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Abstract

Data synthesis has become increasingly crucial for long-tail instance segmentation
tasks to mitigate class imbalance and high annotation costs. Previous methods have
primarily prioritized the selection of data from a pre-generated image object pool,
which frequently leads to the inefficient utilization of generated data. To address this
inefficiency, we propose a collaborative approach that incorporates feedback from
an instance segmentation model to guide the augmentation process. Specifically,
the diffusion model uses feedback to generate objects that exhibit high uncertainty.
The number and size of synthesized objects for each class are dynamically adjusted
based on the model state to improve learning in underrepresented classes. This
augmentation process is further strengthened by running multiple rounds, allowing
feedback to be refined throughout training. In summary, multi-round collaborative
augmentation (MRCA) enhances sample efficiency by providing optimal synthetic
data at the right moment. Our framework requires only 6% of the data generation
needed by state-of-the-art methods while outperforming them.

1 Introduction

The advent of diffusion models has made generating high-quality images significantly easier with
lower cost [9, 23} 130, 31]]. These advancements naturally opened new possibilities for generating
training data in data-hungry vision tasks like object detection [16} [17] and instance segmentation [4}
21, 27]'| Diffusion models can synthesize images conditioned on textual descriptions, enabling
the creation of diverse and detailed datasets with labels [6, [22]. Especially for long-tail instance
segmentation, where class imbalance and high annotation costs pose significant challenges, diffusion-
based image synthesis has become a crucial solution.

Copy-paste-based methods, originally intended for augmenting training data using real image ob-
jects [8L [15], now have been extended to utilize high-quality synthetic image objects generated by
diffusion models. That is, these recent methods first generate a large pool of image objects and then
augment the training data by pasting them to real images [[L1, 37, 41]]. The advantage arises from
generating objects in a fraining-free manner, at a comparably lower cost than layout-based methods
that train the diffusion model with the training data as shown in Figure [5, 40]. However, some
studies have shown that continuously training with synthetic data can eventually degrade model
performance [12| [13]. Such finding has naturally led to research on active and curriculum learning
strategies that can incrementally select most informative synthetic objects from a pre-generated object
pool as shown in Figure [Tb|[26] 41]]. Nevertheless, preemptively constructing the object pool before
training may be suboptimal, as it can result in a significant number of unused objects and may not
include object characteristics that could address the model’s deficiencies encountered during training.

*Corresponding author
'While we designate instance segmentation as our target task, object detection is equally relevant.
39th Conference on Neural Information Processing Systems (NeurIPS 2025).
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Figure 1: Novelty of our generative augmentation strategy. Existing methods (a) train a generator
separately or (b) discard part of pre-generated data and incur extra cost. Ours (¢) incorporates
feedback from the training model into the generation process, optimizing cost and enhancing quality.

To solve this problem, we propose multi-round collaborative augmentation between a generator and
an instance segmentation model to guide the generator to build an augmented training set which can
achieve high accuracy with a smaller number of synthetic objects—i.e., toward being sample-efficient.

Collaborative Augmentation To effectively improve the power of the instance segmentation
model using synthetic images, we transfer its feedback to the augmentation process. As illustrated in
Figure[Ic| the feedback is exploited in rwo distinct places: (i) in the generation of synthetic objects
and (ii) in the pasting of these objects to real images. For the generation step, the classifier gradients
are employed to produce more challenging objects for the instance segmentation model’s classifier,
akin to prior research on image classification [[1,[19]]. Also, the class-wise validation accuracy and
classifier weights are used to ascertain an adequately mandated quantity of synthetic objects for
each class, thereby enhancing the classifier’s capacity to learn from underrepresented or difficult
classes. For the pasting step, the class-wise validation accuracy is employed to assign greater space
to underperforming classes, as larger objects are more effective in enhancing the performance of
instance segmentation [28]. In short, this two-fold feedback approach facilitates the object generator
in supplying the most beneficial data to the instance segmentation model.

Multi-Round  This novel collaborative augmentation is boosted through multiple rounds. It is
well-known that the most useful training instances vary depending on the training stage, as witnessed
by curriculum learning [3]]. Thanks to the collaborative augmentation, the feedback from the instance
segmentation model can be effectively transferred to the object generator. Then, it is more effective
to transfer such feedback periodically throughout the training stage. As a result, the generation and
pasting of synthetic objects occur incrementally, resulting in a reduced overall quantity of synthetic
objects. Regarding each incremental generation, better customized images can be supplied for the
training of the instance segmentation model at the appropriate time.

In summary, our proposed Multi-Round Collaborative Augmentation (MRCA) achieves higher or
comparable performance with only 6% of object generation compared to state-of-the-art methods [[7,
37,141]] in generative augmentation for long-tail instance segmentation on the LVIS 1.0 [[L8]] dataset,
particularly outperforming in rare classes. Extensive ablation experiments show the effectiveness
of the two-fold feedback components of MRCA. The source code is publicly available at https:
//github.com/kaist-dmlab/MRCA.

2 Related Work

Data Synthesis for Instance Segmentation Data synthesis for instance segmentation can be
broadly categorized into two main approaches. The former involves cut-and-paste (or copy-paste-
based) methods, where objects from a source image are extracted with precise boundaries and pasted
onto destination images to create new synthesized images. This approach originates from cut-and-
paste augmentation [8] and copy-paste augmentation [15]], which were initially designed for pasting
real objects to enhance data diversity.


https://github.com/kaist-dmlab/MRCA
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Building upon these foundational methods for the former approach, X-Paste [37] extends the basic
cut-and-paste method by incorporating objects from multiple sources, including both real and
diffusion-based synthetic objects, to further diversify training examples. More recently, BSGAL [41]
builds upon X-Paste by integrating instance-wise data selection strategies based on gradient and
loss information, ensuring that pasted objects contribute effectively to model training. Additionally,
DiverGen [11] focuses on diversity-centered instance generation, optimizing synthetic data to enhance
representation learning by promoting diversity among generated objects.

The latter approach involves layout-based methods, where bounding boxes or segmentation masks
are given a priori for generating images for object detection. GeoDiffusion [5] and ODGEN [40]
generate bounding box coordinates derived from the dataset and condition the diffusion model to
produce objects accordingly. InstaGen [14]] instead synthesizes images and creates bounding box
annotation by training an instance-level grounding head. However, these methods cannot be extended
to instance segmentation tasks because of the high complexity of segmentation masking. Even for
layout-based methods that provide segmentation masks as a condition [25]], the diverse geometric
knowledge of the diffusion model cannot be fully utilized owing to the fixed segmentation mask.

Diffusion with Guidance The diffusion model generates the data following a data distribution
p(z) by learning the denoising process. Recent diffusion models are based on classifier-guidance [6]
or classifier-free guidance [22] that learns the data distribution conditioned on class labels p(z|y).
That is, V; log pg - (x|y) = Vg logpe(x) + vV log p(y|x), where pg(x) is the generative model’s
data distribution of an image x parametrized by 6, p(y|z) is the classifier’s probability of a class y
given z, and v is a guidance weight controlling classifier influence.

ControlNet [36] proposed a more structured approach by injecting additional spatial conditions
into the diffusion process without retraining the base model, allowing fine-grained control over
outputs. More recently, Universal Guidance [2]] emerged as a general framework that can direct
diffusion models using arbitrary signals through plug-and-play mechanisms, broadening the flexibility
and applicability of guided generation. Altogether, these methods have significantly expanded the
controllability and reliability of diffusion-based generative models.

3 Methodology: MRCA

3.1 Problem Formulation

An instance segmentation model is trained using a training set D™% = {(x;,y;)}|,, where
x; is an image, y; is a set of annotations for the image x;, and T is the total number of images.

HGI'C, yi = {yi,j|yi,j = (bbi’j, mi g, clm])}“]ﬁ:‘l’ where bbiyj, mi j and Cij denote the bounding bOX,

segmentation mask, and class of the j-th object.

We aim to augment the original training set D" through data synthesis to increase data diversity,
rectify class imbalance, and enhance model generalization. To achieve this goal, a set of image
objects O%Y" = {o; | 0; = (I;,y;)}|2., is created using a generative model G with a given label
y; from the set of classes as well as a dichotomous segmentation model S, where B represents the
given budget of data synthesis. Two functionf] are internally used for this augmentation process
A(Dreal) = D9, as shown in Figure[2]

* Gen(B): It generates B image objects to compose O°¥"™, where the number of objects per class is
automatically determined by the learning progress of the instance segmentation model.

* Map-Paste(o): For each object o € O°¥™, it first selects the real image and annotations, (z,y) €
Dreel | that o will be pasted. Consequently, the mapping between objects and images, P, is
constructed. For each pair of an object and an image (o, (z,y)) € P, it then pastes o into = and
accordingly updates the corresponding set of annotations y. That is, it returns an augmentation
(2',y’) from (x,y) € D" and 0 € O*Y".

As a result, an augmented training set D9 = {(x},y%:)} |Z, is used instead of D"**!. Note that the
number of images is fixed to N whereas the number of annotations in these images is increased by B,
following the common convention [11} 37, 41]. It is also possible to expand the set of images that are
used for augmentation, and we leave it as a topic of future work.

2Auxiliary arguments (e.g., a generative model) of the functions are omitted for simplicity.
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Flgure 2: Inside of the multi-round collaborative augmentation with Gen(-) and Map -Paste(-). The
model guidance and class-wise metrics are delivered from the model of the previous round to the
copy-paste pipeline in the current round to optimize the Gen(-) and Map-Paste(-) processes.

Let’s consider two instance segmentation models trained on D% and D%, respectively. The
performance difference between these models on the test set D*¢*¢ indicates the quality(Q) of the data
augmentation. Therefore, the primary challenge is to find an augmentation process A g that maximizes
the quality of data augmentation within a specified budget B with respect to D™*!. Specifically, let
M7ee and M9 denote the instance segmentation models trained on D"* and D9, respectively,
and £ denote the loss function. Then, the objective is formalized as finding .4 5 such that

argAInax Q(Ap(D"*)) = argAInax{—E(w)y)NDmE(M““g (2),y) + E(w)y)NDmE(M’”e“l (x),¥)}
B B
ey

3.2 Multi-Round Collaborative Augmentation

To address the challenge, we propose the frame- Warm-up | Round 1 | Round N | Final Result
work of multi-round collaborative augmenta- =
tion (MRCA), which exploits the feedback from Segmentation
an instance segmentation model through mul- M i, R
tiple rounds. Figure[3|shows its overall proce- N

dure. MRCA consists of a warm-up stage and N L @ E@
rounds, where each round comprises one or sev- Rea Datok f ’
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real data and generating objects with no feed- ~~ Map-Paste()
back. After the warm-up stage or a round is
completed, the feedback from the instance seg-
mentation model is applied to both Gen(-) and Map-Paste(-) of the next round. Therefore, the instance
segmentation model and the object generator collaboratively augment the training data. See Appendix
[A7T]for the pseudocode of this augmentation pipeline.
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Figure 3: Multi-round collaborative augmentation.

For every round, the training of the instance segmentation model and the generation of image objects
are done simultaneously on multiple GPUs. However, the training is dependent on the generation
since the generated objects are required for the augmentation of the training set. To overcome the
delay caused by the dependency, the generated objects are passed to the next round for training. In
summary, at the round r, we generate objects with the feedback from the previous round » — 1 and
provide the generated objects to the next round r + 1.

Budget Constraint We set the generation budget B equal to the maximum number of generations
possible in the training time of each round. By doing so, both the generation and training steps can
overlap on different GPUs and thus are processed without delays.

Collaborative Augmentation Given the budget constraint, our main idea is to leverage feedback
from the instance segmentation model M during the augmentation process. The intuition is that the



model M holds valuable information that can help generate the most useful objects in Gen(-) and
guide optimal placement during Map-Paste(-), thereby using the budget more effectively. Employing
model feedback for generative data augmentation has been shown effective in classification tasks by
directly aligning augmentation with the model’s objective as in previous studies [1,134]. We formalize
this widely-accepted idea as Assumption [3.1| with specific conditions.

Assumption 3.1 (Collaborative Augmentation Improves Quality). Let A denote a data augmentation
applied to a dataset D, and let f4 denote the feedback from a model My trained on the dataset D.
Then, under the conditions of (C'1) sufficient model capacity, (C2) controlled distribution shift, and
(C3) proper feedback direction, the augmentation guided by f4 has higher quality than the unguided
augmentation. That is,

(CL) A (C2) A (C3) = QLA(Ds f4)) = Q(A(D)). @

Conditions for the Assumption We first define the information metric Zp (M) as a measure of
how well the model M, captures the distribution of the dataset D. It can be measured by the average

accuracy, i.e., Ip(My) = ﬁ > (wy)eD ﬁ > yey 1[39 € My(2) s.t. IoU(y, §) > 0.5].

* (C1) Sufficient model capacity: Model capacity can be represented by the empirical risk
Remp. Which is defined as the average loss £ over the dataset D. Formally, Ry, (My) =

ﬁ > (erynep L(Mg(x:),y:). To ensure that the model retains available learning capacity, the

AR ermp(M)
—a <0

* (C2) Controlled distribution shift: The knowledge gained through augmentation should surpass the

adverse effect of distribution shift caused by the augmentation. Formally, given the data distribution
, ) . dDrc1 (pol|p§7),)
pp and the model’s learned distribution p,; —over time ¢, ———7——=— < 0.

* (C3) Proper feedback direction: Given the information from the model My on the dataset D, the
feedback f4 should properly guide the augmentation process toward quality maximization. For
example, the feedback should be applied in the direction that increases diversity and uncertainty
of the dataset (proper direction), not decreasing them (improper direction). That is, [Zp (M) >

Ip(M] A (C3) = QA(D; f5)) = Q(A(D)).

Under the sufficient model capacity and controlled distribution shift conditions, the average accuracy
of the model M, on the dataset D increases through training according to the definitions. That is,
(C1) A (C2) — Ip(My) > Zp(0). Combining it with the proper feedback direction condition (C'3),
we obtain the overall guarantee that Q(A(D; fy)) > Q(A(D)) holds under these conditions.

Similarly, as the model is trained by the data with higher quality of augmentation, the quality of
the feedback from the model will increase accordingly. We incrementally formalize this concept as
Lemma[3.2]

empirical risk should be decreasing over time, i.e.,

Lemma 3.2 (Collaborative Augmentation with a Further Trained Model Improves Quality). Let A
be a data augmentation applied to a dataset D, and let f4, be the model feedback obtained from a
model trained for r rounds. Then, under Assumption[3.1|with the three conditions (C1, C2, and C3),
the augmentation guided by a further trained model fy _ provides higher quality than the one guided
by fs,_,. That is,

Q(A(D; f5.)) > Q(A(D; f,_,)), forr > 0. 3)

Proof. By Assumption [3.1] under sufficient model capacity (C'1) and controlled distribution shift
(C2), Ip(My,) > Ip(M,, ). Also, more information guides augmentation of higher quality under
proper feedback direction (C3), so (C'1) A (C2) A (C3) = Q(A(D; fp,)) > QA(D; fg,_,)). O

Multi-Round Augmentation = We further claim that applying feedback in multiple rounds is supe-
rior to a one-time feedback under certain conditions. The high-level idea is that iterative augmentation
incorporates feedback from a recently trained model instance, ensuring that the augmented data aligns
with the model’s evolving needs. We formalize this statement in Theorem 3.3

Theorem 3.3 (Multi-Round Collaborative Augmentation Improves Quality). Let A be a data aug-
mentation applied to a real dataset Dy = D", and let fe, denote the model feedback obtained



from a model My, trained on the dataset available at the round r. Consider a multi-round augmenta-
tion, where augmentation is performed over N rounds. The augmented dataset at the round r with
cumulative budget +; B is defined as

r— syn syn ]‘
Dy x5 =A1p(Do; fo, ,UiZ1 O""), forr=1,2,--- N, [O;""|= B @

Then, multi-round collaborative augmentation has higher quality compared to a single-round collab-
orative augmentation. That is,

Q(Dn,p) > Q(D1,5), for N >1. )
Proof. The detailed proof is provided in Appendix O

To ensure that the theoretical claims hold in practice, we specifically design MRCA to keep the
assumption better. First, we run the training process until the model validation accuracy saturates to
verify that the current round has more information than the previous round, Zp (My,.) > Ip(My, ).
While this statement is usually true since the model learns from newly generated objects, learning on
only a portion of the dataset sometimes leads to biases and information loss. Therefore, we train the
model for multiple epochs between rounds to incorporate the entire dataset. Second, the feedback
fe,. itself should be properly applied to the augmentation process toward the direction that maximizes
the quality of augmentation. Since the mechanism of how feedback improves augmentation quality
solely depends on its design, we explain the details of how each feedback guides the augmentation
process toward quality maximization in the next section.

3.3 Feedback on Object Generation

Class-Wise Budget Optimization Class-wise budget optimization dynamically adjusts the number
of synthetic objects for each class based on the model’s state. Specifically, the number of objects to

create for aclass ¢ € {1, , ¢;pas } at the round 7, B,.(c), is computed as
B 1
r<2:B,(c)= . , r>2:B(c)=0,(1—Ar_2.) [|Crege— Crsc 5 , (6)
max r—2,c

where C,. . is the classifier weight, A, . is the validation accuracy, and S, . is the number of objects
in the augmented training set. The scale factor o, scales the budget for each round so that the sum
of B,.(c) is equal to B. Eq. (0) targets generation on classes with low accuracy, low coverage, and
scarce data. It is straightforward how budget is weighed on classes with low validation accuracy and
a low number of training instances for sample efficiency. The classifier weight C, . is defined as the
weight vector corresponding to a class c in the final classification weight matrix at the round . The
classifier weight difference term ||Cy_2 . — Cy_3 .|| reflects how much the class has learned between
the rounds, indicating room for improvement. Therefore, we provide more budget to classes with
larger weight differences to maximize the learning efficiency.

The two-round gap between the left-hand term and the right-hand term in Eq. () results from two
factors. One round gap occurs because the generation uses metrics from the model trained on the
previous round. Another round gap is required to earn time for generating objects. This intentional
gap allows efficient pipelining of generation with feedback, resulting in minimal halts.

Feedback-Guided Object Generation To imbue each object with richer class information, we
incorporate feedback from the instance segmentation model M into the diffusion process. Specifi-
cally, the diffusion sampling is steered by the gradients of M with respect to our chosen criterion C.
By using entropy as the criterion, we synthesize objects that become progressively more difficult for
the model to learn over successive rounds. Mathematically, the diffusion process is conditioned as

Vo 10g poyw(zly) = Ve logpe(z) + Vi logp(ylr) + wVa.C(x,y, My), (7

where - is the scale of classifier guidance and w is the scale of feedback guidance. Compared to
previous work [1] on a classifier model, computing feedback guidance from an instance segmentation
model requires an additional technique. A general instance segmentation model produces multiple
objects’ bounding boxes and segmentation masks from a given image which cannot be directly used
for guidance. Fortunately, we aim to generate a single object per image in our method. Therefore,
we set the whole image as the box proposal and compute the remaining layers of the instance
segmentation model. The detailed algorithm is provided in Appendix



3.4 Feedback on Map-Paste of Objects

Recall the two stages of the Map-Paste process defined in Section [3.1] The first stage is Map, where
we create a set of mappings P between o € O%¥" and (z,y) € D"**. The second stage is Paste,
where each mapped object in (o, (z,y)) € P is scaled by s, which is adaptively determined by class
accuracy, and is pasted onto the mapped image to create the final augmented image (', y’). We aim
to maximize the learning of the instance segmentation task through optimizing each stage.

Quota-Balanced Unique Mapping Previous studies [37} 41]] adopt a purely random assignment
of synthetic objects to real images, P = {(o, (x,y)) | ¥(2,y) € D" o ~ Uniform(O%¥")}.
While random mapping serves as a strong baseline, it becomes suboptimal under a tight object
generation budget. Furthermore, random mapping hinders our class-wise budget optimization since
some generated objects may never be selected.

To address these limitations, we introduce quota-balanced unique mapping. In this scheme, once an
object o is drawn from the synthetic object pool O%¥™, it is removed so that each synthetic object
contributes exactly once toward its class quota. When O®Y" is exhausted, it is refilled with the initially
generated object pool. This scheme ensures that, across the entire augmentation process, each class is
represented according to its budget ratio prescribed in Section[3.3]

Accuracy-Based Object Resizing When pasting an object, existing approaches [37} 41]] draw
object size from the distribution of each class in the real dataset, i.e., s ~ N (g1, O'z), where u. and
o2 are the mean and variance of objects of a class ¢ in D"**!, While such an approach helps match
the overall scale between synthetic and real objects, it fails to boost learning for rare or low-accuracy
classes, since their typically smaller object sizes remain hard to distinguish and learn from.

To remedy this imbalance, we introduce a resizing scheme based on the validation accuracy of each
class. Specifically, objects from low-accuracy classes are scaled larger to enhance the visibility of
their features, thereby facilitating better feature extraction. In contrast, objects from high-accuracy
classes are generated at smaller scales to reduce their influence during training and prevent the model
from overfitting to already well-represented classes. This simple yet effective strategy balances the
contribution of each class by providing richer visual cues for underrepresented classes, enhancing the
model’s ability to recognize rare objects. The detailed algorithm is provided in Appendix [A.3]

4 Experiments

4.1 Experiment Settings

Datasets and Implementation Details Instance segmentation and object detection experiments
are mainly conducted on the LVIS v1.0 dataset [[18] as in the relevant literature, with supporting
experiments on the Pascal VOC dataset [10] and the Open Images V5 dataset [24]. CenterNet2 [39],
with a ResNet-50 [20]] backbone, is used as our main instance segmentation model, implemented
in Detectron2 [33]]. The Swin-L [27] backbone is also used for comparison with baseline methods.
Stable Diffusion 3 Medium [9] is used as our generation model, and BiRefNet [38] is used for
segmentation on the generated objects. After generation or segmentation, CLIP [29] is used to filter
out the low-quality objects whose score is smaller than 0.25.

Our model is trained for 10 rounds, with each round consisting of 9,000 iterations and a batch size
of 16. Our multi-round collaborative augmentation serves as the sole modification to the baseline
training pipeline. We evaluate performance using average precision (AP) for both bounding box
detection and instance segmentation while also analyzing results across different class frequencies
(rare, common, and frequent classes) as defined in LVIS. We use 8 NVIDIA GeForce RTX 3090
GPUs, where 4 GPUs are used for training the model, 3 GPUs for generating objects, and 1 GPU for
segmentation. Only for the Swin-L experiment, we use NVIDIA A40 GPUs instead to fit the model
in the GPU memory. To run both training and generation without waiting for another process, the
number of object generations per round is empirically set to 6 x 1203 (number of classes in LVIS).
Besides, v and w in Eq. (7)) are set to 5.0 and 0.03, respectively. Further details about the experiments
are provided in Appendix [C]

Compared Methods We compare our MRCA with strong generative copy-paste methods, in-
cluding X-Paste [37], BSGAL [41]], and DiverGen [11]. The numerical results of the baselines are
borrowed from the BSGAL and DiverGen papers owing to the same experiment settings.



4.2 Main Experiment Results

Table [T and Table[2]show the mean average precision (mAP) on the instance segmentation and object
detection tasks on the LVIS v1.0 dataset for the ResNet-50 [20] and Swin-L [27] backbones. The
superscripts “box” and “mask” denote the mAP for object detection and instance segmentation,
respectively. The subscripts “r”, “c”, and “f” signify rare, common, and frequent classes, respectively.
Overall, MRCA outperforms the state-of-the-art generative augmentation methods while generating
only 6% as many synthetic objects. These results indeed demonstrate the sample efficiency of MRCA,
because its multi-round collaborative augmentation delivers the most essential training data at the
appropriate time. Furthermore, the performance improvement for rare classes is more pronounced
than for other classes, because the rare classes receive superior treatment due to increased generation
budgets (§3.3]) and expanded space (§3.4). See Appendix [D]for augmented image examples.

Table 1: Comparison with the state-of-the-art methods using the ResNet-50 backbone.

Method | #Gen Objects | APPox  Apmask  Apbox ppmask  pApbox ppmask  pAppox Appask
No Aug. 0 31,50 2820 2260 2020 2930 2670 3780  33.40
ae X-Paste 1200k 3420 3039 2433 2221 3323 2957 39.63  34.89
X-Paste + CLIP 1200k 3435 3070 2599 2438 3283 2941 39.71 34.92
BSGAL 1200k 3540 3156  27.95 2543 3414  30.56 4007 3537
MRCA 72k 3556 31.81 2814 2593 3433 3086  40.18 3544
Table 2: Comparison with the state-of-the-art methods using the Swin-L backbone.
Method | # Gen Objects | APPox  Apmask  Apbox ppmask  pApbox ppmask pApbox Apmask
No Aug. 0 4743 4230 4100 3675 4753 4310 5014 43.83
X-Paste 1200k 49.57 4385 4487  39.66 4974 4464 5146  44.82
X-Paste + CLIP 1200k 49.80 4451 4528 4062 4933 4496 5230  45.72
BSGAL 1200k 5047 4485 4755 4237 5043 4547 5179 4526
DiverGen 1200k 5124 4548  50.07 4585 5133 4583 5164 4496
MRCA 72k 51.80 4591 5158 4684  51.86 4631  51.84  45.05

4.3 Ablation Study and Further Analysis

Effect of the Feedback on Generation and Table 3: Ablation on the components of MRCA.
Map-Paste The ablation study is conducted  Ciass Budget Model Gradient Resizing] APPox  Apmask  Apbox  Apmask

on the feedback components: class-wise budget v 3486 3133 2747 2491
o« e . . . v 35.04 31.14 27.13 24.28
optimization, model gradient-based generation, | 3401 310 2752 2489
. .- . v v 35.15 31.42 26.54 2435

and object resizing. We apply each component v v v | 356 3181 2814 2593

individually and collectively in a multi-round
manner to confirm its efficacy. Table[3]shows that each individual component contributes to perfor-
mance gain without interfering with other components.

Effect of the Class-Wise Budget Optimization Table 4: Ablation on the components of class-wise
Components  We also conduct a fine-grained  budget optimization.

ablation study on class-wise budget optimization  Numberof Validation Classifier

while keeping other main methods (model gra- ~ ©bigets  Accumey Welght | APP ARTSE APRT APREE
dient and resizing) enabled, as shown in Table 3501 3135 2736 2502
@] When using only the number of objects, we v , PHNL BEBE
observe notable improvements for rare classes. - v v 3556 3181 2814 2593

The validation accuracy term further supports common and frequent classes with low accuracy.
Nonetheless, some low-accuracy classes continue to produce similar objects across rounds. To
mitigate this issue, we incorporate the classifier weight, which reflects whether gradient feedback is
being updated over rounds. As evidenced by the improvements in the result, both validation accuracy
and classifier weight contribute effectively as intended.

Effect of the Generation Model In Table[5] Table 5: Effect of the generation model.

we compare the performance when using differ- “yieihod | APPex  APmesk  APbox  APmak
ent generatw; mo@els, Stabl@: Diffusion 1.5 [30] BSGAL (SD 1.5) | 34.82 3121 2676 2484
and Stable Diffusion 3 Medium [9]]. The hyper-  MRCA (SD 1.5) | 35.12 31.38 27.42 2521
parameters of the diffusion models are set equal, MRCA (SD 3) 3556 3181 2814 2593
with classifier guidance scale as 5.0, generation

step as 30, and image resolution as 512x512. The recent version of Stable Diffusion generates
higher-quality objects, leading to better results. When using the same version, Stable Diffusion 1.5,
the superiority of MRCA over BSGAL is still maintained in terms of the mAP for all and rare classes.




Effect of the Number of Rounds We investigate the effectiveness of applying feedback in a
multi-round manner in Table[6] The number of training rounds is adjusted from 1 to 30, given a fixed
number of total training iterations. As shown in Theorem [3.3] when the number of rounds increases
from 1 to 10, the quality of instance segmentation and object detection improves, indicating that the
quality of the augmentation improves accordingly. Over 10 rounds, however, the performance drops
because the model does not learn sufficiently between the short training rounds; that is, a single round
is unable to cover a whole epoch over in such conditions.

Table 6: Effect of the number of rounds with a fixed number of total training iterations.

# of Rounds ‘ # Gen Objects ‘ APpPox  Apmask  ppbox  pApmask  pApbox  ppmask  pApbox A pmask
1 72k 34.79 31.17 27.64 24.63 33.11 30.09 39.81 35.25
2 72k 34.96 31.09 27.33 24.35 33.28 29.90 40.19 35.39
5 72k 35.09 31.38 26.16 24.04 33.76 30.44 40.39 35.54
10 72k 35.56 31.81 28.14 25.93 34.33 30.86 40.18 35.44
20 72k 34.96 31.46 27.81 24.85 33.48 30.55 39.76 35.38
30 72k 34.81 31.13 26.86 24.49 33.45 30.14 39.82 35.15

Effect of the Curriculum Learning The pro-

Table 7: Effect of the curriculum learning.

posed MRCA generates objects and trains with  “pehoa [ APbox  ppmak  Apbox  Apmask
the curriculum divided by rounds. To check the  “MrcA (wo. curriculum) | 3523 3127 2828 2546
effect of the curriculum learning strategy, we _MRCA (w.curriculum) | 3556 3181  28.14  25.93

separately train a model from scratch given the

objects generated over all rounds of MRCA. Table [/|shows the difference depending on the existence
of the curriculum learning. Although training without the curriculum has more object quantity at the
beginning, the performance becomes lower in most cases. This result suggests that while the objects
generated by MRCA can be used for the input to any training pipeline, the optimal strategy is to use
the curriculum learning strategy provided by our method.

Analysis on the Generation Budget In pre-
vious experiments, we empirically chose a gen-
eration budget B of 72k to efficiently pipeline
our generation and training processes, ensuring
no bubbles. This additional test examines the
effect of larger budgets on the mAP as well as the training time excluding the warm-up stage. Table|[§]
shows that the training time is proportional to the number of object generations, because multi-round
training needs to wait for the object generation to be used for augmentation. Only a small performance
improvement is observed with an increased generation budget, decreasing the sample efficiency. This
limitation of low scalability is further discussed in Appendix [E]

Table 8: Analysis on the generation budget.
# Gen Objects | Training Time | APPox  Apmask  Apbox  Apmask
36k ‘ 30h 34.82 31.21 26.76 24.84

72k 34h 35.56 31.81 28.14 25.93
144k 63h 35.58 31.84 28.51 25.99

Analysis on the Feedback Guidance Scale

Table 9: Analysis on the feedback guidance scale.
The feedback guidance scale, w in Eq. , has

it ) - ' w ‘ APbox APmask APbox APmask
a significant impact on the image quality. Table £ z
[] supports that feedback guidance can largely ~ 001 | 34.87 30.95 26.90 23.83
affect the generated image quality. The default ggg ‘;’igg ‘;’}% %g;: %gg‘;’
value w = 0.03 usually offers the best perfor- 010 | 3425 3042 2398 93

mance. The performance drops significantly for
a large w because excessively large model guidance overwhelms the trained diffusion denoising
gradients. Its effective range can be quickly identified with qualitative analysis, as a high w produces
unnatural artifacts, while a low w results in images nearly identical to unguided outputs.

Analysis on the Classifier Guidance Scale Table 10: Analysis on the classifier guidance scale.
Table[T0|presents the effect of the classifier guid-

box mask box mask
ance scale, v in Eq. (7). A higher v amplifies the 7 | AP AP AP, AP;
influence of the conditioning signal (e.g., text 3.0 | 35.21 31.35 26.59 24.33
prompt or class label) on the generation process, -0 | 35.56 31.81 28.14 25.93
7.0 | 35.32 31.58 26.89 24.68

which strengthens fidelity and prompt alignment
but pushes samples toward a narrower region of
the data distribution, thus reducing diversity among outputs. Conversely, when 7 is too low, the
diffusion model behaves closer to its unconditional form. Therefore, the generated samples exhibit
higher variability but lower fidelity and semantic accuracy, leading to visibly degraded quality. The
default value of 5.0, which has been adopted in prior studies [37, 411, is also found to be effective in
our experiments by stabilizing the tradeoffs.




Experiments on Additional Datasets We Table 11: Object detection on VOC 2012 and in-
conduct only object detection on Pascal VOC  stance segmentation on Open Images V5 long-tail.

2012m bcmause the a.mnotatlons Only sup- Pascal VOC 2012 Open Images V5 (long tail)
port semantic segmentation. For Open Images  Method | AP®® AP™ AP | APPe™ Apmask

V5 [24], due to the large size of the dataset, No Aug. ‘ 68.45 4935 44.89 | 4597 36.53

we use a pareto sampling method from previ- _MRCA | 7216 5508 5085 | 47.10 37.30

ous work [32] to create its long-tailed version.

Again, MRCA boosts the performance through our novel data augmentation pipeline in these datasets.

4.4 Qualitative Analysis

Round-Wise Object Visualization and Entropy  Figure[d visualizes a portion of generated objects
and their average entropy for each round. As shown in Figure@a] the generated objects maintain their
class characteristics over all rounds. We assess the entropy of objects with respect to two instances of
the model: (1) the warmed-up model instance, which is trained solely on real training data, and (2)
the feedback model instance, which is the model that guides the generation of the synthetic images
in the corresponding round. Given that the guidance scale is constant, the entropy (uncertainty)
respect to the feedback model M, remains similar across rounds, as shown in Figure@l However,
from the perspective of the initial model My, the feedback received from more advanced models
in subsequent rounds results in the generation of increasingly uncertain or challenging objects, as
depicted in Figure 4c| This tendency is also evident when examining the average entropy across all
classes in Figure ﬁOVerall, MRCA forms an effective easy-to-hard curriculum.

Ny 2"
Dove ey j
Dragonfly T = Y

Dustpan

\B )
Round0 Round1 Round2 Round3 Round4 Round5 Round6 Round7 Round8 Round9

(a) Examples of generated objects for each round.

w
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—— Dustpan
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(b) Mean entropy of objects respect (c) Mean entropy of objects respect (d) Class average entropy respect to
to the feedback model (M,.). to the warm-up model (Mg, ). the warm-up and feedback models.

Figure 4: Examples of generated objects for each round (a), with their class-wise entropy respect to
the feedback model (b), the warm-up model (c), and their comparison over average of all classes (d).

5 Conclusion

The proposed multi-round collaborative augmentation (MRCA) framework enables generating objects
that are continuously more informative to the instance segmentation model with a considerably small
amount of data generations (e.g., 6%). The instance segmentation model consistently guides the
diffusion generation process to create objects that elicit greater uncertainty from the model, hence
generating more informative samples, while employing class-wise budget optimization to determine
the appropriate number of generations for each class. Then, accuracy-based scaling effectively
places the generated objects in real images to focus on learning of rare classes. Experiment results
demonstrate that MRCA outperforms the state-of-the-art generative copy-paste augmentation methods
for instance segmentation. In conclusion, we assert that the MRCA framework presents a highly
promising avenue for enhancing the performance of instance segmentation.

10



Acknowledgements

This work was supported by Institute of Information & Communications Technology Planning &
Evaluation (IITP) grant funded by the Korea government (MSIT) (No. RS-2020-11200862, DB4DL.:
High-Usability and Performance In-Memory Distributed DBMS for Deep Learning, 50% and No. RS-
2025-25410841, Beyond the Turing Test: Human-Level Game-Playing Agents with Generalization
and Adaptation, 50%).

References

(1]

2

—

3

—

(4]

[5

—

[6

—

[7

—

[8

—

[9

—

(10]

(11]

(12]

(13]

(14]

[15]

Reyhane Askari-Hemmat, Mohammad Pezeshki, Florian Bordes, Michal Drozdzal, and Adriana Romero-
Soriano. Feedback-guided data synthesis for imbalanced classification. arXiv preprint arXiv:2310.00158,
2023.

Arpit Bansal, Hong-Min Chu, Avi Schwarzschild, Soumyadip Sengupta, Micah Goldblum, Jonas Geiping,
and Tom Goldstein. Universal guidance for diffusion models. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), pages 843-852, 2023.

Yoshua Bengio, Jérome Louradour, Ronan Collobert, and Jason Weston. Curriculum learning. In
Proceedings of the International Conference on Machine Learning (ICML), pages 41-48, 2009.

Zhaowei Cai and Nuno Vasconcelos. Cascade r-cnn: High quality object detection and instance segmenta-
tion. IEEE Transactions on Pattern Analysis and Machine Intelligence, 43(5):1483-1498, 2019.

Kai Chen, Enze Xie, Zhe Chen, Yibo Wang, Lanqing Hong, Zhenguo Li, and Dit-Yan Yeung. Geodiffusion:
Text-prompted geometric control for object detection data generation. arXiv preprint arXiv:2306.04607,
2023.

Prafulla Dhariwal and Alexander Nichol. Diffusion models beat gans on image synthesis. Proceedings of
the Conference on Neural Information Processing Systems (NeurlPS), 34:8780-8794, 2021.

Lisa Dunlap, Alyssa Umino, Han Zhang, Jiezhi Yang, Joseph E Gonzalez, and Trevor Darrell. Diversify
your vision datasets with automatic diffusion-based augmentation. Proceedings of the Conference on
Neural Information Processing Systems (NeurIPS), 36:79024-79034, 2023.

Debidatta Dwibedi, Ishan Misra, and Martial Hebert. Cut, paste and learn: Surprisingly easy synthesis
for instance detection. In Proceedings of the IEEE International Conference on Computer Vision (ICCV),
pages 1301-1310, 2017.

Patrick Esser, Sumith Kulal, Andreas Blattmann, Rahim Entezari, Jonas Miiller, Harry Saini, Yam Levi,
Dominik Lorenz, Axel Sauer, Frederic Boesel, et al. Scaling rectified flow transformers for high-resolution
image synthesis. In Proceedings of the International Conference on Machine Learning (ICML), 2024.

Mark Everingham, Luc Van Gool, Christopher KI Williams, John Winn, and Andrew Zisserman. The
pascal visual object classes (voc) challenge. International Journal of Computer Vision, 88:303-338, 2010.

Chengxiang Fan, Muzhi Zhu, Hao Chen, Yang Liu, Weijia Wu, Huaqi Zhang, and Chunhua Shen. Divergen:
Improving instance segmentation by learning wider data distribution with more diverse generative data. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pages
3986-3995, 2024.

Lijie Fan, Kaifeng Chen, Dilip Krishnan, Dina Katabi, Phillip Isola, and Yonglong Tian. Scaling laws of
synthetic images for model training... for now. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), pages 7382-7392, 2024.

Haoyang Fang, Boran Han, Shuai Zhang, Su Zhou, Cuixiong Hu, and Wen-Ming Ye. Data augmentation
for object detection via controllable diffusion models. In Proceedings of the IEEE/CVF Winter Conference
on Applications of Computer Vision, pages 1257-1266, 2024.

Chengjian Feng, Yujie Zhong, Zequn Jie, Weidi Xie, and Lin Ma. Instagen: Enhancing object detection
by training on synthetic dataset. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), pages 14121-14130, 2024.

Golnaz Ghiasi, Yin Cui, Aravind Srinivas, Rui Qian, Tsung-Yi Lin, Ekin D Cubuk, Quoc V Le, and Barret
Zoph. Simple copy-paste is a strong data augmentation method for instance segmentation. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pages 2918-2928,
2021.

11



(16]

(17]

(18]

[19]

[20]

(21]

[22]

(23]

[24]

[25]

(26]

[27]

(28]

[29]

(30]

(31]

(32]

(33]

(34]

Ross Girshick. Fast r-cnn. In Proceedings of the IEEE International Conference on Computer Vision
(ICCV), pages 1440-1448, 2015.

Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra Malik. Rich feature hierarchies for accurate
object detection and semantic segmentation. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), pages 580-587, 2014.

Agrim Gupta, Piotr Dollar, and Ross Girshick. Lvis: A dataset for large vocabulary instance segmentation.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pages
5356-5364, 2019.

David S Hayden, Mao Ye, Timur Garipov, Gregory P Meyer, Carl Vondrick, Zhao Chen, Yuning Chai, Eric
Wolff, and Siddhartha S Srinivasa. Generative data mining with longtail-guided diffusion. arXiv preprint
arXiv:2502.01980, 2025.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pages
770-778, 2016.

Kaiming He, Georgia Gkioxari, Piotr Dolldr, and Ross Girshick. Mask r-cnn. In Proceedings of the IEEE
International Conference on Computer Vision (ICCV), pages 2961-2969, 2017.

Jonathan Ho and Tim Salimans. Classifier-free diffusion guidance. arXiv preprint arXiv:2207.12598,
2022.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Proceedings of the
Conference on Neural Information Processing Systems (NeurlPS), 33:6840-6851, 2020.

Ilya Krylov, Sergei Nosov, and Vladislav Sovrasov. Open images v5 text annotation and yet another mask
text spotter. In Proceedings of the Asian Conference on Machine Learning, pages 379-389, 2021.

Yuheng Li, Haotian Liu, Qingyang Wu, Fangzhou Mu, Jianwei Yang, Jianfeng Gao, Chunyuan Li, and
Yong Jae Lee. Gligen: Open-set grounded text-to-image generation. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), pages 22511-22521, 2023.

Yijun Liang, Shweta Bhardwaj, and Tianyi Zhou. Diffusion curriculum: Synthetic-to-real generative
curriculum learning via image-guided diffusion. arXiv preprint arXiv:2410.13674, 2024.

Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining Guo.
Swin transformer: Hierarchical vision transformer using shifted windows. In Proceedings of the IEEE
International Conference on Computer Vision (ICCV), pages 10012-10022, 2021.

Jiangmiao Pang, Kai Chen, Jianping Shi, Huajun Feng, Wanli Ouyang, and Dahua Lin. Libra r-cnn:
Towards balanced learning for object detection. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 821-830, 2019.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish
Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual models from
natural language supervision. In Proceedings of the International Conference on Machine Learning
(ICML), pages 8748-8763, 2021.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Bjorn Ommer. High-resolution
image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), pages 10684-10695, 2022.

Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. arXiv preprint
arXiv:2010.02502, 2020.

Tong Wu, Qingqiu Huang, Ziwei Liu, Yu Wang, and Dahua Lin. Distribution-balanced loss for multi-label
classification in long-tailed datasets. In Proceedings of the European Conference on Computer Vision
(ECCV), pages 162-178, 2020.

Yuxin Wu, Alexander Kirillov, Francisco Massa, Wan-Yen Lo, and Ross Girshick. Detectron2. https:
//github.com/facebookresearch/detectron2, 2019.

Teresa Yeo, Andrei Atanov, Harold Benoit, Aleksandr Alekseev, Ruchira Ray, Pooya Esmaeil

Akhoondi, and Amir Zamir. Controlled training data generation with diffusion models. arXiv preprint
arXiv:2403.15309, 2024.

12


https://github.com/facebookresearch/detectron2
https://github.com/facebookresearch/detectron2

[35]

(36]

(37]

(38]

(39]

(40]

(41]

Sangdoo Yun, Dongyoon Han, Seong Joon Oh, Sanghyuk Chun, Junsuk Choe, and Youngjoon Yoo.
Cutmix: Regularization strategy to train strong classifiers with localizable features. In Proceedings of the
IEEE International Conference on Computer Vision (ICCV), pages 6023-6032, 2019.

Lvmin Zhang, Anyi Rao, and Maneesh Agrawala. Adding conditional control to text-to-image diffusion
models. In Proceedings of the IEEE International Conference on Computer Vision (ICCV), pages 3836—
3847, 2023.

Hanging Zhao, Dianmo Sheng, Jianmin Bao, Dongdong Chen, Dong Chen, Fang Wen, Lu Yuan, Ce Liu,
Wenbo Zhou, Qi Chu, et al. X-paste: Revisiting scalable copy-paste for instance segmentation using clip
and stablediffusion. In Proceedings of the International Conference on Machine Learning (ICML), pages
42098-42109. PMLR, 2023.

Peng Zheng, Dehong Gao, Deng-Ping Fan, Li Liu, Jorma Laaksonen, Wanli Ouyang, and Nicu Sebe.
Bilateral reference for high-resolution dichotomous image segmentation. arXiv preprint arXiv:2401.03407,
2024.

Xingyi Zhou, Vladlen Koltun, and Philipp Krihenbiihl. Probabilistic two-stage detection. arXiv preprint
arXiv:2103.07461,2021.

Jingyuan Zhu, Shiyu Li, Yuxuan Andy Liu, Jian Yuan, Ping Huang, Jiulong Shan, and Huimin Ma. Odgen:
Domain-specific object detection data generation with diffusion models. Proceedings of the Conference on
Neural Information Processing Systems (NeurlPS), 37:63599-63633, 2025.

Muzhi Zhu, Chengxiang Fan, Hao Chen, Yang Liu, Weian Mao, Xiaogang Xu, and Chunhua Shen.

Generative active learning for long-tailed instance segmentation. In Proceedings of the International
Conference on Machine Learning (ICML). PMLR, 2024.

13



A Algorithm Pseudocode

A.1 Multi-Round Collaborative Augmentation Pipeline

The overall procedure of MRCA is explained in Algorithm [I| composed of two phases: the warm-up
phase and the multi-round phase. At the warm-up phase, the instance segmentation model My is
trained with real training data in parallel with the generation of objects by G. When both processes
terminate, the multi-round phase starts. Similar to the warm-up phase, the multi-round phase also
undergoes parallel training and generation. The difference lies in applying the feedback from the
previous round’s model to both object generation and training data augmentation. For the final round,
the object generation does not proceed since there are no more training rounds left to use them.
Eventually, MRCA returns the trained instance segmentation model and the set of generated objects.

Algorithm 1 Multi-round collaborative augmentation pipeline

1: Given instance segmentation model M, parametrized by ¢ at a round r that creates feedback
fo. object generator G, real training data Dy = Drealtotal round N

2: Do in parallel > Warm-up phase
3: Train My, ., on Dy — Mgy,

4: Generate objects by G with no feedback — O7"

5: end

6: forr =1to N do > Multi-round phase
7: Do in parallel

8: Augment Dy with Ul_, O;Y" and feedback fy, , — D,, Train My, , on D, — M,
9: if » # N then
10: Generate objects by G with feedback fy4, _, from My, — O¥"

11: end if
12: end
13: end for

14: Return trained instance segmentation model My, generated objects UY ; O;¥"

A.2 Diffusion with Feedback from the Instance Segmentation Model

The feedback-guided diffusion-based object generation is explained by two hierarchical algorithms.
At a higher level, Algorithm 2] describes where the feedback is applied in the diffusion process. A
general diffusion process is composed of multiple denoising steps, where the scheduled denoising is
applied sequentially. We apply the feedback guidance selectively after the scheduled denoising to
keep the uncertainty in range so that the generated images remain in the context of the input class. In
our experiments, the feedback guidance is applied every 5 steps out of 30 steps, for a total of 6 times
per image. The hyperparameter w in Line 6 is set to 0.03.

Algorithm 2 Denoising the diffusion model with a criterion function

1: Given stable diffusion model latent state z;, denoising U-Net €y with scheduler o (t), conditioning
T, stable diffusion vae decoder vge., instance segmentation model My, scale of feedback
guidance w, and criterion function C

2: for each step ¢t from T to 1 do

3: € =eg(zt,t,79) > Predict noise
4: zi_1 =z —o(t)é > Denoise according to the scheduler
5: if ¢ is step for object detector feedback then

6: zi—1 = zj_1 —wC(2z{_1, My, vgec) > Apply instance segmentation model’s feedback
7: else

8: Zt-1 = 2p_4

9: end if

0: end for

1:

—_—

Return denoised latent state z
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Algorithm [3]explains in more detail how the instance segmentation model and the criterion function
compute the gradients for the diffusion model. The key idea is setting the whole image as the object
proposal for extracting the features, since we generate a single object per image. Lines 2—5 explain
the criterion function computation line by line.

Algorithm 3 Applying the criterion function to the instance segmentation model

1: Given intermediate stable diffusion model latent state z;_,, stable diffusion vae decoder v4e.,
instance segmentation model M consisting of backbone(feature extractor) by and classifier cg,
and criterion function C

2: T4—1 = Vdee(2i_1) > Create an image from latent variable
3: feat = by(&4—1) > Extract features from detector’s backbone
4: logits = cy(feat(prop)) > With whole image as proposal, classify corresponding features
5: grads = C(logits, z;_4) > Calculate gradients respect to criterion function
6: Return gradients on latent state grads

A.3 Object Resizing Based on Class-Wise Evaluation

Algorithm @ provides a more detailed explanation of the resizing method. Given the average
precision A. of a specific class, we assign a scale factor to a class, which will cause its objects to
be resized in accordance with the scale factor. For three values of A., 0%, A (mean), and 100%,
A, = 0% — scale = spmaz, Ace=A— scale=1, A.=100% — scale = ﬁ For other
values of A., we linearly interpolate in log scale.

Algorithm 4 Computing a scale factor based on average precision (AP)

1: function COMPUTE_SCALE_FACTOR(A., A)

2: Input: A, (Average precision of a class ¢), A (Mean average precision of all classes), S;qz
(Maximum scale)
3: Output: Computed scale factor
> Log scale values for interpolation
4:  log_scale_min <+ In(s2,,,) > Scale at A, = 0%
5: log_scale_max <« In (%) > Scale at A. = 100%

~ > Piecewise linear interpolation in log scale
if A. < A then

6
7: log_scale < log_scale_min (A_AAC)
8: else
9: log_scale < log_scale_max (1%‘6:’%)
10: end if
11: return scale = exp(log_scale)

12: end function

B Proof of Theorem 3.3

We begin by expressing the quality of the final dataset in the multi-round setting
Q(Pn.5) = Q (Ay 5(Do: fo, -, U O ®)

Consider the %B objects created at a round 7. Since the feedback from the recent model fy, , is
more informative than fy,_,, Zp(My, ,) > Ip(My, ), by Lemma

Q (A 5(D0: fo, .U OF) 2 Q (Ag 5(Poi fo, 0 UZTOM™). ©)
Similarly, continuing for %B objects atrounds r — 1,7 —2,--- |1,
Q (Az 5P fo, ., UZEOM™)) = Q (Ag 5(Dos o, VIO (10)
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Q (Ax2 (Do fir, OF") = Q (Ag 5(Dos fo, D)) an

By multiplying all inequalities from Eq. () to Eq. (TT),
Q (A 5(Do: f5, .U OPM) = Q (Ag 5(Doi fo,0)) (12)
= Q(Dx.5) = Q(Dy.5). (13)

C More Details for Experiments

Object Edge Smoothing When pasting objects, we do not employ any methods for smoothing
object edges, such as Gaussian blurring or alpha/Poisson blending. Based on previous work [[15] and
our own evaluation, the edge handling methods have no significant effect on the overall performance.

Reason for Using the ResNet Backbone Since the overall performance trend remains consistent
across different backbone models (ResNet and Swin-L), we choose a lighter model to enable more
extensive ablation studies within a given time. Notably, the performance improvement reported in
Table[T] and Table 2]is even larger when using the Swin-L backbone, supporting that our ResNet-
based ablation results do not overstate the effectiveness of MRCA. The ResNet backbone is more
memory-efficient and can be trained on a 24GB RTX 3090, whereas the Swin-L backbone requires a
higher-memory setup, such as a 48GB A6000 or larger. We believe that both models are important, as
they represent a trade-off between model size and performance, which is an important consideration
for practical deployment, particularly in on-device scenarios.

Overlap of Augmented Objects The augmented objects can be overlapped in our experiment
setting. When an object is overlapped, its object mask is adjusted to eliminate the obscured portion.
This scheme is a common practice in the relevant studies [7} 137, 41]].

Unrealistic Augmented Objects Our approach follows the line of research established by X-
Paste [|37]], BSGAL [41]], and DiverGen [[11]], which leverage synthetically generated, often unrealistic,
map-pasted images to improve performance. While the augmented images may not share the same
distribution as the original images in terms of object size, they still contribute positively to instance
segmentation performance by incorporating knowledge from the generation model. The MRCA
framework further enhances this effect by explicitly optimizing both object generation and pasting
strategies. It is worth noting that the use of visually unrealistic images for data augmentation has
been widely observed to be effective in improving downstream performance. For instance, also in
image classification, CutMix [35]] often produces implausible examples such as images featuring a
cat’s head on a dog’s body.

D Visualization of Augmented Images

We visualize some of the augmented images in Figure[5] During training, we paste 1-3 generated
objects onto an image from the real LVIS training set. We keep the number of pasted objects small to
minimize the deviation in the average number of objects per image compared to real images. The
sizes of the objects are managed with our accuracy-based resizing scheme (§3.4). For example, in the
first image, the class “cockroach” has low accuracy, and therefore an object of that class is pasted
with a larger size compared to its actual size from real images.

E Limitations

The current implementation of MRCA shows low scalability, meaning that generating more objects
with the current framework does not lead to a large increase in performance. This downside is due
to our method’s focus on uncertainty, which is effective in generating small-scale datasets since
there is a low chance of overlap between objects. However, generating large-scale datasets without
a diversity-focused method may generate similar objects, resulting in low scalability. Increasing
the diversity of the generated objects effectively addresses the scalability issue, as reducing overlap
between objects allows for the acquisition of more information. DiverGen [[L1], a prior study that
focuses on the diversity of the generated dataset, supports our earlier argument with scalable results.
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Figure 5: Examples of augmented images.

Furthermore, the current framework only works with a single generator to efficiently use feedback.
Previous studies, such as BSGAL [41]] and DiverGen [[11]], demonstrate that using multiple generation
models for generating objects can enhance data quality by increasing diversity. Therefore, employing
multiple generation models in our multi-round augmentation framework remains a future task. Such
an approach can increase diversity in another dimension, as well as solve the scalability issue.

We also note that scaling of rare classes can lead to undesirable effects in domains where object size
carries critical contextual meaning. For instance, in medical imaging or other domains with consistent
scales, resizing objects may distort important spatial cues and disrupt the natural size distribution.
To mitigate such risks, resizing strategies should ideally be avoided or applied only within narrow
bounds when using MRCA in these settings. However, in real-world image datasets such as LVIS [18]],
PASCAL [10], and OpenImages [24], where object scales vary greatly even within the same category,
we did not observe notable negative impacts on detection performance. By carefully constraining
the maximum scaling coefficient, we ensured that objects did not become unnaturally large or small
while maintaining overall realism. Moreover, as the representation of rare classes improves through
successive training rounds, their resulting scale distribution tends to align more closely with natural
proportions, further reducing the potential adverse effects of scaling.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The main claims are clearly provided in the abstract and introduction of the
paper with its scope.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The limitations are provided at a separate appendix section.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
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Justification: The assumptions and theorems are completely provided.

Guidelines:

The answer NA means that the paper does not include theoretical results.

All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

All assumptions should be clearly stated or referenced in the statement of any theorems.
The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: All the details are provided in the experiment section and the attached appendix.

Guidelines:

The answer NA means that the paper does not include experiments.
If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]
Justification: The code for data generation and training and testing are provided.
Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/public/
guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run
to reproduce the results. See the NeurIPS code and data submission guidelines (https:
/Mmips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The training and test details are provided in the experiment section and the
appendix.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

 The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:

Justification: This paper does not provide error bars, but we conduct extensive experiments
over many ablation settings.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).
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8.

10.

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The compute resources and their training time are provided in the experiment
section.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: This paper is conducted under the guidance of Code Of Ethics.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]
Justification: The societal impact of this paper is intractable.
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

21


https://neurips.cc/public/EthicsGuidelines

11.

12.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: This paper do not release data or models that pose such risks.
Guidelines:

» The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: This paper uses LVIS v1.0, Pascal VOC 2012, OpenlmagesV5 datasets, Stable
Diffusion 1.5 and 3 generation models, Detectron2 and X-paste code, and properly cite
them.

Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the package
should be provided. For popular datasets, paperswithcode.com/datasets has curated

licenses for some datasets. Their licensing guide can help determine the license of a
dataset.

22


paperswithcode.com/datasets

13.

14.

15.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

« If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: This paper do not introduce any new assets.
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subject.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: This paper does not involve crowdsourcing nor research with human subject.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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16. Declaration of LLLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification: This paper does not involve LLM as our core method development.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM) for what
should or should not be described.

24


https://neurips.cc/Conferences/2025/LLM

	Introduction
	Related Work
	Methodology: MRCA
	Problem Formulation
	Multi-Round Collaborative Augmentation
	Feedback on Object Generation
	Feedback on Map-Paste of Objects

	Experiments
	Experiment Settings
	Main Experiment Results
	Ablation Study and Further Analysis
	Qualitative Analysis

	Conclusion
	Algorithm Pseudocode
	Multi-Round Collaborative Augmentation Pipeline
	Diffusion with Feedback from the Instance Segmentation Model
	Object Resizing Based on Class-Wise Evaluation

	Proof of Theorem 3.3
	More Details for Experiments
	Visualization of Augmented Images
	Limitations

