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ABSTRACT
Session-Based Recommendation (SBR) is a spotlight re-
search problem. Although many efforts have been made,
challenges still exist. The key to unlocking this shackle is
the user intention, an intuitive but hard-to-model concept in
the anonymous session. Unlike previous research, we sug-
gest mining potential user intention by counting the number
of item occurrences in a user session and considering the
long interval between item re-interactions. Beyond these, we
take user preference, a biased user intention, into account in
the prediction stage. Forming these together, we propose a
model named user Intention aware Graph Neural Network
(Int-GNN) aiming at capturing user intention. Extensive ex-
periments have been conducted on three real-world datasets,
and the results show the superiority of our method. The
code is available on GitHub: https://github.com/
xuguangning1218/IntGNN_ICASSP2023

Index Terms— session based recommendation, user in-
tention, number of item occurrences, GNN

1. INTRODUCTION

Recently, a new pearl has attracted people’s eyeballs: the
Session-Based Recommendation (SBR) [1, 2]. It focuses on
performing recommendations under anonymous, ad hoc ses-
sion conditions, which shows more challenge than other rec-
ommendation tasks. It can be roughly divided into machine
learning methods and deep learning methods.

The former ones take charge in the early stages of re-
search by mining item-to-item relationships [3, 4] overlooked
user interaction behaviors. The latter ones show up like bam-
boo shoots after rain. They mainly consist of three parts.
First, most RNN-based methods model user intention through
chronological item transitions [5, 6], which may not be en-
tirely applicable for the SBR [7]. Second, the attention-based
methods [8, 9] attempt to discriminate the user’s interest in
items suffering from missing the partial sequence informa-
tion. Third, the GNN-based methods have shed some light
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zhang bo wen@foxmail.com).

on the SBR task. They capture items transitions relation-
ships within a session to obtain a robust item latent repre-
sentation [10, 11], yet the over-smoothing issue might lead
to a limited user intention capture. Furthermore, the global
graph-based methods [12, 13] are proposed for performance
improvement while they are resources costing.

Although the above works are fascinating, our work at-
tempts to expand the horizon of the SBR task from a new
perspective. Researches [14, 15] show that user intention
is helpful. Due to privacy policies, we have limited ability
to model user intention from user interaction, e.g., clicking,
browsing, and purchasing. To fill this gap, we propose a novel
method named a user Intention Aware Graph Neural Network
(Int-GNN) aiming at capturing user intention in three aspects.
By introducing the number of item occurrences, an item
shows up times in a session, we design the Item Occurrence
Graph Neural Network (IO-GNN) for the user interaction
intention. To model a user’s long-interval re-interactions,
we proposed the Interactive Position Graph Neural Network
(IP-GNN). Following a famous psychological claim, the an-
choring effect [16], people rely heavily on biased information
while making decisions, we proposed Multi-Scores Genera-
tor to combine both item characteristics and user preference.
The main contributions of this work can be summarized as
follows: i) To the best of our knowledge, it is the first time
to introduce the number of item occurrences for mining user
intention without accessing private data. ii) We proposed the
Int-GNN, which considers the number of item occurrences,
item re-interaction interval, and user preference in the SBR.
iii) Extensive experiments have been conducted on three
commonly used real-world datasets.

2. PRELIMINARY

Problem Formulation. Let a set V = {v1, v2, . . . , v|V |}
denote items involved in all sessions and a vector S =
[v1, v2, . . . , vn] denotes an anonymous session with n in-
teractions, where vi ∈ V means the i-th interaction item. The
target of the SBR is to estimate a probability ŷi of the poten-
tial interaction item, where ŷi is the i-th value of a probabilityIC
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vector ŷ =
[
ŷ1, ŷ2, . . . , ŷ|V |

]
. Formally, the objective func-

tion is presented: ŷi(θ∗) = maxθP{vn+1|v1, v2, . . . , vn, θ},
where θ denotes learnable parameters. Item Occurrence
and Sequential Item Occurrence. Let S =

[
v1s , v

2
s , . . . , v

n
s

]
be a input session vector and Si =

[
v1s , v

2
s , . . . , v

i
s

]
be

the sub-vector of S, where i ≤ n. We use an aggregate
function called Cnt(vis,Si) to count the number of occur-
rence for item vis in Si. To measure the occurrence or-
der of S, the sequential item occurrence vector is defined:
seqOcc(S) =

[
Cnt(v1s ,S1), . . . ,Cnt(vns ,Sn)

]
.

3. METHOD

3.1. Model Overview

We first give a bird’s-eye view of the Int-GNN architecture
shown in Fig. 1. The Int-GNN is mainly composed of three
components, namely, the IO-GNN, the IP-GNN, and the
Multi-Scores Generator. First, a specific session is fed into
the IO-GNN and IP-GNN to obtain the hidden user inten-
tion. After that, the Multi-Scores Generator looks forward
to two inputs. One comes from the number of item occur-
rences aimed at identifying user preference from a session.
The other is the fusion information from the IO-GNN and
IP-GNN, which generates the items’ characteristics represen-
tation. Finally, two derived scores contribute their endeavors
to the final prediction.
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Fig. 1. Overview of the proposed Int-GNN

3.2. Item Occurrence Graph Neural Network

Global Item Occurrence Embedding As the number of
item occurrences in a session exhibits user intention to
some extent, we design the global item occurrence em-
bedding to capture this characteristic. To begin with, the
maximum number of item occurrences is anchored to M .
Then, we introduce the global item occurrence embedding:
EO = [eo0, e

o
1, e

o
2, . . . , e

o
M ]⊤, where an embedding vector

eoi ∈ Rd is a learnable vector, and it can be utilized by
all items that show up in i times in a session, d is the di-
mension of the embedding. After that, we define a lookup
operation to identify the specific embedding vector. For an
item vi occurs Cnt(vis,S) times in the session S, the cor-
responding embedding vector is set to eoCnt(vi

s,S)
. Finally,

we can get the session-based item occurrence embedding

EO
s =

[
eoCnt(v1

s ,S)
, eoCnt(v2

s ,S)
, . . . , eo

Cnt(v|Vs|
s ,S)

]⊤
for a spe-

cific session S. Obviously, many occurrences of an item
explicate that the corresponding item is a potential recom-
mendation outcome. In this way, the global item occurrence
embedding EO can model the user intention for the given
session by providing the item occurrence information.

Prorogation on GNN To cooperate with the number of
item occurrences, we further employ a GNN to model user
intention hiding inside item transitions. First, we establish
a session directed graph Gs = (Vs, Es) according to [10],
where Vs ⊆ V is the unique-item set in a session. Node
vi ∈ Vs denotes an item and an edge (vi−1, vi) ∈ Es

represents the transition from item vi to item vi−1. To
describe the session directed graph Gs, we introduce two
adjacent matrices Ain

s ,A
out
s ∈ R|Vs|×|Vs|. Note that Ain

s

and Aout
s are self-loop and degree normalized. Second, we

generate item embedding EI according to [5, 10]. After
a lookup operation, we get the session-based item embed-
ding EI

s . Third, we conduct message passing : Zin
s =

Ain
s

(
EI

sW1 +EO
s

)
,Zout

s = Aout
s

(
EI

sW2 +EO
s

)
,Z′

s =
Zin

s + Zout
s + B, where W1,W2,B ∈ Rd×d are learnable

parameters, Z′
s ∈ R|Vs|×d is gathered into Rn×d [10].

Sequential Item Occurrence Attention As the user in-
tention are chronological and undulating, we propose the
Sequential Item Occurrence Attention for modelling user in-
tention in time dimension. First, we utilize the seqOcc(S)
to construct the sequential item occurrence embedding in
a session. Similar to the generation of the EO

s , we have
the session-based sequential item occurrence embedding:

ESI
s =

[
esiCnt(v1

s ,S1)
, esiCnt(v2

s ,S2)
, . . . , esiCnt(vn

s ,Sn)

]⊤
. Sec-

ondly, for a chronological session sub-vector Si, an attention

value is calculated: αi =
σ(Z′

s,iW+b)·esi
Cnt(vi

s,Si)

∥esi
Cnt(vi

s,Si)
∥2

, where Z′
s,i

is the i-th row of the output Z′
s, W ∈ Rd×d are learnable

weights, b ∈ Rd are learnable bias, σ(·) is the Sigmoid
function. Last, we assign the above attention values α to the
GNN output Z′

s and generate the final output of Sequential
Item Occurrence Attention: Zs,i = αi · Z′

s,i.

3.3. Interactive Position Graph Neural Network

As aforementioned, a re-interaction after a long interval of
steps might reflect a user intention. It is better to tackle this
problem by position embedding. However, existing posi-
tion embedding methods treat each position independently,
which limits the capacity to handle the long interval steps
re-interaction issues. In the end, we propose to equip the po-
sition embedding with a GNN to fix this issue. For a start, the
maximum length for a session is set to N . Then, we introduce
the position embedding EP = [ep1, e

p
2, . . . , e

p
N ]⊤. Its lookup

result is denoted as EP
s = [ep1, e

p
2, . . . , e

p
n]

⊤. After that, we
propose to construct an session-based items’ co-occurrence
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graph Gp = (P,Ep), where P = {1, 2, . . . , N} denotes
the reversed position index set, Ep denotes an edge set. The
corresponding adjacent matrix A is given: Ai,j = 1, vi = vj
otherwise Ai,j = 0, where i, j ∈ P . In this case, a re-
occurred item interaction will lead to the neighbor position
nodes connecting. Finally, the propagation of the IP-GNN is
formulated: Zp = AEP

s W + B, where W,B ∈ Rd×d are
learnable parameters.

3.4. Multi-Scores Generator

To enhance the prediction, we proposed a multi-score output
considering both user preference and item characteristics.

As for the first score, we suppose that the distribution
of the session-based number of item occurrences can indi-
cate the ephemeral user preference. In this case, we pro-
pose to generate a user preference representation hu ∈
Rd from sequential item occurrence embedding ESI

s ∈
Rn×d by using series of operations composed of Bi-GRU,
FC, and Mean. Then, the user preference embedding is

given: EO
u =

[
eoCnt(v1

s ,S)
, eoCnt(v2

s ,S)
, . . . , eo

Cnt(v|V |
s ,S)

]⊤
,

where EO
u ∈ R|V |×d denotes the user preference over the

whole item set V . Finally, we generate the first output:

ŷ(1) = ẼO
u

(
h̃u

)⊤
, where h̃u denote the L2-norm of hu,

and ẼO
u is the L2-norm of EO

u . Note that the user preference
is upon the distribution of number of item occurrences instead
of item characteristics. As for the second score, we measure
how item characteristics contribute to the prediction. We first
present the soft-attention to generate the item characteris-
tics representation hs =

∑n
i=1

q⊤σ((Zs,i+Zp,i)W+b)
∥q∥ EI

s,i,

where EI
s ∈ Rn×d are session-based item embedding,

W ∈ Rd×d, b,q ∈ Rd are learnable parameters, σ(·)
is the Sigmoid function. Finally, we get output according

to [17] : ŷ(2) = µẼI
(
h̃s

)⊤
, where µ is a temperature

hyper-parameter, h̃s is a L2-norm of hs, and ẼI is a L2-
norm of EI . The final probability output is generated by
considering both user preference and item characteristics:
ŷ = SoftMax

(
ŷ(1) + ŷ(2)

)
.

4. EXPERIMENT

4.1. Data and Experiment Settings

We chose three commonly used datasets as our benchmark:
(1) Diginetica comes from the CIKM Cup 2016, we used its
transaction data, (2) Tmall is released by the IJCAI-15 com-
petition. It consists of anonymous users’ shopping logs on
Tmall, and (3) RetailRocket records users’ browsing activi-
ties for six months in the real world. For the preprocessing
steps, we followed the procedures as [13, 18, 19], e.g., we
dropped the sessions whose length is less than 2 (3 for the
RetailRocket), and we also abandoned items that occur less

than 5. Following previous methods [19, 13], we set the di-
mension of latent vectors to d = 100, the mini-batch was
512, and cross-entropy loss. All model parameters were ini-
tialized by N (0, 0.1) Gaussian distribution. The learning rate
for Adam [20] was set to 0.00128, and its decay ratio was set
to 0.3 after every three epochs. Moreover, we set the maxi-
mum occurrence value to M = 300 and the maximum length
of any session to N = 100. The temperature hyper-parameter
µ = 12.5. All the experiments of Int-GNN were conducted
in 5 runs and reported their mean and standard deviation.

4.2. Baselines and Metrics

To evaluate the performance, we comprehensively compared
IntGNN with typical methods and state-of-the-art models,
a total of 11 baselines: (1) POP recommends the top-N
frequent items based on the training set; (2) GRU4Rec [5]
utilizes GRU for sequential information; (3) NARM [2] em-
ploys RNNs and attention mechanisms to generate session
embedding; (4) STAMP [8] generates session embedding
with the long- and short-term memory; (5) SR-GNN [10] uti-
lizes GNNs to capture items transitions; (6) NISER [17] in-
troduces L2 norm to solve the long-tail issue; (7) LESSR [21]
uses GRU on graph structure to learn item-level embedding;
(8) GCE-GNN [12] introduces a global graph and combines
it with the session graph for learning item embedding; (9)
DSAN [18] applies an adaptively sparse transformation func-
tion and target attention to eliminate the unrelated items;
(10) DHCN [13] introduces a hypergraph convolutional net-
work that integrates a self-supervised method for session
embedding; (11) COTREC [19] co-trains two distinct graph
encoders in a self-supervised manner, aiming at building the
internal and external connectivity of the session. Two com-
monly used evaluation metrics, named P@N and MRR@N,
were adopted in our experiments. The P@N evaluates the
proportion of correct recommendations in an unranked list,
and the MRR@N considers the position of correct recom-
mended items in a ranked list.

4.3. Overall Comparison

To evaluate the overall performance, Table 1 summarizes
results over three real-world datasets. From this table, we
can draw the following conclusions. First, the deep learning
based methods outperform the traditional methods. Second,
the GNN-based methods outperform others since they can
model complex item transitions. Third, our Int-GNN model
shows a superior performance gain among the GNN-based
methods in most cases. It might be that these methods con-
centrate on short-term or long-term item transitions paying
less attention to the overall characteristics of a session. Un-
like the above methods, the Int-GNN takes advantage of
user intention by using a newly introduced number of item
occurrences, which is more intuitive for the recommendation.
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Table 1. Overall performance comparison over three real-world datasets
Datasets Diginetica Tmall RetailRocket
Metrics P@20 MRR@20 P@10 MRR@10 P@20 MRR@20 P@10 MRR@10 P@20 MRR@20 P@10 MRR@10

POP 1.18 0.28 0.76 0.26 2.00 0.90 1.67 0.88 1.12 0.30 0.61 0.27
GRU4Rec [5](2016) 29.45 8.33 17.93 7.33 10.93 5.89 9.47 5.78 44.01 23.67 38.35 23.27

NARM [2](2017) 49.70 16.17 35.44 15.13 23.30 10.70 19.17 10.42 50.22 24.59 42.07 24.88
STAMP [8](2018) 45.64 14.32 33.98 14.26 26.47 13.36 22.63 13.12 50.96 25.17 42.95 24.61

SR-GNN [10](2019) 50.73 17.59 36.86 15.52 27.57 13.72 23.41 13.45 50.32 26.57 43.21 26.07
NISER[17](2019) 53.39 18.72 40.20 17.82 33.79 16.67 28.46 16.38 54.90 29.89 47.69 29.38
LESSR [21](2020) 51.71 18.15 36.16 15.64 27.88 12.08 22.68 11.68 53.05 28.01 45.76 27.51

GCE-GNN [12](2020) 54.22 19.04 41.16 18.15 33.42 15.42 28.01 15.08 50.60 25.39 43.53 24.89
DSAN [18](2021) 53.76 18.99 40.29 18.05 36.45 18.17 30.91 17.76 56.54 30.74 49.05 30.21
DHCN [13](2021) 53.18 18.44 39.87 17.53 31.42 15.05 26.22 14.60 53.66 27.30 46.15 26.85

COTREC [19](2021) 54.18 19.07 41.88 18.16 36.35 18.04 30.62 17.65 56.17 29.97 48.61 29.46
Int-GNN 55.16±0.04 19.46±0.02 41.84±0.06 18.53±0.02 40.77±0.16 18.20±0.12 34.28±0.12 17.74±0.12 58.02±0.08 31.48±0.11 50.41±0.08 30.94±0.11

Improvement 1.7% 1.9% -0.1% 2.0% 11.86% 0.27% 10.91% -0.09% 2.61% 2.39% 2.77% 2.42%

Table 2. Ablation study on three datasets
Datasets Diginetica Tmall RetailRocket
Metrics P@20 MRR@20 P@10 MRR@10 P@20 MRR@20 P@10 MRR@10 P@20 MRR@20 P@10 MRR@10

Int-GNN 55.16±0.04 19.46±0.02 41.84±0.06 18.53±0.02 40.77±0.16 18.20±0.12 34.28±0.12 17.74±0.12 58.02±0.08 31.48±0.11 50.41±0.08 30.94±0.11
w/o-IO-GNN 54.94±0.05 19.32±0.03 41.60±0.03 18.39±0.03 40.33±0.12 19.08±0.09 34.07±0.18 18.64±0.09 57.88±0.09 31.57±0.10 50.30±0.10 31.05±0.10
w/o-IP-GNN 52.23±0.08 18.07±0.03 39.07±0.14 17.15±0.04 40.87±0.13 18.36±0.17 34.43±0.27 17.91±0.18 54.04±0.17 28.67±0.10 46.79±0.15 28.16±0.09
w/o-MScore 55.19±0.07 19.26±0.02 41.78±0.05 18.33±0.02 39.54±0.22 18.24±0.11 32.98±0.15 17.78±0.11 57.68±0.09 31.08±0.02 49.93±0.15 30.54±0.03
w/o-IO-IP 52.00±0.05 18.27±0.02 39.00±0.05 17.37±0.02 40.28±0.11 19.01±0.05 34.18±0.09 18.59±0.06 53.51±0.09 28.78±0.08 46.46±0.08 28.29±0.07

w/o-IO-MScore 54.92±0.05 19.17±0.02 41.61±0.06 18.25±0.02 39.38±0.04 18.91±0.06 33.22±0.11 18.48±0.06 57.27±0.10 30.86±0.10 49.56±0.10 30.33±0.10
w/o-IP-MScore 52.34±0.07 18.03±0.03 39.02±0.05 17.10±0.04 39.63±0.11 18.31±0.10 33.10±0.11 17.86±0.10 53.52±0.11 28.01±0.06 46.11±0.11 27.49±0.07

vanilla-GNN 52.11±0.06 18.21±0.01 38.95±0.05 17.29±0.01 39.18±0.22 19.36±0.05 33.14±0.11 18.94±0.05 53.19±0.13 28.33±0.07 45.87±0.05 27.81±0.07

4.4. Ablation study

Here, we conduct a complete ablation study on the proposed
modules, where the vanilla-GNN method is unequipped for
all proposed modules. Note that we retained item occurrence
embedding in w/o-IO-GNN as an input for the Multi-Scores
Generator, and w/o-MScores was obtained by removing user
preference embedding from the Int-GNN. Table 2 shows the
results. Three significant observations can be made. First,
performance declines in most cases when we ablate any pro-
posed module on Diginetica and RetailRocket. As for the
Tmall, it resists the negative effect because it is generated
from a biased sampling strategy. Second, the pair-ablation
results illustrate a manifest performance decrease over three
datasets. In particular, we get an extinct result when we
abandon both IP-GNN and IO-GNN, supporting the effec-
tiveness of the newly introduced item occurrence concept.
Third, vanilla-GNN shows the worse results, denoting that
the proposed modules certainly earn a performance gain.

4.5. The analysis of IP-GNN

As we first proposed to use GNN in position embedding, we
compared the IP-GNN to non-GNN methods, such as the
vanilla position embedding (vanilla-Pos) [9, 17, 22], and the
reversed position embedding (reversed-Pos) [12, 13, 19]. The
results, shown in Fig. 2, indicate that the Int-GNN equipped
with IP-GNN shows a mind-blowing performance compared
with vanilla-Pos and reversed-Pos on the Diginetica and Re-
tailRocket datasets. The reason might be that vanilla-Pos and
reversed-Pos treat interactive positions independently, while
the IP-GNN aggregates the corresponding potential positions.
As for the Tmall, it is insensitive to IP-GNN, which its biased

sampling strategy might cause. In this manner, the IP-GNN
provides valuable information on how long a user takes to
re-interact with the same item.

Diginetica Tmall RetailRocket

Fig. 2. Comparison of different position embedding methods

5. CONCLUSION

In this paper, we proposed utilizing the number of item oc-
currences to give insight into user intention capturing. Upon
this concept, we model user intention by the Int-GNN model,
which includes the IO-GNN, the IP-GNN, and the Multi-
Scores Generator by considering user intention in the number
of item occurrences, user intention in item re-interaction
intervals, and user preference, respectively. Extensive experi-
ments show the superiority of the Int-GNN.
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