
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

CARTRIDGES: LIGHTWEIGHT AND GENERAL-PURPOSE
LONG CONTEXT REPRESENTATIONS VIA SELF-STUDY

Anonymous authors
Paper under double-blind review

ABSTRACT

Large language models are often used to answer queries grounded in large text
corpora (e.g. codebases, legal documents, or chat histories) by placing the entire
corpus in the context window and leveraging in-context learning (ICL). Although
current models support contexts of 100K–10M tokens, this setup is costly to serve
because the memory consumption of the KV cache scales with input length. We
explore an alternative: training a smaller KV cache offline on each corpus. At
inference time, we load this trained KV-cache, which we call a CARTRIDGE, and
decode a response. Critically, the cost of training a CARTRIDGE can be amortized
across all the queries referencing the same corpus. However, we find that the naive
approach of training the CARTRIDGE with next-token prediction on the corpus is not
competitive with ICL. Instead, we propose SELF-STUDY, a training recipe in which
we generate synthetic conversations about the corpus and train the CARTRIDGE
with a context-distillation objective. We find that CARTRIDGES trained with SELF-
STUDY replicate the functionality of ICL, while being significantly cheaper to
serve. On challenging long-context benchmarks, CARTRIDGES trained with SELF-
STUDY match ICL performance while using 38.6× less memory on average and
enabling 26.4× higher throughput. SELF-STUDY also extends the model’s effective
context length (e.g. from 128k to 484k tokens on MTOB) and surprisingly, leads to
CARTRIDGES that can be composed at inference time without retraining.

1 INTRODUCTION

Large language model (LLM) users often place large text corpora into the context window. For
instance, a user or organization may use LLMs to understand a codebase (Nam et al., 2024), financial
document (Islam et al., 2023), legal texts (Guha et al., 2023), a textbook (Ouellette et al., 2025),
or personal files (Arora & Ré, 2022). LLMs excel here due to in-context learning (ICL), enabling
accurate responses to diverse queries (e.g., questions, summarization, reasoning) (Dong et al., 2022).

Despite its flexibility, this usage paradigm is costly to serve. ICL requires maintaining a KV cache
that grows linearly with the input length. For example, LLaMA 70B needs 84 GB of memory (at
16-bit precision) to answer a single question over a 128k-token context (Dubey et al., 2024). This
severely limits user throughput: on a single H100 GPU, LLaMA 8B’s peak throughput (tokens/s)
drops by 77× when increasing the context from 1k to 120k tokens (Figure 2).

Prior work has thus explored ways to reduce KV cache memory usage. For instance, prompt
compression methods reduce the number of tokens stored in the cache via summarization, or self-
information filtering (Jiang et al., 2023b; Li, 2023; Chuang et al., 2024), while KV cache compression
techniques directly compress the stored key-value pairs (Ge et al., 2023a; Zhang et al., 2023b; Tang
et al., 2024; Oren et al., 2024). Unfortunately, there are memory-quality tradeoffs associated with
these methods: in experiments on challenging long-context tasks, we find that performance degrades
rapidly when applying these methods with compression ratios greater than 2× (see Figure 3).

Motivated by the observation that the cost of preparing a KV cache can be amortized across many
queries that reference the same corpus, we explore a complementary approach based on offline
training. Given a specific text corpus (e.g. a patient’s medical record) we freeze the LLM and train
a smaller KV cache offline by backpropagating loss into the key and value vectors in a process
equivalent to prefix tuning (Li & Liang, 2021; Lester et al., 2021). We call the trained KV cache
representing the corpus a “CARTRIDGE.” At inference time, we load the trained CARTRIDGE, append

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Problem Setting

😄

🫨

In-context learning Cartridges
Document Corpus

Prefill

CartridgeSelf-studyQueries

LLM + KV Cache
Users send many messages grounded

in a single large corpus of text. 💻🤔

Please, summarize
the documents...

KV Cache

🤔

Write a rock song
about the docs...

What is the D&A
margin for FY15...

What is the D&A
margin for FY15...

In FY15, the D&A
margin for... 🤔

What is the D&A
margin for FY15... 💻

In FY15, the D&A
margin for...

💻

💻 ...

...

💻...

Documents represented by KV cache
produced with standard prefill.

Supports general queries
High GPU memory consumption

Documents represented with a compressed KV cache
that is trained with self-study.

General queries
Less GPU memory

LLM + Cartridge

38.6×
less memory

26.4×
higher throughput

zk[1] zk[2]
zv[2]zv[1]v[2]v[1] v[3]

k[3]k[1] k[2]
v[4]
k[4]

Figure 1: Producing CARTRIDGES via self-study. For a given document corpus, we train a
CARTRIDGE by distilling the corpus into a parameterized KV cache through a process we call
SELF-STUDY. At inference time, this CARTRIDGE can be loaded into an LLM, which can then be
used to answer diverse queries about the corpus while requiring substantially less memory.

the user’s messages, and decode. Because users repeatedly reference the same corpora (e.g. SEC
filings, codebase, personal files), each CARTRIDGE can be trained once offline and reused. This
approach also integrates cleanly with existing inference servers, which are already designed to manage
per-user KV caches (Kwon et al., 2023; Zheng et al., 2024; Juravsky et al., 2025; Ye et al., 2025).

The central challenge of this work lies in training CARTRIDGES that exhibit the generality of ICL.
Due to ICL, a standard KV cache is a remarkably general-purpose, albeit large, representation of a
corpus: a single cache can support diverse interactions from answering factual questions to writing
poems (Dong et al., 2022). In contrast, naïvely training a CARTRIDGE with next-token prediction on
the raw corpus yields compact but restricted representations of the corpus. With next-token prediction,
we show we can memorize the corpus perfectly using a CARTRIDGE with 107× less memory than
the standard KV-cache. However, the CARTRIDGE is not a general-purpose representation – it can
only regurgitate the corpus, not answer diverse queries (Figure 2). The challenge is to reduce memory
consumption while maintaining generality.

To address this challenge and produce general-purpose and compact CARTRIDGES, we propose an
automated method called SELF-STUDY. SELF-STUDY has two steps:

1. Synthetic data generation (Section 4.1): We generate synthetic training data by prompting the
model to quiz itself about the corpus content. Training on the resulting conversations lets us
avoid training on the same exact text multiple times and improves generality (see Figure 2). To
support corpora that exceed the effective context length of the model, we chunk the corpus when
generating synthetic conversations. We also curate a set of seed prompts that bias the synthetic
conversations towards global reasoning, improving structural awareness (see Figure 4).

2. Context distillation (Section 4.2): We train on the synthetic conversations using a context-
distillation objective (Bhargava et al., 2024; Snell et al., 2022), which aligns the CARTRIDGE-
augmented model’s next-token distributions with the distributions of the model with the corpus in
context. We find that the context distillation substantially improves the quality of the CARTRIDGES
compared to next-token-prediction (see Figure 4 center).

In summary, given a large corpus of text, our goal is to train a small virtual KV cache, termed
CARTRIDGE, that when used by the model, mimics the conversational behavior of the model with the
entire corpus in context. To do this, we generate synthetic conversations and train the CARTRIDGE
on them with a context distillation objective — a recipe we call SELF-STUDY.

Evaluations. We evaluate CARTRIDGES trained with SELF-STUDY on a set of challenging bench-
marks that pair a single large text corpus (100k-484k tokens) with a diverse set of queries (Islam
et al., 2023; Adams et al., 2024; Tanzer et al., 2023). We make three claims. First, SELF-STUDY
expands the quality-memory frontier—averaged across the benchmarks, CARTRIDGES produced with
SELF-STUDY match ICL generality and quality while consuming 38.6× less memory, enabling a
26.4× increase in peak throughput (tokens/s) when serving many users with different corpora. These
memory reductions and speedups represent an order of magnitude improvement over state-of-the-art
cache compression baselines (e.g. DuoAttention (Xiao et al., 2024b)). Second, CARTRIDGES enables
context length extrapolation. On the MTOB benchmark (Tanzer et al., 2023), where models must
translate from Kalamang, a low-resource language, into English, we use SELF-STUDY with LLAMA-
8B to construct a small CARTRIDGE from a 484k token textbook. This CARTRIDGE outperforms ICL
over the first 130, 000 tokens of the textbook by 11.0 chrF points and matches the ICL performance
over a curated subset of the textbook. Third, SELF-STUDY also yields CARTRIDGES that can be

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

composed without joint optimization: when we concatenate two CARTRIDGES the model can answer
queries requiring knowledge from both (see Figure 7).

Additionally, we ablate the design decisions in SELF-STUDY and CARTRIDGES (Section 5.3 and
Appendix A). Notably, we compare CARTRIDGES parameterized as a KV cache (Li & Liang, 2021)
with CARTRIDGES parameterized as a LoRA (Hu et al., 2022) and find that KV cache parameterization
performs better on both in-domain and out-of-domain tasks.

In this work, we demonstrate how we can reduce memory consumption during language model
serving by scaling offline training compute. We hope this new axis of scaling will enable new
applications that are currently bottlenecked by KV cache memory consumption, like coding agents
with full-repository context or long-term memory in chatbots.

2 PRELIMINARIES

We begin by discussing related work (Section 2.1), formalizing our problem (Section 2.2), and
providing background on language models and KV caches (Section 2.3).

2.1 RELATED WORK

See Appendix B for a more comprehensive discussion of prior work.

Parameter Efficient Fine-Tuning and Knowledge Injection In order to adapt a language model
to a specific task or domain, practitioners commonly train a small number of parameters (usually
a low-rank adapter), which augment or modify the original model (Hu et al., 2022; Li & Liang,
2021; Lester et al., 2021; Meng et al., 2024; Zaken et al., 2021). In our work, we build upon a
less popular technique, prefix-tuning (Li & Liang, 2021; Lester et al., 2021), where we optimize
internal activations for a set of “virtual” tokens preceding the input. Recent works on knowledge
injection apply LoRA (or variants (Mao et al., 2025)) to store a text corpus in a small number of
parameters (Zhang et al., 2023a; Xiao et al., 2023; Kujanpää et al., 2024; Mao et al., 2025; Kuratov
et al., 2025; Su et al., 2025; Caccia et al., 2025). In contrast to our work, these papers do not focus on
memory reductions or throughput improvements enabled by knowledge injection and do identify the
importance of the prefix-tuning parameterization.

Prompt and KV-cache compression Many works have proposed techniques to reduce the size of
the KV cache. One set of approaches focuses on making the prompt smaller—explicit methods alter
the prompt text through summarization and filtering (Jiang et al., 2023b; Li, 2023; Chuang et al.,
2024; Zhang et al., 2024b; Pan et al., 2024), while implicit methods compress prompt representations
into a set of “soft” tokens (Chevalier et al., 2023; Yen, 2024; Ge et al., 2023b; Mu et al., 2023; Qin
et al., 2023; Lester et al., 2021). Another set of approaches exploits observations about the structure
of the KV cache (Yu et al., 2024; Chang et al., 2024; Kim et al., 2024) to drop (Ge et al., 2023a;
Zhang et al., 2023b; Tang et al., 2024; Oren et al., 2024; Li et al., 2024b) or merge tokens (Wang
et al., 2024; Zhang et al., 2024d; Wan et al., 2024).

Architectural changes A large body of work has studied architectural changes to the original
multi-head attention operation (Vaswani et al., 2017) with the aim of reducing the memory footprint
of the KV cache or replacing it with a memory object of constant size (inter alia Zaheer et al. (2020);
Shazeer (2019); Liu et al. (2024a); Gu & Dao (2023); Behrouz et al. (2024). Unlike SELF-STUDY
and the compression approaches discussed above, which can be readily applied to any pre-trained
Transformer, these architectural changes typically require retraining the model from scratch or using
complex architecture conversion techniques (Zhang et al., 2024a).

2.2 PROBLEM SETUP

We assume a setting in which users issue a stream of diverse queries about a common corpus of
text. We denote the corpus as C and the query set as Q = {q1, q2, . . . , qm}. For example, C may
correspond to the 2022 Form 10-K filing for AMD, which is almost 100k tokens. Analyst might as
diverse queries with respect to this filing, including: (1) recalling factual information, (2) performing
mathematical reasoning, or (3) even generating creative responses (e.g., a poem). Other illustrative
examples of C include legal filings, code repositories, chat histories, and medical records.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Let R = {r1, r2, . . . , rm} denote the responses the LLM produces for the queries. We have two
objectives. First, we wish to maximize the quality of responses R under some quality metric (e.g.
accuracy). Second, we wish to minimize the LLM’s memory footprint while it is answering questions
with respect to the document. This is because larger memory footprints decrease throughput and
necessitate more hardware to serve the same number of users (Figure 2, Right).

2.3 LANGUAGE MODELS AND KV CACHES

Recall that an LLM F accepts as input a sequence of N tokens x ∈ Vn drawn from a discrete
vocabulary V ⊂ Z of tokens, each represented by a unique integer. The output, which we denote
F(·|x), corresponds to a categorical distribution over a vocab V conditioned on the prefix x ∈ Vn.
Inside the language model, each token x[i] in x is embedded into a d-dimensional space, yielding a
matrix u ∈ Rn×d. The matrix u is passed through a stack of L model layers, which each mix the
matrix along the n and d dimensions, with layer ℓ outputting yl ∈ Rn×d. The final yL is mapped to
the logits over V with a linear projection.

Most modern language models use the self-attention operator (Vaswani et al., 2017). Given an input
u ∈ Rn×d for sequence length n and embedding dimension d, it computes the output yl ∈ Rn×d

via the softmax y[i] =
∑i

j=1
exp(q[i]⊤k[j]/

√
d)v[j]∑i

t=1 exp(q[i]⊤k[t]/
√
d)

over projections q,k,v = uWq,uWk,uWv.
where weight matrices Wq , Wk and Wv for each layer are learned during training.

We generate text from F one token at a time by sampling from F(· | x) and appending the sampled
token to x. Critically, the attention operator is causal: every output y[i] is conditioned on prior tokens.
This means we can store the keys and values for the prior tokens in a KV cache {k[j],v[j]}ij=1,
which grows in i. Thus, generation proceeds in two phases: (1) prefill, where we compute the KV
cache for the initial prompt x and (2) decode, where we generate the response token by token and
append to the cache. The KV cache effectively serves as a representation of the corpus C.

3 THE CARTRIDGE PARADIGM

In this section, we describe the CARTRIDGE paradigm, in which we generate representations of the
corpus C offline with training, instead of constructing them on-the-fly with prefill.

3.1 FORMALIZING CARTRIDGES

Our goal is to train a CARTRIDGE for a given corpus C. A CARTRIDGE is a small set of parameters
Z ∈ R∗ (i.e. an adapter (Li & Liang, 2021; Hu et al., 2022)) that augments an LLM F and causes
it to behave as if it had C in its context window. Formally, let FZ(·|q) denote the distribution of F
augmented with Z given a query q. For all q ∈ Q, we want to ensure that samples rZ ∼ FZ(·|q) are
as good or better than the ICL sample rq ∼ F(·|C ⊕ q), according to some query-specific scoring
function. Because Q might span a diverse range of question types (e.g., mathematical reasoning,
factual recall comprehension, summarization, and more), it is essential that FZ can generalize across
different q ∈ Q. This is non-trivial because Q is unknown when Z is being learned offline.

3.2 PARAMETERIZING CARTRIDGES

We parameterize Z using a simplified version of prefix-tuning (Li & Liang, 2021). Specifically, we
allocate a KV cache composed of trainable key and value vectors zk, zv ∈ Rp×d. The size of the full
Z ∈ RL×p×d×2 is controlled by the hyperparameter p.

In ICL, the KV cache for FC(q) (where C is of length nC and Q is of length nQ) would contain
nC + nQ key-value pairs, with the first nC corresponding to C and the last nQ corresponding to Q:

ICL KV Cache
(k1,v1), . . . , (knC ,vnC)︸ ︷︷ ︸

KV pairs for C

, (knC+1,vnC+1) . . .︸ ︷︷ ︸
KV pairs for q

CARTRIDGE KV Cache
(zk

1, z
v
1), . . . , (z

k
p, z

v
p)︸ ︷︷ ︸

Trainable KV pairs in Z

, (knC+1,vnC+1) . . .︸ ︷︷ ︸
KV pairs for q

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

*Memorization
e.g. “Please complete the rest of the passage...”

Data structuring tasks
e.g. “Please list AMD’s customers in JSON format”

Creative tasks
e.g. “Write a poem about AMD’s Q3 performance.”

Mathematical reasoning
e.g. “Compute AMD FY20 days payable outstanding.”

Disjoint reasoning
e.g. “List all the tables in AMD’s FY20 10K document.”

Factual questions
e.g. “Who is on AMD’s board as of FY20?”

Synthesis tasks
e.g. “Please summarize the AMD’s FY20 10K.”

Self-Study
Full ICLNext-token predict.

Cartridges Prompting
Truncated ICL

Generalization to diverse queries Quality-memory tradeoff Peak throughput vs. cache size

Query types
*Memorization is closely related to the

next-token prediction objective.

Llama 3.2 3B

Llama 3.1 8B

121×

44×
11× 3× 1×

113×

45×
12× 4× 1×

20k

10k

10k

5k

Pe
ak

 t
hr

ou
gh

pu
t

(t
ok

en
s/

s)

0.01

Figure 2: CARTRIDGES trained with SELF-STUDY balance the generality and memory con-
sumption tradeoff. (Left) We evaluate on different slices from the GENCONVO dataset. CAR-
TRIDGES trained with next-token prediction performs well on memorization queries, which resemble
its training distribution, but cannot generalize to other queries like the other methods. (Center)
The x-axis measures the size of the KV cache in GB for the different methods. The y-axis shows
log-perplexity on the GENCONVO dataset averaged over the query types. (Right) Peak throughput
(tokens/s) measured for different cache sizes for LLAMA-3B and LLAMA-8B with SGLang (Zheng
et al., 2024) on an 1xH100 (See Appendix A).

To train a CARTRIDGE, we substitute the key-value pairs corresponding to C with Z, and directly
optimize them by back-propagating the loss into the key and value vectors. We freeze all model
parameters, only training the keys and values in Z. We discuss the choice of loss in Section 4.2.

Initialization Prior work finds that optimizing a randomly initialized cache Z is unstable and leads
to degraded performance (Li & Liang, 2021). Instead, these works initialize the trainable cache
with a smaller dimensionality d and then re-project it to the original dimension with an MLP. In
contrast, we find that proper initialization of Z allows us to directly optimize the full cache without
reparametrization. Specifically, we initialize Z to the KV cache corresponding to the first p tokens of
the corpus C. Alternatively, we could use a summary of the corpus or filter tokens using off-the-shelf
prompt compression strategies (Xiao et al., 2024b). In Section 5.3, we show that our initializations
lead to stable training and faster convergence than the random initialization.

Why this parameterization? We note that the parameter-efficient fine-tuning literature provides other
ways to augment an LLM with a set of additional parameters, in particular low-rank adaptation
(LoRA) (Li & Liang, 2021; Hu et al., 2022; Lester et al., 2021). In Section 5.3, we perform a
comprehensive comparison of CARTRIDGES parameterized with prefix-tuning and LoRA.

3.3 SERVING CARTRIDGES

A CARTRIDGE can be served efficiently with minimal changes to existing LLM inference
servers (Zheng et al., 2024; Kwon et al., 2023; Juravsky et al., 2025). Because a CARTRIDGE
is a KV cache, it can be loaded directly into the KV cache managers of existing inference servers.
LLM inference servers are heavily optimized for managing distinct KV-caches for multiple users (Ye
et al., 2025), meaning CARTRIDGES can be served at high throughput using existing inference
servers. Decoding tokens with a CARTRIDGE is identical to serving a request with a prefix of length
p (the hyperparameter denoting the number of tokens in the CARTRIDGE). This contrasts with other
methods like LoRA, which require custom infrastructure to serve efficiently to multiple users (Chen
et al., 2024a). See Figure 2 for the relationship between prefix length and throughput.

4 SELF-STUDY: A SELF-SUPERVISED METHOD FOR TRAINING CARTRIDGES

In this section, we describe SELF-STUDY, a simple approach for training a CARTRIDGE Z on any
corpus of text. The design of SELF-STUDY is motivated by the observation that CARTRIDGES trained
with a simpler recipe fail to generalize to diverse user queries.

Motivating observation The naive method for constructing a CARTRIDGE would be to fine-tune
the parameters of Z with the next token prediction objective on the corpus text directly. We show
results experimenting with this approach in Figure 2, where we evaluate on a dataset derived from
FinanceBench (Islam et al., 2023), which we refer to as GENCONVO (see Appendix D for details).

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

GENCONVO contains multiple types of questions (e.g. synthesis, reasoning). We find that the naïve
next-token prediction approach can memorize with near perfect perplexity (Figure 2 left), while
consuming 107× less memory than ICL (Figure 2 center). However, generalization to other slices is
poor, as shown in Figure 2. We seek a training objective that allows the responses from a model that
uses the CARTRIDGE to generalize to a diverse set of user queries, resembling ICL.

Motivated by these observations, we describe a synthetic data generation recipe in Section 4.1 and a
context-distillation objective in Section 4.2. As we show in Figure 2, CARTRIDGES trained with this
approach can generate responses to many types of queries that match the quality of queries generated
with ICL. See Figure 1 for a visualization of the CARTRIDGE approach.

4.1 SELF-SUPERVISED SYNTHETIC DATA TO AVOID OVERFITTING

To improve CARTRIDGE generality, we propose generating a synthetic training dataset Dtrain.

Overall synthetic data pipeline Our overall pipeline puts information from the corpus C in context
and prompts the model to have a conversation with itself about the corpus to generate the synthetic
query-response pairs as shown in Algorithm 1. We represent the concatenation with x⊕ y.

Algorithm 1 SELF-STUDY: Data Generation
Input: C : Corpus, F : Model
Output: {a1,b1, . . . ,ak,bk} : Convo

1: c̃← chunk(C) ▷ (1) Get a subcorpus of C that fits in the context window
2: s← get_seed_prompt() ▷ (2) Get a prompt to seed the first message from A
3: for i = 1 to k do ▷ (3) Sample a conversation with k back and forths
4: ai ∼ F(· | c̃⊕ s⊕ a1 ⊕ · · · ⊕ bi−1) ▷ (3.1) Sample A’s message with c̃ and s in context
5: bi ∼ F(· | c̃⊕ a1 ⊕ · · · ⊕ bi−1 ⊕ ai) ▷ (3.2) Sample B’s message with c̃ in context
6: end for
7: return {a1,b1, . . . ,ak,bk}

The conversation is generated by iteratively sampling generations from two LLM participants A
and B (which are the same model). We maintain two different conversation histories: A’s starts
with a user message containing a seed prompt s (e.g. “Please start a conversation by asking a
question about the document above.") followed by alternating assistant and user messages from A
and B, respectively. B’s conversation history does not include the seed prompt and contains the same
messages as A’s but with the roles of A and B swapped. Both have the subcorpus c̃ in the system
prompt. To build a training dataset, we sample mtrain independent conversations and concatenate the
messages from A and B into a single sequence of tokens:

Dtrain = {x(j) = a
(j)
1 ⊕ b

(j)
1 ⊕ a

(j)
2 ⊕ b

(j)
2 ⊕ · · · ⊕ a

(j)
k ⊕ b

(j)
k }

mtrain
j=1 (1)

where each x(j) is a concatentation of the messages. Note that all of the datasets on which we evaluate
in the main paper involve a single-turn. So, we set k = 1, generating a synthetic conversation with
one user message and one assistant message.

Note that the chunk and get_seed_prompt functions expose two different ways to control the
data distribution of the synthetic data. We find that these two design decisions are critical for training
high quality CARTRIDGES with SELF-STUDY.

Chunking We use short subcorpora c̃ (between 512 and 4096) tokens to let the LLM focus on
different parts of the corpus when generating data. This is motivated by observations in prior work (Liu
et al., 2024c; Narayan et al., 2025). Furthermore, chunking also allows us to train CARTRIDGES on
corpora longer than the model’s context window.

Seed prompts Instead of using just one seed prompt, we curate a list of five different seed prompt
types: structuring, summarization, question, use cases, and creative. The full list of seed prompts
used in our experiments is provided in Appendix C. Critically, in all our experiments the seed prompts
are generic: they do not mention anything related to the specifics of the corpora we evaluated (e.g.
no mention of translation for MTOB or medical terms for LongHealth). We use the same set of seed
prompts across all of the experiments. In Section 5.3, we ablate the use of diverse seed prompts and
find that it improves performance over a single generic seed prompt by up to 4.8 accuracy points
(43.6→ 48.4 on LONGHEALTH).

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

LongHealth MTOB (KE) QASPER

ICL Duo AttentionTruncated SummaryICL (Full book)
Prompt Compression KV-cache CompressionLong-context ICL

Cartridges
with different cache sizes

Ours

Self-study compute
(# of training steps)

Self-study compute
(# of training steps)

Self-study compute
(# of training steps)

Self-study compute
(# of training steps)

Multi-key NIAH
with GPT-5

Summary

ICLICL

Summary Summary
ICL

Memory consumption
(Cache size GB)

Memory consumption
(Cache size GB)

Memory consumption
(Cache size GB)

Memory consumption
(Cache size GB)

ICL

Figure 3: CARTRIDGES can match ICL quality with lower memory costs by scaling SELF-STUDY
compute. (Top) We measure response quality (y-axis) against KV cache memory consumption
(x-axis) for different methods, at different KV cache sizes. The dashed line marks the quality of
standard ICL. (Bottom) We measure response quality (y-axis) against scale of self-study compute
(x-axis). The dashed line marks the quality of ICL and prompt compression baselines.

4.2 SELF-STUDY CONTEXT-DISTILLATION OBJECTIVE

Given a fine-tuning dataset Dtrain, we adapt standard techniques from the model distillation litera-
ture (Kim & Rush, 2016; Snell et al., 2022; Kujanpää et al., 2024). We let F(·|x) denote the next
token distribution given some input text x. Our teacher is the model with the subcorpus, c̃, in context
F(·|c̃) and our student is the same model adapted with a trainable cache FZ(·). We use a classic
distillation objective (Hinton et al., 2015) that minimizes the KL-divergence between the teacher and
student next-token distributions over a sequence of tokens x and the corresponding subcorpus used to
generate them c̃.

argmin
Z

∑
(x,c̃)∈Dtrain

|x|∑
i=1

DKL

(
F(·|c̃⊕ x[: i]) || FZ(·|x[: i])

)
(2)

In Appendix A, ablate the use of the context-distillation objective and show that improves accuracy
when controlling for the amount of synthetic data (e.g. 3.7 accuracy points on LONGHEALTH).

5 RESULTS

We describe experiments evaluating the effectiveness of CARTRIDGES trained with SELF-STUDY in
various long-context scenarios. Our results support the following claims. First, CARTRIDGES trained
with SELF-STUDY can match or outperform ICL while maintaining generality and reducing serving
costs (Section 5.1). Second, SELF-STUDY is effective on corpora longer than the context window
of the LLM (Section 5.2). Third, the parameterization ablations to assess the relative benefits of
different aspects of SELF-STUDY and CARTRIDGES (Section 5.3). Fourth, when we concatenate
two different CARTRIDGES without any joint training, the model can respond to queries requiring
information from both CARTRIDGES (Section 5.4).

Datasets We study datasets consisting of diverse (q, r) pairs about a single long document. Across
datasets, C ranges between 100k and 484k tokens. Our datasets are drawn from popular long-context
benchmarks, with some used as-released and others modified to meet this structure. These include:
Multi-key Needle-in-a-Haystack (NIAH) (Hsieh et al., 2024), LONGHEALTH (Adams et al., 2024),
MTOB (Tanzer et al., 2023), and QASPER (Dasigi et al., 2021). We evaluate LLM response quality
using accuracy for NIAH and LONGHEALTH, log perplexity for QASPER, and character n-gram
f-score (chrF) for MTOB (Tanzer et al., 2023; Popović, 2015). Because each dataset effectively
consists of a “single” document, we train a single CARTRIDGE per dataset and evaluate it on the
queries response pairs (q, r). Appendix D provides further details.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

5 seed prompts

Seed Prompts
1 seed prompt

Self-study Seed PromptsCartridge Parameterization

ChRF
(MTOB)

Ac
cu

ra
cy

(M

M
LU

)

Prefix-Tuning
Parameterization

LoRA
with increasing size with increasing rank

ICL
with full corpus

Baselines
ICL

with empty context

Context-distillation
2048

with different sizes

512

Next-token prediction
2048

with different sizes

512

Self-study Objective

Self-study compute
(# of training steps)

Ch
RF

(M

TO
B

)

Ac
cu

ra
cy

(L
o

ng
H

ea
lth

)

Objective

Corpus’ first k tokens
8192

Self-study compute
(# of training steps)

2048

Random vectors
with different sizesRandom tokens

with different sizes

with different sizes
81922048

81922048

Cartridge Initialization

Self-study compute
(# of training steps)

“Ask a question about the corpus or make a request”.

Structuring, Summarization, Question, Use Case, Creative

Initialization

Ac
cu

ra
cy

(L
o

ng
H

ea
lth

)

Figure 4: Ablating CARTRIDGE and SELF-STUDY design choices. Here we include ablations
for parameterization, initialization, objective, and seed prompts on the MTOB or LONGHEALTH
datasets (see Appendix A for full ablation experiments on all datasets).

5.1 EXPANDING THE QUALITY-MEMORY FRONTIER BY SCALING SELF-STUDY COMPUTE

We assess how CARTRIDGES produced with SELF-STUDY fare in quality and memory consumption
against baselines on the NIAH, LONGHEALTH and QASPER datasets. For all three datasets, C
fits within the model context window (128k tokens). We compare to traditional ICL, two prompt
compression baselines (prompt truncation and prompt summarization using GPT-4o (OpenAI, 2024)),
and the state-of-the-art KV cache compression baseline ((Jiang et al., 2023a; Xiao et al., 2024b)).
Please see Appendix A.1 for comparisons with other cache compression baselines. We evaluate
memory use in terms of KV cache size: the size of the KV cache for the ICL model and prompt
compression methods, the size of the CARTRIDGE, and the size of the compressed KV cache for KV
cache compression methods like DuoAttention.

The top of Figure 3 presents our main results on LLAMA 3. Compared with ICL, CARTRIDGES offers
substantial memory savings at comparable performance: up to 13.8× smaller for LONGHEALTH,
up to 97.0× for QASPER, and up to 648.3× for NIAH. As Figure 2 (right) shows, these memory
reductions translate to peak throughput (tokens/s) increases of 11.5× and 76.6× for LONGHEALTH
and QASPER, respectively. In contrast, all of the cache compression baseline methods fail to match
ICL quality even at modest compression ratios of 2 − 4×. See Appendix A.2 for results with the
QWEN3 family of models, where we observe even larger compression ratios: CARTRIDGES 106.4×
smaller outperform full ICL KV caches by 3.8 accuracy points on LONGHEALTH.

These substantial compression ratios are not a free lunch. As we show in the bottom of Figure 3,
achieving ICL quality at large compression ratios requires spending between two to four orders
of magnitude more compute (FLOPs) than we would running prefill with standard ICL. The value
of SELF-STUDY, is that it gives practitioners the option to trade off increased offline compute for
reduced online memory consumption, which is advantageous in settings where users care about
time-to-first-token and latency, users issue many queries over the same corpus, or when we have
access to cheap offline compute resources (e.g. at night when user load is low (Jaiswal et al., 2025;
Goel et al., 2025)). Notably, on NIAH, LONGHEALTH, and QASPER, we observe that when we
scale compute, performance improves steadily and eventually exceeds ICL quality.

5.2 EXTENDING THE EFFECTIVE CONTEXT WINDOW WITH SELF-STUDY

We evaluate whether SELF-STUDY allows us to accurately process corpora that exceed the context
window length. To study this, we consider the MTOB dataset, and LLAMA-8B, which has a context
window of 128k tokens. MTOB provides two different long documents: a full 484k token latex
textbook and a shorter 60k token version, which was manually-curated by the dataset authors to
exclude content not relevant to the translation task. Even though the 484k textbook is 356k tokens
longer than LLAMA-8B’s context window length, we can produce a CARTRIDGE for the full textbook
using the chunking strategy of SELF-STUDY. Figure 3 (middle plot) shows the performance of
CARTRIDGES of various sizes trained with SELF-STUDY.

As a point of comparison, we provide the results for KV cache baseline methods on the smaller 60k
token textbook, and also include ICL on a truncated version of the long textbook. Like above, we
observe that CARTRIDGE can match the performance of ICL on the hand-curated 60k token version,
while requiring substantially less memory and only having access to the 484k token version, which

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

exceeds the context window of LLAMA-8B. CARTRIDGES also outperform competitive baselines at
every KV cache size, by up to 11.0 chrF points.

5.3 ABLATING SELF-STUDY DESIGN CHOICES

We perform ablations to study different aspects of SELF-STUDY and CARTRIDGE parameterization,
with full results in Appendix A and key findings highlighted in Figure 4.

First, we ablate the parameterization and initialization of CARTRIDGES. We find that the prefix-tuning
parameterization substantially outperforms LoRA: on MTOB with CARTRIDGES ≈ 0.6 GB, prefix-
tuning achieves 4.5 ChRF points higher performance. More importantly, prefix-tuning maintains
generalization to unrelated queries (MMLU accuracy drops only from 54.7 to 54.3 as CARTRIDGE
size increases from 0.15 GB to 0.96 GB), while LoRA suffers severe degradation (from 54.7 to 45.3
accuracy). Initializing the CARTRIDGE with the KV cache of thefirst p tokens of the corpus achieves
55.3% accuracy on LONGHEALTH compared to only 29.9% with random vectors. Interestingly,
simply initializing with the KV cache of a different corpus closes most of the gap, achieving 51.3%
accuracy. See Figure 5 and Figure 8 for complete results on other datasets.

Next, we ablate SELF-STUDY design choices. We find that context-distillation objective significantly
outperforms standard next-token prediction, improving ChRF by 8.6 points on MTOB (24.9→ 33.5)
with similar gains on LONGHEALTH and QASPER. Further, we show that using a diverse set of
five generic seed prompts (provided verbatim in Appendix C.1) improves performance over a single
prompt (“Please generate a single chat message to begin a conversation about the information in
the corpus. Ask a question about the corpus or make a request."): +7.9 ChRF points on MTOB
(24.1→ 32.0) and +4.8 accuracy points on LONGHEALTH (43.6→ 48.4).

5.4 COMPOSING CARTRIDGES

We evaluate if independently trained CARTRIDGES can be composed in order to serve queries about
two different corpora (see Figure 7). We train CARTRIDGES across sizes {512, 1024, 2048, 4096}
and long 10-K documents from AMD, Pepsi, AMEX, and Boeing (Islam et al., 2023). For each pair
of CARTRIDGES pairwise (6 pairs per cache size), we evaluate using a dataset of multi-document
questions, i.e., requiring information from both 10-Ks. Surprisingly, we find composition not
only leads to coherent LLM generations off-the-shelf without any re-training (Figure 7), but also
substantially outperforms the use of a single CARTRIDGE (i.e. for only AMD) or ICL (which struggles
due to context length limits) (Figure 7) on the multi-document questions.

6 DISCUSSION AND CONCLUSION

We propose CARTRIDGES as an alternative to ICL for settings where many different user messages
reference the same large corpus of text.

There are several limitations of this work. First, this work does not strive to reduce the SELF-STUDY
training cost and there is ample room for future optimizations that would make SELF-STUDY training
procedure less costly (e.g. shared-prefix attention kernels (Ye et al., 2025) or improved synthetic
data mixtures (Chen et al., 2024b)). Second, in our work, CARTRIDGES matches ICL quality on the
LongHealth benchmark, which tests long-distance dependencies, and on MTOB, which is cumulative.
However, there remains headroom on these benchmarks and other domains with long-distance
dependencies (e.g. code repositories). Future work should explore improvements to self-study that
would enable it to better handle cumulative corpora and long-term dependencies. Third, in this work,
we share the surprising result that when we concatenate two different CARTRIDGES without any joint
training, the model can respond to queries requiring information from both CARTRIDGES. However,
we stop short of the stronger claim that CARTRIDGES are as effective when composed as they are
when used in isolation. Future work should explore how to more effectively compose CARTRIDGES.

This work demonstrates that it is possible to trade off increased offline compute for reduced KV
cache memory consumption. Looking forward, this could pave the way to new context-aware AI
applications that are currently bottlenecked by memory consumption, from medical assistants that
know a patient’s full medical history to LLM-powered IDEs that understand entire codebases.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

REFERENCES

Marah Abdin, Jyoti Aneja, Harkirat Behl, Sébastien Bubeck, Ronen Eldan, Suriya Gunasekar,
Michael Harrison, Russell J Hewett, Mojan Javaheripi, Piero Kauffmann, et al. Phi-4 technical
report. arXiv preprint arXiv:2412.08905, 2024.

Lisa Adams, Felix Busch, Tianyu Han, Jean-Baptiste Excoffier, Matthieu Ortala, Alexander Löser,
Hugo JWL Aerts, Jakob Nikolas Kather, Daniel Truhn, and Keno Bressem. Longhealth: A question
answering benchmark with long clinical documents. arXiv preprint arXiv:2401.14490, 2024.

Joshua Ainslie, James Lee-Thorp, Michiel De Jong, Yury Zemlyanskiy, Federico Lebrón, and Sumit
Sanghai. Gqa: Training generalized multi-query transformer models from multi-head checkpoints.
arXiv preprint arXiv:2305.13245, 2023.

Anthropic. The Claude 3 Model Family: Opus, Sonnet, Haiku. arXiv preprint, 2024. URL https://
www-cdn.anthropic.com/de8ba9b01c9ab7cbabf5c33b80b7bbc618857627/
Model_Card_Claude_3.pdf.

Simran Arora and Christopher Ré. Can foundation models help us achieve perfect secrecy? arXiv
preprint arXiv:2205.13722, 2022.

Simran Arora, Sabri Eyuboglu, Aman Timalsina, Isys Johnson, Michael Poli, James Zou, Atri Rudra,
and Christopher Ré. Zoology: Measuring and improving recall in efficient language models, 2023.
URL https://arxiv.org/abs/2312.04927.

Simran Arora, Sabri Eyuboglu, Michael Zhang, Aman Timalsina, Silas Alberti, Dylan Zinsley,
James Zou, Atri Rudra, and Christopher Ré. Simple linear attention language models balance the
recall-throughput tradeoff. arXiv preprint arXiv:2402.18668, 2024.

Maximilian Beck, Korbinian Pöppel, Markus Spanring, Andreas Auer, Oleksandra Prudnikova,
Michael Kopp, Günter Klambauer, Johannes Brandstetter, and Sepp Hochreiter. xlstm: Extended
long short-term memory. arXiv preprint arXiv:2405.04517, 2024.

Ali Behrouz, Peilin Zhong, and Vahab Mirrokni. Titans: Learning to memorize at test time. arXiv
preprint arXiv:2501.00663, 2024.

Ali Behrouz, Zeman Li, Praneeth Kacham, Majid Daliri, Yuan Deng, Peilin Zhong, Meisam Raza-
viyayn, and Vahab Mirrokni. Atlas: Learning to optimally memorize the context at test time. arXiv
preprint arXiv:2505.23735, 2025a.

Ali Behrouz, Meisam Razaviyayn, Peilin Zhong, and Vahab Mirrokni. It’s all connected: A journey
through test-time memorization, attentional bias, retention, and online optimization. arXiv preprint
arXiv:2504.13173, 2025b.

Iz Beltagy, Matthew E Peters, and Arman Cohan. Longformer: The long-document transformer.
arXiv preprint arXiv:2004.05150, 2020.

Aman Bhargava, Cameron Witkowski, Alexander Detkov, and Matt Thomson. Prompt baking. arXiv
preprint arXiv:2409.13697, 2024.

Lucas Caccia, Alan Ansell, Edoardo Ponti, Ivan Vulic, and Alessandro Sordoni. Training plug-n-play
knowledge modules with deep context distillation. arXiv preprint arXiv:2503.08727, 2025.

Chi-Chih Chang, Wei-Cheng Lin, Chien-Yu Lin, Chong-Yan Chen, Yu-Fang Hu, Pei-Shuo Wang,
Ning-Chi Huang, Luis Ceze, Mohamed S Abdelfattah, and Kai-Chiang Wu. Palu: Compressing
kv-cache with low-rank projection. arXiv preprint arXiv:2407.21118, 2024.

Vivek Chari, Guanghui Qin, and Benjamin Van Durme. Kv-distill: Nearly lossless learnable context
compression for llms. arXiv preprint arXiv:2503.10337, 2025.

Lequn Chen, Zihao Ye, Yongji Wu, Danyang Zhuo, Luis Ceze, and Arvind Krishnamurthy. Punica:
Multi-tenant lora serving. Proceedings of Machine Learning and Systems, 6:1–13, 2024a.

10

https://www-cdn.anthropic.com/de8ba9b01c9ab7cbabf5c33b80b7bbc618857627/Model_Card_Claude_3.pdf
https://www-cdn.anthropic.com/de8ba9b01c9ab7cbabf5c33b80b7bbc618857627/Model_Card_Claude_3.pdf
https://www-cdn.anthropic.com/de8ba9b01c9ab7cbabf5c33b80b7bbc618857627/Model_Card_Claude_3.pdf
https://arxiv.org/abs/2312.04927

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Mayee F Chen, Michael Y Hu, Nicholas Lourie, Kyunghyun Cho, and Christopher Ré. Aioli: A
unified optimization framework for language model data mixing. arXiv preprint arXiv:2411.05735,
2024b.

Alexis Chevalier, Alexander Wettig, Anirudh Ajith, and Danqi Chen. Adapting language models to
compress contexts. arXiv preprint arXiv:2305.14788, 2023.

Rewon Child, Scott Gray, Alec Radford, and Ilya Sutskever. Generating long sequences with sparse
transformers. arXiv preprint arXiv:1904.10509, 2019.

Yu-Neng Chuang, Tianwei Xing, Chia-Yuan Chang, Zirui Liu, Xun Chen, and Xia Hu. Learning to
compress prompt in natural language formats. arXiv preprint arXiv:2402.18700, 2024.

Pradeep Dasigi, Kyle Lo, Iz Beltagy, Arman Cohan, Noah A Smith, and Matt Gardner. A dataset
of information-seeking questions and answers anchored in research papers. arXiv preprint
arXiv:2105.03011, 2021.

Qingxiu Dong, Lei Li, Damai Dai, Ce Zheng, Jingyuan Ma, Rui Li, Heming Xia, Jingjing Xu,
Zhiyong Wu, Tianyu Liu, et al. A survey on in-context learning. arXiv preprint arXiv:2301.00234,
2022.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The Llama 3 Herd of Models.
arXiv preprint arXiv:2407.21783, 2024. URL https://arxiv.org/abs/2407.21783.

Saumya Gandhi, Ritu Gala, Vijay Viswanathan, Tongshuang Wu, and Graham Neubig. Better
synthetic data by retrieving and transforming existing datasets. arXiv preprint arXiv:2404.14361,
2024.

Suyu Ge, Yunan Zhang, Liyuan Liu, Minjia Zhang, Jiawei Han, and Jianfeng Gao. Model tells you
what to discard: Adaptive kv cache compression for llms. arXiv preprint arXiv:2310.01801, 2023a.

Tao Ge, Jing Hu, Lei Wang, Xun Wang, Si-Qing Chen, and Furu Wei. In-context autoencoder for
context compression in a large language model. arXiv preprint arXiv:2307.06945, 2023b.

Kanishk Goel, Jayashree Mohan, Nipun Kwatra, Ravi Shreyas Anupindi, and Ramachandran Ramjee.
Niyama: Breaking the silos of llm inference serving. arXiv preprint arXiv:2503.22562, 2025.

Yunhao Gou, Zhili Liu, Kai Chen, Lanqing Hong, Hang Xu, Aoxue Li, Dit-Yan Yeung, James T
Kwok, and Yu Zhang. Mixture of cluster-conditional lora experts for vision-language instruction
tuning. arXiv preprint arXiv:2312.12379, 2023.

Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces. arXiv
preprint arXiv:2312.00752, 2023.

Neel Guha, Julian Nyarko, Daniel Ho, Christopher Ré, Adam Chilton, Alex Chohlas-Wood, Austin
Peters, Brandon Waldon, Daniel Rockmore, Diego Zambrano, et al. Legalbench: A collaboratively
built benchmark for measuring legal reasoning in large language models. Advances in Neural
Information Processing Systems, 36:44123–44279, 2023.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and
Jacob Steinhardt. Measuring massive multitask language understanding. arXiv preprint
arXiv:2009.03300, 2020.

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network. arXiv
preprint arXiv:1503.02531, 2015.

Cheng-Ping Hsieh, Simeng Sun, Samuel Kriman, Shantanu Acharya, Dima Rekesh, Fei Jia, Yang
Zhang, and Boris Ginsburg. Ruler: What’s the real context size of your long-context language
models? arXiv preprint arXiv:2404.06654, 2024.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
Weizhu Chen, et al. Lora: Low-rank adaptation of large language models. ICLR, 1(2):3, 2022.

11

https://arxiv.org/abs/2407.21783

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Chengsong Huang, Qian Liu, Bill Yuchen Lin, Tianyu Pang, Chao Du, and Min Lin. Lorahub:
Efficient cross-task generalization via dynamic lora composition. arXiv preprint arXiv:2307.13269,
2023.

Pranab Islam, Anand Kannappan, Douwe Kiela, Rebecca Qian, Nino Scherrer, and Bertie Vidgen. Fi-
nancebench: A new benchmark for financial question answering. arXiv preprint arXiv:2311.11944,
2023.

Shashwat Jaiswal, Kunal Jain, Yogesh Simmhan, Anjaly Parayil, Ankur Mallick, Rujia Wang, Re-
nee St Amant, Chetan Bansal, Victor Rühle, Anoop Kulkarni, et al. Serving models, fast and slow:
optimizing heterogeneous llm inferencing workloads at scale. arXiv preprint arXiv:2502.14617,
2025.

Dulhan Jayalath, James Bradley Wendt, Nicholas Monath, Sandeep Tata, and Beliz Gunel. Long-
range tasks using short-context llms: Incremental reasoning with structured memories. arXiv
preprint arXiv:2412.18914, 2024.

Simon Jegou, Maximilian Jeblick, and David Austin. kvpress, November 2024. URL https:
//github.com/NVIDIA/kvpress.

Fengqing Jiang. Identifying and mitigating vulnerabilities in llm-integrated applications. Master’s
thesis, University of Washington, 2024.

Huiqiang Jiang, Qianhui Wu, Chin-Yew Lin, Yuqing Yang, and Lili Qiu. LLMLingua: Com-
pressing prompts for accelerated inference of large language models. In Houda Bouamor,
Juan Pino, and Kalika Bali (eds.), Proceedings of the 2023 Conference on Empirical Meth-
ods in Natural Language Processing, pp. 13358–13376, Singapore, December 2023a. Associ-
ation for Computational Linguistics. doi: 10.18653/v1/2023.emnlp-main.825. URL https:
//aclanthology.org/2023.emnlp-main.825/.

Huiqiang Jiang, Qianhui Wu, Chin-Yew Lin, Yuqing Yang, and Lili Qiu. Llmlingua: Compressing
prompts for accelerated inference of large language models. arXiv preprint arXiv:2310.05736,
2023b.

Jordan Juravsky, Ayush Chakravarthy, Ryan Ehrlich, Sabri Eyuboglu, Bradley Brown, Joseph
Shetaye, Christopher Ré, and Azalia Mirhoseini. Tokasaurus: An llm inference engine for high-
throughput workloads. https://scalingintelligence.stanford.edu/blogs/
tokasaurus/, 2025.

Junhyuck Kim, Jongho Park, Jaewoong Cho, and Dimitris Papailiopoulos. Lexico: Extreme kv cache
compression via sparse coding over universal dictionaries. arXiv preprint arXiv:2412.08890, 2024.

Yoon Kim and Alexander M Rush. Sequence-level knowledge distillation. In Proceedings of the
2016 conference on empirical methods in natural language processing, pp. 1317–1327, 2016.

Kalle Kujanpää, Harri Valpola, and Alexander Ilin. Knowledge injection via prompt distillation.
arXiv preprint arXiv:2412.14964, 2024.

Yuri Kuratov, Mikhail Arkhipov, Aydar Bulatov, and Mikhail Burtsev. Cramming 1568 tokens into a
single vector and back again: Exploring the limits of embedding space capacity. arXiv preprint
arXiv:2502.13063, 2025.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph
Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model
serving with pagedattention. In Proceedings of the 29th Symposium on Operating Systems
Principles, pp. 611–626, 2023.

Brian Lester, Rami Al-Rfou, and Noah Constant. The power of scale for parameter-efficient prompt
tuning. arXiv preprint arXiv:2104.08691, 2021.

Dengchun Li, Yingzi Ma, Naizheng Wang, Zhengmao Ye, Zhiyuan Cheng, Yinghao Tang, Yan Zhang,
Lei Duan, Jie Zuo, Cal Yang, et al. Mixlora: Enhancing large language models fine-tuning with
lora-based mixture of experts. arXiv preprint arXiv:2404.15159, 2024a.

12

https://github.com/NVIDIA/kvpress
https://github.com/NVIDIA/kvpress
https://aclanthology.org/2023.emnlp-main.825/
https://aclanthology.org/2023.emnlp-main.825/
https://scalingintelligence.stanford.edu/blogs/tokasaurus/
https://scalingintelligence.stanford.edu/blogs/tokasaurus/

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Xiang Lisa Li and Percy Liang. Prefix-tuning: Optimizing continuous prompts for generation.
In Chengqing Zong, Fei Xia, Wenjie Li, and Roberto Navigli (eds.), Proceedings of the 59th
Annual Meeting of the Association for Computational Linguistics and the 11th International Joint
Conference on Natural Language Processing (Volume 1: Long Papers), pp. 4582–4597, Online,
August 2021. Association for Computational Linguistics. doi: 10.18653/v1/2021.acl-long.353.
URL https://aclanthology.org/2021.acl-long.353/.

Yucheng Li. Unlocking context constraints of llms: Enhancing context efficiency of llms with
self-information-based content filtering. arXiv preprint arXiv:2304.12102, 2023.

Yuhong Li, Yingbing Huang, Bowen Yang, Bharat Venkitesh, Acyr Locatelli, Hanchen Ye, Tianle Cai,
Patrick Lewis, and Deming Chen. Snapkv: Llm knows what you are looking for before generation.
Advances in Neural Information Processing Systems, 37:22947–22970, 2024b.

Aixin Liu, Bei Feng, Bin Wang, Bingxuan Wang, Bo Liu, Chenggang Zhao, Chengqi Dengr, Chong
Ruan, Damai Dai, Daya Guo, et al. Deepseek-v2: A strong, economical, and efficient mixture-of-
experts language model. arXiv preprint arXiv:2405.04434, 2024a.

Akide Liu, Jing Liu, Zizheng Pan, Yefei He, Gholamreza Haffari, and Bohan Zhuang. Minicache: Kv
cache compression in depth dimension for large language models. Advances in Neural Information
Processing Systems, 37, 2024b.

Nelson F Liu, Kevin Lin, John Hewitt, Ashwin Paranjape, Michele Bevilacqua, Fabio Petroni, and
Percy Liang. Lost in the middle: How language models use long contexts. Transactions of the
Association for Computational Linguistics, 12:157–173, 2024c.

Yansheng Mao, Yufei Xu, Jiaqi Li, Fanxu Meng, Haotong Yang, Zilong Zheng, Xiyuan Wang, and
Muhan Zhang. Lift: Improving long context understanding of large language models through long
input fine-tuning. arXiv preprint arXiv:2502.14644, 2025.

Fanxu Meng, Zhaohui Wang, and Muhan Zhang. Pissa: Principal singular values and singular vectors
adaptation of large language models. Advances in Neural Information Processing Systems, 37:
121038–121072, 2024.

Jesse Mu, Xiang Li, and Noah Goodman. Learning to compress prompts with gist tokens. Advances
in Neural Information Processing Systems, 36:19327–19352, 2023.

Daye Nam, Andrew Macvean, Vincent Hellendoorn, Bogdan Vasilescu, and Brad Myers. Using
an llm to help with code understanding. In Proceedings of the IEEE/ACM 46th International
Conference on Software Engineering, pp. 1–13, 2024.

Avanika Narayan, Dan Biderman, Sabri Eyuboglu, Avner May, Scott Linderman, James Zou, and
Christopher Re. Minions: Cost-efficient collaboration between on-device and cloud language
models. arXiv preprint arXiv:2502.15964, 2025.

Nihal V Nayak, Yiyang Nan, Avi Trost, and Stephen H Bach. Learning to generate instruction tuning
datasets for zero-shot task adaptation. arXiv preprint arXiv:2402.18334, 2024.

OpenAI. Gpt-4o system card, 2024. URL https://arxiv.org/abs/2410.21276.

Matanel Oren, Michael Hassid, Nir Yarden, Yossi Adi, and Roy Schwartz. Transformers are multi-
state rnns. arXiv preprint arXiv:2401.06104, 2024.

Lisa Larrimore Ouellette, Amy Motomura, Jason Reinecke, and Jonathan S Masur. Can ai hold office
hours? Available at SSRN 5166938, 2025.

Charles Packer, Sarah Wooders, Kevin Lin, Vivian Fang, Shishir G Patil, Ion Stoica, and Joseph E
Gonzalez. Memgpt: Towards llms as operating systems. arXiv preprint arXiv:2310.08560, 2023.

Zhuoshi Pan, Qianhui Wu, Huiqiang Jiang, Menglin Xia, Xufang Luo, Jue Zhang, Qingwei Lin,
Victor Rühle, Yuqing Yang, Chin-Yew Lin, et al. Llmlingua-2: Data distillation for efficient and
faithful task-agnostic prompt compression. arXiv preprint arXiv:2403.12968, 2024.

13

https://aclanthology.org/2021.acl-long.353/
https://arxiv.org/abs/2410.21276

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Maja Popović. chrf: character n-gram f-score for automatic mt evaluation. In Proceedings of the
tenth workshop on statistical machine translation, pp. 392–395, 2015.

Guanghui Qin, Corby Rosset, Ethan C Chau, Nikhil Rao, and Benjamin Van Durme. Dodo: Dynamic
contextual compression for decoder-only lms. arXiv preprint arXiv:2310.02409, 2023.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. Squad: 100,000+ questions for
machine comprehension of text. arXiv preprint arXiv:1606.05250, 2016.

Haris Riaz, Sourav Bhabesh, Vinayak Arannil, Miguel Ballesteros, and Graham Horwood. Metasynth:
Meta-prompting-driven agentic scaffolds for diverse synthetic data generation. arXiv preprint
arXiv:2504.12563, 2025.

Luka Ribar, Ivan Chelombiev, Luke Hudlass-Galley, Charlie Blake, Carlo Luschi, and Douglas Orr.
Sparq attention: Bandwidth-efficient llm inference. arXiv preprint arXiv:2312.04985, 2023.

Melisa Russak, Umar Jamil, Christopher Bryant, Kiran Kamble, Axel Magnuson, Mateusz Russak,
and Waseem AlShikh. Writing in the margins: Better inference pattern for long context retrieval.
arXiv preprint arXiv:2408.14906, 2024.

Utkarsh Saxena, Gobinda Saha, Sakshi Choudhary, and Kaushik Roy. Eigen attention: Attention in
low-rank space for kv cache compression. arXiv preprint arXiv:2408.05646, 2024.

Noam Shazeer. Fast transformer decoding: One write-head is all you need. arXiv preprint
arXiv:1911.02150, 2019.

Charlie Snell, Dan Klein, and Ruiqi Zhong. Learning by distilling context. arXiv preprint
arXiv:2209.15189, 2022.

Charlie Snell, Jaehoon Lee, Kelvin Xu, and Aviral Kumar. Scaling llm test-time compute optimally
can be more effective than scaling model parameters. arXiv preprint arXiv:2408.03314, 2024.

Weihang Su, Yichen Tang, Qingyao Ai, Junxi Yan, Changyue Wang, Hongning Wang, Ziyi Ye, Yujia
Zhou, and Yiqun Liu. Parametric retrieval augmented generation. arXiv preprint arXiv:2501.15915,
2025.

Yu Sun, Xinhao Li, Karan Dalal, Jiarui Xu, Arjun Vikram, Genghan Zhang, Yann Dubois, Xinlei
Chen, Xiaolong Wang, Sanmi Koyejo, et al. Learning to (learn at test time): Rnns with expressive
hidden states. arXiv preprint arXiv:2407.04620, 2024.

Sijun Tan, Xiuyu Li, Shishir Patil, Ziyang Wu, Tianjun Zhang, Kurt Keutzer, Joseph E Gonzalez, and
Raluca Ada Popa. Lloco: Learning long contexts offline. arXiv preprint arXiv:2404.07979, 2024.

Jiaming Tang, Yilong Zhao, Kan Zhu, Guangxuan Xiao, Baris Kasikci, and Song Han. Quest:
Query-aware sparsity for efficient long-context llm inference. arXiv preprint arXiv:2406.10774,
2024.

Garrett Tanzer, Mirac Suzgun, Eline Visser, Dan Jurafsky, and Luke Melas-Kyriazi. A benchmark for
learning to translate a new language from one grammar book. arXiv preprint arXiv:2309.16575,
2023.

Gemma Team, Morgane Riviere, Shreya Pathak, Pier Giuseppe Sessa, Cassidy Hardin, Surya
Bhupatiraju, Léonard Hussenot, Thomas Mesnard, Bobak Shahriari, Alexandre Ramé, et al.
Gemma 2: Improving open language models at a practical size. arXiv preprint arXiv:2408.00118,
2024.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information processing
systems, 30, 2017.

Zhongwei Wan, Xinjian Wu, Yu Zhang, Yi Xin, Chaofan Tao, Zhihong Zhu, Xin Wang, Siqi Luo, Jing
Xiong, and Mi Zhang. D2o: Dynamic discriminative operations for efficient generative inference
of large language models. arXiv preprint arXiv:2406.13035, 2024.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Zheng Wang, Boxiao Jin, Zhongzhi Yu, and Minjia Zhang. Model tells you where to merge: Adaptive
kv cache merging for llms on long-context tasks. arXiv preprint arXiv:2407.08454, 2024.

Xun Wu, Shaohan Huang, and Furu Wei. Mixture of lora experts. arXiv preprint arXiv:2404.13628,
2024.

Chaojun Xiao, Zhengyan Zhang, Xu Han, Chi-Min Chan, Yankai Lin, Zhiyuan Liu, Xiangyang Li,
Zhonghua Li, Zhao Cao, and Maosong Sun. Plug-and-play document modules for pre-trained
models. arXiv preprint arXiv:2305.17660, 2023.

Chaojun Xiao, Zhengyan Zhang, Chenyang Song, Dazhi Jiang, Feng Yao, Xu Han, Xiaozhi Wang,
Shuo Wang, Yufei Huang, Guanyu Lin, et al. Configurable foundation models: Building llms from
a modular perspective. arXiv preprint arXiv:2409.02877, 2024a.

Guangxuan Xiao, Jiaming Tang, Jingwei Zuo, Junxian Guo, Shang Yang, Haotian Tang, Yao Fu, and
Song Han. Duoattention: Efficient long-context llm inference with retrieval and streaming heads.
arXiv preprint arXiv:2410.10819, 2024b.

Guangxuan Xiao, Yuandong Tian, Beidi Chen, Song Han, and Mike Lewis. Efficient streaming lan-
guage models with attention sinks, 2024c. URL https://arxiv.org/abs/2309.17453.

Prateek Yadav, Colin Raffel, Mohammed Muqeeth, Lucas Caccia, Haokun Liu, Tianlong Chen, Mohit
Bansal, Leshem Choshen, and Alessandro Sordoni. A survey on model moerging: Recycling and
routing among specialized experts for collaborative learning. arXiv preprint arXiv:2408.07057,
2024.

An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li,
Dayiheng Liu, Fei Huang, Haoran Wei, et al. Qwen2. 5 technical report. arXiv preprint
arXiv:2412.15115, 2024a.

Songlin Yang, Bailin Wang, Yu Zhang, Yikang Shen, and Yoon Kim. Parallelizing linear transformers
with the delta rule over sequence length. arXiv preprint arXiv:2406.06484, 2024b.

Songlin Yang, Bailin Wang, Yu Zhang, Yikang Shen, and Yoon Kim. Parallelizing linear transformers
with the delta rule over sequence length, 2025. URL https://arxiv.org/abs/2406.
06484.

Zihao Ye, Lequn Chen, Ruihang Lai, Wuwei Lin, Yineng Zhang, Stephanie Wang, Tianqi Chen,
Baris Kasikci, Vinod Grover, Arvind Krishnamurthy, and Luis Ceze. Flashinfer: Efficient and
customizable attention engine for llm inference serving. arXiv preprint arXiv:2501.01005, 2025.
URL https://arxiv.org/abs/2501.01005.

Howard Yen. Long-context language modeling with parallel context encoding. Master’s thesis,
Princeton University, 2024.

Hao Yu, Zelan Yang, Shen Li, Yong Li, and Jianxin Wu. Effectively compress kv heads for llm. arXiv
preprint arXiv:2406.07056, 2024.

Manzil Zaheer, Guru Guruganesh, Kumar Avinava Dubey, Joshua Ainslie, Chris Alberti, Santiago
Ontanon, Philip Pham, Anirudh Ravula, Qifan Wang, Li Yang, et al. Big bird: Transformers for
longer sequences. Advances in neural information processing systems, 33:17283–17297, 2020.

Elad Ben Zaken, Shauli Ravfogel, and Yoav Goldberg. Bitfit: Simple parameter-efficient fine-tuning
for transformer-based masked language-models. arXiv preprint arXiv:2106.10199, 2021.

Michael Zhang, Simran Arora, Rahul Chalamala, Alan Wu, Benjamin Spector, Aaryan Singhal,
Krithik Ramesh, and Christopher Ré. Lolcats: On low-rank linearizing of large language models.
arXiv preprint arXiv:2410.10254, 2024a.

Qianchi Zhang, Hainan Zhang, Liang Pang, Hongwei Zheng, and Zhiming Zheng. Adacomp:
Extractive context compression with adaptive predictor for retrieval-augmented large language
models. arXiv preprint arXiv:2409.01579, 2024b.

15

https://arxiv.org/abs/2309.17453
https://arxiv.org/abs/2406.06484
https://arxiv.org/abs/2406.06484
https://arxiv.org/abs/2501.01005

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Rongzhi Zhang, Kuang Wang, Liyuan Liu, Shuohang Wang, Hao Cheng, Chao Zhang, and Yelong
Shen. Lorc: Low-rank compression for llms kv cache with a progressive compression strategy.
arXiv preprint arXiv:2410.03111, 2024c.

Yifan Zhang, Yifeng Liu, Huizhuo Yuan, Zhen Qin, Yang Yuan, Quanquan Gu, and Andrew Chi-Chih
Yao. Tensor product attention is all you need. arXiv preprint arXiv:2501.06425, 2025.

Yuxin Zhang, Yuxuan Du, Gen Luo, Yunshan Zhong, Zhenyu Zhang, Shiwei Liu, and Rongrong Ji.
Cam: Cache merging for memory-efficient llms inference. In Forty-first International Conference
on Machine Learning, 2024d.

Zhengyan Zhang, Zhiyuan Zeng, Yankai Lin, Huadong Wang, Deming Ye, Chaojun Xiao, Xu Han,
Zhiyuan Liu, Peng Li, Maosong Sun, et al. Plug-and-play knowledge injection for pre-trained
language models. arXiv preprint arXiv:2305.17691, 2023a.

Zhenyu Zhang, Ying Sheng, Tianyi Zhou, Tianlong Chen, Lianmin Zheng, Ruisi Cai, Zhao Song,
Yuandong Tian, Christopher Ré, Clark Barrett, et al. H2o: Heavy-hitter oracle for efficient
generative inference of large language models. Advances in Neural Information Processing
Systems, 36:34661–34710, 2023b.

Ziyu Zhao, Leilei Gan, Guoyin Wang, Wangchunshu Zhou, Hongxia Yang, Kun Kuang, and Fei
Wu. Loraretriever: Input-aware lora retrieval and composition for mixed tasks in the wild. arXiv
preprint arXiv:2402.09997, 2024a.

Ziyu Zhao, Tao Shen, Didi Zhu, Zexi Li, Jing Su, Xuwu Wang, Kun Kuang, and Fei Wu. Merging
loras like playing lego: Pushing the modularity of lora to extremes through rank-wise clustering.
arXiv preprint arXiv:2409.16167, 2024b.

Lianmin Zheng, Liangsheng Yin, Zhiqiang Xie, Chuyue Livia Sun, Jeff Huang, Cody Hao Yu, Shiyi
Cao, Christos Kozyrakis, Ion Stoica, Joseph E Gonzalez, et al. Sglang: Efficient execution of
structured language model programs. Advances in Neural Information Processing Systems, 37:
62557–62583, 2024.

Yuhao Zhou, Sirui Song, Boyang Liu, Zhiheng Xi, Senjie Jin, Xiaoran Fan, Zhihao Zhang, Wei Li,
and Xuanjing Huang. Elitekv: Scalable kv cache compression via rope frequency selection and
joint low-rank projection. arXiv preprint arXiv:2503.01586, 2025.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Note on LLM usage We used LLMs for polishing or improving the grammatical correctness of the
writing in this paper. We also used LLMs to identify related work and write code.

A EXTENDED RESULTS

In this section, we include additional cache compression baselines, report results on an additional
model family, and ablate the main design choices of CARTRIDGES and SELF-STUDY.

A.1 COMPARISON WITH ADDITIONAL CACHE COMPRESSION BASELINES

MTOB Longhealth
Method ChRF # cache tok. Compression Accuracy # cache tok. Compression

Full ICL 36.5 48k 1× 53.6% 114k 1×
CARTRIDGE 30.5 256 188× 47.7% 512 223×
AdaKV 29.1 9.6k 5× 41.8% 23k 5×
KeyDiff 27.1 9.6k 5× 40% 23k 5×
TOVA 24.7 9.6k 5× 32.2% 23k 5×
SnapKV 29.7 9.6k 5× 33.1% 23k 5×

Table 1: Comparison of CARTRIDGES, ICL baseline, and additional cache compression baselines on
MTOB and LongHealth.

In Figure 3, we include comparisons with additional cache compression baselines a very strong GPT-
4o based summary prompt compression method and Duo-attention (the strongest cache compression
method in NVidia’s KVPress library (Jegou et al., 2024)). Here, we include results for the next four
best performing cache compression methods

A.2 EXPERIMENTS WITH THE QWEN3 FAMILY OF MODELS

MTOB Longhealth
Method ChRF # cache tok. Compression Accuracy # cache tok. Compression

Full ICL 25.8 48k 1× 51.2% 109k 1×
CARTRIDGE 32.43 4096 11.7× 56.0% 4096 26.6×
CARTRIDGE 33.27 2048 23.4× 55.5% 2048 53.2×
CARTRIDGE 32.3 1024 46.9× 54.0% 1024 106.4×

Table 2: Performance of QWEN3 4B CARTRIDGES on MTOB and Longhealth with various sizes p.

In Figure 3, we report results for the Llama-3 family of models. To confirm that our results are not
specific to that one family of models, we also report results for the Qwen3 family of models in this
section. With Llama on the LongHealth we were able to achieve equivalent quality to ICL with 10x
smaller caches, on average. With Qwen the compression ratio is even larger: on longhealth, we
outperform the full KV cache by 3.8 accuracy points while being 106.4x smaller. The results are
presented in Table 2.

A.3 CARTRIDGE DESIGN CHOICES: PARAMETERIZATION AND INITIALIZATION

In our experiments, we parameterize the CARTRIDGE with a simplified version of prefix-tuning
and initialize with a truncated KV-cache (see Section 3.2). In this section, we describe ablation
experiments motivating these design choices. First, we compare two different CARTRIDGE parameter-
izations (Figure 5): simplified prefix-tuning (Li & Liang, 2021) and low-rank adaptation (LoRA) (Hu
et al., 2022). Then, we demonstrate the importance of proper CARTRIDGE initialization (Figure 8).

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Prefix-Tuning
Cartridge Parameterization

Self-study duration
(# of training steps)

Ac
cu

ra
cy

(M
M

LU
)

Cartridge Size
(GB)

Ac
cu

ra
cy

(M

M
LU

)
Accuracy

(LongHealth)

LoRA

LongHealth vs. MMLU MMLU vs. Cartridge Size MMLU vs. Self-study duration

log(perplexity)
(QASPER)

Ac
cu

ra
cy

(M

M
LU

)

Self-study duration
(# of training steps)

QASPER vs. MMLU MMLU vs. Cartridge Size MMLU vs. Self-study duration

Ac
cu

ra
cy

(M
M

LU
)

Cartridge Size
(GB)

with increasing tokens with increasing rank
ICL

with full corpus

Baselines

MTOB vs. MMLU MMLU vs. Cartridge Size MMLU vs. Self-study duration

ChRF
(MTOB)

Ac
cu

ra
cy

(M

M
LU

)

Self-study duration
(# of training steps)

Ac
cu

ra
cy

(M
M

LU
)

Cartridge Size
(GB)

Ac
cu

ra
cy

(M

M
LU

)
Ac

cu
ra

cy

(M
M

LU
)

Ac
cu

ra
cy

(M

M
LU

)

ICL
with empty context

Figure 5: Comparing CARTRIDGE parameterizations. We train CARTRIDGES using SELF-
STUDY on the corpora from LONGHEALTH (Top), QASPER (Middle), and MTOB (Bottom) using
two different parameterizations: simplified prefix-tuning (as described in Section 3.2) and low-
rank adaptation (LoRA) (Hu et al., 2022). We experiment with different CARTRIDGE sizes and
choose LoRA rank and prefix-tuning cache size to align on memory consumption. We evaluate the
performance of the CARTRIDGES on questions from the target dataset (LONGHEALTH or QASPER)
using the same protocol as in Figure 3 and also on questions from MMLU (Hendrycks et al., 2020)
that are unrelated to the corpora. (Left) The x-axis shows accuracy on MMLU and the y-axis shows
accuracy on the target dataset. Each point represents a different CARTRIDGE size. (Center) The
x-axis shows CARTRIDGE size in GB, and the y-axis shows accuracy on MMLU. (Right) The x-axis
shows self-study duration in training steps, and the y-axis shows accuracy on MMLU. The shade of
the points represents the size of the CARTRIDGE.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Method Consumes limited
memory

Retains corpus
information

Supports diverse
prompts

In-context learning ✗ ✓ ✓
Prompt / KV cache compression ✓ ✗ ✓
CARTRIDGE + Next-token-prediction ✓ ✓ ✗
CARTRIDGE + SELF-STUDY ✓ ✓ ✓

Figure 6: Comparing KV caching strategies. CARTRIDGE improves memory efficiency, while retaining the
quality of in-context learning across a broad set of prompts. ✓ indicates a strength and ✗ indicates a limitation.

🤔
Cartridge Composition

Pepsi Cartridge
Self-study

LLM + Cartridges

One Cartridge

Truncated ICL

Composed Cartridges

39.8 GB

0.6 GB
💻

Who audited the
Boeing and AMD
statements, respectively?

 The audit of the
 consolidated financial
statements of AMD was
performed by Ernst & Young LLP,
while the audit of the
consolidated financial statements
of Boeing was performed by
Deloitte & Touche LLP.

🤔

💻

List a few competitors
for each of PepsiCo and
AMD as stated in each10K."

 Here are some competitors
 for PepsiCo and AMD:
* Unilever (as a competitor) ...
* Red Bull (as a competitor in
the energy drink market)
AMD:
* Intel (as a competitor in the ...

1.2 GB

Multi-doc Question Answering

Pepsi AMD

Self-study
AMD Cartridge

AMD 10-K

Pepsi 10-K

Method (Cache Size) 1.5 2.01.75
log(perplexity)💻

In FY15, the
D&A margins...🤔

Compare the
D&A margins...

Figure 7: CARTRIDGE Composition. (Left) Illustration of CARTRIDGE composition, where
two independently trained CARTRIDGES (one for a Pepsi 10-K and one for an AMD 10-K) are
concatenated without any additional training. (Middle) We evaluate composition on a dataset of
multi-document questions requiring information in two different ≈100k token documents with
LLAMA-3B (see Appendix D). The x-axis shows log-perplexity (lower is better) on gold-standard
answers. We compare CARTRIDGE composition with an (a) ICL baseline where we truncate the
document to fit in the 128k token context length and (b) an CARTRIDGE baseline where we only
include the CARTRIDGE for one of the documents. (Right) Examples of responses to multi-document
questions using composed cartridges.

Parameterization We evaluate CARTRIDGES trained on corpora from LONGHEALTH or QASPER
on both in-domain (i.e. questions from LONGHEALTH or QASPER) and out-of-domain (i.e. ques-
tions from an unrelated benchmark, MMLU (Hendrycks et al., 2020)) queries.

We find that the prefix-tuning parameterization is more effective than a memory-matched LoRA
parameterization on both in-domain and out-of-domain queries. This is illustrated in Figure 5 (Left),
where we see that prefix-tuning occupies the top-right corner of the plot (high accuracy on both
MMLU and the target dataset).

Notably, we find that as we increase the CARTRIDGE size with LoRA tuning, performance on out-of-
domain queries (MMLU) drops significantly. At 1.06 GB (LoRA rank 1632), MMLU accuracy drops
from 60.0% to 45.3%. This drop in performance is highly correlated with the size of the CARTRIDGE,
suggesting that LoRA is not well-suited to large Cartridges, which we show in Figure 3 are important
for recovering ICL performance. In contrast, with prefix-tuning the accuracy only drops to 54.3%
at 1.06 GB. This degradation is mostly invariant to the size of the CARTRIDGE (54.7% at 0.15 GB),
demonstrating that out-of-domain performance is robust across CARTRIDGE sizes.

On in-domain queries, prefix-tuning also outperforms LoRA, but the gap is smaller. Across all
CARTRIDGE sizes, the best LONGHEALTH accuracy prefix-tuning achieves is 55.6% at 0.96 GB,
while the best LoRA accuracy is 47.25% at 0.26 GB. Interestingly, LoRA accuracy at the largest
CARTRIDGE sizes is lower; 41.3% at 0.96. It is possible that this is due to the out-of-domain
degradation of LoRA we discussed above. Since queries in LONGHEALTH test set are quite different
from the synthetic queries generated by SELF-STUDY (e.g. they are multiple choice and require
some complicated reasoning traces), out-of-domain robustness may be also important for “in-domain”
performance.

It isn’t clear why prefix-tuning is so much more robust than LoRA to out-of-domain performance
degradation. It is surprising given the similarity between a KV-cache and an MLP – both are linear
transformations separated by a non-linearity. It is possible that this is due to the difference in the
activation function (SiLU vs. Softmax). We leave a more detailed investigation into the root cause of
this difference for future work.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

First k tokens of corpus
8192

Self-study duration
(# of training steps)

2048

Random vectors
with different size Cartridges

Random tokens
with different size Cartridges

with different size Cartridges

81922048

81922048

Figure 8: Ablating CARTRIDGE initalization. We train a CARTRIDGES using SELF-STUDY on
the corpora from LONGHEALTH with 3 different initialization strategies. The x axis is the number
of training steps and the y axis is the accuracy on LONGHEALTH. The blue lines are the results
when initializing the CARTRIDGE using the KV cache from the first k tokens of the document. The
purple lines are initializing the CARTRIDGE from the KV cache of unrelated text. The green lines is
initializing the CARTRIDGE with random vectors. Initializing from the first k tokens leads to slightly
stronger results than initializing from the KV cache of random text. This difference may be more
prominent on other corpora where the first k tokens are more relevant to solving the downstream task.

Initialization The standard way of initializing a k token CARTRIDGE in our main paper is using the
KV cache from the first k tokens of the source document. In Figure 8, we ablate different initialization
source. We try two additional initalizations: random vectors and random tokens.

For random vectors, we simply initialize the parameters of the CARTRIDGE from a component-wise
standard normal distribution. For random tokens, we initialize the CARTRIDGE as the KV cache
of the first k tokens of arbitrary text (specifically, the Wikipedia page for gradient). The important
difference between the these two strategies is that for random tokens the initial CARTRIDGE is "valid"
KV cache produced by the model, while for random vectors it is not.

Frozen first token

with 4096 token Cartridge
trained on LongHealth with

Self-study

Trained first token

Self-study duration
(# of training steps)

Self-study duration
(# of training steps)

LongHealthMMLU

Figure 9: Freezing the attention sink. In both plots, the y-axis is accuracy and the x-axis is training
step. The green line which corresponds to a run where we allow a trainable first token. (Left) The
y-axis MMLU accuracy. This plot exemplifies the training instability we observed when the key and
value vectors were trainable. The MMLU score dips to below 30% before recovering. (Left) The
y-axis is accuracy on questions from LONGHEALTH.

Freezing the attention sink A small yet important detail of training a CARTRIDGE is that we do
not let the first token’s key and value vectors to be trainable. As studied in (Xiao et al., 2024c), the
first key vector, which corresponds to the beginning of sequence token and is thus the same for every
sequence, acts as an "attention sink". We observed that when training a CARTRIDGE, allowing those

20

https://en.wikipedia.org/wiki/Gradient

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

key and value vectors to be trainable led to training instability (see Figure 9). For example, on some
runs the MMLU accuracy would dip to below 30%.

A.4 SELF-STUDY DESIGN CHOICES: DATA-GENERATION AND OBJECTIVE

In SELF-STUDY training we use a seeded data-generation process and a context-distillation training
objective (see Section 4). In this section, we ablate these design choices, comparing against the
performance of SELF-STUDY with simpler data-generation and objectives.

Data Generation In Section 4.1, we describe how we use five different seed prompt types when
generating data with Algorithm 1. These prompt types, structuring, summarization, question, use
cases, and creative, are described in more detail in Appendix C.1.

In this section, we compare the performance of SELF-STUDY with these five prompt types against
SELF-STUDY with a single prompt: “Please generate a single chat message to begin a conversation
about the information in the corpus. Ask a question about the corpus or make a request."

Across three datasets, we find that using the five different prompt types during SELF-STUDY leads to
higher quality CARTRIDGES (see Figure 11). On MTOB with CARTRIDGES of size 1024 tokens,
we see a 7.9 point ChRF improvement (24.1→ 32.0). On LONGHEALTH, the improvement is 5.5
accuracy points (45.8→ 51.3).

Interestingly, on QASPER, we see no benefit from using the five different prompt types. It is possible
this is because the queries in the QASPER dataset are mostly factual questions that do not require
complex reasoning like LONGHEALTH and MTOB do.

5 seed prompts
Self-study Seed PromptsSelf-study duration

(# of training steps)
Self-study duration
(# of training steps)1 seed prompt

LongHealth MTOB (KE) QASPER

Figure 10: Diverse seed prompts improve quality. We generate synthetic data according to
Algorithm 1 and ablate the choice of seed prompts sampled on Line 2. We consider two approaches:
using a single, broad seed prompt (Green) or randomly sampling one of five different types of seed
prompts (Blue). We train CARTRIDGES using self-study with these two strategies on LONGHEALTH,
MTOB and QASPER corpora. In all plots, the x axis is the number of training steps, and the y
axis is either accuracy (for LONGHEALTH and MTOB) or perplexity on ground truth answer (for
QASPER). We use an CARTRIDGE size of 1024 tokens.

Training Objective In Section 4, we describe the context-distillation objective we use (Snell et al.,
2022; Kim & Rush, 2016; Bhargava et al., 2024). This approach requires that we collect top output
probabilities from the in-context model’s output distribution during data generation. A simpler
alternative would be to just use a next-token prediction objective with a cross-entropy loss.

In our comparison, we find that this simpler objective underperforms the context-distillation objective
(see Figure 11). Most notably, on MTOB with 2048 token CARTRIDGES, context-distillation
outperforms next-token prediction by 8.3 ChRF points (24.9→ 33.2). On LongHealth, the gap is 3.7
accuracy points (47.6→ 51.3).

As shown in Figure 11, quality seems to be consistently improving with more SELF-STUDY compute.
It is possible, therefore, that by spending more during SELF-STUDY with the next-token prediction
objective, we could close the gap. However, for a fixed amount of SELF-STUDY compute, context-
distillation is considerably more effective.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Context-distillation
2048

with different sizes

Self-study duration
(# of training steps)

Self-study duration
(# of training steps)

512
Next-token prediction

2048

with different sizes

512

LongHealth MTOB (KE) QASPER

Figure 11: Context-distillation objective improves training efficiency. We train CARTRIDGES
using SELF-STUDY on the corpora from LONGHEALTH (Left), MTOB (Center) and QASPER
(Right) using two loss functions: a next token prediction loss (green) and a distillation loss (blue). We
evaluate the performance of the CARTRIDGES on questions from the target dataset (LONGHEALTH,
MTOB or QASPER) using the same protocol as in Figure 3. In all plots, the x axis is the number of
training steps, and the y axis is either accuracy (for LONGHEALTH and MTOB) or perplexity on
ground truth answer (for QASPER). The shade of the points represents the size of the CARTRIDGE.
Using a distillation loss achieves higher accuracy (or lower perplexity for QASPER) across datasets
and CARTRIDGE sizes.

These results demonstrate how context-distillation plays an important role in efficiently recovering
ICL performance with SELF-STUDY.

A.5 THROUGHPUT MEASUREMENT DETAILS

We provide details for the throughput measurements in Figure 2. We use the state-of-the-art SGLang
inference system, with default parameters (Zheng et al., 2024). We measure throughput on a single
H100 GPU.

We first determine the largest batch size b that fits in GPU memory, given a cache of size k tokens. We
then randomly initialize b CARTRIDGES of size k and pre-load the CARTRIDGES into GPU memory.
We finally measure the time taken to decode 128 tokens per sequence. The CARTRIDGES and decoded
tokens are appended to a KV-cache during generation. We report the average of 5 iterations after
using 3 warm-up iterations.

B EXTENDED RELATED WORK

In this section, we provide a more in-depth discussion of the place our work occupies in the broader
literature. The structure below mirrors the structure of our paper: first we discuss work related
to the parameterization and initialization of CARTRIDGES (Appendix B.1), then we cover work
that inspired the design of SELF-STUDY (Appendix B.2), and finally we describe other approaches
aimed at reducing the size of the KV-cache, many of which we compare against in our experiments
(Appendix B.3).

B.1 PRIOR WORK RELATED TO THE PARAMETERIZATION OF CARTRIDGES

Below we discuss prior work from the parameter-efficient fine-tuning literature that inform the way
we parameterize CARTRIDGES in our work.

B.1.1 PARAMETER-EFFICIENT FINE-TUNING (PEFT)

In order to adapt large language models (LLMs) to particular domains or tasks in a more compute
and memory-efficient manner, several parameter-efficient fine-tuning (PEFT) methods have been
developed. Some of the most widely used PEFT methods include Low-Rank Adaptation (LoRA) (Hu
et al., 2022), prefix-tuning (Li & Liang, 2021), and prompt-tuning (Lester et al., 2021).

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Leveraging prior observations that fine-tuned language models exhibit an intrinsic low rank structure,
Hu et al. propose LoRA, which freezes model parameters and injects trainable rank decomposition
matrices between each transformer layer. LoRA exhibits on-par or better fine-tuning quality while
reducing the number of trainable parameters by 10,000 times and the GPU memory requirement by 3
times (Hu et al., 2022).

Li et al. and Lester et al. both take a different approach to lightweight fine-tuning, proposing
tunable "prefixes" and "soft prompts" respectively to prepend to queries in order to steer the model to
desired outputs. Li et al. proposes prefix-tuning, which learns a continuous representation for the
activation of the prefix at each transformer layer. These learned activations are then prepended to
activations obtained by passing the input prompt through the frozen transformer. In contrast, Lester
et al. proposes prompt-tuning, which optimizes at the discrete token level and prepends a series of
learnable tokens to the input prompt. Both methods show strong performance while greatly reducing
the number of learnable parameters and improving compute and memory efficiency for language
model adaptation.

Principal Singular values and Singular vectors Adaptation (PiSSA) (Meng et al., 2024) is another
more recent PEFT method that attempts to ameliorate the slow convergence problems of LoRA.
PiSSA initializes the LoRA rank decomposition matrices with the principal components of the
original matrix, and exhibits faster convergence and enhanced performance compared to LoRA on
several tasks, including GSM8K and MATH.

Several of these methods, especially LoRA, have been adapted specifically for distilling knowledge
provided in context into the parameters of a language model. Some of those methods are described in
the sections below, and this work is an extension of prefix-tuning for long-context tasks.

B.1.2 PARAMETER-EFFICIENT ADAPTER COMPOSITION AND MERGING

A number of works have explored the idea of composing multiple different parameter-efficient
adapters (e.g. LoRAs) by summing them together, concatenating them, or using a dynamic mixture
of experts (Zhao et al., 2024b; Huang et al., 2023; Xiao et al., 2024a; Zhao et al., 2024a; Yadav et al.,
2024; Wu et al., 2024; Gou et al., 2023; Li et al., 2024a). For example, Huang et al. propose LoraHub,
a framework for dynamically weighting and composing multiple language model adapters (Huang
et al., 2023). Given a set of LoRA modules for different upstream tasks and new unseen task with
in-context examples, LoraHub dynamically weights the LoRAs and composes a new LoRA module
for the task. Similarly, Zhao et al. propose a method for dynamically retrieving the most relevant
language model LoRAs for a given task (Zhao et al., 2024a).

B.1.3 PARAMETRIC KNOWLEDGE INJECTION

Several recent works have explored methods for integrating external knowledge directly into model
parameters, known as parametric knowledge injection (Kujanpää et al., 2024; Mao et al., 2025; Su
et al., 2025; Caccia et al., 2025; Kuratov et al., 2025). To the best of our knowledge, these studies are
the closest in scope to ours. Like ours, these works address the problem of parametric knowledge
injection: how to store large text corpora within parameters of a language model. Some use simple
synthetic data generation pipelines or context-distillation objectives. Unlike our work, these studies
do not highlight the memory reduction and throughput advantages of parametric knowledge injection
techniques. We highlight other differences below.

One parametric knowledge injection method, recently proposed by Kujanpaa et al., is prompt
distillation, in which a teacher model with access to privileged knowledge generates question-answer
pairs. These pairs are then used to train a LoRA adapter for a student model (identical to the teacher
model, but without access to privileged information) using a distillation objective (i.e. mimicking
the teacher’s full token distribution) (Kujanpää et al., 2024). This closely resembles our context-
distillation objective, which we also found works better than next-token prediction. However, unlike
our work, Kujanpaa et al. only train LoRA adapters of a single size (rank 1024) and don’t assess
memory reductions with respect to full in-context learning. Indeed, they do not evaluate against
long-context ICL baselines at all, focusing instead on a comparison with RAG. Furthermore, they
evaluate on a relatively simple long-context setting – a concatenation of SQUAD passages (Rajpurkar
et al., 2016) – which does not exhibit long range dependencies or require reasoning the way MTOB
and LONGHEALTH do.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Similarly, Mao et al. propose Long Input Fine-tuning (LIFT), which fine-tunes a language model
using a typical next-token prediction objective on overlapping segments of the corpus, as well as
instruction tuning on question answer pairs generated from the corpus. Unlike our work, Mao et
al. find that synthetic Q/A pairs “offer minimal benefit and can even degrade performance due to
overfitting" (Mao et al., 2025). The difference in our findings is perhaps due to the fact that they only
generate ten synthetic examples, whereas we generate tens of thousands. Furthermore, they use a
weaker ICL baseline (Llama 3 8B) that only has 8k tokens of context. Any contexts longer than 8k
tokens are truncated before being fed to the ICL baseline.

Concurrent work on deep context distillation performs knowledge injection with synthetic data and a
context distillation objective (Caccia et al., 2025). In this work, the authors only report performance
with LoRA adapters and do not explore a prefix-tuning parameterization. In further contrast to
our work, their focus is not on memory reductions or throughput improvements. They only report
performance with a single adapter size (rank 16 LoRA adapters), and they do not report throughput
improvements. Instead, the paper highlights the “plug-and-play" nature of the method.

Finally, Su et al. proposes Parametric Retrieval Augmented Generation (Parametric RAG), in which
each document has a corresponding LoRA adapter, trained on an augmented dataset consisting
of the document, rewritten versions of the document, and question-answer pairs generated from
the document. At inference time, a retriever is used to determine relevants documents, and the
corresponding LoRA adapters are merged (Su et al., 2025). This method demonstrates significant
gains over RAG on a variety of tasks, including WikiMultihopQA.

B.2 PRIOR WORK RELATED TO SELF-STUDY

B.2.1 SELF DISTILLATION AND CONTEXT DISTILLATION

Self-distillation is another method used to internalize the performance gains provided by information
in context (e.g. scratchpads, informative instructions) into the model parameters. In "Learning by
Distilling Context", the authors distill a model with instructions and scratchpads in context into
parameters by conditioning the model on “[instructions] + [task-input]” to predict “[scratch-pad]
+ [final answer]”; then fine-tuning the same model to predict its own “[final answer]” conditioned
on the “[task-input]”, without seeing the “[instructions]” or using the “[scratch-pad]” (Snell et al.,
2024).

B.2.2 SYNTHETIC DATA GENERATION

Due to the ubiquitous need for high quality data for fine-tuning (e.g. for use with the methods
described above), a large body of work has focused on generating high quality synthetic data (Nayak
et al., 2024) (Abdin et al., 2024) (Gandhi et al., 2024) (Riaz et al., 2025). For example, Bonito is a
model that is fine-tuned to generate synthetic data (Nayak et al., 2024), and MetaSynth is a method
proposed by Riaz et al. that uses a language model to orchestrate several expert LLMs for domain-
specific synthetic data generation (Riaz et al., 2025). The training process for Phi-4, a 14 billion
parameter language model, also incorporates significant amounts of synthetically generated data
(Abdin et al., 2024). Incorporating synthetic data, in conjunction with new post-training techniques,
allows Phi-4 to surpass its teacher model on STEM QA tasks, as well as perform well for its size on
reasoning benchmarks. These works demonstrate the potential for synthetic data generation methods
to augment the capabilities of language models.

B.3 REDUCING THE SIZE OF THE KV CACHE

In this section, we discuss existing approaches for reducing the size of the KV cache.

First, in Appendix B.3.3, we describe works that propose architectural changes to the multi-head
attention operation, which reduce the memory footprint of the KV cache. Next, in Appendix B.3.1,
we discuss prompt compression methods, which reduce the size of the KV cache by converting a
long sequence of input embeddings into a shorter one. They can be split into hard-token methods,
which output discrete tokens from the vocabulary, and soft-token methods, which output new token
embeddings not from the vocabulary. Finally, in Appendix B.3.2, we describe KV cache compression
methods. These methods directly modify the key and value matrices in the KV cache. Compared

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

with prompt compression methods, these are more expressive because they can produce a KV cache
that no sequence of input embeddings could have produced.

The methodology proposed in our work relies on cache-tuning, which could be viewed as a form of
KV cache compression.

B.3.1 PROMPT COMPRESSION

Hard-token prompt compression Some works aim to reduce the size of KV cache by converting a
longer text into a shorter text (Jiang et al., 2023b; Li, 2023; Chuang et al., 2024; Zhang et al., 2024b;
Pan et al., 2024). These methods are typically referred to as hard-token prompt compression methods
because the resulting KV cache comes from discrete tokens from the vocabulary. Compared with
soft-token prompt methods, these methods work well with black-box API models.

These methods can be broadly classified into two categories: filtering and summarization based
methods. Filtering methods cut text from the original prompt using heuristics such as self-information.
For example, LLMLingua and Selective-Context use a smaller LLM to filter a long prompt (e.g.
dropping redundant tokens) before passing it to the main model (Jiang et al., 2023b; Li, 2023).
Summarization methods paraphrase a long prompt into a smaller number of tokens (Chuang et al.,
2024).

Soft-token prompt compression with adapted LLMs In one line of work, researchers train
a model (typically an adapted LLM) to compress a long prompt into a smaller number of soft
tokens (Chevalier et al., 2023; Yen, 2024; Ge et al., 2023b; Mu et al., 2023; Qin et al., 2023).

For example, Autocompressors and In-context Autoencoders (ICAE) are LLMs that are fine-tuned
to output embeddings which can be used in soft-token prompts (Chevalier et al., 2023; Ge et al.,
2023b). Autocompressors are trained with full-parameter fine-tuning and leverage a recursive strategy
to generate the soft prompts, whereas ICAEs are trained with LoRA and use a single forward pass
to generate the soft prompts. A recent method, LLoCO, train domain-specific LoRA adapters that
enable the decoder better leverage AutoCompressor embeddings (Tan et al., 2024). This differs from
CARTRIDGES in that the LLoCO LoRA adapters are trained for a domain (e.g. academic papers,
news), not a specific document. A number of other works also propose using an auxiliary model
to produce soft-tokens from a long prompt (Ge et al., 2023b; Qin et al., 2023). Gisting is another
method that differs from those above in that it uses the same LLM to compress the prompt into soft
tokens as it uses to generate the response (Mu et al., 2023).

Soft-token prompt compression via gradient-descent Soft tokens can also be produced by
optimizing input token embeddings with gradient descent. This idea, called prompt tuning, was first
proposed for the purpose of conditioning a frozen langauge model to perform specific tasks (Lester
et al., 2021). As such, it is an important part of the parameter-efficient fine-tuning literature and is
discussed in more detail in Appendix B.1.1. Since then, Li et al. has extended prefix tuning techniques
to long-context settings, proposing a new method called prefix propagation, which conditions prefixes
on previous hidden states to achieve superior performance on long-document tasks compared to prefix
tuning (Li et al., 2024a).

B.3.2 KV CACHE COMPRESSION

Hard-token KV cache compression Motivated by the observation that, in some settings, a small
number of keys dominate the attention scores of subsequent queries, several works have proposed
KV cache eviction policies wherein keys and values are dynamically dropped during generation (Ge
et al., 2023a; Zhang et al., 2023b; Tang et al., 2024; Oren et al., 2024). For example, H20 drops keys
and values from generated tokens based on a running sum of historical attention scores (Zhang et al.,
2023b). Similarly, SnapKV drops keys and values from prompt tokens based on a window of queries
from the end of the prompt (Li et al., 2024b).

A major limitation of eviction methods is that once a key is evicted, it cannot be recovered. Instead of
evicting keys permanently, another line of work focuses on selectively loading keys from KV cache
to SMs. While these works do not reduce memory consumption of the KV cache, they can speed up
inference by making better use of GPU memory bandwidth (Ribar et al., 2023; Tang et al., 2024).

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

For example, the Quest method estimates critical tokens at each decoding step and selectively loads
them to SMs (Tang et al., 2024).

Compared with the hard-token prompt compression methods, KV-cache compression methods allow
fine-grained control at the level of an attention head. This means that a token can be dropped from
one attention head but not another.

Soft-token KV cache compression with merging In another line of work, instead of evicting
tokens from the KV cache, researchers propose merging similar tokens (Wang et al., 2024; Zhang
et al., 2024d; Wan et al., 2024; Liu et al., 2024b). For example, Cache Merge (CaM) takes keys
marked for eviction and merges them instead, using a weighting scheme based on attention weights
(Zhang et al., 2024d). Wang et al. builds on this work by clustering key states into "merge sets"
based on cosine similarity, and merging states within a "merge set" with a Gaussian kernel weighting
scheme, which upweights states more similar to a pivotal state chosen as the token with the largest
total attention score (Wang et al., 2024). Wan et al. expands on both these works with Dynamic
Discriminative Operations (D2O), which performs optimizations at both the layer and token levels.
D2O adjusts the KV cache budget for each layer based on its attention density and uses an exponential
moving average mechanism to dynamically determine when a previously discarded token is similar
enough to retained tokens to be merged back in (Wan et al., 2024). All of these works demonstrate
promising results, offering similar or better performance on several tasks compared to a full cache with
a 50% or more reduction in cache size. However, there is still room for further improvement, as these
methods still fail to match full cache performance in several tasks, and even a 50% reduction in cache
size may still be prohibitively expensive for very large models or very long contexts. Additionally,
these works do not evaluate the effectiveness of these methods in long-context settings.

Soft-token KV cache compression with low-rank projection A number of works leverage the
observation that the KV cache exhibits low-rank structure to develop compression methods (Yu
et al., 2024; Chang et al., 2024; Zhang et al., 2024c; Zhou et al., 2025; Saxena et al., 2024). Similar
to compression methods based on merging, compression methods based on low-rank adaptation
achieve performances similar to or exceeding full caches on several tasks at 50% compression, while
experiencing performance degradation upon further compression.

Soft-token KV cache compression with adapted LLMs Above we discussed how some works
adapt an LLM to output a shorter sequence of soft tokens given a long context. Similarly, one could
adapt an LLM to output a smaller KV cache given a long context. While less explored than the
analagous prompt compression approach, there is at least one published method that falls into this
category. In KV-distill, the authors add LoRA adapters to an LLM’s query projections and train them
to to produce queries which aggregate information from prior tokens (Chari et al., 2025). The adapter
is applied selectively to some tokens and only these tokens are kept in the KV cache. The idea is that
these selected tokens can act as sinks to collect information from prior tokens. The adapter is trained
with a distillation objective between a compressed and uncompressed KV cache. However, unlike
our work, KV-distill does not use any training at test time.

Soft-token KV cache compression with gradient-descent The idea of treating the keys and value
matrices in a KV cache as weights and training them with gradient descent was first discussed in the
prefix-tuning paper (Li & Liang, 2021). In this work, the method was not applied to long-contexts,
but rather as a parameter-efficient fine-tuning method that can be applied to training datasets with
input-output pairs, so we discuss it in more detail in B.1.1. Since then, we are not aware of works
that have applied this technique to handle long-contexts.

B.3.3 ARCHITECTURAL CHANGES

A number of works have proposed architectural changes to the original multi-head attention (MHA)
operation (Vaswani et al., 2017) that reduce the memory footprint of the KV cache. Because they
fundamentally alter the architecture, these methods are not immediately compatible with pre-trained
models using the standard MHA operation.

The earliest works in this direction developed fixed sparsity patterns in the attention map (Beltagy
et al., 2020; Child et al., 2019; Zaheer et al., 2020). For example, many works use a sliding window

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

sparsity pattern wherein each token attends to a fixed window of tokens around it. These approaches
reduce the size of the KV cache because they require only keeping around a fixed number of tokens
in the KV cache. More recently, some large language models have adopted sliding window sparsity
in a subset of layers/heads (Team et al., 2024).

While the methods above reduce the size of the cache by introducing sparsity at the token-level, an-
other class of methods changes the structure of the attention heads. Multi-query attention (MQA), the
earliest of such modifications, uses multiple query heads but only a single key and value head (Shazeer,
2019). While MQA dramatically reduces the size of the KV cache, it can lead to a significant drop
in the expressive power of the model. Grouped-query attention (GQA) is a middle ground between
MQA and MHA that allows a group of query heads to attend to a single key and value head (Ainslie
et al., 2023). Many frontier models use GQA, including the Llama 3 architecture, which we use in our
experiments (Dubey et al., 2024; Jiang, 2024; Yang et al., 2024a). More recently, a number of other
architectural modifications have been proposed including including Multi-head Latent Attention (Liu
et al., 2024a) and Tensor Product Attention (Zhang et al., 2025).

In another line of work, researchers observe that without the softmax operation in the attention
mechanism (i.e. linearizing the attention operator), the KV cache can be faithfully represented by the
fixed size matrix K⊤V (Arora et al., 2024). This allows us to represent the KV cache with a single
matrix whose size is independent of the context length.

Indeed, a large body of work has focused on developing architectures with fixed-size memory
consumption (i.e. models that do away with the KV cache). Notable examples include state-space
models (Gu & Dao, 2023), RNNs (Beck et al., 2024), and other linear attention variants (Arora et al.,
2024; Yang et al., 2024b).

Prior work shows that there are tradeoffs between the memory consumption of an architecture and the
ability of a model to perform recall-intensive tasks, when controlling for compute (i.e. FLOPs) (Arora
et al., 2024). In this context, our work shows that by increasing compute (i.e. FLOPs), we can reduce
the memory consumption of a model without sacrificing performance. In Appendix E, we provide a
prelinary theoretical analysis relating SELF-STUDY with recurrent architectures. However, future
work should explore the relationship between CARTRIDGES and recurrent models in more depth.

Most related to our work are recent architectures (e.g. Titans (Behrouz et al., 2024), TTT (Sun
et al., 2024)) that use a constant-sized memory object (like in linear attention) but apply gradient
descent-like memory updates (Sun et al., 2024; Yang et al., 2025; Behrouz et al., 2025a; 2024; 2025b).
Like our work, these architectures are motivated by the observation that gradient descent is very
effective at compressing text into constant space and demonstrate the promise of using gradient
descent at test time for long-context tasks. In contrast with our work, these architectures need to be
trained from scratch, they have not been validated on large scale models, and do not match the quality
of attention on recall-intensive tasks (Arora et al., 2024; Behrouz et al., 2025a).

B.3.4 ORCHESTRATION FOR LONG-CONTEXT

In this section, we describe strategies for managing long-contexts by orchestrating calls to LLMs. For
instance, the approach by (Russak et al., 2024) involves summarizing chunks of the context and then
combining the summaries. Similarly, PRISM (Jayalath et al., 2024) treats the context as a sequence
of chunks, capturing key information in a structured data format. MemGPT (Packer et al., 2023)
introduces a virtual memory paging system, drawing inspiration from operating systems. As context
length reaches the limit of available memory, the system strategically determines which information
to retain.

B.3.5 SYNTHETIC DATA GENERATION

A large body of work has focused on generating synthetic training data (Nayak et al., 2024; Abdin
et al., 2024; Gandhi et al., 2024; Riaz et al., 2025). For example, Bonito is a model that is fine-tuned
to generate synthetic data (Nayak et al., 2024), and MetaSynth is a method proposed by Riaz et al.
that uses a language model to orchestrate several expert LLMs for domain-specific synthetic data
generation (Riaz et al., 2025). The training process for Phi-4, a 14 billion parameter language model,
also incorporates significant amounts of synthetically generated data (Abdin et al., 2024).

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

C EXTENDED METHOD DESCRIPTION

In this section, we detail the seed prompts and chunking strategy we used to train CARTRIDGES with
SELF-STUDY.

C.1 SELF-STUDY SEED PROMPTS

As discussed in Algorithm 1, we seed the synthetic conversation generation with a prompt that elicits
conversations about different aspects of the document. For each conversation, we randomly sample
one of the following functions and create a seed prompt by calling it:

Structuring Seed Prompt Generator

1 def structuring_seed_prompt(**kwargs):
2 DATA_FORMATS = [
3 "JSON",
4 "YAML",
5 "TOML",
6 "INI",
7 "XML",
8 "plain text",
9]

10
11 data_format = random.choice(DATA_FORMATS)
12
13 EXAMPLES = [
14 (
15 "Can you structure the information in {{subsection}} of {{document}}

related to {{something specific}} "
16 f"in the following format: {data_format}? "
17 "Be sure to include precise information like any dates, times, names, and

numerical values.’"
18 ...
19
20]
21
22 example = random.choice(EXAMPLES)
23
24 return (
25 f"Please generate a single chat message instructing an LLM to structure the

information in {data_format}. "
26 "Output only the chat message itself and absolutely nothing else. "
27 "Make sure it is clear what section and document you are asking about. "
28 f"The message can follow the following template, filling in details from the

corpus: \n\n’{example}’"
29)
30
31

Summarization Seed Prompt Generator

1 def summarization_seed_prompt(**kwargs):
2 prompts = [
3 (
4 "Please generate a single chat message instructing an LLM to summarize

part of the corpus. "
5 "Make sure the instruction is very explicit about the section of the

corpus that you want to summarize. "
6 "Include details (ids, names, titles, dates, etc.) that make it clear what

you are asking about. "
7),
8 (
9 "Please generate a single chat message instructing an LLM to summarize a

section. "
10 "Make sure the instruction is explicit about the section that should be

summarized and the document it is from."
11),
12]
13 prompt = random.choice(prompts)
14 return prompt
15
16

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Question Seed Prompt Generator

1 def question_seed_prompt(**kwargs):
2 prompts = [
3 (
4 "Generate a question for an LLM that will test its knowledge of the

information in the corpus above. "
5 "In your question be sure to include details (ids, names, titles, dates,

etc.) that make it clear what you are asking about. "
6 "Output only a single question. Do NOT include any other text or

explanation other than the question."
7),
8 (
9 "Generate a message for an LLM that will test its knowledge of the

information in the corpus above."
10 "Be sure to include details (ids, names, titles, dates, etc.) in the

question so that it can be answered without access to the corpus (i.e. closed-
book setting). "

11 "Output only a single question. Do NOT include any other text or
explanation other than the question."

12),
13 (
14 "You are helping to quiz a user about the information in the corpus. "
15 "Please generate a question about the subsection of the corpus above. "
16 "Be sure to include details (ids, names, titles, dates, etc.) in the

question to make it clear what you are asking about. "
17 "Answer only with the question, do not include any other text."
18),
19]
20 prompt = random.choice(prompts)
21 return prompt
22

Use Case Seed Prompt Generator

1 def use_case_seed_prompt(**kwargs):
2 prompt = (
3 "You are working to train a language model on the information in the following

corpus. "
4 "Your primary goal is to think about practical, real-world tasks or

applications that someone could achieve using the knowledge contained within this
corpus. "

5 "Consider how a user might want to apply this information, not just recall it.
"

6 "After considering potential use cases, your task will be to generate a sample
question that reflects one of these downstream applications. "

7 "This question/instruction/task should be something a user, who has access to
this corpus, might ask when trying to accomplish their specific goal. "

8 "Output only a single question. Do NOT include any other text or explanation
other than the question."

9)
10 return prompt
11
12

Creative Seed Prompt Generator

1 def creative_seed_prompt(**kwargs):
2 prompt = [
3 (
4 "You are having a creative conversation inspired by the information in the

corpus. "
5 "Please generate a question for your conversation partner to start off the

discussion. "
6 "Answer only with the question, do not include any other text."
7),
8]
9 return random.choice(prompt)

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

C.2 SELF-STUDY CHUNKING

For the SELF-STUDY data generation process, we extract uniformly random token-level chunks from
the input corpus C. A corresponding textual description is generally prepended to each chunk c̃ to
contextualize it when generating the seed prompt. This approach helps the model focus on different
parts of the corpus and generate diverse synthetic examples. The specific chunking parameters and
descriptions are tailored to each dataset:

• LONGHEALTH: Chunks are sampled with a minimum size of 512 tokens and a maximum size of
4096 tokens. The accompanying description is: ‘Below is a section of a patient’s medical record. It
is part of a larger corpus of medical records for Npatients different patients.’

• AMD/FinanceBench: Fixed-size chunks of 8192 tokens are utilized. No specific descriptive text
is prepended to these chunks.

• MTOB: Chunks are sampled with a minimum size of 512 tokens and a maximum size of 4096
tokens. The description used is: ‘The following is an excerpt from a grammar book about the
Kalamang language.’

• QASPER: Following our general methodology, chunks are sampled with a minimum size of 512
tokens and a maximum size of 4096 tokens. A generic description is used to contextualize the
chunk as an excerpt from a research paper, in line with the nature of the Qasper dataset.

D DATASETS

D.1 GENCONVO

To evaluate the ability of our approach to handle diverse queries over long documents, we generated
the GENCONVO dataset. We created GENCONVO using the AMD 2022 10-K filing, a document from
the FinanceBench corpus (Islam et al., 2023). The primary purpose of GENCONVO is to simulate a
wide range of tasks a user might ask a model to perform given a long document, thereby testing the
model’s comprehension, reasoning, and ability to extract varied types of information. The generation
process relies on Claude Sonnet 3.7 (Anthropic, 2024) and is structured as follows:

1. Document Input: The entire source document (e.g., the AMD 2022 10-K, which is less than
200,000 tokens and fits within the model’s context window) is provided to Claude Sonnet 3.7.

2. Question Generation: A series of distinct prompt templates (detailed below), designed to elicit
different reasoning traces (e.g., factual recall, synthesis, multi-hop reasoning), are used to generate
questions. For the given document and each prompt template, we ask the model to generate 16
unique questions. This involves providing the model with the full document content alongside the
specific question-generation prompt.

3. Answer Generation: Subsequently, for each generated question, Claude Sonnet 3.7 is prompted
again with the original full document and the generated question to produce an answer. This
process ensures that the answers are grounded in the provided document.

We hope GENCONVO provides a challenging benchmark that moves beyond simple fact retrieval,
assessing a model’s capacity for deeper understanding and more complex information processing
over long contexts. The following prompt templates were utilized for the question generation phase:

Factual Prompt Template
Please generate a question to test someone’s ability to remember
factual details from the document. The answer should be a few tokens
long and be a factual detail from the statement, such as a number,
entity, date, title, or name.
This question should not be common knowledge: instead, it should be
something that is only answerable via information in the document.

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Knowledge Prompt Template
Please generate a question that requires combining information
mentioned both inside and outside the document.
This question should require using a fact from the document and
also a fact that you are confident about, but is not mentioned in
the document. For instance: - What are the founding dates of the
companies that got acquired this year? This is a good question because
the names of the acquired companies are mentioned in the document
and the founding dates are not mentioned. - What is the name of the
CEO’s spouse? This is a good question because the name of the CEO is
mentioned in the document and the spouse’s name is not mentioned.
The answer should be a fact that is a few tokens long such as a number,
entity, date, title, or name.

Disjoint Prompt Template
Please generate a multi-hop question that tests someone’s ability
to use factual information mentioned in at least two very different
sub-sections of the document.
This question shouldn’t be a standard question about this kind of
document. Instead, it should ask about two particularly disconnected
ideas, like comparing information about the amount of owned space
for the company headquarters with the amount of dollars of estimated
liability or comparing the revenue number with the number of employees.
This question should also test one’s ability to do retrieval: do not
give away part of the answer in the question. Ensure that for one to
get the correct answer to the question, they need to understand the
document.
The answer should be a short: for example, a number, entity, date,
title, or name.

Synthesize Prompt Template
Please generate a question that requires synthesizing and aggregating
information in the document.
For instance, you could ask someone to summarize a page of the
document, list all the key competitors mentioned in the document, or
summarize the company’s business model.

Structure Prompt Template
Please generate a question that requires understanding the structure of
the document.
This question should be more about the structure of the document,
rather than the precise statement details. For instance, you could
ask someone to list the titles of all the sections in the document,
describe the document structure, report the total number of pages, ask
which section amongst two sections comes first, or report the section
with the largest number of tables.

Creative Prompt Template
Please generate a question about the document to test someone’s ability
to comprehend the content of the document. This question specifically
should be focused on their ability to generalize the information about
the document to a strange question of sorts.
This question shouldn’t be a standard question about this kind of
document, it should ask to do something abnormal and creative, like
writing a poem about a financial document.

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Counting Prompt Template
Please generate a question that requires counting how frequently
different events occur in the document.
This question should be about statistical properties of the document,
rather than the statement details. For instance, you could ask someone
to count the number of times the word "million" is mentioned or count
the length of the shortest section title.
The answer should be a number.

Reasoning Prompt Template
Please generate a question that requires mathematical reasoning over
the values in the document.
This question should require going beyond the facts directly mentioned
in the statement, such as asking to compute the percentage increase
in revenue between two years, find the largest expense category, or
calculate difference in profit between two years.
The answer should be a number.

D.2 NEEDLE-IN-A-HAYSTACK (NIAH)

The Needle-in-a-Haystack task provides a controlled evaluation of a model’s ability to precisely
retrieve and recall specific information from long documents.

We adopt the challenging multi-key variant from the RULER benchmark (Hsieh et al., 2024), which
requires models to locate and extract multiple pieces of information scattered throughout a long
document. We choose this version of the task because it is more challenging than the standard
single-key needle-in-the-haystack task and because it reflects the setting where CARTRIDGES are
intended to be used: a single corpus of text against which many different queries are issued.

The task construction proceeds in three steps:

1. Background Generation: The document consists of random passages drawn from essays about
startups by investor Paul Graham, creating realistic and semantically coherent text that serves as
distracting context.

2. Needle Insertion: Multiple synthetic “needles” (key-value pairs) are inserted at random positions
throughout the document. Each needle contains a unique identifier and an associated magic number.
For example, the identifier “gorgeous-bath” is associated with the magic number “9290765”.

3. Query Formation: LLLM prompts are produced that prompt the model to retrieve specific magic
numbers given their corresponding identifiers, requiring precise information extraction from the
long context. For example, the prompt “What is the magic number for gorgeous-bath?” requires
the model to retrieve the magic number “9290765” from the long context.

This setup tests whether CARTRIDGES can maintain the same level of retrieval accuracy as ICL while
using significantly compressed representations. The task is particularly challenging because the
needles are syntactically similar but semantically distinct, requiring exact pattern matching rather
than approximate retrieval.

Consider the excerpt below, which shows how needles are embedded within the natural text:

... In the first couple weeks of working on their own startup they
seem to come to life, because finally they’re working the way people
are meant to.Notes[1] When I talk about humans being meant or designed
to live a certain way, I mean by evolution. [2] It’s not only the
leaves who suffer. The constraint propagates up as well as down. So
managers are constrained too; instead of just doing things, they have
to act through subordinates. One of the special magic numbers for
gorgeous-bath is: 9290765. [3] Do not finance your startup with
credit cards. Financing a startup with debt is usually a stupid move,
and credit card debt stupidest of all. Credit card debt is a bad idea,
period. It is a trap set by evil companies for the desperate and the
foolish. ...

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

In this example, the model must identify that “gorgeous-bath” is associated with the magic number
“9290765” when queried.

D.3 LONGHEALTH

LONGHEALTH is a benchmark for evaluating large language models ability to analyze and interpret
long clinical texts (Adams et al., 2024). The benchmark consists of 20 fictional clinical case reports
(each containing between 5,090 and 6,754 word) and 400 multiple-choice questions based on them.

In our experiments, the context C consists of the reports for a panel of n patients. We use n = 10
patients, with a full panel of approximately 100k tokens, which fits in the context length of the
LLAMA 3 models.

The questions are categorized into information extraction, negation, and sorting.

A sorting question is included below:

Please answer the question below about the following patient: ID
patient_03, Name: Mr. John Williams, Birthday: 1956-08-08 00:00:00,
Diagnosis: Multiple Myeloma
<question>
Mr. Williams received multiple radiologic examinations. In which
order did she receive them?
</question>
<options>
CT Whole Body > MR Spine Scan > CT Spine Scan > PSMA-PET-CT Scan > CT
Chest > CT Whole Body > Whole Body CT scan
Whole Body CT scan > CT Spine Scan > CT Whole Body > MR Spine Scan > CT
Chest > PSMA-PET-CT Scan > CT Whole Body.
CT Whole Body > CT Whole Body > CT Chest > CT Chest > PSMA-PET-CT Scan
> MR Spine Scan > CT Spine Scan > Whole Body CT scan > Chest X-ray
CT Chest > CT Spine Scan > CT Whole Body > Whole Body CT scan >
PSMA-PET-CT Scan > MR Spine Scan > CT Whole Body
Whole Body CT scan > CT Spine Scan > CT Whole Body > MR Spine Scan > CT
Chest > CT Whole Body > PSMA-PET-CT Scan
</options>
You should first think step by step. Then give your final answer
exactly as it appears in the options. Your output should be in the
following format:
<thinking> {{YOUR_THOUGHT_PROCESS}} </thinking>

<answer>
{YOUR_ANSWER}
</answer>

An example of a negation question is included below:

Please answer the question below about the following patient:
ID patient_01, Name: Anna Sample, Birthday: 1970-01-01
00:00:00, Diagnosis: DLBCL
<question>
Which of these examinations were never performed in Mrs.
Sample?
</question>
<options>
Bone marrow aspiration
CSF aspiration
MRI of the head
Pulmonary function testing Cardiac stress testing
</options>
You should first think step by step. Then give your final
answer exactly as it appears in the options. Your output should

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

be in the following format:
<thinking> {{YOUR_THOUGHT_PROCESS}} </thinking>

<answer>
{YOUR_ANSWER}
</answer>

D.4 MTOB

The Machine Translation from One Book (MTOB) benchmark tests a large language model’s ability
to learn to translate between English and Kalamang, a low-resource language with virtually no web
presence (Tanzer et al., 2023). The core task is to perform translation (Kalamang to English, and
English to Kalamang) by primarily relying on a single comprehensive grammar book and a small
set of accompanying linguistic resources. In our work, we focus on translating from Kalamang to
English.

The source documents provided by the MTOB benchmark are:

• A grammar of Kalamang: A comprehensive grammar textbook, with the original source provided
in LATEX format. This book details the phonology, morphology, and syntax of Kalamang.

• Bilingual Word List (W): A list of Kalamang words with their part-of-speech tags and English
descriptions.

• Parallel Kalamang-English Corpus (S): A collection of 375 paired Kalamang-English sentences.

The MTOB authors preprocessed the grammar textbook from its original LATEX source into several
plaintext splits for their baseline experiments. These include:

• Gm (Medium-length chunk): A plaintext segment of approximately 50k tokens consisting of an
overview chapter, a morpheme table from the grammar book, and the complete bilingual word list
(W).

• Gl (Long-length chunk): A larger plaintext segment of approximately 100k tokens, containing
chapters from the grammar book that the MTOB authors deemed most important for the translation
task.

• Full Plaintext Textbook (G): The entire grammar book converted to plaintext.

The combination of the long-length chunk (Gl), the parallel sentences (S), and the word list (W)
exceeds the context window of Llama 3 models. We use the medium-length chunk Gm and the
parallel sentence list S as input for our ICL baseline.

D.5 QASPER

QASPER is a benchmark for evaluating the ability of large language models to answer questions
about scientific papers (Dasigi et al., 2021). To create a challenging multi-query long-context setting
resembling the setup described in Section 2.2, we concatenate 16 papers all related to QA NLP models
to form out corpus C. In total, there are 78 questions about these 16 papers in the dataset, which we
use as the queries Q.

Because the dataset only includes short answers and ground-truth spans containing evidence for each
answer, we rewrite the answers in a longer, more conversational format using GPT-4.1 and use these
as the targets when evaluating.

E THEORETICAL ANALYSIS: RELATIONSHIP BETWEEN ATTENTION, LINEAR
ATTENTION, AND CARTRIDGES

When we generate text with an autoregressive Transformer, we have to maintain a KV-cache that
grows linearly with the length of the input and text. In Appendix B.3.3, we discussed a number of
architectural modifications that either reduce the size of the KV-cache or do away with it altogether.

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

In particular, when generating text with linear attention (e.g. (Arora et al., 2024)), we only need to
maintain a constant-sized object – the KV-state matrix – during generation.

Like the KV-state matrix in linear attention, CARTRIDGES consume a constant amount of memory
(i.e. their size is a hyperparameter, which can be set independently of the input length). However,
they differ from the KV-state in how they are updated. In this work, CARTRIDGES are updated using
SELF-STUDY– gradient descent on synthetically generated data. On the other hand, KV-states are
updated using a linear attention update rule.

In this section, we will study the update rules for attention, linear attention, and gradient descent
when applied to the multi-query associative recall (MQAR) problem (Arora et al., 2023), a popular
synthetic benchmark task used for studying the capabilities of long-context architectures. In particular,
we consider a variant of the standard MQAR problem where key-value pairs are repeated. First, we
highlight some equivalences between the update rules of these approaches in the case where input keys
are orthonormal. Then, in the more challenging case where input keys are in a Johnson-Lindenstrauss
embedding, we provide a separation result showing that the gradient descent update rule is able to
exactly solve an MQAR problem that linear attention cannot.

These theoretical results provide intuition for why constant-sized CARTRIDGES are able to match
the performance of full KV-caches in long-context settings when linear-attention architectures have
struggled to do so.

E.1 NOTATION

All vectors are assumed to be row vectors.

Parenthesized superscripts (e.g. k(1)) denote some temporal quality of an element. Subscripts denote
different elements in a set, as is standard.

A concise explanation for each variable:

• d : model (and token) dimension.

• m : number of unique key-value pairs.

• n : number of queries.

• N : number of key-value pairs in stream.

E.2 MQAR

We define the Multiple Query Associative Recall (MQAR) problem.

Definition 1. There is a universe of keys:

K ⊂ R1×d,

and values:
V ⊂ R1×d.

Definition 2. (Arora et al., 2023) In the MQAR problem, the input is:

(k(1),v(1)), . . . , (k(N),v(N)) where (k(t),v(t)) ∈ K × V for 1 ≤ t ≤ N,

followed by a set of queries

q1, . . . qn where qi ∈ K for 1 ≤ i ≤ n.

Then for each i ∈ [n], output:{
vi∗ where i∗ = max{i ∈ [1, N]|ki = qj}
0d if no such i exists.

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

E.3 m− REPETITIVE MQAR

Definition 3. m− repetitive MQAR is a special case where each (K(t), V (t)) ∈ S, where:

S = {(k1,v1), . . . , (km,vm)}.

Additionally, ki is unique.

Definition 4. To capture this, r(t)i is defined as the number of occurrences of (ki,vi) in the stream at
timestep t.

E.3.1 ORTHONORMAL EMBEDDING

First, we will look at the MQAR problem in a restricted case, when all keys are orthonormal.

Definition 5. We call the set K to be orthonormal if for all k,k′ ∈ K:

⟨k,k′⟩ =
{
0 if k ̸= k′

1 otherwise.

E.3.2 JOHNSON-LINDENSTRAUSS EMBEDDING

Next, we will look at the MQAR problem in a restricted case, when all keys are in a JL embedding.

Definition 6. Let ϵ > 0, we call the set K to be ϵ−JL if for all k,k′ ∈ K:

⟨k,k′⟩ =
{
[−ϵ, ϵ] if k ̸= k′

1 otherwise.
.

E.4 MODEL DEFINITIONS

Below, we will describe three different model architectures. While they each exhibit different
performance and capabilities they can be describe with a common framework for the MQAR problem.

1. State: is how the model store Key-Value pairs.

2. Update rule: how the model incorporates new Key-Value pairs into its state.

3. Query rule: how the model uses its state to answer a look up a value or a query.

E.4.1 TRANSFORMER

1. The state is:
W (t) = (K(t),V (t)),

where,
K(t) ∈ Rt×d,V (t) ∈ Rt×d.

Note that this consumes more memory as the context gets longer.

2. The update rule is:

K(t+1) = K(t) ⊕ k(t+1),V (t+1) = V (t) ⊕ v(t+1)

3. On query q ∈ K, return:

q
(
K(t)

)⊤
V (t).

These rules define the transformer setting for MQAR.

36

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

E.4.2 LINEAR ATTENTION

1. The state:
W (t) ∈ Rd×d.

2. The update rule is defined as:

W (t+1) = W (t) + (k(t+1))⊤(v(t+1)).

With the initial matrix being initialized to zeros. I.e. W (0) = 0d×d.
3. On query q, return:

qW (t).

Lemma 1. (Yang et al., 2025) Linear attention rule emerges if we were to update using the loss
function −k(t)W (t)vt.

It is important to mention here that we are not using any kernels for linear attention. These rules
define the linear attention setting for MQAR.

Lemma 2. (Yang et al., 2025) W (t+1) = W (t) −
(
k(t)

)⊤
k(t)W (t) +

(
k(t)

)⊤
v(t) is the update

rule that emerges when we use the gradient descent loss function: 1
2 ||k

(t)W (t) − v(t)||22.

Definition 7.
L =

1

2
||k(t)W (t) − v(t)||22

Proof. In general, gradient descent has the update rule:

W (t+1) = W (t) − η∇W (t) . (3)

Taking the gradient of the loss function gives us:

∇W
1

2
||k(t)W (t) − v(t)||22 =

(
k(t)

)⊤
(k(t)W (t) − v(t))

=
(
k(t)

)⊤
k(t)W (t) −

(
k(t)

)⊤
v(t).

Using the above and choosing η = 1, we get for Equation (3)

W (t+1) = W (t) − 1

((
k(t)

)⊤
k(t)W (t) −

(
k(t)

)⊤
v(t)

)
= W (t) −

(
k(t)

)⊤
k(t)W (t) +

(
k(t)

)⊤
v(t).

E.4.3 GRADIENT DESCENT

Gradient descent training on the cache. We look at the capability of this trained state on a certain
input.

1. The state at time t is defined as:
W (t) ∈ Rd×d.

2. The update rule which follows from Lemma 2:

W (t+1) = W (t) −
(
k(t)

)⊤
k(t)W (t) +

(
k(t)

)⊤
v(t).

With the initial matrix being initialized to zeros. I.e. W (0) = 0d×d.
3. On query q, return:

qW (t).

37

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

E.4.4 ORTHONORMAL CASE

We now see how the three models perform on the m− repetitive MQAR when K is orthonormal.

Transformer
Lemma 3. On every input to MQAR (even those for 1-rep-MQAR) the state of Transformer needs
Ω(Nd) parameters.

Intuitively, at each timestep, you will append d parameters to the state. At timestep t the model will
have td parameters.

Linear attention
Theorem 1. Linear attention can solve repetitive MQAR for any m ≥ 1 and orthonormal K, up
to scaling (producing r

(t)
i vi when W (t) is queried with ki) and all keys being distinct with O(d2)

parameters.

Proof. We first prove that for any t ≥ 0:

W (t) =

m∑
i′=1

r
(t)
i′ k⊤

i′ vi′ . (4)

Base Case: Initially, W (0) = 0d×d. From this, we indeed have:

W (0) =

m∑
i′=1

r
(0)
i′ k⊤

i′ vi′ ,

since for all i′ ∈ [m]:

r
(0)
i′ = 0.

Inductive hypothesis: Assume that the state matrix at some arbitrary integer timestep t is as claimed.
I.e.:

W (t) =

m∑
i′=1

r
(t)
i′ k⊤

i′ vi′ .

Inductive step: If (k(j),v(j)) appears at timestep t+ 1 the update rule will be:

W (t+1) = W (t) + (k(t+1))⊤v(t)

= W (t) + (kj)
⊤vj

By the inductive hypothesis, we have that:

W (t+1) = W (t) + kj(vj)
⊤

=

m∑
i′=1

r
(t)
i′ k⊤

i′ vi′ + kj(vj)
⊤

=

m∑
i′=1

r
(t+1)
i′ k⊤

i′ vi′ .

The final step follows from the fact that r(t+1)
j = r

(t)
j + 1 when (k(t+1),v(t+1)) = (kj ,vj) and

r
(t+1)
i = r

(t)
i for all i ̸= j.

The proof of Equation (4) is complete by induction.

38

2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

Finally, it is the case that on query ki:

kiW
(t) = ki

m∑
i′=1

r
(t)
i′ k⊤

i′ vi′

=

m∑
i′=1

r
(t)
i′ kik

⊤
i′ vi′

=
∑
i′ ̸=i

r
(t)
i′ kik

⊤
i′ vi′ + r

(t)
i kik

⊤
i vi

=
∑
i′ ̸=i

r
(t)
i′ · 0 · vi′ + r

(t)
i · 1 · vi

= r
(t)
i · vi,

as desired. In the above, the second last inequality follows from from Definition 5 and the fact that
all ki are distinct.

O(d2) parameters are needed as the matrix must have dimension d× d

Gradient Descent
Theorem 2. Gradient descent is able to exactly solve the m− repetitive MQAR (produce vi when
W (t) is queries with ki) with O(d2) parameters.

Proof. Here we can handle repetitions because our update rule includes a "peel" term. This means it
removes the current value stored under a key before updating it with a new value.

We will show by induction that for all t ≥ 0:

W (t) =

m∑
i′=1

1
r
(t)

i′ >0
· k⊤

i′ vi′ .

Base Case: Initially, the cache matrix is set to all zeros. From this, naturally follows that:

W (0) =

m∑
i′=1

0 · k⊤
i′ vi′ ,

since for all i′

r
(0)
i′ = 0.

Inductive hypothesis: Assume that at some arbitrary timestep t, we have:

W (t) =

m∑
i′

1
r
(t)

i′>0

· k⊤
i′ vi′

Inductive step: If (kℓ,vℓ) appears at timestep t+ 1 the update will be:
m∑
i=1

1
r
(t+1)
i>0

k⊤
i vi =

(
m∑

i′=1

1
r
(t)

i′>0

k⊤
i′ vi′

)
−

(
m∑

i′=1

1
r
(t)

i′>0

k⊤
ℓ kℓk

⊤
i′ vi′

)
+ k⊤

ℓ vℓ

the second term reduces to just peeling the term relating to kℓ, if it exists, as all other inner products are 0,

=

(
m∑

i′=1

1
r
(t)

i′>0

k⊤
i′ vi′

)
−
(

1
r
(t)
ℓ>0

· k⊤
ℓ vℓ

)
+ k⊤

ℓ vℓ

=

 m∑
i′ ̸=ℓ

1
r
(t)

i′>0

k⊤
i′ vi′

+ k⊤
ℓ vℓ

39

2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159

This replaces the value associated with kℓ with the new value, while keeping everything else the
same. This is the form that we want, as the only time we want to add a key if it is an new key.

Finally, it is the case that on query ki:

ki ·W (t) = ki ·

(
m∑

i′=1

1
r
(t)

i′>0

k⊤
i′ vi′

)

=

(
m∑

i′=1

1
r
(t)

i′>0

ki · k⊤
i′ vi′

)
= 1

r
(t)
i>0
· 1 · vi

= 1
r
(t)
i>0
· vi

Again here a matrix of dimension d× d can store d orthogonal vectors. Thus this requires, O(d2)
parameters.

E.4.5 JL EMBEDDING

We now see how the 3 models perform on the m− repetitive MQAR when K is ϵ−JL.

Transformer
Lemma 4. On every input to MQAR (even those for 1-rep-MQAR) the state of Transformer needs
Ω(Nd) parameters.

We note that when K is ϵ−JL it is no longer possible to get the exact answer from query rule kiW
(t).

Thus, we need to add a decoding step.
Definition 8. The output decoding step is vi∗ where:

i∗ = arg max
i′∈[m]

⟨vi′ ,kiW
(t)⟩.

Definition 9. For all i, j ∈ [m], define:

ϵi,j = ⟨ki,kj⟩.

Linear Attention
Theorem 3. Linear attention (+ decoding as in Definition 8) is unable to solve even the 2 −
repetitive MQAR and each vi being 1-hot encoding unless K is ω

(
1
N

)
−JL.

Proof. Due to the agreeance between different keys, when querying for key i, there is noise from
other keys returned along with the correct answer. While we can tolerate some error, this error scales
with the number of times the model has seen a single key. Making it unfit for longer contexts, or
contexts with many repeats.

First, note that the base case Equation (4) from Theorem 1 still holds. In general, this holds for all K.

Specifically, on query k1 we have:

k1W
(t) = r

(t)
1 ⟨k1,k1⟩v1 + r

(t)
2 ⟨k1,k2⟩v2 = r

(t)
1 v1 + r

(t)
2 ϵ1,2v2.

Now, consider an input to 2− repetitive MQAR such that

r
(t)
1 < r

(t)
2 ϵ1,2.

Note that in this case:

r
(t)
1 = ⟨v1,k1W

(t)⟩ < ⟨v2,k1W
(t)⟩ = r

(t)
2 ϵ1,2

40

2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213

and hence we output v2 instead of v1.

If the embedding was ω(1
N the number of repeats could not overcome the ϵ value.

Gradient Descent

Theorem 4. Gradient descent (+ decoding as in Definition 8) is able to exactly solve m −
repetitive MQAR with O(d2) parameters for ϵ−JL K, as long as ϵ ≤ 1

m2(m−1) and α < m−1
m+1 .

Proof. We define:

C
(t)
i,j

to be the coefficient associated with k⊤
i vj in W (t). Specifically, let

W (t) =

m∑
i=1

m∑
j=1

C
(t)
i,j k

⊤
i vj (5)

We will prove by induction that:

C
(t)
i,j = 1(ki,vj) has occurred +∆

(t)
i,j (6)

where,

∣∣∣∆(t)
i,j

∣∣∣ ≤ t∑
a=1

((m− 1)ϵ)a. (7)

Base Case: Initially, the state is set to all zeros. From this, naturally follows that all of the C
(t)
i,j are

zero. I.e. Equation (6):

∆i,j = 0.

Inductive hypothesis: Assume that all for some timestep t and 1 ≤ i, j ≤ m:

C
(t)
i,j = 1(ki,vj) has occurred +∆

(t)
i,j ,

where ∆
(t)
i,j satisfies Equation (7).

41

2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267

Inductive Step: If at timestep t+ 1 we are given (kℓ,vℓ), from Equation (5) the update looks like:

W (t+1) =

m∑
i=1

m∑
j=1

C
(t+1)
i,j k⊤

i vj

=

m∑
i′=1

m∑
j′=1

C
(t)
i′,j′k

⊤
i′ vj′ −

 m∑
i′=1

m∑
j′=1

C
(t)
i′,j′k

⊤
ℓ kℓk

⊤
i′ vj′

+ k⊤
ℓ vℓ

=

m∑
i′=1

m∑
j′=1

C
(t)
i′,j′k

⊤
i′ vj′ −

 m∑
i′=1

m∑
j′=1

ϵℓ,i′C
(t)
i′,j′k

⊤
ℓ vj′

+ k⊤
ℓ vℓ

change the associativity of the summations,

=

m∑
i′=1

m∑
j′=1

C
(t)
i′,j′k

⊤
i′ vj′ −

 m∑
j′=1

(
m∑

i′=1

ϵℓ,i′C
(t)
i′,j′

)
k⊤
ℓ vj′

+ k⊤
ℓ vℓ

here we separate the first term where i′ = ℓ and i′ ̸= ℓ,

=

m∑
i′ ̸=ℓ

m∑
j′=1

C
(t)
i′,j′k

⊤
i′ vj′ +

m∑
j′=1

C
(t)
ℓ,j′k

⊤
ℓ vj′ −

 m∑
j′=1

(
m∑

i′=1

ϵℓ,i′C
(t)
i′,j′

)
k⊤
ℓ vj′

+ k⊤
ℓ vℓ

here we separate the first term where i′ = ℓ and i′ ̸= ℓ,

=

m∑
i′ ̸=ℓ

m∑
j′=1

C
(t)
i′,j′k

⊤
i′ vj′ +

m∑
j′=1

C
(t)
ℓ,j′k

⊤
ℓ vj′ −

 m∑
j′=1

ϵℓ,ℓC
(t)
ℓ,j′k

⊤
ℓ vj′

−
 m∑

j′=1

∑
i′ ̸=ℓ

ϵℓ,i′C
(t)
i′,j′

k⊤
ℓ vj′

+ k⊤
ℓ vℓ

remove ϵj,j ,

=

m∑
i′ ̸=ℓ

m∑
j′=1

C
(t)
i′,j′k

⊤
i′ vj′ +

m∑
j′=1

C
(t)
ℓ,j′k

⊤
ℓ vj′ −

m∑
j′=1

C
(t)
ℓ,j′k

⊤
ℓ vj′ −

 m∑
j′=1

∑
i′ ̸=ℓ

ϵℓ,i′C
(t)
i′,j′

k⊤
ℓ vj′

+ k⊤
ℓ vℓ

cancel terms,

=

m∑
i′ ̸=ℓ

m∑
j′=1

C
(t)
i′,j′k

⊤
i′ vj′ −

 m∑
j′=1

∑
i′ ̸=ℓ

ϵℓ,i′C
(t)
i′,j′

k⊤
ℓ vj′

+ k⊤
ℓ vℓ.

Note with this we can see that:

C
(t+1)
i,j =

C
(t)
i,j if ℓ ̸= i

−
∑
i′ ̸=ℓ

ϵℓ,i′C
(t)
i′,j + 1j=ℓ if ℓ = i .

Thus, if i ̸= ℓ, we have:

C
(t+1)
i,j = C

(t)
i,j ,

for i ̸= ℓ. The inductive statement holds for these pairs. Now let’s consider C(t+1)
ℓ,j . If ℓ = j then:

C
(t+1)
ℓ,ℓ = 1 +∆

(t+1)
ℓ,ℓ =

∑
i′ ̸=ℓ

ϵℓ,i′C
(t)
i′,j + 1

42

2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321

and note that by the triangle inequality and Definition 6:∣∣∣∆(t+1)
ℓ,ℓ

∣∣∣ ≤ ϵ
∑
i′ ̸=ℓ

∣∣∣C(t)
i′,ℓ

∣∣∣
by the inductive hypothesis,

≤ ϵ
∑
i′ ̸=ℓ

(1 +

t∑
a=1

((m− 1)ϵ)a)

= ((m− 1)ϵ)(1 +

t∑
a=1

((m− 1)ϵ)a)

= (

t+1∑
a=1

((m− 1)ϵ)a),

as desired.

Then for j ̸= ℓ, we have: ∣∣∣∆(t+1)
j,ℓ

∣∣∣ = ∣∣∣C(t+1)
i,j

∣∣∣
=

∣∣∣∣∣∣
∑
i′ ̸=ℓ

ϵℓ,i′C
(t)
i′,j

∣∣∣∣∣∣
The bounding of ∆(t)

ℓ,j is similar to the ℓ = j case.

With this we have completed the inductive proof on error terms.

If the we set:

ϵ <
1

m2(m− 1)
,

we get the following bound:

∆
(t)
i,j ≤

t∑
a=1

((m− 1)ϵ)a (8)

≤ (m− 1)ϵ

1− (m− 1)ϵ
(9)

<
1

m2 − 1
(10)

Before the next steps, we must bound:

|⟨vi,vj⟩| ≤ α (11)

For a query with ki, assuming we have seen ki before, we get:

ki ·W (t) = vi +
∑
j′ ̸=i

∆
(t)
i,j′vj′

Now for the decoding step where for an arbitrary vj we get:

⟨vj ,ki ·W (t)⟩ = ⟨vj ,vi⟩+ ⟨vj ,
∑
j′ ̸=i

∆i,j′vj′⟩

43

2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375

For the case where i = j it is the case that:

⟨vi,ki ·W (t)⟩ = 1 + ⟨vi,
∑
j′ ̸=i

∆i,j′vj′⟩

≥ 1− 1

m+ 1
α.

This follows from Equation (10) and Equation (11).

For the case where i ̸= j it is the case that:

⟨vj ,ki ·W (t)⟩ = ⟨vi,vj⟩+ ⟨vj ,
∑
j′ ̸=i

∆i,j′vj′⟩

≤ α+
1

m+ 1
α

This follows from Equation (10) and Equation (11).

As a result, we will always pick the correct value when α < m−1
m+1 .

44

	Introduction
	Preliminaries
	Related work
	Problem setup
	Language models and KV caches

	The Cartridge paradigm
	Formalizing Cartridges
	Parameterizing Cartridges
	Serving Cartridges

	Self-Study: A self-supervised method for training Cartridges
	Self-supervised synthetic data to avoid overfitting
	Self-Study context-distillation objective

	Results
	Expanding the quality-memory frontier by scaling Self-Study compute
	Extending the effective context window with Self-Study
	Ablating Self-Study design choices
	Composing Cartridges

	Discussion and conclusion
	Extended Results
	Comparison with additional cache compression baselines
	Experiments with the Qwen3 family of models
	Cartridge design choices: parameterization and initialization
	Self-Study design choices: data-generation and objective
	Throughput measurement details

	Extended Related Work
	Prior work related to the parameterization of Cartridges
	Parameter-efficient Fine-tuning (PEFT)
	Parameter-efficient Adapter Composition and Merging
	Parametric Knowledge Injection

	Prior work related to Self-Study
	Self Distillation and Context Distillation
	Synthetic Data Generation

	Reducing the size of the KV cache
	Prompt compression
	KV cache compression
	Architectural changes
	Orchestration for long-context
	Synthetic data generation

	Extended method description
	Self-Study seed prompts
	Self-Study chunking

	Datasets
	 GenConvo
	Needle-in-a-Haystack (NIAH)
	LongHealth
	MTOB
	QASPER

	Theoretical analysis: Relationship between attention, linear attention, and Cartridges
	Notation
	MQAR
	m-repetitive MQAR
	Orthonormal Embedding
	Johnson-Lindenstrauss Embedding

	Model Definitions
	Transformer
	Linear Attention
	Gradient Descent
	Orthonormal Case
	JL Embedding

