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Abstract

We formulate two classes of first-order algorithms more general than previously studied
for minimizing smooth and strongly convex or, respectively, smooth and convex functions.
We establish sufficient conditions, via new discrete Lyapunov analyses, for achieving ac-
celerated convergence rates which match Nesterov’s methods in the strongly convex and
convex (not necessarily strongly convex) settings. Our results identify, for the first time, a
concrete sufficient condition on gradient correction for accelerated convergence. Next, we
study the convergence of limiting ordinary differential equations (ODEs), including high-
resolution ODEs, and point out currently notable gaps between the convergence properties
of the corresponding algorithms and ODEs, especially regarding the role of gradient correc-
tion. Finally, we propose a new class of discrete algorithms, called the Hamiltonian-assisted
gradient method, directly based on a Hamiltonian function and several interpretable oper-
ations, and then provide specific interpretations of our acceleration conditions in terms of
the momentum variable updates[l]

1 Introduction

Optimization plays a vital role in machine learning, statistics, and many other fields. In the optimization
literature, there exists a striking phenomenon where after suitable modifications of a first-order methodﬂ the
convergence guarantee can be improved, often attaining the complexity lower bound, with a similar compu-
tational cost as before. Such acceleration has been widely studied since the seminal work of Nesterov| (1983)),
which improves gradient descent for minimizing smooth convex functions. Examples include constrained
optimization (Nesterov, 2018), mirror descent with a non-Euclidean norm (Krichene et al.| |2015)), composite
optimization with a proximable function (Beck & Teboulle, [2009), primal-dual splitting (Chambolle & Pock,
2011)), stochastic gradient methods (Zhang & Lin| [2017; |Allen-Zhul 2018]), and others.

Despite extensive research, the scope and mechanism of acceleration remain to be fully understood, even
including the original acceleration of gradient descent for smooth convex optimization. Typically, a class
of algorithms is constructed, and their convergence proofs are provided using suitable techniques. Among
them, Lyapunov analysis has been a prevalent approach for studying convergence properties of discrete
algorithms, once those algorithms are defined. In fact, |Nesterov| (1983) used a potential function or a
Lyapunov function to establish the convergence of an accelerated algorithm, although Nesterov’s later work
turned to the technique of estimate sequences for studying gradient methods (Nesterovl |1988; [2018). See
Bansal & Gupta) (2019) and [d’Aspremont et al.| (2021)) for overviews of Lyapunov-based proofs for gradient
methods. The central step in Lyapunov analysis is to construct an appropriate Lyapunov function that is used
to deduce the desired convergence. Recently, a promising framework for constructing Lyapunov functions
systematically is via linear matrix inequalities (LMI) and semidefinite programming (SDP) techniques. The
core idea is to transform the existence of a quadratic Lyapunov function into the feasibility of an SDP,

IThe code and numerical results are available at: https://github.com/ffpphh/acc_grad
2First-order methods refer to methods using function values and gradients only, whereas second-order methods additionally
rely on the Hessian matrices or their approximations.
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which involves solving for a positive definite matrix subject to linear matrix inequalities. Currently, there
are two distinct methodologies under this framework, namely the performance estimation problem (PEP)
and integral quadratic constraints (IQC). The PEP method is motivated by finding an objective function
for which the given optimization algorithm has a worse performance, and has been adapted for Lyapunov
analysis (Taylor et al., |2018; |Taylor & Bachl |2019; Upadhyaya et al. [2025). On the other hand, the IQC
method is motivated from a control-theoretic perspective of optimization algorithms, as originally proposed
in [Lessard et al| (2016) and later extended by [Fazlyab et al| (2018). More recently, the IQC method has
been leveraged to analyze a family of Nesterov optimization methods by [Sanz Serna & Zygalakis| (2021)),
whose results are further improved by [Dobson et al.| (2025)).

Although being a major technical tool for establishing convergence rates, Lyapunov analysis itself may not
explain conceptually when and how acceleration can be achieved. Various efforts have been made for the
latter purpose. For example, geometric formulations are proposed by coupling gradient descent and mirror
descent (Allen-Zhu & Orecchial [2017)), and by averaging two minimizers of an upper and a lower quadratic
bound for the objective function (Bubeck et al.,[2015; [Drusvyatskiy et al.,[2018)). Another useful approach is
to relate discrete algorithms to their continuous limits as ordinary differential equations (ODEs), obtained by
letting the stepsize in the discrete algorithms tend to zero. ODEs are usually more tractable to study than
their discrete counterparts by exploiting a rich set of analytical tools from continuous-time dynamical systems
and control theory. The analyses and properties of the limiting ODEs can provide insights about those of the
original discrete algorithms, for example, to facilitate the construction of Lyapunov functions for the discrete
algorithms (Qian, |1999; |Su et al., 2016; Yang et all |2018; [Sun et al) 2020; [Shi et al. 2022). Recently,
stochastic differential equations (SDEs) are leveraged to understand the interplay between the learning
rate, gradient noise, and gradient compression in distributed stochastic gradient methods
2025atb). Conversely, ODEs can be directly formulated, and then their numerical discretizations are
studied (Wibisono et al.| [2016; [Wilson et al., 2021} [Sanz Serna & Zygalakis| [2021). It has been argued that
acceleration can be attributed to suitable discretizations of ODEs, such as the Runge-Kutta integrator and
its variants (Zhang et al., 2018; Dobson et al., [2025)), and the symplectic integrators (Shi et al., [2019; Franca|
let al. |2020; [Muehlebach & Jordan, 2021)).

However, the approach based solely on ODEs is insufficient to account for whether acceleration is achieved.
For example, for minimizing strongly convex functions, both Nesterov’s accelerated gradient method (NAG-
SC) and Polyak’s heavy-ball method (HB) admit the same limiting ODE, but only NAG-SC achieves ac-
celerated convergence while HB provably does not (Goujaud et all [2025). To address this limitation,
proposed a new approach based on high-resolution ODEs. These ODEs are derived by retaining
certain terms from the discrete algorithms that would otherwise vanish in the continuous-time limit as the
stepsize tends to zero. In particular, the high-resolution ODE for NAG-SC includes an additional Hessian
term, which is absent in the ODE for HB. The Hessian term stems from the gradient correction term in the
NAG-SC algorithm, which is defined as linear in the difference between the current and previous gradients.
By translating the Lyapunov analysis of high-resolution ODEs back to their discrete counterparts,
established accelerated convergence for NAG-SC and non-accelerated convergence for HB. Their anal-
ysis suggests that gradient correction plays a crucial role in achieving acceleration. This raises two interesting
questions. First, can we quantify the magnitude of gradient correction for achieving acceleration by discrete
algorithms? Second, can high-resolution ODEs themselves provide insight into such a quantification?

We take a direct approach to studying the scope and mechanism of gradient correction for acceleration of
discrete algorithms. Our work has three main contributions, summarized as follows. See Appendix [A] for a
detailed comparison of our work and the literature, including LMI/SDP techniques, |Sanz Serna & Zygalakis|

(2021), and Shi et al] 2022).

o We formulate two general classes of algorithms and establish sufficient conditions for when the
algorithms achieve accelerated as well as non-accelerated convergence for the strongly convex and
convex settings, respectively (see Sections [2| and . Our results, for the first time, identify a
concrete sufficient condition on the magnitude of the gradient correction term to achieve acceleration,
thereby answering the first question raised above. Our proofs are based on hand-crafted Lyapunov
analysis relying on neither connections with ODEs nor the LMI/SDP framework. See Section |§| for
a comparison of our and existing Lyapunov analyses.
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e We study high-resolution ODEs derived from our classes of algorithms and compare convergence
rates of these ODEs with those of their discrete counterparts. We find that high-resolution ODEs
from our classes converge at the same rate, even though the corresponding discrete algorithms exhibit
different acceleration behaviors. This provides new evidence that even high-resolution ODEs may be
insufficient for explaining acceleration, thereby suggesting a negative answer to the second question
above. See Section [4] for a more detailed summary.

e To provide further understanding of the sufficient conditions on gradient correction, we propose
a new class of discrete algorithms called the Hamiltonian-assisted gradient method (HAG), which
leads to specific interpretations for these conditions in terms of momentum variable updates in both
the strongly convex and convex settings. See Section for a more detailed summary.

Before discussing our main technical findings, we introduce necessary notation that is largely adopted from
(2018)). For a smooth and convex function f : R™ — R, consider the minimization problem

min f(z). (1)
Throughout this paper, we assume that the minimum in is finite and attained, i.e., argmin, cp. f(x) # 0.
Denote by z* € argmin pn f(2) one of the minimizers, and f* = f(z*). When f is strongly convex, z*
uniquely exists, so that f* is always finite and attained. For m > 1, let 7™ be the set of functions that are
convex and m times continuously differentiable on R™. Moreover, we define F;* C F™ which further requires
that f is L-smooth, that is, the gradient Vf is L-Lipschitz continuous, ||V f(y) — Vf(z)|| < L|ly — x| for
x,y € R", where L > 0 is the Lipschitz constant and | - || denotes the Euclidean norm. For p > 0 we define
S C F™ which further requires that f is u-strongly convex, that is, f(y) > f(z)+(Vf(z), y—z)+5|ly—z|?
for x,y € R™. Let S;TL = F['NS,". For additional properties of smoothness and strong convexity, readers
are referred to, for example, Appendix A in|d’Aspremont et al.| (2021). Throughout this paper, we use s to
denote a fixed step size in discrete algorithms.

Our main technical findings are highlighted by the following two propositions, stated in a self-contained
manner. Further interpretations of the technical results are provided in Section [5:2} In the strongly convex
setting, Proposition [I] can be deduced from Corollary [I] to give sufficient conditions for a simplified class of
algorithms to achieve an accelerated convergence bound matching NAG-SC.

Proposition 1. Suppose that f: R™ — R is a function in Si)L for0 < p < L. Let {xy} be the iterates from
the following algorithm:

Tpy1 = ok — sV f(xg) + (1 — cr/ps)(xg — xp—1) — 2 - s(Vf(zg) — Vf(zk-1)), fork>1,

where x1 = xo— sV f(x9); ¢1 and &2 are scalar parameters. Then there exist constants Cy, C1 > 0, depending
only on ¢y and &, such that for 0 < s < Cy/L, the iterates {xy} satisfy the bound

flan) = £+ = O (Lljwo — 2*|*(1 = C1v/s)")

provided that ¢; > 2 and ¢y > %

The conditions in Proposition [I| are in terms of ¢; and &, which controls the momentum term xy — zp_1
and the gradient correction term s(V f(zr) — V f(xr—1)), respectively. To our knowledge, this is the first
time that explicit conditions have been established for the acceleration of a general class of algorithms in
the strongly convex setting. In addition, Corollary |1| indicates that when 0 < & < %, an algorithm in the
above form is proved to only have a convergence rate matching the vanilla gradient descent. Previously,
such comparative results were only known for two specific algorithms, NAG-SC and HB 2022)).
For a numerical illustration, Figure [1| (a) presents the optimality gap by applying the iterative algorithm in
Proposition [If to an ill-conditioned quadratic function, with s = 0.1, ¢ = ¢(1,1), ¢; = 3 > 2, and varying
¢o. It can be seen that using ¢o > 1/2 significantly improves convergence.

In the convex setting, Proposition [2] can be deduced from Theorem [ to give sufficient conditions for a
simplified class of algorithms to achieve an accelerated convergence bound matching NAG-C (the analogue
of NAG-SC in the convex setting).



Under review as submission to TMLR

107 -

i
LH"A”A“AM"M

i v
Wl [ W,

Wi

W

NN
i

f(x) -~

inn
Y

|~|.|”

\
= - i
— ©=3,5=0 107 g

— ©=3,5,=05 rmw
c z

W
100 _| I
10 U|\|“‘U

A
W

i

"
iy
.

. — =3, C,=25
107120 o €1 v C2
T T T T T T T T T T T
0 200 400 600 800 1000 0 500 1000 1500 2000

Iteration k Iteration k

(a) f(z) =5 x 107222 + 23 (b) f(z) = 20log 32 exp{(alz — b;)/20}

Figure 1: Optimality gaps in minimizing strongly convex and convex objectives with varying coefficients of
gradient correction. Parameters a; € R?%° and b; € R in the log-sum-exp function are i.i.d. draws from
the standard Normal distribution. The minimum f* of the log-sum-exp function is approximated by the
minimum value that the algorithm achieves.

Proposition 2. Suppose that f: R™ — R is a function in F; with L > 0. Let {x}} be the iterates from the
following algorithm

Tpp1 = g — sV f(xk) + opp1(@p — 1) — opy1C2 - s(Vf(zr) = Vf(xk-1)), fork>1,

where ©1 = xg — sV f(x0); &2 is a scalar parameter; o1 = (g — 1)/ag41, and {ar > 0} with ap =1 is a
scalar sequence such that o = Q(k), aiy1(arr — 1) < af, {arg1/ax} is monotone (either non-increasing
or non-decreasing) in k and limg agy1/ar = 1. Then for 0 < s < Cy/L with Cy = % A 2221 the iterates

282 7
{z} satisfy the bound
«_ o Nz — 2|2
) - =0 (12,

provided that ¢y > %

Proposition [2is more general than the related result in corresponding to specific choices of
ap = @ and opq1 = ﬁ with 7 > 2. For a numerical illustration, Figure (b) presents the optimality
gap by applying the iterative algorithm in Proposition [2 to the log-sum-exp function, which is convex but
not strongly convex, with s = 1, xg = 0, 7 = 2, and varying ¢é. Similar to the strongly convex case, it is
observed that using ¢y > 1/2 significantly improves convergence.

By comparing Propositions[I]and 2] we observe a common condition requiring ¢, the coefficient for gradient
correction s(V f(zy) — Vf(zk—1)), to (asymptotically) surpass an explicit threshold of 1. Such a unified
condition on gradient correction is identified for the first time for acceleration. It remains an open question
to study whether this condition is also necessary for acceleration. After presenting the main results in Sections
[ and [3] we present further numerical results to illustrate different performances of the algorithms whose
parameters either satisfy or violate the sufficient conditions for acceleration. It is found that algorithms with
parameters satisfying (or lying on the boundary of) these conditions exhibit better performance. Overall,
the numerical results align well with our theoretical findings. All proofs are deferred to Appendix [C}HE}

Asymptotic Notation. Given two sequences {a;} and {by}, we write a = O(by) if there exist constants
C > 0and K > 1, such that a; < Cby, for k > K. Similarly, we write ay = Q(bg) if a, > Cby, for k > K. We
write a = O(by) if both ar = Q(bx) and ax = O(by), and write ay, ~ by, if limy ar /b, = 1. More generally,
for a set of pairs (g, h), we write g = O(h) or g < h if there exists a constant C' > 0 such that g < Ch for
(g, h). Similarly, we write g = Q(h) or g 2 h if g > Ch for (g,h). We write g < h if both ¢ < h and g 2 h.

For convenience, a summary of the notation used is provided in Table (Appendix.
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2 Acceleration for strongly convex functions

In this section, we first give background on several algorithms for minimizing smooth and strongly convex
functions. Then we study a general class of algorithms.

2.1 Review of accelerated gradient methods
A basic method for solving (1)) is the gradient descent (GD):
Tpy1 = xp — sV f(xg), for k>0, (2)

with an initial point x¢ and a stepsize s. In this section, we study the case where f € 81 1, is smooth and
strongly convex. See Section [3] for the case where f is smooth and convex.

For f € S ..» GD can be exponentially convergent in k, and the convergence rate depends on the condition
number £ = L/u. In fact, the GD iterates (2] satisfy that for 0 < s <2/(u+ L) (Nesterov, 2018]),

Lo — z*|)? (1 _ 2ps >’“

Flow) = 7 < 2 1+1/k

When s = 1/L, the rate is (1;;:)’“ ~ (1 —2)% for k — co. When s = 2/(L + p), the rate improves

to (1;%:)2’“ ~ (1 — L)% For both choices of the stepsize, the iteration complexity for f(zy) — f* < e is

O(klog(1)), which has a linear dependency on .

Nesterov| (1988]) proposed an accelerated gradient method (NAG-SC) of the following form with an additional
extrapolation step: for k > 0,

Yet1 = Tk — sV f(2k), (3a)
Try1 = Ykt + 0(Yra1 — Un), (3b)

with o = yo and the momentum coefficient o = where ¢ = us, a shorthand to be used throughout

1+\f’
this paper. Equivalently, can be expressed in a single-variable form:

Tpp1 = xp — sV f(xr) to(ay —xp_1) —0s(Vf(ag) — Vf(zk-1)), fork>1, (4)
gradient descent momentum gradient correction
with zg and 27, = ¢ — %\%‘]). Compared with GD, the iterate involves two additional terms, called

the momentum and gradient correction. For 0 < s < 1/L, the NAG-SC iterates satisfy f(zy) — f* =
O((1—/9)*). When s = 1/L, the bound reduces to O((1—1/y/x)*), and the iteration complexity is lowered
to O(y/klog(1)), with a square-root dependency on k. Drori & Taylor| (2022)) established that a lower bound
for minimizing general f € S, ; is f(zx) — f* = Q((1 — 1//K)?*), where {z}} are iterates of any black-box
first-order methodﬂ Therefore NAG-SC is optimal up to a constant factor of 2 in terms of the iteration
complexity.

There are several first-order methods exactly reaching the lower bound (1 — 1/4/k)?*, for instance, the
information-theoretic exact method (ITEM) (Taylor & Droril 2023)) and triple-momentum method (TMM)
(Van Scoy et al., [2017). While ITEM involves time-dependent coefficients, TMM is defined with time-
independent coefficients (d’Aspremont et al., [2021): for k& > 0,

Yrt1 = o — sV f(xk), (5a)

- (xk - iww) L (- VD), (5b)

3Black-box means that no prior knowledge of f (e.g., f is quadratic) is available except for the class f belongs to. For ]-'IE,
the available information is only the Lipschitz constant L.
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2\/5 2\/5
x =——Zr+(1- , 5¢
k+1 1 \/§ k+1 ( 1 \/§ Yk+1 ( )

with 2¢p = 2zp. The sequence {z;} in TMM is auxiliary. See Appendix for an equivalent form of
containing {yx+1} and {xg41} only, where 211 can be recovered by

14+ /4 1+ /4q
Zht1 = 2\}({@&1 + <1 - 2\){{) Yk+1, (6)

Nevertheless, {z;} plays a vital role in the existing analysis of TMM. [Van Scoy et al| (2017)) showed that
{21} achieves the lower bound, i.e., f(z) — f* = O((1 — 1/4/r)?**) when s = 1/L. To our knowledge, it
remains an open question whether {zx} also achieves the lower bound.

In the Lyapunov analysis of NAG-SC in Bansal & Gupta (2019), a similar auxiliary sequence {z;} as above

is introduced by defining
14+ ./q 1+ /4
Zh1 = \/%[ﬂﬂkﬂ + <1 - \/‘}[> Yk+1, (7)

and the NAG-SC iterates in (3)) together with (7)) are equivalently reformulated as: for k& > 0,
Yer1 = T — SV fap), (8a)

st = Vi (ack - ivm)) - D (3h)

S (-)
- +(1- 7 8
Th41 1+\/§Zk+1 1+\/§ Yk+1 ( C)

with g = 2g. See Appendix for a derivation, provided for completeness. By comparing TMM with
NAG-SC (B), they differ only in how @41 is defined in and (8d). Bansal & Guptal (2019) constructed a
new Lyapunov function to simplify the convergence proof for NAG-SC, and showed that {yx} achieves the
bound f(yx) — f* = O((1 — 1/y/k)¥) when s = 1/L. By some additional arguments, similar convergence
bounds can also be deduced for {z} and {z}}.

For comparison, we also mention the heavy-ball (HB) method (Polyak, [1964), defined as

Tpt1 = 2 — sV f(z) + o(ag — xp—1), for k>1, (9)

with o = 1 T V1 a5 in 3 ote that differs from NAG-SC only in the absence of gradient correction.
LO2 ,

Following [Shi et al. et al. algorlthm (ED is a slight modification of the original method in W m

where the momentum coefficient o = (1 — /g)?. If s is small, the two coefficients (1 — ,/g)* and 1+\\?

are close. The original heavy-ball method, with the specific s = 4/(vVL + V)%, achieves an accelerated
1-1/Vk
1+1/v/k
that are not necessarily quadratic, it is shown in |Goujaud et al) (2025)) that for any s and o, the worst-case

convergence rate of HB on S}, ; is no better than O((1 — O(1/k))¥). Therefore, HB provably does not reach
an accelerated convergence rate on smooth and strongly convex problems. |Goujaud et al.| (2025)) further
shows that adding more regularity conditions to f (e.g., restricting f within those with Lipschitz continuous
Hessians) does not result in acceleration either. The failure of HB to achieve acceleration indicates that the
gradient correction plays a vital role in achieving acceleration.

convergence rate ( )2k for quadratic f 1P01yakL 1987). However, when minimizing functions in 8;’ I

2.2 Main results

We formulate a broad class of algorithms, including NAG-SC and TMM as special cases, and establish
sufficient conditions for when the algorithms in the class achieve acceleration, which is defined as reaching
an objective gap of O((1 — C/y/k)F) at iteration k, for a constant C' > 0. Our work does not aim to find a
sharp value of C or address the question of whether these algorithms ezactly achieve the complexity lower
bound corresponding to C' = 2 (Drori & Taylor} 2022). For an overview of prior work on acceleration covered
by our analysis of the general class of algorithms, see Table
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Table 1: Existing algorithms covered by our analysis

Method Formulation Convergence
or withn=v=7=1 Accelerated rate by Theorem [1] (ii-d)
NAG-SC Accelerated rate by Corollary [I] (ii) as a lim-

" with co =1, e1 =2, and ¢; = 3/2 iting case when ¢ | 2

TMM [10)) or (]ﬁl) withn=v=1,7=2 Accelerated rate by Theorem [1] (ii-a)
14) with co =2, ¢; =3, and ¢co = V2  Accelerated rate by Corollary (ii)
HB with cg = 1, ¢1 = 2, and ¢ = 1/2 Non-accelerated rate by Corollary [1| (i) as a

limiting case when ¢; | 2

To unify and extend NAG-SC and TMM, we consider the following class of algorithms: for k& > 0,
Yrt1 = o — sV f(xk), (10a)
1
Zkr1 = Vg (:rk - qu(xk)> + (1 = vvg)a, (10b)

L \/q 7\/&
= —=Z 1 — 5 1OC
Tk+1 1 \/EI k+1 T ( 1 \/§> Yk+1 ( )

with zg = zgp, where n,v,7 > 0 are three parameters which may depend on ¢q. NAG-SC or is
recovered by setting (n,v,7) = (1,1,1), and TMM is recovered by (n,v,7) = (1,1,2). In this way, the
two algorithms differ only in the choice of 7.

Equivalently, algorithm can be put into a single-variable form in terms of {z}, similarly to for
NAG-SC: for k > 1,

v(T + (ny/q)

Tht1 = Tk — stf(wk) + (o —ap_1) — ————=—5(Vf(ar) = Vf(zr-1)), (11)

1+./q 1+./4
with zg and 27 = z¢ — C{’j\l/’g sV f(xo), where ( = 1+ (1 — 7),/q, a shorthand used throughout this paper.

The coefficients in the three terms for sV f(z), zr —xk—1, and s(V f(xg) — V f(zr—1)) are highly structured
due to the translation from .

¢t —vva)

(1 —vy/q)

The following result gives sufficient conditions for the convergence of algorithm in the scenario where
(n,v,T) are constants free of q (= us).

Theorem 1. Let f: R™ — R be a function in S}ML with 0 < p < L. Assume thatn =19, v =1y, and 7 = T
for some constants (no, Vo, 7o), free of g (= us).

(1) There exist constants Co, C1 > 0, depending only on (10, v0, 7o), such that for 0 < s < Co4s, the iterates
of (@) satisfy
flag) = f* = O (Lllzg — 2*[*(1 = C1y/ps)r) (12)

provided that one of the following conditions holds:

(i-a) vo, 70 > 0, vo # 70, and 0 < ny < Vo7 /2;

(i-b) vo =10 > 2 and o = 73 /2.

(ii) There exist constants Cy,C1 > 0, depending only on (ng, Vo, 7o), such that for 0 < s < %, the iterates
of (@) satisfy (@, provided that one of the following conditions holds:

(#i-a) vo, 70 > 0, Vo # To, and no > vo70/2;



Under review as submission to TMLR

(i5-b) vo =10 > 2 and no > 78 /2;
(ii-c) 1 < vy =19<2 andny > 1p;

(ii-d) 0 <vg =710 <1 and ny > 79.

The constants Cy and C7 in Theorem [I] can be explicitly specified, although the expressions are complicated
and thus suppressed. See the proofs in Appendix[C]for details. Similarly, the explicit expressions of constants
Cy and Cy appearing in other formal statements in this subsection are suppressed as well. The convergence
bound exhibits two types of dependency on k, determined by how large the stepsize s is allowed. A similar
phenomenon occurs in the comparison of NAG-SC and HB. Under the conditions in Theorem i), algorithm
achieves a usual convergence bound O((1 — C/k)¥) for s =< £, resulting in an iteration complexity
O(mlog(%)). Under the conditions in Theorem ii), algorithm (10) reaches an accelerated convergence
bound O((1 — C//k)*) for s < 1, resulting in an iteration complexity O(y/klog(%)). In particular, TMM
with (1o, v0,70) = (1,1,2) is covered by condition (ii-a), whereas NAG-SC with (1, vp,70) = (1,1,1) is
covered by condition (ii-d). It is interesting that for both TMM and NAG-SC, the choice of (1o, v, 7o) lies
on boundaries of the acceleration regions identified in Theorem (ii)E| In addition, although no algorithm
in class leads to exactly HB, there are close variations of HB which are in the class with constant
(n,v,7) and covered by the non-acceleration regions in Theorem [1f(i)[]

We next extend the constant case to a more general scenario where (7, v, 7) are analytical functions of /g,

free of negative exponents like ¢~1/2, as stated in Assumption |l In particular, (n,v,7) that are polynomials

of \/q satisfy Assumption

Assumption 1. There exist non-negative, analytic functions 7(-), 7(-) and 7(-) in a neighborhood of 0 such
that n = 7(,/q), v = 7(\/q) and 7 = 7(,/q). Then 7, v and 7 admit (convergent) Taylor expansions:

n=> n(va), v=Y uva, T= n(a, (13)
P ; ;

i=0 =0

when 0 < ¢ < ¢ for some constant ¢ > 0.

The following result gives sufficient conditions on the convergence of the algorithm , in terms of only the
constant coefficients, (19, v, 70), in the expansions .

Theorem 2. Suppose that f: R" — R is a function in Si,L with 0 < u < L and Assumption holds.

(i) For 0 < s < Cofs (non-accelerated convergence), the iterates of @) satisfy (@, with Cy,C1 > 0
depending only on the functions (1,0,7) (independent of q), provided that condition (i-a) in Theorem
holds.

(i) For 0 < s < CO% (accelerated convergence), the iterates of @) satisfy , with Cy, C1 > 0 depending
only on the functions (7,0, 7) (independent of q), provided that condition (¥-a) in Theorem holds.

Theorem [2] serves as a generalization to Theorem [1} cases (i-a) and (ii-a). When (7, v, 7) depend on ¢ with
leading constants vy = 79 > 0 and 79 > 73/2, which is not addressed by Theorem [2| the following result
gives sufficient conditions on convergence of algorithm , involving the coefficients (1, v1,71) of linear
terms in the expansions . However, in the degenerate case of constant parameters (7, v, 7), the sufficient
conditions in Theorem [3] are more restrictive than those in Theorem [l

Theorem 3. Suppose that f: R™ — R is a function in ‘S/LL with 0 < p < L and Assumptz’on holds with
vo =10 >0 and ny > 12/2.

4The TMM choice, o = vo = 1 and 79 = 2, satisfies vy # 70 and 1y = v9T0/2, lying on the boundary of condition (ii-a) in
Theorem The NAG-SC choice, ng = vg = 10 = 1, satisfies vg = 790 = 1 and 19 = 70, lying on the boundary of condition (ii-d)
in Theorem E

5For any constant 0 < v # 1, taking (n,7,v) = (0,1,19) in yields the update xx 1 = xp — L:_’io\/asz(xk)—&-

ZTx_1), which closely resembles HB @ as vg — 1 and achieves non-accelerated convergence by Theorem i—a).

1-v0/q
1+/q ($k -
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(1) For 0 < s < Cy+5 (non-accelerated convergence), the iterates of @) satisfy @), with constants Cy, Cp >
0 depending only on the functions (7,0, 7) (independent of q), provided that the following holds:

2
(i—a) Mo 273/2, V1 — 11 < T (770—1), and2771 <I/1T1+770(%T0—2).

(ii) For 0 < s < Cot (accelerated convergence), the iterates of @) satisfy , with constants Cp,C1 > 0

depending only on the functions (7},0,7) (independent of q), provided that one of the following conditions
holds:

2
(ii-a) no =18/2, 1n — 11 < To (%0 — ), and 21y > v + %0 (%7'0 - 2);
(ii-b) mo > 78/2 and v1 — 11 < (10 — 1)70 — No;

(Z'Z.—C) no > T02/2 and (TO — 1)7’0 —No <V —T1 <7y To-

All the preceding results are applicable to algorithm or equivalently its single-variable form with
structured coefficients. To facilitate comparison and interpretation, we translate Theorem [2] in terms of
a single-variable form below with unstructured coefficients. It remains an open question to directly
analyze , for example, via the LMI/SDP framework.

Corollary 1. For f: R" = R in Sﬁth with 0 < pu < L, consider the following algom'thmﬂ

Tpr1 = — (co+ R1)sV f(wr) + (1 —c1y/q+ Ro) (zg — w—1) — (c2v/co — %0 +R3)s(Vf(zr) =V f(zr-1)),
(14)

where 1 = xo — h1sV f(x0); co,c1,c2 > 0 are constants independent of q; Ry = O(,/q), Rz = O(q),
R3 = O(\/q), and hy are analytic functions of \/q around 0.

(i) For 0 < s < Cofs (non-accelerated convergence), the iterates of satisfy @), with Cy,C1 > 0
depending only on (co,c1,c2) and the forms of (Ry, Ra, R3) (independent of q), provided ¢? > 4cqg and

co/4 < c3 < cp.

(i) For 0 < s < Co% (accelerated convergence), the iterates of satisfy , with Cy,Cy > 0 depending
only on (co,c1,c2) and the forms of (R1, Re, R3) (independent of q), provided c3 > 4co and c3 > cq.

To the best of our knowledge, Corollary [I] for the first time, identifies concrete conditions for accelerated and
non-accelerated convergence in a general class of algorithms . Moreover, the conditions are defined in
terms of two parameters ¢; and c¢s, which control the momentum and gradient correction terms, respectively,
while the other parameter cy can be viewed as a non-essential rescaling parameter. We discuss these two
conditions in detail.

First, the condition ¢ > 4cy for the momentum coefficient is due to implicit constraints in the coefficients
of when translated from Theorem [2| in terms of . Although NAG-SC and HB @D can both be
put into with parameters ¢ = 1, ¢1 = 2, ¢co = 3/2, and ¢y = 1, ¢; = 2, ¢ = 1/2, respectively, their
convergences are not covered by Corollary [1| due to that the condition ¢? > 4cy does not hold. Nonetheless,
if viewing NAG-SC and HB @D as the limiting algorithms when ¢; | 2, then NAG-SC achieves an
accelerated convergence by Corollary [1| part (ii) while HB @[) achieves a non-accelerated convergence by
part (i). See Table [1] for a summary. We believe that ¢? > 4cy is technical and can be potentially relaxed
to ¢; > 0. See Appendix [A] for a detailed discussion of the connection with related work in

[Zygalals (2021).

Second, the condition ¢3 > ¢o or cg/4 < ¢ < co directly distinguishes between the accelerated or non-
accelerated convergence. In other words, the leading constant ce./cog — ¢o/2 in the coefficient of gradient
correction needs to exceed a threshold c¢y/2.

6The seemingly unnatural parameterization of the gradient correction coefficient is motivated by the HAG algorithm in
Section@
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Figure 2: Minimizing strongly convex functions by . The left column is for ill-conditioned f(x1,x2) =
5 x 107327 + 23, and the right column is for well-conditioned f(z1,22) =5 x 10~ z3. Fix ¢g = 1. The
initial iterates are xg = (1,1) and 1 = xg — 28V f(x0)/(1 + /125).

For numerical illustrations of the theoretical results in Corollary we apply (14]) to two quadratic functions
on R?, similarly to [Su et al.| m m, under different parameters and step sizes. It is particularly of interest
to compare the performance of the parameter choices falling inside (or on the boundaries) versus outside
the sufficient conditions for achieving accelerated convergence in our theoretical results. Specifically, we take
¢p fixed at 1, ¢ = 1, 2 (boundary) and co = 1/2,1 (boundary), 3/2. All remainder terms Rj, Ry, and Rj
in are taken to be 0. Here ¢; = 1,2 corresponds to under-damping (c? < 4cp) and critical-damping

10
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(c? = 4cp) respectively, and ca = 1/2,1,3/2 corresponds to the leading constant of the gradient correction
coefficient in being 0,1/2, 1 respectively. For NAG-SC ({]), ¢; = 2 and ¢3 = 3/2, and for heavy-ball @,
¢1 =2 and ¢z = 1/2, but both with nonzero remainder terms Ry and Rs3. Hence, the algorithms tested are
not exactly NAG-SC or the heavy-ball method.

From Figure [2[ we observe that critical-damping (¢; = 2) results in a faster convergence than under-damping
(c1 = 1). Increasing co (gradient correction) also tends to improve the performance, but to a relatively small
extent in the ill-conditioned case once ¢ > 1. The error plots when ¢a = 1/2 in the ill-conditioned case
appear to be a sum of two oscillations. Overall, the numerical results are consistent with our theoretical
results in the strongly convex setting. Better performances are observed from algorithms with more friction
(i.e., a large ¢1) and larger gradient correction (i.e., a large cs).

3 Acceleration for convex functions

In this section, we first give background on several algorithms for minimizing smooth and convex functions.
Then we study a general class of algorithms.

3.1 Review of accelerated gradient methods

Consider the unconstrained minimization problem with f € Fi. For stepsize 0 < s < 1/L, the GD
iterates { f(xx)} is non-increasing and satisfy f(xzx) — f* < |lzo — x*||2/(2k:s)E] However, the O(1/k) rate is

not optimal. (1988) proposed an accelerated gradient method in a similar form as NAG-SC :
for £ >0,

Yrt1 = o — sV f(xp),

(15)
Tht1 = Yht1 + Okp1 (Ur+1 — Yi),

with zp = yo and o441 = k/(k + 3). Compared with NAG-SC (3], the momentum coefficient o441 varies
with k, instead of taking a fixed value depending on the strong-convexity parameter p. For 0 < s < 1/L,
the NAG-C iterates {f(z)} may not be non-increasing but satisfy

flan)— fr =0 ('xo‘lf”) | (16)

Compared with GD, the iteration complexity for f(zx) — f* < € is reduced from O(L/€) to O(y/L/€) when
taking s = 1/L. Notably, the convergence bound in matches with the lower bound of black-box first-
order methods for minimizing functions in F; when n (the dimension of ) is relatively large compared with

k (Nesterov, 2018).

The single-variable form in terms of {zj} for NAG-C is: for k> 1,

Tpy1 = Tk — sV f(wr) + opp1(zr — Tp-1) — oky1 - S(V () = V(1-1)), (17)

gradient descent momentum gradient correction

with zg, 21 = 20 — sV f(x0), and ox41 = k/(k+ 3). The iterate involves an additional momentum term

and a gradient correction term similarly as in (4) for NAG-SC. (2022) studied NAG-C by relating
=

to a high-resolution ODE (see Section and obtained a new result on the squared gradient norm:
for stepsize 0 < s < 1/(3L),

_ ex]|2
i, V5P =0 (U= ). 19

The inverse cubic rate cannot be obtained directly from . Moreover, |Shi et al.| (2022) extended the

coefficients in the momentum and gradient correction terms in to o1 = k/(k+r+ 1) and op110s
respectively, and showed that the two bounds in and remain valid for any r > 2 and 8 > 1/2.

"For stepsize 1/L < s < 2/L, the GD iterates {f(z})} is still non-increasing but satisfies a slightly different bound

12
0] (%) for the objective gap (Nesterov} 2018).

11
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Table 2: Existing algorithms covered by our analysis

Method Br e Qi Ok+1 Convergence

1 (k+2)/2 kE/(k+3) Acceleration by Theorem
1 any oy satisfying (g —1)/ags1  Acceleration by Theorem
1 (k+r)/rforr>2 k/(k+r+1)  Acceleration by Theorem

The form of momentum coefficient o1 can be made more general. For instance, a popular scheme is to set

ok+1 = (g — 1)/ag41, where {ay} is a scalar sequence to be chosen. It is known (Beck, [2017)) that for any
sequence {ay} satisfying oy, = Q(k) and a recursive conditiorf?]

appi(app — 1) < aj, (19)

the corresponding algorithm (T5)) achieves the optimal bound . For the well-known accelerated proximal
gradient method or FISTA (]Beck & Teboullel7 |2009|), {ay} is defined recursively as a1 = (1++/1 + 4a3)/2
with g = 1, i.e., holds as equality. It can also be verified that {ay = (k+1)/r} satisfies IFF r > 2,
with corresponding 0,11 = k/(k+ 7+ 1).

3.2 Main results

We formulate a broad class of algorithms including NAG-C and existing variations (Beck, 2017
2022) and establish sufficient conditions for when the algorithms in the class achieve both the optimal
bound (16 for the objective gap and the inverse cubic rate for the squared gradient norm, similar to
NAG-C.

To unify and extend existing choices of the momentum and gradient correction terms related to NAG-C, we
consider the following class of algorithms: for k£ > 0,

Yrt1 = T — PrsV f(xr),

20
Tpy1 = T — VSV (@k) + Oh1 (Y1 — Yk), (20)

where o = yo, o1 = (ar — 1)/ag+1, and {ax}, {Br} and {y;} are three scalar sequences. The equivalent
single-variable form of is for k > 1,

Trp1 = Tk — (W + Ok 1(Br — Be—1))sVf(xr) + ong1(@p — Tr—1) — okg1Br—1 - s(Vf (k) — Vf(2r-1)),
(21)

starting from g and 1 = 29 — (Y0 + (@0 — 1)Bo/1)sV f(xg). For an overview of prior work on acceleration
covered by our analysis of the general class of algorithms or (21]), see Table 2] To highlight the main
points, Proposition was stated in Section for a special case of (21)) with constant v, = 1 and S = é.

Motivated by the Lyapunov analysis of NAG-C in (2016)), we introduce the following three-variable
form of . Define z, = agzg + (1 — ag)yx for k > 0, which is reminiscent of and (ED in the strongly
convex setting. Then can be equivalently reformulated as: for k > 0,

Ye+1 = Tk — BrsV f(z), (22a)
Zk+1 = Rk — &ksz(:ck), (2211))

1
Zgy1 + <1 — ) Yk+1, (22c)
1 Qft1

1
Tp+1 =
Oy

starting from xg = 2o, where ax = Brag + (vk — Br)k+1. See AppendixDl for a proof. By definition, given
{Br} and {ag > 0}, there is a one-to-one correspondence between {v;} and {ax}: v = (ar — Br(ax —
ak+1))/ak+1. Hence, algorithm or can be considered to be directly parameterized by the three

8The recursive condition implies that a1 < (14 4/1+ 4aﬁ)/2 < ap + 1, and hence ay, = O(k).

12
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sequences {ag }, {8k} and {ax}. The three-variable form (22)) is introduced mainly to facilitate our Lyapunov
analysis, which is presented in Section [6l The z update appears to differ from in the strongly
convex case, although resembles ([10c|) in the sense that the weight of z; or yx in the update of xj, goes
to 0 or 1 respectively as ay — oo in (22d) or s — 0 in (10d).

Our main result gives sufficient conditions on when algorithm or achieves accelerated convergence
in both the objective gap and gradient norm, similar to NAG-C. We discuss interpretations of the conditions
from the perspective of HAG in Section

Theorem 4. Let f: R™ — R be a function in Fi with L > 0. Assume that the following conditions jointly
hold:

(i) limy B, = B and limy v, = v with > ~v/2 > 0;
(ii) {ou, > 0} satisfies that ay, = Q(k), limy, agt1 /o = 1, agpr1(agrr — 1) < ai;

(iii) {an/ar} is monotone (either non-increasing or non-decreasing) in k.

Then for 0 < s < Cy/L with Cy = 2_2";3//3 A % > 0, the iterates {xy} from @), or satisfy the

bound (@ for the objective gap and the inverse cubic rate @ for the squared gradient norm.

For Theorem |4 the existence of the limits, limy By = £, limg v, = 7, and limg axq1/ax = 1, are introduced
mainly to simplify the sufficient conditions and may be relaxed even with the same Lyapunov function in our
proofs. The monotonicity condition on {ay/ax} may also be relaxed by using other Lyapunov functions. In
the setting of S = 8 and 7y, = 7, we have ay/ap = 8+ (v — B)ak+1/ak. Then the monotonicity condition
is equivalent to either requiring 5 = v without any additional constraint on {ay} or, if 5 # =, requiring that
{ag+1/ax} is monotone. The latter condition is satisfied by both the linear choice o, = (k 4 r)/r and the
iterative choice a1 = (1 + /1 +4a3)/2 with ap = 1 in FISTA.

We also point out that the conditions in Theorem [ are general enough to allow the absence of a limiting
ODE for . As described in Section |4 a necessary condition for the existence of a limiting ODE of
is that limg k(1 — ok41) exists. However, we provide an example where the conditions in Theorem W] are
satisfied, but limy k(1 — o%1) does not exist.

Lemma 1. Consider the sequence {ay} defined by alternating two rules:

(k+r)/r, if k is even,
NV 1402 )2 ik s odd,

with ag = 1. Then for any r > 2, condition (ii) in Theorem [ holds. But limy, k(1 — oy41) does not exist if
r > 2: along {k'} = {2k} and {K"} = {2k + 1}, we have

lim k(1 —og41) =3r/2, lim k"(1—opr41) =2+71/2.

k' —o00 k' —o0

Lemma (1| shows that accelerated convergence can be achieved by algorithm , independent of whether
a limiting ODE existsﬂ Hence, convergence of discrete algorithms may not always be explained from the
ODE perspective.

For numerical illustrations of the theoretical results in T heorem we apply to various objective functions
under different parameters and step sizes. It is particularly of interest to compare the performance of the
parameter choices falling inside (or on the boundaries) versus outside the sufficient conditions for achieving
accelerated convergence in our theoretical results. Specifically, we consider a quadratic objective f(z) =
2" Ax /24 b"x and the log-sum-exp objective f(x) = plog ngi exp{(afx —b;)/p}, following [Su et al. 1)

9A similar conclusion can be found for algorithm or in the strongly convex case. See Appendix [A| for a detailed
discussion.

13



Under review as submission to TMLR

107
107 w
107 //J
E 10° 4 §
| =
2 Fi
< T
@ 10 g
— r=1,p=0 ? 107
— r=1,p=05
—— r=1,B=1
10 —— r=2,B=0
r=2,p=05 107 -
— r=2,p=1
1 T T T T T T
0 500 1000 1500 2000 2500 3000 0 500 1000 1500 2000 2500 3000
Iteration k Iteration k
(a) Scaled errors (s = 0.05/||A]|) (b) Scaled gradient norms (s = 0.05/]|A]|)
107
10*2 —
~ 10° |
T
2
S ol
— r=1,B=0
— r=1,p=05 5
—— r=1,B=1
10° — r=2,p=0
r=2,8=05 10 5
— r=2,p=1 .
T T T T T T T T
0 500 1000 1500 2000 2500 3000 0 500 1000 1500 2000 2500 3000
Iteration k Iteration k
(c) Scaled errors (s = 0.1/||A|]) (d) Scaled gradient norms (s = 0.1/]|4]|)
IS . Y (R
107 Byt i1 4 I
Al TR “ljl
) | \
(LA ‘
~ 10° 4 | I
o \
£
% 10
— r=1,B=0
— r=1,p=05
—— r=1,B=1
10 — r=2,B=0
r=2,=05
— r=2,B=1
T T T T T T T T T T
0 500 1000 1500 2000 2500 3000 0 500 1000 1500 2000 2500 3000
Iteration k Iteration k

(f) Scaled gradient norms (s = 0.3/||A||)

Figure 3: Scaled errors and squared gradient norms in minimizing f(x) 12T Az + b"z by under
different step sizes, where A = BTB for B € R%09%500 p, ¢ R590 Al entries in B and b are i.i.d. draws from

U(0,1), and || A4 is the spectral norm of A. We take v =1, oj41 = for r =1,2 and f =0,0.5,1 in

29

(e) Scaled errors (s = 0.3/||A||)

_k

k+r4+1

The quadratic function is strongly convex but with p =~ 0, and the log-sum-exp function is not strongly
k

convex. For algorithm parameters, we set v = 1, o041 = T for r = 1,2 (boundary) and 8 = 0,0.5
(boundary), 1. In particular, NAG-C corresponds to » = 2 and § = 1. In the log-sum-exp case, the
minimizer has no closed form, so we approximate f* by running NAG-C, which converges fast in hundreds

of iterations using a relatively large step size.
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Figure 4: Scaled errors and squared gradient norms in minimizing f(z) = plog ngi e~ 7 by under
different step sizes, where A = [ay,...,a200] € R%9*200 b € R20 and p = 20. All entries in A and b are
ii.d. draws from N(0,1). We take v =1, o511 = ﬁ forr=1,2and 8 =0,0.5,1in .

Figures [3] and [4] present the traces of the scaled optimality gap and the scaled squared gradient norm. In
both Figures [3| and [4] for fixed [, increasing » = 1 to r = 2 significantly accelerates the convergence of
f(zg) — f* and ming<;<k ||V f(z;)||*. In particular, it can be observed in Figure (b), (d), and (f) that the
bound ming<;<x ||V f(z;)||*> = O(1/k%) may fail when r = 1 since the product (k + 1) ming<;<g ||V f(z;)[]?
appears to increase in an unbounded way as k increases. From Figure [d] for fixed r, increasing 8 markedly
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improves the performance in decreasing f(xx) — f* and ming<; <k |V f(x;)||?, especially when the step size is
large as in Figure 4] (e). A similar beneficial effect of a larger 8 can be observed from Figure [3[in decreasing
ming<;< [|V.f(z;)[|?, but the effect there is less obvious in decreasing f(xy) — f*, where all algorithms
exhibit oscillations during iterations, and the oscillations become stronger as the step size increases. Overall,
the numerical results are consistent with our theoretical results. Better performances are observed from

algorithms with more friction (i.e., a larger ) and larger gradient correction (i.e., a larger j3).

4 ODE connection and comparison

As the stepsize s vanishes to 0 in a discrete algorithm, the limiting ODE (if exists) can be studied to under-
stand the behavior of its discrete counterpart (Su et al., 2016} [Shi et al., 2022)). We study the convergence
rates of limiting ODEs of algorithms in Sections [2 and [3] and compare them with the discrete results.

We briefly review how the limiting ODEs from NAG-SC and NAG-C EI) exhibit interesting differences
from that of the vanilla gradient descent , as discussed in @ . On one hand, by taking At = s
and x = X (t;) = X (ks) for a continuous-time trajectory X; = X (¢), the limit of gradient descent as
5 — 0 is the gradient flow

with X (0) = zo. It is known that when f € Up~oF}, has a unique solution X;, which satisfies that
F(Xp) = f* <l — 2*[|?/(2t) and when f € Ur>,S, 1, f(Xi) = f* < e (f(x0) — f*). By relating X; to
xy (i.e., taking ¢ = ks for small s), the former O(1/¢) rate translates into O(1/(ks)), which is exactly the
discrete rate of gradient descent in the convex setting. The second O(e~2/!) rate resembles O((1 — 2us)¥)
for s & 0, which is similar to the discrete rate O((1 — 1?{%)’“) for gradient descent in the strongly convex
setting.

On the other hand, by taking At = /s and z; = X(t;) = X(ky/s) for a continuous-time trajectory
X = X(t), the limit of NAG-C as s » 01is for t > 0,

. 3.
X+ EXt +Vf(Xy) =0, (24)

with initial conditions X (0) = z¢ and X(0) = 0. When f € Ur~oF}, (24) has a unique solution X;, which
satisfies that f(X;) — f* < 2[|zo — 2*||?/t?. The limit of NAG-SC is

Xi +2ypX: + V(X)) =0, (25)

with initial conditions X (0) = z¢ and X (0) = 0. When f € ULZNS;,L’ has a unique solution X;, which
satisfies that f(X;) — f* < 2e~VF!(f(x¢) — f*). For a fixed t, X; can be approximated by the discrete iterate
xp, with t = k\/s for a small s. Using t = k+/s, the former O(1/t?) rate translates into O(1/(sk?)), which is
the discrete rate for NAG-C. The latter O(e™ V") rate matches the discrete rate O((1—,/us)¥) for NAG-SC.
In these cases, the convergence rate of the continuous-time trajectory X; = X (t) matches that of the discrete
iterates {xy}.

The overall findings of our study can be summarized as follows.

e For minimization of strongly convex functions, the ODE convergence bounds do not directly inform
the range of feasible stepsizes, which are crucial in determining whether acceleration is achieved.

e For minimization of either strongly convex or convex functions, the gradient correction term vanishes
in the (low-resolution) ODEs. Although this term is explicitly retained in high-resolution ODEs,
these ODEs can still converge at the same rate with or without it.

In conclusion, the convergence properties of limiting ODEs, including high-resolution ODEs, fall short of
informing whether discrete algorithms achieve acceleration. Our work provides explicit convergence bounds
for the low- and high-resolution ODEs through new Lyapunov analyses. These results complement and
enrich the existing literature on the connections and gaps between discrete algorithms and ODEs.
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4.1 Strongly convex setting

For strongly convex f, we compare the convergence of algorithm and related ODEs. By taking At = /s
and xp = X (t;) = X(k+/s), the limiting ODE of as s — 0 is

X+ ci/pXe + V(X)) =0, (26)

with initial conditions X (0) = x and X (0) = 0. This can be viewed as a Newtonian equation of motion in
a viscous medium in the potential field ¢y f with ¢y as the rescaling constantm The damping coefficient is
14/, resulting from the momentum coefficient 1—c;,/q in . For convenience, the three settings ¢ > 4cy,
c? = 4cg, or 2 < 4cg are referred to as over-damping, critical-damping, or under-damping, respectively. The
parameter co associated with the gradient correction vanishes. Nevertheless, for any smooth and p-strongly
convex f and any cg,c; > 0, we show that the solution X; uniquely exists, and f(X;) converges to f*
exponentially fast with a decaying rate proportional to (/. To state the result, we use C?(I;R™) to denote
the class of p*" continuously differentiable maps from an interval I to R™.

Proposition 3. Let f: R" — R be a function in ULZMS;IL,L with > 0. Then the ODE @) with initial
conditions X (0) = xo and X (0) = 0 has a unique solution X; € C2([0,00); R™). Moreover, for any co,c1 > 0,

Cc1— C27 C
the solution X; satisfies that f(X;) — f* = O(e=CVF(f(xg) — f*)) for a constant C = @ > O
Otherwise (either co < 0 or ¢; <0), Xy may fail to converge to x* as t — oo.

The dependency on p in the bound above is improved to /i, compared with the O(e=2#t) bound for gradient
flow . A direct translation by ¢, = k+/s suggests that a discrete bound of O((1—C'\/zs)") may be expected
for suitable discretizations of , as opposed to O((1 — Cus)¥) for gradient descent . However, there
are notable gaps between such results suggested by ODEs and our results for discrete algorithms. First,
the bound in Proposition |3| only requires cg, c; > 0, which is much weaker than the over-damping condition
c? > 4cp in Corollary The condition ¢? > 4co may be only technical and can be potentially relaxed.
Second, the bound O((1 — C/uis)*) does not directly inform whether s < 1/L (equivalently ¢ =< 1/) or
s = pu/L? (¢ < 1/Kk?), corresponding to different orders of time interval in discretizing the ODE. The former
leads to acceleration while the latter does not. Third, the gradient correction term from algorithm
vanishes in the limiting ODE 7 so that the ODE does not capture the effect of gradient correction.

To complement the preceding discussion, we study the high-resolution ODEs for NAG-SC and HB @,
which are proposed to reflect the gradient correction or lack of in the two methods . The
high-resolution ODEs are derived by retaining O(4/s) terms that would otherwise vanish in the limit of
s — 0. By taking At = /s and z = X (tx) = X (k\/s), the low-resolution ODEs for NAG-SC (4) and HB
(]E[) are the same equation in . The high-resolution ODE for NAG-SC is

Xi + 20X + VsVAF(X) X + (1+ /ps)VF(X) =0, (27)
with initial conditions X (0) = ¢ and X (0) = — 1i‘\/f%Vf(xo). The high-resolution ODE for HB is
Xi+ 20X + (1 + Vs) V(X)) =0, (28)

with the same initial conditions. For NAG-SC, the gradient correction results in an additional Hessian term,
VeV f (Xt)Xt, in . However, the convergence rates of these two high-resolution ODEs are the same.
The following result is qualitatively similar to Theorems 1 and 2 in , but involves a sharper
rate due to a new Lyapunov analysis.

Proposition 4. Let f: R"™ — R be a function in ULZusi,L with @ > 0. Then each of the ODEs
and @) with initial conditions X (0) = xo and X(0) = —2v/5V f(x0)/(1 + /1s) has a unique solution
X; € C?([0,00);R™). Moreover, for both ODEs, the solutions X; satisfy that f(X;) — f* < Voe VH,

101t suffices to establish convergence for 1} for co = 1, then all other cases with cp > 0 can be recovered by a time rescaling.
11 The constant C' in Proposition [3| can be improved using the IQC methods (]Sanz Serna & Zygalakisl, |2021[). However, our
analysis is based on a concise Lyapunov analysis, and our goal is not to find the sharpest constant. See Appendix@for details.
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where the constant Vo = (14 /us)(f(zo) — f*) + 3|l/B(zo — 2*) — \/EL\/EVf(xO)HZ for and Vo =
(L4 VES) (F(x0) = ) + 3| Vo — &) = 225V f(w0)? for (28).

Unfortunately, despite explicitly incorporating the gradient correction (or not), high-resolution ODEs do not
exhibit differences in convergence rates and therefore fail to capture the effect of gradient correction.

4.2 Convex setting

For convex f, we compare the convergence of algorithm and related ODEs in the setting where v = 7,
Br = B, and ap = ’“Ti By rescaling the stepsize s to s/v, the parameters v and 8 can be reset to 1 and
B/~ respectively. In this setting, reduces to the sub-class in [Shi et al.| (2022)), with two parameters r
and G/~

Try1 = o — sV f(xr) + opqr(2p — T—1) — 0k+1§ -8(Vf(xk) = Vf(2r-1)), (29)
where o411 = Z’;—: = k+r+1 By taking At = /s and z, = X (t) = X (k+/s), the limiting ODE for is
for t > 0,

Lort1
X+ =X+ VX =0, (30)

with initial conditions X (0) = 2o and X (0) = 0. This can be viewed as a Newtonian equation for a particle
moving in the potential field f with friction. The damping coefﬁ(nent is T'tH, resulting from the momentum

coefficient o 1. mm ) showed that if f € Ur~oF}, (30) with the specified initial conditions has
a unique solution X; € C*( ;R™) N Cl([O 00); R™). Moreover the convergence of X; exhibits a phase

transition at r = 2, the ch01ce in NAG C . If » > 2, then f(Xt) — f* = O(1/t?). But if r < 2, the
rate O(1/t?) may fail as illustrated by counterexamples. For ay, = it can be directly verified that the
recursive condition ag41(ax41 — 1) < af in Theorem || holds if and only if r > 2. Therefore, the condition
on the momentum term for acceleration of is well captured by the limiting ODE.

The ODE (30), however, does not reflect the parameter /vy associated with the gradient correction in
algorithm (29)), which is similarly observed in the low-resolution ODE for algorithm in the strongly
convex setting. The gradient correction term, of order O(4/s), can be incorporated in a high-resolution ODE
(Shi et al., [2022)). By taking ty = % and t = to + k+/s for algebraic convenience, the high-resolution
ODE for (21)) is for t > tg > 0,

r+1 (r+1)y/s

%
¢t 2t

&+5¢v2a»&+@+ )Vﬂ&)O, (31)

with initial conditions X (tg) = xo and X (to) = —/5V f(x¢). When f € Up~oF7 and r = 2,
established the existence and uniqueness of a solution X; € C?([tg, 00); R™). The general case with r > 2 is
beyond the scope of this paper. If a solution exists, the following result gives convergence bounds of for
both r > 2 and r = 2 via a new Lyapunov analysis. provided similar bounds only explicitly
in the case of r > 2.

Proposition 5. Let f: R" — R be a function in F2. Suppose that X, is a solution to with initial
conditions X (to) = xo and X(to) = —/sVf(xo). If r > 2 and % > 0, then there exists a time point
ty > tOB with t1/\/s depending only on r and /v, such that X; satisfies the bounds:
Vi Wi
X)=f=0(<), il IV =0 =t )

s - =0 (S2). it VS =0 (5T
In addition, if r > 2 and § = 0, then the first bound still holds. Here Vi, is the value that the continuous
Lyapunov function takes at t,: V; = (t+C/s)(t+ (“3 — g)\/g)(f(Xt) - M+ t+€f Lr(X; — %) + (X +
'B—\/EVf(Xt))|\2, where C =0 ifr > 2 and C = g ifr=2.

I2For a general sequence {ay}, algorithm (2 may not admit a limiting ODE, as shown in Lemma
13See the proof of Proposition I in Appendlx 4 for an explicit expression for ¢;.
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If we replace ¢ by tp = to + kv/s ~ ky/s, then the first bound above translates into the accelerated bound
O(1/(sk?)) on the objective gap as in and the second becomes O(1/(s%k%)) on the squared gradient
norm as in ([18]). These two bounds above are exactly the continuous analogs of the associated bounds
for algorithm. However, compared with the condition 8/ > 1/2 in Theorem |4l the condition in the
continuous ODE setting is much weaker: 8/~ is allowed to be arbitrarily small, and even 0 (no Hessian term)
if only the O(1/t?) rate for the objective gap is desired. The latter case corresponds to a discrete algorithm
without the gradient correction, similar to HB (E[) Therefore, even when a Hessian term is included as a
continuous counterpart of the gradient correction, the convergence properties of the high-resolution ODE
are currently not fully matched by those of algorithm . This remains to be further studied as an open
question, as also mentioned in |Shi et al| (2022)), Section 5.1.

5 Hamiltonian-assisted interpretation

As observed in Section [4] the low-resolution and high-resolution ODEs do not fully capture the convergence
properties of the algorithms studied. Alternatively, we directly formulate a broad class of discrete algorithms,
HAG, based on a Hamiltonian function with a position variable and a momentum variable, and demonstrate
that the conditions from our convergence results in Sections [2] and [J] can be interpreted through HAG in a
unified manner in both the strongly convex and convex settings. This development is motivated by a related
formulation of Hamiltonian-assisted Metropolis sampling (HAMS) (Song & Tanl {2023} 2022]).

5.1 HAG: Hamiltonian-assisted gradient method

For f € F}, consider the following unconstrained minimization problem:

1
min H(z,u) = f(x —|lu)?
min H(z,u) = (@) + 5 ul.
where H(z,u) can be interpreted as a Hamiltonian function (or total energy), with = a position variable
and v a momentum variable. The above problem is equivalent to the original problem . If x and u are
updated separately, then there is no possible improvement compared with solving directly. However, we

show how x and u can be updated in a coupled manner to derive a rich class of first-order algorithms, which
include representative algorithms from the classes and studied in Sections [2[ and

Gradient descent with a linear constraint. Given initial points (zg,ug), consider minimizing (or
decreasing) H(x,u) subject to a linear constraint x — du = xg — dug for some 6 > 0. By substituting

u = %, the problem with respect to x becomes minimizing (or decreasing) f(z;zq,uo) = f(z) +

1 52 ;
@ = 1562 VVthh7 by
the standard characterization of gradient descent, is equivalent to minimizing a quadratic surrogate function
of f at z¢ (with surrogate smoothness parameter being 1 for f) as follows:

553 |z — o + dugl|>. Consider updating x by gradient descent with a stepsize s =

. 1 1
x1 = argmin (V f(zg),x — zo) + in — x|+ ﬁHx — o + Sug||*.

Then ug is updated by solving x1 — du; = g — dug. The resulting update is

52 d
n=ro s g V) T e

o 1
== V) = e

The function f(x;xmuo) has a smoothness parameter L; = L + 5%. If 0 < 62 < i, then Ly < 2 <2

L 62 s
and s < Llf, so that the above GD update is well-behaved and f (as well as H) is non-increasing (see the
footnote .

Momentum negation and extrapolation. The above update can be repeated on (z1,u1), but the
constraint x — du = x1 — du; = xg — dug will remain the same, so that all subsequent updates also satisfy the
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momentum (u)
o
|
momentum (u)

|
[N
1

-1 0 1
position (x) position (x)
(a) f(z) = $2°, without negation (b) f(z) = 222, with negation

momentum (u)
momentum (u)

position (x) position (x)

(c) f(x) = x?, without negation (d) f(x) = z?, with negation

Figure 5: An illustration of the gradient descent with a linear constraint and the effect of momentum negation
when z € R. The first two iterates are plotted without or with negation, for f(z) = 2%/2 in the first row and
f(x) = 2% in the second row. The initial point is (1,1) and the global minimizer is (0,0). We fix § = 1/2.
The black solid circles and ellipses correspond to different level sets of the Hamiltonian functions.

same constraint and, in general, cannot converge to a minimizer of H(z,u). To resolve this issue, we negate
u at the beginning of each iteration. In other words, given (xo,ug), we first negate ug to —ug, and then
implement the above update. The negation of u does not change the value of H, but keeps the constraint
changing from iteration to iteration.

An illustration is provided in Figure For 1-dim z, the linear constraint becomes a straight line in R2.
When f(z) = L;, the level sets of H(z,u) = ’“2—2 —+ “72 are circles, and the gradient descent update is exactly
the minimizer along the line. Then the update without negation gets stuck after the first iteration. Negating
the momentum changes the linear constraint, and then the updates keep moving toward the minimizer (0, 0).
When f(z) = 22, the level sets of H(x,u) = 2% + “72 are ellipses, and the gradient descent update is not
exactly the minimizer along the line. Nevertheless, without negation, all the iterates will stay on the same
line, hence failing to converge to the minimizer (0,0). The momentum negation is also essential to the HAMS
algorithm and related under-damped Langevin sampling algorithms, where a negation of the momentum is
required to achieve generalized reversibility (Neal, 2011} |Song & Tan| 2022]).
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In addition, we introduce an extrapolation step before the negation of uy for p > 0. This leads to the
following update given the initial points (z, ug):

(14 p)o° (1+p)d
T1 = Tg — va(ifo) 1 T 62 ——=5 U,
(1+p)s l+p
Uy = —Uug — 1 n 52 Vf( ) 1 +52’U/0

(1+p)82 _ 14p
o2 and b= 133,

By setting a = the above can be put in a clean form as

Tr1 =Ty — (IVf(l’o) + \/@uo7
Uy = —ug — \/sz‘f(xo) + b’LLO.

The parameters (4, p) can be determined from (a,b) as § = y/a/band p=a+b— 1.

Gradient correction. The above updates of x; and u; are parallel, so that u; uses only the gradient
information at x(, but not at the newly updated x;. To exploit the gradient information at x1, we incorporate
a gradient correction into the update:

1 =x0 —aVf(zo) + \/C%uo,
w = —up — VabV f(zo) + bug — ¢(V f(z1) — V f(z0)),

for some scalar ¢. Lastly, we allow a, b and ¢ to vary from iteration to iteration and consider the following
class of algorithms, called Hamiltonian-assisted gradient method (HAG): for k > 0,

Tyl = T — aka(ack) + v apbrug,
Up1 = —Up — V apbiV f(zr) + bpup — o (V f(2r41) — VF(2r)),

starting from (xg,ug). Notably, the overall contribution from gradients remains unchanged in the update
for upy1. Instead, they are re-weighted:

urs1 = (be — Dur — ((Varbe — ¢)VF(zk) + 66V f (Trs1)) - (33)

re-weighted gradient

(32)

The larger ¢ is, the larger weight is assigned to the new gradient V f(zg11).

To facilitate comparison with algorithms in Sections [2| and (3] the HAG algorithm can be put into a
single-variable form involving {z;} only (see Appendix [F)): for k& > 1,

Th1 = Tk — <ak1\/ 7%? + ak) Vf(xk) + (bp—1 — 1)1/ 7%? (2 — T—1)
Af—10k—1 Ak—10k—1
- <¢>k_n/akbk - /“’fb’f> (VS (@e) = V(i) (34)
ap—1br—1

starting from zg and z1 = z¢ — agV f(20) + Vvaoboug. The parameter {¢r} only appears in the gradient
correction in ([34), and in the case of ayby, being constant in k, the parameters {a;,} and {b;} fully determine
the gradient descent and the momentum terms respectively. For convenience, the term of x; — x;_1 is still
referred to as the momentum term in single-variable forms, which is not to be confused with the momentum
variable uy,.

5.2 Interpretation from HAG

HAG or are general enough to represent various algorithms studied in Sections[2]and |3} by choosing
the parameters {a;}, {br} and {¢r} accordingly. We examine our convergence results from the HAG per-
spective and obtain unified interpretations of sufficient conditions for achieving acceleration in both strongly
convex and convex settings. Our findings are summarized as follows.
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e The parameter a; acts as a re-scaled stepsize s. The parameter by, which controls the momentum
term in the single-variable form, has a leading constant 2, and the gap 2 — by, is (,/q) with ¢ = us
or (4) in the strongly convex or convex setting, respectivelym In terms of (Jg, px) in the HAG
derivation, this indicates that &5 ~ \/% and 1—pg ~ 2—bg. Therefore, dy, is of order /s (comparable
to At in deriving ODEs for NAG-SC and NAG-C), py, has a leading constant 1 (indicating symmetric
extrapolation), and the gap 1 — pj, is Q(,/g) or () in the strongly convex or convex setting.

e The parameter ¢y is of order /s and controls the gradient correction, such that in the re-weighted
gradient for the momentum update , the new gradient V f(xx41) fully dominates with its weight
greater than the total weight, whereas the old gradient V f(z) has a negative weight. The boundary
case of a zero weight for V f(xzy) is also allowed in the strongly convex setting. Such heuristic
interpretations are not feasible from the single-variable forms.

Currently such interpretations are derived from convergence results for classes of algorithms and .
It remains an interesting question to analyze HAG directly and study further implications.

Strongly convex setting. For f € S}hb we set

ar=a=(F+0(D)s, b=b=2-cvat+0). o =0=(c+ 0DV

where cg, ¢1,c2 > 0. Then HAG reduces to exactly:

Tpor = 2 — 20V f () + (b— 1) (2 — 21-1) — (pVab — a)(Vf(xx) — V(2r_1))
=k, — (co + O(V@)sV f (k) + (L = e1v/q + O(q)) (wk — Tp—1) (35)
— (e2v/e — 5 + O(/@)s(Vf (wr) = Vf (wr-1))-

In the following, we interpret the conditions in Corollary [I] through HAG.

The parameter a = (% +O(,/q))s plays the role of a re-scaled stepsize s. The parameter b = 2 —c1,/q+0O(q)
controls the momentum term (xy —xk_1) in . The leading constant of b is 2, which ensures the existence
of a limiting ODE as s — 0. In terms of ¢, Corollary [1| requires the condition ¢} > 4cg, which as mentioned
earlier may be potentially relaxed, for example, to ¢; > 0. This would lead to a condition 2 — b = Q(,/q) as
s — 0. In terms of (, p) in the HAG derivation, the preceding discussion also gives

§=/afb= g\/as+0(s), 1-p=2-b—a=9(/p) (36)

We observe that ¢ is in the order of /s, similarly as At in deriving the ODEs and , and p is close
to 1 (symmetric extrapolation) but with a gap being Q(,/us).

The parameter ¢ = (c2 + O(,/q))+/s controls the gradient correction (V f(zx41) — V f(zx)) in . The
re-weighted gradient in the momentum update for ug4+1 becomes

(Veo = 2 + O(Va) VsV f(ak) + (c2 + O(VQ))V5V f(wps1)- (37)

For accelerated convergence in Corollary [1} the condition ¢ > ¢ indicates that the new gradient V f(zx11)
fully dominates with its weight, c24/s, no smaller than the total weight \/cos, whereas the old gradient
Vf(zk) has a zero or negative weight. For non-accelerated (sub-optimal) convergence in Corollary (1} the
condition ¢g/4 < ¢3 < ¢g indicates that both the new and old gradients have positive weights, but V f(zx11)

14The two orders, v/q and %, can be seen to match each other, because the accelerated algorithms and their continuous limits

are linked via t = k4/s in Section [4{ and hence /s can be viewed to be in the order of %, as s = 0 or k — oo.
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contributes no less than V f(zy). Interestingly, such an interpretation cannot be obtained from the single-
variable form or , even though a similar re-weighted gradient can also be identified thereE

Convex setting. For f € F}, we set

€o

b, =1+ Ok42, Qi = as, o = CQ\/E, (38)
where cg, co > 0 and, as before, o1 = i’;;l for some sequence {ag}. Then HAG reduces to
1 1 Co
Tpt1l = Tp — Co . + o sV f(zr) + opr1(zr — xp—1) — | c2v/co — . s(Vf(xg) — Vf(zr_1)),

(39)

which falls in the class with v and S8y varying in k, whose convergence property can be readily deduced
from Theorem[d] We choose aj, varying in k such that ajby, is constant in k, mainly to simplify the coefficients

from (34).

Given any {ay} satisfying ay = Q(k) and <% =1+ O(3), we have oj41 = Z’;—_ll =1-0(3), by =
14 0k12 =2-0(%), a, = s = (co +0(4))s/2, and the preceding HAG algorithm is further simplified
to

Thy1 = Tp — (Co + O(;)) sVf(xr) + g1 (v —Tp-1) — <C2\/? - %O - 0(;)) s(Vf(zg) = Vf(zE-1)),

(40)

which resembles algorithm in the strongly convex setting, in all the leading constants involved. Algorithm
can be put into with v, — v = co and B, — B = c2./co— % . Note that or is more complex
than with constant -y, and Sj studied in |Shi et al.| (2022)). In the following, we interpret conditions (i)
and (i) in Theorem 4| through HAG for the choice oy, = “£~. The technical monotonicity condition (iii) can
be verified for this specific choice (see Appendix |F| for a proof).

Similarly to the strongly convex setting, the parameter ax = (co + O(%))s /2 plays the role of a re-scaled
stepsize s. Moreover, the parameter by, = 1 + oj42 controls the momentum term (zy — zx—1) in , and
has its leading constant being 2, which is necessary (but not sufficient by Lemma |1 for a limiting ODE to
exist as s — 0. For the choice ap = @ and ogy1 = ﬁ, the recursive condition agi1(agr; —1) < a%
is equivalent to 7 > 2. Then it implies a condition 2 — b, = (r + 1)/k — O(1/k?) = Q(1/k) as k — oo (or
s~ 1/k? — 0). In terms of the time-dependent (&, p.) in HAG, the preceding discussion gives

1 1
O = Var/bg = 5«/605 +0(s), 1—px=2—-bp—ay= Q(%) (41)

We observe that dj, is in the order of /s, similarly as At in deriving the ODE ([24), and py, is close to 1
(symmetric extrapolation) but with a gap being Q(4). The conditions, and (1)), for the strongly convex
and convex settings respectively, are of similar forms, with /us (= \/q) and % exchanged with each other.

The parameter ¢ = co+/s plays a similar role of controlling the gradient correction term (V f(z)—V f(2x—1))
in , as does ¢ = (c2 + O(,/q))/s in the strongly convex setting. The re-weighted gradient in the
momentum update for uj41 is similar to :

(Veo = c2) VsV fxr) + caV/sV f(xpy1).

151 (14) or (35)), it seems reasonable to consider the re-weighted gradient as

(co+ O(VD)sV () + (e2v/eo = T + O(/a)s(V f(ax) = Vf(ar-1))
= (c2v/eo + 5 + O(V@)sV () + (—e2v/ao + T + O(/a) sV f ().

However, the condition ¢ > cq indicates that the weight of V f(zy) is no smaller than %co, whereas the weight of V f(zp_1) is
no larger than —%co, with a total weight cgs. Therefore, the conditions bear no meaningful interpretations.
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With v = ¢g and 8 = ca/co — %, the condition 3 > /2 in Theore reduces to ¢3 > cg, which indicates
that the new gradient V f(x1) fully dominates with its weight, c2+/s, greater than the total weight |/cys,
whereas the old gradient Vf(z;) has a negative weight. This is the same as the condition, ¢ > ¢, for
accelerated convergence in the strongly convex setting except that the boundary case ¢3 = ¢ is excluded
here. As discussed earlier, the single-variable form does not admit a meaningful interpretation for the
re-weighted gradient.

6 Outlines of Lyapunov analyses

We outline our Lyapunov analyses to prove the convergence results for the discrete algorithms in Sections [2]
and [3] See Appendix [E]for our Lyapunov analyses for the convergence of ODEs in Section[d] Compared with
existing ones, our Lyapunov functions are constructed to handle more general algorithms and ODEs or to
achieve more concise analysis and sometimes sharper results. Before giving the outlines of our analyses, we
summarize the comparison of Lyapunov analyses. The comparison is restricted among analytic Lyapunov
functions, excluding those constructed by the LMI/SDP framework, which require additional numerical
solvers (Lessard et all 2016 [Fazlyab et al., |2018; Taylor et al., [2018} [Taylor & Bachl 2019; [Sanz Serna &/
[Zygalakis| |2021} |Dobson et al., [2025)).

Strongly convex setting. We construct the discrete Lyapunov to establish the convergence of algo-
rithm including NAG-SC and TMM as special cases. The auxiliary-energy term pl| 241 —2*(|?/2 in
is also used in Bansal & Gupta, (2019) for NAG-SC and in [d’Aspremont et al| (2021) for TMM. However,
the potential-energy term in our Lyapunov is in {z)} whereas the one in Bansal & Guptal (2019) is in {yx}.
The potential-energy term of the Lyapunov in [d’Aspremont et al| (2021)) is in {x} like ours, but is not
lower-bounded by f(z) — f*, so that their analysis only establishes the convergence for {z;}. In addition,
compared with the analysis of NAG-SC in , our Lyapunov function has fewer terms,

and our analysis is much more concise.

Our continuous Lyapunov function to analyze the class of low-resolution ODEs for Proposition |3| is
extended from the one proposed in [Wilson et al| (2021) for (cg,¢1) = (1,2) (i.e., the low-resolution ODE
of NAG-SC). Furthermore, we construct suitable Lyapunov functions to analyze the high-resolution ODEs
of NAG-SC and HB. Compared with the ones used in (2022), our Lyapunov functions lead to a
sharper convergence bound for NAG-SC and HB (Proposition [4)).

Convex setting. We construct the discrete Lyapunov to establish the convergence of or equiva-
lently (22)), including those in [Beck| (2017) and [Shi et al] (2022) as special cases. The auxiliary-energy term
llzk+1 — 2*]]?/2 in is motivated by [Su et al| (2016) for NAG-C and [Shi et al| for , a sub-class
of with v, = 1, By = B/v, and a = (k + r)/r for r > 2. However, the potential-energy term in our
Lyapunov differs from the related ones in Su et al. (2016) and |Shi et al.| (2022). Moreover,
analyzed the three cases, r =2 and g <1, r =2 and > 1, and r > 2, separately. It seems difficult
to extend their case-by-case analysis to cover the more general results in our Theorem [4

The continuous Lyapunov function for the class of high-resolution ODEs is the same as in [Shi et al.
(2022) when r > 2, but involves a technical modification when r = 2. The modification helps to establish
the convergence bounds in Proposition [f] for both 7 > 2 and r = 2, whereas similar bounds are provided in

(2022)) only explicitly for r > 2.

6.1 Strongly convex setting

We provide a Lyapunov analysis to establish Theorems for the class of algorithms . Proof details are
presented in Appendix [C] Although our Lyapunov function, like most existing ones, is manually designed,
our analysis proceeds in several structured steps.

Step 1. Bounding the differencing of an auxiliary energy. The sequence {2z} plays a key role in
our formulation of (10} in a three-variable form. We identify £z — 2*||? as an auxiliary-energy term and
bound its differencing, ﬁ%”zkﬂ —z*|? = £z — 2*|2.
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Lemma 2. Let f: R™ — R be a function mSl - Foranys >0 suchthat0 <ns <1/L,v>0,1-v./qg>0,
T>0and (=1+(1—-7)/q>0, the ztemtes of (@) satisfy that for k > 1,

QT Vi\/zl x _ VS v n )% + Py — %2
(S ovm+ 722 ) G - 1) = 5 (7= = ) IVl + 7=z 5 =
w

7+ Gy (f(ewor) - 17 - %nwwmw) - al? 42)

<

Step 2. Constructing a discrete Lyapunov function. We define a Lyapunov function simply from the
right-hand-side of (42)): for k& > 0,

Vo = 2+ v (Fa) — 1 = IV 5 @) + 2l — oI (43)

We refer to the first term above as a potential energy, involving both f(zx) — f* and ||V f(z)||?, and the
second term 4|z, — 2*||* as an auxiliary energy. The negative term —% ||V f(24)[? in (43) is a technical
adjustment and can be traced to (42). A similar term can be found in our Lyapunov (46) in the convex
setting. By Assumption |1| for smoothness of 7(+) near 0, a sufficiently small Cy € (0, ﬁ} can be picked with
no > 0 such that when 0 < s < €2, we have 0 < ¢ = s < Co, n = ﬁ(\f) < 219, and nLs < 2n9Co < 1. Then

for 0 < s < €2, by the L- smoothness of f, we have a) [ = BIVf(@)l? = (1 —nLs)(f(zk) — f*) >

L(f(xr) — f*). More details are given in Appendix The negatlve term in (46) is handled similarly in

2

Appendix [D-3]

Step 3. Identifying sufficient conditions for Lyapunov contraction. As expected from , we
further bound Vj41 — (1 — v/q)V} and identify conditions such that a contraction inequality holds for the
Lyapunov function: Viy1 — (1 —v/q)Vi <0.

Lemma 3. Define I and I1 as polynomials of \/q, n, v and 7 (hence functions of \/q) taking the following
forms: (recall that ¢ =1+ (1 —17),/q)
I=Cv(t+{nyg) —7°
= 7(v = 7) +v(n—7(r = 1))Va - 2w(r — g+ nv(r — 1)°¢?,
T(vT —2¢n) + Cn(vT — (n)V/g
= 7(vr = 2n) + (=0 +v7 +27(7 = 1))/q + (1t = 1)(2n — v7)q — 1*(1 — 1)*¢>.

(44)

11

o

Under the condition in Lemma@ if one of the following (mutually exclusive) conditions holds: (i) 1 >0 and
I+./qI1 <0, or (i) I > 0 and (1/k)I+ /qII <0, or (i) I <0 and IT < 0, then we have the contraction
inequality Vi1 < (1 —v\/q)Vi for k > 1.

Step 4. Verifying the contraction conditions and completing the analysis. For completing the
analysis, the final step is to show that the sufficient conditions for Lyapunov contraction in Lemma [3] are
satisfied under the conditions included in Theorems This step can be algebraically tedious, and the
details are left to Appendix [C]

The contraction inequality, if verified, directly leads to a convergence bound O((1 — C1,/is)*) as stated in
(12). However, to fulfill the conditions in Lemma |3 l we find that two ranges of stepsize s (or ¢q) are allowed:
0<s<Sp/L? (or0<q<1/k?) and 0 < s S1/L (or 0 < g < 1/k). As discussed after Theorernl, 1} the
upper bound of feasible s determines whether the vanilla or accelerated convergence is achieved, in terms of
the dependency on k.

6.2 Convex setting

We provide a Lyapunov analysis to establish Theorem (4 for the class of algorithms or equivalently .
Proof details are presented in Appendix |D| Our analysis proceeds in several structured steps, similarly as in
the strongly convex setting (Section [6.1]).
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Step 1. Bounding the differencing of an auxiliary energy. From our formulation of the three-variable
form (22), we identify 1|/zx — 2*||? as an auxiliary-energy term and bound its differencing, % ||z5+1 — 2*[|* —
1 *|2
3 llzk — =%,

Lemma 4. Let f: R™ — R be a function in F}. Then for each k > 1 such that a, > 1 and ay > 0, the
iterates of @ satisfy

52 2
g

2
< ag(ar —1)s ((f($k1) - f) -

arars(f(zr) — f7)

1
IVf@l® + Sllzren — 2"

(2 — Br—1Ls)Br—15s
2

IV o0l ) + Sl = oI 5)

Step 2. Constructing a discrete Lyapunov function. We define a Lyapunov function simply as the
left-hand-side of up to a scalar sequence {wy}: for k > 0,
ags?

2

Vi = (o7 = ) = BV + gl - o) (46)

The sequence {wy} is introduced to later deal with the mismatching of coefficients on two sides of ([45]).
Similarly as in Section we refer to the term involving f(zx) — f* and ||V f(zx)||? as a potential energy,
and the term 3|z — 2*||* as an auxiliary energy.

Step 3. Identifying sufficient conditions for Lyapunov contraction. As expected from 7 we
further bound Vi1 — Vj and identify conditions such that a contraction inequality holds for the Lyapunov
function: Vi1 — Vi <0or Vigy — Vi S —k2s2||Vf(ze_1)|*

Lemma 5. Define I and II as follows:

I =wrap—100-1 — wprrag(og — 1),

IT = wys1ak(ag — 1)Br1(2 — Be—1Ls) — wrdp_;.

For any k > 1 such that ap, > 1, ap > 0, wg > wis1, I >0, and IT > 0, the Lyapunov function (@) satisfies
Vier1 < Vi If further II > Ck? for a constant C > 0, then Vi1 — Vi, < —%k’QsQHVf(xk,l)HZ.

Step 4. Verifying the contraction conditions and completing the analysis. The final step is to
show that the sufficient conditions for Lyapunov contraction in Lemma [5] are satisfied under the conditions
included in Theorem [l The details are left to Appendix

The contraction inequality Vi1 — Vi < 0 leads to the convergence bound for the objective gap, whereas
the contraction inequality Vii1 — Vi < —k?s%|Vf(zk-1)|? leads to the inverse cubic rate for the
squared gradient norm. Unlike in the strongly convex setting, the stepsize s can be simply set in the range
0 < s S 1/L to fulfill the conditions in Lemma

7 Conclusion

Our work contributes to understanding the acceleration of first-order algorithms for convex optimization.
We directly formulate discrete algorithms as general as we can and establish sufficient conditions for accel-
erated convergence using discrete Lyapunov functions. We point out currently notable gaps between the
convergence properties of the corresponding algorithms and ODEs. We propose the Hamiltonian-assisted
gradient method, HAG, and demonstrate unified interpretations of our acceleration conditions, especially
those for gradient correction. Future work is needed to address various open questions, including the ex-
tent to which our sufficient conditions are necessary, improving analyses using the LMI/SDP framework,
and further understanding the gradient correction and its relationship with existing explanations, such as
symplectic integrations.
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A Comparison with the literature

A.1 Comparison with the LMI/SDP techniques

We compare our methodology with the LMI/SDP techniques as in Lessard et al.|(2016]), [Fazlyab et al|(2018),
[Taylor et al.| (2018)), | Taylor & Bach| (2019), and [Upadhyaya et al.| (2025]).

o As mentioned in Section |1} the LMI/SDP techniques, including the PEP methods and the IQC
methods, are powerful tools for constructing Lyapunov functions systematically. Due to an inherent
optimization procedure, the LMI/SDP techniques generally produce sharper bounds for optimization
algorithms. When applied to existing algorithms like NAG-SC and TMM for minimizing strongly
convex objectives, the LMI/SDP techniques may produce a larger constant C' in the convergence
bound O((1 — C//k)¥) than our hand-crafted Lyapunov functions in Section Nonetheless,
as mentioned in Section our goal is not to find the sharpest convergence bound. Instead, all
algorithms with a bound O((1 — C/y/k)¥) for any C > 0 are considered to be accelerated, and are
not further differentiated in our work.

o The LMI/SDP techniques may rely on numerical solvers to find the Lyapunov function leading to
the sharpest bound, whose results are less interpretable. However, our goal is to understand the
mechanism behind the acceleration phenomenon. To that end, we analyze general and representative
classes of algorithms as in and . Although our Lyapunov functions are manually constructed,
they lead to concrete sufficient conditions on the gradient correction for acceleration that have
interesting interpretations.

A.2 Comparison with Sanz Serna & Zygalakis| (2021

[Sanz Serna & Zygalakis| (2021) leveraged the IQC methods in [Fazlyab et al.| (2018) to analyze a family of
Nesterov optimization methods, which is a subclass of the algorithm (14). Although their analyses yield
sharper bounds due to the control-theoretic framework, the subclass of algorithms has a fixed gradient
correction term, and thus do not inform the effect of gradient correction on acceleration.

To be more specific, [Sanz Serna & Zygalakis| (2021) studied algorithm (3]), whose single-variable form is
@). With a momentum coefficient o = 1 — ¢1,/q + Rz, algorithm is a special case of with ¢g = 1,
Ry =0, cog =3/2, and R3 = —c1,/q + Ry. Notice that the leading coeflicient of gradient correction is fixed
at ca\/co — co/2 = 1. |Sanz Serna & Zygalakis| (]2021[) shows that, for 0 < s < %, the iterates of or

satisfy the convergence bound f(z) — f* = O ((1 — C1y/is)*) for 0 < Cy < 1 as long as o(q) is bounded by

g_ (qacl) S U(Q) =1- Cl\/&"' R2 S g4 (q701)a

C1FV/1-CF+CF
(&

where

o+ (q,C1) =1 Va+0(q).
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As Cy — 0, the linear term coefficients R Vi Vlglcw goes to 0 and oo respectively, which implies that o(q) =
1—c1,/q+R2 with any ¢; > 0 is always bounded by o_ and o for some C1 > 0 and ¢ small enough. Therefore,
for any ¢; > 0, the subclass (3) or @) achieves an accelerated convergence rate O ((1 — O(1/4/k))*), which
is weaker than our condition ¢ > 4cy.

The subclass , however, uses a fixed gradient correction so that its convergence rate does not inform the
impact of gradient correction on acceleration. The later work by [Dobson et al.| (2025) established sharper
results on €7 under more complicated conditions on the momentum coefficient 0. However, because the
same class of algorithm or @ is studied, a sharper constant C7 does not lead to qualitatively broader
implications on acceleration.

In terms of the ODE part, the limiting ODE of under 0 =1 —¢1,/q + Ry is

Xi + ery/pXe + V(X)) =0,

which is the same as equation with ¢g = 1. Interestingly, if ¢; depends on s, then the algorithm
@ with an accelerated convergence may not have a limiting ODE as ¢; is allowed to oscillate between

= 1;?%+Cl27 Iy 1;1012+Cf ). A similar observation is made in the convex case. See Lemma 1| for details.
When ¢ is constant, [Sanz Serna & Zygalakis| (2021) used the IQC methods to prove that f(X;) — f* =
O(exp{—C/ut(f(x0) — f*)}) for a sharper constant C' than that in our Proposition 3| If f € S;)L with a
bounded Lipschitz constant L, Dobson et al.| (2025) shows that the constant C' can be further improved.

Unlike |Sanz Serna & Zygalakis| (2021)) and [Dobson et al.| (2025)), our goal is not to find the sharpest constant
in convergence bounds. Instead, we would like to characterize algorithms with accelerated convergence.
Nonetheless, the IQC methods remain powerful tools that can be leveraged to refine our analysis on gradient
correction in future work.

A.3 Comparison with Shi et al.| (2022)
We compare our results with those in (2022) below.

e In the strongly convex setting, leveraged the high-resolution ODEs to establish an
accelerated convergence for NAG-SC and a non-accelerated convergence for HB. Their analysis links
the acceleration to the gradient correction term, which is present in NAG-SC but absent in HB.
However, it remains unclear in what scope the gradient correction leads to acceleration. Our work
bridges the gap between HB’s non-acceleration and NAG-SC’s acceleration by showing that as long
as the gradient correction coefficient surpasses an explicit threshold, the acceleration is guaranteed.
Remarkably, the same condition is also observed for the convex setting. Therefore, for the first time,
our analysis establishes a unified condition for acceleration in strongly convex and convex settings.

o In the convex (not necessarily strongly convex) setting, our results are mainly technical refinements

of those in |Shi et al.| (2022). The class of algorithms in is more general than the one studied in
Shi et al.| (2022]). See Table [2| for details.

« Another question left by is whether the high-resolution ODE that explicitly re-
tains the gradient correction can explain the difference between discrete algorithms. We show that
the high-resolution ODE perspective, albeit remaining a useful analytic tool, fails to explain the
difference between accelerated and non-accelerated algorithms (especially regarding the gradient
correction term) in either the strongly convex or the convex settings.

To summarize, our work substantially extends [Shi et al| (2022) in understanding the effect of gradient
correction on acceleration.

B Notation

The notation used in the main paper and the remaining appendices are summarized in Table [3]
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Table 3: Notation

Section Notation Meaning
f Objective function to be minimized
x* One of the minimizers of f
f* Minimum of f
L Smoothness parameter of f
i Strong convexity parameter of f
General  ® Condition number L/
k Iteration number of gradient methods
S Step size in discrete algorithms
Fm Convex and m times continuously differentiable functions from R™ to R
JA Functions in F™ that are additionally L-smooth
S Functions in 7™ that are additionally p-strongly convex
99 Functions in F7' NS
q Shorthand for us
o Momentum coefficient
n, v, and T Three parameters in algorithms and that may depend on ¢
7,0, and T Non-negative, analytic scalar functions in Assumption [I] such that n =
Strongly - _ = _ =
convex 1(va), v = v(y/q), and 7 = 7(\/q)
{ni},{vi},{m} Coeflicients in the Taylor expansions of n, v, 7 in Assumption
¢ Shorthand for 1+ (1 — 7)g
co, ¢1, and ¢ Parameters in algorithm , consistent with the parameters in the
limiting ODE of
ki1 Momentum coefficient (possibly varying in k)
Okt A scalar sequence for specifying momentum coefficient as o1 = (g —
1)/ag+1
Convex r A scalar for bpec1fy1ng ak =(k+nr)/r, conblbtent with the parameters
in the limiting ODEs and 1 1)) of (121]
Bk and g Two parameters in algorlthms ) and i that may vary with k
5 and y Limits of B and v, respectlvely, consmtent with the parameters in the
limiting ODE of
ODE X Solution X (t) for ODEs
u and uy Momentum variables in the Hamiltonian function and the associated
discrete algorithms, respectively
HAG 0 and p The linear constraint parameter and the extrapolation parameter, re-

g, bg, and @y
a, b, and ¢

spectively, in deriving the HAG method
Three parameters in the HAG methods and
Constant ay, b, and ¢y, respectively

C Technical details in Section

C.1 Reformulation of NAG-SC and TMM

First, we show that NAG-SC (3) with @ can be reformulated as , ie

,withn:

Apparently is the same as (8a)). It suffices to derive and from . Because zg = yg = 2o, @
also holds for zg. Therefore, for k£ > 0 we have

14
Y

),

.Z‘k—l—(l—
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which implies

n= st e (47)
and
Y = (1 + V@) Tk — a2k (48)
Eq. with k replaced by k£ 4+ 1 becomes . Substituting x4 from into , we have
1 f\[ w1t \fyk+1 = Yk+1 + 1+ ?(?ﬂc-ﬂ — Yk);
which yields
1 1- /g

Zk+1 = —=Yk+1 —
+ \/a + \/(3

Substituting yx,1 from into the above display, we have

21 = \;a(fﬂk — sV f(zr)) — ! ?/a\/a

Yk
which together with gives

tors = jam SV f () - - ‘ﬁﬁ
which is .

Second, we show that TMM , ie., with n = v =1 and 7 = 2, can be reformulated as follows, with
(49c) same as @ for zpy1:

(1 + V)T — vaz) = va (x - ;me)) - VD

Yk+1 = Tk — sV f(z), (49a)
Tppr =z — (2= /q)sV f(ax) + (111\/\2(%“ — k), (49Db)
it = 12+\/\c’1/%k+1 + <1 _ 12??) Ve, (49¢)

Apparently is the same as (49al). It suffices to derive (49b)) and ([49d)). Solving for 2,41 gives ([49d]).
Because xg = yo = 20, (49¢) also holds for zy. That is, for all k£ > 0,
1+ 1+
\/axk + (1 - \/a> Yk,
2./4 2./4

ZE =

which together with (5b]) yields
1
zk+1=¢?z(wk—;Vf(xk>) +<1—¢a>[ L (1_ +f> }

2.4 24
l+q VA (1-a)?
— V — 7Vf(a;k)— NG Yk
To derive , substituting the above display into and using yields
2 1 1-— 2 1-—
Tpy1 = 1+\(f ( —\?] - %Vf(xk) - (2\/?1/0 +q n ﬁykﬂ

_ 14g¢ 2s (1-y4)? Va(l—./q)

=17 \/axk 1T \/avf(fk) + Tﬁ(yk+l —Yr) + Wykﬂ

4y 2 (1- @) Vil = V)

=17 \/amk 1T \/avf(xk) + Tﬁ(yk+l —Yr) + W(xk — sV f(zr))

1— 2
=ar — (2= V@)sV f(ax) + (1_1_\/\/(]2(%“ — Yk),

which is (49b).
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C.2 Proofs of Lemmas 2H3] in Section [6.1]

Proof of Lemma |2, By (10b)), we have

* I
1_M2||zk+1—x 12 = Epen — |
2
- v - v - e 0 | - -
2
__IU’V\/EI . _ax _l o l/q ,U, _1 Lk
=5 llz = 271" + pr /gl — 27, 2 MVf(&“k) %)+ 1 el i MVf(wk) x
2 2
_ Wf B 1 o vwa pfl 1 o
= H zp — %) — (zk uvf(xk) z”) +17u\[2 T qu(JUk) r
2 2
Wﬁ Vi .
= — — — —V — 50
5 ||# Z'k"'uvf(xk) +1—V\/§2 = flan) — (50)
Next, we bound the two terms in the above display separately.
For the second term, by the u-strong convexity of f,
J* = flaw) = (VHar), o =2 + llax — 2|2
from which we have
2
v\/q 1 N
I Y S
—Vy/q2
1
= 2L (Sl =1 — (o= " VS + VS0 G1)
y\f 1 9
< VI (- — .
< 70 (1 = s+ VIR
For the first term, solving (10c) for zx41 we obtain
1+(1—-71)/q
Zk+1 = Th41 + W(%H = Yk+1) = Tpp1 + Ti\/c—](xk—o—l = Yk+1)s
which together with (10al) yields
Zpp1 = Tp1 + - (Tht1 — 2k + 05V f(2k)) -
™4
Hence for k£ > 1 we have
HYA/q 1 2
— B) 2k — Tk + *Vf(‘Tk)
L
2
_HrVa ns
= —— (T — T 1)+7Vf($k 1)+ Vf(xk)
2 T\f T4 (52)
$% SUBAVCE v/
=~ Sl = sl - S ) - sl

Znv v v
S o)~ wia) — AT v~ i) — sV ), V)
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By the L-smoothness of f, we have
Flaio) 2 F(og) + (V1) w0+ 5 19 (a) — VS Gox )l
Pl < Flon) + (Y Fenr),me = mi) + 2 e — e P

Therefore,

%<vf($kfl)7 T — Tp_1) — %(Vf(mk), T — Tp—1)
< =S () = onn) = o = analP) = < (o) = fon) + 57V S@n) = Vol

i
(v 1

14 2 1%
= et oD () — Fan) + R iy 2~ Y L ) — VS )|
(58)
By the cosine rule,
~ G ), Vi) = 22 ()P + IVF@DI ~ 19 ) — Vi) (64)
Combining , and and noting 0 < ns < 1/L by assumption, we obtain
2
— %\/q 2 — T + lVf(xk)
2
< gt (=L~ s = (1= L)V ) = VS )|
S VD) = ) = S o+ VDIV Sl = 5+ oIV Sl
< S+ VA ) - Flan)) = G (4 SIS = $ELr + oIV S I
(59)

Collecting , and completes the proof.

Proof of Lemma [3] The three sets of conditions are mutually exclusive because if I > 0 and II > 0, then
I+ /I > 0 and £I+ ,/qII > 0. Applying (42) to the Lyapunov function and using the fact that
sp IV (@) < fon) - f < 2 IV (x)|?, we h‘cwe

Vk+1 - (1 - l/\/a)vk,
5o (2VAM( (wr) = %) + sV £ wn) )

2 ﬂ(”\fﬂ)uvf(wk)llz i 1> 0;

IN

2T

v Vap _ |
< 272 p( I+@I)||Vf(xk)|‘27 if I <0;
a 7L

%T(%I + \/511) (f(z) — f*), i IL>0;

T%ﬁ(n \/E]II)(f(xk) — ), if TT < 0.

The rest is straightforward.
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C.3 Proofs of Theorems [IH3]

To prepare for the proofs of Theorems we show that under Assumption [I] the leading coefficients in
the Taylor expansions of I and II in /g can be used to verify the conditions in Lemma 3} Throughout, the
range 0 < ¢ < p?/L? or 0 < ¢ < pu/L is interpreted as, respectively, 0 < g < Cou?/L? or 0 < ¢ < Cou/L for
a constant Cy > 0.

Lemma 6. Under Assumption[1], denote the Taylor expansions of I and II as

1= (@', =3 bu(yD)™,
n=0 m=0

where {an }n>0 and {by }tm>0 are real sequences. When I is not constant 0, define N as the minimal of n
such that a, # 0. Define M in a similar manner for IL. Then

(i-a) If ay >0, bay <0 and M < N — 2, then I >0 and I+ ,/qgII <0 for 0 < q S p/L.

(i-b) If an > 0, byr <0, M = N —1, and the first nonzero element of {an +bn—1}n>n (i-e., the first nonzero
coefficient in the expansion of I+ \/qIl) is negative or the entire sequence is 0 (i.e., T+ /qgI1 =0), then
I>0and I+ /qII <0 for0<gq S p/L.

(ii-a) If any <0, by >0 and M = N, then I1 > 0 and #1+ \/qIL <0 for 0 < ¢ S p*/L?.

(i-b) If an <0, bay >0 and M > N 4 1, then IT > 0 and 21+ /qI1 <0 for 0 < q < p/L.

(iii) If an < 0 (or N does not ewxist) and bpy < 0 (or M does not exist), then I < 0 and IT < 0 for
0<q3u/L

Proof. With 0 < u/L < 1, q can be made sufficiently small by picking Cy in the range 0 < ¢ < Cou?/L? or
0 < ¢ < Cou/L. Hence it suffices to study the leading terms of I and II.

For (i-a) and (i-b), axy > 0 ensures that I ~ an(y/q)" > 0. For (i-a), with M +1 < N and by < 0, we have
I+ /qII ~ by (/)™M + < 0. For (i-b), with M +1 = N, we have I+ /gIL = >\ (an + bp—1)(y/)" <0
if the first nonzero element of {a,, + b,—1}n>n is negative or the entire sequence is 0.

For (ii-a) and (ii-b), bas > 0 ensures that IT ~ by (,/q)™ > 0. With ay < 0 and by > 0, we have
that for sufficiently small ¢ > 0, T < %(,/g)" and II < 2bp(\/Q)™. Hence, £1 + ,/qII < BX( /)N +
2601 ()M = (VN (BE + 2bp ()™ Y). For (ii-a), M = N and 0 < ¢ < C3p?/L? imply that
BT+ /gl < (/9)" £ (an +4Cobar) < 0 by picking sufficiently small Cy with ay < 0. For (ii-b), M > N+1
and 0 < ¢ < Cop/L imply L1+ /qIT < (\/@)V (B2 + 200 (v/2)?) < (VO)N £ (an + 4Cobar) < 0 again by
picking sufficiently small Cy with ay < 0.

The case (iii) is straightforward to verify. If N (or M) does not exist, then I =0 (or IT = 0).
We notice that the constant Cj in the range of ¢ is picked, depending only on {a,} and {b,,}, which are

determined by the algorithm parameters 7, 7 and 7. O

Next, we show Theorems [T, [, and [3] where Theorems|[IJ and 2 are the same as Theorems [I] and [2] except
with conditions (i-a) and (ii-a) replaced by (i-a*) and (ii-a*) as follows:

(i-a*) 0 < vy < 70, and 0 < g < V970 /2;

(ii-a*) 0 < vy < 70, and 1y > vo70/2.
Conditions (i-a) and (ii-a) are the symmetrized (hence weaker) versions of (i-a*) and (ii-a*), by allowing

either 0 < vy < 79 or 0 < 79 < 9. To show Theorems [T, 2, and [3] it suffices to verify that the conditions
in Lemma [3] are satisfied. In fact, the contraction inequality in Lemma [3] directly implies that that for & > 1,

Cf(ar) — 1) < S5+ /a1 = nls) () — ) < Vin < (L= vy < (1= 2 g0,

for some constant C' > 0, where the first inequality holds by noting vy, 79 > 0 in each condition of Theo-
rems , , and [3| and picking sufficiently small Cy in 0 < ¢ < Cou/L such that, for example, v > 1y /2,
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70/2 <7 <270, (>1/2,0<ns <1/(2L) (ie., 0 < ng < p/(2L)) with C' = vy/(1679). Moreover, by the
definition of V7,

Vi £ S50+ V) (@) — 1) + bl —

= %(T + na) (f (o) — f7) + gHJ?o -z - VTﬁVf(xo)HQ

< Lljzo — a*|1* + pllwo — 2| + s[|V £ (z0) |
<(L+ p+ sL?)|xo —=*|?
< Lfjzo — a*|*.
Then f(zy)— f* S L(1—%2/@)%|lzo —2*||?, which is (12). The conditions in Lemma which are required in

Lemma [3] can be easily verified by noting vy, 79 > 0 and picking sufficiently small Cy. Therefore, it remains
to verify the conditions involving I and II in Lemma [3]

Proof of Theorems [2' and [3} We apply Lemma [f] to verify the conditions involving I and II in Lemma
The Taylor expansions of I and IT up to ,/g-terms are

L=1o(vo —70) +[70(1 = 71) + 71 (10 — T0) + o (10 — To(10 — 1))] /4 + O(9),
——_———

ao

II = 7o (vo70 — 2m0) + [70(r1m1 — 2m) + 71 (MoT0 — 2170) + 10 (270 (70 — 1) + 1070 — 70) | /G + O(q).
—_———
bo

(57)

Consider the following scenarios.

Scenario 1: 1o = 0, 0 < Vg, To. Then by = by = vo7¢ > 0. Because M = 0, only case (ii-a) in Lemma |§|
is feasible, which holds when N = 0 and ay = ap = 79(vo — 70) < 0, i.e., vy < 79. To conclude, if ny = 0,
0 < vy < 79, then Lemmaholds for 0 < ¢ < p?/L2%

Assume 1, vg and 7¢ are all positive. We notice that 0 < vy < 79 is necessary. Otherwise, ag = 79(v9—70) > 0
and N = 0. Then only cases (i-a) and (i-b) in Lemmal[6are feasible, which require M < N — 1, contradicting
N = 0. To proceed, we further split 0 < vy < 79 into Scenario 2 (0 < vy < 79) and Scenario 3 (0 < vy = 79)
as below.

Scenario 2: 179 > 0, 0 < vg < T9. Then ag = 79(vo — 79) < 0 and N = 0. We notice that either M does
not exist (i.e., II = 0), or M exists and has by; > 0 or by < 0 for some M > N = 0. Therefore, one of
case (ii-a), case (ii-b), and case (iii) in Lemma [f] is valid. Case (ii-a) holds if and only if M = N = 0 and
by = bo = To(voTo — 2m0) > 0, ie., mo < “52. Therefore, if 7y > “4°, case (ii-b) or case (iii) holds. To
conclude, if 0 < 7o < 2™ and 0 < vy < 79, then Lemma [3| holds for 0 < ¢ < p?/L?. If ny > “0 and
0 < vy < T, then the range of ¢ is relaxed to 0 < ¢ < u/L.

Scenario 3: 19 > 0, 0 < vg = 7. In this scenario, reduces to

I=m7 [Vl =71+ 10 — To(To — 1)] Va+0(q),
II = To(T02 — 2770) + [TQ(VlTl - 2771) +7'1(Tg — 2770) +770(7’0(3T0 — 2) - 770)} \/a‘F O((])

bo by

2
Then ag = 0 and hence N > 1. We point out that ny > %0 is necessary. Otherwise, by = TO(T(? —2m) >0

and hence M = 0. Then only case (ii-a) or (ii-b) in Lemma @ is possible, which requires M > N. But this

contradicts the fact that N > 1 and M = 0. To proceed, we split ng > Tz—g into Scenario 3.1 (ny > 72—3) and

2
To

3.2 (no = %) based on 1.

2
Scenario 3.1: 79 > 2, 0 < vg = To. Then by = 7(75 — 2n9) < 0 and M = 0. Case (i-a), case (i-b) and
case (iii) in Lemma |§| are each possible. We consider several special cases involving only 71, v1 and 7.
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o For case (i-a) to hold, even higher-order coefficients are needed, and we skip this case.

e For case (i-b) to hold, let N = M +1 =1 and ay = a; = 7'0[1/1 — 71+ — 7010 — 1)] > 0,
which is equivalent to v; — 7 + 19 — 70(70 — 1) > 0. Moreover, let ay + by_1 = a1 + by =
To [1/1 -7+ — (170 — 1)70] + 70(18 — 2m0) = To[v1 — 71 + 70 — M) < 0, which is equivalent to
vy — 11 < MNo— To-

o For case (iii) to hold, let a; = 79 [Vl — 7 + 1o — 70(T0 — 1)] < 0, which is equivalent to v; — 71 <

70(70 — 1) — 0.

To conclude, if ng > 72—3, 0 < vy = 79, and either 7o(To—1) —no < w1 —71 < 1Mo —7p or v1 — 71 < T9(170—1) — M0,
then Lemma (3| holds for 0 < ¢ < p/ L.

Scenario 3.2: g = g, 0 < vg = 79. Then further reduces to

T

I=1(n — 1+ 70(1 - 50)) Va+0(q),

ai
25
II=7o[vim — 2 + 50(570 —2)] Vg +O(q).

by

Then ag = by = 0. We consider several special cases where (11,1, 71) are enough to determine the conver-
gence. Let a1 = 7 (1/1 — 71+ 70(1 — %)) < 0, which is equivalent to v; — 71 +79(1 — 3*) < 0. Then N = 1.

We distinguish three cases by the sign of by = 7 [1/17'1 —2n1 + 72—3(%7'0 — 2)]

o If by <0, then M =1 and by; < 0, and hence case (iii) holds.

o If by > 0, then M = N =1 and by > 0, and hence case (ii-a) holds. Note that the range for ¢ is
0<qSp?/L

o If by =0, then M > 2= N+ 1 or M does not exist. If M does not exist, case (iii) is valid. If M
exists, then either bys > 0 or by < 0. The former satisfies case (ii-b) and the latter satisfies case

(iii).
Collecting the results of Scenario 1, 2 and 3 concludes the proof for Theorem [2] and

Proof of Theorems . When (n,v,7) are constants, the above analysis still holds, but we can unfold
Scenario 3 without imposing strong conditions on (11, v1,71). We continue with Scenario 3, that is, assume

n> 7'2—2 and 0 < v = 7. Then we have the Taylor expansions in finite terms:

I=7(n—(r=1)r)ya—2n7(r = Dg+n7(r —1)°¢2,
IT = 7(72 = 20) + (37 — 2) — nl\/g + n(r — 1)(2n — 72)g — n*(7 — 1)%¢, (58)
I+ VIl = 7(7 =)\ +0(r” = n)g +n(r = 1)(2n = 7)g* —n*(r = 1)°¢".
To proceed, we split Scenario 3 into Scenario 3.1* and 3.2* based on 7.

Scenario 3.1*: n > "'—;, 0 <v=r.Then by =7(7% —2n) < 0, and M = 0.

. T>2(hence7’<§<7‘(7‘—1)).

—Ifn>7(r—1),thenay =7(n—7(r—1)) >0and N = M + 1 = 1. Moreover, a; + by =
7(T —n) < 0, and hence case (i-b) in Lemma [f] holds.

—Ifnp=r7(r—1),thena; =7(n—7(r — 1)) =0, and az = —2n7(7 — 1) = —272(7 — 1) < 0.
Hence case (iii) in Lemma [6] holds.
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—If %2 <n<7(r—1), then a; = 7(n — 7(7 — 1)) < 0. Hence case (iii) in Lemma@holds.

e 7=2(hence 1 = T—; =7(r—1)=2). Then I = 2(n—2),/g+0O(q) and I+ ,/qI1 = 2(2—1n),/q+O(q).
By n > %2 =2, we have a3 = 2(n —2) > 0 and a1 + by = 2(2 — ) < 0. Case (i-b) holds.

e 0 <7 < 2 (hence 7 > 7'2—2 > 7(r — 1)). Then n > ~ implies that n > 7(r —1). Hence a; =
T(n—7(r—1)) > 0and N = M +1 = 1. Only case (i-b) in Lemma [6]is possible, which requires the

first non-zero coefficient of I + /gIT in to be negative, or I + ,/¢IT = 0.

— Ifn > 7, then I+ /gl = 7(1 —n),/q+ O(q) < 0.

—If p =7, then I+ \/qII = 7%(7 — 1)g + 7%(7 — 1)q? — 72(r — 1)2¢%. Hence for 0 < 7 < 1,
I+ ,/gI1 < 0.

- If g <n <7, then I+ ,/qII = 7(7 —n)\/q + O(q) > 0, which violates case (i-b).

Scenario 3.2*: n = "'—;, 0 < v =7.Then only involves 7: T = 72(1—%)\/(j—T?’(T—l)q—&—%T?’(T—qu%,
I =17337 - 2) /g — Lri(r — 1)%¢3, and I+ /Il = 72(1 — 1), /g + O(q).
5

o If 7> 2, then ay = a1 = 72(1 — %) < 0, and by = by = 273(27 — 2) > 0. Hence case (ii-a) in

Lemma |§| holds. Note that the range of ¢ is 0 < ¢ < u?/L2.

o If 7 =2, then I = —8¢+4¢? and I = 12,/g—4¢>. Hence ay = az = —8 < 0 and by = by = 12 > 0,
with 1 = M < N = 2, which contradicts case (ii-a) and (ii-b) requiring M > N. This case is invalid.

e If0<7 <2 then ay =a; =7%(1 — %) > 0. Only case (i-a) or (i-b) in Lemma |§| is possible. But
then I+ /gl = 72(1 — Z),/g + O(q) > 0, contradicting the conclusion in (i-a) and (i-b). This case
is invalid.

Collecting the results in Scenario 3.1* and 3.2* concludes the proof for Theorem [I".

Finally, we derive Theorems [I] and [2] from Theorems [T} and 2 by exploiting symmetrization in the case of
v # 7o due to Lemma [7]in Appendix

Proof of Theorems (1| and [2| Tt suffices to only deal with conditions (i-a) and (ii-a) in Theorem [2} which
directly implies the conclusions from conditions (i-a) and (ii-a) in Theorem

Fornr~mng>0,v~vyg>0,7~719>0,and vy # 79, by Lemma algorithm can be first put into ,
with Ry, Re, R3 and hy = %":\Zg Next, we keep 19 and the remainder terms, but exchange the role of 1
and 7y by setting vg = 79 and Ty = vy and then translate back to with new parameters 77 ~ 1),
U~ g =19and T ~ Ty = vy (C is also translated to the new ¢ = 1 + (1 — 7)\/q), and a possibly nonzero
h2 _ Cﬁ-i—f/i’—(ﬁ(’r/-&-m’)
7(1-v,/q)
leading constants in v and 7 are exchanged and the algorithm now starts with zy and possibly zg # xg.

in zg. In other words, the original algorithm 1} can be reformulated such that the

For the reformulated algorithm, the proof of Theorem [2]* remains valid except for the bound of V; in
with the new zy. Nevertheless, an inspection of reveals that V) < L||zg — 2*||? still holds because hs
can be easily shown to be bounded. Hence, the desired result follows by symmetrizing the conditions (i-a*)
and (ii-a*) in Theorem [2]'.

C.4 Proof of Corollary I

To facilitate interpretation of and prepare for the proof of Corollary [1} we study the single-variable form
of . The following lemma shows that the two forms can be transformed into each other, provided that
the leading constants in v and 7 differ from each other. The initial points need to be aligned because ({10)
starts from xy and zy while starts from x¢ and x7.
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Lemma 7. Let ( =1+ (1 —17),/q as in Lemma . (i) Algorithm @) with tuning parameters n, v and T
under Assumptz'on admits the single-variable form , which can be expressed as

Tpt1 = 2k — (Vom0 + R1)sV f(z) + (1 — (vo +70)v/q+ R2) (g — 2k—1) — (o + R3)s(V f(x) — Vf(ffkq)(), )
59

with xo, x1 = xog — h1sV f(xg), where Ry = O(\/q), Rz = O(q), R3 = O(\/q) and hy = 4173:-7\'/% are analytic
functions of \/q around 0. (i) Conversely, given any analytic functions of \/q: Ry = O(\/q), Rz = O(q),
R3 = O(/q), h1, and three scalars ny > 0, vo,70 > 0, vy # To, there exist n ~ 1o, v ~ vy and 7 ~ Ty
satisfying Assumption |1| such that @ starting from xo and x1 = xo — h1sV f(xg) is equivalent to (@)

starting from xo and zg = g + hg%Vf((L’()) where

LGt — (14 /D)
2 (1 - v/Q)

Proof. First, we show that admits the single-variable form , ie.,

s = = L) + L )~ D90 = Vo)

for k > 1 starting from zg and z1 = x¢ — ler\‘/'g sV f(xp). The calculation for z; is straightforward and hence

omitted. To show 7 from (10c) and (10a)) we have for k& > 0,

1;|_\/\§a$k+l - 7_f/ayk+1 = 1:—\/\a/a$k+1 - T\C/q(l“k —nsV f(zr)).

Substituting the above display with subscript k + 1 and & for £ > 1 into (10bf), we have

Rk+1 =

o - S s )

Lhva,
T4 k 1

=v/q(zr — %Vf(xk)) + (1 - v/q) ( Tt — nsz(xk_l))) )

After rearrangement we obtain

Lhva, <1+\/a+<(1—y\/q)>xk_ (1 —vy/q)

/4 T4 /4 /4 L1
T ey IV o
e Vf(xw) + v Vf(xg-1).

Solving for x4 yields . Expanding the coefficients in yields .
Second, we prove the reverse statement. Given R1 = O(\/q), Rz = O(q), Rz = O(,/q) and the leading
constants 7g, 1y and 1y, we determine 7, v and 7 by solving the following equations

V(T +(ny/q) = (voto + R1)(1 + /q) = g1 ~ 7o + O(/9),

CA—=vyq) = (1= (vo+70)Vq+ R)A+q) = g2 ~ 1= (vo + 70 — 1)\/q+ O(q),

Cn(l = vy/q) = (o + R3)(1+ /q).

Note that ¢g; and g2 above are known. Solving the equations we obtain

n = no + Rs N
17(1/04’7'0)\/&4’]%2

Mo,
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and v depending on T as
g1 Y7o
V= ~ = 1y,

T+ (Ve 70

and 7 as a root for the quadratic equation
042'7'2+C¥1'7'+Ol():0,

where
az = —/q(1 —nq),
ar=1- g+ G+ (91 — 20+ ng2)g — 209 = \/a(vo + 70 + O(\7)),
ao = (11— g1 —1g2)Va + (20 — g1 — ng2)q + 192 = /a(—vor0 + O(V7Q)).

The discriminant is A = of — 4 - g = q[(vo — 70)? + O(,/q)]. For vy # 19 > 0, the root

—oq:l:\/Z_Otl/\/ai\/A/q_V0+To+0(\/§):|:\/(vo—7’0)2-&-0(\/6)NV0+7'0:|:|1/0—7'0|
2-ay —2-a2/\q 2(1 —nq) 2

is well-defined for small q. The sign is determined by the sign of vy — 79 to make 7 ~ 7p. An inspection of
the expressions suggests that 7, v and 7 are all analytic functions of ,/q.

Lastly, from the above calculation, the updating formula for z; has been matched between (10) and ,
starting from z5. The initial points can be aligned by picking suitable zo such that z; from (|10) is exactly
x9 — h1sV f(zp). The calculation is straightforward and hence omitted. O

Interestingly, the leading coefficients in the single-variable form (59)) for are symmetric with regard to
vo and 79. This suggests that the convergence properties of ([10) should also be symmetric in vy and 9.
Indeed, such symmetrization in the case of vy # 7y is exploited in our derivation of Theorems from

Theorems [If-2I in Appendix [C-3]

Corollary [1] is derived by translating the conclusions from Theorem [2]in the case of vy # 7( in terms of the
leading coefficients in a single-variable form.

Proof of Corollary Let ¢1 = vy + 7o, co = VoTo, C21/Co — co/2 = no and solve for 1o, vy and 79. The
conditions ¢? > 4cg and cp,c; > 0 ensure that vy and 79 exist, satisfying v, 79 > 0 and vy # 79. The
conditions on ¢y can be directly translated into the conditions on 7. The desired result follows by applying
Lemma [d and Theorem [21

D Technical details in Section 3]

D.1 Derivation of three-variable form (22])

By comparing with , the update of yg41 is the same. Rearranging zx11 = agpr12p+1+(1—Qkr1)Yk+1,
we obtain the update of xp41 in (22¢). It suffices to prove the update of zx41 in (22b)). With in place,

we have

Zh1 = Q141 + (1 — Qpg1)Yrt1
= app1[rr — sV (k) + orr1 (e — ye)] + (1 — Qrg1)Yran
= apt1(zp — VsV (k) + (k= D (Yr+1 — yx) + (1 — @t1) Y1
= agy1(zr — sV f(2r)) + (ke — ars1)yrr1 + (1 — ar)ye
= ag1(zr — sV f(zr)) + (ar — anrr) (@r — BesV f(zr)) + (1 — o) yn
= agwy + (1 — ap)ye — (Va1 + Br(ar — arg1))sV f(xr)
=z — apsV [ (xzk).
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D.2 Proofs of Lemmas [4] and [B] in Section

Proof of Lemma |4, Using (22b)), we have

1 * |12 1 *2_1 * ~ 2 1 * 112
Sllzkes =12 = Sl = a1 = Sllo — 2" — @s VA @) = 5l — 2]

~2 .2
= —apslzs — 2%, V(zg)) + O‘k;

IV f () ||
Substituting zx = xx + (ax — 1)(zx — yx) into the above display, we have

1 1
Sllzwrs =P = Sl — o) (60)

~2 .2
— —ks(oe — 2%, V(@) - Gnlar = Dsor = o, VS (@n) + 75

IV £ ()2
~2 2

< —ans(f(wr) = *) = @l = Ds(Fan) = ) + o=V (@)

= o (o) — 1)+ @l — Ds(F ) — 1)+ 9 )7

where the inequality holds because by the convexity of f and the assumption that a; > 0 and o) > 1,
we have (z — 2, Vf(zg)) > flzx) — f* and (xp — vk, Vf(xx)) > f(zx) — f(yx). When k£ > 1, by the
L-smoothness of f and (22a]), we have

F@) = I < fona) = J* + (VP )y = ono) + 5 e — ona]?

Br—15
2

Combining and yields , which completes the proof.

(61)

= f(@r-1) = f* = (2= Br-1Ls) IV f (1)1

Proof of Lemma By Lemma for any k > 1 such that oy > 1, ag > 0, we have
1
Vierr = Vie < =5 (@i — w2 — z*|?

— (wrag—100-1 — wprrag (o — 1)) s(f(xp—1) — f¥)
Y (62)

2
— (wr10k(ag — 1)Br_1(2 — Be—1Ls) — wpdp_q) %||Vf(96k71)||2~
1

If wy > Wiy, then —(wr — wri1)]|ze — 2*]|?/2 < 0. The rest is straightforward.

D.3 Proof of Theorem [

To prepare for the proof for Theorem [] we provide a simple bound which will be used in the last step of
the proof.

Lemma 8. Let f € Fi. When 0 < s < Cy/L for some constant Co > 0, the iterates of satisfy that
for any fizred K, there exists a constant C such that s(f(xx) — f*), 2|Vf(zk)||* and ||zk4+1 — 2*||? are
upper-bounded by C||xg — x*||2. The constant C' depends only on Cy, K and the algorithm parameters {ay},

{Br} and {v}.

Proof. For notational simplicity, we assume Cy = 1 so that 0 < Ls < 1. First, by the convexity of f, we

have
Ls

s(flex) = ) < Sllex —2*|” < II®.

ok —

N | =
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Second, by the L-smoothness, we have
S|V (k) |? = |V (k) = V(@) < (Ls)?|lak —a*|* < o — 27|

Third, by (22b)) and the Cauchy—Schwarz inequality, we have

1 o 1 L _
§||ZK+1 — ¥ = §||ZK — 2" —agsVf(eg)|? < llzx — 2" |° + aks° |V f (@)%,

which together with the preceding bound on s?||V f(zx)||? yields

*H2 *HQ'

1 ~
lleren = a*|? <llex = 2*|* + @ o — 2

Because zg = xg, it suffices to bound ||z}, — 2*||? by ||zo — 2*||? up to a constant for general k > 1. The fact
that (22) is a first-order method implies that for each k& > 1, there exist scalars {ci;} (depending only on

the algorithm parameters) for i = 0,...,k — 1 such that

k—1
T = Tp—1 T+ Z cr,isV f(x;).
i=0
Then by the Cauchy—Schwarz inequality,
k—1
lzx = 217 = o — 2" + Y crasV f (@)
i=0
k—1
<k (IIIk—l P+ Cﬁ,iszlvf(mHQ)
i=0
k—1
<k (Ivak—l — 2P+l - fv*|2> :
i=0
Because K is fixed, the proof is completed by applying the preceding bound for 1 < k < K. O

With Lemma [5] and Lemma [§]in place, we are ready to prove Theorem [4]

Proof of Theorem [4. By the definition of & and condition (i)-(ii), we have

Ak a
lim —* = lim By + (% — Br) —t =7 > 0.
k—o00 k—o0 Qe

Then ay = Q(k) implies that ap = Q(k). By Lemma [5] the key is to bound I and II from below for all &
sufficiently large. The beginning V}, can be dealt with by the simple bound in Lemma[§]so they do not affect
the convergence. To proceed, we consider two choices of {wy} depending on the monotonicity of {ay/ay}-
Note that {wy} needs to be non-increasing, to ensure that the first term —(wy — wg+1)||2x — 2*]|?/2 on the
right-hand-side of is always non-positive.

Choice 1: wg = 1. We pick wy, simply as constant 1 when {ay /ay} is non-increasing. As for I, by condition

(ii) we have

~ ~ 2 &k,l ak(ak - 1) &k 2 ak,1 ak
I=ap1ap-1 — ar(ar — 1) =0‘k1< - 5 — 2o ——]>0.
A1 ak—l Qe

As for II, we have

~ ~2
I = ag (o — 1)Br-1(2 = Br—1Ls) — aj_; = a(ay — 1) (Z]]:Bkl(Q — Br—1Ls) — 0%(0‘;ch1)> :
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For 0 < s < (2—-+/8)/(28L) with 5 > ~v/2 > 0,

ag Br—1 Y &i—l
II > ag(ag — 1) [akﬂk—l <2 - 28 (2 - /5’)> - ak(ak_l)] ’

where the limit of the term in the square brackets is

. Qg Br—1 gl Gy Y
i e (2= 550 3) -t 0 >0

Combining the preceding two displays and o« = (k) shows that there exist constants K and C > 0
depending only on algorithm parameters such that for 0 < s < (2 —~/8)/(26L) and k > K,

I > %(5 - %)ak(ak —1) > CK2.

Choice 2: w1 = oy /. When {&y/ay} is non-decreasing, {wy} is non-increasing. In this case we have
I=0? | —ap(ar—1)>0. For 0 <s<(2—~/B8)/(28L),

IT = o (ar — 1)Br—1(2 — Br—1Ls) — ap—1005-1

2 ~
Q1 Qp—1
= -1 _1(2 — Br_1Ls) — .
(g — 1) (ﬂk 1(2 = Br-1Ls) ar(on =) ak—l)
Br—1 Y aj_, Q-1
> -1 12— 2— =) — .
> ag(ar — 1) [ﬁk 1 ( 25 ( ﬁ) orfor—1) ax il
where the limit of the term in the square brackets is

. Br—1 Y gy Qg1 v
1 12— 2—=)) — . =p—-=>0.
klﬁ\n’c}o 5k ! ( Qﬁ ( ﬁ) ak(ak — 1) L1 B 2
Similarly as in the first choice, there exist constants K and C > 0 depending only on algorithm parameters
such that for 0 < s < (2 —+/8)/(268L) and k > K,

> (5 — %)ak(ak —1) > Ck2.

Combining the two choices above, we see that when {ay/ay} is either non-increasing or non-decreasing in
k, there exist constants K and C' > 0 such that for & > K, we have I > 0 and infys<c,/r IT > Ck?, where

Co = (2—~/B)/(28). By Lemma 5]
C
Vi1 — Vi < —5/76252||Vf(55k71)||2 <O0.

To complete the proof of for the objective gap, it suffices to bound V}, from below.

By convexity of f, we have |V f(zx)||* < (2L)(f(xx) — f*) which together with the definition of V1 in
yields that for k > K and 0 < s < Cy/L,

Vi > Vg1 > wi1 (apag, — &iLS)S(f(SL‘k) — ") = wr 1ok <1 — Z:LS) s(f(xg) — f7).

Because limg wy is 1 or 1/4 > 0 in the Choice 1 or 2 above, and limy &, /ar = v > 0, we reset K large
enough such that the above is further bounded from below as

Vi > Vi1 2> %(% A Dagar (1 —2vLs)s(f(xr) — f5).

By resetting Cy = 2_2%/5 A ﬁ, we have that for k > K and 0 < s < Cy/L,

Vi 2 Vi1 2 i(% A Dagags(f(zi) — f7).
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Using Lemma [8) we have f(zx) — f* = O(Vik /(aaxs)) = O(Vi /(sk?)) = O(||zo — 2*||?/(sk?)), which is the
optimal rate (16))

Finally, we complete the proof of (1§ . ) for the squared gradient norm. For k > K and 0 < s < Cy/L, using
Vie1 — Vie < —S$k2s?||V f(zx-1)||?, we have

C (< 2\ 2 . 2 2.2 2 :
2 (;Z ) ¥ o<igh- 1||Vf(xz I = ZZ sV f(zim) I < ;{ (Vi = Vig1) = Vg — Vi1 < Vi,

which together with Lemma [§] implies that for & > 2K,

min ||V f(x;

H2 QVK 4VK _ 24VK _ ||J}0 — J)*HQ
0<isk-1 Oyl 2 Oy, @ Osh(k+ Dk + 1) ’

- s2k3
which is the desired bound .

D.4 Proof of Lemma [I

First, we show oy, = Q(k). When kis odd, ay = (1+/1 +4a2_,)/2 > (14204-1)/2 = (14+2(k+r—1)/r) /2 =
(k+7r—1)/r+1/2. So for any r > 0, ag, = Q(k).

Second, we show , ap(a — 1) < 0‘%—1 for K > 1. When k is odd, by construction holds. When
k> 2and k is even, k — 1 is odd and k — 2 is even. Then a, = (k+7)/r and ax_1 = (1+4/1 +4a? ,)/2 =
(1++/r2 +4(k + 7 —2)2/r)/2. Simple algebra yields

) 4—r \/(k+r—2)2+7’2/41<””2)2 (63)

; -1) - = k
a(a ) — Qjq r2 r 2 r

When r > 4, is negative for all k. For 0 < r < 4, we further rearrange (63 as

(4fr)2k277”2((k+7”72)2+§) 1 r—92\2
7 52 (%)
r (4—r)k+r\/(k+r—2)2+4>

_8(r_2)k2+2r2(r_2)k+r2(<r—2)2+§) ) (r_2>2

r2 ((4—r)k+r\/(k+r—2)2+’j) 2

r

which remains negative for 2 < r < 4 but blows up to coc as k — 00 if 0 < r < 2.

Third, we calculate limy k(1 — oy41) along {k'} = {2k} and {k”} = {2k 4+ 1}. By the definition of o}; we
have

Qp — 1 .
kl;rrgo k(1 —op1) = hm k < — ) = kl;r& — (g1 —ag +1). (64)
Along {k'} = {2k},
2k . 4k .4k . 4k

lim

= lim ——— = lim —— = lim —_—— =,
k—oo Qig+1  k—oo 1 4+ /1 + 40[%]@ k—oo 20, k—oo 2(2k 4 1) /7
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and

|
Q
n

lim aopy1 — Qg
k—o0

Il
3
I

1 1
i 1+2 1+—1| —
k—oo 2 ( + 202k + 4a§k> 2k

1 1
i 1+0(—) | —
—o00 2 + o ( + (Ozgk )> 2k

|
5
I

Using (64) we have

klim E(1—opi1)=r(1+1/2)=3r/2. (65)
' —00
Along {k"} = {2k + 1},

. 2k+1 . 2k+1

lim =1 =

- )

k—oo Qigk12 o kLH;o (2]€+2+’l")/7'

and

. . 1+ /1+4a3,
lim ogpyo — aopy1 = lim agpyp — —————7
k—oco k—o0 2

1 1
li ——(1+2 14+ —-
i, e 2< + 20 +4agk>

. 1 1
l}gg@ Q2kt2 — 5 ~ Q2 (1 + O(az))

2k
o 2k+2+7r 2k+r 1
= lim — - -
k—o0 r r 2
201
o2
Using we have
2 1 r
lim k"(1 — o =r|l-—-—=-+1)=2+—.
i KL= o) r<r 2+> 3 (66)

Lastly, combining the limits and gives limg 041 = 1, which implies that limy api1/ar = 1.
Therefore, condition (ii) holds. The proof of Lemma [1]is completed.

E Technical details in Section [4]

E.1 Convergence of ODEs (23) and (25)

In the convex setting where f € F', the convergence rates of gradient flow and the ODE for NAG-C
are proved in [Su et al.| (2016|). For completeness, we present the proofs for the convergence rates stated in
the strongly convex setting where f € Sﬁ.

For gradient flow , consider the Lyapunov function V; = f(X;) — f*, i.e., the potential gap itself. Then
by (), we have Vi = (V7(X0), X = ~[VA(X)IE. By stron comesity, f(X0) - * < [V FCX)|E
Therefore, V; < —2u(f(X;) — f*) = —2uV;, which implies that f(X,) — f* = V; < Vy-e 24 = e~ 2 (f () —
f).
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For the ODE 1) corresponding to NAG-SC , consider the Lyapunov function V; = f(X;) — f*+ %||Xt +
V(X — 2*)||%. Then Vo = f(xo) — f* + §llwo — 2*||* < 2(f(z0) — f*) by strong convexity. Using the ODE
, we have

dvi

a =(Vf(Xt), X, > + <Xt + V(X — x*), X; + \/ﬁXt>

= (V(Xe), Xe) — (Xe + Vu(Xe —a"), VuXe + V(X))
= —ValIXe]|? = Va(Xe, V(X — 2*)) = VE(Xe — 2", V (X)),

which together with the inequality (X, — 2*, Vf(X,)) > f(X¢) — f* + &/ Xy — 2*||? by p-strong convexity
suggests that

< B = v (0 - 7+ 1% + VRO = o)) < -V

Hence, f(X;) — f* < Vi < Vp- e Vi < 2e~Vi(f(z0) — f7).

E.2 Proof of Proposition [3]

For the existence and uniqueness of the solution X; to the ODE , define

Yia Xi 2n
Y = ’ =1 5 e R™".
NN
Then the original ODE can be reformulated as

. Y2
Y, = ’ = F(t,Y,
K [ —c1y/IYe2 — oV f(Yi1) } (. Y0),

with initial condition Yy = (z§,0)", where

F(t,Y) = [ fcl\/m@}?r:ovf(yl) } '

Because f is L-smooth, Vf is L-Lipschitz continuous. Hence, F' is Lipschitz continuous in Y. Because F'
does not depend on ¢, F is globally Lipschitz continuous in Y. By Picard—Lindel6f Theorem, the conclusion
follows.

For the convergence rate, consider the Lyapunov function

1 - N
Vi = co(f(Xe) = 1) + 51K + AV(Xe — 2 )2,
where A is to be chosen later. Using the ODE ([26)), we have

= oV, X0) + (X4 WX — %), Ko+ AV

= T 0) (R AV ) = 0~ VS0
(Cl )\fHXt||2 (e1 = MVEX e, WX — 27)) = coh/i(Xy — 2%, V(X))
Gl = AR AV - )+ DA X
— C()A\/,T,L<Xt — SC*, Vf(Xt)>
= —CyRvi- Gl - (252 - 5) VA AVRCK - )P
C1 — A
2

T Caoy/T(f(X0) = %) + 2o 2Nud X, — 22 = Aeoy/A(X: — o, V(X))
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which together with the inequality (X, — 2*, Vf(X,)) > f(X¢) — f* + &/ Xy — 2*||? by p-strong convexity
suggests that

ave _
At —Cvivi -

. ca—x C . N
- ( 12 - §) VA + AV - )

3

— (A= C)eoy/pulf(Xs) = ) = 2 (e = (e = MV Xe — 27|12

Because ¢y > 0 and ¢; > 0, we pick A such that 0 < A < ¢; and (¢; — M)A < ¢g. Moreover, we pick C' such
that 0 < C' < (1 — A) A A. Then

dV;
5 SOV = Vi< Ve OV

c14+/c? —4co
—_—y_1 and

In particular, if ¢7 < 4cg, we pick A\ = ¢1/2 and C = ¢1/2. If ¢ > 4cg, we pick A = 5

c1—4/ (2 —4co)VO

. Equivalently, C' = 5 > 0. The conclusion then follows by bounding Vy =
2
co(f(xo) = F*) + 2 zo — a*|[* < (co + A*)(f(wo) — [*) because §lzo — 2*||* < f(xo) — f*.

When ¢ <0 or ¢; <0, f(X;)— f* is not guaranteed to converge. A simple counterexample is the harmonic
oscillator, with f(z) = ux?/2 for x € R,

2
ci—4co

X + cr/pXs + copXy =0, (67)

starting from the initial position X (0) = o with velocity X (0) = 0. Since is a second-order linear ODE
with constant coefficients, its general solutions admit closed forms. Consider the characteristic equation
w? + ¢1/pw + cop = 0 with discriminant A = (¢} — 4co)p.

If ¢? = 4cy, then there are two identical real roots w = w; = wy = —¢; Vit/2, and Xy = (ap+aqt)e®t for some
real numbers ag and ;. By the initial condition X (0) = 0, we find oy = —apw. Then X; = ag(1 — wt)e™*
To achieve X; — 0, we need w < 0, which means ¢; > 0 and ¢o = ¢3/4 > 0 too.

If ¢2 > 4cp, then there are two distinct real roots w; = —atyve—io 30%7460\/;7 and w, = —2 Va7 ”26?7400\/@ with
wy > wy, and X; = ape™'t + aje¥?t. By the initial condition X (0) = 0, we find agw; + ajws = 0. If wy = 0,
then w; > 0 and hence oy = 0 and X; = a3 = zg, which contradicts X; — 0 for any z¢ # 0. If wy # 0,
then a; = —apw; /we, and X; = ap(e¥rt — 'Z’]—;ew?’f) with w; # wy. To achieve X; — 0, we also need wy < 0.

Then —c; + /¢ — 4c¢p < 0, which implies that ¢y > 0 and ¢; > 0.

i./4
If cl < 4cp, then there are two complex roots wy 2 = —a co=ci l\f and X; is a linear combination of

e~ WVI/2 5 sin(y/u(deo — c3)t/2) and e~ VI 2 x cos(\/ 1 400 —c?)t/2). We need ¢; > 0 to make X; — 0.

Then ¢ > ¢2/4 > 0 too.

E.3 Proof of Proposition [3

The existence and uniqueness of a solution were proved in [Shi et al.| (2022), Proposition 1, and thus omitted.
Below, we focus on the convergence rates. For , we consider the Lyapunov function

Vi = (L V)X = ) + 3%+ V(X = 2%) + VAV A
Using the ODE , we have

dv;

TS (14 Vas)(VF(Xe), Xp) + (Xy + Vi(Xe — %) + VSV (X), Xp + ViXe + VsV (X)X

= (1+ Vs)(VF(X0), Xo) + (Xi + VI(Xe — %) + VsV F(Xy), =X — (1+ /1) V (X))
= —ValIXl? = V(X VE(Xe = 2) + VYV (X)) — (14 VES)V (X)), VR(Xe — a%) + VsV (X))
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= I R 4 VG a) VAV SO + YK~ 2) + VAV S
(b I, — 2 V) — (14 VWA
VAV VB VNOG) — 1) = YR 1 — P - VR - o, V)
A+ v P,
By the strong convexity, (X, — 2%, V(X;)) > f(X;) — f* + [ X, — 2*|%. Then the above display yields

dV; Vs
2

TS TV VRS = 1) = VA
By the strong convexity again, we have f(X;) — f* < iHVf(Xt)HQ. Hence

We o v — Y0

The conclusion follows by integrating with ¢.

IV F(Xo)IP.

o (L Vi) V(X)) < =iV,

For , we consider the Lyapunov function

1. .
= (L4 Vis)(f(X0) = 1) + 1K + V(X = a)1%,
Using the ODE , we have

U= (1 VIRV (X0), X+ (X + VX — 7). Ko ViK)

= (1L+ VES)(VA(X0), Xo) — (Ko + VAKX, — ), VX + (14 VAV (X))
— VRl = VA R — ) — VL + Viis) (Xe —a*, V(X))

= IR~ s G~ )P B — 2 R V) (X, - 2, V)
< Ve VL V)X = £%) + X = P = L )X~ V)

By the strong convexity, (X; —2*, Vf(X;)) > f(X;) — f* + &[ X; — 2*||>. Then the above display yields

dV
W v~ - a2 < — v

The conclusion follows by integrating with ¢.

E.4 Proof of Proposition [5]

The construction of our continuous-time Lyapunov function is motivated by |Su et al.|(2016) and Shi et al.
(2022). We consider the auxiliary-energy term defined as

2

VA =2
¢ 2

r(Xe —x*) +t <Xt + B\[Vf(Xt)>

Using the ODE , for t >ty we have

% = (r(X; —a") +#(X ﬂ\/gvf(Xt))arXt + X+ ”B\[Vf(Xt) +i(X + ﬂ{v"’f(Xt)Xt)}
= (r(X,—a*) +t(X, + 6;[Vf(Xt)) —(t+ (r; L g)\/g)Vf(Xt»
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= =t (g = DA (X =, V) — e+ (= 2)vE) (i VX))
BV's r+1 p 2
T t(t—i—(?—;)\/g)HVf(Xt)H.

Let C' > 0 be a constant to be chosen later, and introduce a factor of #ﬁ for technical adjustment.

Because # =1+ CT‘/E is decreasing in ¢, we have

t+C\[ t+Cys .VA+t+C\/§.thA<t+C’\/§.thA
dt t dt t ¢ t dt — t dt

- DV V) (69)

_THS\/E(” (F2=- g)ﬁ)@t — 2, V(X)) = (t+ CVs) (E+ (

r+1
2

—ﬁ;/g(t—kC\/E)(t—%(

_ & 2
7)f)HVf( )|l

To eliminate the term of (X,, V£(X;)), we define the potential-energy term as

rel §>¢§><f<xt> — ).

VP = (t+CVs)(t+(

2
Then
P
W (e (CH 2 om0 = £+ e+ vae+ (L~ Dy vmmron £,

Define the continuous Lyapunov function as V; = V, + %Vf. Set t§ = to V{2|C|y/s}v{2|EL — g lv/s} >
0. Then for t > tj, we have V; > 0 and

r+1 pf

(t+CVs)(t+( 5 _§)‘/§)Z%'%:Z' (70)
Combining and , we obtain
L g)\/g)(Xt—x*,Vf(Xt»-i-(2t+(r;1 —§+C)\/§)<f(xt)—f*)

2
( 7’+1 B

ﬂ{ £+ V) - OVRIT IR

which together with the convexity inequality (X; — «*, Vf(X;)) > f(X:) — f* suggests that for » > 0 and
t >3,

?S—((T—Z)t—l—(r—l)C\[—i—(r—lﬁ-

" - Dyvs) (k0 - 1)

I

3 _ g)\/g) VsV

—;(H—C\/g)(t—k(

II,

r+1
2

From , if g > 0, then II; > th >0 for t > t§. It remains to deal with I;.

When r > 2, we set C =0. Then I, = (r —
= (2 2)v5).

When r =2, I, = Cy/s + (1 + 20‘/5)(% )\f We set the constant C > £-3 (eg, g) Then when ¢ is

large (e.g., t > 37(2 - 35, L, >0 always holds. In this case, we pick ¢t; = t* \/{ (% 3)V/s}.

2)t+ (r = 1)(=51 = £)y/s > 0 for t > — =3 (=5 — 2)\/5. In this

case, we pick t1 =15V {—
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To summarize, when r > 2 and 2 > 0, there exist C' > 0 and ¢; such that when t > ¢, th < 0. If further

ﬂ > 0, then —4t > Bft2||Vf(Xt)H2 The remaining proof is similar to the proof of Theoreml but in a

contmuous way. We sketch the reasoning below.

If % <0, then for t > tq,

- D - 1) 2

Vi, 2 Vi 2 Vi = (t+ CVs) (t + (

which implies that f(X;) — f* =0 (%)

If further — 9t > B‘[t2||Vf(Xt)||2 with g > 0, then for t > t;, we have V; > 0, and

t t
Vi 2 Vi = Vim (V) = (Vi) = [ vz 28 [ 900 Pau
t t1

, du
BVs . 2/t 2 BVs(t? —13) )
> — =
™ tllgrtfgtHVf(XU)H K du T <t|\Vf( D%
which implies that
. 129V, WV,
f 22l VY
o Bl VT 5 72— O(ff\/g(fﬁt?))

F Technical details in Section

F.1 Single-variable form for HAG (32)

We derive the single-variable form for HAG. From solving the first equation for uy, and plugging
the expressions of uy and ug41 into the second equation, we obtain

Tht2 — Tht1 + 1 VI (@p41)

v k+1bk+1

Rearrange the above display to conclude.

= (bp—1) 2 —x\;%ch ) ~VapbV f (1) = (V f (41) =V £ (2x)).

F.2 Verification of monotonicity condition for (39)

We verify that the monotonicity condition in Theoremis satisfied by , i.e., HAG under the configuration
(38). First, we notice that can be put into with

¢ 1 1
2 >7 Tk = Co <+> — 041 (Be — Br—1)-
—1 br—1 bk

_ k+r _ ap—1 __ k _ _ 2k+r+1 ak+1 _ k+r+1 :
When o, = =, we have op11 = Tl s bp—1 =14 041 = ol and - = Without

loss of generality, take ¢y = 1. Substituting o1, bx—1 and by into the display above and after some algebra,
we obtain

1
Br—1 = —— <C2\/C
Ok+1

ay, fy1 Qfy1 E+r+1

Sk _ _ itz st S T U S N

Qg " 6k< o ) ey ﬁkkJrr
B 2k2 4+ (7 — 2¢2 + 4r)k + 6 — 3co + Tr — cor + 212
B (k+7)(2k +17+3) ’

which is monotone in k when k& > K for some K depending only on ¢o and 7.
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