

In this section, we first give background on several algorithms for minimizing smooth and strongly convex
functions. Then we study a general class of algorithms.

2.1 Review of accelerated gradient methods

A basic method for solving (1) is the gradient descent (GD):

xk+1 = xk − s∇f(xk), for k ≥ 0, (2)

with an initial point x0 and a stepsize s. In this section, we study the case where f ∈ S1
µ,L is smooth and

strongly convex. See Section 3 for the case where f is smooth and convex.

For f ∈ S1
µ,L, GD can be exponentially convergent in k, and the convergence rate depends on the condition

number κ = L/µ. In fact, the GD iterates (2) satisfy that for 0 < s ≤ 2/(µ + L) (Nesterov, 2018),

f(xk) − f⋆ ≤ L∥x0 − x⋆∥2

2

(
1 − 2µs

1 + 1/κ

)k

.

When s = 1/L, the rate is (1−1/κ
1+1/κ)k ∼ (1 − 1

κ)2k for κ → ∞. When s = 2/(L + µ), the rate improves
to (1−1/κ

1+1/κ)2k ∼ (1 − 1
κ)4k. For both choices of the stepsize, the iteration complexity for f(xk) − f⋆ ≤ ϵ is

O(κ log(1
ϵ)), which has a linear dependency on κ.

Nesterov (1988) proposed an accelerated gradient method (NAG-SC) of the following form with an additional
extrapolation step: for k ≥ 0,

yk+1 = xk − s∇f(xk), (3a)
xk+1 = yk+1 + σ(yk+1 − yk), (3b)

with x0 = y0 and the momentum coefficient σ = 1−√
q

1+√
q , where q = µs, a shorthand to be used throughout

this paper. Equivalently, (3) can be expressed in a single-variable form:

xk+1 = xk − s∇f(xk)︸ ︷︷ ︸
gradient descent

+ σ(xk − xk−1)︸ ︷︷ ︸
momentum

− σs(∇f(xk) − ∇f(xk−1))︸ ︷︷ ︸
gradient correction

, for k ≥ 1, (4)

with x0 and x1 = x0 − 2s∇f(x0)
1+√

q . Compared with GD, the iterate (4) involves two additional terms, called
the momentum and gradient correction. For 0 < s ≤ 1/L, the NAG-SC iterates satisfy f(xk) − f⋆ =
O((1−√

q)k). When s = 1/L, the bound reduces to O((1−1/
√

κ)k), and the iteration complexity is lowered
to O(

√
κ log(1

ϵ)), with a square-root dependency on κ. Drori & Taylor (2022) established that a lower bound
for minimizing general f ∈ S1

µ,L is f(xk) − f⋆ = Ω((1 − 1/
√

κ)2k), where {xk} are iterates of any black-box
first-order method.3 Therefore, NAG-SC is optimal up to a constant factor of 2 in terms of the iteration
complexity.

There are several first-order methods exactly reaching the lower bound (1 − 1/
√

κ)2k, for instance, the
information-theoretic exact method (ITEM) (Taylor & Drori, 2023) and triple-momentum method (TMM)
(Van Scoy et al., 2017). While ITEM involves time-dependent coefficients, TMM is defined with time-
independent coefficients (d’Aspremont et al., 2021): for k ≥ 0,

yk+1 = xk − s∇f(xk), (5a)

zk+1 = √
q

(
xk − 1

µ
∇f(xk)

)
+ (1 − √

q)zk, (5b)

3Black-box means that no prior knowledge of f (e.g., f is quadratic) is available except for the class f belongs to. For F1
L,

the available information is only the Lipschitz constant L.

5

Under review as submission to TMLR

xk+1 =
2√

q

1 + √
q

zk+1 +
(

1 −
2√

q

1 + √
q

)
yk+1, (5c)

with x0 = z0. The sequence {zk} in TMM (5) is auxiliary. See Appendix C.1 for an equivalent form of (5)
containing {yk+1} and {xk+1} only, where zk+1 can be recovered by

zk+1 =
1 + √

q

2√
q

xk+1 +
(

1 −
1 + √

q

2√
q

)
yk+1, (6)

Nevertheless, {zk} plays a vital role in the existing analysis of TMM. Van Scoy et al. (2017) showed that
{zk} achieves the lower bound, i.e., f(zk) − f⋆ = O((1 − 1/

√
κ)2k) when s = 1/L. To our knowledge, it

remains an open question whether {xk} also achieves the lower bound.

In the Lyapunov analysis of NAG-SC in Bansal & Gupta (2019), a similar auxiliary sequence {zk} as above
is introduced by defining

zk+1 =
1 + √

q
√

q
xk+1 +

(
1 −

1 + √
q

√
q

)
yk+1, (7)

and the NAG-SC iterates in (3) together with (7) are equivalently reformulated as: for k ≥ 0,

yk+1 = xk − s∇f(xk), (8a)

zk+1 = √
q

(
xk − 1

µ
∇f(xk)

)
+ (1 − √

q)zk, (8b)

xk+1 =
√

q

1 + √
q

zk+1 +
(

1 −
√

q

1 + √
q

)
yk+1, (8c)

with x0 = z0. See Appendix C.1 for a derivation, provided for completeness. By comparing TMM (5) with
NAG-SC (8), they differ only in how xk+1 is defined in (5c) and (8c). Bansal & Gupta (2019) constructed a
new Lyapunov function to simplify the convergence proof for NAG-SC, and showed that {yk} achieves the
bound f(yk) − f⋆ = O((1 − 1/

√
κ)k) when s = 1/L. By some additional arguments, similar convergence

bounds can also be deduced for {zk} and {xk}.

For comparison, we also mention the heavy-ball (HB) method (Polyak, 1964), defined as

xk+1 = xk − s∇f(xk) + σ(xk − xk−1), for k ≥ 1, (9)

with σ = 1−√
q

1+√
q as in (3). Note that (9) differs from NAG-SC (4) only in the absence of gradient correction.

Following Shi et al. (2022), algorithm (9) is a slight modification of the original method in Polyak (1964)
where the momentum coefficient σ = (1 − √

q)2. If s is small, the two coefficients (1 − √
q)2 and 1−√

q

1+√
q

are close. The original heavy-ball method, with the specific s = 4/(
√

L + √
µ)2, achieves an accelerated

convergence rate (1−1/
√

κ
1+1/

√
κ

)2k for quadratic f (Polyak, 1987). However, when minimizing functions in S1
µ,L

that are not necessarily quadratic, it is shown in Goujaud et al. (2025) that for any s and σ, the worst-case
convergence rate of HB on S1

µ,L is no better than O((1 − O(1/κ))k). Therefore, HB provably does not reach
an accelerated convergence rate on smooth and strongly convex problems. Goujaud et al. (2025) further
shows that adding more regularity conditions to f (e.g., restricting f within those with Lipschitz continuous
Hessians) does not result in acceleration either. The failure of HB to achieve acceleration indicates that the
gradient correction plays a vital role in achieving acceleration.

2.2 Main results

We formulate a broad class of algorithms, including NAG-SC and TMM as special cases, and establish
sufficient conditions for when the algorithms in the class achieve acceleration, which is defined as reaching
an objective gap of O((1 − C/

√
κ)k) at iteration k, for a constant C > 0. Our work does not aim to find a

sharp value of C or address the question of whether these algorithms exactly achieve the complexity lower
bound corresponding to C = 2 (Drori & Taylor, 2022). For an overview of prior work on acceleration covered
by our analysis of the general class of algorithms, see Table 1.

6

Under review as submission to TMLR

Table 1: Existing algorithms covered by our analysis

Method Formulation Convergence

NAG-SC
(10) or (11) with η = ν = τ = 1 Accelerated rate by Theorem 1 (ii-d)

(14) with c0 = 1, c1 = 2, and c2 = 3/2 Accelerated rate by Corollary 1 (ii) as a lim-
iting case when c1 ↓ 2

TMM (10) or (11) with η = ν = 1, τ = 2 Accelerated rate by Theorem 1 (ii-a)
(14) with c0 = 2, c1 = 3, and c2 =

√
2 Accelerated rate by Corollary 1 (ii)

HB (14) with c0 = 1, c1 = 2, and c2 = 1/2 Non-accelerated rate by Corollary 1 (i) as a
limiting case when c1 ↓ 2

To unify and extend NAG-SC and TMM, we consider the following class of algorithms: for k ≥ 0,

yk+1 = xk − ηs∇f(xk), (10a)

zk+1 = ν
√

q

(
xk − 1

µ
∇f(xk)

)
+ (1 − ν

√
q)zk, (10b)

xk+1 =
τ
√

q

1 + √
q

zk+1 +
(

1 −
τ
√

q

1 + √
q

)
yk+1, (10c)

with x0 = z0, where η, ν, τ ≥ 0 are three parameters which may depend on q. NAG-SC (3) or (8) is
recovered by setting (η, ν, τ) = (1, 1, 1), and TMM (5) is recovered by (η, ν, τ) = (1, 1, 2). In this way, the
two algorithms differ only in the choice of τ .

Equivalently, algorithm (10) can be put into a single-variable form in terms of {xk}, similarly to (4) for
NAG-SC: for k ≥ 1,

xk+1 = xk −
ν(τ + ζη

√
q)

1 + √
q

s∇f(xk) +
ζ(1 − ν

√
q)

1 + √
q

(xk − xk−1) −
ζη(1 − ν

√
q)

1 + √
q

s(∇f(xk) − ∇f(xk−1)), (11)

with x0 and x1 = x0 − ζη+ντ
1+√

q s∇f(x0), where ζ = 1 + (1 − τ)√q, a shorthand used throughout this paper.
The coefficients in the three terms for s∇f(xk), xk − xk−1, and s(∇f(xk) − ∇f(xk−1)) are highly structured
due to the translation from (10).

The following result gives sufficient conditions for the convergence of algorithm (10) in the scenario where
(η, ν, τ) are constants free of q (= µs).

Theorem 1. Let f : Rn → R be a function in S1
µ,L with 0 < µ ≤ L. Assume that η = η0, ν = ν0, and τ = τ0

for some constants (η0, ν0, τ0), free of q (= µs).

(i) There exist constants C0, C1 > 0, depending only on (η0, ν0, τ0), such that for 0 < s ≤ C0
µ

L2 , the iterates
of (10) satisfy

f(xk) − f⋆ = O
(
L∥x0 − x⋆∥2(1 − C1

√
µs)k

)
, (12)

provided that one of the following conditions holds:

(i-a) ν0, τ0 > 0, ν0 ̸= τ0, and 0 ≤ η0 < ν0τ0/2;

(i-b) ν0 = τ0 > 2 and η0 = τ2
0 /2.

(ii) There exist constants C0, C1 > 0, depending only on (η0, ν0, τ0), such that for 0 < s ≤ C0
L , the iterates

of (10) satisfy (12), provided that one of the following conditions holds:

(ii-a) ν0, τ0 > 0, ν0 ̸= τ0, and η0 ≥ ν0τ0/2;

7

Under review as submission to TMLR

(ii-b) ν0 = τ0 ≥ 2 and η0 > τ2
0 /2;

(ii-c) 1 < ν0 = τ0 < 2 and η0 > τ0;

(ii-d) 0 < ν0 = τ0 ≤ 1 and η0 ≥ τ0.

The constants C0 and C1 in Theorem 1 can be explicitly specified, although the expressions are complicated
and thus suppressed. See the proofs in Appendix C for details. Similarly, the explicit expressions of constants
C0 and C1 appearing in other formal statements in this subsection are suppressed as well. The convergence
bound (12) exhibits two types of dependency on κ, determined by how large the stepsize s is allowed. A similar
phenomenon occurs in the comparison of NAG-SC and HB. Under the conditions in Theorem 1(i), algorithm
(10) achieves a usual convergence bound O((1 − C/κ)k) for s ≍ µ

L2 , resulting in an iteration complexity
O(κ log(1

ϵ)). Under the conditions in Theorem 1(ii), algorithm (10) reaches an accelerated convergence
bound O((1 − C/

√
κ)k) for s ≍ 1

L , resulting in an iteration complexity O(
√

κ log(1
ϵ)). In particular, TMM

with (η0, ν0, τ0) = (1, 1, 2) is covered by condition (ii-a), whereas NAG-SC with (η0, ν0, τ0) = (1, 1, 1) is
covered by condition (ii-d). It is interesting that for both TMM and NAG-SC, the choice of (η0, ν0, τ0) lies
on boundaries of the acceleration regions identified in Theorem 1(ii).4 In addition, although no algorithm
in class (10) leads to exactly HB, there are close variations of HB which are in the class (10) with constant
(η, ν, τ) and covered by the non-acceleration regions in Theorem 1(i).5

We next extend the constant case to a more general scenario where (η, ν, τ) are analytical functions of √
q,

free of negative exponents like q−1/2, as stated in Assumption 1. In particular, (η, ν, τ) that are polynomials
of √

q satisfy Assumption 1.

Assumption 1. There exist non-negative, analytic functions η̃(·), ν̃(·) and τ̃(·) in a neighborhood of 0 such
that η = η̃(√q), ν = ν̃(√q) and τ = τ̃(√q). Then η, ν and τ admit (convergent) Taylor expansions:

η =
∞∑

i=0
ηi(

√
q)i, ν =

∞∑
i=0

νi(
√

q)i, τ =
∞∑

i=0
τi(

√
q)i, (13)

when 0 ≤ q ≤ q0 for some constant q0 > 0.

The following result gives sufficient conditions on the convergence of the algorithm (10), in terms of only the
constant coefficients, (η0, ν0, τ0), in the expansions (13).

Theorem 2. Suppose that f : Rn → R is a function in S1
µ,L with 0 < µ ≤ L and Assumption 1 holds.

(i) For 0 < s ≤ C0
µ

L2 (non-accelerated convergence), the iterates of (10) satisfy (12), with C0, C1 > 0
depending only on the functions (η̃, ν̃, τ̃) (independent of q), provided that condition (i-a) in Theorem 1
holds.

(ii) For 0 < s ≤ C0
1
L (accelerated convergence), the iterates of (10) satisfy (12), with C0, C1 > 0 depending

only on the functions (η̃, ν̃, τ̃) (independent of q), provided that condition (ii-a) in Theorem 1 holds.

Theorem 2 serves as a generalization to Theorem 1, cases (i-a) and (ii-a). When (η, ν, τ) depend on q with
leading constants ν0 = τ0 > 0 and η0 ≥ τ2

0 /2, which is not addressed by Theorem 2, the following result
gives sufficient conditions on convergence of algorithm (10), involving the coefficients (η1, ν1, τ1) of linear
terms in the expansions (13). However, in the degenerate case of constant parameters (η, ν, τ), the sufficient
conditions in Theorem 3 are more restrictive than those in Theorem 1.

Theorem 3. Suppose that f : Rn → R is a function in S1
µ,L with 0 < µ ≤ L and Assumption 1 holds with

ν0 = τ0 > 0 and η0 ≥ τ2
0 /2.

4The TMM choice, η0 = ν0 = 1 and τ0 = 2, satisfies ν0 ̸= τ0 and η0 = ν0τ0/2, lying on the boundary of condition (ii-a) in
Theorem 1. The NAG-SC choice, η0 = ν0 = τ0 = 1, satisfies ν0 = τ0 = 1 and η0 = τ0, lying on the boundary of condition (ii-d)
in Theorem 1.

5For any constant 0 < ν0 ̸= 1, taking (η, τ, ν) = (0, 1, ν0) in (11) yields the update xk+1 = xk − ν0
1+√

q
s∇f(xk)+ 1−ν0

√
q

1+√
q

(xk −
xk−1), which closely resembles HB (9) as ν0 → 1 and achieves non-accelerated convergence by Theorem 1(i-a).

8

Under review as submission to TMLR

(i) For 0 < s ≤ C0
µ

L2 (non-accelerated convergence), the iterates of (10) satisfy (12), with constants C0, C1 >
0 depending only on the functions (η̃, ν̃, τ̃) (independent of q), provided that the following holds:

(i-a) η0 = τ2
0 /2, ν1 − τ1 < τ0

(
τ0
2 − 1

)
, and 2η1 < ν1τ1 + τ2

0
2
(5

2 τ0 − 2
)
.

(ii) For 0 < s ≤ C0
1
L (accelerated convergence), the iterates of (10) satisfy (12), with constants C0, C1 > 0

depending only on the functions (η̃, ν̃, τ̃) (independent of q), provided that one of the following conditions
holds:

(ii-a) η0 = τ2
0 /2, ν1 − τ1 < τ0

(
τ0
2 − 1

)
, and 2η1 ≥ ν1τ1 + τ2

0
2
(5

2 τ0 − 2
)
;

(ii-b) η0 > τ2
0 /2 and ν1 − τ1 < (τ0 − 1)τ0 − η0;

(ii-c) η0 > τ2
0 /2 and (τ0 − 1)τ0 − η0 < ν1 − τ1 < η0 − τ0.

All the preceding results are applicable to algorithm (10) or equivalently its single-variable form (11) with
structured coefficients. To facilitate comparison and interpretation, we translate Theorem 2 in terms of
a single-variable form (14) below with unstructured coefficients. It remains an open question to directly
analyze (14), for example, via the LMI/SDP framework.

Corollary 1. For f : Rn → R in S1
µ,L with 0 < µ ≤ L, consider the following algorithm:6

xk+1 = xk − (c0 +R1)s∇f(xk)+(1− c1
√

q +R2)(xk −xk−1)− (c2
√

c0 − c0

2 +R3)s(∇f(xk)−∇f(xk−1)),
(14)

where x1 = x0 − h1s∇f(x0); c0, c1, c2 > 0 are constants independent of q; R1 = O(√q), R2 = O(q),
R3 = O(√q), and h1 are analytic functions of √

q around 0.

(i) For 0 < s ≤ C0
µ

L2 (non-accelerated convergence), the iterates of (14) satisfy (12), with C0, C1 > 0
depending only on (c0, c1, c2) and the forms of (R1, R2, R3) (independent of q), provided c2

1 > 4c0 and
c0/4 ≤ c2

2 < c0.

(ii) For 0 < s ≤ C0
1
L (accelerated convergence), the iterates of (14) satisfy (12), with C0, C1 > 0 depending

only on (c0, c1, c2) and the forms of (R1, R2, R3) (independent of q), provided c2
1 > 4c0 and c2

2 ≥ c0.

To the best of our knowledge, Corollary 1, for the first time, identifies concrete conditions for accelerated and
non-accelerated convergence in a general class of algorithms (14). Moreover, the conditions are defined in
terms of two parameters c1 and c2, which control the momentum and gradient correction terms, respectively,
while the other parameter c0 can be viewed as a non-essential rescaling parameter. We discuss these two
conditions in detail.

First, the condition c2
1 > 4c0 for the momentum coefficient is due to implicit constraints in the coefficients

of (14) when translated from Theorem 2 in terms of (11). Although NAG-SC (3) and HB (9) can both be
put into (14) with parameters c0 = 1, c1 = 2, c2 = 3/2, and c0 = 1, c1 = 2, c2 = 1/2, respectively, their
convergences are not covered by Corollary 1 due to that the condition c2

1 > 4c0 does not hold. Nonetheless,
if viewing NAG-SC (3) and HB (9) as the limiting algorithms when c1 ↓ 2, then NAG-SC (3) achieves an
accelerated convergence by Corollary 1 part (ii) while HB (9) achieves a non-accelerated convergence by
part (i). See Table 1 for a summary. We believe that c2

1 > 4c0 is technical and can be potentially relaxed
to c1 > 0. See Appendix A for a detailed discussion of the connection with related work in Sanz Serna &
Zygalakis (2021).

Second, the condition c2
2 ≥ c0 or c0/4 ≤ c2

2 < c0 directly distinguishes between the accelerated or non-
accelerated convergence. In other words, the leading constant c2

√
c0 − c0/2 in the coefficient of gradient

correction needs to exceed a threshold c0/2.
6The seemingly unnatural parameterization of the gradient correction coefficient is motivated by the HAG algorithm in

Section 5.

9

Under review as submission to TMLR

0 200 400 600 800 1000

f(x
k)

−
f ∗

Iteration k

10−12

10−10

10−8

10−6

10−4

10−2

100

c1 = 1, c2 = 0.5
c1 = 1, c2 = 1
c1 = 1, c2 = 1.5
c1 = 2, c2 = 0.5
c1 = 2, c2 = 1
c1 = 2, c2 = 1.5

(a) Errors for ill-conditioned f (s = 0.01).

0 100 200 300 400 500

f(x
k)

−
f ∗

Iteration k

10−40

10−30

10−20

10−10

100

c1 = 1, c2 = 0.5
c1 = 1, c2 = 1
c1 = 1, c2 = 1.5
c1 = 2, c2 = 0.5
c1 = 2, c2 = 1
c1 = 2, c2 = 1.5

(b) Errors for well-conditioned f (s = 0.01).

0 200 400 600 800 1000

f(x
k)

−
f ∗

Iteration k

10−20

10−15

10−10

10−5

100

c1 = 1, c2 = 0.5
c1 = 1, c2 = 1
c1 = 1, c2 = 1.5
c1 = 2, c2 = 0.5
c1 = 2, c2 = 1
c1 = 2, c2 = 1.5

(c) Errors for ill-conditioned f (s = 0.05)

0 100 200 300 400 500

f(x
k)

−
f ∗

Iteration k

10−100

10−80

10−60

10−40

10−20

100

c1 = 1, c2 = 0.5
c1 = 1, c2 = 1
c1 = 1, c2 = 1.5
c1 = 2, c2 = 0.5
c1 = 2, c2 = 1
c1 = 2, c2 = 1.5

(d) Errors for well-conditioned f (s = 0.05)

0 200 400 600 800 1000

f(x
k)

−
f ∗

Iteration k

10−25

10−20

10−15

10−10

10−5

100

c1 = 1, c2 = 0.5
c1 = 1, c2 = 1
c1 = 1, c2 = 1.5
c1 = 2, c2 = 0.5
c1 = 2, c2 = 1
c1 = 2, c2 = 1.5

(e) Errors for ill-conditioned f (s = 0.1)

0 100 200 300 400 500

f(x
k)

−
f ∗

Iteration k

10−150

10−100

10−50

100

c1 = 1, c2 = 0.5
c1 = 1, c2 = 1
c1 = 1, c2 = 1.5
c1 = 2, c2 = 0.5
c1 = 2, c2 = 1
c1 = 2, c2 = 1.5

(f) Errors for well-conditioned f (s = 0.1)

Figure 2: Minimizing strongly convex functions by (14). The left column is for ill-conditioned f(x1, x2) =
5 × 10−3x2

1 + x2
2, and the right column is for well-conditioned f(x1, x2) = 5 × 10−1x2

1 + x2
2. Fix c0 = 1. The

initial iterates are x0 = (1, 1) and x1 = x0 − 2s∇f(x0)/(1 + √
µs).

For numerical illustrations of the theoretical results in Corollary 1, we apply (14) to two quadratic functions
on R2, similarly to Su et al. (2016), under different parameters and step sizes. It is particularly of interest
to compare the performance of the parameter choices falling inside (or on the boundaries) versus outside
the sufficient conditions for achieving accelerated convergence in our theoretical results. Specifically, we take
c0 fixed at 1, c1 = 1, 2 (boundary) and c2 = 1/2, 1 (boundary), 3/2. All remainder terms R1, R2, and R3
in (14) are taken to be 0. Here c1 = 1, 2 corresponds to under-damping (c2

1 < 4c0) and critical-damping

10

Under review as submission to TMLR

(c2
1 = 4c0) respectively, and c2 = 1/2, 1, 3/2 corresponds to the leading constant of the gradient correction

coefficient in (14) being 0, 1/2, 1 respectively. For NAG-SC (4), c1 = 2 and c2 = 3/2, and for heavy-ball (9),
c1 = 2 and c2 = 1/2, but both with nonzero remainder terms R2 and R3. Hence, the algorithms tested are
not exactly NAG-SC or the heavy-ball method.

From Figure 2 we observe that critical-damping (c1 = 2) results in a faster convergence than under-damping
(c1 = 1). Increasing c2 (gradient correction) also tends to improve the performance, but to a relatively small
extent in the ill-conditioned case once c2 ≥ 1. The error plots when c2 = 1/2 in the ill-conditioned case
appear to be a sum of two oscillations. Overall, the numerical results are consistent with our theoretical
results in the strongly convex setting. Better performances are observed from algorithms with more friction
(i.e., a large c1) and larger gradient correction (i.e., a large c2).

3 Acceleration for convex functions

In this section, we first give background on several algorithms for minimizing smooth and convex functions.
Then we study a general class of algorithms.

3.1 Review of accelerated gradient methods

Consider the unconstrained minimization problem (1) with f ∈ F1
L. For stepsize 0 < s ≤ 1/L, the GD

iterates {f(xk)} is non-increasing and satisfy f(xk) − f⋆ ≤ ∥x0 − x⋆∥2/(2ks).7 However, the O(1/k) rate is
not optimal. Nesterov (1988) proposed an accelerated gradient method in a similar form as NAG-SC (3):
for k ≥ 0,

yk+1 = xk − s∇f(xk),
xk+1 = yk+1 + σk+1(yk+1 − yk),

(15)

with x0 = y0 and σk+1 = k/(k + 3). Compared with NAG-SC (3), the momentum coefficient σk+1 varies
with k, instead of taking a fixed value depending on the strong-convexity parameter µ. For 0 < s ≤ 1/L,
the NAG-C iterates {f(xk)} may not be non-increasing but satisfy

f(xk) − f⋆ = O

(
∥x0 − x⋆∥2

sk2

)
. (16)

Compared with GD, the iteration complexity for f(xk) − f⋆ ≤ ϵ is reduced from O(L/ϵ) to O(
√

L/ϵ) when
taking s = 1/L. Notably, the convergence bound in (16) matches with the lower bound of black-box first-
order methods for minimizing functions in F1

L when n (the dimension of x) is relatively large compared with
k (Nesterov, 2018).

The single-variable form in terms of {xk} for NAG-C (15) is: for k ≥ 1,

xk+1 = xk − s∇f(xk)︸ ︷︷ ︸
gradient descent

+ σk+1(xk − xk−1)︸ ︷︷ ︸
momentum

− σk+1 · s(∇f(xk) − ∇f(xk−1))︸ ︷︷ ︸
gradient correction

, (17)

with x0, x1 = x0 − s∇f(x0), and σk+1 = k/(k + 3). The iterate (17) involves an additional momentum term
and a gradient correction term similarly as in (4) for NAG-SC. Shi et al. (2022) studied NAG-C by relating
(17) to a high-resolution ODE (see Section 4.2) and obtained a new result on the squared gradient norm:
for stepsize 0 < s ≤ 1/(3L),

min
0≤i≤k

∥∇f(xi)∥2 = O

(
∥x0 − x⋆∥2

s2(k + 1)3

)
. (18)

The inverse cubic rate (18) cannot be obtained directly from (16). Moreover, Shi et al. (2022) extended the
coefficients in the momentum and gradient correction terms in (17) to σk+1 = k/(k + r + 1) and σk+1βs
respectively, and showed that the two bounds in (16) and (18) remain valid for any r ≥ 2 and β > 1/2.

7For stepsize 1/L < s < 2/L, the GD iterates {f(xk)} is still non-increasing but satisfies a slightly different bound

O

(
∥x0−x⋆∥2

ks(2−Ls)

)
for the objective gap (Nesterov, 2018).

11

Under review as submission to TMLR

Table 2: Existing algorithms covered by our analysis

Method βk γk αk σk+1 Convergence
NAG-C (15) or (17) 1 1 (k + 2)/2 k/(k + 3) Acceleration by Theorem 4
Beck (2017) 1 1 any αk satisfying (19) (αk − 1)/αk+1 Acceleration by Theorem 4
Shi et al. (2022) β 1 (k + r)/r for r ≥ 2 k/(k + r + 1) Acceleration by Theorem 4

The form of momentum coefficient σk+1 can be made more general. For instance, a popular scheme is to set
σk+1 = (αk − 1)/αk+1, where {αk} is a scalar sequence to be chosen. It is known (Beck, 2017) that for any
sequence {αk} satisfying αk = Ω(k) and a recursive condition8

αk+1(αk+1 − 1) ≤ α2
k, (19)

the corresponding algorithm (15) achieves the optimal bound (16). For the well-known accelerated proximal
gradient method or FISTA (Beck & Teboulle, 2009), {αk} is defined recursively as αk+1 = (1+

√
1 + 4α2

k)/2
with α0 = 1, i.e., (19) holds as equality. It can also be verified that {αk = (k +r)/r} satisfies (19) IFF r ≥ 2,
with corresponding σk+1 = k/(k + r + 1).

3.2 Main results

We formulate a broad class of algorithms including NAG-C (15) and existing variations (Beck, 2017; Shi
et al., 2022) and establish sufficient conditions for when the algorithms in the class achieve both the optimal
bound (16) for the objective gap and the inverse cubic rate (18) for the squared gradient norm, similar to
NAG-C.

To unify and extend existing choices of the momentum and gradient correction terms related to NAG-C, we
consider the following class of algorithms: for k ≥ 0,

yk+1 = xk − βks∇f(xk),
xk+1 = xk − γks∇f(xk) + σk+1(yk+1 − yk),

(20)

where x0 = y0, σk+1 = (αk − 1)/αk+1, and {αk}, {βk} and {γk} are three scalar sequences. The equivalent
single-variable form of (20) is for k ≥ 1,

xk+1 = xk − (γk + σk+1(βk − βk−1))s∇f(xk) + σk+1(xk − xk−1) − σk+1βk−1 · s(∇f(xk) − ∇f(xk−1)),
(21)

starting from x0 and x1 = x0 − (γ0 + (α0 − 1)β0/α1)s∇f(x0). For an overview of prior work on acceleration
covered by our analysis of the general class of algorithms (20) or (21), see Table 2. To highlight the main
points, Proposition 2 was stated in Section 1 for a special case of (21) with constant γk ≡ 1 and βk ≡ c̃2.

Motivated by the Lyapunov analysis of NAG-C in Su et al. (2016), we introduce the following three-variable
form of (20). Define zk = αkxk + (1 − αk)yk for k ≥ 0, which is reminiscent of (5b) and (7) in the strongly
convex setting. Then (20) can be equivalently reformulated as: for k ≥ 0,

yk+1 = xk − βks∇f(xk), (22a)
zk+1 = zk − α̃ks∇f(xk), (22b)

xk+1 = 1
αk+1

zk+1 +
(

1 − 1
αk+1

)
yk+1, (22c)

starting from x0 = z0, where α̃k = βkαk + (γk − βk)αk+1. See Appendix D for a proof. By definition, given
{βk} and {αk > 0}, there is a one-to-one correspondence between {γk} and {α̃k}: γk = (α̃k − βk(αk −
αk+1))/αk+1. Hence, algorithm (20) or (22) can be considered to be directly parameterized by the three

8The recursive condition (19) implies that αk+1 ≤ (1 +
√

1 + 4α2
k

)/2 ≤ αk + 1, and hence αk = Θ(k).

12

Under review as submission to TMLR

sequences {αk}, {βk} and {α̃k}. The three-variable form (22) is introduced mainly to facilitate our Lyapunov
analysis, which is presented in Section 6. The zk update (22b) appears to differ from (10b) in the strongly
convex case, although (22c) resembles (10c) in the sense that the weight of zk or yk in the update of xk goes
to 0 or 1 respectively as αk → ∞ in (22c) or s → 0 in (10c).

Our main result gives sufficient conditions on when algorithm (20) or (22) achieves accelerated convergence
in both the objective gap and gradient norm, similar to NAG-C. We discuss interpretations of the conditions
from the perspective of HAG in Section 5.

Theorem 4. Let f : Rn → R be a function in F1
L with L > 0. Assume that the following conditions jointly

hold:

(i) limk βk = β and limk γk = γ with β > γ/2 > 0;

(ii) {αk > 0} satisfies that αk = Ω(k), limk αk+1/αk = 1, αk+1(αk+1 − 1) ≤ α2
k;

(iii) {α̃k/αk} is monotone (either non-increasing or non-decreasing) in k.

Then for 0 < s ≤ C0/L with C0 = 2−γ/β
2β ∧ 1

4γ > 0, the iterates {xk} from (20), (21) or (22) satisfy the
bound (16) for the objective gap and the inverse cubic rate (18) for the squared gradient norm.

For Theorem 4, the existence of the limits, limk βk = β, limk γk = γ, and limk αk+1/αk = 1, are introduced
mainly to simplify the sufficient conditions and may be relaxed even with the same Lyapunov function in our
proofs. The monotonicity condition on {α̃k/αk} may also be relaxed by using other Lyapunov functions. In
the setting of βk ≡ β and γk ≡ γ, we have α̃k/αk = β + (γ − β)αk+1/αk. Then the monotonicity condition
is equivalent to either requiring β = γ without any additional constraint on {αk} or, if β ̸= γ, requiring that
{αk+1/αk} is monotone. The latter condition is satisfied by both the linear choice αk = (k + r)/r and the
iterative choice αk+1 = (1 +

√
1 + 4α2

k)/2 with α0 = 1 in FISTA.

We also point out that the conditions in Theorem 4 are general enough to allow the absence of a limiting
ODE for (20). As described in Section 4, a necessary condition for the existence of a limiting ODE of (20)
is that limk k(1 − σk+1) exists. However, we provide an example where the conditions in Theorem 4 are
satisfied, but limk k(1 − σk+1) does not exist.

Lemma 1. Consider the sequence {αk} defined by alternating two rules:

αk =
{

(k + r)/r, if k is even,

(1 +
√

1 + 4α2
k−1)/2. if k is odd,

with α0 = 1. Then for any r ≥ 2, condition (ii) in Theorem 4 holds. But limk k(1 − σk+1) does not exist if
r > 2: along {k′} = {2k} and {k′′} = {2k + 1}, we have

lim
k′→∞

k′(1 − σk′+1) = 3r/2, lim
k′′→∞

k′′(1 − σk′′+1) = 2 + r/2.

Lemma 1 shows that accelerated convergence can be achieved by algorithm (20), independent of whether
a limiting ODE exists.9 Hence, convergence of discrete algorithms may not always be explained from the
ODE perspective.

For numerical illustrations of the theoretical results in Theorem 4, we apply (21) to various objective functions
under different parameters and step sizes. It is particularly of interest to compare the performance of the
parameter choices falling inside (or on the boundaries) versus outside the sufficient conditions for achieving
accelerated convergence in our theoretical results. Specifically, we consider a quadratic objective f(x) =
xTAx/2+ bTx and the log-sum-exp objective f(x) = ρ log

∑200
i=1 exp{(aT

i x− bi)/ρ}, following Su et al. (2016).
9A similar conclusion can be found for algorithm (3) or (4) in the strongly convex case. See Appendix A for a detailed

discussion.

13

Under review as submission to TMLR

0 500 1000 1500 2000 2500 3000

sk
2 (f(

x k
)−

f ∗
)

Iteration k

10−5

10−4

10−3

10−2

r = 1, β = 0
r = 1, β = 0.5
r = 1, β = 1
r = 2, β = 0
r = 2, β = 0.5
r = 2, β = 1

(a) Scaled errors (s = 0.05/∥A∥)

0 500 1000 1500 2000 2500 3000

s2 (k
+

1)
3 m

in
0≤

i≤
k
||f(

x i
)||

2

Iteration k

10−6

10−5

10−4

10−3

10−2

r = 1, β = 0
r = 1, β = 0.5
r = 1, β = 1
r = 2, β = 0
r = 2, β = 0.5
r = 2, β = 1

(b) Scaled gradient norms (s = 0.05/∥A∥)

0 500 1000 1500 2000 2500 3000

sk
2 (f(

x k
)−

f ∗
)

Iteration k

10−5

10−4

10−3

10−2

r = 1, β = 0
r = 1, β = 0.5
r = 1, β = 1
r = 2, β = 0
r = 2, β = 0.5
r = 2, β = 1

(c) Scaled errors (s = 0.1/∥A∥)

0 500 1000 1500 2000 2500 3000

s2 (k
+

1)
3 m

in
0≤

i≤
k
||f(

x i
)||

2

Iteration k

10−6

10−5

10−4

10−3

10−2

r = 1, β = 0
r = 1, β = 0.5
r = 1, β = 1
r = 2, β = 0
r = 2, β = 0.5
r = 2, β = 1

(d) Scaled gradient norms (s = 0.1/∥A∥)

0 500 1000 1500 2000 2500 3000

sk
2 (f(

x k
)−

f ∗
)

Iteration k

10−5

10−4

10−3

10−2

r = 1, β = 0
r = 1, β = 0.5
r = 1, β = 1
r = 2, β = 0
r = 2, β = 0.5
r = 2, β = 1

(e) Scaled errors (s = 0.3/∥A∥)

0 500 1000 1500 2000 2500 3000

s2 (k
+

1)
3 m

in
0≤

i≤
k
||f(

x i
)||

2

Iteration k

10−6

10−5

10−4

10−3

10−2

r = 1, β = 0
r = 1, β = 0.5
r = 1, β = 1
r = 2, β = 0
r = 2, β = 0.5
r = 2, β = 1

(f) Scaled gradient norms (s = 0.3/∥A∥)

Figure 3: Scaled errors and squared gradient norms in minimizing f(x) = 1
2 xTAx + bTx by (29) under

different step sizes, where A = BTB for B ∈ R500×500, b ∈ R500. All entries in B and b are i.i.d. draws from
U(0, 1), and ∥A∥ is the spectral norm of A. We take γ = 1, σk+1 = k

k+r+1 for r = 1, 2 and β = 0, 0.5, 1 in
(29).

The quadratic function is strongly convex but with µ ≈ 0, and the log-sum-exp function is not strongly
convex. For algorithm parameters, we set γ ≡ 1, σk+1 = k

k+r+1 for r = 1, 2 (boundary) and β = 0, 0.5
(boundary), 1. In particular, NAG-C corresponds to r = 2 and β = 1. In the log-sum-exp case, the
minimizer has no closed form, so we approximate f⋆ by running NAG-C, which converges fast in hundreds
of iterations using a relatively large step size.

14

Under review as submission to TMLR

0 200 400 600 800 1000

sk
2 (f(

x k
)−

f ∗
)

Iteration k

10−8

10−6

10−4

10−2

100

102

r = 1, β = 0
r = 1, β = 0.5
r = 1, β = 1
r = 2, β = 0
r = 2, β = 0.5
r = 2, β = 1

(a) Scaled errors (s = 0.5)

0 200 400 600 800 1000

s2 (k
+

1)
3 m

in
0≤

i≤
k
||f(

x i
)||

2

Iteration k

10−6

10−4

10−2

100

102

104

r = 1, β = 0
r = 1, β = 0.5
r = 1, β = 1
r = 2, β = 0
r = 2, β = 0.5
r = 2, β = 1

(b) Scaled gradient norms (s = 0.5)

0 200 400 600 800 1000

sk
2 (f(

x k
)−

f ∗
)

Iteration k

10−8

10−6

10−4

10−2

100

102

r = 1, β = 0
r = 1, β = 0.5
r = 1, β = 1
r = 2, β = 0
r = 2, β = 0.5
r = 2, β = 1

(c) Scaled errors (s = 1)

0 200 400 600 800 1000

s2 (k
+

1)
3 m

in
0≤

i≤
k
||f(

x i
)||

2

Iteration k

10−6

10−4

10−2

100

102

104

r = 1, β = 0
r = 1, β = 0.5
r = 1, β = 1
r = 2, β = 0
r = 2, β = 0.5
r = 2, β = 1

(d) Scaled gradient norms (s = 1)

0 200 400 600 800 1000

sk
2 (f(

x k
)−

f ∗
)

Iteration k

10−8

10−6

10−4

10−2

100

102

r = 1, β = 0
r = 1, β = 0.5
r = 1, β = 1
r = 2, β = 0
r = 2, β = 0.5
r = 2, β = 1

(e) Scaled errors (s = 5)

0 200 400 600 800 1000

s2 (k
+

1)
3 m

in
0≤

i≤
k
||f(

x i
)||

2

Iteration k

10−20

10−15

10−10

10−5

100

105

r = 1, β = 0
r = 1, β = 0.5
r = 1, β = 1
r = 2, β = 0
r = 2, β = 0.5
r = 2, β = 1

(f) Scaled gradient norms (s = 5)

Figure 4: Scaled errors and squared gradient norms in minimizing f(x) = ρ log
∑200

i=1 e
aT

i
x−bi
ρ by (29) under

different step sizes, where A = [a1, . . . , a200] ∈ R50×200, b ∈ R200, and ρ = 20. All entries in A and b are
i.i.d. draws from N(0, 1). We take γ = 1, σk+1 = k

k+r+1 for r = 1, 2 and β = 0, 0.5, 1 in (29).

Figures 3 and 4 present the traces of the scaled optimality gap and the scaled squared gradient norm. In
both Figures 3 and 4, for fixed β, increasing r = 1 to r = 2 significantly accelerates the convergence of
f(xk) − f⋆ and min0≤i≤k ∥∇f(xi)∥2. In particular, it can be observed in Figure 3 (b), (d), and (f) that the
bound min0≤i≤k ∥∇f(xi)∥2 = O(1/k3) may fail when r = 1 since the product (k + 1)3 min0≤i≤k ∥∇f(xi)∥2

appears to increase in an unbounded way as k increases. From Figure 4, for fixed r, increasing β markedly

15

Under review as submission to TMLR

improves the performance in decreasing f(xk) − f⋆ and min0≤i≤k ∥∇f(xi)∥2, especially when the step size is
large as in Figure 4 (e). A similar beneficial effect of a larger β can be observed from Figure 3 in decreasing
min0≤i≤k ∥∇f(xi)∥2, but the effect there is less obvious in decreasing f(xk) − f⋆, where all algorithms
exhibit oscillations during iterations, and the oscillations become stronger as the step size increases. Overall,
the numerical results are consistent with our theoretical results. Better performances are observed from
algorithms with more friction (i.e., a larger r) and larger gradient correction (i.e., a larger β).

4 ODE connection and comparison

As the stepsize s vanishes to 0 in a discrete algorithm, the limiting ODE (if exists) can be studied to under-
stand the behavior of its discrete counterpart (Su et al., 2016; Shi et al., 2022). We study the convergence
rates of limiting ODEs of algorithms in Sections 2 and 3, and compare them with the discrete results.

We briefly review how the limiting ODEs from NAG-SC (4) and NAG-C (17) exhibit interesting differences
from that of the vanilla gradient descent (2), as discussed in Su et al. (2016). On one hand, by taking ∆t = s
and xk = X(tk) = X(ks) for a continuous-time trajectory Xt = X(t), the limit of gradient descent (2) as
s → 0 is the gradient flow

Ẋt + ∇f(Xt) = 0, (23)

with X(0) = x0. It is known that when f ∈ ∪L>0F1
L, (23) has a unique solution Xt, which satisfies that

f(Xt) − f⋆ ≤ ∥x0 − x⋆∥2/(2t) and when f ∈ ∪L≥µS1
µ,L, f(Xt) − f⋆ ≤ e−2µt(f(x0) − f⋆). By relating Xt to

xk (i.e., taking t = ks for small s), the former O(1/t) rate translates into O(1/(ks)), which is exactly the
discrete rate of gradient descent in the convex setting. The second O(e−2µt) rate resembles O((1 − 2µs)k)
for s ≈ 0, which is similar to the discrete rate O((1 − 2µs

1+1/κ)k) for gradient descent in the strongly convex
setting.

On the other hand, by taking ∆t =
√

s and xk = X(tk) = X(k
√

s) for a continuous-time trajectory
Xt = X(t), the limit of NAG-C (17) as s → 0 is for t > 0,

Ẍt + 3
t
Ẋt + ∇f(Xt) = 0, (24)

with initial conditions X(0) = x0 and Ẋ(0) = 0. When f ∈ ∪L>0F1
L, (24) has a unique solution Xt, which

satisfies that f(Xt) − f⋆ ≤ 2∥x0 − x⋆∥2/t2. The limit of NAG-SC (4) is

Ẍt + 2√
µẊt + ∇f(Xt) = 0, (25)

with initial conditions X(0) = x0 and Ẋ(0) = 0. When f ∈ ∪L≥µS1
µ,L, (25) has a unique solution Xt, which

satisfies that f(Xt)−f⋆ ≤ 2e−√
µt(f(x0)−f⋆). For a fixed t, Xt can be approximated by the discrete iterate

xk with t = k
√

s for a small s. Using t = k
√

s, the former O(1/t2) rate translates into O(1/(sk2)), which is
the discrete rate for NAG-C. The latter O(e−√

µt) rate matches the discrete rate O((1−√
µs)k) for NAG-SC.

In these cases, the convergence rate of the continuous-time trajectory Xt = X(t) matches that of the discrete
iterates {xk}.

The overall findings of our study can be summarized as follows.

• For minimization of strongly convex functions, the ODE convergence bounds do not directly inform
the range of feasible stepsizes, which are crucial in determining whether acceleration is achieved.

• For minimization of either strongly convex or convex functions, the gradient correction term vanishes
in the (low-resolution) ODEs. Although this term is explicitly retained in high-resolution ODEs,
these ODEs can still converge at the same rate with or without it.

In conclusion, the convergence properties of limiting ODEs, including high-resolution ODEs, fall short of
informing whether discrete algorithms achieve acceleration. Our work provides explicit convergence bounds
for the low- and high-resolution ODEs through new Lyapunov analyses. These results complement and
enrich the existing literature on the connections and gaps between discrete algorithms and ODEs.

16

Under review as submission to TMLR

4.1 Strongly convex setting

For strongly convex f , we compare the convergence of algorithm (14) and related ODEs. By taking ∆t =
√

s
and xk = X(tk) = X(k

√
s), the limiting ODE of (14) as s → 0 is

Ẍt + c1
√

µẊt + c0∇f(Xt) = 0, (26)

with initial conditions X(0) = x0 and Ẋ(0) = 0. This can be viewed as a Newtonian equation of motion in
a viscous medium in the potential field c0f with c0 as the rescaling constant.10 The damping coefficient is
c1

√
µ, resulting from the momentum coefficient 1−c1

√
q in (14). For convenience, the three settings c2

1 > 4c0,
c2

1 = 4c0, or c2
1 < 4c0 are referred to as over-damping, critical-damping, or under-damping, respectively. The

parameter c2 associated with the gradient correction vanishes. Nevertheless, for any smooth and µ-strongly
convex f and any c0, c1 > 0, we show that the solution Xt uniquely exists, and f(Xt) converges to f⋆

exponentially fast with a decaying rate proportional to √
µ. To state the result, we use Cp(I;Rn) to denote

the class of pth continuously differentiable maps from an interval I to Rn.

Proposition 3. Let f : Rn → R be a function in ∪L≥µS1
µ,L with µ > 0. Then the ODE (26) with initial

conditions X(0) = x0 and Ẋ(0) = 0 has a unique solution Xt ∈ C2([0, ∞);Rn). Moreover, for any c0, c1 > 0,
the solution Xt satisfies that f(Xt) − f⋆ = O(e−C

√
µt(f(x0) − f⋆)) for a constant C = c1−

√
(c2

1−4c0)∨0
2 > 0.11

Otherwise (either c0 ≤ 0 or c1 ≤ 0), Xt may fail to converge to x⋆ as t → ∞.

The dependency on µ in the bound above is improved to √
µ, compared with the O(e−2µt) bound for gradient

flow (23). A direct translation by tk = k
√

s suggests that a discrete bound of O((1−C
√

µs)k) may be expected
for suitable discretizations of (26), as opposed to O((1 − Cµs)k) for gradient descent (2). However, there
are notable gaps between such results suggested by ODEs and our results for discrete algorithms. First,
the bound in Proposition 3 only requires c0, c1 > 0, which is much weaker than the over-damping condition
c2

1 > 4c0 in Corollary 1. The condition c2
1 > 4c0 may be only technical and can be potentially relaxed.

Second, the bound O((1 − C
√

µs)k) does not directly inform whether s ≍ 1/L (equivalently q ≍ 1/κ) or
s ≍ µ/L2 (q ≍ 1/κ2), corresponding to different orders of time interval in discretizing the ODE. The former
leads to acceleration while the latter does not. Third, the gradient correction term from algorithm (14)
vanishes in the limiting ODE (26), so that the ODE does not capture the effect of gradient correction.

To complement the preceding discussion, we study the high-resolution ODEs for NAG-SC (4) and HB (9),
which are proposed to reflect the gradient correction or lack of in the two methods (Shi et al., 2022). The
high-resolution ODEs are derived by retaining O(

√
s) terms that would otherwise vanish in the limit of

s → 0. By taking ∆t =
√

s and xk = X(tk) = X(k
√

s), the low-resolution ODEs for NAG-SC (4) and HB
(9) are the same equation in (25). The high-resolution ODE for NAG-SC is

Ẍt + 2√
µẊt +

√
s∇2f(Xt)Ẋt + (1 + √

µs)∇f(Xt) = 0, (27)

with initial conditions X(0) = x0 and Ẋ(0) = − 2
√

s
1+√

µs ∇f(x0). The high-resolution ODE for HB is

Ẍt + 2√
µẊt + (1 + √

µs)∇f(Xt) = 0, (28)

with the same initial conditions. For NAG-SC, the gradient correction results in an additional Hessian term,√
s∇2f(Xt)Ẋt, in (27). However, the convergence rates of these two high-resolution ODEs are the same.

The following result is qualitatively similar to Theorems 1 and 2 in Shi et al. (2022), but involves a sharper
rate due to a new Lyapunov analysis.

Proposition 4. Let f : Rn → R be a function in ∪L≥µS2
µ,L with µ > 0. Then each of the ODEs (27)

and (28) with initial conditions X(0) = x0 and Ẋ(0) = −2
√

s∇f(x0)/(1 + √
µs) has a unique solution

Xt ∈ C2([0, ∞);Rn). Moreover, for both ODEs, the solutions Xt satisfy that f(Xt) − f⋆ ≤ V0e−√
µt,

10It suffices to establish convergence for (26) for c0 = 1, then all other cases with c0 > 0 can be recovered by a time rescaling.
11The constant C in Proposition 3 can be improved using the IQC methods (Sanz Serna & Zygalakis, 2021). However, our

analysis is based on a concise Lyapunov analysis, and our goal is not to find the sharpest constant. See Appendix A for details.

17

Under review as submission to TMLR

where the constant V0 = (1 + √
µs)(f(x0) − f⋆) + 1

2 ∥√
µ(x0 − x⋆) −

√
s

1−√
µs

1+√
µs ∇f(x0)∥2 for (27) and V0 =

(1 + √
µs)(f(x0) − f⋆) + 1

2 ∥√
µ(x0 − x⋆) − 2

√
s

1+√
µs ∇f(x0)∥2 for (28).

Unfortunately, despite explicitly incorporating the gradient correction (or not), high-resolution ODEs do not
exhibit differences in convergence rates and therefore fail to capture the effect of gradient correction.

4.2 Convex setting

For convex f , we compare the convergence of algorithm (21) and related ODEs in the setting where γk = γ,
βk = β, and αk = k+r

r .12 By rescaling the stepsize s to s/γ, the parameters γ and β can be reset to 1 and
β/γ respectively. In this setting, (21) reduces to the sub-class in Shi et al. (2022), with two parameters r
and β/γ:

xk+1 = xk − s∇f(xk) + σk+1(xk − xk−1) − σk+1
β

γ
· s(∇f(xk) − ∇f(xk−1)), (29)

where σk+1 = αk−1
αk+1

= k
k+r+1 . By taking ∆t =

√
s and xk = X(tk) = X(k

√
s), the limiting ODE for (29) is

for t > 0,
Ẍt + r + 1

t
Ẋt + ∇f(Xt) = 0, (30)

with initial conditions X(0) = x0 and Ẋ(0) = 0. This can be viewed as a Newtonian equation for a particle
moving in the potential field f with friction. The damping coefficient is r+1

t , resulting from the momentum
coefficient σk+1. Su et al. (2016) showed that if f ∈ ∪L>0F1

L, (30) with the specified initial conditions has
a unique solution Xt ∈ C2((0, ∞);Rn) ∩ C1([0, ∞);Rn). Moreover, the convergence of Xt exhibits a phase
transition at r = 2, the choice in NAG-C (15). If r ≥ 2, then f(Xt) − f⋆ = O(1/t2). But if r < 2, the
rate O(1/t2) may fail as illustrated by counterexamples. For αk = k+r

r , it can be directly verified that the
recursive condition αk+1(αk+1 − 1) ≤ α2

k in Theorem 4 holds if and only if r ≥ 2. Therefore, the condition
on the momentum term for acceleration of (29) is well captured by the limiting ODE.

The ODE (30), however, does not reflect the parameter β/γ associated with the gradient correction in
algorithm (29), which is similarly observed in the low-resolution ODE (26) for algorithm (14) in the strongly
convex setting. The gradient correction term, of order O(

√
s), can be incorporated in a high-resolution ODE

(Shi et al., 2022). By taking t0 = (r+1)
√

s
2 and tk = t0 + k

√
s for algebraic convenience, the high-resolution

ODE for (21) is for t ≥ t0 > 0,

Ẍt + r + 1
t

Ẋt + β

γ

√
s∇2f(Xt)Ẋt +

(
1 + (r + 1)

√
s

2t

)
∇f(Xt) = 0, (31)

with initial conditions X(t0) = x0 and Ẋ(t0) = −
√

s∇f(x0). When f ∈ ∪L>0F2
L and r = 2, Shi et al. (2022)

established the existence and uniqueness of a solution Xt ∈ C2([t0, ∞);Rn). The general case with r ≥ 2 is
beyond the scope of this paper. If a solution exists, the following result gives convergence bounds of (31) for
both r > 2 and r = 2 via a new Lyapunov analysis. Shi et al. (2022) provided similar bounds only explicitly
in the case of r > 2.

Proposition 5. Let f : Rn → R be a function in F2. Suppose that Xt is a solution to (31) with initial
conditions X(t0) = x0 and Ẋ(t0) = −

√
s∇f(x0). If r ≥ 2 and β

γ > 0, then there exists a time point
t1 ≥ t0,13 with t1/

√
s depending only on r and β/γ, such that Xt satisfies the bounds:

f(Xt) − f⋆ = O

(
Vt1

t2

)
, inf

t1≤u≤t
∥∇f(Xu)∥2 = O

(
γVt1

β
√

s(t3 − t3
1)

)
.

In addition, if r ≥ 2 and β = 0, then the first bound still holds. Here Vt1 is the value that the continuous
Lyapunov function takes at t1: Vt = (t + C

√
s)(t + (r+1

2 − β
γ)

√
s)(f(Xt) − f⋆) + t+C

√
s

t
1
2 ∥r(Xt − x⋆) + t(Ẋt +

β
√

s
γ ∇f(Xt))∥2, where C = 0 if r > 2 and C = β

γ if r = 2.
12For a general sequence {αk}, algorithm (21) may not admit a limiting ODE, as shown in Lemma 1.
13See the proof of Proposition 5 in Appendix E.4 for an explicit expression for t1.

18

Under review as submission to TMLR

If we replace t by tk = t0 + k
√

s ∼ k
√

s, then the first bound above translates into the accelerated bound
O(1/(sk2)) on the objective gap as in (16) and the second becomes O(1/(s2k3)) on the squared gradient
norm as in (18). These two bounds above are exactly the continuous analogs of the associated bounds
for algorithm (29). However, compared with the condition β/γ > 1/2 in Theorem 4, the condition in the
continuous ODE setting is much weaker: β/γ is allowed to be arbitrarily small, and even 0 (no Hessian term)
if only the O(1/t2) rate for the objective gap is desired. The latter case corresponds to a discrete algorithm
without the gradient correction, similar to HB (9). Therefore, even when a Hessian term is included as a
continuous counterpart of the gradient correction, the convergence properties of the high-resolution ODE
are currently not fully matched by those of algorithm (29). This remains to be further studied as an open
question, as also mentioned in Shi et al. (2022), Section 5.1.

5 Hamiltonian-assisted interpretation

As observed in Section 4, the low-resolution and high-resolution ODEs do not fully capture the convergence
properties of the algorithms studied. Alternatively, we directly formulate a broad class of discrete algorithms,
HAG, based on a Hamiltonian function with a position variable and a momentum variable, and demonstrate
that the conditions from our convergence results in Sections 2 and 3 can be interpreted through HAG in a
unified manner in both the strongly convex and convex settings. This development is motivated by a related
formulation of Hamiltonian-assisted Metropolis sampling (HAMS) (Song & Tan, 2023; 2022).

5.1 HAG: Hamiltonian-assisted gradient method

For f ∈ F1
L, consider the following unconstrained minimization problem:

min
x,u∈Rn

H(x, u) = f(x) + 1
2∥u∥2,

where H(x, u) can be interpreted as a Hamiltonian function (or total energy), with x a position variable
and u a momentum variable. The above problem is equivalent to the original problem (1). If x and u are
updated separately, then there is no possible improvement compared with solving (1) directly. However, we
show how x and u can be updated in a coupled manner to derive a rich class of first-order algorithms, which
include representative algorithms from the classes (14) and (21) studied in Sections 2 and 3.

Gradient descent with a linear constraint. Given initial points (x0, u0), consider minimizing (or
decreasing) H(x, u) subject to a linear constraint x − δu = x0 − δu0 for some δ > 0. By substituting
u = x−x0+δu0

δ , the problem with respect to x becomes minimizing (or decreasing) f̃(x; x0, u0) = f(x) +
1

2δ2 ∥x − x0 + δu0∥2. Consider updating x0 by gradient descent with a stepsize s = 1
1+ 1

δ2
= δ2

1+δ2 , which, by
the standard characterization of gradient descent, is equivalent to minimizing a quadratic surrogate function
of f̃ at x0 (with surrogate smoothness parameter being 1 for f) as follows:

x1 = arg min
x

⟨∇f(x0), x − x0⟩ + 1
2∥x − x0∥2 + 1

2δ2 ∥x − x0 + δu0∥2.

Then u0 is updated by solving x1 − δu1 = x0 − δu0. The resulting update is

x1 = x0 − δ2

1 + δ2 ∇f(x0) − δ

1 + δ2 u0,

u1 = u0 − δ

1 + δ2 ∇f(x0) − 1
1 + δ2 u0.

The function f̃(x; x0, u0) has a smoothness parameter Lf̃ = L + 1
δ2 . If 0 < δ2 ≤ 1

L , then Lf̃ ≤ 2
δ2 < 2

s

and s < 2
Lf̃

, so that the above GD update is well-behaved and f̃ (as well as H) is non-increasing (see the
footnote 7).

Momentum negation and extrapolation. The above update can be repeated on (x1, u1), but the
constraint x − δu = x1 − δu1 = x0 − δu0 will remain the same, so that all subsequent updates also satisfy the

19

Under review as submission to TMLR

−1 0 1

−1

0

1

position (x)

m
om

en
tu

m
 (

u)

(a) f(x) = 1
2 x2, without negation

−1 0 1

−1

0

1

position (x)

m
om

en
tu

m
 (

u)

(b) f(x) = 1
2 x2, with negation

−1 0 1

−1

0

1

position (x)

m
om

en
tu

m
 (

u)

(c) f(x) = x2, without negation

−1 0 1

−1

0

1

position (x)

m
om

en
tu

m
 (

u)

(d) f(x) = x2, with negation

Figure 5: An illustration of the gradient descent with a linear constraint and the effect of momentum negation
when x ∈ R. The first two iterates are plotted without or with negation, for f(x) = x2/2 in the first row and
f(x) = x2 in the second row. The initial point is (1, 1) and the global minimizer is (0, 0). We fix δ = 1/2.
The black solid circles and ellipses correspond to different level sets of the Hamiltonian functions.

same constraint and, in general, cannot converge to a minimizer of H(x, u). To resolve this issue, we negate
u at the beginning of each iteration. In other words, given (x0, u0), we first negate u0 to −u0, and then
implement the above update. The negation of u does not change the value of H, but keeps the constraint
changing from iteration to iteration.

An illustration is provided in Figure 5. For 1-dim x, the linear constraint becomes a straight line in R2.
When f(x) = x2

2 , the level sets of H(x, u) = x2

2 + u2

2 are circles, and the gradient descent update is exactly
the minimizer along the line. Then the update without negation gets stuck after the first iteration. Negating
the momentum changes the linear constraint, and then the updates keep moving toward the minimizer (0, 0).
When f(x) = x2, the level sets of H(x, u) = x2 + u2

2 are ellipses, and the gradient descent update is not
exactly the minimizer along the line. Nevertheless, without negation, all the iterates will stay on the same
line, hence failing to converge to the minimizer (0, 0). The momentum negation is also essential to the HAMS
algorithm and related under-damped Langevin sampling algorithms, where a negation of the momentum is
required to achieve generalized reversibility (Neal, 2011; Song & Tan, 2022).

20

Under review as submission to TMLR

In addition, we introduce an extrapolation step before the negation of u0 for ρ ≥ 0. This leads to the
following update given the initial points (x0, u0):

x1 = x0 − (1 + ρ)δ2

1 + δ2 ∇f(x0) + (1 + ρ)δ
1 + δ2 u0,

u1 = −u0 − (1 + ρ)δ
1 + δ2 ∇f(x0) + 1 + ρ

1 + δ2 u0.

By setting a = (1+ρ)δ2

1+δ2 and b = 1+ρ
1+δ2 , the above can be put in a clean form as

x1 = x0 − a∇f(x0) +
√

abu0,

u1 = −u0 −
√

ab∇f(x0) + bu0.

The parameters (δ, ρ) can be determined from (a, b) as δ =
√

a/b and ρ = a + b − 1.

Gradient correction. The above updates of x1 and u1 are parallel, so that u1 uses only the gradient
information at x0, but not at the newly updated x1. To exploit the gradient information at x1, we incorporate
a gradient correction into the update:

x1 = x0 − a∇f(x0) +
√

abu0,

u1 = −u0 −
√

ab∇f(x0) + bu0 − ϕ(∇f(x1) − ∇f(x0)),

for some scalar ϕ. Lastly, we allow a, b and ϕ to vary from iteration to iteration and consider the following
class of algorithms, called Hamiltonian-assisted gradient method (HAG): for k ≥ 0,

xk+1 = xk − ak∇f(xk) +
√

akbkuk,

uk+1 = −uk −
√

akbk∇f(xk) + bkuk − ϕk(∇f(xk+1) − ∇f(xk)),
(32)

starting from (x0, u0). Notably, the overall contribution from gradients remains unchanged in the update
for uk+1. Instead, they are re-weighted:

uk+1 = (bk − 1)uk −
(
(
√

akbk − ϕk)∇f(xk) + ϕk∇f(xk+1)
)︸ ︷︷ ︸

re-weighted gradient

. (33)

The larger ϕk is, the larger weight is assigned to the new gradient ∇f(xk+1).

To facilitate comparison with algorithms in Sections 2 and 3, the HAG algorithm (32) can be put into a
single-variable form involving {xk} only (see Appendix F): for k ≥ 1,

xk+1 = xk −

(
ak−1

√
akbk

ak−1bk−1
+ ak

)
∇f(xk) + (bk−1 − 1)

√
akbk

ak−1bk−1
(xk − xk−1)

−

(
ϕk−1

√
akbk − ak−1

√
akbk

ak−1bk−1

)
(∇f(xk) − ∇f(xk−1)), (34)

starting from x0 and x1 = x0 − a0∇f(x0) +
√

a0b0u0. The parameter {ϕk} only appears in the gradient
correction in (34), and in the case of akbk being constant in k, the parameters {ak} and {bk} fully determine
the gradient descent and the momentum terms respectively. For convenience, the term of xk − xk−1 is still
referred to as the momentum term in single-variable forms, which is not to be confused with the momentum
variable uk.

5.2 Interpretation from HAG

HAG (32) or (34) are general enough to represent various algorithms studied in Sections 2 and 3, by choosing
the parameters {ak}, {bk} and {ϕk} accordingly. We examine our convergence results from the HAG per-
spective and obtain unified interpretations of sufficient conditions for achieving acceleration in both strongly
convex and convex settings. Our findings are summarized as follows.

21

Under review as submission to TMLR

• The parameter ak acts as a re-scaled stepsize s. The parameter bk, which controls the momentum
term in the single-variable form, has a leading constant 2, and the gap 2 − bk is Ω(√q) with q = µs
or Ω(1

k) in the strongly convex or convex setting, respectively.14 In terms of (δk, ρk) in the HAG
derivation, this indicates that δk ∼

√
ak

2 and 1−ρk ∼ 2−bk. Therefore, δk is of order
√

s (comparable
to ∆t in deriving ODEs for NAG-SC and NAG-C), ρk has a leading constant 1 (indicating symmetric
extrapolation), and the gap 1 − ρk is Ω(√q) or Ω(1

k) in the strongly convex or convex setting.

• The parameter ϕk is of order
√

s and controls the gradient correction, such that in the re-weighted
gradient for the momentum update (33), the new gradient ∇f(xk+1) fully dominates with its weight
greater than the total weight, whereas the old gradient ∇f(xk) has a negative weight. The boundary
case of a zero weight for ∇f(xk) is also allowed in the strongly convex setting. Such heuristic
interpretations are not feasible from the single-variable forms.

Currently such interpretations are derived from convergence results for classes of algorithms (14) and (22).
It remains an interesting question to analyze HAG directly and study further implications.

Strongly convex setting. For f ∈ S1
µ,L, we set

ak ≡ a = (c0

2 + O(√q))s, bk ≡ b = 2 − c1
√

q + O(q), ϕk ≡ ϕ = (c2 + O(√q))
√

s,

where c0, c1, c2 > 0. Then HAG (34) reduces to (14) exactly:

xk+1 = xk − 2a∇f(xk) + (b − 1)(xk − xk−1) − (ϕ
√

ab − a)(∇f(xk) − ∇f(xk−1))
= xk − (c0 + O(√q))s∇f(xk) + (1 − c1

√
q + O(q))(xk − xk−1)

− (c2
√

c0 − c0

2 + O(√q))s(∇f(xk) − ∇f(xk−1)).
(35)

In the following, we interpret the conditions in Corollary 1 through HAG.

The parameter a = (c0
2 +O(√q))s plays the role of a re-scaled stepsize s. The parameter b = 2−c1

√
q +O(q)

controls the momentum term (xk −xk−1) in (35). The leading constant of b is 2, which ensures the existence
of a limiting ODE as s → 0. In terms of c1, Corollary 1 requires the condition c2

1 > 4c0, which as mentioned
earlier may be potentially relaxed, for example, to c1 > 0. This would lead to a condition 2 − b = Ω(√q) as
s → 0. In terms of (δ, ρ) in the HAG derivation, the preceding discussion also gives

δ =
√

a/b = 1
2

√
c0s + O(s), 1 − ρ = 2 − b − a = Ω(√q). (36)

We observe that δ is in the order of
√

s, similarly as ∆t in deriving the ODEs (25) and (26), and ρ is close
to 1 (symmetric extrapolation) but with a gap being Ω(√µs).

The parameter ϕ = (c2 + O(√q))
√

s controls the gradient correction (∇f(xk+1) − ∇f(xk)) in (35). The
re-weighted gradient in the momentum update (33) for uk+1 becomes

(
√

c0 − c2 + O(√q))
√

s∇f(xk) + (c2 + O(√q))
√

s∇f(xk+1). (37)

For accelerated convergence in Corollary 1, the condition c2
2 ≥ c0 indicates that the new gradient ∇f(xk+1)

fully dominates with its weight, c2
√

s, no smaller than the total weight √
c0s, whereas the old gradient

∇f(xk) has a zero or negative weight. For non-accelerated (sub-optimal) convergence in Corollary 1, the
condition c0/4 ≤ c2

2 < c0 indicates that both the new and old gradients have positive weights, but ∇f(xk+1)

14The two orders, √
q and 1

k
, can be seen to match each other, because the accelerated algorithms and their continuous limits

are linked via t = k
√

s in Section 4 and hence
√

s can be viewed to be in the order of 1
k

, as s → 0 or k → ∞.

22

Under review as submission to TMLR

contributes no less than ∇f(xk). Interestingly, such an interpretation cannot be obtained from the single-
variable form (14) or (35), even though a similar re-weighted gradient can also be identified there.15

Convex setting. For f ∈ F1
L, we set

bk = 1 + σk+2, ak = c0

bk
s, ϕk ≡ c2

√
s, (38)

where c0, c2 > 0 and, as before, σk+1 = αk−1
αk+1

for some sequence {αk}. Then HAG (34) reduces to

xk+1 = xk − c0

(
1

bk−1
+ 1

bk

)
s∇f(xk) + σk+1(xk − xk−1) −

(
c2

√
c0 − c0

bk−1

)
s(∇f(xk) − ∇f(xk−1)),

(39)

which falls in the class (21) with γk and βk varying in k, whose convergence property can be readily deduced
from Theorem 4. We choose ak varying in k such that akbk is constant in k, mainly to simplify the coefficients
from (34).

Given any {αk} satisfying αk = Ω(k) and αk+1
αk

= 1 + O(1
k), we have σk+1 = αk−1

αk+1
= 1 − O(1

k), bk =
1+σk+2 = 2−O(1

k), ak = c0
bk

s = (c0 +O(1
k))s/2, and the preceding HAG algorithm (39) is further simplified

to

xk+1 = xk −
(

c0 + O(1
k

)
)

s∇f(xk) + σk+1(xk − xk−1) −
(

c2
√

c0 − c0

2 − O(1
k

)
)

s(∇f(xk) − ∇f(xk−1)),

(40)

which resembles algorithm (35) in the strongly convex setting, in all the leading constants involved. Algorithm
(40) can be put into (21) with γk → γ = c0 and βk → β = c2

√
c0 − c0

2 . Note that (39) or (40) is more complex
than (29) with constant γk and βk studied in Shi et al. (2022). In the following, we interpret conditions (i)
and (ii) in Theorem 4 through HAG for the choice αk = k+r

r . The technical monotonicity condition (iii) can
be verified for this specific choice (see Appendix F for a proof).

Similarly to the strongly convex setting, the parameter ak = (c0 + O(1
k))s/2 plays the role of a re-scaled

stepsize s. Moreover, the parameter bk = 1 + σk+2 controls the momentum term (xk − xk−1) in (40), and
has its leading constant being 2, which is necessary (but not sufficient by Lemma 1) for a limiting ODE to
exist as s → 0. For the choice αk = k+r

r and σk+1 = k
k+r+1 , the recursive condition αk+1(αk+1 − 1) ≤ α2

k

is equivalent to r ≥ 2. Then it implies a condition 2 − bk = (r + 1)/k − O(1/k2) = Ω(1/k) as k → ∞ (or
s ∼ 1/k2 → 0). In terms of the time-dependent (δk, ρk) in HAG, the preceding discussion gives

δk =
√

ak/bk = 1
2

√
c0s + O(s), 1 − ρk = 2 − bk − ak = Ω(1

k
). (41)

We observe that δk is in the order of
√

s, similarly as ∆t in deriving the ODE (24), and ρk is close to 1
(symmetric extrapolation) but with a gap being Ω(1

k). The conditions, (36) and (41), for the strongly convex
and convex settings respectively, are of similar forms, with √

µs (= √
q) and 1

k exchanged with each other.

The parameter ϕk = c2
√

s plays a similar role of controlling the gradient correction term (∇f(xk)−∇f(xk−1))
in (40), as does ϕ = (c2 + O(√q))

√
s in the strongly convex setting. The re-weighted gradient in the

momentum update (33) for uk+1 is similar to (37):

(
√

c0 − c2)
√

s∇f(xk) + c2
√

s∇f(xk+1).
15In (14) or (35), it seems reasonable to consider the re-weighted gradient as

(c0 + O(√q))s∇f(xk) + (c2
√

c0 −
c0

2
+ O(√q))s(∇f(xk) − ∇f(xk−1))

= (c2
√

c0 +
c0

2
+ O(√q))s∇f(xk) + (−c2

√
c0 +

c0

2
+ O(√q))s∇f(xk−1).

However, the condition c2
2 ≥ c0 indicates that the weight of ∇f(xk) is no smaller than 3

2 c0, whereas the weight of ∇f(xk−1) is
no larger than − 1

2 c0, with a total weight c0s. Therefore, the conditions bear no meaningful interpretations.

23

Under review as submission to TMLR

With γ = c0 and β = c2
√

c0 − c0
2 , the condition β > γ/2 in Theorem 4 reduces to c2

2 > c0, which indicates
that the new gradient ∇f(xk+1) fully dominates with its weight, c2

√
s, greater than the total weight √

c0s,
whereas the old gradient ∇f(xk) has a negative weight. This is the same as the condition, c2

2 ≥ c0, for
accelerated convergence in the strongly convex setting except that the boundary case c2

2 = c0 is excluded
here. As discussed earlier, the single-variable form (40) does not admit a meaningful interpretation for the
re-weighted gradient.

6 Outlines of Lyapunov analyses

We outline our Lyapunov analyses to prove the convergence results for the discrete algorithms in Sections 2
and 3. See Appendix E for our Lyapunov analyses for the convergence of ODEs in Section 4. Compared with
existing ones, our Lyapunov functions are constructed to handle more general algorithms and ODEs or to
achieve more concise analysis and sometimes sharper results. Before giving the outlines of our analyses, we
summarize the comparison of Lyapunov analyses. The comparison is restricted among analytic Lyapunov
functions, excluding those constructed by the LMI/SDP framework, which require additional numerical
solvers (Lessard et al., 2016; Fazlyab et al., 2018; Taylor et al., 2018; Taylor & Bach, 2019; Sanz Serna &
Zygalakis, 2021; Dobson et al., 2025).

Strongly convex setting. We construct the discrete Lyapunov (43) to establish the convergence of algo-
rithm (10) including NAG-SC and TMM as special cases. The auxiliary-energy term µ∥zk+1 −x⋆∥2/2 in (43)
is also used in Bansal & Gupta (2019) for NAG-SC and in d’Aspremont et al. (2021) for TMM. However,
the potential-energy term in our Lyapunov is in {xk} whereas the one in Bansal & Gupta (2019) is in {yk}.
The potential-energy term of the Lyapunov in d’Aspremont et al. (2021) is in {xk} like ours, but is not
lower-bounded by f(xk) − f⋆, so that their analysis only establishes the convergence for {zk}. In addition,
compared with the analysis of NAG-SC in Shi et al. (2022), our Lyapunov function (43) has fewer terms,
and our analysis is much more concise.

Our continuous Lyapunov function to analyze the class of low-resolution ODEs (26) for Proposition 3 is
extended from the one proposed in Wilson et al. (2021) for (c0, c1) = (1, 2) (i.e., the low-resolution ODE
of NAG-SC). Furthermore, we construct suitable Lyapunov functions to analyze the high-resolution ODEs
of NAG-SC and HB. Compared with the ones used in Shi et al. (2022), our Lyapunov functions lead to a
sharper convergence bound for NAG-SC and HB (Proposition 4).

Convex setting. We construct the discrete Lyapunov (46) to establish the convergence of (20) or equiva-
lently (22), including those in Beck (2017) and Shi et al. (2022) as special cases. The auxiliary-energy term
∥zk+1 − x⋆∥2/2 in (46) is motivated by Su et al. (2016) for NAG-C and Shi et al. (2022) for (29), a sub-class
of (20) with γk = 1, βk = β/γ, and αk = (k + r)/r for r ≥ 2. However, the potential-energy term in our
Lyapunov (46) differs from the related ones in Su et al. (2016) and Shi et al. (2022). Moreover, Shi et al.
(2022) analyzed the three cases, r = 2 and β ≤ 1, r = 2 and β > 1, and r > 2, separately. It seems difficult
to extend their case-by-case analysis to cover the more general results in our Theorem 4.

The continuous Lyapunov function for the class of high-resolution ODEs (31) is the same as in Shi et al.
(2022) when r > 2, but involves a technical modification when r = 2. The modification helps to establish
the convergence bounds in Proposition 5 for both r > 2 and r = 2, whereas similar bounds are provided in
Shi et al. (2022) only explicitly for r > 2.

6.1 Strongly convex setting

We provide a Lyapunov analysis to establish Theorems 1–3 for the class of algorithms (10). Proof details are
presented in Appendix C. Although our Lyapunov function, like most existing ones, is manually designed,
our analysis proceeds in several structured steps.

Step 1. Bounding the differencing of an auxiliary energy. The sequence {zk} plays a key role in
our formulation of (10) in a three-variable form. We identify µ

2 ∥zk − x⋆∥2 as an auxiliary-energy term and
bound its differencing, 1

1−ν
√

q
µ
2 ∥zk+1 − x⋆∥2 − µ

2 ∥zk − x⋆∥2.

24

Under review as submission to TMLR

Lemma 2. Let f : Rn → R be a function in S1
µ,L. For any s > 0 such that 0 ≤ ηs ≤ 1/L, ν ≥ 0, 1−ν

√
q > 0,

τ > 0 and ζ = 1 + (1 − τ)√q ≥ 0, the iterates of (10) satisfy that for k ≥ 1,(
ζν

τ2 (τ + ζη
√

q) +
ν
√

q

1 − ν
√

q

)
(f(xk) − f⋆) − νs

2

(
ν

1 − ν
√

q
− ζη

τ

)
∥∇f(xk)∥2 + 1

1 − ν
√

q

µ

2 ∥zk+1 − x⋆∥2

≤ ζν

τ2 (τ + ζη
√

q)
(

f(xk−1) − f⋆ − ηs

2 ∥∇f(xk−1)∥2
)

+ µ

2 ∥zk − x⋆∥2. (42)

Step 2. Constructing a discrete Lyapunov function. We define a Lyapunov function simply from the
right-hand-side of (42): for k ≥ 0,

Vk+1 = ζν

τ2 (τ + ζη
√

q)
(

f(xk) − f⋆ − ηs

2 ∥∇f(xk)∥2
)

+ µ

2 ∥zk+1 − x⋆∥2. (43)

We refer to the first term above as a potential energy, involving both f(xk) − f⋆ and ∥∇f(xk)∥2, and the
second term µ

2 ∥zk − x⋆∥2 as an auxiliary energy. The negative term − ηs
2 ∥∇f(xk)∥2 in (43) is a technical

adjustment and can be traced to (42). A similar term can be found in our Lyapunov (46) in the convex
setting. By Assumption 1 for smoothness of η̃(·) near 0, a sufficiently small C0 ∈ (0, 1

4η0
] can be picked with

η0 > 0 such that when 0 < s ≤ C0
L , we have 0 < q = µs ≤ C0, η = η̃(√q) ≤ 2η0, and ηLs ≤ 2η0C0 ≤ 1

2 . Then
for 0 < s ≤ C0

L , by the L-smoothness of f , we have f(xk) − f⋆ − ηs
2 ∥∇f(xk)∥2 ≥ (1 − ηLs)(f(xk) − f⋆) ≥

1
2 (f(xk) − f⋆). More details are given in Appendix C.3. The negative term in (46) is handled similarly in
Appendix D.3.

Step 3. Identifying sufficient conditions for Lyapunov contraction. As expected from (42), we
further bound Vk+1 − (1 − ν

√
q)Vk and identify conditions such that a contraction inequality holds for the

Lyapunov function: Vk+1 − (1 − ν
√

q)Vk ≤ 0.

Lemma 3. Define I and II as polynomials of √
q, η, ν and τ (hence functions of √

q) taking the following
forms: (recall that ζ = 1 + (1 − τ)√q)

I = ζν(τ + ζη
√

q) − τ2

= τ(ν − τ) + ν(η − τ(τ − 1))√q − 2ην(τ − 1)q + ην(τ − 1)2q
3
2 ,

II = τ(ντ − 2ζη) + ζη(ντ − ζη)√q

= τ(ντ − 2η) + η(−η + ντ + 2τ(τ − 1))√q + η(τ − 1)(2η − ντ)q − η2(τ − 1)2q
3
2 .

(44)

Under the condition in Lemma 2, if one of the following (mutually exclusive) conditions holds: (i) I > 0 and
I + √

qII ≤ 0, or (ii) II > 0 and (1/κ)I + √
qII ≤ 0, or (iii) I ≤ 0 and II ≤ 0, then we have the contraction

inequality Vk+1 ≤ (1 − ν
√

q)Vk for k ≥ 1.

Step 4. Verifying the contraction conditions and completing the analysis. For completing the
analysis, the final step is to show that the sufficient conditions for Lyapunov contraction in Lemma 3 are
satisfied under the conditions included in Theorems 1–3. This step can be algebraically tedious, and the
details are left to Appendix C.

The contraction inequality, if verified, directly leads to a convergence bound O((1 − C1
√

µs)k) as stated in
(12). However, to fulfill the conditions in Lemma 3, we find that two ranges of stepsize s (or q) are allowed:
0 < s ≲ µ/L2 (or 0 < q ≲ 1/κ2) and 0 < s ≲ 1/L (or 0 < q ≲ 1/κ). As discussed after Theorem 1, the
upper bound of feasible s determines whether the vanilla or accelerated convergence is achieved, in terms of
the dependency on κ.

6.2 Convex setting

We provide a Lyapunov analysis to establish Theorem 4 for the class of algorithms (20) or equivalently (22).
Proof details are presented in Appendix D. Our analysis proceeds in several structured steps, similarly as in
the strongly convex setting (Section 6.1).

25

Under review as submission to TMLR

Step 1. Bounding the differencing of an auxiliary energy. From our formulation of the three-variable
form (22), we identify 1

2 ∥zk − x⋆∥2 as an auxiliary-energy term and bound its differencing, 1
2 ∥zk+1 − x⋆∥2 −

1
2 ∥zk − x⋆∥2.

Lemma 4. Let f : Rn → R be a function in F1
L. Then for each k ≥ 1 such that αk ≥ 1 and α̃k ≥ 0, the

iterates of (22) satisfy

αkα̃ks(f(xk) − f⋆) − α̃2
ks2

2 ∥∇f(xk)∥2 + 1
2∥zk+1 − x⋆∥2

≤ α̃k(αk − 1)s
(

(f(xk−1) − f⋆) − (2 − βk−1Ls)βk−1s

2 ∥∇f(xk−1)∥2
)

+ 1
2∥zk − x⋆∥2. (45)

Step 2. Constructing a discrete Lyapunov function. We define a Lyapunov function simply as the
left-hand-side of (45) up to a scalar sequence {ωk}: for k ≥ 0,

Vk+1 = ωk+1

(
αkα̃ks(f(xk) − f⋆) − α̃2

ks2

2 ∥∇f(xk)∥2 + 1
2∥zk+1 − x⋆∥2

)
. (46)

The sequence {ωk} is introduced to later deal with the mismatching of coefficients on two sides of (45).
Similarly as in Section 6.1, we refer to the term involving f(xk) − f⋆ and ∥∇f(xk)∥2 as a potential energy,
and the term 1

2 ∥zk − x⋆∥2 as an auxiliary energy.

Step 3. Identifying sufficient conditions for Lyapunov contraction. As expected from (45), we
further bound Vk+1 − Vk and identify conditions such that a contraction inequality holds for the Lyapunov
function: Vk+1 − Vk ≤ 0 or Vk+1 − Vk ≲ −k2s2∥∇f(xk−1)∥2.

Lemma 5. Define I and II as follows:

I = ωkαk−1α̃k−1 − ωk+1α̃k(αk − 1),
II = ωk+1α̃k(αk − 1)βk−1(2 − βk−1Ls) − ωkα̃2

k−1.

For any k ≥ 1 such that αk ≥ 1, α̃k ≥ 0, ωk ≥ ωk+1, I ≥ 0, and II ≥ 0, the Lyapunov function (46) satisfies
Vk+1 ≤ Vk. If further II ≥ Ck2 for a constant C > 0, then Vk+1 − Vk ≤ − C

2 k2s2∥∇f(xk−1)∥2.

Step 4. Verifying the contraction conditions and completing the analysis. The final step is to
show that the sufficient conditions for Lyapunov contraction in Lemma 5 are satisfied under the conditions
included in Theorem 4. The details are left to Appendix D.

The contraction inequality Vk+1 −Vk ≤ 0 leads to the convergence bound (16) for the objective gap, whereas
the contraction inequality Vk+1 − Vk ≲ −k2s2∥∇f(xk−1)∥2 leads to the inverse cubic rate (18) for the
squared gradient norm. Unlike in the strongly convex setting, the stepsize s can be simply set in the range
0 < s ≲ 1/L to fulfill the conditions in Lemma 5.

7 Conclusion

Our work contributes to understanding the acceleration of first-order algorithms for convex optimization.
We directly formulate discrete algorithms as general as we can and establish sufficient conditions for accel-
erated convergence using discrete Lyapunov functions. We point out currently notable gaps between the
convergence properties of the corresponding algorithms and ODEs. We propose the Hamiltonian-assisted
gradient method, HAG, and demonstrate unified interpretations of our acceleration conditions, especially
those for gradient correction. Future work is needed to address various open questions, including the ex-
tent to which our sufficient conditions are necessary, improving analyses using the LMI/SDP framework,
and further understanding the gradient correction and its relationship with existing explanations, such as
symplectic integrations.

26

Under review as submission to TMLR

References
Zeyuan Allen-Zhu. Katyusha: The first direct acceleration of stochastic gradient methods. Journal of

Machine Learning Research, 18:1–51, 2018.

Zeyuan Allen-Zhu and Lorenzo Orecchia. Linear coupling: An ultimate unification of gradient and mirror
descent. In 8th Innovations in Theoretical Computer Science Conference (ITCS). Schloss Dagstuhl-Leibniz-
Zentrum fuer Informatik, 2017.

Nikhil Bansal and Anupam Gupta. Potential-function proofs for gradient methods. Theory of Computing,
15:1–32, 2019.

Amir Beck. First-Order Methods in Optimization. SIAM, Philadelphia, 2017.

Amir Beck and Marc Teboulle. A fast iterative shrinkage-thresholding algorithm for linear inverse problems.
SIAM Journal on Imaging Sciences, 2:183–202, 2009.

Sébastien Bubeck, Yin Tat Lee, and Mohit Singh. A geometric alternative to Nesterov’s accelerated gradient
descent. arXiv preprint arXiv:1506.08187, 2015.

Antonin Chambolle and Thomas Pock. A first-order primal-dual algorithm for convex problems with appli-
cations to imaging. Journal of Mathematical Imaging and Vision, 40:120–145, 2011.

Enea Monzio Compagnoni, Rustem Islamov, Frank Norbert Proske, and Aurelien Lucchi. Unbiased and sign
compression in distributed learning: Comparing noise resilience via SDEs. In International Conference on
Artificial Intelligence and Statistics, pp. 4087–4095. PMLR, 2025a.

Enea Monzio Compagnoni, Tianlin Liu, Rustem Islamov, Frank Norbert Proske, Antonio Orvieto, and
Aurelien Lucchi. Adaptive methods through the lens of SDEs: Theoretical insights on the role of noise.
In The Thirteenth International Conference on Learning Representations, 2025b.

Paul Dobson, Jesus M Sanz-Serna, and Konstantinos C Zygalakis. On the connections between optimiza-
tion algorithms, Lyapunov functions, and differential equations: theory and insights. SIAM Journal on
Optimization, 35(1):537–566, 2025.

Yoel Drori and Adrien Taylor. On the oracle complexity of smooth strongly convex minimization. Journal
of Complexity, 68:101590, 2022.

Dmitriy Drusvyatskiy, Maryam Fazel, and Scott Roy. An optimal first-order method based on optimal
quadratic averaging. SIAM Journal on Optimization, 28:251–271, 2018.

Alexandre d’Aspremont, Damien Scieur, and Adrien Taylor. Acceleration methods. Foundations and Trends
in Optimization, 5:1–245, 2021.

Mahyar Fazlyab, Alejandro Ribeiro, Manfred Morari, and Victor M Preciado. Analysis of optimization algo-
rithms via integral quadratic constraints: Nonstrongly convex problems. SIAM Journal on Optimization,
28(3):2654–2689, 2018.

Guilherme França, Jeremias Sulam, Daniel Robinson, and René Vidal. Conformal symplectic and relativistic
optimization. Advances in Neural Information Processing Systems, 33, 2020.

Baptiste Goujaud, Adrien Taylor, and Aymeric Dieuleveut. Provable non-accelerations of the heavy-ball
method: B. goujaud et al. Mathematical Programming, pp. 1–59, 2025.

Walid Krichene, Alexandre Bayen, and Peter L Bartlett. Accelerated mirror descent in continuous and
discrete time. Advances in Neural Information Processing Systems, 28, 2015.

Laurent Lessard, Benjamin Recht, and Andrew Packard. Analysis and design of optimization algorithms via
integral quadratic constraints. SIAM Journal on Optimization, 26(1):57–95, 2016.

27

Under review as submission to TMLR

Michael Muehlebach and Michael I Jordan. Optimization with momentum: dynamical, control-theoretic,
and symplectic perspectives. Journal of Machine Learning Research, 22:3407–3456, 2021.

Radford M Neal. MCMC Using Hamiltonian Dynamics, chapter 5. Handbook of Markov Chain Monte Carlo.
CRC Press, Boca Raton, 2011.

Y Nesterov. A method for solving a convex programming problem with convergence rate O(1/k2). Soviet
Mathematics Doklady, 27:372–376, 1983.

Yurii Nesterov. On an approach to the construction of optimal methods of minimization of smooth convex
functions. Ekonomika i Mateaticheskie Metody, 24:509–517, 1988.

Yurii Nesterov. Lectures on Convex Optimization. Springer, Berlin, 2018.

Boris T Polyak. Some methods of speeding up the convergence of iteration methods. USSR Computational
Mathematics and Mathematical Physics, 4:1–17, 1964.

Boris T Polyak. Introduction to Optimization. Optimization Software, New York, 1987.

Ning Qian. On the momentum term in gradient descent learning algorithms. Neural Networks, 12:145–151,
1999.

Jesús María Sanz Serna and Konstantinos C Zygalakis. The connections between Lyapunov functions for
some optimization algorithms and differential equations. SIAM Journal on Numerical Analysis, 59(3):
1542–1565, 2021.

Bin Shi, Simon S Du, Weijie Su, and Michael I Jordan. Acceleration via symplectic discretization of high-
resolution differential equations. Advances in Neural Information Processing Systems, 32, 2019.

Bin Shi, Simon S Du, Michael I Jordan, and Weijie J Su. Understanding the acceleration phenomenon via
high-resolution differential equations. Mathematical Programming, 195:79–148, 2022.

Zexi Song and Zhiqiang Tan. On irreversible Metropolis sampling related to Langevin dynamics. SIAM
Journal on Scientific Computing, 44:A2089–A2120, 2022.

Zexi Song and Zhiqiang Tan. Hamiltonian-assisted Metropolis sampling. Journal of the American Statistical
Association, 118:1176–1194, 2023.

Weijie Su, Stephen Boyd, and Emmanuel J Candès. A differential equation for modeling Nesterov’s ac-
celerated gradient method: Theory and insights. Journal of Machine Learning Research, 17:5312–5354,
2016.

Boya Sun, Jemin George, and Solmaz Kia. High-resolution modeling of the fastest first-order optimization
method for strongly convex functions. In 59th IEEE Conference on Decision and Control (CDC). IEEE,
2020.

Adrien Taylor and Francis Bach. Stochastic first-order methods: non-asymptotic and computer-aided anal-
yses via potential functions. In Conference on Learning Theory, pp. 2934–2992. PMLR, 2019.

Adrien Taylor and Yoel Drori. An optimal gradient method for smooth strongly convex minimization.
Mathematical Programming, 199:557–594, 2023.

Adrien Taylor, Bryan Van Scoy, and Laurent Lessard. Lyapunov functions for first-order methods: Tight
automated convergence guarantees. In International Conference on Machine Learning, pp. 4897–4906.
PMLR, 2018.

Manu Upadhyaya, Sebastian Banert, Adrien B Taylor, and Pontus Giselsson. Automated tight Lyapunov
analysis for first-order methods. Mathematical Programming, 209(1):133–170, 2025.

Bryan Van Scoy, Randy A Freeman, and Kevin M Lynch. The fastest known globally convergent first-order
method for minimizing strongly convex functions. IEEE Control Systems Letters, 2:49–54, 2017.

28

Under review as submission to TMLR

Andre Wibisono, Ashia C Wilson, and Michael I Jordan. A variational perspective on accelerated methods
in optimization. Proceedings of the National Academy of Sciences, 113:E7351–E7358, 2016.

Ashia C Wilson, Ben Recht, and Michael I Jordan. A Lyapunov analysis of accelerated methods in opti-
mization. Journal of Machine Learning Research, 22:5040–5073, 2021.

Lin Yang, Raman Arora, and Tuo Zhao. The physical systems behind optimization algorithms. Advances in
Neural Information Processing Systems, 31, 2018.

Jingzhao Zhang, Aryan Mokhtari, Suvrit Sra, and Ali Jadbabaie. Direct Runge-Kutta discretization achieves
acceleration. Advances in Neural Information Processing Systems, 31, 2018.

Yuchen Zhang and Xiao Lin. Stochastic primal-dual coordinate method for regularized empirical risk mini-
mization. Journal of Machine Learning Research, 18:2939–2980, 2017.

A Comparison with the literature

A.1 Comparison with the LMI/SDP techniques

We compare our methodology with the LMI/SDP techniques as in Lessard et al. (2016), Fazlyab et al. (2018),
Taylor et al. (2018), Taylor & Bach (2019), and Upadhyaya et al. (2025).

• As mentioned in Section 1, the LMI/SDP techniques, including the PEP methods and the IQC
methods, are powerful tools for constructing Lyapunov functions systematically. Due to an inherent
optimization procedure, the LMI/SDP techniques generally produce sharper bounds for optimization
algorithms. When applied to existing algorithms like NAG-SC and TMM for minimizing strongly
convex objectives, the LMI/SDP techniques may produce a larger constant C in the convergence
bound O((1 − C/

√
κ)k) than our hand-crafted Lyapunov functions in Section 6.1. Nonetheless,

as mentioned in Section 2.2, our goal is not to find the sharpest convergence bound. Instead, all
algorithms with a bound O((1 − C/

√
κ)k) for any C > 0 are considered to be accelerated, and are

not further differentiated in our work.

• The LMI/SDP techniques may rely on numerical solvers to find the Lyapunov function leading to
the sharpest bound, whose results are less interpretable. However, our goal is to understand the
mechanism behind the acceleration phenomenon. To that end, we analyze general and representative
classes of algorithms as in (10) and (20). Although our Lyapunov functions are manually constructed,
they lead to concrete sufficient conditions on the gradient correction for acceleration that have
interesting interpretations.

A.2 Comparison with Sanz Serna & Zygalakis (2021)

Sanz Serna & Zygalakis (2021) leveraged the IQC methods in Fazlyab et al. (2018) to analyze a family of
Nesterov optimization methods, which is a subclass of the algorithm (14). Although their analyses yield
sharper bounds due to the control-theoretic framework, the subclass of algorithms has a fixed gradient
correction term, and thus do not inform the effect of gradient correction on acceleration.

To be more specific, Sanz Serna & Zygalakis (2021) studied algorithm (3), whose single-variable form is
(4). With a momentum coefficient σ = 1 − c1

√
q + R2, algorithm (3) is a special case of (14) with c0 = 1,

R1 = 0, c2 = 3/2, and R3 = −c1
√

q + R2. Notice that the leading coefficient of gradient correction is fixed
at c2

√
c0 − c0/2 = 1. Sanz Serna & Zygalakis (2021) shows that, for 0 < s ≤ 1

L , the iterates of (3) or (4)
satisfy the convergence bound f(xk) − f⋆ = O

(
(1 − C1

√
µs)k

)
for 0 < C1 ≤ 1 as long as σ(q) is bounded by

σ− (q, C1) ≤ σ(q) = 1 − c1
√

q + R2 ≤ σ+ (q, C1) ,

where

σ± (q, C1) = 1 − 1 ∓
√

1 − C2
1 + C2

1
C1

√
q + O(q).

29

Under review as submission to TMLR

As C1 → 0, the linear term coefficients 1∓
√

1−C2
1 +C2

1
C1

goes to 0 and ∞ respectively, which implies that σ(q) =
1−c1

√
q+R2 with any c1 > 0 is always bounded by σ− and σ+ for some C1 > 0 and q small enough. Therefore,

for any c1 > 0, the subclass (3) or (4) achieves an accelerated convergence rate O
(
(1 − O(1/

√
κ))k

)
, which

is weaker than our condition c2
1 > 4c0.

The subclass (4), however, uses a fixed gradient correction so that its convergence rate does not inform the
impact of gradient correction on acceleration. The later work by Dobson et al. (2025) established sharper
results on C1 under more complicated conditions on the momentum coefficient σ. However, because the
same class of algorithm (3) or (4) is studied, a sharper constant C1 does not lead to qualitatively broader
implications on acceleration.

In terms of the ODE part, the limiting ODE of (4) under σ = 1 − c1
√

q + R2 is

Ẍt + c1
√

µẊt + ∇f(Xt) = 0,

which is the same as equation (26) with c0 = 1. Interestingly, if c1 depends on s, then the algorithm
(4) with an accelerated convergence may not have a limiting ODE as c1 is allowed to oscillate between
(1−

√
1−C2

1 +C2
1

C1
,

1+
√

1−C2
1 +C2

1
C1

). A similar observation is made in the convex case. See Lemma 1 for details.
When c1 is constant, Sanz Serna & Zygalakis (2021) used the IQC methods to prove that f(Xt) − f⋆ =
O(exp{−C

√
µt(f(x0) − f⋆)}) for a sharper constant C than that in our Proposition 3. If f ∈ S1

µ,L with a
bounded Lipschitz constant L, Dobson et al. (2025) shows that the constant C can be further improved.

Unlike Sanz Serna & Zygalakis (2021) and Dobson et al. (2025), our goal is not to find the sharpest constant
in convergence bounds. Instead, we would like to characterize algorithms with accelerated convergence.
Nonetheless, the IQC methods remain powerful tools that can be leveraged to refine our analysis on gradient
correction in future work.

A.3 Comparison with Shi et al. (2022)

We compare our results with those in Shi et al. (2022) below.

• In the strongly convex setting, Shi et al. (2022) leveraged the high-resolution ODEs to establish an
accelerated convergence for NAG-SC and a non-accelerated convergence for HB. Their analysis links
the acceleration to the gradient correction term, which is present in NAG-SC but absent in HB.
However, it remains unclear in what scope the gradient correction leads to acceleration. Our work
bridges the gap between HB’s non-acceleration and NAG-SC’s acceleration by showing that as long
as the gradient correction coefficient surpasses an explicit threshold, the acceleration is guaranteed.
Remarkably, the same condition is also observed for the convex setting. Therefore, for the first time,
our analysis establishes a unified condition for acceleration in strongly convex and convex settings.

• In the convex (not necessarily strongly convex) setting, our results are mainly technical refinements
of those in Shi et al. (2022). The class of algorithms in (20) is more general than the one studied in
Shi et al. (2022). See Table 2 for details.

• Another question left by Shi et al. (2022) is whether the high-resolution ODE that explicitly re-
tains the gradient correction can explain the difference between discrete algorithms. We show that
the high-resolution ODE perspective, albeit remaining a useful analytic tool, fails to explain the
difference between accelerated and non-accelerated algorithms (especially regarding the gradient
correction term) in either the strongly convex or the convex settings.

To summarize, our work substantially extends Shi et al. (2022) in understanding the effect of gradient
correction on acceleration.

B Notation

The notation used in the main paper and the remaining appendices are summarized in Table 3.

30

Under review as submission to TMLR

Table 3: Notation

Section Notation Meaning

General

f Objective function to be minimized
x⋆ One of the minimizers of f
f⋆ Minimum of f
L Smoothness parameter of f
µ Strong convexity parameter of f
κ Condition number L/µ
k Iteration number of gradient methods
s Step size in discrete algorithms
Fm Convex and m times continuously differentiable functions from Rn to R
Fm

L Functions in Fm that are additionally L-smooth
Sm

µ Functions in Fm that are additionally µ-strongly convex
Sm

µ,L Functions in Fm
L ∩ Sm

µ

Strongly
convex

q Shorthand for µs
σ Momentum coefficient
η, ν, and τ Three parameters in algorithms (10) and (11) that may depend on q
η̃, ν̃, and τ̃ Non-negative, analytic scalar functions in Assumption 1 such that η =

η̃(√q), ν = ν̃(√q), and τ = τ̃(√q)
{ηi}, {νi}, {τi} Coefficients in the Taylor expansions (13) of η, ν, τ in Assumption 1
ζ Shorthand for 1 + (1 − τ)q
c0, c1, and c2 Parameters in algorithm (14), consistent with the parameters in the

limiting ODE (26) of (14)

Convex

σk+1 Momentum coefficient (possibly varying in k)
αk+1 A scalar sequence for specifying momentum coefficient as σk+1 = (αk −

1)/αk+1
r A scalar for specifying αk = (k + r)/r, consistent with the parameters

in the limiting ODEs (30) and (31) of (21)
βk and γk Two parameters in algorithms (20) and (21) that may vary with k
β and γ Limits of βk and γk, respectively, consistent with the parameters in the

limiting ODE (31) of (21)
ODE Xt Solution X(t) for ODEs

HAG

u and uk Momentum variables in the Hamiltonian function and the associated
discrete algorithms, respectively

δ and ρ The linear constraint parameter and the extrapolation parameter, re-
spectively, in deriving the HAG method

ak, bk, and ϕk Three parameters in the HAG methods (32) and (34)
a, b, and ϕ Constant ak, bk, and ϕk, respectively

C Technical details in Section 2

C.1 Reformulation of NAG-SC and TMM

First, we show that NAG-SC (3) with (7) can be reformulated as (8), i.e., (10) with η = ν = τ = 1.
Apparently (3a) is the same as (8a). It suffices to derive (8b) and (8c) from (3). Because x0 = y0 = z0, (7)
also holds for z0. Therefore, for k ≥ 0 we have

zk =
1 + √

q
√

q
xk +

(
1 −

1 + √
q

√
q

)
yk,

31

Under review as submission to TMLR

which implies

xk =
√

q

1 + √
q

zk + 1
1 + √

q
yk, (47)

and
yk = (1 + √

q)xk − √
qzk. (48)

Eq. (47) with k replaced by k + 1 becomes (8c). Substituting xk+1 from (47) into (3b), we have
√

q

1 + √
q

zk+1 + 1
1 + √

q
yk+1 = yk+1 +

1 − √
q

1 + √
q

(yk+1 − yk),

which yields

zk+1 = 1
√

q
yk+1 −

1 − √
q

√
q

yk.

Substituting yk+1 from (3a) into the above display, we have

zk+1 = 1
√

q
(xk − s∇f(xk)) −

1 − √
q

√
q

yk,

which together with (48) gives

zk+1 = 1
√

q
(xk − s∇f(xk)) −

1 − √
q

√
q

(
(1 + √

q)xk − √
qzk

)
= √

q

(
xk − 1

µ
∇f(xk)

)
+ (1 − √

q)zk,

which is (8b).

Second, we show that TMM (5), i.e., (10) with η = ν = 1 and τ = 2, can be reformulated as follows, with
(49c) same as (6) for zk+1:

yk+1 = xk − s∇f(xk), (49a)

xk+1 = xk − (2 − √
q)s∇f(xk) +

(1 − √
q)2

1 + √
q

(yk+1 − yk), (49b)

zk+1 =
1 + √

q

2√
q

xk+1 +
(

1 −
1 + √

q

2√
q

)
yk+1. (49c)

Apparently (5a) is the same as (49a). It suffices to derive (49b) and (49c). Solving (5c) for zk+1 gives (49c).
Because x0 = y0 = z0, (49c) also holds for z0. That is, for all k ≥ 0,

zk =
1 + √

q

2√
q

xk +
(

1 −
1 + √

q

2√
q

)
yk,

which together with (5b) yields

zk+1 = √
q

(
xk − 1

µ
∇f(xk)

)
+ (1 − √

q)
[1 + √

q

2√
q

xk +
(

1 −
1 + √

q

2√
q

)
yk

]
= 1 + q

2√
q

xk −
√

q

µ
∇f(xk) −

(1 − √
q)2

2√
q

yk.

To derive (49b), substituting the above display into (5c) and using (5a) yields

xk+1 =
2√

q

1 + √
q

(
1 + q

2√
q

xk −
√

q

µ
∇f(xk) −

(1 − √
q)2

2√
q

yk

)
+

1 − √
q

1 + √
q

yk+1

= 1 + q

1 + √
q

xk − 2s

1 + √
q

∇f(xk) +
(1 − √

q)2

1 + √
q

(yk+1 − yk) +
√

q(1 − √
q)

1 + √
q

yk+1

= 1 + q

1 + √
q

xk − 2s

1 + √
q

∇f(xk) +
(1 − √

q)2

1 + √
q

(yk+1 − yk) +
√

q(1 − √
q)

1 + √
q

(xk − s∇f(xk))

= xk − (2 − √
q)s∇f(xk) +

(1 − √
q)2

1 + √
q

(yk+1 − yk),

which is (49b).

32

Under review as submission to TMLR

C.2 Proofs of Lemmas 2–3 in Section 6.1

Proof of Lemma 2. By (10b), we have

1
1 − ν

√
q

µ

2 ∥zk+1 − x⋆∥2 − µ

2 ∥zk − x⋆∥2

= 1
1 − ν

√
q

µ

2

∥∥∥∥ν
√

q(xk − 1
µ

∇f(xk) − x⋆) + (1 − ν
√

q)(zk − x⋆)
∥∥∥∥2

− µ

2 ∥zk − x⋆∥2

= −
µν

√
q

2 ∥zk − x⋆∥2 + µν
√

q⟨zk − x⋆, xk − 1
µ

∇f(xk) − x⋆⟩ + ν2q

1 − ν
√

q

µ

2

∥∥∥∥xk − 1
µ

∇f(xk) − x⋆

∥∥∥∥2

= −
µν

√
q

2

∥∥∥∥(zk − x⋆) − (xk − 1
µ

∇f(xk) − x⋆)
∥∥∥∥2

+
ν
√

q

1 − ν
√

q

µ

2

∥∥∥∥xk − 1
µ

∇f(xk) − x⋆

∥∥∥∥2

= −
µν

√
q

2

∥∥∥∥zk − xk + 1
µ

∇f(xk)
∥∥∥∥2

+
ν
√

q

1 − ν
√

q

µ

2

∥∥∥∥xk − 1
µ

∇f(xk) − x⋆

∥∥∥∥2
. (50)

Next, we bound the two terms in the above display separately.

For the second term, by the µ-strong convexity of f ,

f⋆ − f(xk) ≥ ⟨∇f(xk), x⋆ − xk⟩ + µ

2 ∥xk − x⋆∥2,

from which we have

ν
√

q

1 − ν
√

q

µ

2

∥∥∥∥xk − 1
µ

∇f(xk) − x⋆

∥∥∥∥2

=
ν
√

q

1 − ν
√

q

(
µ

2 ∥xk − x⋆∥2 − ⟨xk − x⋆, ∇f(xk)⟩ + 1
2µ

∥∇f(xk)∥2
)

≤
ν
√

q

1 − ν
√

q

(
f⋆ − f(xk) + 1

2µ
∥∇f(xk)∥2

)
.

(51)

For the first term, solving (10c) for zk+1 we obtain

zk+1 = xk+1 +
1 + (1 − τ)√q

τ
√

q
(xk+1 − yk+1) = xk+1 + ζ

τ
√

q
(xk+1 − yk+1),

which together with (10a) yields

zk+1 = xk+1 + ζ

τ
√

q
(xk+1 − xk + ηs∇f(xk)) .

Hence for k ≥ 1 we have

−
µν

√
q

2

∥∥∥∥zk − xk + 1
µ

∇f(xk)
∥∥∥∥2

= −
µν

√
q

2

∥∥∥∥ ζ

τ
√

q
(xk − xk−1) + ζηs

τ
√

q
∇f(xk−1) + 1

µ
∇f(xk)

∥∥∥∥2

= − ζ2ν

τ2√
q

µ

2 ∥xk − xk−1∥2 −
ζ2η2ν

√
q

τ2
s

2∥∇f(xk−1)∥2 −
ν
√

q

2µ
∥∇f(xk)∥2

−
ζ2ην

√
q

τ2 ⟨∇f(xk−1), xk − xk−1⟩ − ζν

τ
⟨∇f(xk), xk − xk−1⟩ − ζην

τ
s⟨∇f(xk−1), ∇f(xk)⟩.

(52)

33

Under review as submission to TMLR

By the L-smoothness of f , we have
f(xk−1) ≥ f(xk) + ⟨∇f(xk), xk−1 − xk⟩ + 1

2L
∥∇f(xk) − ∇f(xk−1)∥2,

f(xk) ≤ f(xk−1) + ⟨∇f(xk−1), xk − xk−1⟩ + L

2 ∥xk − xk−1∥2.

Therefore,

−
ζ2ην

√
q

τ2 ⟨∇f(xk−1), xk − xk−1⟩ − ζν

τ
⟨∇f(xk), xk − xk−1⟩

≤ −
ζ2ην

√
q

τ2

(
f(xk) − f(xk−1) − L

2 ∥xk − xk−1∥2
)

− ζν

τ

(
f(xk) − f(xk−1) + 1

2L
∥∇f(xk) − ∇f(xk−1)∥2

)
= ζν

τ2 (τ + ζη
√

q)(f(xk−1) − f(xk)) +
ζ2ην

√
q

τ2
L

2 ∥xk − xk−1∥2 − ζν

τ

1
2L

∥∇f(xk) − ∇f(xk−1)∥2.

(53)

By the cosine rule,

− ζηνs

τ
⟨∇f(xk−1), ∇f(xk)⟩ = −ζηνs

2τ

(
∥∇f(xk−1)∥2 + ∥∇f(xk)∥2 − ∥∇f(xk) − ∇f(xk−1)∥2

)
. (54)

Combining (52), (53) and (54) and noting 0 ≤ ηs ≤ 1/L by assumption, we obtain

−
µν

√
q

2

∥∥∥∥zk − xk + 1
µ

∇f(xk)
∥∥∥∥2

≤ − ζ2µν

2τ2√
q

(1 − ηLs)∥xk − xk−1∥2 − ζν

2τL
(1 − ηLs)∥∇f(xk) − ∇f(xk−1)∥2

+ ζν

τ2 (τ + ζη
√

q)(f(xk−1) − f(xk)) − ζηνs

2τ2 (τ + ζη
√

q)∥∇f(xk−1)∥2 −
ν
√

q

2µτ
(τ + ζη

√
q)∥∇f(xk)∥2

≤ ζν

τ2 (τ + ζη
√

q)(f(xk−1) − f(xk)) − ζηνs

2τ2 (τ + ζη
√

q)∥∇f(xk−1)∥2 −
ν
√

q

2µτ
(τ + ζη

√
q)∥∇f(xk)∥2.

(55)

Collecting (50), (51) and (55) completes the proof.

Proof of Lemma 3. The three sets of conditions are mutually exclusive because if I > 0 and II > 0, then
I + √

qII > 0 and µ
L I + √

qII > 0. Applying (42) to the Lyapunov function (43) and using the fact that
1

2L ∥∇f(xk)∥2 ≤ f(xk) − f⋆ ≤ 1
2µ ∥∇f(xk)∥2, we have

Vk+1 − (1 − ν
√

q)Vk

≤ ν

2τ2

(
2√

q(I)(f(xk) − f⋆) + s(II)∥∇f(xk)∥2
)

≤



ν

2τ2

√
q

µ

(
I + √

qII
)

∥∇f(xk)∥2, if I ≥ 0;

ν

2τ2

√
q

µ

(µ

L
I + √

qII
)

∥∇f(xk)∥2, if I ≤ 0;

ν

τ2

√
qL

µ

(µ

L
I + √

qII
)

(f(xk) − f⋆), if II ≥ 0;

ν

τ2
√

q
(

I + √
qII
)

(f(xk) − f⋆), if II ≤ 0.

The rest is straightforward.

34

Under review as submission to TMLR

C.3 Proofs of Theorems 1–3

To prepare for the proofs of Theorems 1–3, we show that under Assumption 1, the leading coefficients in
the Taylor expansions of I and II in √

q can be used to verify the conditions in Lemma 3. Throughout, the
range 0 < q ≲ µ2/L2 or 0 < q ≲ µ/L is interpreted as, respectively, 0 < q ≤ C0µ2/L2 or 0 < q ≤ C0µ/L for
a constant C0 > 0.
Lemma 6. Under Assumption 1, denote the Taylor expansions of I and II as

I =
∞∑

n=0
an(√q)n, II =

∞∑
m=0

bm(√q)m,

where {an}n≥0 and {bm}m≥0 are real sequences. When I is not constant 0, define N as the minimal of n
such that an ̸= 0. Define M in a similar manner for II. Then
(i-a) If aN > 0, bM < 0 and M ≤ N − 2, then I > 0 and I + √

qII ≤ 0 for 0 < q ≲ µ/L.
(i-b) If aN > 0, bM < 0, M = N −1, and the first nonzero element of {an +bn−1}n≥N (i.e., the first nonzero
coefficient in the expansion of I + √

qII) is negative or the entire sequence is 0 (i.e., I + √
qII ≡ 0), then

I > 0 and I + √
qII ≤ 0 for 0 < q ≲ µ/L.

(ii-a) If aN < 0, bM > 0 and M = N , then II > 0 and µ
L I + √

qII ≤ 0 for 0 < q ≲ µ2/L2.
(ii-b) If aN < 0, bM > 0 and M ≥ N + 1, then II > 0 and µ

L I + √
qII ≤ 0 for 0 < q ≲ µ/L.

(iii) If aN < 0 (or N does not exist) and bM < 0 (or M does not exist), then I ≤ 0 and II ≤ 0 for
0 < q ≲ µ/L.

Proof. With 0 < µ/L ≤ 1, q can be made sufficiently small by picking C0 in the range 0 < q ≤ C0µ2/L2 or
0 < q ≤ C0µ/L. Hence it suffices to study the leading terms of I and II.

For (i-a) and (i-b), aN > 0 ensures that I ∼ aN (√q)N > 0. For (i-a), with M + 1 < N and bM < 0, we have
I + √

qII ∼ bM (√q)M+1 < 0. For (i-b), with M + 1 = N , we have I + √
qII =

∑
n=N (an + bn−1)(√q)n ≤ 0

if the first nonzero element of {an + bn−1}n≥N is negative or the entire sequence is 0.

For (ii-a) and (ii-b), bM > 0 ensures that II ∼ bM (√q)M > 0. With aN < 0 and bM > 0, we have
that for sufficiently small q > 0, I < aN

2 (√q)N and II < 2bM (√q)M . Hence, µ
L I + √

qII < µaN

2L (√q)N +
2bM (√q)M+1 = (√q)N (µaN

2L + 2bM (√q)M+1−N). For (ii-a), M = N and 0 < q ≤ C2
0 µ2/L2 imply that

µ
L I+√

qII < (√q)N µ
2L (aN +4C0bM) < 0 by picking sufficiently small C0 with aN < 0. For (ii-b), M ≥ N +1

and 0 < q ≤ C0µ/L imply µ
L I + √

qII < (√q)N (µaN

2L + 2bM (√q)2) ≤ (√q)N µ
2L (aN + 4C0bM) < 0 again by

picking sufficiently small C0 with aN < 0.

The case (iii) is straightforward to verify. If N (or M) does not exist, then I ≡ 0 (or II ≡ 0).

We notice that the constant C0 in the range of q is picked, depending only on {an} and {bm}, which are
determined by the algorithm parameters η̃, ν̃ and τ̃ .

Next, we show Theorems 1∗, 2∗, and 3, where Theorems 1∗ and 2∗ are the same as Theorems 1 and 2 except
with conditions (i-a) and (ii-a) replaced by (i-a∗) and (ii-a∗) as follows:

(i-a∗) 0 < ν0 < τ0, and 0 ≤ η0 < ν0τ0/2;

(ii-a∗) 0 < ν0 < τ0, and η0 ≥ ν0τ0/2.

Conditions (i-a) and (ii-a) are the symmetrized (hence weaker) versions of (i-a∗) and (ii-a∗), by allowing
either 0 < ν0 < τ0 or 0 < τ0 < ν0. To show Theorems 1∗, 2∗, and 3, it suffices to verify that the conditions
in Lemma 3 are satisfied. In fact, the contraction inequality in Lemma 3 directly implies that that for k ≥ 1,

C(f(xk) − f⋆) ≤ ζν

τ2 (τ + ζη
√

q)(1 − ηLs)(f(xk) − f⋆) ≤ Vk+1 ≤ (1 − ν
√

q)kV1 ≤ (1 − ν0

2
√

q)kV1,

for some constant C > 0, where the first inequality holds by noting ν0, τ0 > 0 in each condition of Theo-
rems 1∗, 2∗, and 3 and picking sufficiently small C0 in 0 < q ≤ C0µ/L such that, for example, ν ≥ ν0/2,

35

Under review as submission to TMLR

τ0/2 ≤ τ ≤ 2τ0, ζ ≥ 1/2, 0 ≤ ηs ≤ 1/(2L) (i.e., 0 ≤ ηq ≤ µ/(2L)) with C = ν0/(16τ0). Moreover, by the
definition of V1,

V1 ≤ ζν

τ2 (τ + ζη
√

q)(f(x0) − f⋆) + µ

2 ∥z1 − x⋆∥2

= ζν

τ2 (τ + ζη
√

q)(f(x0) − f⋆) + µ

2 ∥x0 − x⋆ −
ν
√

q

µ
∇f(x0)∥2

≲ L∥x0 − x⋆∥2 + µ∥x0 − x⋆∥2 + s∥∇f(x0)∥2

≤ (L + µ + sL2)∥x0 − x⋆∥2

≲ L∥x0 − x⋆∥2.

(56)

Then f(xk)−f⋆ ≲ L(1− ν0
2

√
q)k∥x0 −x⋆∥2, which is (12). The conditions in Lemma 2, which are required in

Lemma 3, can be easily verified by noting ν0, τ0 > 0 and picking sufficiently small C0. Therefore, it remains
to verify the conditions involving I and II in Lemma 3.

Proof of Theorems 2∗ and 3. We apply Lemma 6 to verify the conditions involving I and II in Lemma
3. The Taylor expansions of I and II up to √

q-terms are

I = τ0(ν0 − τ0)︸ ︷︷ ︸
a0

+
[
τ0(ν1 − τ1) + τ1(ν0 − τ0) + ν0(η0 − τ0(τ0 − 1))

]√
q + O(q),

II = τ0(ν0τ0 − 2η0)︸ ︷︷ ︸
b0

+
[
τ0(ν1τ1 − 2η1) + τ1(ν0τ0 − 2η0) + η0

(
2τ0(τ0 − 1) + ν0τ0 − η0

)]√
q + O(q).

(57)

Consider the following scenarios.

Scenario 1: η0 = 0, 0 < ν0, τ0. Then bM = b0 = ν0τ2
0 > 0. Because M = 0, only case (ii-a) in Lemma 6

is feasible, which holds when N = 0 and aN = a0 = τ0(ν0 − τ0) < 0, i.e., ν0 < τ0. To conclude, if η0 = 0,
0 < ν0 < τ0, then Lemma 3 holds for 0 < q ≲ µ2/L2.

Assume η0, ν0 and τ0 are all positive. We notice that 0 < ν0 ≤ τ0 is necessary. Otherwise, a0 = τ0(ν0−τ0) > 0
and N = 0. Then only cases (i-a) and (i-b) in Lemma 6 are feasible, which require M ≤ N −1, contradicting
N = 0. To proceed, we further split 0 < ν0 ≤ τ0 into Scenario 2 (0 < ν0 < τ0) and Scenario 3 (0 < ν0 = τ0)
as below.

Scenario 2: η0 > 0, 0 < ν0 < τ0. Then a0 = τ0(ν0 − τ0) < 0 and N = 0. We notice that either M does
not exist (i.e., II ≡ 0), or M exists and has bM > 0 or bM < 0 for some M ≥ N = 0. Therefore, one of
case (ii-a), case (ii-b), and case (iii) in Lemma 6 is valid. Case (ii-a) holds if and only if M = N = 0 and
bM = b0 = τ0(ν0τ0 − 2η0) > 0, i.e., η0 < ν0τ0

2 . Therefore, if η0 ≥ ν0τ0
2 , case (ii-b) or case (iii) holds. To

conclude, if 0 < η0 < ν0τ0
2 and 0 < ν0 < τ0, then Lemma 3 holds for 0 < q ≲ µ2/L2. If η0 ≥ ν0τ0

2 and
0 < ν0 < τ0, then the range of q is relaxed to 0 < q ≲ µ/L.

Scenario 3: η0 > 0, 0 < ν0 = τ0. In this scenario, (57) reduces to

I = τ0
[
ν1 − τ1 + η0 − τ0(τ0 − 1)

]︸ ︷︷ ︸
a1

√
q + O(q),

II = τ0(τ2
0 − 2η0)︸ ︷︷ ︸

b0

+
[
τ0(ν1τ1 − 2η1) + τ1(τ2

0 − 2η0) + η0
(
τ0(3τ0 − 2) − η0

)]︸ ︷︷ ︸
b1

√
q + O(q).

Then a0 = 0 and hence N ≥ 1. We point out that η0 ≥ τ2
0
2 is necessary. Otherwise, b0 = τ0(τ2

0 − 2η0) > 0
and hence M = 0. Then only case (ii-a) or (ii-b) in Lemma 6 is possible, which requires M ≥ N . But this
contradicts the fact that N ≥ 1 and M = 0. To proceed, we split η0 ≥ τ2

0
2 into Scenario 3.1 (η0 >

τ2
0
2) and

3.2 (η0 = τ2
0
2) based on η0.

Scenario 3.1: η0 >
τ 2

0
2 , 0 < ν0 = τ0. Then b0 = τ0(τ2

0 − 2η0) < 0 and M = 0. Case (i-a), case (i-b) and
case (iii) in Lemma 6 are each possible. We consider several special cases involving only η1, ν1 and τ1.

36

Under review as submission to TMLR

• For case (i-a) to hold, even higher-order coefficients are needed, and we skip this case.

• For case (i-b) to hold, let N = M + 1 = 1 and aN = a1 = τ0
[
ν1 − τ1 + η0 − τ0(τ0 − 1)

]
> 0,

which is equivalent to ν1 − τ1 + η0 − τ0(τ0 − 1) > 0. Moreover, let aN + bN−1 = a1 + b0 =
τ0
[
ν1 − τ1 + η0 − (τ0 − 1)τ0

]
+ τ0(τ2

0 − 2η0) = τ0[ν1 − τ1 + τ0 − η0] < 0, which is equivalent to
ν1 − τ1 < η0 − τ0.

• For case (iii) to hold, let a1 = τ0
[
ν1 − τ1 + η0 − τ0(τ0 − 1)

]
< 0, which is equivalent to ν1 − τ1 <

τ0(τ0 − 1) − η0.

To conclude, if η0 >
τ2

0
2 , 0 < ν0 = τ0, and either τ0(τ0 −1)−η0 < ν1 −τ1 < η0 −τ0 or ν1 −τ1 < τ0(τ0 −1)−η0,

then Lemma 3 holds for 0 < q ≲ µ/L.

Scenario 3.2: η0 = τ 2
0
2 , 0 < ν0 = τ0. Then (57) further reduces to

I = τ0
(
ν1 − τ1 + τ0(1 − τ0

2)
)

︸ ︷︷ ︸
a1

√
q + O(q),

II = τ0
[
ν1τ1 − 2η1 + τ2

0
2 (5

2τ0 − 2)
]

︸ ︷︷ ︸
b1

√
q + O(q).

Then a0 = b0 = 0. We consider several special cases where (η1, ν1, τ1) are enough to determine the conver-
gence. Let a1 = τ0

(
ν1 − τ1 + τ0(1 − τ0

2)
)

< 0, which is equivalent to ν1 − τ1 + τ0(1 − τ0
2) < 0. Then N = 1.

We distinguish three cases by the sign of b1 = τ0
[
ν1τ1 − 2η1 + τ2

0
2 (5

2 τ0 − 2)
]
.

• If b1 < 0, then M = 1 and bM < 0, and hence case (iii) holds.

• If b1 > 0, then M = N = 1 and bM > 0, and hence case (ii-a) holds. Note that the range for q is
0 < q ≲ µ2/L2.

• If b1 = 0, then M ≥ 2 = N + 1 or M does not exist. If M does not exist, case (iii) is valid. If M
exists, then either bM > 0 or bM < 0. The former satisfies case (ii-b) and the latter satisfies case
(iii).

Collecting the results of Scenario 1, 2 and 3 concludes the proof for Theorem 2∗ and 3.

Proof of Theorems 1∗. When (η, ν, τ) are constants, the above analysis still holds, but we can unfold
Scenario 3 without imposing strong conditions on (η1, ν1, τ1). We continue with Scenario 3, that is, assume
η ≥ τ2

2 and 0 < ν = τ . Then we have the Taylor expansions in finite terms:

I = τ(η − (τ − 1)τ)√q − 2ητ(τ − 1)q + ητ(τ − 1)2q
3
2 ,

II = τ(τ2 − 2η) + η[τ(3τ − 2) − η]√q + η(τ − 1)(2η − τ2)q − η2(τ − 1)2q
3
2 , (58)

I + √
qII = τ(τ − η)√q + η(τ2 − η)q + η(τ − 1)(2η − τ)q 3

2 − η2(τ − 1)2q2.

To proceed, we split Scenario 3 into Scenario 3.1∗ and 3.2∗ based on η.

Scenario 3.1∗: η > τ 2

2 , 0 < ν = τ . Then b0 = τ(τ2 − 2η) < 0, and M = 0.

• τ > 2 (hence τ < τ2

2 < τ(τ − 1)).

– If η > τ(τ − 1), then a1 = τ(η − τ(τ − 1)) > 0 and N = M + 1 = 1. Moreover, a1 + b0 =
τ(τ − η) < 0, and hence case (i-b) in Lemma 6 holds.

– If η = τ(τ − 1), then a1 = τ(η − τ(τ − 1)) = 0, and a2 = −2ητ(τ − 1) = −2τ2(τ − 1)2 < 0.
Hence case (iii) in Lemma 6 holds.

37

Under review as submission to TMLR

– If τ2

2 < η < τ(τ − 1), then a1 = τ(η − τ(τ − 1)) < 0. Hence case (iii) in Lemma 6 holds.

• τ = 2 (hence τ = τ2

2 = τ(τ −1) = 2). Then I = 2(η−2)√q+O(q) and I+√
qII = 2(2−η)√q+O(q).

By η > τ2

2 = 2, we have a1 = 2(η − 2) > 0 and a1 + b0 = 2(2 − η) < 0. Case (i-b) holds.

• 0 < τ < 2 (hence τ > τ2

2 > τ(τ − 1)). Then η > τ2

2 implies that η > τ(τ − 1). Hence a1 =
τ(η − τ(τ − 1)) > 0 and N = M + 1 = 1. Only case (i-b) in Lemma 6 is possible, which requires the
first non-zero coefficient of I + √

qII in (58) to be negative, or I + √
qII ≡ 0.

– If η > τ , then I + √
qII = τ(τ − η)√q + O(q) < 0.

– If η = τ , then I + √
qII = τ2(τ − 1)q + τ2(τ − 1)q 3

2 − τ2(τ − 1)2q2. Hence for 0 < τ ≤ 1,
I + √

qII ≤ 0.
– If τ2

2 < η < τ , then I + √
qII = τ(τ − η)√q + O(q) > 0, which violates case (i-b).

Scenario 3.2∗: η = τ 2

2 , 0 < ν = τ . Then (58) only involves τ : I = τ2(1− τ
2)√q−τ3(τ −1)q+ 1

2 τ3(τ −1)2q
3
2 ,

II = 1
2 τ3(5

2 τ − 2)√q − 1
4 τ4(τ − 1)2q

3
2 , and I + √

qII = τ2(1 − τ
2)√q + O(q).

• If τ > 2, then aN = a1 = τ2(1 − τ
2) < 0, and bM = b1 = 1

2 τ3(5
2 τ − 2) > 0. Hence case (ii-a) in

Lemma 6 holds. Note that the range of q is 0 < q ≲ µ2/L2.

• If τ = 2, then I = −8q +4q
3
2 and II = 12√

q −4q
3
2 . Hence aN = a2 = −8 < 0 and bM = b1 = 12 > 0,

with 1 = M < N = 2, which contradicts case (ii-a) and (ii-b) requiring M ≥ N . This case is invalid.

• If 0 < τ < 2, then aN = a1 = τ2(1 − τ
2) > 0. Only case (i-a) or (i-b) in Lemma 6 is possible. But

then I + √
qII = τ2(1 − τ

2)√q + O(q) > 0, contradicting the conclusion in (i-a) and (i-b). This case
is invalid.

Collecting the results in Scenario 3.1∗ and 3.2∗ concludes the proof for Theorem 1∗.

Finally, we derive Theorems 1 and 2 from Theorems 1∗ and 2∗ by exploiting symmetrization in the case of
ν0 ̸= τ0 due to Lemma 7 in Appendix C.4.

Proof of Theorems 1 and 2. It suffices to only deal with conditions (i-a) and (ii-a) in Theorem 2, which
directly implies the conclusions from conditions (i-a) and (ii-a) in Theorem 1.

For η ∼ η0 ≥ 0, ν ∼ ν0 > 0, τ ∼ τ0 > 0, and ν0 ̸= τ0, by Lemma 7, algorithm (10) can be first put into (59),
with R1, R2, R3 and h1 = ζη+ντ

1+√
q . Next, we keep η0 and the remainder terms, but exchange the role of ν0

and τ0 by setting ν̄0 = τ0 and τ̄0 = ν0 and then translate (59) back to (10) with new parameters η̄ ∼ η0,
ν̄ ∼ ν̄0 = τ0 and τ̄ ∼ τ̄0 = ν0 (ζ is also translated to the new ζ̄ = 1 + (1 − τ̄)√q), and a possibly nonzero
h2 = ζ̄η̄+ν̄τ̄−(ζη+ντ)

τ̄(1−ν̄
√

q) in z0. In other words, the original algorithm (10) can be reformulated such that the
leading constants in ν and τ are exchanged and the algorithm now starts with x0 and possibly z0 ̸= x0.

For the reformulated algorithm, the proof of Theorem 2∗ remains valid except for the bound of V1 in (56)
with the new z0. Nevertheless, an inspection of (56) reveals that V1 ≲ L∥x0 − x⋆∥2 still holds because h2
can be easily shown to be bounded. Hence, the desired result follows by symmetrizing the conditions (i-a∗)
and (ii-a∗) in Theorem 2∗.

C.4 Proof of Corollary 1

To facilitate interpretation of (10) and prepare for the proof of Corollary 1, we study the single-variable form
of (10). The following lemma shows that the two forms can be transformed into each other, provided that
the leading constants in ν and τ differ from each other. The initial points need to be aligned because (10)
starts from x0 and z0 while (59) starts from x0 and x1.

38

Under review as submission to TMLR

Lemma 7. Let ζ = 1 + (1 − τ)√q as in Lemma 2. (i) Algorithm (10) with tuning parameters η, ν and τ
under Assumption 1 admits the single-variable form (11), which can be expressed as

xk+1 = xk − (ν0τ0 + R1)s∇f(xk) +(1 − (ν0 + τ0)√q + R2)(xk − xk−1) − (η0 + R3)s(∇f(xk) − ∇f(xk−1)),
(59)

with x0, x1 = x0 − h1s∇f(x0), where R1 = O(√q), R2 = O(q), R3 = O(√q) and h1 = ζη+ντ
1+√

q are analytic
functions of √

q around 0. (ii) Conversely, given any analytic functions of √
q: R1 = O(√q), R2 = O(q),

R3 = O(√q), h1, and three scalars η0 ≥ 0, ν0, τ0 > 0, ν0 ̸= τ0, there exist η ∼ η0, ν ∼ ν0 and τ ∼ τ0
satisfying Assumption 1 such that (59) starting from x0 and x1 = x0 − h1s∇f(x0) is equivalent to (10)
starting from x0 and z0 = x0 + h2

√
q

µ ∇f(x0) where

h2 =
ζη + ντ − (1 + √

q)h1

τ(1 − ν
√

q) .

Proof. First, we show that (10) admits the single-variable form (11), i.e.,

xk+1 = xk −
ν(τ + ζη

√
q)

1 + √
q

s∇f(xk) +
ζ(1 − ν

√
q)

1 + √
q

(xk − xk−1) −
ζη(1 − ν

√
q)

1 + √
q

s(∇f(xk) − ∇f(xk−1)),

for k ≥ 1 starting from x0 and x1 = x0 − ζη+ντ
1+√

q s∇f(x0). The calculation for x1 is straightforward and hence
omitted. To show (11), from (10c) and (10a) we have for k ≥ 0,

zk+1 =
1 + √

q

τ
√

q
xk+1 − ζ

τ
√

q
yk+1 =

1 + √
q

τ
√

q
xk+1 − ζ

τ
√

q
(xk − ηs∇f(xk)).

Substituting the above display with subscript k + 1 and k for k ≥ 1 into (10b), we have

1 + √
q

τ
√

q
xk+1 − ζ

τ
√

q
(xk − ηs∇f(xk))

= ν
√

q(xk − 1
µ

∇f(xk)) + (1 − ν
√

q)
(1 + √

q

τ
√

q
xk − ζ

τ
√

q
(xk−1 − ηs∇f(xk−1))

)
.

After rearrangement we obtain

1 + √
q

τ
√

q
xk+1 =

(1 + √
q

τ
√

q
+

ζ(1 − ν
√

q)
τ
√

q

)
xk −

ζ(1 − ν
√

q)
τ
√

q
xk−1

− ζη + ντ

τ
√

q
s∇f(xk) +

ζη(1 − ν
√

q)
τ
√

q
s∇f(xk−1).

Solving for xk+1 yields (11). Expanding the coefficients in (11) yields (59).

Second, we prove the reverse statement. Given R1 = O(√q), R2 = O(q), R3 = O(√q) and the leading
constants η0, ν0 and τ0, we determine η, ν and τ by solving the following equations

ν(τ + ζη
√

q) = (ν0τ0 + R1)(1 + √
q) = g1 ∼ ν0τ0 + O(√q),

ζ(1 − ν
√

q) = (1 − (ν0 + τ0)√q + R2)(1 + √
q) = g2 ∼ 1 − (ν0 + τ0 − 1)√q + O(q),

ζη(1 − ν
√

q) = (η0 + R3)(1 + √
q).

Note that g1 and g2 above are known. Solving the equations we obtain

η = η0 + R3

1 − (ν0 + τ0)√q + R2
∼ η0,

39

Under review as submission to TMLR

and ν depending on τ as
ν = g1

τ + ζη
√

q
∼ ν0τ0

τ0
= ν0,

and τ as a root for the quadratic equation

α2 · τ2 + α1 · τ + α0 = 0,

where

α2 = −√
q(1 − ηq),

α1 = 1 − g2 + √
q + (g1 − 2η + ηg2)q − 2ηq

3
2 = √

q(ν0 + τ0 + O(√q)),

α0 = (η − g1 − ηg2)√q + (2η − g1 − ηg2)q + ηq
3
2 = √

q(−ν0τ0 + O(√q)).

The discriminant is ∆ = α2
1 − 4α2 · α0 = q[(ν0 − τ0)2 + O(√q)]. For ν0 ̸= τ0 > 0, the root

τ = −α1 ±
√

∆
2 · α2

=
α1/

√
q ±

√
∆/q

−2 · α2/
√

q
=

ν0 + τ0 + O(√q) ±
√

(ν0 − τ0)2 + O(√q)
2(1 − ηq) ∼ ν0 + τ0 ± |ν0 − τ0|

2

is well-defined for small q. The sign is determined by the sign of ν0 − τ0 to make τ ∼ τ0. An inspection of
the expressions suggests that η, ν and τ are all analytic functions of √

q.

Lastly, from the above calculation, the updating formula for xk has been matched between (10) and (59),
starting from x2. The initial points can be aligned by picking suitable z0 such that x1 from (10) is exactly
x0 − h1s∇f(x0). The calculation is straightforward and hence omitted.

Interestingly, the leading coefficients in the single-variable form (59) for (10) are symmetric with regard to
ν0 and τ0. This suggests that the convergence properties of (10) should also be symmetric in ν0 and τ0.
Indeed, such symmetrization in the case of ν0 ̸= τ0 is exploited in our derivation of Theorems 1–2 from
Theorems 1∗–2∗ in Appendix C.3.

Corollary 1 is derived by translating the conclusions from Theorem 2 in the case of ν0 ̸= τ0 in terms of the
leading coefficients in a single-variable form.

Proof of Corollary 1. Let c1 = ν0 + τ0, c0 = ν0τ0, c2
√

c0 − c0/2 = η0 and solve for η0, ν0 and τ0. The
conditions c2

1 > 4c0 and c0, c1 > 0 ensure that ν0 and τ0 exist, satisfying ν0, τ0 > 0 and ν0 ̸= τ0. The
conditions on c2 can be directly translated into the conditions on η0. The desired result follows by applying
Lemma 7 and Theorem 2.

D Technical details in Section 3

D.1 Derivation of three-variable form (22)

By comparing (22) with (20), the update of yk+1 is the same. Rearranging zk+1 = αk+1xk+1+(1−αk+1)yk+1,
we obtain the update of xk+1 in (22c). It suffices to prove the update of zk+1 in (22b). With (20) in place,
we have

zk+1 = αk+1xk+1 + (1 − αk+1)yk+1

= αk+1[xk − γks∇f(xk) + σk+1(yk+1 − yk)] + (1 − αk+1)yk+1

= αk+1(xk − γks∇f(xk)) + (αk − 1)(yk+1 − yk) + (1 − αk+1)yk+1

= αk+1(xk − γks∇f(xk)) + (αk − αk+1)yk+1 + (1 − αk)yk

= αk+1(xk − γks∇f(xk)) + (αk − αk+1)(xk − βks∇f(xk)) + (1 − αk)yk

= αkxk + (1 − αk)yk − (γkαk+1 + βk(αk − αk+1))s∇f(xk)
= zk − α̃ks∇f(xk).

40

Under review as submission to TMLR

D.2 Proofs of Lemmas 4 and 5 in Section 6.2

Proof of Lemma 4. Using (22b), we have

1
2∥zk+1 − x⋆∥2 − 1

2∥zk − x⋆∥2 = 1
2∥zk − x⋆ − α̃ks∇f(xk)∥2 − 1

2∥zk − x⋆∥2

= −α̃ks⟨zk − x⋆, ∇f(xk)⟩ + α̃2
ks2

2 ∥∇f(xk)∥2.

Substituting zk = xk + (αk − 1)(xk − yk) into the above display, we have

1
2∥zk+1 − x⋆∥2 − 1

2∥zk − x⋆∥2 (60)

= −α̃ks⟨xk − x⋆, ∇f(xk)⟩ − α̃k(αk − 1)s⟨xk − yk, ∇f(xk)⟩ + α̃2
ks2

2 ∥∇f(xk)∥2

≤ −α̃ks(f(xk) − f⋆) − α̃k(αk − 1)s(f(xk) − f(yk)) + α̃2
ks2

2 ∥∇f(xk)∥2

= −αkα̃ks(f(xk) − f⋆) + α̃k(αk − 1)s(f(yk) − f⋆) + α̃2
ks2

2 ∥∇f(xk)∥2,

where the inequality holds because by the convexity of f and the assumption that α̃k ≥ 0 and αk ≥ 1,
we have ⟨xk − x⋆, ∇f(xk)⟩ ≥ f(xk) − f⋆ and ⟨xk − yk, ∇f(xk)⟩ ≥ f(xk) − f(yk). When k ≥ 1, by the
L-smoothness of f and (22a), we have

f(yk) − f⋆ ≤ f(xk−1) − f⋆ + ⟨∇f(xk−1), yk − xk−1⟩ + L

2 ∥yk − xk−1∥2

= f(xk−1) − f⋆ − (2 − βk−1Ls)βk−1s

2 ∥∇f(xk−1)∥2.

(61)

Combining (60) and (61) yields (45), which completes the proof.

Proof of Lemma 5. By Lemma 4, for any k ≥ 1 such that αk ≥ 1, α̃k ≥ 0, we have

Vk+1 − Vk ≤ −1
2(ωk − ωk+1)∥zk − x⋆∥2

− (ωkαk−1α̃k−1 − ωk+1α̃k(αk − 1))︸ ︷︷ ︸
I

s(f(xk−1) − f⋆)

−
(
ωk+1α̃k(αk − 1)βk−1(2 − βk−1Ls) − ωkα̃2

k−1
)︸ ︷︷ ︸

II

s2

2 ∥∇f(xk−1)∥2.

(62)

If ωk ≥ ωk+1, then −(ωk − ωk+1)∥zk − x⋆∥2/2 ≤ 0. The rest is straightforward.

D.3 Proof of Theorem 4

To prepare for the proof for Theorem 4, we provide a simple bound which will be used in the last step of
the proof.
Lemma 8. Let f ∈ F1

L. When 0 < s ≤ C0/L for some constant C0 > 0, the iterates of (22) satisfy that
for any fixed K, there exists a constant C such that s(f(xK) − f⋆), s2∥∇f(xK)∥2 and ∥zK+1 − x⋆∥2 are
upper-bounded by C∥x0 − x⋆∥2. The constant C depends only on C0, K and the algorithm parameters {αk},
{βk} and {γk}.

Proof. For notational simplicity, we assume C0 = 1 so that 0 < Ls ≤ 1. First, by the convexity of f , we
have

s(f(xK) − f⋆) ≤ Ls

2 ∥xK − x⋆∥2 ≤ 1
2∥xK − x⋆∥2.

41

Under review as submission to TMLR

Second, by the L-smoothness, we have

s2∥∇f(xK)∥2 = s2∥∇f(xK) − ∇f(x⋆)∥2 ≤ (Ls)2∥xK − x⋆∥2 ≤ ∥xK − x⋆∥2.

Third, by (22b) and the Cauchy–Schwarz inequality, we have

1
2∥zK+1 − x⋆∥2 = 1

2∥zK − x⋆ − α̃Ks∇f(xK)∥2 ≤ ∥zK − x⋆∥2 + α̃2
Ks2∥∇f(xK)∥2,

which together with the preceding bound on s2∥∇f(xK)∥2 yields

1
2∥zK+1 − x⋆∥2 ≤ ∥zK − x⋆∥2 + α̃2

K∥xK − x⋆∥2.

Because z0 = x0, it suffices to bound ∥xk − x⋆∥2 by ∥x0 − x⋆∥2 up to a constant for general k ≥ 1. The fact
that (22) is a first-order method implies that for each k ≥ 1, there exist scalars {ck,i} (depending only on
the algorithm parameters) for i = 0, . . . , k − 1 such that

xk = xk−1 +
k−1∑
i=0

ck,is∇f(xi).

Then by the Cauchy–Schwarz inequality,

∥xk − x⋆∥2 = ∥xk−1 − x⋆ +
k−1∑
i=0

ck,is∇f(xi)∥2

≤ k

(
∥xk−1 − x⋆∥2 +

k−1∑
i=0

c2
k,is

2∥∇f(xi)∥2

)

≤ k

(
∥xk−1 − x⋆∥2 +

k−1∑
i=0

c2
k,i∥xi − x⋆∥2

)
.

Because K is fixed, the proof is completed by applying the preceding bound for 1 ≤ k ≤ K.

With Lemma 5 and Lemma 8 in place, we are ready to prove Theorem 4.

Proof of Theorem 4. By the definition of α̃k and condition (i)-(ii), we have

lim
k→∞

α̃k

αk
= lim

k→∞
βk + (γk − βk)αk+1

αk
= γ > 0.

Then αk = Ω(k) implies that α̃k = Ω(k). By Lemma 5, the key is to bound I and II from below for all k
sufficiently large. The beginning Vk can be dealt with by the simple bound in Lemma 8 so they do not affect
the convergence. To proceed, we consider two choices of {ωk} depending on the monotonicity of {α̃k/αk}.
Note that {ωk} needs to be non-increasing, to ensure that the first term −(ωk − ωk+1)∥zk − x⋆∥2/2 on the
right-hand-side of (62) is always non-positive.

Choice 1: ωk ≡ 1. We pick wk simply as constant 1 when {α̃k/αk} is non-increasing. As for I, by condition
(ii) we have

I = αk−1α̃k−1 − α̃k(αk − 1) = α2
k−1

(
α̃k−1

αk−1
− αk(αk − 1)

α2
k−1

· α̃k

αk

)
≥ α2

k−1

(
α̃k−1

αk−1
− α̃k

αk

)
≥ 0.

As for II, we have

II = α̃k(αk − 1)βk−1(2 − βk−1Ls) − α̃2
k−1 = αk(αk − 1)

(
α̃k

αk
βk−1(2 − βk−1Ls) −

α̃2
k−1

αk(αk − 1)

)
.

42

Under review as submission to TMLR

For 0 < s ≤ (2 − γ/β)/(2βL) with β > γ/2 > 0,

II ≥ αk(αk − 1)
[

α̃k

αk
βk−1

(
2 − βk−1

2β
(2 − γ

β
)
)

−
α̃2

k−1
αk(αk − 1)

]
,

where the limit of the term in the square brackets is

lim
k→∞

α̃k

αk
βk−1

(
2 − βk−1

2β
(2 − γ

β
)
)

−
α̃2

k−1
αk(αk − 1) = γ(β − γ

2) > 0.

Combining the preceding two displays and αk = Ω(k) shows that there exist constants K and C > 0
depending only on algorithm parameters such that for 0 < s ≤ (2 − γ/β)/(2βL) and k ≥ K,

II ≥ γ

2 (β − γ

2)αk(αk − 1) ≥ Ck2.

Choice 2: ωk+1 = αk/α̃k. When {α̃k/αk} is non-decreasing, {ωk} is non-increasing. In this case we have
I = α2

k−1 − αk(αk − 1) ≥ 0. For 0 < s ≤ (2 − γ/β)/(2βL),

II = αk(αk − 1)βk−1(2 − βk−1Ls) − αk−1α̃k−1

= αk(αk − 1)
(

βk−1(2 − βk−1Ls) −
α2

k−1
αk(αk − 1) · α̃k−1

αk−1

)
≥ αk(αk − 1)

[
βk−1

(
2 − βk−1

2β
(2 − γ

β
)
)

−
α2

k−1
αk(αk − 1) · α̃k−1

αk−1

]
,

where the limit of the term in the square brackets is

lim
k→∞

βk−1

(
2 − βk−1

2β
(2 − γ

β
)
)

−
α2

k−1
αk(αk − 1) · α̃k−1

αk−1
= β − γ

2 > 0.

Similarly as in the first choice, there exist constants K and C > 0 depending only on algorithm parameters
such that for 0 < s ≤ (2 − γ/β)/(2βL) and k ≥ K,

II ≥ (β − γ

2)αk(αk − 1) ≥ Ck2.

Combining the two choices above, we see that when {α̃k/αk} is either non-increasing or non-decreasing in
k, there exist constants K and C > 0 such that for k ≥ K, we have I ≥ 0 and inf0<s≤C0/L II ≥ Ck2, where
C0 = (2 − γ/β)/(2β). By Lemma 5,

Vk+1 − Vk ≤ −C

2 k2s2∥∇f(xk−1)∥2 ≤ 0.

To complete the proof of (16) for the objective gap, it suffices to bound Vk from below.

By convexity of f , we have ∥∇f(xk)∥2 ≤ (2L)(f(xk) − f⋆) which together with the definition of Vk+1 in (46)
yields that for k ≥ K and 0 < s ≤ C0/L,

VK ≥ Vk+1 ≥ ωk+1(αkα̃k − α̃2
kLs)s(f(xk) − f⋆) = ωk+1αkα̃k

(
1 − α̃k

αk
Ls

)
s(f(xk) − f⋆).

Because limk ωk is 1 or 1/γ > 0 in the Choice 1 or 2 above, and limk α̃k/αk = γ > 0, we reset K large
enough such that the above is further bounded from below as

VK ≥ Vk+1 ≥ 1
2(1

γ
∧ 1)αkα̃k(1 − 2γLs)s(f(xk) − f⋆).

By resetting C0 = 2−γ/β
2β ∧ 1

4γ , we have that for k ≥ K and 0 < s ≤ C0/L,

VK ≥ Vk+1 ≥ 1
4(1

γ
∧ 1)αkα̃ks(f(xk) − f⋆).

43

Under review as submission to TMLR

Using Lemma 8, we have f(xk) − f⋆ = O(VK/(αkα̃ks)) = O(VK/(sk2)) = O(∥x0 − x⋆∥2/(sk2)), which is the
optimal rate (16).

Finally, we complete the proof of (18) for the squared gradient norm. For k ≥ K and 0 < s ≤ C0/L, using
Vk+1 − Vk ≤ − C

2 k2s2∥∇f(xk−1)∥2, we have

C

2

(
k∑

i=K

i2

)
s2 min

0≤i≤k−1
∥∇f(xi)∥2 ≤ C

2

k∑
i=K

i2s2∥∇f(xi−1)∥2 ≤
k∑

i=K

(Vi − Vi+1) = VK − Vk+1 ≤ VK ,

which together with Lemma 8 implies that for k ≥ 2K,

min
0≤i≤k−1

∥∇f(xi)∥2 ≤ 2VK

Cs2∑k
i=K i2

≤ 4VK

Cs2∑k
i=1 i2

= 24VK

Cs2k(k + 1)(2k + 1) = O

(
∥x0 − x⋆∥2

s2k3

)
,

which is the desired bound (18).

D.4 Proof of Lemma 1

First, we show αk = Ω(k). When k is odd, αk = (1+
√

1 + 4α2
k−1)/2 > (1+2αk−1)/2 = (1+2(k+r−1)/r)/2 =

(k + r − 1)/r + 1/2. So for any r > 0, αk = Ω(k).

Second, we show (19), αk(αk − 1) ≤ α2
k−1 for k ≥ 1. When k is odd, by construction (19) holds. When

k ≥ 2 and k is even, k − 1 is odd and k − 2 is even. Then αk = (k + r)/r and αk−1 = (1 +
√

1 + 4α2
k−2)/2 =

(1 +
√

r2 + 4(k + r − 2)2/r)/2. Simple algebra yields

αk(αk − 1) − α2
k−1 = 4 − r

r2 k −
√

(k + r − 2)2 + r2/4
r

− 1
2 −

(
r − 2

r

)2
. (63)

When r ≥ 4, (63) is negative for all k. For 0 < r < 4, we further rearrange (63) as

(4 − r)2k2 − r2
(

(k + r − 2)2 + r2

4

)
r2
(

(4 − r)k + r
√

(k + r − 2)2 + r2

4

) − 1
2 −

(
r − 2

r

)2

= −
8(r − 2)k2 + 2r2(r − 2)k + r2

(
(r − 2)2 + r2

4

)
r2
(

(4 − r)k + r
√

(k + r − 2)2 + r2

4

) − 1
2 −

(
r − 2

r

)2
,

which remains negative for 2 ≤ r < 4 but blows up to ∞ as k → ∞ if 0 < r < 2.

Third, we calculate limk k(1 − σk+1) along {k′} = {2k} and {k′′} = {2k + 1}. By the definition of σk+1 we
have

lim
k→∞

k(1 − σk+1) = lim
k→∞

k

(
1 − αk − 1

αk+1

)
= lim

k→∞

k

αk+1
(αk+1 − αk + 1) . (64)

Along {k′} = {2k},

lim
k→∞

2k

α2k+1
= lim

k→∞

4k

1 +
√

1 + 4α2
2k

= lim
k→∞

4k

2α2k
= lim

k→∞

4k

2(2k + r)/r
= r,

44

Under review as submission to TMLR

and

lim
k→∞

α2k+1 − α2k = lim
k→∞

1 +
√

1 + 4α2
2k

2 − α2k

= lim
k→∞

1
2

(
1 + 2α2k

√
1 + 1

4α2
2k

)
− α2k

= lim
k→∞

1
2 + α2k

(
1 + O(1

α2
2k

)
)

− α2k

= 1
2 .

Using (64) we have

lim
k′→∞

k′(1 − σk′+1) = r(1 + 1/2) = 3r/2. (65)

Along {k′′} = {2k + 1},

lim
k→∞

2k + 1
α2k+2

= lim
k→∞

2k + 1
(2k + 2 + r)/r

= r,

and

lim
k→∞

α2k+2 − α2k+1 = lim
k→∞

α2k+2 −
1 +

√
1 + 4α2

2k

2

= lim
k→∞

α2k+2 − 1
2

(
1 + 2α2k

√
1 + 1

4α2
2k

)

= lim
k→∞

α2k+2 − 1
2 − α2k

(
1 + O(1

α2
2k

)
)

= lim
k→∞

2k + 2 + r

r
− 2k + r

r
− 1

2

= 2
r

− 1
2 .

Using (64) we have

lim
k′′→∞

k′′(1 − σk′′+1) = r

(
2
r

− 1
2 + 1

)
= 2 + r

2 . (66)

Lastly, combining the limits (65) and (66) gives limk σk+1 = 1, which implies that limk αk+1/αk = 1.
Therefore, condition (ii) holds. The proof of Lemma 1 is completed.

E Technical details in Section 4

E.1 Convergence of ODEs (23) and (25)

In the convex setting where f ∈ F1, the convergence rates of gradient flow (23) and the ODE (24) for NAG-C
are proved in Su et al. (2016). For completeness, we present the proofs for the convergence rates stated in
the strongly convex setting where f ∈ S1

µ.

For gradient flow (23), consider the Lyapunov function Vt = f(Xt) − f⋆, i.e., the potential gap itself. Then
by (23), we have V̇t = ⟨∇f(Xt), Ẋt⟩ = −∥∇f(Xt)∥2. By strong convexity, f(Xt) − f⋆ ≤ 1

2µ ∥∇f(Xt)∥2.
Therefore, V̇t ≤ −2µ(f(Xt) − f⋆) = −2µVt, which implies that f(Xt) − f⋆ = Vt ≤ V0 · e−2µt = e−2µt(f(x0) −
f⋆).

45

Under review as submission to TMLR

For the ODE (25) corresponding to NAG-SC (4), consider the Lyapunov function Vt = f(Xt) − f⋆ + 1
2 ∥Ẋt +√

µ(Xt − x⋆)∥2. Then V0 = f(x0) − f⋆ + µ
2 ∥x0 − x⋆∥2 ≤ 2(f(x0) − f⋆) by strong convexity. Using the ODE

(25), we have

dVt

dt
= ⟨∇f(Xt), Ẋt⟩ + ⟨Ẋt + √

µ(Xt − x⋆), Ẍt + √
µẊt⟩

= ⟨∇f(Xt), Ẋt⟩ − ⟨Ẋt + √
µ(Xt − x⋆), √

µẊt + ∇f(Xt)⟩
= −√

µ∥Ẋt∥2 − √
µ⟨Ẋt,

√
µ(Xt − x⋆)⟩ − √

µ⟨Xt − x⋆, ∇f(Xt)⟩,

which together with the inequality ⟨Xt − x⋆, ∇f(Xt)⟩ ≥ f(Xt) − f⋆ + µ
2 ∥Xt − x⋆∥2 by µ-strong convexity

suggests that

dVt

dt
≤ −

√
µ

2 ∥Ẋt∥2 − √
µ

(
f(Xt) − f⋆ + 1

2∥Ẋt + √
µ(Xt − x⋆)∥2

)
≤ −√

µVt.

Hence, f(Xt) − f⋆ ≤ Vt ≤ V0 · e−√
µt ≤ 2e−√

µt(f(x0) − f⋆).

E.2 Proof of Proposition 3

For the existence and uniqueness of the solution Xt to the ODE (26), define

Yt =
[

Yt,1
Yt,2

]
=
[

Xt

Ẋt

]
∈ R2n.

Then the original ODE can be reformulated as

Ẏt =
[

Yt,2
−c1

√
µYt,2 − c0∇f(Yt,1)

]
= F (t, Yt),

with initial condition Y0 = (xT
0 , 0)T, where

F (t, Y) =
[

Y2
−c1

√
µY2 − c0∇f(Y1)

]
.

Because f is L-smooth, ∇f is L-Lipschitz continuous. Hence, F is Lipschitz continuous in Y . Because F
does not depend on t, F is globally Lipschitz continuous in Y . By Picard–Lindelöf Theorem, the conclusion
follows.

For the convergence rate, consider the Lyapunov function

Vt = c0(f(Xt) − f⋆) + 1
2∥Ẋt + λ

√
µ(Xt − x⋆)∥2,

where λ is to be chosen later. Using the ODE (26), we have

dVt

dt
= c0⟨∇f(Xt), Ẋt⟩ + ⟨Ẋt + λ

√
µ(Xt − x⋆), Ẍt + λ

√
µẊt⟩

= c0⟨∇f(Xt), Ẋt⟩ + ⟨Ẋt + λ
√

µ(Xt − x⋆), −(c1 − λ)√µẊt − c0∇f(Xt)⟩
= −(c1 − λ)√µ∥Ẋt∥2 − (c1 − λ)√µ⟨Ẋt, λ

√
µ(Xt − x⋆)⟩ − c0λ

√
µ⟨Xt − x⋆, ∇f(Xt)⟩

= −c1 − λ

2
√

µ∥Ẋt∥2 − c1 − λ

2
√

µ∥Ẋt + λ
√

µ(Xt − x⋆)∥2 + c1 − λ

2 λ2µ
3
2 ∥Xt − x⋆∥2

− c0λ
√

µ⟨Xt − x⋆, ∇f(Xt)⟩

= −C
√

µVt − c1 − λ

2
√

µ∥Ẋt∥2 −
(

c1 − λ

2 − C

2

)
√

µ∥Ẋt + λ
√

µ(Xt − x⋆)∥2

+ Cc0
√

µ(f(Xt) − f⋆) + c1 − λ

2 λ2µ
3
2 ∥Xt − x⋆∥2 − λc0

√
µ⟨Xt − x⋆, ∇f(Xt)⟩,

46

Under review as submission to TMLR

which together with the inequality ⟨Xt − x⋆, ∇f(Xt)⟩ ≥ f(Xt) − f⋆ + µ
2 ∥Xt − x⋆∥2 by µ-strong convexity

suggests that

dVt

dt
≤ −C

√
µVt − c1 − λ

2
√

µ∥Ẋt∥2 −
(

c1 − λ

2 − C

2

)
√

µ∥Ẋt + λ
√

µ(Xt − x⋆)∥2

− (λ − C)c0
√

µ(f(Xt) − f⋆) − λµ
3
2

2 (c0 − (c1 − λ)λ)∥Xt − x⋆∥2.

Because c0 > 0 and c1 > 0, we pick λ such that 0 < λ < c1 and (c1 − λ)λ ≤ c0. Moreover, we pick C such
that 0 < C ≤ (c1 − λ) ∧ λ. Then

dVt

dt
≤ −C

√
µVt =⇒ Vt ≤ V0 · e−C

√
µt.

In particular, if c2
1 ≤ 4c0, we pick λ = c1/2 and C = c1/2. If c2

1 > 4c0, we pick λ = c1+
√

c2
1−4c0

2 and

C = c1−
√

c2
1−4c0

2 . Equivalently, C = c1−
√

(c2
1−4c0)∨0
2 > 0. The conclusion then follows by bounding V0 =

c0(f(x0) − f⋆) + λ2µ
2 ∥x0 − x⋆∥2 ≤ (c0 + λ2)(f(x0) − f⋆) because µ

2 ∥x0 − x⋆∥2 ≤ f(x0) − f⋆.

When c0 ≤ 0 or c1 ≤ 0, f(Xt) − f⋆ is not guaranteed to converge. A simple counterexample is the harmonic
oscillator, with f(x) = µx2/2 for x ∈ R,

Ẍt + c1
√

µẊt + c0µXt = 0, (67)

starting from the initial position X(0) = x0 with velocity Ẋ(0) = 0. Since (67) is a second-order linear ODE
with constant coefficients, its general solutions admit closed forms. Consider the characteristic equation
w2 + c1

√
µw + c0µ = 0 with discriminant ∆ = (c2

1 − 4c0)µ.

If c2
1 = 4c0, then there are two identical real roots w = w1 = w2 = −c1

√
µ/2, and Xt = (α0+α1t)ewt for some

real numbers α0 and α1. By the initial condition Ẋ(0) = 0, we find α1 = −α0w. Then Xt = α0(1 − wt)ewt.
To achieve Xt → 0, we need w < 0, which means c1 > 0 and c0 = c2

1/4 > 0 too.

If c2
1 > 4c0, then there are two distinct real roots w1 = −c1+

√
c2

1−4c0
2

√
µ and w2 = −c1−

√
c2

1−4c0
2

√
µ, with

w1 > w2, and Xt = α0ew1t + α1ew2t. By the initial condition Ẋ(0) = 0, we find α0w1 + α1w2 = 0. If w2 = 0,
then w1 > 0 and hence α0 = 0 and Xt ≡ α1 = x0, which contradicts Xt → 0 for any x0 ̸= 0. If w2 ̸= 0,
then α1 = −α0w1/w2, and Xt = α0(ew1t − w1

w2
ew2t) with w1 ̸= w2. To achieve Xt → 0, we also need w1 < 0.

Then −c1 +
√

c2
1 − 4c0 < 0, which implies that c0 > 0 and c1 > 0.

If c2
1 < 4c0, then there are two complex roots w1,2 = −c1±

√
4c0−c2

1i

2
√

µ, and Xt is a linear combination of
e−c1

√
µt/2 × sin(

√
µ(4c0 − c2

1)t/2) and e−c1
√

µt/2 × cos(
√

µ(4c0 − c2
1)t/2). We need c1 > 0 to make Xt → 0.

Then c0 > c2
1/4 > 0 too.

E.3 Proof of Proposition 4

The existence and uniqueness of a solution were proved in Shi et al. (2022), Proposition 1, and thus omitted.
Below, we focus on the convergence rates. For (27), we consider the Lyapunov function

Vt = (1 + √
µs)(f(Xt) − f⋆) + 1

2∥Ẋt + √
µ(Xt − x⋆) +

√
s∇f(Xt)∥2.

Using the ODE (27), we have

dVt

dt
= (1 + √

µs)⟨∇f(Xt), Ẋt⟩ + ⟨Ẋt + √
µ(Xt − x⋆) +

√
s∇f(Xt), Ẍt + √

µẊt +
√

s∇2f(Xt)Ẋt⟩

= (1 + √
µs)⟨∇f(Xt), Ẋt⟩ + ⟨Ẋt + √

µ(Xt − x⋆) +
√

s∇f(Xt), −√
µẊt − (1 + √

µs)∇f(Xt)⟩
= −√

µ∥Ẋt∥2 − √
µ⟨Ẋt,

√
µ(Xt − x⋆) +

√
s∇f(Xt)⟩ − (1 + √

µs)⟨∇f(Xt),
√

µ(Xt − x⋆) +
√

s∇f(Xt)⟩

47

Under review as submission to TMLR

= −
√

µ

2 ∥Ẋt∥2 −
√

µ

2 ∥Ẋt + √
µ(Xt − x⋆) +

√
s∇f(Xt)∥2 +

√
µ

2 ∥√
µ(Xt − x⋆) +

√
s∇f(Xt)∥2

− (1 + √
µs)√µ⟨Xt − x⋆, ∇f(Xt)⟩ − (1 + √

µs)
√

s∥∇f(Xt)∥2

= −√
µVt + √

µ(1 + √
µs)(f(Xt) − f⋆) −

√
µ

2 ∥Ẋt∥2 + µ
3
2

2 ∥Xt − x⋆∥2 − √
µ⟨Xt − x⋆, ∇f(Xt)⟩

−
√

s(1 +
√

µs

2)∥∇f(Xt)∥2.

By the strong convexity, ⟨Xt − x⋆, ∇f(Xt)⟩ ≥ f(Xt) − f⋆ + µ
2 ∥Xt − x⋆∥2. Then the above display yields

dVt

dt
≤ −√

µVt + √
µ

√
µs(f(Xt) − f⋆) −

√
s(1 +

√
µs

2)∥∇f(Xt)∥2.

By the strong convexity again, we have f(Xt) − f⋆ ≤ 1
2µ ∥∇f(Xt)∥2. Hence

dVt

dt
≤ −√

µVt −
√

s

2 (1 + √
µs)∥∇f(Xt)∥2 ≤ −√

µVt.

The conclusion follows by integrating with t.

For (28), we consider the Lyapunov function

Vt = (1 + √
µs)(f(Xt) − f⋆) + 1

2∥Ẋt + √
µ(Xt − x⋆)∥2.

Using the ODE (28), we have

dVt

dt
= (1 + √

µs)⟨∇f(Xt), Ẋt⟩ + ⟨Ẋt + √
µ(Xt − x⋆), Ẍt + √

µẊt⟩

= (1 + √
µs)⟨∇f(Xt), Ẋt⟩ − ⟨Ẋt + √

µ(Xt − x⋆), √
µẊt + (1 + √

µs)∇f(Xt)⟩
= −√

µ∥Ẋt∥2 − √
µ⟨Ẋt,

√
µ(Xt − x⋆)⟩ − √

µ(1 + √
µs)⟨Xt − x⋆, ∇f(Xt)⟩

= −
√

µ

2 ∥Ẋt∥2 −
√

µ

2 ∥Ẋt + √
µ(Xt − x⋆)∥2 + µ

3
2

2 ∥Xt − x⋆∥2 − √
µ(1 + √

µs)⟨Xt − x⋆, ∇f(Xt)⟩

≤ −√
µVt + √

µ(1 + √
µs)(f(Xt) − f⋆) + µ

3
2

2 ∥Xt − x⋆∥2 − √
µ(1 + √

µs)⟨Xt − x⋆, ∇f(Xt)⟩.

By the strong convexity, ⟨Xt − x⋆, ∇f(Xt)⟩ ≥ f(Xt) − f⋆ + µ
2 ∥Xt − x⋆∥2. Then the above display yields

dVt

dt
≤ −√

µVt − µ2√
s

2 ∥Xt − x⋆∥2 ≤ −√
µVt.

The conclusion follows by integrating with t.

E.4 Proof of Proposition 5

The construction of our continuous-time Lyapunov function is motivated by Su et al. (2016) and Shi et al.
(2022). We consider the auxiliary-energy term defined as

V A
t = 1

2

∥∥∥∥r(Xt − x⋆) + t

(
Ẋt + β

√
s

γ
∇f(Xt)

)∥∥∥∥2

.

Using the ODE (31), for t ≥ t0 we have

dV A
t

dt
=
〈
r(Xt − x⋆) + t

(
Ẋt + β

√
s

γ
∇f(Xt)

)
, rẊt + Ẋt + β

√
s

γ
∇f(Xt) + t

(
Ẍt + β

√
s

γ
∇2f(Xt)Ẋt

)〉
=
〈
r(Xt − x⋆) + t

(
Ẋt + β

√
s

γ
∇f(Xt)

)
, −
(
t + (r + 1

2 − β

γ
)
√

s
)
∇f(Xt)

〉
48

Under review as submission to TMLR

= −r
(
t + (r + 1

2 − β

γ
)
√

s
)
⟨Xt − x⋆, ∇f(Xt)⟩ − t

(
t + (r + 1

2 − β

γ
)
√

s
)
⟨Ẋt, ∇f(Xt)⟩

− β
√

s

γ
t
(
t + (r + 1

2 − β

γ
)
√

s
)
∥∇f(Xt)∥2.

Let C ≥ 0 be a constant to be chosen later, and introduce a factor of t+C
√

s
t for technical adjustment.

Because t+C
√

s
t = 1 + C

√
s

t is decreasing in t, we have

d
dt

(
t + C

√
s

t
V A

t

)
= d

dt

(
t + C

√
s

t

)
· V A

t + t + C
√

s

t
· dV A

t

dt
≤ t + C

√
s

t
· dV A

t

dt

= − r
t + C

√
s

t

(
t + (r + 1

2 − β

γ
)
√

s
)
⟨Xt − x⋆, ∇f(Xt)⟩ − (t + C

√
s)
(
t + (r + 1

2 − β

γ
)
√

s
)
⟨Ẋt, ∇f(Xt)⟩

− β
√

s

γ
(t + C

√
s)
(
t + (r + 1

2 − β

γ
)
√

s
)
∥∇f(Xt)∥2.

(68)

To eliminate the term of ⟨Ẋt, ∇f(Xt)⟩, we define the potential-energy term as

V P
t = (t + C

√
s)
(
t + (r + 1

2 − β

γ
)
√

s
)
(f(Xt) − f⋆).

Then

dV P
t

dt
=
(
2t + (r + 1

2 − β

γ
+ C)

√
s
)
(f(Xt) − f⋆) + (t + C

√
s)
(
t + (r + 1

2 − β

γ
)
√

s
)
⟨∇f(Xt), Ẋt⟩. (69)

Define the continuous Lyapunov function as Vt = V P
t + t+C

√
s

t V A
t . Set t⋆

0 = t0 ∨{2|C|
√

s}∨{2| r+1
2 − β

γ |
√

s} >
0. Then for t ≥ t⋆

0, we have Vt ≥ 0 and

(t + C
√

s)
(
t + (r + 1

2 − β

γ
)
√

s
)

≥ t

2 · t

2 = t2

4 . (70)

Combining (68) and (69), we obtain

dVt

dt
≤ −r

t + C
√

s

t

(
t + (r + 1

2 − β

γ
)
√

s
)
⟨Xt − x⋆, ∇f(Xt)⟩ +

(
2t + (r + 1

2 − β

γ
+ C)

√
s
)
(f(Xt) − f⋆)

− β
√

s

γ
(t + C

√
s)
(
t + (r + 1

2 − β

γ
)
√

s
)
∥∇f(Xt)∥2,

which together with the convexity inequality ⟨Xt − x⋆, ∇f(Xt)⟩ ≥ f(Xt) − f⋆ suggests that for r ≥ 0 and
t ≥ t⋆

0,

dVt

dt
≤ −

(
(r − 2)t + (r − 1)C

√
s + (r − 1 + rC

√
s

t
)(r + 1

2 − β

γ
)
√

s

)
︸ ︷︷ ︸

It

·(f(Xt) − f⋆)

− β

γ
(t + C

√
s)
(
t + (r + 1

2 − β

γ
)
√

s
)

︸ ︷︷ ︸
IIt

·
√

s∥∇f(Xt)∥2.

From (70), if β
γ ≥ 0, then IIt ≥ β

4γ t2 ≥ 0 for t ≥ t⋆
0. It remains to deal with It.

When r > 2, we set C = 0. Then It = (r − 2)t + (r − 1)(r+1
2 − β

γ)
√

s ≥ 0 for t ≥ − r−1
r−2 (r+1

2 − β
γ)

√
s. In this

case, we pick t1 = t⋆
0 ∨ {− r−1

r−2 (r+1
2 − β

γ)
√

s}.

When r = 2, It = C
√

s + (1 + 2C
√

s
t)(3

2 − β
γ)

√
s. We set the constant C > β

γ − 3
2 (e.g., β

γ). Then when t is
large (e.g., t ≥ 4β

3γ (β
γ − 3

2)
√

s), It ≥ 0 always holds. In this case, we pick t1 = t⋆
0 ∨ { 4β

3γ (β
γ − 3

2)
√

s}.

49

Under review as submission to TMLR

To summarize, when r ≥ 2 and β
γ ≥ 0, there exist C ≥ 0 and t1 such that when t ≥ t1, dVt

dt ≤ 0. If further
β
γ > 0, then − dVt

dt ≥ β
√

s
4γ t2∥∇f(Xt)∥2. The remaining proof is similar to the proof of Theorem 4, but in a

continuous way. We sketch the reasoning below.

If dVt

dt ≤ 0, then for t ≥ t1,

Vt1 ≥ Vt ≥ V P
t = (t + C

√
s)
(
t + (r + 1

2 − β

γ
)
√

s
)
(f(Xt) − f⋆) ≥ t2

4 (f(Xt) − f⋆),

which implies that f(Xt) − f⋆ = O
(

Vt1
t2

)
.

If further − dVt

dt ≥ β
√

s
4γ t2∥∇f(Xt)∥2 with β

γ > 0, then for t > t1, we have Vt ≥ 0, and

Vt1 ≥ Vt1 − Vt = (−Vt) − (−Vt1) =
∫ t

t1

d
du

(−Vu)du ≥ β
√

s

4γ

∫ t

t1

u2∥∇f(Xu)∥2du

≥ β
√

s

4γ
inf

t1≤u≤t
∥∇f(Xu)∥2

∫ t

t1

u2du = β
√

s(t3 − t3
1)

12γ
inf

t1≤u≤t
∥∇f(Xu)∥2,

which implies that

inf
t1≤u≤t

∥∇f(Xu)∥2 ≤ 12γVt1

β
√

s(t3 − t3
1)

= O

(
γVt1

β
√

s(t3 − t3
1)

)
.

F Technical details in Section 5

F.1 Single-variable form for HAG (32)

We derive the single-variable form (34) for HAG. From (32) solving the first equation for uk, and plugging
the expressions of uk and uk+1 into the second equation, we obtain

xk+2 − xk+1 + ak+1∇f(xk+1)√
ak+1bk+1

= (bk−1)xk+1 − xk + ak∇f(xk)√
akbk

−
√

akbk∇f(xk)−ϕk(∇f(xk+1)−∇f(xk)).

Rearrange the above display to conclude.

F.2 Verification of monotonicity condition for (39)

We verify that the monotonicity condition in Theorem 4 is satisfied by (39), i.e., HAG under the configuration
(38). First, we notice that (39) can be put into (21) with

βk−1 = 1
σk+1

(
c2

√
c0 − c0

bk−1

)
, γk = c0

(
1

bk−1
+ 1

bk

)
− σk+1(βk − βk−1).

When αk = k+r
r , we have σk+1 = αk−1

αk+1
= k

k+r+1 , bk−1 = 1 + σk+1 = 2k+r+1
k+r+1 , and αk+1

αk
= k+r+1

k+r . Without
loss of generality, take c0 = 1. Substituting σk+1, bk−1 and bk into the display above and after some algebra,
we obtain

α̃k

αk
= γk

αk+1

αk
− βk

(
αk+1

αk
− 1
)

= γk
k + r + 1

k + r
− βk

1
k + r

= 2k2 + (7 − 2c2 + 4r)k + 6 − 3c2 + 7r − c2r + 2r2

(k + r)(2k + r + 3) ,

which is monotone in k when k ≥ K for some K depending only on c2 and r.

50

	Introduction
	Acceleration for strongly convex functions
	Review of accelerated gradient methods
	Main results

	Acceleration for convex functions
	Review of accelerated gradient methods
	Main results

	ODE connection and comparison
	Strongly convex setting
	Convex setting

	Hamiltonian-assisted interpretation
	HAG: Hamiltonian-assisted gradient method
	Interpretation from HAG

	Outlines of Lyapunov analyses
	Strongly convex setting
	Convex setting

	Conclusion
	Comparison with the literature
	Comparison with the LMI/SDP techniques
	Comparison with sanz2021connections
	Comparison with shi2021understanding

	Notation
	Technical details in sec:acc-sc
	Reformulation of NAG-SC and TMM
	Proofs of Lemmas 2–3 in sec:outline-SC
	Proofs of Theorems 1–3
	Proof of Corollary 1

	Technical details in sec:acc-c
	Derivation of three-variable form (22)
	Proofs of Lemmas 4 and 5 in sec:outline-C
	Proof of Theorem 4
	Proof of Lemma 1

	Technical details in sec:ODE-interpretation
	Convergence of ODEs (23) and (25)
	Proof of Proposition 3
	Proof of Proposition 4
	Proof of Proposition 5

	Technical details in sec:HAG-interpretation
	Single-variable form for HAG (32)
	Verification of monotonicity condition for (39)

