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Abstract

Diagnosis-Related Group (DRG) codes are essential for hospital reimbursement
and operations but require labor-intensive assignment. Large Language Models
(LLMs) struggle with DRG coding due to the out-of-distribution (OOD) nature
of the task: pretraining corpora rarely contain private clinical or billing data. We
introduce DRG-SAPPHIRE, which uses large-scale reinforcement learning (RL)
for automated DRG coding from clinical notes. Built on Qwen2.5-7B and trained
with Group Relative Policy Optimization (GRPO) using rule-based rewards, DRG-
SAPPHIRE introduces a series of RL enhancements to address domain-specific
challenges not seen in previous mathematical tasks. Our model achieves state-of-
the-art accuracy on the MIMIC-IV benchmark and generates physician-validated
reasoning for DRG assignments, significantly enhancing explainability. Our study
further sheds light on broader challenges of applying RL to knowledge-intensive,
OOD tasks. We observe that RL performance scales approximately linearly
with the logarithm of the number of supervised fine-tuning (SFT) examples,
suggesting that RL effectiveness is fundamentally constrained by the domain
knowledge encoded in the base model. For OOD tasks like DRG coding, strong
RL performance requires sufficient knowledge infusion prior to RL. Consequently,
scaling SFT may be more effective and computationally efficient than scaling
RL alone for such tasks. 1
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Figure 1: Main Results. (A) Accuracy of DRG coding on the MIMIC-IV test set (N=26,244). DRG-
SAPPHIRE outperforms proprietary reasoning models and the previous SOTA model, DRG-LLaMA.
Notably, classification models could not generate reasoning for DRG code assignments. (B) Best RL
performance increases linearly with the logarithm of the SFT sample sizes. Dashed line marks where
50% of training data was used for SFT. Best results from vanilla GRPO runs are shown.

1Our code is available at https://github.com/hanyin88/DRG-Sapphire.
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1 Introduction

Medical codes such as DRG play pivotal roles in modern healthcare. DRG codes are fundamental to
the inpatient prospective payment system, directly influencing hospital reimbursement and key quality
metrics [30]. Currently, assigning DRG codes from clinical notes remains a costly and labor-intensive
task, performed manually by highly trained coding specialists.

With the emergence of LLMs, there has been growing interest in leveraging these models for auto-
mated medical coding [8, 34, 38, 21, 44]. However, DRG coding remains a particularly challenging
task for LLMs (Figure 1A), with prior attempts yielding limited success [38, 34]. A primary difficulty
arises because DRG coding represents an out-of-distribution (OOD) task for off-the-shelf LLMs.
Due to the private nature of medical records, most LLMs likely have minimal exposure to patient
notes or billing data during pretraining. Additionally, DRG coding is inherently challenging due
to: (1) a high-dimensional search space with over 700 DRG codes; (2) advanced clinical reasoning
required to link diagnoses with hospital resource use and disease severity; and (3) strict hierarchical
rules governing DRG assignment.

Recent advances in reasoning models, such as OpenAI-o1 [15] and DeepSeek-R1 [12], have intro-
duced a paradigm shift in LLM post-training. By leveraging large-scale RL with verifiable rewards,
these models exhibit test-time scaling through extended chain-of-thought (CoT) reasoning, achieving
state-of-the-art (SOTA) performance on complex tasks like competitive mathematics. Despite this
progress, the design of optimal RL algorithms for scalable training remain an open challenge [45, 24].
In the healthcare domain, RL applications using verifiable rewards are still in their early stages, with
prior work primarily focused on medical knowledge benchmarks [4, 19, 20].

In this paper, we present a comprehensive exploration of large-scale, reasoning-oriented RL training
for automated DRG coding from unstructured clinical notes. In theory, training towards a reasoning
model is well-suited for this task: (1) it promotes the development of complex reasoning skills required
for accurate code assignment; and (2) more importantly, it generates transparent rationales through
CoT reasoning—a key requirement for trust and explainablity in real-world clinical applications.

Through this work, we aim to further derive insights into applying RL to challenging OOD tasks
with off-the-shelf LLMs. Using Qwen2.5-7B model and GRPO with DRG-rule-based rewards, we
systematically investigate the prerequisites for successful RL, the allocation of data between SFT and
GRPO under a fixed data budget, and the impact of scaling SFT data. We also explore a series of RL
algorithmic enhancements and adaptive learning strategies. Our core contributions are as follows:

1. We introduce DRG-SAPPHIRE, a novel model developed through large-scale RL, achieving
SOTA performance in automated DRG coding. Unlike prior methods, DRG-SAPPHIRE generates
clinically helpful, physician-validated reasoning, significantly improving explainability.

2. We demonstrate that the performance ceiling of RL in this OOD task is bounded by the model’s
capabilities before RL training. Specifically, we observe that RL performance increases linearly
with the logarithm of the number of SFT examples, suggesting that scaling SFT may be more
effective and computationally efficient than scaling RL alone for such tasks.

3. We propose a series of algorithmic enhancements and identify unique challenges in applying
RL to DRG coding that distinguish it from mathematical domains—such as a preference for an
Answer-First cognitive pattern, and sensitivity to KL divergence for stable training.

2 Related Work

Automated DRG Coding Given their critical role in hospital operations and reimbursement, there
is significant interest in automating DRG coding and enabling early DRG prediction [23, 13, 38, 10].
The prior SOTA method, DRG-LLaMA, fine-tunes a LLaMA model as a sequence classifier by
replacing its generation head with a classification head [38]. Most existing approaches similarly
frame DRG coding as a multi-class classification task, offering limited insight into the rationale behind
code assignments. While methods like DRGCoder provide input-level weight visualizations [13],
their interpretability remains insufficient for real-world clinical deployment, where transparency and
explainability are critical.
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Replication Efforts of Deepseek-R1 Recent studies have actively explored replicating the RL
recipes of DeepSeek-R1, particularly in mathematical and coding domains, with varying degrees
of success [47, 14, 40]. One line of work has proposed approaches to address biases and improve
sample efficiency in the original GRPO algorithm [45, 24, 22]. Another active research area focuses
on curriculum and staged learning strategies during reasoning-oriented RL [48, 36, 41, 16, 3].

New Capabilities from RL? A central debate concerns whether RL truly fosters new capabilities
beyond those already encoded in the base model. In DeepSeekMath, RL improved Majority@K but
not Pass@K performance on mathematical tasks [33]. A comprehensive analysis across mathematical,
coding, and visual reasoning tasks found that RL with verifiable rewards primarily reinforces existing
reasoning capabilities rather than fostering novel ones [46]. Recently, Ma et al. [26] analyzed training
dynamics on complex reasoning tasks, showing that RL strengthens performance within a model’s
existing capabilities, whereas SFT more effectively extends them beyond its current scope.

3 Large-scale RL for Automated DRG Coding

3.1 Problem Formulation

We aim to automate the hierarchical assignment of Medicare Severity Diagnosis-Related Group
(MS-DRG) codes using LLMs. The MS-DRG system classifies each hospitalization into a single
DRG code based on clinical complexity and resource utilization (see Appendix A.1 for details).
Given a hospitalization represented by a set of clinical documents D, the DRG coding process
applies an extraction function h to identify the principal diagnosis wd or procedure wp, and the
presence of Complications or Comorbidities (CC) or Major Complications or Comorbidities (MCC).
A hierarchical mapping function f then determines the final DRG code. Formally, the MS-DRG
assignment is defined as:

(wd, wp,CC,MCC) = h(D), g = f(wd, wp,CC,MCC),

where g is the assigned DRG code. In this paper, we use an LLM to automate this complex process.

3.2 Preliminary: GRPO

Compared to Proximal Policy Optimization [32], GRPO eliminates the value function and estimates
the advantage using relative rewards within a group [33]. For each question q, GRPO samples a group
of outputs {o1, o2, · · · , oG} from the old policy πθold and then optimizes the target policy πθ. In this
paper, we enforce πθold = πθ to ensure strict on-policy learning. Under this setting, we maximizing
the following objective:

JGRPO(θ) = E[q ∼ P (Q), {oi}Gi=1 ∼ πθold(O|q)]

1

G

G∑
i=1

1

|oi|

|oi|∑
t=1

[
Âi,t − β(

πref (oi,t|q, oi,<t)

πθ(oi,t|q, oi,<t)
− log

πref (oi,t|q, oi,<t)

πθ(oi,t|q, oi,<t)
− 1)

]
,

(1)

where β is the coefficient for the KL divergence penalty, πθref is the reference policy, and Âi,t is the
advantage, computed based on the relative rewards within each group {ri}Gi=1 as:

Âi,t =
ri − mean({ri}Gi=1)

std({ri}Gi=1)
. (2)

Here, ri denotes the reward assigned to output oi for prompt q. The gradient of JGRPO(θ) is:

∇θJGRPO(θ) = E[q ∼ P (Q), {oi}Gi=1 ∼ πθold(O|q)]

1

G

G∑
i=1

1

|oi|

|oi|∑
t=1

[
Âi,t + β

(
πref (oi,t|oi,<t)

πθ(oi,t|oi,<t)
− 1

)]
∇θ log πθ(oi,t|q, oi,<t).

(3)

3.3 Improving GRPO Beyond the Baseline

We propose a set of strategies to address key limitations of GRPO.
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Dynamic Resampling for Advantage Preservation Existing RL algorithms suffer from the
gradient-diminishing problem. In GRPO, if all completions {oi}Gi=1for a prompt q receive the same
reward value, the resulting advantage for this group becomes zero. As training progresses, this issue
becomes more pronounced due to policy optimization and accompanying entropy collapse [45],
as more prompts yield completions with no reward variance—either because all completions are
perfectly correct or uniformly incorrect. This leads to a progressive decrease in the learning signal
from the reward-based advantage.

To address this, we propose a dynamic resampling strategy (Equation 4). For each prompt q, if
sampled completions yield zero reward variance, we resample up to Nmax times until nonzero variance
is observed. Optionally, we enforce that at least one completion receives a positive reward, guiding
gradient updates toward high-reward trajectories.

JGRPO(θ) = E[q ∼ P (Q), {oi}Gi=1 ∼ πθold(O|q)]

1

G

G∑
i=1

1

|oi|

|oi|∑
t=1

[
Âi,t − β(

πref (oi,t|q, oi,<t)

πθ(oi,t|q, oi,<t)
− log

πref (oi,t|q, oi,<t)

πθ(oi,t|q, oi,<t)
− 1)

]
s.t. Var({ri}Gi=1) > 0 within Nmax, optionally: |{oi | ri > 0}| > 0.

(4)

Our approach differs from the dynamic sampling strategy in DAPO [45], which discards prompts that
yield uniformly correct or incorrect completions. Given the data scarcity in clinical domains, we
instead maximize the utility of each training example by resampling rather than discarding.

Intervening on Cognitive Behaviors Cognitive behaviors, such as verification and backtracking,
are critical for effective reasoning-oriented RL [11]. We explored additional reward functions and
a specialized SFT dataset (detailed in Section A.3) to incentivize three cognitive patterns in CoT
reasoning, as shown in Figure 2. These are: (1) Answer-First, where the model outputs the DRG
code before CoT; (2) CoT-First, where the model generates CoT reasoning before the DRG code;
and (3) Differential Thinking, where the model evaluates three potential DRG codes before selecting
the most appropriate.

<think>
Based on the provided discharge summary, the most likely Medicare
Severity Diagnosis-Related Group (MS-DRG) is "OTHER
CIRCULATORY SYSTEM DIAGNOSES WITH CC."

### Reasoning:
1. **Principal Diagnosis: ...
2. **CC (Complication or Comorbidity): ...
3. **MCC (Major Complication or Comorbidity): ...
4. ** discharged with specific medications and follow-up plans: ...

### Conclusion:
The DRG code "OTHER CIRCULATORY SYSTEM DIAGNOSES WITH
CC" is assigned because the patient's primary condition, despite being
initially concerning, did not meet the criteria for an MCC...
</think>

<answer>
OTHER CIRCULATORY SYSTEM DIAGNOSES WITH CC
</answer>

Answer-First

<think>
To determine the most likely MS-DRG for this patient, let's break down
the key elements from the discharge summary:

1. **Principal Diagnosis**: ...
2. **Secondary Diagnoses and Procedures**:...
3. **Complications and Comorbidities (CC and MCC)**:...

**Reasoning for the DRG Assignment**:...

**DRG Code Assignment**:
The most likely MS-DRG for this patient, based on the provided
information, would be **"OTHER CIRCULATORY SYSTEM
DIAGNOSES WITH CC."** This DRG code is assigned because ...
</think>

<answer>
OTHER CIRCULATORY SYSTEM DIAGNOSES WITH CC
</answer>

CoT-First

<think>
#### Principal Diagnosis: ...
#### Secondary Diagnoses: ...
#### Procedures Performed: ...
#### Other Relevant Factors:...

### Possible DRG Codes
1. **[Heart failure and shock without CC/MCC]**
2. **[Other circulatory system diagnoses with CC]**
3. **[Other circulatory system diagnoses with MCC]**

### Analysis for Each DRG Code: ...

### Conclusion
Most Likely DRG Code: [Other circulatory system diagnoses with CC], 
as it best reflects...
...
</think>

<answer>
OTHER CIRCULATORY SYSTEM DIAGNOSES WITH CC
</answer>

Differential Thinking

Figure 2: Examples of Cognitive Behaviors.

KL Divergence Decay The KL divergence term in the GRPO objective (Equation 1) regularizes
the divergence between the target policy πθ and the reference policy πθref . However, this term
exacerbates the gradient-diminishing problem in RL: as training progresses and more prompts yield
zero-variance responses, the gradient, per Equation 3, becomes dominated by the KL term, pulling πθ

toward πθref . This drives over-regularization toward the reference policy and risks policy degradation.
Recent work suggests that removing the KL penalty enhances reasoning capabilities in mathematical
domains [45, 24, 14]. Motivated by this, we explored two setups: (1) completely removing the
KL divergence term from the objective, and (2) applying a cosine decay schedule to the KL term’s
coefficient β, smoothly reducing it to zero during training (see Section A.4 for details).

GRPO Variants In Equation 1, dividing by |oi| during group-level advantage normalization
introduces a length bias, diminishing the influence of longer completions on the policy gradient. To
address this, DAPO [45] uses

∑G
i=1 |oi| as the denominator, while Dr. GRPO [24] adopts a constant

normalization factor. Additionally, Dr. GRPO removes the division by std({ri}Gi=1) in Equation 2 to
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mitigate question-level difficulty bias. We systematically evaluated these three strategies. Due to the
strict on-policy nature of our setting (πθold = πθ), we did not explore other modifications, such as
clip-higher [45].

Reward Shaping We implemented two straightforward yet robust rule-based reward components:
Format Reward and Accuracy Reward (detailed in the Section A.2). For the Accuracy Reward, we
investigated three distinct strategies: Dense Reward, Balanced Reward, and Strict Reward. These
reward functions were designed to provide varying levels of reward signal sparsity, contingent on the
correctness of the DRG code, its associated principal diagnosis, and the CC/MCC status.

3.4 Adaptive Learning Strategy

Curriculum Learning We investigate whether a curriculum learning strategy, which organizes
training cases by difficulty, improves performance compared to a mixed-difficulty baseline. We
evaluated four setups, detailed in Appendix A.6: (1) excluding easy cases, (2) excluding hard cases,
(3) excluding both easy and hard cases (i.e., using only medium-difficulty cases), and (4) training on
easy cases first, then progressing to hard cases.

Staged Learning Lastly, we explored a staged learning strategy with three training phases of
roughly equal length. After each phase, we identified easy and hard cases and evaluated two
approaches: (1) additional SFT on hard cases, and (2) additional DPO on hard cases, before advancing
to the next stage. As detailed in Appendix A.7, these approaches aim to improve the model’s handling
of challenging cases through targeted learning.

4 Implementation Details

Dataset We utilized the DRG-LLaMA training and test sets [38], derived from the publicly available
MIMIC-IV dataset of real-world medical records [17]. The full training and test sets include 236,192
and 26,244 cases, respectively. Each case uses the “brief hospital course” section from the discharge
summary as input, with MS-DRG codes consolidated to version 34.0.

Training Pipeline and Scaling Strategy An overview of the training pipeline is shown in Figure 3.
We first sampled a reduced dataset termed DRG-Small, comprising 20% of the full data (N=46,758).
This subset served as the foundation for extensive experiments on methodological variants and
SFT–RL data mixtures, as detailed in Sections 5.2 through 5.3. After identifying the optimal
configuration, we scaled training to the full dataset to produce the final DRG-SAPPHIRE model.

Step 1

Bootstrap CoT
Reasoning for DRG
Assignment Using

Qwen2.5-7B

Step 2

SFT on the
Qwen2.5-7B Using

Cold-Start Data

Step 3

Large-Scale RL
with GRPO and

Verifiable RewardsClinical Notes and
DRG Pairs from

MIMIC-IV
Cold-Start
Dataset

Cold-Start Model
Checkpoint DRG-Sapphire

Figure 3: Overview of Pipeline. We construct a CoT cold-start dataset using Qwen2.5-7B-Instruct,
followed by SFT with this dataset and large-scale GRPO.

Construction of SFT Dataset We prompted the Qwen2.5-7B-Instruct model with medical records
and ground-truth DRG codes, tasking it to generate reasoning for DRG assignments (prompt provided
in Section I). After extensive prompt engineering, manual inspection by domain expert revealed that
the dataset exhibits strong reasoning logic (e.g., analyzing principal diagnosis first) but frequently
contains factual errors (e.g., misclassifying a condition’s CC/MCC status). We also included the
complete list of original V34.0 MS-DRG codes in a question–answer format within the SFT dataset.

Model and RL Training We selected Qwen2.5-7B-Instructs [43] for the main experiments after
evaluating various model size. GRPO training was conducted using the TRL package [37] for one
epoch across all experiments.

Evaluation Metrics We report model performance on the full test set using Pass@1, Pass@8, and
Majority@8 (Maj@8), following prior work in reasoning-oriented RL [33, 46]. Pass@1, reported as
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the model’s accuracy, is the mean accuracy across eight runs. Pass@8 assesses whether the correct
DRG code appears among eight generated outputs, while Maj@8 determines if the most frequent
output matches the correct DRG code.

5 Experiments

5.1 Results of DRG-SAPPHIRE

Our best DRG-SAPPHIRE model was trained using a 90% SFT and 10% RL ratio on the full dataset
(see Section 5.2 for SFT vs. RL ratio experiments), incorporating optimal GRPO enhancements and
adaptive learning strategies (see Section 5.3 for ablation studies).

Comparison with Baselines As shown in Figure 1A, DRG-SAPPHIRE significantly outperforms
proprietary reasoning models, non-reasoning models, and the DeepSeek-distilled Qwen 32B. It
achieves new SOTA performance on DRG coding, surpassing the previous best, DRG-LLaMA-7B
(54.8% vs. 53.9%). In addition to improved accuracy, DRG-SAPPHIRE provides interpretable
reasoning—a compelling advantage over prior models trained purely as classifiers.

Helpfulness Accuracy
1=Very Poor

2=Poor

3=Acceptable

4=Good

5=Very Good
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ew
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Figure 4: Expert Reader Study.

Expert Reader Study Results Four physicians in hospital
leadership roles, actively engaged in DRG-related initiatives
(e.g., reducing geometric mean length of stay), evaluated DRG-
SAPPHIRE ’s reasoning across 30 cases. On the dimensions
of Helpfulness and Accuracy, DRG-SAPPHIRE received a
median rating of 4 out of 5, suggesting good potential for
real-world applications (Figure 4). Qualitative assessments
highlighted the explainability of DRG coding as highly valuable
for DRG-related initiatives (see Section D.1 for details), despite
occasional factual inaccuracies in the reasoning.

5.2 Optimizing Data Allocation Between SFT and GRPO
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Figure 5: Impact of SFT-GRPO Data Ratios on DRG-Small Subset. (A–E) GRPO consistently
improves Pass@1 and Maj@8 across all SFT ratios but reduces Pass@8. (F) Total training time
decreases with higher SFT ratios, as GRPO is more time-consuming.

Effect of SFT-GRPO Ratios on DRG-Small First, we investigated the impact of varying the
allocation of a fixed data budget between SFT and GRPO on the DRG-Small subset (N=46,758).
This contrasts with Deepseek-R1-style training, where only minimal SFT precedes RL. Across all
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data splits, GRPO consistently improved Pass@1 over the SFT baseline by an absolute margin
of approximately 10 percentage points (see Figure 5). We observed that this gain is driven by
improvements in Maj@8, not Pass@8; in fact, Pass@8 declines with GRPO. This pattern suggests
that RL sharpens the model’s output distribution toward higher-reward pathways, rather than
introducing new reasoning capabilities in our experiments. Notably, the decline in Pass@8 during
training indicates that RL may constrain diverse reasoning exploration. These findings align with
recent studies [46, 33], which question whether RL improves reasoning beyond the base model’s
capabilities. Moreover, the ultimate performance ceiling achievable with GRPO appears to be largely
determined by the capacity of the initial SFT model; a stronger SFT foundation generally leads
to better post-GRPO results. From a computational perspective, scaling SFT prior to RL is more
efficient, as GRPO entails substantial inference-time cost (see Figure 5F).
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Figure 6: Results on Full Dataset. (A) Accuracy from the two longest GRPO runs. (B–C) Pass@8
and Maj@8 vs. SFT size. Dashed line marks where 50% of training data was used for SFT. Best
results from vanilla GRPO runs are shown.

Log-Linear Scaling of GRPO with Increasing SFT Next, we scaled our training pipeline to
the full dataset (N=236,192). Based on the results above, we started with an SFT-GRPO data ratio
of 50%-50% and progressively increased the SFT ratio under a fixed total data budget. Plotting
these results alongside the DRG-Small subset revealed that both GRPO and SFT performance scale
approximately linearly with the logarithm of the number of SFT examples (Figure 1B). Although the
number of GRPO steps varies across experiments in Figure 1B, the benefit of scaling RL appears
limited in our study. Figure 6A illustrates results from our longest GRPO runs, demonstrating modest
benefits beyond 500 global steps. Consistent with earlier findings, GRPO reliably improves Pass@1
and Maj@8 while reducing Pass@8 (Figure 6B and C). As the number of SFT samples increased, the
slope of the GRPO curves converged toward that of SFT across all metrics. Additional results from
scaling to the full dataset are detailed in Section C.3.

5.3 Ablation Studies on GRPO Enhancements and Adapative Learning

We present the results of ablation studies in Table 1 and Figure 12. All ablation studies were
conducted on the DRG-Small dataset using Deepseek-R1-style training, with cold-start SFT on 1%
of the training data (N=2,362) before RL.
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Figure 7: Dynamic Resampling. (A) Reward variance remains high under dynamic resampling.
(B) During training, reward scores from both resampling strategies generally underperform vanilla
GRPO. (C) Dynamic resampling substantially increases training time.

Dynamic Resampling Surprisingly, dynamic resampling—with or without a positive reward con-
straint—yielded marginally better or even worse performance than vanilla GRPO (Table 1), despite
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DRG Principal Diagnosis CC/MCC
Model Pass@1 Pass@8 Maj@8 Pass@1 Pass@8 Maj@8 Pass@1 Pass@8 Maj@8

Baseline
Vanilla GRPO + Dense Reward 38.5 48.2 39.3 52.5 58.5 53.4 47.8 60.0 49.0

Dynamic Resampling
Neutral Resampling 20.3 41.9 38.1 27.0 52.5 50.5 25.6 52.6 48.0
Positive Reward Resampling 39.2 44.8 39.6 52.9 56.4 53.3 48.3 55.6 49.0

Coginitive Behvaiors Intervention
COT-First 35.5 52.2 37.4 50.9 59.6 52.4 46.3 66.7 48.4
Differential Thinking 30.2 47.3 33.9 46.7 57.0 50.9 40.6 63.0 45.2

GRPO Variants
DAPO Loss 40.1 48.0 40.6 53.8 58.5 54.3 49.4 59.1 50.3
Dr. GRPO Loss 37.5 47.6 38.1 50.9 57.2 51.4 48.8 60.7 49.8
Dr. GRPO Advantage 38.5 51.9 39.6 53.4 60.5 54.3 47.6 63.6 49.1

KL Divergence
No KL 39.8 42.4 39.9 53.6 55.2 53.7 49.1 52.3 49.3
KL Decay 38.2 42.0 38.3 52.2 54.7 52.4 48.8 53.7 49.0

Reward Shaping
Strict Reward 40.1 49.1 40.9 52.8 58.1 53.7 47.6 59.0 48.8
Balanced Reward 38.1 51.3 40.0 52.1 60.4 53.8 48.2 64.0 50.7

Curriculum Learning
Remove Easy Cases 35.8 51.9 37.6 50.3 59.2 51.7 46.6 65.8 48.7
Remove Hard Cases 40.4 46.6 40.7 53.2 56.5 53.7 49.5 57.2 50.1
Remove Easy and Hard Cases 38.7 48.2 39.4 52.9 58.1 53.4 48.3 59.9 49.3
From Easy to Hard 29.4 51.7 32.7 43.4 58.6 46.5 40.8 68.5 44.3

Staged Learning
Staged SFT 39.3 49.1 40.0 52.9 59.2 53.8 46.0 58.6 47.1
Staged DPO 29.3 46.1 31.2 43.8 54.3 45.5 43.1 64.2 45.7

Table 1: Ablation Study Results. Rows with a blue background indicate superior Pass@1 perfor-
mance compared to Vanilla GRPO + Dense Reward. Bold values denote the highest score for each
metric.

preserving high reward variance (Figure 7A). More importantly, dynamic resampling proved compu-
tationally inefficient due to the frequent need to regenerate responses (Figure 7C). We hypothesize
that dynamic resampling may introduces training instability by oversampling zero-variance prompts,
thereby skewing batches toward OOD responses rarely generated by the current policy. Additionally,
this approach may inadvertently over-penalize low-reward outputs newly introduced into the batch,
further distorting the learning signal.

Intervening on Cognitive Behaviors Our SFT dataset includes diverse reasoning styles, notably
both Answer-First and CoT-First patterns. Interestingly, during training, the policy frequently
converged toward the Answer-First strategy. To encourage CoT-First behavior, we experimented
with an additional rule-based reward and adjusted the SFT dataset to explicitly promote Differential-
Thinking. Although both interventions successfully elicited the intended cognitive behaviors, their
performance lagged behind the naturally emerging Answer-First pattern (Table 1). This finding is
surprising, as CoT-First strategies are often effective in complex reasoning tasks [39]. We hypothesize
that DRG coding benefits from a direct prediction strategy, where outputting the DRG code first
leverages implicit knowledge in the model’s latent space, outperforming explicit CoT-grounded
reasoning. These findings also align with recent studies [27, 5], which suggest that CoT and extended
reasoning may not always be necessary for reasoning models, and a “no-thinking” pattern can
sometimes yield better performance.

0 100 200 300 400 500
Global Steps

2.0

1.5

1.0

0.5

0.0

0.5

Re
w

ar
d 

Sc
or

e

A. Training Collapse w/o KL

1.5B with KL
1.5B no KL
7B with KL
7B no KL

650 670 690 710 730
Global Steps

0.85

0.90

0.95

1.00

Re
w

ar
d 

Sc
or

e

B. Training Curve for Final Steps
Vanilla
Kl Decay

Figure 8: KL divergence. (A) Examples of train-
ing collapse when removing the KL divergence.
(B) KL decay appears beneficial late in training.

KL Divergence In our experiments, remov-
ing the KL penalty frequently led to model
collapse (Figure 8A). This contrasts sharply
with findings in mathematical reasoning tasks,
where the KL term is less critical, underscoring
its importance for cross-domain generalization.
However, in cases where training successfully
completed without the KL penalty, performance
surpassed that of vanilla GRPO (Table 1). Addi-
tionally, a cosine KL decay schedule appeared
beneficial. While it yielded no significant gains

8



in small-scale runs, it improved the training curve toward the end, suggesting that a lower KL penalty
in later stages may help prevent over-regularization to the reference policy (Figure 8B). Indeed, KL
decay proved beneficial when scaling training on the full dataset, as shown in Table 2.
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Figure 9: GRPO Variants. (A) Dr. GRPO loss
underperforms other GRPO variants from training
curve. (B) All GRPO variants exhibit similar com-
pletion length contraction.

GRPO Variants Among three GRPO vari-
ants, the DAPO loss achieved the highest per-
formance, while the Dr. GRPO loss performed
the lowest (Table 1). This finding aligns with re-
cent work reporting that Dr. GRPO does not out-
perform vanilla GRPO [6]. Across all settings,
we observed completion length contraction:
as accuracy improved, output lengths sharply
decreased before stabilizing (Figure 9B). This
contrasts with trends observed in mathematical
tasks, where longer completions are often asso-
ciated with better performance.

Reward Shaping The strict accuracy reward, despite providing the sparsest reward signals, outper-
formed both dense and balanced reward variants (Table 1). Notably, we observed no improvement
in pincipal diagnosis or CC/MCC accuracy under the denser reward schemes. We hypothesize that
denser rewards may lead the policy to converge prematurely to local optima, trading off global
performance for easier-to-optimize intermediate signals.

Adaptive Learning We observed benefits from removing easy and hard cases during training
(Table 1). Similarly, recent studies in the math domain suggest that maintaining medium-level
difficulty cases may be most effective for RL training [36, 41, 16, 42]. Staged learning with SFT
resulted in only modest performance gains despite additional compute.

5.4 Prerequisites for Effective GRPO Training

We found that vanilla Qwen2.5 models (base and instruct) without SFT failed to generate correct DRG
codes using GRPO alone, despite rapidly adopting the target reasoning format (Figure 10A). Post-SFT,
all models showed improved RL performance that generally scaled with model size, though gains
from 7B to 14B were modest (Figure 10B). Higher SFT learning rates (up to 4× 10−5) and extended
training epochs both improved GRPO performance, though gains from additional epochs diminished
at higher learning rates (Figure 10C). These results align with recent findings [29] emphasizing the
importance of aggressive SFT for reasoning-intensive tasks.
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Figure 10: Prerequisites for GRPO Training. (A) Vanilla models without SFT fail to explore
effectively, rarely generating correct DRG codes to receive positive reward signals. (B) GRPO
performance increases with model size post-SFT. (C) Higher SFT learning rates and extended training
epochs boost GRPO performance.

6 Conclusion

In this work, we used DRG coding as an empirical study to explore RL for OOD reasoning in LLMs.
Our approach, applying GRPO with verifiable rewards, achieved a new SOTA performance while
offering a key advantage over prior methods: the generation of physician-validated explanations
through CoT reasoning. Critically, our findings reveal that RL performance on this OOD task is
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fundamentally constrained by the base model’s capacity prior to RL. We observed a logarithmic
scaling relationship between the number of SFT examples and subsequent RL performance.

Following the successes of reasoning models like DeepSeek-R1, a prevailing narrative has been to
“scale RL,” leaving a critical question unanswered: what, precisely, should be scaled? Our work
addresses this for complex, OOD tasks where knowledge infusion emerges as a critical component.
We find that scaling SFT can be more effective and computationally efficient than scaling RL
alone. Moreover, despite extensive experimentation with RL algorithmic enhancements and adaptive
learning strategies, these refinements yield only modest gains compared to simply initializing RL
from stronger SFT baselines—highlighting a “bitter lesson” in applying RL to tasks that fall outside
the pretraining distribution of LLMs.
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contributions and scope, including highlights from the experimental results.
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made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
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much the results can be expected to generalize to other settings.
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the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.
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proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We provide all training and testing details in Sections 4 and B.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance
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information about the statistical significance of the experiments?
Answer: [Yes]
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and display error bars representing standard deviation in Figure 12.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).

15

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy


• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
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• If error bars are reported in tables or plots, The authors should explain in the text how
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8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: Computational resources are described in Section B, and training time is
discussed in Sections 5.2 and 5.3.
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• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,
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9. Code of ethics
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Answer: [Yes]
Justification: The research in this paper fully conforms to the NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
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• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
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• The conference expects that many papers will be foundational research and not tied
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URL.
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service of that source should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
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A Addtional Methods

A.1 Problem Definition of MS-DRG Coding

Under the Medicare Severity DRG (MS-DRG) system, each hospitalization is assigned a single DRG
code based on clinical complexity and resource utilization, following rules established by the Centers
for Medicare & Medicaid Services (CMS) [7]. Given a hospital stay D = {d1, d2, . . . , dn}, where
each di represents a clinical document generated during the hospitalization, the DRG assignment
process performed by human coders can be mathematically represented as follows:

1. Extraction of Diagnoses and Procedures. From D, extract a set W = {w1, w2, . . . , wm}, where
each wi ∈ W corresponds to a distinct medical diagnosis managed or a procedure performed
during the hospital stay.

2. Identification of Principal Diagnosis or Procedure. Select a principal diagnosis wd ∈ W (for
medical DRGs) or a principal procedure wp ∈ W (for surgical DRGs), representing the main
reason for admission or the primary surgical intervention. Only one—diagnosis or procedure—is
designated as principal depending on the case type.

3. Detection of Complications and Comorbidities. Identify the presence of Complications or
Comorbidities (CC) and Major Complications or Comorbidities (MCC) within W , forming
subsets:

CC ⊆ W, MCC ⊆ W, CC ∩MCC = ∅,
which reflect distinct levels of clinical severity and resource impact.

4. Hierarchical Mapping to DRG. The final MS-DRG code g is determined via:

(wd, wp,CC,MCC) = h(D), g = f(wd, wp,CC,MCC),

where h extracts the principal diagnosis or procedure and CC/MCC from D, and f represents the
CMS-defined DRG mapping logic.

A.2 Rule-Based Reward Modeling

We adopted the following two simple yet rigorous rule-based reward components.

Format Reward. The Format Reward enforces a structured response, requiring reasoning con-
tent to be enclosed within <think></think> tags and the final answer (DRG code) within
<answer></answer> tags. The reward is defined as:

Sformat =

{
0, if the response format is correct
−2, otherwise

Accuracy Reward. The Accuracy Reward evaluates the correctness of the DRG code, and applied
only if the Format Reward condition is satisfied. We explored three reward shaping strategies:

(a) Dense Reward

Sdense =



2, if full match
1.5, if principal diagnosis match only
0.5, if CC/MCC match only
−0.5, if valid DRG but no partial match
−1.5, if invalid DRG

(b) Balanced Reward

Sbalanced =



2, if full match
1, if principal diagnosis match only
1, if CC/MCC match only
−0.5, if valid DRG but no partial match
−1.5, if invalid DRG
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(c) Strict Reward

Sstrict =


2, if full match
0, if partial or no match but valid DRG
−1.5, if invalid DRG

A.3 Enforcing Cognitive Behaviors

To incentivize CoT-first cognitive behaviors, we introduced an additional format penalty. If the model
outputs a DRG code within the first 50 tokens of the reasoning, a penalty score of −0.5 is assigned.

To encourage differential thinking, we reconstructed the SFT dataset using the same data. We
designed a new prompt for the Qwen2.5-7B-Instruct model to generate three potential DRG codes
per case (prompt provided in Section I), each accompanied by reasoning, before selecting the most
appropriate DRG code.

A.4 KL Divergence Decay

To gradually relax the regularization imposed by the KL penalty, we apply a cosine decay to the KL
coefficient β, reducing it from its initial value to zero over the course of training. For global step t
and total training steps T , the decay factor is defined as:

decay_factor(t) = 0.5 ·
(
1 + cos

(
πt

T

))
The decayed coefficient at step t is then:

βt = β · decay_factor(t)
This decay schedule promotes stability in the early stages of training while encouraging exploration
in later updates.

A.5 GRPO Variants

We implemented the loss functions for different GRPO variants as follows:

#Vanilla GRPO loss. This is the original implementation in TRL v0.15.1.
vanila_GRPO_loss = ((per_token_loss * completion_mask).sum(dim=1) / completion_mask.

sum(dim=1)).mean()

#DAPO loss. This is the default implementation in TRL since v0.16.0.
DAPO_GRPO_loss = (per_token_loss * completion_mask).sum() / completion_mask.sum()

#Dr.GRPO loss. We set max_tokens to 1024.
max_tokens = 1024
Dr_GRPO_loss = ((per_token_loss * completion_mask).sum(dim=1) / max_tokens).mean()

For the Dr. GRPO advantage, we modified the advantage computation by removing the denominator
in Equation 2.

A.6 Curriculum Learning

Unlike mathematical problems, the difficulty of DRG coding is not easily defined. High prediction
accuracy does not necessarily indicate that a DRG code is inherently easy. For instance, the fre-
quently occurring code “Septicemia or Severe Sepsis without MV >96 Hours with MCC” may be
straightforward in most cases but can become challenging when the clinical narrative emphasizes a
different primary condition, such as a urinary tract infection. Moreover, no standardized benchmark
exists to quantify DRG coding difficulty.

To address this, we employed a static online filtering strategy. For each experiment, we first ran the
model without filtering to establish a baseline. Easy cases were defined as those with zero reward
variance and perfect accuracy scores. Hard cases were defined as those with zero reward variance, an
accuracy score of −0.5 under the dense or balanced reward, and 0 under the strict reward. We then
reran the experiment from the SFT model after excluding these filtered cases.
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A.7 Staged Learning

For staged learning, we divided the training process into three stages, each with approximately
the same number of global steps. After each stage, we identified hard and easy cases using the
methodology described in Section A.6. For hard cases, we prompted the most recent GRPO model
checkpoint to generate reasoning given the case and the correct DRG code. We then performed SFT
or DPO on this new dataset. For SFT, we used a learning rate of 4× 10−5 for 3 epochs. For DPO,
we designated the original model output as the rejected response, and trained with a learning rate of
3× 10−6 for 3 epochs.

B Additional Implementation Details

B.1 SFT Training Details

We used the SFT trainer from the TRL library for all SFT runs [37], with DeepSpeed ZeRO Stage
3 [31] and the AdamW optimizer [25]. Training was conducted on 4 H100 or A100 GPUs, depending
on availability, using bf16 precision. We set packing=False and max_seq_length to 12846. A
cosine learning rate schedule with a minimum of 10% of the initial rate was applied, along with a
warm-up ratio of 0.05. The global batch size was adjusted based on VRAM constraints to roughly
match the number of unique cases per step used in GRPO training.

B.2 GRPO Training Details

Our implementation of GRPO was based on the Open R1 framework [9], which leverages vLLM [18]
for inference and GRPO Trainer from TRL library (v0.15.1) [37] for training. All training was
conducted on 3 to 5 H100 or A100 GPUs, depending on availability, using bf16 precision. For
all GRPO experiments, we set num_generations to 8, per_device_train_batch_size to 2 or
4, and gradient_accumulation_steps to 32 or 64, ensuring a consistent global batch size of
512 across experiments. Each global step consisted of 64 unique prompts, each with 8 generated
completions. We set the max_prompt_length to 4096 and the max_completion_length to 10240.
The temperature of the policy model is set to 1. All other training parameters were kept at their
default values, including a KL regularization coefficient of β= 0.04.

All GRPO experiments were run for a single epoch. As we enforced πθold = πθ to ensure strict
on-policy learning, this is equivalent to setting num_iterations to 1 in later versions of the TRL
library. We adopted the default system prompt from Open R1.

B.3 Experimental Hyperparameters

SFT For SFT, we experimented with different learning rates and training epochs, as detailed in
Section 5.4. For all experiments in Section 5.3, we initialized GRPO training with an SFT model
trained using a learning rate of 4 × 10−5 for 9 epochs. The only exception is the result shown in
Figure 8A, which illustrates training collapse from earlier runs using a learning rate of 3× 10−6. For
experiments in Sections 5.2, we used SFT models trained with a learning rate of 4× 10−5 but for 3
epochs, as the SFT data was scaled.

GRPO For GRPO, we experimented with different learning rates and scheduling strategies, as
detailed in Section C.1. For all experiments in Sections 5.2 to 5.3, we used a GRPO learning rate of
3× 10−6 with a constant learning rate scheduler and a warmup ratio of 0.1.

B.4 Evaluation Details

We used vLLM [18] for inference during evaluation. All evaluations were conducted on the full
test set (N = 26,244). We set the temperature to 0.6, top_p to 0.95, and max_tokens to 4096. To
compute Pass@8, we set n to 8 in SamplingParams, generating eight completions per case. Pass@1
is reported as the mean accuracy across these eight generations. For evaluation, we extracted the DRG
code enclosed within <answer></answer> tags and computed exact match against the reference
code after text normalization. All training curves figures in Section 5.3 are smoothed using a moving
average with a window of 50 steps.
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B.5 Dynamic Resampling Details

For both neutral and positive dynamic resampling, we set the maximum number of regenera-
tion attempts to 12. During regeneration, the model randomly selects a temperature from the
set {0.7, 0.8, 0.9, 1.0}.

C Additional Results

C.1 Experiments with GRPO Hyperparameters
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Figure 11: Effect of Learning
Rate and Scheduler on GRPO.

We conducted a limited hyperparameter search to tune the learn-
ing rate and scheduler for GRPO. As shown in Figure 11, a
learning rate of 3× 10−6 consistently outperformed 1× 10−6,
yielding faster convergence and higher final reward scores. We
further compared constant and decaying schedules and observed
similar overall performance. Notably, the constant schedule
was more effective at lower learning rates, though this advan-
tage diminished as the rate increased. It is possible that a
constant learning rate helps mitigate gradient vanishing during
RL training, as discussed in Section 3.3.

C.2 Accuracy with RL Training in Ablation Studies

We present accuracy results from various ablation studies in Section 5.3, as shown in Figure 12.
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Figure 12: Accuracy with RL Training in Ablation Studies. The dashed line indicates the baseline
performance of vanilla GRPO with dense rewards. Error bars indicate the standard deviation across 8
runs.

C.3 Additional Results from Scaling to the Full Dataset

We present experimental results on the full dataset with varying SFT-to-RL data splits (Table 2).
Our best configuration, combining DAPO loss, strict accuracy reward, and KL decay (Section 5.3),
consistently outperformed vanilla GRPO across all experiments. Curriculum learning, implemented
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DRG Principal Diagnosis CC/MCC
Model Pass@1 Pass@8 Maj@8 Pass@1 Pass@8 Maj@8 Pass@1 Pass@8 Maj@8

50% SFT
SFT 44.6 75.3 50.9 58.1 77.1 63.4 51.8 80.7 58.4
Vanilla GRPO 52.8 64.2 53.9 63.9 70.9 64.9 59.0 69.6 60.2
Best Config 53.7 59.1 53.9 63.5 66.9 63.9 58.8 64.1 59.4

75% SFT
SFT 46.5 76.2 52.8 59.3 77.6 64.5 53.3 80.7 59.6
Vanilla GRPO 53.5 64.9 54.6 64.0 71.4 65.1 59.2 69.7 60.5
Best Config 54.6 60.6 54.9 64.4 68.2 64.8 59.6 65.3 60.2
Best Config - KL Decay 54.0 65.3 55.0 63.8 71.0 64.9 58.7 69.4 60.0
Best Config + Remove Hard Case 54.4 58.1 54.5 63.8 66.1 64.0 59.1 62.7 59.4
Best Config + Remove Easy and Hard Case 54.7 58.8 54.8 64.5 67.1 64.8 59.5 63.5 59.9

90% SFT
SFT* 10.5 41.4 35.7 12.4 47.1 43.6 11.7 47.0 41.6
Vanilla GRPO 54.1 65.2 55.0 64.3 71.2 65.2 59.8 70.0 60.7
Best Config 54.6 62.2 54.9 64.0 68.9 64.6 59.3 66.3 60.0
Best Config - KL Decay 54.2 66.9 55.4 63.9 72.1 65.2 59.3 70.8 60.8
Best Config + Remove Hard Case 54.8 60.3 54.9 64.4 68.1 64.7 59.9 64.9 60.4
Best Config + Remove Easy and Hard Case 54.5 61.4 54.8 64.2 68.8 64.9 59.0 65.4 59.8

95% SFT
SFT 47.0 76.9 53.3 59.7 78.5 65.0 53.9 81.0 59.9
Vanilla GRPO 53.5 67.7 55.2 64.0 72.6 65.6 59.2 72.3 61.0
Best Config 54.4 64.9 55.1 64.2 70.5 65.0 59.4 69.4 60.5
Best Config - KL Decay 53.0 69.4 55.1 63.2 73.5 65.1 58.4 73.4 60.8
Best Config + Remove Hard Case 54.3 62.8 54.7 64.2 69.7 64.9 59.5 67.4 60.3
Best Config + Remove Easy and Hard Case 52.9 69.3 54.9 63.1 73.0 65.0 58.1 73.3 60.5

Table 2: Scaling of GRPO on the Full Dataset. All experiments were conducted on the full
training set (N=236,192) with varying SFT-to-RL ratios, and the best result from each experiment
is reported in the table. The best configuration of GRPO consists of DAPO loss, strict accuracy
reward, and KL decay. The row highlighted in blue indicates the best Pass@1 performance. Bold
values denote the highest score for each metric. * The SFT checkpoint from the 90% SFT runs
exhibited format-following instability, resulting in lower-than-expected scores. Despite this unstable
SFT baseline, RL training remained robust.

by excluding hard or easy cases, further improved performance. The best overall performance of
DRG-SAPPHIRE was achieved with a 90% SFT and 10% RL split using the best GRPO configuration
and hard-case exclusion.

Notably, we excluded the SFT result from the 90% SFT runs and the vanilla GRPO result from the
95% SFT runs as outliers in Figure 1B and Figures 6B and C. The SFT checkpoint from the 90%
SFT runs exhibited format-following instability, leading to lower-than-expected scores. Despite this
unstable SFT baseline, RL training remained robust, effectively leveraging the knowledge infused
through SFT and ultimately producing our best overall results. The RL results from the 95% SFT
runs are likely not representative of true RL potential due to insufficient RL training (< 250 global
steps). Additionally, we did not conduct experiments without KL decay or with curriculum learning
for the 50% SFT runs, given the limited performance observed with vanilla GRPO in that setting.
Lastly, we applied early stopping for the GRPO experiments from the 50% SFT runs due to lack of
improvement (Figure 6A).

C.4 Error Analysis

We identified 9,537 cases consistently misclassified by all three checkpoints from different training
stages: the cold-start SFT (SFT model in Figure 5A), the small-scale GRPO (GRPO model in
Figure 5B), and the final DRG-SAPPHIRE model. As shown in Table 3, even in these challenging
cases, the model improved progressively during training, becoming notably “less wrong.”

Model % Wrong Principal Diagnosis % Wrong CC/MCC % Both Wrong

Cold-start SFT 85.1% 64.2% 47.4%
Cold-start SFT + GRPO 80.4% 63.1% 41.1%
DRG-SAPPHIRE 74.9% 62.7% 33.6%

Table 3: Progressive error reduction across training stages on consistently misclassified cases.
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Additionally, a physician conducted a manual error analysis on 100 randomly selected cases misclas-
sified by the final DRG-SAPPHIRE model, using the same error taxonomy as DRG-LLaMA. The
results are presented in Table 4.

Error Category Percentage (%)

Difficulty selecting correct base DRG 32
Erroneous CC/MCC 25
Potential incorrect DRG label 13
Inadequate clinical concept extraction 12
Information needed for DRG prediction unavailable 10
Other (e.g., procedure instead of medical DRG) 8

Table 4: Physician-annotated error taxonomy for 100 misclassified cases by DRG-SAPPHIRE.

C.5 Additional Results on a Real-World Dataset

We evaluated DRG-SAPPHIRE on an internal dataset from a healthcare institution. This dataset was
constructed via stratified random sampling of 2,500 real-world cases, with DRG codes sampled in
proportion to their frequencies in the MIMIC test set to ensure comparability. DRG-SAPPHIRE
achieved an accuracy of 53.6% on this internal dataset, compared to 54.8% on MIMIC.

D Additional Discussion

D.1 Clinical Applications of Automated DRG Coding with Reasoning

DRG-SAPPHIRE shows good potential for real-world clinical applications. Two illustrative use cases
are presented below:

1. Currently, DRGs are assigned by professional coders and are typically available only after hospital
discharge. DRG-SAPPHIRE can provide early DRG predictions to inform hospital operations and
financial forecasting.

2. DRG-SAPPHIRE can support DRG-related operational and quality improvement initiatives, such
as those aimed at reducing the geometric length of stay, a metric directly determined by DRG.
It provides transparent, interpretable explanations of DRG assignments, enabling clinicians to
improve their clinical documentation to better reflect patient severity.

In discussions with domain experts, we also found that the impact of erroneous DRG code assignments
is highly dependent on the intended use case. For high-stakes applications such as automated billing,
the acceptable error rate must be extremely low due to potential financial implications. In contrast, for
operational or educational tools—such as the one mentioned above that helps physicians understand
DRG assignments—a higher degree of fault tolerance may be acceptable.

D.2 Practical Implication of Improved Pass@1 but Not Pass@k

Our experiments demonstrate that RL improves Pass@1 (i.e., accuracy) but not Pass@k for higher k
values, indicating that RL enhances the model’s ability to produce the correct DRG code in a single
attempt without necessarily improving its broader reasoning capacity. However, this outcome aligns
well with the requirements of high-stakes clinical applications like DRG coding, where only the first
prediction truly matters, as users typically do not sample multiple outputs. Moreover, selecting the
correct answer from multiple candidate responses is challenging, as methods beyond the best-of-N
approach, which RL already optimizes by improving Pass@1 through better majority voting (Maj@k),
are not well-established.

D.3 DRG vs ICD Coding

Although both DRG and International Classification of Diseases (ICD) codes serve clinical and
administrative purposes, they differ significantly in classification approach and real-world applications.
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DRG assignment is typically formulated as a multi-class classification task, in which exactly one DRG
code is assigned to summarize resource utilization and clinical complexity for an entire hospitalization.
In contrast, ICD coding is a multi-label classification problem, as multiple ICD codes—covering
both diagnoses and procedures—may be assigned to document a single encounter. Furthermore, the
two coding systems exhibit distinct hierarchical structures: DRG assignment explicitly emphasizes
identifying a principal diagnosis or procedure that primarily drives the hospitalization, along with
secondary conditions that influence clinical complexity and reimbursement [7]. Finally, the utilization
contexts of these codes differ substantially: DRGs are directly linked to inpatient reimbursement and
hospital resource management, whereas ICD codes serve broader purposes spanning both inpatient
and outpatient documentation.

E Additional Related Work

Several studies have explored constructing reward signals in RL beyond rule-based approaches.
Mu et al. [28] proposed an effective method that combines fine-grained, composable rules with an
LLM-based grader to form a hybrid reward signal, balancing model safety and usefulness. Sun et
al. [35] introduced a framework that grounds vision-language models (VLMs) in medical knowledge
through symbolic representations of clinical reasoning and employs a symbolic reward function to
assess VLM outputs for correctness and clinical validity.

F Limitations and Future Work

Our study encountered several limitations. First, we employed only rule-based rewards for final DRG
assignments, without utilizing process supervision during the reasoning steps. While it is unclear how
best to implement such supervision, theoretically, more granular and dense reward signals throughout
the reasoning process could help guide the policy toward more effective exploration. Future work
exploring this direction—potentially combining explicit DRG rules with techniques such as process
reward modeling—represents an intriguing avenue.

Second, we applied relatively static curriculum learning and case-filtering strategies, which were
conducted only once following the completion of a base run. A dynamic, online, difficulty-based
filtering approach—applied at the per-batch level—may be more effective and warrants further
investigation.

Lastly, our work focused exclusively on the challenging task of DRG coding. Extending our approach
to additional medical-domain tasks and to OOD tasks across domains would be a valuable direction
for future work. In particular, it would be compelling to investigate whether scaling RL across
multiple tasks and domains fosters exploration of diverse reasoning trajectories beyond the base
model, rather than merely refining its output distribution toward higher-reward outcomes.

G Data Access

Access to MIMIC-IV can be requested via [1], which requires signing a data use agreement. The
training and test datasets used in this study can be obtained by following the code repository provided
in [38]. For experiments involving MIMIC-IV data and proprietary models, we adhered to the
guidelines in [2] and utilized the Azure OpenAI service.

27



H Instruction to Reviewers

Physician reviewer instructions for scoring DRG-SAPPHIRE’s reasoning traces are provided below.

Instruction to Reviewers

1. You will be provided with a discharge summary from the public MIMIC-IV dataset, along
with a corresponding DRG code assignment and its rationale generated by a large language
model (LLM).

2. Please note that, similar to existing DRG prediction tools currently in use, the LLM-generated
DRG code assignment may be either correct or incorrect.

3. Your task is to rate the LLM output along two dimensions: Helpfulness and Accuracy, using
a scale from 1 to 5 (very poor, poor, acceptable, good, or very good), where higher scores
indicate better quality.

4. Helpfulness: For this dimension, please answer the question: “Is the LLM’s reasoning
and explanation helpful to frontline healthcare providers?” Reflect on real-world initiatives
you are engaged in that center around DRG optimization (e.g., efforts to reduce geo-
metric mean length of stay). Assess whether the information provided by the LLM would
meaningfully assist physicians in such settings, addressing questions commonly raised in practice.

Rubric:
• Score of 1 (very poor): The content is not helpful — for example, it may be too generic,

lack necessary detail, or be overly vague.
• Score of 3 (acceptable): The content is sufficiently helpful and acceptable for use in

real-world clinical settings.
• Score of 5 (very helpful): The content is highly helpful and could positively impact

real-world DRG-related initiatives.
5. Accuracy: For this dimension, please answer the question: “Does the information provided
by the LLM accurately reflect MS-DRG assignment rules?” Base your evaluation on your best
knowledge and understanding of the MS-DRG system.

Rubric:
• Score of 1 (very poor): The information is substantially inaccurate.
• Score of 3 (acceptable): The information is accurate enough to support decision-making

by frontline healthcare providers.
• Score of 5 (very accurate): The information is highly accurate and consistent with

MS-DRG assignment rules.
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I Prompts to LLM

The prompt used with Qwen2.5-7B-Instruct for generating the SFT cold-start dataset is provided
below.

Generate Reasoning for DRG Assignment

MS-DRG (Medicare Severity Diagnosis-Related Groups) is a system used by the U.S.
Centers for Medicare & Medicaid Services to classify hospital inpatient stays for payment
purposes. It groups patients with similar clinical conditions and resource needs into
categories to determine reimbursement amounts. Each MS-DRG is assigned based on the
patient’s principal diagnosis, secondary diagnoses, procedures performed, age, discharge
status, and other factors. The goal is to ensure fair and consistent hospital reimbursement
based on the severity of the illness and the complexity of care required.

CC and MCC in MS-DRG:
• CC (Complication or Comorbidity): A secondary diagnosis that increases the com-

plexity of care and resource utilization.
• MCC (Major Complication or Comorbidity): A more severe secondary condition

that has a significant impact on resource use and hospital reimbursement.
• MCCs have a greater effect on the DRG weight than CCs due to increased patient

care complexity.
What is the most likely Medicare Severity Diagnosis Related Group (MS-DRG) based on the
following discharge summary of a hospitalization? Provide the complete text description of
the DRG code without including the numerical code.

[Discharge Summary]

The answer is [DRG Code]

Explain the reason why the DRG code is assigned. In your reasoning step, assume
you don’t know the right DRG code yet.

For SFT dataset generation with differential thinking, we added the following content to the prompt
above.

Additional Prompt to Generate Differential Thinking

First, analyze the case details, including the principal diagnosis, secondary diagnoses,
procedures performed, and any other relevant factors that may influence DRG assignment.

Next, list three possible DRG codes that you believe are the most likely. Enclose
each DRG code in square brackets, like this: [Heart failure without MCC]. One of the three
DRG codes should be [DRG Code].

Then, provide a detailed analysis for each of the three DRG codes. For each one,
explain:

• Why this DRG code might be appropriate?
• Why it might not be appropriate?

Finally, based on your analysis, identify the most likely DRG code and it should be [DRG
Code].
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J Example Outputs from DRG-Sapphire

Example One

<think>
Based on the provided discharge summary, the most likely Medicare Severity Diagnosis-Related
Group (MS-DRG) is "ESOPHAGITIS GASTROENTERITIS AND MISCELLANEOUS
DIGESTIVE DISORDERS WITHOUT MCC."
Let’s break down the reasoning step-by-step:

1. Principal Diagnosis and Conditions:
• The principal diagnosis is colitis, which is a digestive disorder.
• There are no complications or comorbidities (CCs or MCCs) that significantly im-

pact the complexity of care or resource utilization more than the primary diagnosis
of colitis.

2. Secondary Conditions and CCs/MCCs:
• Atypical Carcinoid Tumor of the Lung: A significant condition, but not the

primary reason for the hospitalization and does not elevate complexity of care
related to colitis.

• Metastatic Pancreatic Neuroendocrine Tumor: Also significant, but not directly
impacting the care for colitis.

• Perforated Diverticulitis: Required prior hospitalization but is not contributing to
the current hospital stay.

• Transaminitis: Mild and resolved quickly; not related to the colitis.
• Hypothyroidism: Chronic and well-managed; no impact on the complexity of

care.
• Ischemia: A possible cause of colitis, but not confirmed and does not significantly

impact complexity.
3. Complications or Comorbidities (CCs):

• The atypical carcinoid tumor, metastatic pancreatic neuroendocrine tumor, and
ischemia are significant but not classified as CCs that elevate complexity for colitis.

• The perforated diverticulitis is historical and not relevant to the current hospital
stay.

4. Major Complication or Comorbidity (MCC):
• No significant conditions qualify as an MCC that would elevate the DRG weight

beyond the primary diagnosis of colitis.

Given these conditions, the DRG code is assigned based on the primary diagnosis of digestive
disorders, specifically colitis, without any significant complications or comorbidities that
would elevate it to a higher complexity category. Therefore, the most appropriate DRG
is "ESOPHAGITIS GASTROENTERITIS AND MISCELLANEOUS DIGESTIVE
DISORDERS WITHOUT MCC."
</think>

<answer>
ESOPHAGITIS GASTROENTERITIS AND MISCELLANEOUS DIGESTIVE DISOR-
DERS WITHOUT MCC
</answer>
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Example Two

<think>
Based on the discharge summary provided, the most likely Medicare Severity Diagnosis-Related
Group (MS-DRG) is PANCREAS LIVER AND SHUNT PROCEDURES WITH MCC.
To determine this, let’s break down the key elements of the case:

1. Principal Diagnosis and Procedures:
• The patient underwent a left hepatic lobectomy and placement of biliary stents.
• The lobectomy is a major liver surgery—this alone is a significant factor for DRG

assignment.
2. Complications and Comorbidities:

• Post-operative bilious drainage from the JP (jejunostomy) tube.
• Increased wound drainage requiring VAC (wound vacuum) placement.
• ERCP performed to manage bile duct stones and issues.
• Biliary stents placed during ERCP.
• Elevated WBC count and suspected infection requiring IV antibiotics and infectious

disease consultation.
3. MCC Analysis:

• The ERCP, biliary stents, and post-op complications significantly impacted recov-
ery.

• These events qualify as a Major Complication or Comorbidity (MCC) under DRG
criteria.

4. Severity and Complexity:
• Multiple interventions (ERCP, stent placement, IV antibiotics).
• Extended inpatient stay due to complications.
• High resource utilization consistent with MCC-level DRG classification.

5. Consistency with MS-DRG Criteria:
• MS-DRG assignment accounts for diagnosis, procedures, and complications.
• This case aligns with the category for major liver/pancreas procedures involving

MCCs.

Therefore, the DRG code PANCREAS LIVER AND SHUNT PROCEDURES WITH MCC
is assigned because the case involves a significant liver procedure (left hepatic lobectomy) and
multiple major complications and interventions. The care complexity and extended course fulfill
criteria for an MCC classification.

</think>

<answer>
PANCREAS LIVER AND SHUNT PROCEDURES WITH MCC
</answer>
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K Example Outputs Demonstrating Different Cognitive Behaviors

Example from Answer-First

<think>
Based on the provided discharge summary, the most likely Medicare Severity Diagnosis-Related
Group (MS-DRG) is "OTHER CIRCULATORY SYSTEM DIAGNOSES WITH CC."
Reasoning:

1. Principal Diagnosis:
• The patient presents with chest pain and ST elevations, initially suggestive of

STEMI (ST-Elevation Myocardial Infarction).
• Cardiac catheterization revealed normal coronary arteries, ruling out coronary

artery disease.
• ST elevations without coronary lesions point to myopericarditis or a related circu-

latory system condition.
2. CC (Complication or Comorbidity):

• Chest pain, ST elevations, and treatment with ibuprofen and colchicine increased
care complexity.

• Mild echocardiographic findings (dilated aortic root and ascending aorta) required
follow-up and additional monitoring, qualifying as a CC.

3. MCC (Major Complication or Comorbidity):
• Despite significant diagnostic workup, no MCC-level condition was present.
• No major complication or comorbidity substantially elevated resource use or

reimbursement criteria.
4. Discharged with Specific Medications and Follow-Up Plans:

• The patient was discharged on ibuprofen and colchicine.
• A follow-up echocardiogram was planned, indicating ongoing resource use.

Conclusion:
The DRG code "OTHER CIRCULATORY SYSTEM DIAGNOSES WITH CC" is assigned
because the patient’s primary condition, although initially concerning, did not meet the criteria
for an MCC. The presence of chest pain, ST elevations, treatment complexity, and follow-up
needs justify a CC classification due to increased resource utilization and care complexity.
</think>

<answer>
OTHER CIRCULATORY SYSTEM DIAGNOSES WITH CC
</answer>
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Example from CoT-First

<think>
To determine the most likely MS-DRG for this patient, let’s break down the key elements from
the discharge summary:

1. Principal Diagnosis:
• The patient presents with ST elevations in the EKG, initially consistent with a

STEMI (ST-Elevation Myocardial Infarction).
• Cardiac catheterization revealed normal coronaries (RRA – Right Rectus Artery),

indicating a false positive STEMI.
• The patient was diagnosed with myopericarditis, which can cause chest pain and

ST segment elevations.
2. Secondary Diagnoses and Procedures:

• Myopericarditis (secondary to chest pain and ST elevations)
• Normal cardiac catheterization
• No significant past medical history
• Mildly dilated aortic root and ascending aorta on TTE
• GERD, insomnia, and OSA—no active treatment or significant impact on hospital-

ization
3. Complications and Comorbidities (CC and MCC):

• Myopericarditis increases the complexity of care and qualifies as a CC.
• There is no indication that it qualifies as a major complication or comorbidity

(MCC).

Reasoning for the DRG Assignment:
• Myopericarditis is the principal diagnosis and is considered a CC, not an MCC.
• Mildly dilated aortic root and other secondary findings do not affect DRG assignment.
• GERD, insomnia, and OSA are managed conditions that do not impact hospital resource

use.
DRG Code Assignment:
The most likely MS-DRG for this patient, based on the provided information, is "OTHER
CIRCULATORY SYSTEM DIAGNOSES WITH CC." This assignment reflects the presence
of a complication (myopericarditis) that increases care complexity, without rising to the level of
an MCC.
</think>

<answer>
OTHER CIRCULATORY SYSTEM DIAGNOSES WITH CC
</answer>
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Example from Differential Thinking

<think>

Analysis of the Case Details
Principal Diagnosis:

• ST-Elevations and Myopericarditis
Secondary Diagnoses:

• No significant past medical history
• GERD (Gastroesophageal Reflux Disease)
• Insomnia
• OSA (Obstructive Sleep Apnea)
• HIV and Syphilis (screening recommended)

Procedures Performed:
• Cardiac Catheterization

Other Relevant Factors:
• Normal cardiac catheterization result
• Mildly dilated aortic root and ascending aorta
• Started on ibuprofen and colchicine

Possible DRG Codes
1. Heart failure and shock without CC/MCC
2. Other circulatory system diagnoses with CC
3. Other circulatory system diagnoses with MCC

Analysis for Each DRG Code
1. Heart failure and shock without CC/MCC
Why this DRG code might be appropriate:

• The patient was admitted with ST-elevations, which can be indicative of heart issues.
• Mild dilation of the aortic root and ascending aorta could suggest early signs of heart

failure.
• Started on medications for pain and inflammation, which are common in heart failure

management.
Why it might not be appropriate:

• Cardiac catheterization was normal, which doesn’t support a diagnosis of heart failure.
• No history of heart failure or shock—only myopericarditis and mild aortic dilation.
• GERD, insomnia, and OSA are unrelated to heart failure.

2. Other circulatory system diagnoses with CC
Why this DRG code might be appropriate:

• ST-elevations and myopericarditis are circulatory system issues.
• GERD (a CC) increases complexity of care and resource utilization.

Why it might not be appropriate:

• Condition managed with ibuprofen and colchicine—does not indicate severe complica-
tions.

• Absence of heart failure or severe circulatory system condition to warrant a more specific
DRG.

3. Other circulatory system diagnoses with MCC
Why this DRG code might be appropriate:
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• ST-elevations and myopericarditis are significant circulatory issues.
• GERD (a CC) could be misclassified as MCC if chronic impact is overestimated.

Why it might not be appropriate:

• Condition managed conservatively—not indicative of MCC-level complexity.
• No evidence of heart failure or other major circulatory complications.

Conclusion
Most Likely DRG Code: Other circulatory system diagnoses with CC
Reasoning:

• Myopericarditis with ST-elevations is a significant circulatory condition.
• GERD, as a CC, increases care complexity but not to the level of MCC.
• No evidence of heart failure or other severe conditions to justify a different DRG code.

Based on the provided information, the most appropriate DRG code is Other circulatory system
diagnoses with CC, as it best reflects the patient’s primary condition and the presence of a CC
(GERD) that increases complexity of care.
</think>

<answer>
OTHER CIRCULATORY SYSTEM DIAGNOSES WITH CC
</answer>
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