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ABSTRACT

In this work, we present the Bregman Alternating Projected Gradient (BAPG)
method, a single-loop algorithm that offers an approximate solution to the Gromov-
Wasserstein (GW) distance. We introduce a novel relaxation technique that balances
accuracy and computational efficiency, albeit with some compromises in the feasi-
bility of the coupling map. Our analysis is based on the observation that the GW
problem satisfies the Luo-Tseng error bound condition, which relates to estimating
the distance of a point to the critical point set of the GW problem based on the
optimality residual. This observation allows us to provide an approximation bound
for the distance between the fixed-point set of BAPG and the critical point set
of GW. Moreover, under a mild technical assumption, we can show that BAPG
converges to its fixed point set. The effectiveness of BAPG has been validated
through comprehensive numerical experiments in graph alignment and partition
tasks, where it outperforms existing methods in terms of both solution quality and
wall-clock time.

1 INTRODUCTION

The GW distance provides a flexible way to compare and couple probability distributions supported
on different metric spaces. This has led to a surge in literature that applies the GW distance to
various structural data analysis tasks, including 2D/3D shape matching (Peyré et al., 2016; Mémoli &
Sapiro, 2004; Mémoli, 2009), molecule analysis (Vayer et al., 2018; 2019a), graph alignment and
partition (Chowdhury & Mémoli, 2019; Xu et al., 2019b;a; Chowdhury & Needham, 2021; Gao et al.,
2021), graph embedding and classification (Vincent-Cuaz et al., 2021b; Xu et al., 2022), generative
modeling (Bunne et al., 2019; Xu et al., 2021).

Although the GW distance has gained a lot of attention in the machine learning and data science
communities, most existing algorithms for computing the GW distance are double-loop algorithms
that require another iterative algorithm as a subroutine, making them not ideal for practical use.
Recently, an entropy-regularized iterative sinkhorn projection algorithm called eBPG was proposed
by Solomon et al. (2016), which has been proven to converge under the Kurdyka-Łojasiewicz
framework. However, eBPG has several limitations. Firstly, it addresses an entropic-regularized
GW objective, whose regularization parameter has a major impact on the model’s performance.
Secondly, it requires solving an entropic optimal transport problem at each iteration, which is both
computationally expensive and not practical. In an effort to solve the GW problem directly, Xu et al.
(2019b) proposed the Bregman projected gradient (BPG), which is still a double-loop algorithm that
relies on another iterative algorithm as a subroutine. Additionally, it suffers from numerical instability
due to the lack of an entropic regularizer. While Vayer et al. (2019a); Mémoli (2011) introduced the
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Frank-Wolfe method to solve the GW problem, they still relied on linear programming solvers and
line-search schemes, making it unsuitable for even medium-sized tasks. Recently, Xu et al. (2019b)
developed a simple heuristic, single-loop method called BPG-S based on BPG that showed good
empirical performance on node correspondence tasks. However, its performance in the presence of
noise is unknown due to the lack of theoretical support.

The main challenge lies in efficiently tackling the Birkhoff polytope constraints (i.e., the polytope of
doubly stochastic matrices) for the coupling matrix. The key issue is that there is no closed update
for its Bregman projection, which forces current algorithms to rely on computationally expensive
or hyperparameter-sensitive iterative methods. To address this difficulty, we propose a single-loop
algorithm (BAPG) that solves the GW distance approximately. Our solution incorporates a novel
relaxation technique that sacrifices some feasibility of the coupling map to achieve computational
efficiency. This violation is acceptable for certain learning tasks, such as graph alignment and
partition, where the quality of the coupling is not the primary concern. We find that BAPG can obtain
desirable performance on some graph learning tasks as the performance measure for those tasks is the
matching accuracy instead of the sharpness of the probabilistic correspondence. In conclusion, BAPG
offers a way to sacrifice the feasibility for both computational efficiency and matching accuracy.

In our approach, we decouple the Birkhoff polytope constraint into separate simplex constraints for
the rows and columns. The projected gradient descent is then performed on a constructed penalty
function using an alternating fashion. By utilizing the closed-form Bregman projection of the simplex
constraint with relative entropy as the base function, BAPG only requires matrix-vector/matrix-matrix
multiplications and element-wise matrix operations at each iteration, making it a computationally
efficient algorithm. Thus, BAPG has several convenient properties such as compatibility with GPU
implementation, robustness with regards to the step size (the only hyperparameter), and low memory
requirements.

Next, we investigate the approximation bound and convergence behavior of BAPG. We surprisingly
discover that the GW problem satisfies the Luo-Tseng error bound condition (Luo & Tseng, 1992).
This fact allows us to bound the distance between the fixed-point set of BAPG and the critical
point set of the GW problem, which is a notable departure from the usual approach of utilizing the
Luo-Tseng error bound condition in establishing the linear convergence rate for structured convex
problems (Zhou & So, 2017). With this finding, we are able to quantify the approximation bound for
the fixed-point set of BAPG explicitly. Moreover, we establish the subsequence convergence result
when the accumulative asymmetric error of the Bregman distance is bounded.

Lastly, we present extensive experimental results to validate the effectiveness of BAPG for graph
alignment and graph partition. Our results demonstrate that BAPG outperforms other heuristic
single-loop and theoretically sound double-loop methods in terms of both computational efficiency
and matching accuracy. We also conduct a sensitivity analysis of BAPG and demonstrate the benefits
of its GPU acceleration through experiments on both synthetic and real-world datasets. All theoretical
insights and results have been well-corroborated in the experiments.

2 PROPOSED ALGORITHM

In this section, we begin by presenting the GW distance as a nonconvex quadratic problem with
Birkhoff polytope constraints. We then delve into the theoretical insights and computational charac-
teristics of our proposed algorithm, BAPG.

The Gromov-Wasserstein distance was first introduced in (Mémoli, 2011; 2014; Peyré et al., 2019)
as a way to quantify the distance between two probability measures supported on different metric
spaces. More precisely:

Definition 2.1 (GW distance). Suppose that we are given two unregistered compact metric spaces
(X ,dX), (Y,dY ) accompanied with Borel probability measures µ,ν respectively. The GW distance
between µ and ν is defined as

inf
π∈Π(µ,ν)

x
∣dX(x,x′) − dY (y, y′)∣2dπ(x, y)dπ(x′, y′),

where Π(µ,ν) is the set of all probability measures on X ×Y with µ and ν as marginals.
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Intuitively, the GW distance aims to preserve the isometric structure between two probability measures
through optimal transport. If there is a map that pairs x→ y and x′ → y′, then the distance between x
and x′ should be similar to the distance between y and y′. Due to these desirable properties, the GW
distance is a powerful tool in structural data analysis, particularly in graph learning. Some examples
of its applications include (Vayer et al., 2019b; Xu et al., 2019b;a; Solomon et al., 2016; Peyré et al.,
2016) and related references.

To start with our algorithmic developments, we consider the discrete case for simplicity and practi-
cality, where µ and ν are two empirical distributions, i.e., µ = ∑n

i=1 µiδxi and ν = ∑m
j=1 νjδyj . As a

result, the GW distance can be reformulated as follows:

min
π∈Rn×m

−Tr(DXπDY π
T )

s.t. π1m = µ, πT 1n = ν, π ≥ 0,
(1)

where DX and DY are two symmetric distance matrices.

2.1 RELAXATION OF GW DISTANCE

Now, we will introduce our relaxation of GW distance. The nonconvex quadratic program (1) with
polytope constraints is typically addressed by (Bregman) projected gradient descent type algorithms.
However, existing algorithms require an inner iterative algorithm, such as Sinkhorn (Cuturi, 2013) or
the semi-smooth Newton method (Cuturi, 2013), to solve the regularized optimal transport problem
at each iteration. This can lead to a computationally intensive double-loop scheme, which is not
ideal for GPU-friendly computation. To overcome this issue, we aim to handle the row and column
constraints separately using an operator splitting-based relaxation technique.

For simplicity, we consider the compact form for better exploiting the problem specific structures:

min
π

f(π) + g1(π) + g2(π). (2)

Here, f(π) = −Tr(DXπDY π
T ) is a nonconvex quadratic function; g1(π) = I{π∈C1}

and g2(π) =
I{π∈C2}

are two indicator functions over closed convex polyhedral sets. Here, C1 = {π ≥ 0 ∶ π1m = µ}
and C2 = {π ≥ 0 ∶ πT 1n = ν}. To decouple the Birkhoff polytope constraint, we adopt the operator
splitting strategy to reformulate (2) as

min
π=w

f(π,w) + g1(π) + g2(w) (3)

where f(π,w) = −Tr(DXπDY w
T ). Then, we penalize the equality constraint and process the

alternating minimization scheme on the constructed penalized function, i.e.,

Fρ(π,w) = f(π,w) + g1(π) + g2(w) + ρDh(π,w).

Here, Dh(⋅, ⋅) is the so-called Bregman divergence, i.e., Dh(x, y) ∶= h(x) − h(y) − ⟨∇h(y),x − y⟩,
where h(⋅) is the Legendre function, e.g., 1

2
∥x∥2, relative entropy x logx, etc.

2.2 BREGMAN ALTERNATING PROJECTED GRADIENT (BAPG)

Next, we present the proposed single-loop Bregman alternating projected gradient (BAPG) method.
The crux of BPAG is to take the alternating projected gradient descent step between C1 and C2. For
the k-th iteration, the BAPG update takes the form

πk+1 = argmin
π∈C1

{f(π,wk) + ρDh(π,wk)} ,

wk+1 = argmin
w∈C2

{f(πk+1,w) + ρDh(w,πk+1)} .
(4)

The choice of relative entropy as h also brings the advantage of efficient computation of Bregman
projection for simplex constraints, such as C1 and C2, as discussed in (Krichene et al., 2015). These
observations result in closed-form updates in each iteration of BAPG in (4). We refer to this specific
case as KL-BAPG.

3



Published as a conference paper at ICLR 2023

KL-BAPG

π ← π ⊙ exp(DXπDY /ρ), π ← diag(µ./π1m)π,
π ← π ⊙ exp(DXπDY /ρ), π ← πdiag(ν./πT 1n),

(5)

where ρ is the step size and ⊙ denotes element-wise (Hadamard) matrix multiplication. KL-BAPG
has several advantageous properties that make it ideal for medium to large-scale graph learning tasks.
Firstly, it is a single-loop algorithm that only requires matrix-vector/matrix-matrix multiplications
and element-wise matrix operations, which are highly optimized on GPUs. Secondly, unlike the
entropic regularization parameter in eBPG, KL-BAPG is less sensitive to the choice of the step size ρ.
Thirdly, KL-BAPG only requires one memory operation for a matrix of size nm, which is the main
bottleneck in large-scale optimal transport problems rather than floating-point computations. (Mai
et al., 2021).

Similar to the quadratic penalty method (Nocedal & Wright, 2006), BAPG is an infeasible method
that only converges to a critical point of (1) in an asymptotic sense, meaning there will always be
an infeasibility gap if ρ is chosen as a constant. Despite this, BAPG is a suitable option for learning
tasks that prioritize efficiency and matching accuracy, such as graph alignment and partition. This
idea of sacrificing some feasibility for other benefits is further supported by recent studies such as
the relaxed version of GW distance proposed in (Vincent-Cuaz et al., 2021a) for graph partitioning.
Additionally, Séjourné et al. (2021) introduced a closely related marginal relaxation, but they did not
develop an efficient algorithm with a convergence guarantee. That is, we make π = w and Fρ(π,π)
is the objective introduced in (Séjourné et al., 2021). Our experiments in Sec 4.2 and 4.3 demonstrate
that KL-BAPG outperforms existing baselines in graph alignment and partitioning tasks.

3 THEORETICAL RESULTS

In this section, we present the theoretical results that have been carried out in this paper. This
includes the approximation bound of the fixed-point set of BAPG and its convergence analysis. The
cornerstone of our analysis is the following regularity condition for the GW problem in equation (1)
Proposition 3.1 (Luo-Tseng Error Bound Condition for (1)). There exist scalars ϵ > 0 and τ > 0
such that

dist(π,X ) ≤ τ ∥π − projC1∩C2
(π +DXπDY )∥ , (6)

whenever ∥π − projC1∩C2
(π +DXπDY )∥ ≤ ϵ, where X is the critical point set of (2) defined by

X = {π ∈ C1 ∩C2 ∶ 0 ∈ ∇f(π) +NC1(π) +NC2(π)} (7)
and NC(π) denotes the normal cone to C at π.

As the GW problem is a nonconvex quadratic program with polytope constraint, we can invoke
Theorem 2.3 in (Luo & Tseng, 1992) to conclude that the error bound condition (6) holds on the
whole feasible set C1 ∩C2. Proposition 3.1 extends (6) to the whole space Rn×m. This regularity
condition is trying to bound the distance of any coupling matrix to the critical point set of the GW
problem by its optimality residual, which is characterized by the difference for one step projected
gradient descent. It turns out that this error bound condition plays an important role in quantifying
the approximation bound for the fixed points set of BAPG explicitly.

3.1 APPROXIMATION BOUND FOR THE FIXED-POINT SET OF BAPG

To start, we present one key lemma that shall be used in studying the approximation bound of BAPG.
Lemma 3.2. Let C1 and C2 be convex polyhedral sets. There exists a constant M > 0 such that

∥projC1
(x) + projC2

(y) − 2projC1∩C2
(x + y

2
)∥ ⩽M ∥projC1

(x) − projC2
(y)∥ , ∀x ∈ C1, y ∈ C2.

The proof idea follows essentially from the observation that the inequality can be regarded as the
stability of the optimal solution for a linear-quadratic problem, i.e.,

(p(r), q(r)) =
argmin

p,q

1

2
∥x − p∥2 + 1

2
∥y − q∥2

s.t. p − q = r, p ∈ C1, q ∈ C2.
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The parameter r is indeed the perturbation quantity. If r = 0, we have p(0) = q(0) = projC1∩C2
(x+y

2
);

by choosing r = projC1
(x)−projC2

(y), it is easy to see that (p(r), q(r)) = (projC1
(x), projC2

(y)).
Together with Theorem 4.1 in (Zhang & Luo, 2022), the desired result is obtained. All the proof
details are given in Appendix.

Equipped with Lemma 3.2 and Proposition 3.1, it is not hard to obtain the approximation result.
Proposition 3.3 (Approximation Bound of the Fixed-point Set of BAPG). The point (π⋆,w⋆)
belongs to the fixed-point set XBAPG of BAPG if it satisfies

∇f(w⋆) + ρ(∇h(π⋆) −∇h(w⋆)) + p = 0,
∇f(π⋆) + ρ(∇h(w⋆) −∇h(π⋆)) + q = 0, (8)

where p ∈ NC1(π⋆) and q ∈ NC2(w⋆). Then, the infeasibility error satisfies ∥π⋆ −w⋆∥ ≤ τ1
ρ

and the
gap between XBAPG and X satisfies

dist(π
⋆ +w⋆
2

,X) ≤ τ2
ρ
,

where τ1 and τ2 are two constants.

Remark 3.4. If π⋆ = w⋆, then XBAPG ((8)) is identical to X and BAPG can reach a critical point of
the GW problem (1). Proposition 3.3 indicates that as ρ→ +∞, the infeasibility error term ∥π⋆ −w⋆∥
shrinks to zero and thus BAPG converges to a critical point of (1) in an asymptotic way. Furthermore,
it explicitly quantifies the approximation gap when we select the parameter ρ as a constant. The
proof can be found in Appendix. The explicit form of τ1 and τ2 only depend on the problem itself,
including σmax(DX)σmax(DY ), the constant for the Luo-Tseng error bound condition in Proposition
3.1 and so on.

3.2 CONVERGENCE ANALYSIS OF BAPG

A natural follow-up question is whether BAPG converges. We answer affirmatively. Under several
standard assumptions, we demonstrate that any limit point of BAPG is an element of XBAPG. With
this goal in mind, we first establish the sufficient decrease property of the potential function Fρ(⋅),
Proposition 3.5. Let {(πk,wk)}k≥0 be the sequence generated by BAPG. Suppose that
∑∞k=0 (Dh(πk+1,wk) −Dh(wk,πk+1)) is bounded. Then, we have

Fρ(πk+1,wk+1) − Fρ(πk,wk) ≤ −ρDh(πk,πk+1) − ρDh(wk,wk+1). (9)

As Fρ(⋅) is coercive, we have∑∞k=0Dh(πk,πk+1)+Dh(wk,wk+1) < +∞. Both {Dh(πk,πk+1)}k≥0
and {Dh(wk,wk+1)}k≥0 converge to zero. Thus, the following convergence result holds.

Theorem 3.6 (Subsequence Convergence of BAPG). Any limit point of the sequence {(πk,wk)}k≥0
generated by BAPG belongs to XBAPG.

Remark 3.7. Verifying the boundedness of the accumulative asymmetric error is a challenging task,
except in the case where h is quadratic. To address this we perform empirical verification on a 2D
toy example, as described in Sec 4.1. The results of this verification for various step sizes, can be seen
in Fig. 3 in Appendix C.1. Additionally, when h is quadratic, we can employ the Kurdyka-Lojasiewicz
analysis framework, which was developed in (Attouch et al., 2010; 2013) to prove global convergence.

To the best of our knowledge, the convergence analysis of alternating projected gradient descent
methods has only been given under the convex setting, see (Wang & Bertsekas, 2016; Nedić, 2011)
for details. In this paper, by heavily exploiting the error bound condition of the GW problem, we take
the first step and provide a new path to conduct the analysis of alternating projected descent method
for nonconvex problems, which could be of independent interest.

4 EXPERIMENT RESULTS

In this section, we provide extensive experiment results to validate the effectiveness of the proposed
KL-BAPG on various representative graph learning tasks, including graph alignment (Tang et al.,
2023) and graph partition (Li et al., 2021). All simulations are implemented using Python 3.9 on a
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Figure 1: (a): 2D shape geometry of the source and target; (b)-(f): visualization of coupling matrix.

high-performance computing server running Ubuntu 20.04 with an Intel(R) Xeon(R) Gold 6226R
CPU and an NVIDIA GeForce RTX 3090 GPU. For all methods conducted in the experiment part,
we use the relative error ∥πk+1 − πk∥2/∥πk∥2 ≤ 1e−6 and the maximum iteration as the stopping
criterion, i.e., min{k ∈ Z ∶ ∥πk+1 − πk∥2/∥πk∥2 ≤ 1e−6 andk ≤ 2000}. Our code is available at
https://github.com/squareRoot3/Gromov-Wasserstein-for-Graph.

4.1 TOY 2D MATCHING PROBLEM

In this subsection, we study a toy matching problem in 2D to confirm our theoretical insights and
results in Sec 2 and 3. Fig. 1 (a) illustrates an example of mapping a two-dimensional shape without
any symmetries to a rotated version of the same shape. Here, we sample 300 points from the source
shape and 400 points from the target shape, and use the Euclidean distance to construct the distance
matrices DX and DY .

Figs.1 (b)-(f) provide all color maps of coupling matrices to visualize the matching results. Here,
the sparser coupling matrices indicate sharper mapping. All experiment results are consistent with
those in Table 4. We can observe that both BPG and FW give us satisfactory solution performance as
they aim at solving the GW problem exactly. However, FW and BPG will suffer from a significant
computation burden which will be further justified in Sec 4.2 and 4.3. On the other hand, the
performance of BPG-S and eBPG is obviously harmed by the inexacness issue. The sharpness of
KL-BAPG’s coupling matrix is relatively unaffected by its infeasibility issue too much, although its
coupling matrix is denser than BPG and FW ones. As we shall see later, the effect of the infeasibility
issue is minor when the penalty parameter ρ is not too small and will not even result in any real cost
for graph alignment and partition tasks, which only care about the matching accuracy instead of the
sharpness of the coupling.

4.2 GRAPH ALIGNMENT

Graph alignment aims to identify the node correspondence between two graphs possibly with different
topology structures (Zhang et al., 2021; Chen et al., 2020). Instead of solving the restricted quadratic
assignment problem (Lawler, 1963; Lacoste-Julien et al., 2006), the GW distance provides an optimal
probabilistic correspondence relationship via preservation of the isometric property. Here, we
compare the proposed KL-BAPG with all existing baselines: FW (Vayer et al., 2019a), BPG (Xu
et al., 2019b), BPG-S (Xu et al., 2019b) (i.e., the only difference between BPG and BPG-S is that the
number of inner iterations for BPG-S is just one), ScalaGW (Xu et al., 2019a), SpecGW (Chowdhury
& Needham, 2021), and eBPG (Solomon et al., 2016). Except for BPG and eBPG, others are
pure heuristic methods without any theoretical guarantee. Besides the GW-based methods, we also
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Table 1: Comparison of the matching accuracy (%) and wall-clock time (seconds) on graph alignment.
For KL-BAPG, we also report the time of GPU implementation.

Method Synthetic Proteins Enzymes Reddit
Acc Time Raw Noisy Time Raw Noisy Time Raw Noisy Time

IPFP - - 43.84 29.89 87.0 40.37 27.39 23.7 - - -
RRWM - - 71.79 33.92 239.3 60.56 30.51 114.1 - - -

SpecMethod - - 72.40 22.92 40.5 71.43 21.39 9.6 - - -

FW 24.50 8182 29.96 20.24 54.2 32.17 22.80 10.8 21.51 17.17 1121
ScalaGW 17.93 12002 16.37 16.05 372.2 12.72 11.46 213.0 0.54 0.70 1109
SpecGW 13.27 1462 78.11 19.31 30.7 79.07 21.14 6.7 50.71 19.66 1074

eBPG 34.33 9502 67.48 45.85 208.2 78.25 60.46 499.7 3.76 3.34 1234
BPG 57.56 22600 71.99 52.46 130.4 79.19 62.32 73.1 39.04 36.68 1907

BPG-S 61.48 18587 71.74 52.74 40.4 79.25 62.21 13.4 39.04 36.68 1431

KL-BAPG 99.79 9024 78.18 57.16 59.1 79.66 62.85 6.9 50.93 49.45 780
KL-BAPG-GPU - 1253 - - 75.4 - - 21.8 - - 115

consider three widely used non-GW graph alignment baselines, including IPFP (Leordeanu et al.,
2009), RRWM (Cho et al., 2010), and SpecMethod (Leordeanu & Hebert, 2005).

Parameters Setup We utilize the unweighted symmetric adjacency matrices as our input distance
matrices, i.e., DX and DY . Alternatively, SpecGW uses the heat kernel exp(−L) where L is the
normalized graph Laplacian matrix. We set both µ and ν to be the uniform distribution. For three
heuristic methods — BPG-S, ScalaGW, and SpecGW, we follow the same setup reported in their
papers. As mentioned, eBPG is very sensitive to the entropic regularization parameter. To get
comparable results, we report the best result among the set {0.1, 0.01, 0.001} of the regularization
parameter. For BPG and KL-BAPG, we use the constant step size 5 and ρ = 0.1 respectively. For FW,
we use the default implementation in the PythonOT package (see Appendix 4). All the experiment
results reported here were the average of 5 independent trials over different random seeds and the
standard deviation is collected in Appendix 4.

Database Statistics We test all methods on both synthetic and real-world databases. Our setup
for the synthetic database is the same as in (Xu et al., 2019b). The source graph Gs = {Vs,Es} is
generated by two ideal random models, Gaussian random partition and Barabasi-Albert models,
with different scales, i.e., ∣Vs∣ ∈ {500, 1000, 1500, 2000, 2500}. Then, we generate the target graph
Gt = {Vt,Et} by first adding q% noisy nodes to the source graph, and then generating q% noisy edges
between the nodes in Vt, i.e., ∣Vt∣ = (1+q%)∣Vs∣, ∣Et∣ = (1+q%)∣Es∣, where q ∈ {0, 10, 20, 30, 40, 50}.
For each setup, we generate five synthetic graph pairs over different random seeds. To sum up, the
synthetic database contains 300 different graph pairs. We also validate our proposed methods on three
other real-world databases from (Chowdhury & Needham, 2021), including two biological graph
databases Proteins and Enzymes, and a social network database Reddit. Furthermore, to demonstrate
the robustness of our method regarding the noise level, we follow the noise-generating process (i.e.,
q = 10%) conducted for the synthesis case to create new databases on top of the three real-world
databases. Toward that end, the statistics of all databases used for the graph alignment task have been
summarized in Appendix 4. We match each node in Gs with the most likely node in Gt according to
the optimized π⋆. Given the predicted correspondence set Spred and the ground-truth correspondence
set Sgt, we calculate the matching accuracy by Acc = ∣Sgt ∩ Spred∣/∣Sgt∣ × 100%.

Results of Our Methods Table 1 shows the comparison of matching accuracy and wall-clock
time on four databases. We observe that KL-BAPG works exceptionally well both in terms of
computational time and accuracy, especially for two large-scale noisy graph databases Synthetic
and Reddit. Notably, KL-BAPG is robust enough so that it is not necessary to perform parameter
tuning. As we mentioned in Sec 2, the effectiveness of GPU acceleration for KL-BAPG is also well
corroborated on Synthetic and Reddit. GPU cannot further speed up the training time of Proteins and
Reddit as graphs in these two databases are small-scale. Additional experiment results to demonstrate
the robustness of KL-BAPG and its GPU acceleration will be given in Sec 4.4.

Comparison with Other Methods Traditional non-GW graph alignment methods (IPFP, RRWM,
and SpecMethod) have the out-of-memory issue on graphs with more than 500 nodes (e.g., Synthetic
and Reddit) and are sensitive to noise. The performance of eBPG and ScalaGW is influenced by the
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Table 2: Comparison of AMI scores on graph partition datasets using the adjacency matrices and the
heat kernel matrices.

Category Method Wikipedia EU-email Amazon Village
Raw Noisy Raw Noisy Raw Noisy Raw Noisy

Non-GW
FastGreedy 0.382 0.341 0.312 0.251 0.637 0.573 0.881 0.778

Louvain 0.377 0.329 0.447 0.382 0.622 0.584 0.881 0.827
Infomap 0.332 0.329 0.374 0.379 0.940 0.463 0.881 0.190

Adjacency

FW 0.341 0.323 0.440 0.409 0.374 0.338 0.684 0.539
eBPG 0.461 0.413 0.517 0.422 0.429 0.387 0.703 0.658
BPG 0.367 0.333 0.478 0.414 0.412 0.368 0.642 0.575

BPG-S 0.357 0.285 0.451 0.404 0.443 0.352 0.606 0.560
KL-BAPG 0.469 0.396 0.508 0.428 0.457 0.362 0.736 0.681

Heat Kernel

SpecGW 0.442 0.395 0.487 0.425 0.565 0.487 0.758 0.707
eBPG 0.100 0.082 0.011 0.188 0.604 0.031 0.002 0.003
BPG 0.418 0.373 0.473 0.253 0.492 0.436 0.705 0.619

BPG-S 0.411 0.373 0.475 0.253 0.483 0.425 0.642 0.619
KL-BAPG 0.533 0.365 0.533 0.436 0.630 0.502 0.797 0.711

entropic regularization parameter and approximation error respectively, which accounts for their poor
performance. Moreover, it is easy to observe that SpecGW works pretty well on the small dataset but
the performance degrades dramatically on the large one, e.g., synthetic. The reason is that SpecGW
relies on a linear programming solver as its subroutine, which is not well-suited for large-scale
settings. Besides, although ScalaGW has the lowest per-iteration computational complexity, the
recursive K-partition mechanism developed in (Xu et al., 2019a) is not friendly to parallel computing.
Therefore, ScalaGW does not demonstrate attractive performance on multi-core processors.

4.3 GRAPH PARTITION

The GW distance can also be potentially applied to the graph partition task. That is, we are trying
to match the source graph with a disconnected target graph having K isolated and self-connected
super nodes, where K is the number of clusters (Abrishami et al., 2020; Li et al., 2020). Similarly,
we compare the proposed KL-BAPG with the other baselines described in Sec 4.2 on four real-world
graph partitioning datasets. Following (Chowdhury & Needham, 2021), we also add three non-
GW methods specialized in graph alignment, including FastGreedy (Clauset et al., 2004), Louvain
(Blondel et al., 2008), and Infomap (Rosvall & Bergstrom, 2008).

Parameters Setup For the input distance matrices DX and DY , we test our methods on both the
adjacency matrices and the heat kernel matrices proposed in (Chowdhury & Needham, 2021). For
KL-BAPG, we pick the lowest converged function value among ρ ∈ {0.1, 0.05, 0.01} for adjacency
matrices and ρ ∈ {0.001, 0.0005, 0.0001} for heat kernel matrices. The quality of graph partition
results is quantified by computing the adjusted mutual information (AMI) score (Vinh et al., 2010)
against the ground-truth partition.

Results of All Methods Table 2 shows the comparison of AMI scores among all methods for graph
partition. KL-BAPG outperforms other GW-based methods in most cases and is more robust under
noisy conditions. Specifically, KL-BAPG is consistently better than both FW and SpecGW, which
rely on the Frank-Wolfe method to solve the problem. eBPG has comparable results when using the
adjacency matrices, but is sensitive to process the spectral matrices. The possible reason is that the
adjacency matrix and the heat kernel matrix have quite different structures, e.g., the former is sparse
while the latter is dense. BPG and BPG-S enjoy similar performances in most cases, but they are not
as good as our proposed KL-BAPG on all datasets. KL-BAPG also shows competitive performance
compared to specialized non-GW graph partition methods. For example, KL-BAPG outperforms
Infomap and Louvain in 6 and 4 datasets out of 8, respectively

4.4 THE EFFECTIVENESS AND ROBUSTNESS OF KL-BAPG

At first, we target at demonstrating the robustness of KL-BAPG on graph alignment, as it is more
reasonable to test the robustness of a method on a database (e.g., graph alignment) rather than a single
point (e.g., graph partition).
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Table 3: GPU & CPU wall-clock time comparison of KL-BAPG, BPG, and eBPG on graph alignment.

Reddit Dataset Synthetic Dataset
KL-BAPG BPG eBPG KL-BAPG BPG eBPG

CPU Time(s) 780 1907 1234 9024 22600 9502
GPU Time(s) 115 1013 2274 1253 4458 2709

Acceleration Ratio 6.78 1.88 0.54 7.20 5.07 3.51
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Figure 2: (a) Sensitivity of the noise level and graph scale on the synthetic graph alignment database.
(b) Visualization of trade-off among efficiency, accuracy and feasibility on the Reddit database. The
infeasibility error is computed by ∥πT 1n − ν∥ + ∥π1m − µ∥. "Closer to the boundary of the outer
cycle generally indicates higher accuracy, faster speed, and lower infeasibility error.

Noise Level and Graph Scale At the beginning, we present the sensitivity analysis of KL-BAPG
with respect to the noise level q% and the graph scale ∣Vs∣ in Fig. 2 using the Synthetic Database.
Surprisingly, the solution performance of KL-BAPG is robust to both the noise level and graph scale.
In contrast, the accuracy of other methods degrades dramatically as the noise level or the graph scale
increases.
Trade-off among Efficiency, Accuracy and Feasibility We present a unified perspective on the
trade-off between efficiency, accuracy, and feasibility for all GW-based algorithms on the Reddit
database in Fig. 2 (b). As shown, our proposed KL-BAPG is able to achieve a desirable balance
between these three factors. Table 7 provides a detailed comparison of the four databases, while
Table 8 demonstrates the robustness of KL-BAPG with respect to the step size ρ. This experiment
supports the validity of Proposition 3.3 and provides practical guidance on choosing the optimal step
size. Note that a larger ρ leads to a lower infeasibility error but a slower convergence rate.

GPU Acceleration of KL-BAPG. We conduct experiment results to further justify that KL-BAPG
is GPU-friendly. In Table 3, We compare the acceleration ratio (i.e., CPU wall-clock time divided by
GPU wall-clock time) of KL-BAPG, eBPG, and BPG on two large-scale graph alignment datasets
using the same computing server. For eBPG, we use the official implementation in the PythonOT
package, which supports running on GPU. For BPG, we implement the GPU version by ourselves
using Pytorch. We can find that KL-BAPG has a much higher acceleration ratio on the GPU compared
to BPG and eBPG.

5 CLOSING REMARK

In this study, we have explored the development of a single-loop algorithm for the relaxation of GW
distance computation. By utilizing an error bound condition that was not previously investigated in
the GW literature, we have successfully conducted the convergence analysis of BAPG. However, the
proposed algorithm still faces the challenge of cubic per-iteration computational complexity, which
limits its applicability to large-scale real-world problems. A potential future direction is to incorporate
sparse and low-rank structures in the matching matrix to reduce the per-iteration cost and improve
the performance of the algorithm. Additionally, our method can also be applied to non-symmetric
distance matrices, as the Luo-tseng error bound condition remains valid. On another note, our work
also provides a new perspective for the study of the alternating projected descent method for general
non-convex problems, which is an open area of research in the optimization community.
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