Under review as a conference paper at ICLR 2026

LLANGUAGE MODELS ARE INJECTIVE
AND HENCE INVERTIBLE

Anonymous authors
Paper under double-blind review

ABSTRACT

Transformer components such as non-linear activations and normalization are in-
herently non-injective, suggesting that different inputs could map to the same out-
put and prevent exact recovery of the input from a model’s representations. In
this paper, we challenge this view. First, we prove mathematically that trans-
former language models mapping discrete input sequences to their corresponding
sequence of continuous representations are injective and therefore lossless, a prop-
erty established at initialization and preserved during training. Second, we confirm
this result empirically through billions of collision tests on six state-of-the-art lan-
guage models, and observe no collisions. Third, we operationalize injectivity: we
introduce SIPIT, the first algorithm that provably and efficiently reconstructs the
exact input text from hidden activations, establishing linear-time guarantees and
demonstrating exact invertibility in practice. Overall, our work establishes injec-
tivity as a fundamental and exploitable property of language models, with direct
implications for transparency, interpretability, and safe deployment.

1 INTRODUCTION

A core question in understanding large language
models is whether their internal representations
faithfully preserve the information in their inputs.
Since Transformer architectures rely heavily on non-

linearities, normalization, and many-to-one atten- \/ oz
tions mechanisms, it is often assumed that they dis- SIPIT E

card information: different inputs could collapse to |:|

the same hidden state, making exact recovery of
the input impossible. This view motivates concerns
around transparency, robustness, and safe deploy-
ment, as it suggests that the link between text and Figure 1: The map from prompts to latent
representation is inherently lossy. space is injective. SIPIT inverts it.

PROMPT SPACE LATENT SPACE
LLM 4

60>0 = >0

In this paper, we show that this intuition is misleading. Despite their apparent complexity, standard
decoder-only Transformer language models (seen as maps from prompts to hidden states) are in
fact almost-surely injective; for essentially all parameter settings and during the course of training,
different prompts yield different last-token representations (e.g., see Figure 1).

Building upon this property, we further provide a practical algorithm, SIPIT, that reconstructs the
exact input from hidden activations. To our knowledge, it is the first to guarantee exact recovery in
provable linear time (worst case bound), often faster in practice, turning injectivity from a theoretical
property into an operational tool.

Our approach. To establish our result, we take a rigorous mathematical view of Transformers
as functions. The key idea is that their components (embeddings, LayerNorm, causal attention,
MLPs, and residual wiring) are smooth and structured enough that the model, as a whole, behaves
predictably with respect to its parameters. Using tools from real analysis, we show that collisions
(two different prompts producing the exact same representation) can only occur on a set of parameter
values that has measure zero; that is, they are mathematical exceptions rather than possibilities one
should expect in practice. Moreover, we prove that common training procedures (gradient descent

Under review as a conference paper at ICLR 2026

with standard step sizes) never move parameters into this exceptional set. In layman’s terms, almost
all models at initialization are injective, and training preserves this property.

Technically, our proofs rely on two ingredients. First, we establish that Transformers are real-
analytic functions of their parameters, which allows us to reason precisely about when and where
collisions could occur. Second, we construct parameter settings where no two prompts collide, and
show that gradient descent (GD) does not collapse such separation, i.e., collisions remain a measure-
zero event. The end result is a finite-horizon guarantee: after any fixed number of training steps, and
under mild assumptions, injectivity holds with probability one. We provide complete formal proofs
of these statements.

Main result. Our central finding is that causal decoder-only Transformer language models are
injective almost surely. Formally, consider one such model with embedding width d, at least one
attention head per block, real-analytic components, finite vocabulary V), and finite context length K.
Initialize its parameters @ at random, using any distribution that has a density' (such as Gaussian,
uniform, or Xavier/Glorot), and train for any finite number 7" of GD steps with step sizes in (0, 1).
Then, with probability one over the random initialization,

s#s = r(s;0r)#r(s; 0r),
i.e., the map from prompts s to last-token representations r(s ; 1) is injective across all prompts in

V<K In short, collisions in practical settings form a measure-zero set, and neither initialization nor
training will ever place a model inside that set.

Significance. Our result shows that in standard decoder-only Transformers, different prompts al-
most surely yield different last-token representations across all practically relevant parameter set-
tings and training procedures. The guarantee is both generic (it fails only on a measure-zero set
of pathological parameters) and practical (it holds at finite width, depth, and training time under
common initializations).

Conceptually, we replace a long-assumed property with a rigorous theorem, showing that injectivity
is not an asymptotic idealization but a structural consequence of the architecture itself. Techni-
cally, our analytic framework pinpoints when collisions can arise (through deliberate non-analytic
choices such as quantization or tying), and clarifies that otherwise the model is inherently lossless.
Importantly, it establishes that last-token states almost everywhere identify the input.

Finally, we turn this theoretical guarantee into an operational tool: our algorithm SIPIT uses
gradient-based reconstruction to recover prompts exactly from internal activations, efficiently and
with provable linear-time guarantees. This confirms empirically that collisions do not occur in
practice. Beyond transparency and safety, this elevates invertibility to a first-class property of Trans-
former language models, enabling stronger interpretability, probing, and causal analyses.

2 TRANSFORMERS ARE INJECTIVE

Summary. In this section we show that decoder-only Transformers almost surely map different
prompts to different hidden states. Collisions can only occur under measure-zero parameter choices,
and gradient-based training never creates them. In simple terms, Transformer representations are
structurally lossless.

Approach. We consider causal decoder-only Transformer language models with vocabulary V,
finite context window K, and embedding dimension d. For an input sequence s € V<K letr(s; 6)
denote the final hidden representation at the last token position?, given parameters 6.

Our analysis relies on three facts:

(i) Real-analyticity. Each component of the architecture (embeddings, positional encodings,
LayerNorm with € > 0, causal attention, MLPs with analytic activations, residuals) is real-
analytic in its parameters (see Appendix A.2 for the mathematical background). This

"Put simply, parameters are not drawn from a degenerate or hand-crafted set.
2We focus on the last-token state, since it alone drives next-token prediction; earlier rows matter only insofar
as they shape this final state. Injectivity at the last token is the property of real operational interest.

Under review as a conference paper at ICLR 2026

smoothness implies that the set of parameter values causing two distinct prompts to col-
lide is extremely thin (measure zero).

(i1) Initialization. Standard initialization schemes (Gaussian, uniform, Xavier/Glorot, etc.)
draw parameters from continuous distributions with densities, so they avoid measure-zero
sets with probability one.

(iii) Training. Gradient-based updates (including SGD and mini-batch/full-batch GD) preserve
absolute continuity of the parameter distribution after any finite number of steps; thus,
training cannot generate collisions.

These facts allow us to state and prove injectivity results without relying on asymptotics.

We begin by establishing the analytic structure of the architecture.

Theorem 2.1 (Transformers are real-analytic). Fix embedding dimension d and context length K.
Assume the MLP activation is real-analytic (e.g. tanh, GELU). Then for every input sequence s €
V=K the map

(s,0) —1r(s; 0) € R? (1)
is real-analytic jointly in the parameters 0 and the input embeddings.
Sketch of proof (full proof in Appendix B, Proposition B.3). Each building block is real-analytic:
polynomials (embeddings, projections), exponential and softmax (attention), reciprocal square root
(LayerNorm with € > 0), analytic activations in the MLP, and affine maps. Real-analytic functions

are closed under addition, multiplication, quotient, and composition. Since the Transformer is a
finite composition of such blocks, the entire map is real-analytic. O

This smoothness result drives everything that follows:

it ensures that collisions, if they exist, are confined to
measure-zero parameter sets. We now ask: what happens /, TeR.
at initialization? == ’ N @
Theorem 2.2 (Almost-sure injectivity at initialization). //7 on ®<©)
Let 0 be drawn from any distribution with a density (e.g. fi - < f2
Gaussian or uniform). Then for any two distinct prompts -
s, s’ € V<K a—
e)
Prlr(s;) = r(s'; 6)] = 0. 2) I
N~ Ji—Jfe

Sketch of proof (full proof in Appendix C, Theorem C.2).

Fix s # s and consider Figure 2: Two real-analytic functions

)) f1 and fo and their difference f; —
h(0) = [r(s; 8) —r(s"; 9)|5. (3) f,. Black contours show the zero sets,
which form thin curves (measure zero)

By Theorem 2.1, h is real-analytic. A fundamental di- . ..
rather than regions of positive measure.

chotomy of real-analytic functions states that either h is
identically zero, or its zero set has Lebesgue measure zero (see Figure 2 for an illustration). There-
fore, to rule out the pathological case i = 0 it suffices to exhibit a single parameter setting where

r(s; 0) £r(s'; 0).

This can always be done: if s and s’ differ at the last position (symbol or length), freeze the network
so that the last state reduces to embedding plus position, and choose distinct rows; this already
separates r(s) and r(s’). If instead they differ earlier, let i* be the first mismatch and set one attention
head so the last position attends almost entirely to ¢*, encoding its token in the value; this forces
different outputs for s and s’.

Hence h is not identically zero, and so the collision set {0 : h(0) = 0} has Lebesgue measure
zero. Since standard initializations have densities, the probability of sampling such 6 is zero, and
r(s; 0) # r(s'; 0) (injectivity) holds almost surely at initialization. O

According to Theorem 2.2, at initialization, collisions are mathematically impossible except on a
vanishingly small set of parameter values. Finally, with the following Theorem we ensure training
does not break injectivity.

Under review as a conference paper at ICLR 2026

Theorem 2.3 (Injectivity preserved under training). Let 0y be initialized from a distribution with a
density, and let O be the parameters after T steps of gradient descent with step sizes in (0,1). Then
with probability one,

s#S = x(s; 0r) #x(s'; 0r), (4)

Sketch of proof (full proof in Theorems C.1 and C.5). At initialization, 8 is drawn from a distribu-
tion with a density, hence absolutely continuous. To break injectivity during training, GD would
need to map this continuous law onto the measure-zero collision set identified in Theorem 2.2. We
show this cannot happen.

A single GD step is the map ¢(0) = 6 —nV L(0), where L is the training loss. Because the network
and the softmax cross-entropy loss are real-analytic, ¢ is also real-analytic. Its Jacobian determinant
det D¢(0) is itself real-analytic and not identically zero (one can check this by evaluating at a
simple parameter setting). Hence the set where det D¢ = 0 has measure zero. Away from that set,
the Inverse Function Theorem applies: ¢ is a smooth, locally invertible change of coordinates that
can stretch or bend space but cannot collapse regions of positive volume onto lower-dimensional
sets. Therefore, pushing forward an absolutely continuous distribution through ¢ yields another
absolutely continuous distribution.

Since this argument holds for each step, any finite sequence of GD updates preserves absolute con-
tinuity of the parameter law. Combining with Theorem 2.2, which shows that collision sets are
measure-zero, we conclude that r(s; 67) # r(s’; O1) almost surely for all s # '. O

Thus injectivity is not just an initialization property but remains true throughout training. A simple
but important corollary follows.

Corollary 2.3.1 (SGD and mini-batch GD). Under the assumptions of Theorem 2.3, the same con-
clusion holds when the updates are 011 = 0; — 1. VoL, (01) with arbitrary (possibly random or
adversarial) batch selections By, thus including the singleton case of SGD and the full dataset.

Proof. The proof argument of Theorem 2.3 is unchanged: for each fixed batch B, the update map
o5(0) = 0 — nVLp(0) is real-analytic with a Jacobian that is not identically zero. Indeed, the

batch loss is the average L = ﬁ ZLi L;, so at the point 8, from the single-sample proof (where
the Jacobian determinant is sample-independent and nonzero) the batch Jacobian coincides with the

single-sample one by linearity of differentiation, and its determinant is therefore also nonzero. Thus,
the finite composition of such maps preserves absolute continuity of the parameter law. O

Together with this robustness to different training regimes, we can also strengthen the guarantee
itself: injectivity holds not just pairwise, but globally across finite sets of prompts.

Corollary 2.3.2 (Distinctness for finite sets). For any finite set of prompts S C V=K

tations {x(s; O7) : s € S} are almost surely all distinct.

, the represen-

Proof. See Appendix C, Corollary C.2.1. O

These results show that decoder-only Transformer language models are structurally injective: dif-
ferent prompts almost surely yield different last-token states. Collisions can be manufactured,
e.g., through deliberate non-analytic choices (quantization, non-smooth activations), but in practical
training pipelines, injectivity is guaranteed; extensive experiments in §4.1 confirm this empirically.

Failure cases. We showed that non-injective transformers are overwhelmingly unlikely, though it
is still possible for an adversary to construct collisions by hand. For instance, if two vocabulary
items v; # v; are assigned exactly the same embedding vector, then any prompts differing only by
swapping v; and v; yield identical representations. Likewise, if two absolute positional embeddings
are made exactly equal and the remaining weights are tuned to suppress other positional signals,
one can force collisions between sequences that differ only at those positions. These scenarios,
however, require deliberately engineered parameter choices: under continuous random initialization
and standard training, the probability of such coincidences is zero.

Under review as a conference paper at ICLR 2026

[TTTTTTT11T1

L2 Distance (min)
L2 Distance

Collision threshold Collision threshold

D ‘%
,‘\,‘7)\\’ G\)Y“
& N

,«g:’l‘\)

5 [\D o [AD <N
3 3 o oot 2 [

NCE o
G(‘“\“\ o S

Figure 3: Seeking collisions in a large-scale prompt set (§4.1). The minimum distances between
last-token states are far above the collision threshold 10~5: (left) across layers for GPT-2 and
Gemma-—3 families (one dot per layer), (right) across depth for GPT-2 Small, where distances
grow with depth.

3 EXACT PROMPT RECOVERY VIA SIPIT

In the previous section, we have proven that decoder-only Transformers are almost surely injective,
i.e., different prompts map to different hidden states. We now show how this property can be used
in practice to reconstruct the exact input prompt given hidden states at some layer. We call this
algorithm STPIT (Sequential Inverse Prompt via ITerative updates).

Formally, recall from §2 that the mapping from a prompt s to its last-token state is almost surely
injective. Since the last state is itself a deterministic function of the hidden matrix at any layer /,
injectivity extends to the full representation

s HO(s) e RT*?,)

We denote by hy(s) the row of H(¥)(s) at position . In the following, the parameters 6 and target
layer ¢ are considered fixed and omitted for simplicity.

The algorithm exploits the causal structure of Transformers: the hidden state at position ¢ depends
only on the prefix (si,...,s;—1) and the current token s;. This means that if we already know the
prefix, then the hidden state at position ¢ uniquely identifies s;.

Example. Suppose the vocabulary is a, b, ¢ and the true prompt is {(a, b). Att = 1, the hidden state
depends only on s;. By comparing the observed state with the three candidate states produced by
trying a, b, and c, we can tell exactly which one matches, thus recovering s; = a. Then att = 2, we
know the prefix (a), so we try appending each candidate token and again match the resulting hidden
state to recover so = b. Iterating this procedure reconstructs the full sequence.

More generally, we can look at the “one-step” map
Uj’%ht(ﬂ@vj), v; €V, (6)

which gives the hidden state at step ¢ for each possible next token, given the fixed prefix 7 =
(s1,...,8t—1) (here @ denotes concatenation).

Remark. By the analytic arguments of §2, the one-step map is almost surely injective: with a fixed
prefix, any two distinct tokens almost surely yield distinct hidden states.

This property makes sequence recovery straightforward. Ateach step ¢, given the hidden state ﬂt and
the already recovered prefix, we simply check which candidate token produces a matching hidden
state. That token must be the true s;,. Repeating this process recovers the entire sequence.

This leads to the STPIT algorithm, shown in Algorithm 1. At every position, the algorithm cycles
through vocabulary candidates (according to some policy such as random order or gradient-guided
search) until it finds the unique match’, then appends it to the reconstructed prefix and moves on.

3In practice, we accept matches if the observed hidden state is within an e-ball around the predicted one.

Under review as a conference paper at ICLR 2026

Algorithm 1 S1p-IT: Sequential Inverse Prompt via Iterative Updates

Require: Observed layer-/ states H® ¢ RTxd; vocabulary V; tolerance € > 0.

Ensure: Recovered sequence S = (§1,...,87).
1S+ ()
2: fort =1to T do
3 C+0 > tested candidates
4: forj=1to|V|do
5: v; < PoLICY (V,C,5,) > new candidate token v; (see Alg. 2 and 3)
6: ifh, € A; ;(v;; €) then > verify v; (see Def. D.2)
7: S S@u; > hit!
8: break
9: else

10: C«CuU{v;}

11: end if

12: end for

13: end for

14: returns

To rule out edge cases and analyze the computational cost of STPIT, we now state a formal guarantee.

Theorem 3.1 (Correctness of SIPIT). Under the assumptions of Theorem 2.3, given observed hidden
states H'Y), SIPIT recovers the true input sequence s with probability one in at most T|V| steps.

Sketch of proof (full proof in Appendix D, Thm. D.2, Prop. D.4). At each step, local injectivity en-
sures a unique token matches the observed state. As the policy spans the vocabulary, this token will
be found in at most |V| trials. Induction over ¢t = 1,...,T completes the argument. O

Theorem 3.2 (Robustness of SIPIT). Under the assumptions of Theorem 2.3, define the (data-
dependent) margin

Ay = i h —h ..
me = min [[h(r & o) —hi(r e,
Lets = (s1,...,s7) be the input sequence, and for each t € [T — 1] define the prefix sequence:
Tt = < >’ t=0 .-
($1,...,8t—1), otherwise

Then, given the perturbed hidden states

N Aﬂ' , T
hy(m, @ s¢) =hy(m @ s0) +er, leg]]a < =5,

SIPIT recovers the true input sequence s with probability one in at most T'|V| steps.
Proof in Appendix D, Thm. D.2, Prop. D.2. O

In short, STPIT turns the almost-sure injectivity of Transformer representations into a constructive
procedure: not only are hidden states unique identifiers of prompts, but the exact input sequence
can be efficiently recovered in linear time, and often faster in practice. It is a structural property of
Transformer representations, not a quirk of initialization or training.

4 EXPERIMENTS

We previously proved that decoder-only Transformers are injective (§2) and introduced an algorithm,
STPIT, that leverages this property to recover the exact input prompt from hidden states at a given
layer (§3). We now provide extensive empirical evidence supporting our theory by showing that
distinct prompts yield distinct embeddings, i.e., no collisions occur by a large margin (§4.1). We
then demonstrate that SIPIT successfully reconstructs the original input prompt (§4.2).

Under review as a conference paper at ICLR 2026

GPT-2 Small Gemma3-1B
T FTFEFFEEE LTI TTITTITTITIT
;2 104 ;z 101
3 Collision threshold 3 Collision threshold
o o
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9

Sample Index Sample Index

Figure 4: Exhaustive collision search on the 10 closest prefix prompts. The boxplots look flat and
uneventful, and that is the point: even under stress-test conditions with billions of candidate pairs,
all minima stay well above the collision threshold, showing that nothing collapses.

Environment. All experiments were run on a single NVIDIA A100-SXM (64 GB) GPU.
Python 3.11, CUDA 12.2, PyTorch 2.8.0, and transformers 4.50.0 were used for all experi-
ments. Reported runtimes refer to this setup.

4.1 SEARCHING FOR COLLISIONS

We collected 100k prompts by uniformly sampling from a mixture of four datasets:
wikipedia-en®, c4 (Raffel et al., 2020), The Pile (Gao et al, 2020), and
python-github-code’. For each prompt, we extracted the last-token representation and
systematically checked whether any two distinct prompts produced identical embeddings. This
process required around 5 billion pairwise comparisons.

We observed no collisions across all models and layers: £, Distance (min)
distinct prompts always yielded distinct last-token states. Model layer | layer L Tayer L
Figure 3 (left) shows the per-layer minimum distances for Toma3 185 0001 0'1292 0620
the Gemma3 pretrained (Team et al., 2025) and GPT-2 mMistral-78-v0.1 0002 0.187 1.274
(Radford et al., 2019) families, with strictly positive val- TPihniyiséltiomriineis:i?;n;l\/l 8'85‘9‘ :fgi g%g
ues throughout. Table | complements this by report- - ‘ :
ing the same statistic for Llama-3.1-8B (Grattafiorl upie 1: Minimum pairwise distance
et 211., 2()24), Mistral-7B-v0.1 (Jldl’lg et 'dl., 2023), between last-token states in the ﬁI'St,
Phi-4-mini-instruct (MiCr()S()fl et 21]., 2025) and mlddle, and final layers of four models.
TinyStories-33M (Eldan & Li, 2023), again show- All values are well above the collision

ing clear separation at the first, middle, and last layers. threshold 10~ (no collisions).

Finally, Figure 3 (right) zooms in on GPT-2 Small, revealing that these distances typically in-
crease with depth. Additional results for GPT-2 Medium, GPT-2 Large and Gemma3 (1B, 4B,
12B) appear in Appendix E, confirming the same trend.

Figure 5 shows how pairwise distances between last-
[y — token states vary with prompt length in GPT-2
~~~~~~~~~~~ Small. Three patterns emerge: (i) the minimum dis-
i — hem tance is never close to zero at all lengths, and (ii) it
1079 === min grows rapidly at short lengths but then levels off, sug-
T max gesting that beyond a moderate context size, adding to-
kens does not affect separability; (iii) the overall spread
1071 Collision threshold (min-max) stays bounded, with no sign of pathologi-
L —_— —1 cal collapses. Similar behavior is seen in Gemma 3 (see
0 100 200 300 400 500 . . .

Sequence length Appendix E, Figure 9). Overall, clear margins emerge
quickly and then stabilize, making collisions unlikely at

Figure 5: Sequence length vs. pairwise any sequence length.

distance for GPT—-2. Min, mean, and max

distances rise at short lengths and then sta- Exhaustive collision test. Different from previous ex-
bilize, indicating consistent separability. ~ periments, in this setting (Figure 4), we restrict our
analysis to the 10 prompts from the dataset mixture

L2 Distance

4hLLps ://huggingface.co/datasets/wikimedia/wikipedia
5https ://huggingface.co/datasets/angie—-chen55/python-github-code


https://huggingface.co/datasets/wikimedia/wikipedia
https://huggingface.co/datasets/angie-chen55/python-github-code

Under review as a conference paper at ICLR 2026

£ Distance (min) £2 Distance (min)

Model Model Size
FP4 INTS FP32 layer1  layer L/2  layer L
Llama-3.1-8B 2.281 6.597 1.274 phi-4 14B 0.010 1.025 8.759
Mistral-7B-v0.1 1.748 2.692 1.136 Llama-3.1-70B  70B 0.005 0.465 3.975
Phi-4-mini-instruct 18.368 20.956 8.780

Table 2: Quantized Models: Minimum pair-
wise distance between last-token states in the
final layer of three quantized models.

Table 3: Large Models: Minimum pairwise
distance between last-token states in the first,
middle, and final layers of two large models.

whose embeddings have the smallest last-token distances. For each of these prompts, we appended
every vocabulary token and computed all pairwise distances between the resulting last-token states,
effectively performing an exhaustive search over continuations and yielding more than 343 billion
prompt pairs per model.

This exhaustive experiment helps rule out the possibility that earlier
observations were simply due to chance in random sampling rather
than a true absence of collisions. While a complete search over
all possible prompts would be ideal, it is computationally infeasible.

The number of unique prompts grows exponentially with sequence
length, and the number of pairwise comparisons grows even faster.
For context, even with single-token prompts and the vocabulary size of

Gemma3-1B, there are already over 34 trillion possible prompt pairs,
10 making exhaustive evaluation entirely impractical. Our compromise
still revealed structure: we identified 5 prompt pairs with highly sim-
ilar last-token embeddings, suggesting overlapping semantic content
and motivating us to ask whether distinct next tokens could preserve
meaning, i.e., yield essentially identical last-token hidden states.

0 ﬁlli lll)li L'I)U
Inversion time (s)

Figure 6: Inversion time

as a function of depth.

Runtimes rise only mildly

across layers.

Figure 4 reports the resulting distributions as boxplots for both GPT-2
Small and Gemma3—-1B, with distances far from zero (no collision),
confirming local injectivity as predicted by our theory.

FP4 and INTS8 weight quantization. To assess how weight quantization affects pairwise rep-
resentation distances, we conducted additional experiments with FP4 and INT8 quantization on
several models (IL1lama—-3.1-8B, Phi—-4-mini-instruct, and Mistral-7B-v0.1). We
further extended this analysis to FP4-quantized 14B and 70B parameter models, namely Phi-4
(14B) and L1ama—-3.1-70B. As shown in tables 2 and 3, across all tested models quantization (1)
does not introduce any collisions, (2) more than doubles the minimum distance between representa-
tions, thereby preserving the integrity of the representation space, and (3) maintains this separation
even as model size increases substantially.

4.2 INVERTIBILITY RESULTS
We now test whether the theoretlgal injectivity trans- Method Mean Time (s) _ Accuracy
lates into exact recovery on pre-trained models. Using I RoPRovrTs 615250 - 10101 000

. . ARDPROMPT . X .
SIPIT with only the hidden states at a fixed layer, we at- = © (ou) 388061460117 100
tempt to reconstruct the full prompt token-by-token for SIPIT (ours) 280143587  1.00

GPT-2 Small. We sample 100 prompts, with a 90%-
10% split between meaningful sentences and random to-
ken sequences (to test robustness in unstructured cases),
and attempt to reconstruct them from hidden states.

Table 4: Prompt inversion: SIPIT en-
sures exact recovery efficiently, unlike
HARDPROMPTS (no recovery) or brute

We compare against HARDPROMPTS (Wen et al., 2023), force (infeasible runtimes).

which leverages gradient signals for approximate prompt discovery, and against a STPIT ablation that
replaces the gradient-guided candidate policy with the uniformly random policy (BRUTEFORCE).

Other inversion approaches (Morris et al., 2023a;b; Nazir et al., 2025) tackle a different setting
altogether: they operate in black box access, using sequences of next-token logprobs or encoder
logits rather than hidden states, and train auxiliary inverters to reconstruct text, at high computational



Under review as a conference paper at ICLR 2026

Inversion Performance

Model Vocab size
Accuracy Time (s) Vocab explored (%)
Mistral-7B-v0.1 32000 100% 111.78 + 46.50 0.19 +0.08 %
Llama-3.1-8B 128255 100% 549.48 + 265.75 0.21 +0.10 %

Table 5: Inversion performance on FP4-quantized models with different vocabulary sizes. STPIT re-
covers all tokens with 100% accuracy while exploring less than 0.22% of the vocabulary on average.

cost. Their outputs are typically approximate and not guaranteed exact. These differences make
them complementary but not directly comparable to our setting of training-free, exact inversion
from hidden states in decoder-only LMs.

Results are reported in Table 4. Across all prompts (20 tokens each), SIPIT recovers the exact se-
quence with 100% token-level accuracy (no errors, no collisions), matching the theoretical guarantee
of linear-time convergence.

In contrast, HARDPROMPTS fails to recover the true input in most cases, while BRUTEFORCE even-
tually succeeds but at a prohibitive computational cost, requiring several orders of magnitude longer.

Robustness and vocabulary scaling. The theoretical analysis in Theorem 3.2 shows that our in-
version algorithm is robust to a certain level of noise while maintaining linear scaling in vocabulary
size. To empirically validate this, we use FP4-quantized versions of Mistral-7B-v0.1 (= 32K
vocabulary size) and Llama-3.1-8B (=~ 128K). We sample 50 prompts (100 tokens each) and
attempt to reconstruct them from hidden states corrupted by FP4 weight quantization. As shown in
Table 5, STPIT reconstructs all inputs with perfect accuracy while exploring, on average, less than
0.22% of the vocabulary, demonstrating that the gradient-based heuristic is both robust to quanti-
zation noise and highly efficient. From a complexity perspective, the nearly constant percentage of
tokens explored across the two vocabulary scales empirically confirms the predicted linear scaling.

Effect of layer depth. Finally, Figure 6 shows inversion times by layer for longer prompts (ranging
from 20 to 200 tokens). Although deeper layers are costlier in principle (since verifying a candidate
and computing gradients require traversing more blocks), the effect is minor: runtimes rise only
slightly from first to last layer, and the scaling remains graceful overall. Likely, earlier layers need
more iterations to converge, while deep layers store richer information that reduces the search effort.
As a result, the net cost remains stable, confirming STPIT is efficient across depth.

5 RELATED WORK

Our results connect to two active lines of research: theoretical analyses of Transformer architectures,
and inverse problems in language modeling. We briefly review both to position our contributions.

Analytical properties of Transformers. Viewed as functions on R?, individual Transformer
components are clearly non-injective: LayerNorm collapses along per-example statistics (Ba
et al., 2016), residual connections can cancel, and in attention-only stacks, rank decays doubly-
exponentially with depth (Dong et al., 2021). Likewise, on the output side, the softmax bottleneck
constrains the distributions reachable by language models (Yang et al., 2018). From this algebraic
perspective, Transformers seem inherently many-to-one, an intuition echoed by classical complete-
ness and universal-approximation theorems for Transformers, which show that highly many-to-one
maps can be represented in principle; we briefly review these results in appendix F.

Our focus is different: we study the discrete-to-continuous map from prompts s € V=X to hidden
states in R?. In this setting, analytic viewpoints on Transformer computation become powerful:
treating each layer as a real-analytic map yields almost-sure guarantees that hold at finite width,
depth, and training horizon. Recent work has adopted this angle for related properties: Jiang &
Haghtalab (2025) show that building blocks of modern architectures are almost always surjective,
while Sutter et al. (2025) prove that Transformers at random initialization are almost surely injective
with respect to the entire hidden-state matrix (and only at initialization).



Under review as a conference paper at ICLR 2026

Differently, we prove injectivity with respect to the parameters and at the task-relevant last-token
state; crucially, we show that injectivity is not an initialization artifact but persists under training.

Inverse problems in language modeling. Inverse problems seek to recover an unknown input
x from observations y produced by a forward process y = f(x) (Sun et al., 2021). Within this
landscape, language model inversion asks whether one can reconstruct a model’s input prompt from
outputs or internal signals.

Several approaches have explored this idea. Output-to-prompt methods infer prompts from gener-
ated continuations, yielding approximate reconstructions that are often semantically similar rather
than exact (Zhang et al., 2024). Recent work by Morris and coauthors shows that model outputs are
information-rich even in black-box settings: Morris et al. (2023b) train a separate inverter to map
next-token probability vectors to text, and Nazir et al. (2025) extend this by taking sequences of
logprobs, applying a linear compression to embedding dimension, and training an encoder-decoder
inverter; this achieves higher exact-match rates but still without guarantees. Complementarily, Mor-
ris et al. (2023a) reconstruct text from encoder logits via a trained iterative inverter. These contri-
butions highlight privacy risks when probabilities or embeddings are exposed, but they differ from
our setting: they rely on trained inverters, remain approximate, and do not invert hidden states of
decoder-only LMs.

A related line of work frames the task as automated prompt optimization, casting prompt design as
discrete sequence optimization aligned with downstream performance (Guo et al., 2025; Sun et al.,
2022; Deng et al., 2022); methods such as AutoPrompt (Shin et al., 2020) and Hard Prompts Made
Easy (Wen et al., 2023) use gradient signals to discover effective, but approximate, prompts.

Unlike prior work, which yields approximate reconstructions from outputs, logits, or logprobs, our
approach is training-free, efficient, and comes with provable linear-time guarantees for exact recov-
ery from internal states.

6 DISCUSSION AND CONCLUSIONS

This work establishes that decoder-only Transformers are almost surely injective: distinct prompts
produce distinct hidden states under standard initialization and training. Building on this structural
result, we introduced SIPIT, the first algorithm that can recover the exact input sequence from hidden
activations, with provable linear-time guarantees. Together, these contributions move injectivity
from an informal belief to a rigorously grounded and operational property of language models.

The scientific impact is clear. Our findings reconcile two competing views in the community: Trans-
formers as “lossy” due to nonlinearities, normalization, and many-to-one attention, versus language
models as injective in their hidden representations. We advocate viewing language models as maps
on the sequence space rather than the embedding space; under this perspective, we prove that all
information about the input sequence is almost surely preserved end-to-end. The constructive in-
version offered by SIPIT strengthens this point in practice, establishing a clean baseline for inter-
pretability and auditing: if probes or inversion methods fail, it is not because the information is
missing. For mechanistic interpretability in particular, injectivity guarantees that last-token states
faithfully encode the full input, giving a sound foundation for causal and probing analyses.

Beyond theory, the findings carry practical and legal implications. Hidden states are not abstractions
but the prompt in disguise. Any system that stores or transmits them is effectively handling user
text itself. This affects privacy, deletion, and compliance: even after prompt deletion, embeddings
retain the content. Regulators have sometimes argued otherwise; for example, the Hamburg Data
Protection Commissioner claimed that weights do not qualify as personal data since training exam-
ples cannot be trivially reconstructed and even during inference it “remains doubtful whether any
extractable data records constitute personal data”(HmbBfDI, 2024). Our results show that at infer-
ence time user inputs remain fully recoverable and thus should be treated as personal data. There is
no “free privacy” once data enters a Transformer.

Finally, this work opens several directions. Extending the analysis to multimodal architectures such
as music and vision Transformers is an open problem. Studying approximate inversion under noise
or quantization will clarify how robust invertibility remains in practice. Bridging these technical
insights with evolving regulatory frameworks will be crucial for safe and responsible deployment.

10



Under review as a conference paper at ICLR 2026

REPRODUCIBILITY STATEMENT

We provide complete resources to ensure reproducibility of our results. The assumptions, defini-
tions, and full proofs can be found in section 2 and appendices A to D (analytic tools and model
specification in appendices A and B; almost-sure injectivity and preservation under training in ap-
pendix C; SIP-IT correctness, verifier, and margin analysis in appendix D). Implementation details
for SIP-IT, including pseudocode, are provided in section 3 and algorithm | and further elaborated
in appendix E. Our experimental setup (hardware and software versions) is described in section 4,
while dataset details and the prompt-sampling procedure for the 100k-prompt benchmark are given
in section 4.1. Finally, the supplementary materials include an anonymized code repository with
end-to-end scripts, fixed seeds, configuration files, and a comprehensive README with step-by-
step reproduction instructions.

REFERENCES

W. E. Aitken. General topology. part 4: Metric spaces, 2020. URL https://public.csusm.
edu/aitken_html/Essays/Topology/metric_spaces.pdf. 24

Shane Arora, Hazel Browne, and Daniel Daners. An alternative approach to fréchet derivatives.
Journal of the Australian Mathematical Society, 111(2):202-220, 2021. 23

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E. Hinton. Layer normalization. arXiv preprint
arXiv:1607.06450,2016. URL https://arxiv.org/abs/1607.06450.9

José E Chacén and Tarn Duong. Higher order differential analysis with vectorized derivatives. arXiv
preprint arXiv:2011.01833, 2020. 18

Mingkai Deng, Jianyu Wang, Cheng-Ping Hsieh, Yihan Wang, Han Guo, Tianmin Shu, Meng Song,
Eric P. Xing, and Zhiting Hu. Rlprompt: Optimizing discrete text prompts with reinforcement
learning, 2022. URL https://arxiv.org/abs/2205.12548. 10

Yihe Dong, Jean-Baptiste Cordonnier, and Andreas Loukas. Attention is not all you need: Pure
attention loses rank doubly exponentially with depth. In Proceedings of the 38th International
Conference on Machine Learning (ICML), volume 139 of Proceedings of Machine Learning Re-
search,2021. URL https://proceedings.mlr.press/v139/dong2la.html. 9

Ronen Eldan and Yuanzhi Li. Tinystories: How small can language models be and still speak
coherent english?, 2023. URL https://arxiv.org/abs/2305.07759.7

Gerald B Folland. Real analysis. Pure and Applied Mathematics: A Wiley Series of Texts, Mono-
graphs and Tracts. John Wiley & Sons, Nashville, TN, 2 edition, March 1999. 24, 38

Leo Gao, Stella Biderman, Sid Black, Laurence Golding, Travis Hoppe, Charles Foster, Jason
Phang, Horace He, Anish Thite, Noa Nabeshima, Shawn Presser, and Connor Leahy. The pile:
An 800gb dataset of diverse text for language modeling, 2020. URL https://arxiv.org/
abs/2101.00027.7

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad
Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, Amy Yang, Angela Fan,
Anirudh Goyal, Anthony Hartshorn, Aobo Yang, Archi Mitra, Archie Sravankumar, Artem Ko-
renev, Arthur Hinsvark, Arun Rao, Aston Zhang, Aurelien Rodriguez, Austen Gregerson, Ava
Spataru, Baptiste Roziere, Bethany Biron, Binh Tang, Bobbie Chern, Charlotte Caucheteux,
Chaya Nayak, Chloe Bi, Chris Marra, Chris McConnell, Christian Keller, Christophe Touret,
Chunyang Wu, Corinne Wong, Cristian Canton Ferrer, Cyrus Nikolaidis, Damien Allonsius,
Daniel Song, Danielle Pintz, Danny Livshits, Danny Wyatt, David Esiobu, Dhruv Choudhary,
Dhruv Mahajan, Diego Garcia-Olano, Diego Perino, Dieuwke Hupkes, Egor Lakomkin, Ehab
AlBadawy, Elina Lobanova, Emily Dinan, Eric Michael Smith, Filip Radenovic, Francisco
Guzman, Frank Zhang, Gabriel Synnaeve, Gabrielle Lee, Georgia Lewis Anderson, Govind That-
tai, Graeme Nail, Gregoire Mialon, Guan Pang, Guillem Cucurell, Hailey Nguyen, Hannah Kore-
vaar, Hu Xu, Hugo Touvron, Iliyan Zarov, Imanol Arrieta Ibarra, Isabel Kloumann, Ishan Misra,

11


https://public.csusm.edu/aitken_html/Essays/Topology/metric_spaces.pdf
https://public.csusm.edu/aitken_html/Essays/Topology/metric_spaces.pdf
https://arxiv.org/abs/1607.06450
https://arxiv.org/abs/2205.12548
https://proceedings.mlr.press/v139/dong21a.html
https://arxiv.org/abs/2305.07759
https://arxiv.org/abs/2101.00027
https://arxiv.org/abs/2101.00027

Under review as a conference paper at ICLR 2026

Ivan Evtimov, Jack Zhang, Jade Copet, Jaewon Lee, Jan Geffert, Jana Vranes, Jason Park, Jay Ma-
hadeokar, Jeet Shah, Jelmer van der Linde, Jennifer Billock, Jenny Hong, Jenya Lee, Jeremy Fu,
Jianfeng Chi, Jianyu Huang, Jiawen Liu, Jie Wang, Jiecao Yu, Joanna Bitton, Joe Spisak, Jong-
soo Park, Joseph Rocca, Joshua Johnstun, Joshua Saxe, Junteng Jia, Kalyan Vasuden Alwala,
Karthik Prasad, Kartikeya Upasani, Kate Plawiak, Ke Li, Kenneth Heafield, Kevin Stone, Khalid
El-Arini, Krithika Iyer, Kshitiz Malik, Kuenley Chiu, Kunal Bhalla, Kushal Lakhotia, Lauren
Rantala-Yeary, Laurens van der Maaten, Lawrence Chen, Liang Tan, Liz Jenkins, Louis Martin,
Lovish Madaan, Lubo Malo, Lukas Blecher, Lukas Landzaat, Luke de Oliveira, Madeline Muzzi,
Mahesh Pasupuleti, Mannat Singh, Manohar Paluri, Marcin Kardas, Maria Tsimpoukelli, Mathew
Oldham, Mathieu Rita, Maya Pavlova, Melanie Kambadur, Mike Lewis, Min Si, Mitesh Ku-
mar Singh, Mona Hassan, Naman Goyal, Narjes Torabi, Nikolay Bashlykov, Nikolay Bogoy-
chev, Niladri Chatterji, Ning Zhang, Olivier Duchenne, Onur Celebi, Patrick Alrassy, Pengchuan
Zhang, Pengwei Li, Petar Vasic, Peter Weng, Prajjwal Bhargava, Pratik Dubal, Praveen Krishnan,
Punit Singh Koura, Puxin Xu, Qing He, Qingxiao Dong, Ragavan Srinivasan, Raj Ganapathy, Ra-
mon Calderer, Ricardo Silveira Cabral, Robert Stojnic, Roberta Raileanu, Rohan Maheswari, Ro-
hit Girdhar, Rohit Patel, Romain Sauvestre, Ronnie Polidoro, Roshan Sumbaly, Ross Taylor, Ruan
Silva, Rui Hou, Rui Wang, Saghar Hosseini, Sahana Chennabasappa, Sanjay Singh, Sean Bell,
Seohyun Sonia Kim, Sergey Edunov, Shaoliang Nie, Sharan Narang, Sharath Raparthy, Sheng
Shen, Shengye Wan, Shruti Bhosale, Shun Zhang, Simon Vandenhende, Soumya Batra, Spencer
Whitman, Sten Sootla, Stephane Collot, Suchin Gururangan, Sydney Borodinsky, Tamar Herman,
Tara Fowler, Tarek Sheasha, Thomas Georgiou, Thomas Scialom, Tobias Speckbacher, Todor Mi-
haylov, Tong Xiao, Ujjwal Karn, Vedanuj Goswami, Vibhor Gupta, Vignesh Ramanathan, Viktor
Kerkez, Vincent Gonguet, Virginie Do, Vish Vogeti, Vitor Albiero, Vladan Petrovic, Weiwei
Chu, Wenhan Xiong, Wenyin Fu, Whitney Meers, Xavier Martinet, Xiaodong Wang, Xiaofang
Wang, Xiaoqing Ellen Tan, Xide Xia, Xinfeng Xie, Xuchao Jia, Xuewei Wang, Yaelle Gold-
schlag, Yashesh Gaur, Yasmine Babaei, Yi Wen, Yiwen Song, Yuchen Zhang, Yue Li, Yuning
Mao, Zacharie Delpierre Coudert, Zheng Yan, Zhengxing Chen, Zoe Papakipos, Aaditya Singh,
Aayushi Srivastava, Abha Jain, Adam Kelsey, Adam Shajnfeld, Adithya Gangidi, Adolfo Victoria,
Ahuva Goldstand, Ajay Menon, Ajay Sharma, Alex Boesenberg, Alexei Baevski, Allie Feinstein,
Amanda Kallet, Amit Sangani, Amos Teo, Anam Yunus, Andrei Lupu, Andres Alvarado, An-
drew Caples, Andrew Gu, Andrew Ho, Andrew Poulton, Andrew Ryan, Ankit Ramchandani, An-
nie Dong, Annie Franco, Anuj Goyal, Aparajita Saraf, Arkabandhu Chowdhury, Ashley Gabriel,
Ashwin Bharambe, Assaf Eisenman, Azadeh Yazdan, Beau James, Ben Maurer, Benjamin Leon-
hardi, Bernie Huang, Beth Loyd, Beto De Paola, Bhargavi Paranjape, Bing Liu, Bo Wu, Boyu
Ni, Braden Hancock, Bram Wasti, Brandon Spence, Brani Stojkovic, Brian Gamido, Britt Mon-
talvo, Carl Parker, Carly Burton, Catalina Mejia, Ce Liu, Changhan Wang, Changkyu Kim, Chao
Zhou, Chester Hu, Ching-Hsiang Chu, Chris Cai, Chris Tindal, Christoph Feichtenhofer, Cynthia
Gao, Damon Civin, Dana Beaty, Daniel Kreymer, Daniel Li, David Adkins, David Xu, Davide
Testuggine, Delia David, Devi Parikh, Diana Liskovich, Didem Foss, Dingkang Wang, Duc Le,
Dustin Holland, Edward Dowling, Eissa Jamil, Elaine Montgomery, Eleonora Presani, Emily
Hahn, Emily Wood, Eric-Tuan Le, Erik Brinkman, Esteban Arcaute, Evan Dunbar, Evan Smoth-
ers, Fei Sun, Felix Kreuk, Feng Tian, Filippos Kokkinos, Firat Ozgenel, Francesco Caggioni,
Frank Kanayet, Frank Seide, Gabriela Medina Florez, Gabriella Schwarz, Gada Badeer, Georgia
Swee, Gil Halpern, Grant Herman, Grigory Sizov, Guangyi, Zhang, Guna Lakshminarayanan,
Hakan Inan, Hamid Shojanazeri, Han Zou, Hannah Wang, Hanwen Zha, Haroun Habeeb, Harri-
son Rudolph, Helen Suk, Henry Aspegren, Hunter Goldman, Hongyuan Zhan, Ibrahim Damlaj,
Igor Molybog, Igor Tufanov, Ilias Leontiadis, Irina-Elena Veliche, Itai Gat, Jake Weissman, James
Geboski, James Kohli, Janice Lam, Japhet Asher, Jean-Baptiste Gaya, Jeff Marcus, Jeff Tang, Jen-
nifer Chan, Jenny Zhen, Jeremy Reizenstein, Jeremy Teboul, Jessica Zhong, Jian Jin, Jingyi Yang,
Joe Cummings, Jon Carvill, Jon Shepard, Jonathan McPhie, Jonathan Torres, Josh Ginsburg, Jun-
jie Wang, Kai Wu, Kam Hou U, Karan Saxena, Kartikay Khandelwal, Katayoun Zand, Kathy
Matosich, Kaushik Veeraraghavan, Kelly Michelena, Kegian Li, Kiran Jagadeesh, Kun Huang,
Kunal Chawla, Kyle Huang, Lailin Chen, Lakshya Garg, Lavender A, Leandro Silva, Lee Bell,
Lei Zhang, Liangpeng Guo, Licheng Yu, Liron Moshkovich, Luca Wehrstedt, Madian Khabsa,
Manav Avalani, Manish Bhatt, Martynas Mankus, Matan Hasson, Matthew Lennie, Matthias
Reso, Maxim Groshev, Maxim Naumov, Maya Lathi, Meghan Keneally, Miao Liu, Michael L.
Seltzer, Michal Valko, Michelle Restrepo, Mihir Patel, Mik Vyatskov, Mikayel Samvelyan, Mike
Clark, Mike Macey, Mike Wang, Miquel Jubert Hermoso, Mo Metanat, Mohammad Rastegari,
Munish Bansal, Nandhini Santhanam, Natascha Parks, Natasha White, Navyata Bawa, Nayan

12



Under review as a conference paper at ICLR 2026

Singhal, Nick Egebo, Nicolas Usunier, Nikhil Mehta, Nikolay Pavlovich Laptev, Ning Dong,
Norman Cheng, Oleg Chernoguz, Olivia Hart, Omkar Salpekar, Ozlem Kalinli, Parkin Kent,
Parth Parekh, Paul Saab, Pavan Balaji, Pedro Rittner, Philip Bontrager, Pierre Roux, Piotr Dollar,
Polina Zvyagina, Prashant Ratanchandani, Pritish Yuvraj, Qian Liang, Rachad Alao, Rachel Ro-
driguez, Rafi Ayub, Raghotham Murthy, Raghu Nayani, Rahul Mitra, Rangaprabhu Parthasarathy,
Raymond Li, Rebekkah Hogan, Robin Battey, Rocky Wang, Russ Howes, Ruty Rinott, Sachin
Mehta, Sachin Siby, Sai Jayesh Bondu, Samyak Datta, Sara Chugh, Sara Hunt, Sargun Dhillon,
Sasha Sidorov, Satadru Pan, Saurabh Mahajan, Saurabh Verma, Seiji Yamamoto, Sharadh Ra-
maswamy, Shaun Lindsay, Shaun Lindsay, Sheng Feng, Shenghao Lin, Shengxin Cindy Zha,
Shishir Patil, Shiva Shankar, Shuqgiang Zhang, Shugiang Zhang, Sinong Wang, Sneha Agarwal,
Soji Sajuyigbe, Soumith Chintala, Stephanie Max, Stephen Chen, Steve Kehoe, Steve Satter-
field, Sudarshan Govindaprasad, Sumit Gupta, Summer Deng, Sungmin Cho, Sunny Virk, Suraj
Subramanian, Sy Choudhury, Sydney Goldman, Tal Remez, Tamar Glaser, Tamara Best, Thilo
Koehler, Thomas Robinson, Tianhe Li, Tianjun Zhang, Tim Matthews, Timothy Chou, Tzook
Shaked, Varun Vontimitta, Victoria Ajayi, Victoria Montanez, Vijai Mohan, Vinay Satish Ku-
mar, Vishal Mangla, Vlad Ionescu, Vlad Poenaru, Vlad Tiberiu Mihailescu, Vladimir Ivanov,
Wei Li, Wenchen Wang, Wenwen Jiang, Wes Bouaziz, Will Constable, Xiaocheng Tang, Xiao-
jian Wu, Xiaolan Wang, Xilun Wu, Xinbo Gao, Yaniv Kleinman, Yanjun Chen, Ye Hu, Ye Jia,
Ye Qi, Yenda Li, Yilin Zhang, Ying Zhang, Yossi Adi, Youngjin Nam, Yu, Wang, Yu Zhao,
Yuchen Hao, Yundi Qian, Yunlu Li, Yuzi He, Zach Rait, Zachary DeVito, Zef Rosnbrick, Zhao-
duo Wen, Zhenyu Yang, Zhiwei Zhao, and Zhiyu Ma. The llama 3 herd of models, 2024. URL
https://arxiv.org/abs/2407.21783.7

Qingyan Guo, Rui Wang, Junliang Guo, Bei Li, Kaitao Song, Xu Tan, Guoqing Liu, Jiang Bian, and
Yujiu Yang. Evoprompt: Connecting llms with evolutionary algorithms yields powerful prompt
optimizers, 2025. URL https://arxiv.org/abs/2309.08532. 10

Harold V Henderson and Shayle R Searle. The vec-permutation matrix, the vec operator and kro-
necker products: A review. Linear and multilinear algebra, 9(4):271-288, 1981. 18, 35

HmbBfDI.  Discussion paper: Large language models and personal data, 2024. URL
https://datenschutz-—hamburg.de/fileadmin/user_upload/HmbBfDI/
Datenschutz/Informationen/240715_Discussion_Paper_Hamburg_ DPA_
KI_Models.pdf. 10

Roger A. Horn and Charles R. Johnson. Matrix Analysis. Cambridge University Press, Cambridge,
2 edition, 2013. 34

Albert Q. Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chap-
lot, Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier,
Lélio Renard Lavaud, Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Thibaut Lavril,
Thomas Wang, Timothée Lacroix, and William El Sayed. Mistral 7b, 2023. URL https:
//arxiv.org/abs/2310.06825.7

Haozhe Jiang and Nika Haghtalab. On surjectivity of neural networks: Can you elicit any behavior
from your model? arXiv preprint arXiv:2508.19445, 2025. URL https://arxiv.org/
abs/2508.19445.9

Tamara G. Kolda and Brett W. Bader. Tensor decompositions and applications. SIAM Review,
51(3):455-500, 2009. doi: 10.1137/07070111X. URL https://doi.org/10.1137/
07070111X. 16

Steven G Krantz and Harold R Parks. A primer of real analytic functions. Springer Science &
Business Media, 2002. 21

Andrew D. Lewis. Chapter 1: Holomorphic and real analytic calculus. Notes on Global Analysis,
Vol. 1, Queen’s University, February 2014. URL https://mast.queensu.ca/~-andrew/
teaching/math942/pdf/lchapterl.pdf. Version: 2014-02-28. 17, 18, 37

David G. Luenberger. Optimization by vector space methods. Wiley-Interscience, 1997. 23

Jan R. Magnus and Heinz Neudecker. Matrix differential calculus with applications in statistics and
Econometrics. John Wiley & Sons, Inc, 2019. 23, 33

13


https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2309.08532
https://datenschutz-hamburg.de/fileadmin/user_upload/HmbBfDI/Datenschutz/Informationen/240715_Discussion_Paper_Hamburg_DPA_KI_Models.pdf
https://datenschutz-hamburg.de/fileadmin/user_upload/HmbBfDI/Datenschutz/Informationen/240715_Discussion_Paper_Hamburg_DPA_KI_Models.pdf
https://datenschutz-hamburg.de/fileadmin/user_upload/HmbBfDI/Datenschutz/Informationen/240715_Discussion_Paper_Hamburg_DPA_KI_Models.pdf
https://arxiv.org/abs/2310.06825
https://arxiv.org/abs/2310.06825
https://arxiv.org/abs/2508.19445
https://arxiv.org/abs/2508.19445
https://doi.org/10.1137/07070111X
https://doi.org/10.1137/07070111X
https://mast.queensu.ca/~andrew/teaching/math942/pdf/1chapter1.pdf
https://mast.queensu.ca/~andrew/teaching/math942/pdf/1chapter1.pdf

Under review as a conference paper at ICLR 2026

Microsoft, :, Abdelrahman Abouelenin, Atabak Ashfaq, Adam Atkinson, Hany Awadalla, Nguyen
Bach, Jianmin Bao, Alon Benhaim, Martin Cai, Vishrav Chaudhary, Congcong Chen, Dong Chen,
Dongdong Chen, Junkun Chen, Weizhu Chen, Yen-Chun Chen, Yi ling Chen, Qi Dai, Xiyang Dai,
Ruchao Fan, Mei Gao, Min Gao, Amit Garg, Abhishek Goswami, Junheng Hao, Amr Hendy,
Yuxuan Hu, Xin Jin, Mahmoud Khademi, Dongwoo Kim, Young Jin Kim, Gina Lee, Jinyu Li,
Yunsheng Li, Chen Liang, Xihui Lin, Zeqi Lin, Mengchen Liu, Yang Liu, Gilsinia Lopez, Chong
Luo, Piyush Madan, Vadim Mazalov, Arindam Mitra, Ali Mousavi, Anh Nguyen, Jing Pan, Daniel
Perez-Becker, Jacob Platin, Thomas Portet, Kai Qiu, Bo Ren, Liliang Ren, Sambuddha Roy,
Ning Shang, Yelong Shen, Saksham Singhal, Subhojit Som, Xia Song, Tetyana Sych, Praneetha
Vaddamanu, Shuohang Wang, Yiming Wang, Zhenghao Wang, Haibin Wu, Haoran Xu, Weijian
Xu, Yifan Yang, Ziyi Yang, Donghan Yu, Ishmam Zabir, Jianwen Zhang, Li Lyna Zhang, Yunan
Zhang, and Xiren Zhou. Phi-4-mini technical report: Compact yet powerful multimodal language
models via mixture-of-loras, 2025. URL https://arxiv.org/abs/2503.01743.7

Boris Mityagin. The zero set of a real analytic function. arXiv preprint arXiv:1512.07276,2015. 18

John X. Morris, Volodymyr Kuleshov, Vitaly Shmatikov, and Alexander M. Rush. Text embeddings
reveal (almost) as much as text, 2023a. URL https://arxiv.org/abs/2310.06816. 8,
10

John X. Morris, Wenting Zhao, Justin T. Chiu, Vitaly Shmatikov, and Alexander M. Rush. Language
model inversion, 2023b. URL https://arxiv.org/abs/2311.13647. 8,10

James R. Munkres. Topology. Prentice Hall, Upper Saddle River, NJ, 2 edition, 2000. 23, 24

Murtaza Nazir, Matthew Finlayson, John X. Morris, Xiang Ren, and Swabha Swayamdipta. Bet-
ter language model inversion by compactly representing next-token distributions, 2025. URL
https://arxiv.org/abs/2506.17090. 8§, 10

Jorge Pérez, Javier Marinkovié¢, and Pablo Barceld. On the turing completeness of modern neural
network architectures. In International Conference on Learning Representations, 2019. URL
https://openreview.net/forum?id=HyGBdoOgFm. 55

Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever.
Language models are unsupervised multitask learners. 2019. URL https://api.
semanticscholar.org/CorpusID:160025533. 7,48

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J. Liu. Exploring the limits of transfer learning with a unified text-to-
text transformer. Journal of Machine Learning Research, 21(140):1-67, 2020. URL http:
//jmlr.org/papers/v21/20-074 .html. 7

Anton Razzhigaev, Matvey Mikhalchuk, Elizaveta Goncharova, Ivan Oseledets, Denis Dimitrov, and
Andrey Kuznetsov. The shape of learning: Anisotropy and intrinsic dimensions in transformer-
based models, 2024. URL https://arxiv.org/abs/2311.05928. 51

Anton Razzhigaev, Matvey Mikhalchuk, Temurbek Rahmatullaev, Elizaveta Goncharova, Polina
Druzhinina, Ivan Oseledets, and Andrey Kuznetsov. Llm-microscope: Uncovering the hidden
role of punctuation in context memory of transformers, 2025. URL https://arxiv.org/
abs/2502.15007. 51

Walter Rudin. Principles of Mathematical Analysis. McGraw—Hill, New York, 3 edition, 1976. 24,
38, 54

Taylor Shin, Yasaman Razeghi, Robert L. Logan IV, Eric Wallace, and Sameer Singh. Autoprompt:
Eliciting knowledge from language models with automatically generated prompts, 2020. URL
https://arxiv.org/abs/2010.15980. 10

Ravid Shwartz-Ziv and Naftali Tishby. Opening the black box of deep neural networks via informa-
tion, 2017. URL https://arxiv.org/abs/1703.00810. 52

Michael Spivak. Calculus on manifolds. Westview Press, Philadelphia, PA, January 1971. 24

14


https://arxiv.org/abs/2503.01743
https://arxiv.org/abs/2310.06816
https://arxiv.org/abs/2311.13647
https://arxiv.org/abs/2506.17090
https://openreview.net/forum?id=HyGBdo0qFm
https://api.semanticscholar.org/CorpusID:160025533
https://api.semanticscholar.org/CorpusID:160025533
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
https://arxiv.org/abs/2311.05928
https://arxiv.org/abs/2502.15007
https://arxiv.org/abs/2502.15007
https://arxiv.org/abs/2010.15980
https://arxiv.org/abs/1703.00810

Under review as a conference paper at ICLR 2026

Tianxiang Sun, Yunfan Shao, Hong Qian, Xuanjing Huang, and Xipeng Qiu. Black-box tuning for
language-model-as-a-service, 2022. URL https://arxiv.org/abs/2201.03514. 10

Zhaodong Sun, Fabian Latorre, Thomas Sanchez, and Volkan Cevher. A plug-and-play deep im-
age prior. In ICASSP 2021 - 2021 IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP), pp. 8103-8107. IEEE, June 2021. doi: 10.1109/icassp39728.2021.
9414879. URL http://dx.doi.org/10.1109/ICASSP39728.2021.9414879. 10

Zhiqing Sun and Yiming Yang. An em approach to non-autoregressive conditional sequence gen-
eration. In International Conference on Machine Learning, 2020. URL https://api.
semanticscholar.org/CorpusID:220265867. 55

Denis Sutter, Julian Minder, Thomas Hofmann, and Tiago Pimentel. The non-linear representation
dilemma: Is causal abstraction enough for mechanistic interpretability?, 2025. URL https:
//arxiv.org/abs/2507.08802. 9,32

Gemma Team, Aishwarya Kamath, Johan Ferret, Shreya Pathak, Nino Vieillard, Ramona Merhej,
Sarah Perrin, Tatiana Matejovicova, Alexandre Ramé, Morgane Riviere, Louis Rouillard, Thomas
Mesnard, Geoffrey Cideron, Jean bastien Grill, Sabela Ramos, Edouard Yvinec, Michelle Cas-
bon, Etienne Pot, Ivo Penchev, Gaél Liu, Francesco Visin, Kathleen Kenealy, Lucas Beyer, Xi-
aohai Zhai, Anton Tsitsulin, Robert Busa-Fekete, Alex Feng, Noveen Sachdeva, Benjamin Cole-
man, Yi Gao, Basil Mustafa, lain Barr, Emilio Parisotto, David Tian, Matan Eyal, Colin Cherry,
Jan-Thorsten Peter, Danila Sinopalnikov, Surya Bhupatiraju, Rishabh Agarwal, Mehran Kazemi,
Dan Malkin, Ravin Kumar, David Vilar, Idan Brusilovsky, Jiaming Luo, Andreas Steiner, Abe
Friesen, Abhanshu Sharma, Abheesht Sharma, Adi Mayrav Gilady, Adrian Goedeckemeyer, Alaa
Saade, Alex Feng, Alexander Kolesnikov, Alexei Bendebury, Alvin Abdagic, Amit Vadi, Andras
Gyorgy, André Susano Pinto, Anil Das, Ankur Bapna, Antoine Miech, Antoine Yang, Antonia
Paterson, Ashish Shenoy, Ayan Chakrabarti, Bilal Piot, Bo Wu, Bobak Shahriari, Bryce Petrini,
Charlie Chen, Charline Le Lan, Christopher A. Choquette-Choo, CJ Carey, Cormac Brick, Daniel
Deutsch, Danielle Eisenbud, Dee Cattle, Derek Cheng, Dimitris Paparas, Divyashree Shivaku-
mar Sreepathihalli, Doug Reid, Dustin Tran, Dustin Zelle, Eric Noland, Erwin Huizenga, Eu-
gene Kharitonov, Frederick Liu, Gagik Amirkhanyan, Glenn Cameron, Hadi Hashemi, Hanna
Klimczak-Plucifiska, Harman Singh, Harsh Mehta, Harshal Tushar Lehri, Hussein Hazimeh, Ian
Ballantyne, Idan Szpektor, Ivan Nardini, Jean Pouget-Abadie, Jetha Chan, Joe Stanton, John Wi-
eting, Jonathan Lai, Jordi Orbay, Joseph Fernandez, Josh Newlan, Ju yeong Ji, Jyotinder Singh,
Kat Black, Kathy Yu, Kevin Hui, Kiran Vodrahalli, Klaus Greff, Linhai Qiu, Marcella Valentine,
Marina Coelho, Marvin Ritter, Matt Hoffman, Matthew Watson, Mayank Chaturvedi, Michael
Moynihan, Min Ma, Nabila Babar, Natasha Noy, Nathan Byrd, Nick Roy, Nikola Momcheyv, Ni-
lay Chauhan, Noveen Sachdeva, Oskar Bunyan, Pankil Botarda, Paul Caron, Paul Kishan Ruben-
stein, Phil Culliton, Philipp Schmid, Pier Giuseppe Sessa, Pingmei Xu, Piotr Stanczyk, Pouya
Tafti, Rakesh Shivanna, Renjie Wu, Renke Pan, Reza Rokni, Rob Willoughby, Rohith Vallu,
Ryan Mullins, Sammy Jerome, Sara Smoot, Sertan Girgin, Shariq Igbal, Shashir Reddy, Shruti
Sheth, Siim Pdder, Sijal Bhatnagar, Sindhu Raghuram Panyam, Sivan Eiger, Susan Zhang, Tianqi
Liu, Trevor Yacovone, Tyler Liechty, Uday Kalra, Utku Evci, Vedant Misra, Vincent Roseberry,
Vlad Feinberg, Vlad Kolesnikov, Woohyun Han, Woosuk Kwon, Xi Chen, Yinlam Chow, Yuvein
Zhu, Zichuan Wei, Zoltan Egyed, Victor Cotruta, Minh Giang, Phoebe Kirk, Anand Rao, Kat
Black, Nabila Babar, Jessica Lo, Erica Moreira, Luiz Gustavo Martins, Omar Sanseviero, Lucas
Gonzalez, Zach Gleicher, Tris Warkentin, Vahab Mirrokni, Evan Senter, Eli Collins, Joelle Bar-
ral, Zoubin Ghahramani, Raia Hadsell, Yossi Matias, D. Sculley, Slav Petrov, Noah Fiedel, Noam
Shazeer, Oriol Vinyals, Jeff Dean, Demis Hassabis, Koray Kavukcuoglu, Clement Farabet, Elena
Buchatskaya, Jean-Baptiste Alayrac, Rohan Anil, Dmitry, Lepikhin, Sebastian Borgeaud, Olivier
Bachem, Armand Joulin, Alek Andreev, Cassidy Hardin, Robert Dadashi, and Léonard Hussenot.
Gemma 3 technical report, 2025. URL https://arxiv.org/abs/2503.19786.7

Yuxin Wen, Neel Jain, John Kirchenbauer, Micah Goldblum, Jonas Geiping, and Tom Goldstein.
Hard prompts made easy: Gradient-based discrete optimization for prompt tuning and discovery,
2023. URL https://arxiv.org/abs/2302.03668. 8, 10,47

Zhilin Yang, Zihang Dai, Ruslan Salakhutdinov, and William W. Cohen. Breaking the softmax
bottleneck: A high-rank rnn language model. In International Conference on Learning Represen-
tations (ICLR), 2018. URL https://arxiv.org/abs/1711.03953.9

15


https://arxiv.org/abs/2201.03514
http://dx.doi.org/10.1109/ICASSP39728.2021.9414879
https://api.semanticscholar.org/CorpusID:220265867
https://api.semanticscholar.org/CorpusID:220265867
https://arxiv.org/abs/2507.08802
https://arxiv.org/abs/2507.08802
https://arxiv.org/abs/2503.19786
https://arxiv.org/abs/2302.03668
https://arxiv.org/abs/1711.03953

Under review as a conference paper at ICLR 2026

Chulhee Yun, Srinadh Bhojanapalli, Ankit Singh Rawat, Sashank Reddi, and Sanjiv Kumar. Are
transformers universal approximators of sequence-to-sequence functions? In International Con-
ference on Learning Representations, 2020. URL https://openreview.net/forum?
1d=ByxRMONtvr. 55

Collin Zhang, John X. Morris, and Vitaly Shmatikov. Extracting prompts by inverting llm outputs,
2024. URL https://arxiv.org/abs/2405.15012. 10

A PRELIMINARIES

This section fixes notation the notation used throughout the main paper and the appendix (subsec-
tion A.1), and it introduces real-analyticity as the organizing theme (subsection A.2). We first review
the vector-space notion and its basic closure/composition properties (subsubsection A.2.1), together
with a zero-set principle used in measure-zero arguments. We then extend these ideas to maps
between matrix spaces (subsubsection A.2.2) via vectorization/matricization and note that analytic-
ity is preserved under matrix compositions. To streamline later proofs, we summarize real-analytic
building blocks commonly used in transformer layers—polynomials, exponential/logarithm, softmax,
row normalization, matrix products, Hadamard scaling, and stacking (subsubsection A.2.3). Finally,
in subsection A.3, we collect differential and topological tools—Fréchet derivatives and the Hessian,
standard facts on RP, the inverse function theorem, and pushforwards/absolute continuity—which
we use for local invertibility and absolute-continuity arguments. Readers already comfortable with
these topics can skim now and return to specific subsections as needed.

A.1 NOTATION

For arbitrary T' € N, we write [T] = {1,2,...,T} to denote the set of positive integers up to 7.
Additionally, we denote the strictly positive real numbers as RT™ = (0, co) and the non-negative real
numbers as R = [0, c0). Similarly, we let Ng = N U {0}.

Discrete sets are denoted by uppercase calligraphic letters V, and a sequence of length K is denoted
by lowercase letters: s = (sq,...,sx) € VK. We write |[s| = K to denote the length of the

sequence. The set of non-empty sequences of length at most K is denoted as V=K = UkK:1 Yk,
Non-discrete sets are denoted by uppercase calligraphic bold-face letters B.

Remark 1. We will often refer to a discrete set V as the vocabulary and to an element s € V=X as
an input, context, or prompt.

Matrices (vectors) are denoted by uppercase (lowercase) bold-face letters: X € R4 %% (x € R%).

For vectors and matrices, we frequently use standard norms and common matrix operations. The
Hadamard and Kronecker products are defined following Kolda & Bader (2009):

e p-norm: For a vector x € R, the £, norm is defined as

1

d p

Ixllp = (ZIX#’) :
i=1

* Frobenius norm: For a matrix X € R% %% the Frobenius norm is defined as

1X e = /tr(XXT) =

* Hadamard product: The Hadamard (element-wise) product is defined for vectors and matrices
of the same shape:

di  d2

Sy,

i=1 j=1

(xOy)i = xiyi, forall i € [d],
(X ® Y)” = Xinija forall i € [d1]7 j € [dg],

where x,y € R?and X, Y € R4 x4z,

16


https://openreview.net/forum?id=ByxRM0Ntvr
https://openreview.net/forum?id=ByxRM0Ntvr
https://arxiv.org/abs/2405.15012

Under review as a conference paper at ICLR 2026

+ Kronecker product: The Kronecker product of X € R%*% and Z € R%*94 is denoted X ® Z
and defined blockwise as

X1Z - XigZ
XQZ = : .. : c R(d1d3)x(d2da)
Xdllz XdldQZ

We denote the all-zeros matrix of size m X n as 0,,x,, and the all-zeros vector of length m as 0,,.
Similarly, we write 1,,, for the all-ones vector of length m, and I, (or I, «,,, when dimensions must
be explicit) for the m x m identity matrix.

Let f : V<K x RP — R be a function over a finite vocabulary V and K € N. We refer to f as the
model, to its first argument as the input sequence, and to its second argument as the parameters.

Remark 2. Throughout our analysis, we assume a finite set of possible input sequences, reflect-
ing the practical limitations and design choices of modern LLMs, specifically the bounded context
length.

Remark 3. We take the codomain of the model to be RY, corresponding to the space of token
embeddings. This allows us to study how the final embedding (typically used to compute next-token
probabilities) depends on both the input sequence and the model parameters.

A.2 REAL-ANALYTICITY

We now introduce the central notion for our analysis: real-analyticity. In its standard form, real-
analyticity is defined for functions f : U — R™, where Y C R™ is an open set. Since the
transformer architecture is naturally expressed in terms of matrices, it will be convenient to extend
this notion to maps of the form f : R™*" — Raxb,

Multi-index notation. We use multi-index notation for both vectors and matrices.

Vector case. Let a = (a1, ..., )" € NI and x,y € R™. Define:
m m m
laf =) aj,  al=]]al, (x—y)* =[] —y)™.
j=1 j=1 j=1

Matrix case. Let A = (a,) € Ng**™ and X,Y € R”™*", Define:

A=) ow,  Al=]]JJawt  X-Y)%=]] [TXuw — Yur).

u=1lv=1 u=1v=1 u=1v=1
Given an open setid C R™ and amap f : U — R, we write
olel f
— (%
OxTt - Oxp
for the mixed partial derivative (when it exists). Unless stated otherwise, we assume f € C°°(U), so

d® f exists and is continuous for all & € N{*; for vector-valued maps f = (fi,..., f,) the operator
d® acts componentwise. We also use the convention d° f = f.

d*f(x) =

A.2.1 REAL-ANALYTIC FUNCTIONS WITH VECTOR INPUTS

Definition A.1 (Real-analytic functions, Lewis 2014, Definition 1.1.3). Let U C R™ be open. A
function f : U — R isreal-analytic onU if, for everyy € U, there exist coefficients {co, € R}qeny

and r > 0 such that
fE) =) calx—y)*

aeNj
forall x € U with ||x — y||2 < r. The set of real-analytic functions on U is denoted by C* (U).

Amap [ : U — R" is real-analytic on U if each of its components f1,...,fn : U — R is
real-analytic. The set of such maps is denoted C* (U ; R™).

17



Under review as a conference paper at ICLR 2026

Remark 4. To establish real-analyticity of a vector-valued mapping (e.g., an MLP, attention mech-
anism, or LayerNorm), it suffices to prove real-analyticity of each scalar component.

Proposition A.1 (Closure properties, Lewis 2014, Proposition 1.2.1). Let f,g : R™ — R be real-
analytic maps. Then, the following hold:

1. Addition: f + g € C“(R™).
2. Product: fg € C*(R™).

3. Quotient: If g(x) # 0 for all x € R™, then f/g € C¥(R™).
Proposition A.2 (Composition, Lewis 2014, Proposition 1.2.2). Let f : R™ — R" and g : R" —
R be real-analytic maps. Then, the composition g o f : R™ — R¥ is real-analytic.

Remark 5. For simplicity, we do not state the closure properties in their most general form, where
f and g may be defined on different open subsets of R™. This avoids additional notation involving
intersections of domains. Since every function of interest in our later analysis is defined on the whole
space R™, this restriction entails no loss of generality.

Theorem A.1 (Zero sets of nontrivial real-analytic maps Mityagin 2015). LetU C R™ be connected
and open, and let f € C¥ (U ; R™). If f £ 0,,, then its zero set

Z2(f) = fT{0n)) = {xelU: f(x)=0,}
has Lebesgue measure zero in R™ (i.e. Leb,, (Z (f )) = 0). Equivalently, if there exists x € U with
f(x) # 0, then Leb,, (f’l({On})) =0.
Remark 6. The result in Mityagin (2015) is stated for scalar-valued maps f : U — R. The

extension to vector-valued maps [ = (f1,..., fn) : U — R™ is immediate: the zero set of f is the
intersection of the zero sets of its scalar components,

Z(f) = _ﬂZ(fi),

and if f # 0., then at least one component f; # 0, so Z(f) C Z(f;), which has measure zero by
the scalar case.

A.2.2 REAL-ANALYTIC FUNCTIONS WITH MATRIX INPUTS

Definition A.2 (Real-analyticity on matrix spaces). LetU C R™*"™ be open. A function f : U — R
is real-analytic on U if, for every Y € U, there exist coefficients {ca € R} AeNTx" and r > 0 such

that
fX)= > eaX-Y)*
Aeng
forall X e U with | X =Yg <.

Amap f: U — R is real-analytic on U if each of its components fi; : U — Riis real-analytic.
The set of such maps is denoted C* (U ; R**?),

Remark 7. In the special case where n = b = 1, the domain and codomain reduce to R™ and
R?, respectively. Then Definition A.2 recovers Definition A.l. Thus, Definition A.2 generalizes
real-analyticity to functions between matrix spaces.

Definition A.3 (Vectorization and matricization Operators). Let vecy, , : R™*™ — R™" denote the
standard vectorization operator, which stacks the columns of a matrix into a single column vector
(Henderson & Searle, 1981).

We also define the corresponding matricization operator mat,, , : R™" — R™*" As shown in
Chacon & Duong 2020, the vectorization and matricization operators are mutual inverses:

mat,, , (Vecmm(X)) =X VX eRm™*" @)
V€Cpm,n (matm’n(x)) =x VxeR™ 8)
Furthermore, if x € R™ and X € R™*™ are related by vectorization and matricization, i.e.,
X = VeCp,n(X) and X = mat,, ,(x), then their norms coincide:
[x[l2 = [[X[[F.

18



Under review as a conference paper at ICLR 2026

Definition A.4 (Vectorized Form of Function). Let U C R™*" be open and U = vec,, ,(U)
(also open since vec is a linear homeomorphism). We denote the vectorized form of a function
f:U — R gy

fri=vecqpo fomaty,, : U — R,

Equivalently, for all X € U:

f(X) = mat, ( f(vecmm(X))) )

Lemma A.1 (Equivalence real-analyticity). Let U C R™*™ be open, U = vecy, n(U), and let
f U — R*¥Y with its vectorized form f : U — R.

Fix Y € U and set y = vec,, ,(Y) € U. Then the following are equivalent:
1. f is real-analytic at'Y (in the sense of Definition A.2).
2. f is real-analytic at 'y (in the sense of Definition A.1).

Proof. We begin by establishing the correspondence between matrix and vector indices in R*** and
R**. For s € [k/], define:

u(s) ;=14 (s—1) mod k (row index)

k

Then (u(s),v(s)) € [k] x [¢] gives the matrix coordinates corresponding to the sth entry of the
vectorization. Conversely, for (u,v) € [k] x [¢], define:

s(u,v) :=u+ (v—1)k € [k¢

v(s):=1+ F —_ 1J (column index)

to recover the linear index.

When clear from context, we omit arguments and simply write u, v, or s for readability.

Let X,Y € R™*", with vectorizations x = vec, ,,(X) and y = vec,, ,,(Y). For a vector multi-
index a € NJ'", define the corresponding matrix multi-index A4 := mat,, , (o), so that:

(X - Y)a = H(xs - y‘e)as = H H(Xuv - Yuv)(Aa)uv = (X - Y)AQ- (10)
s=1 u=1v=1

Similarly, for a matrix multi-index A € N**", define the corresponding vector multi-index cp :=
vecm n(A), giving:

X =Y =[] []Xuw = Yuo) b = [[(xs —yo) @) = (x —y)*a. (1)
u=1v=1 s=1

Now let M € U, and let m = vecy, ,(M) € u. By definition of the vectorization,
fuv(M) :fs(m)v Wheres:s(u,v).

This coordinate-wise correspondence underlies the equivalence stated in the lemma.

(=) Assume f is real-analytic at Y. Then by Definition A.2, there exists > 0 and, for each (u, v),
: (uv) .
coefficients {cjy "'} 5 ¢pyyrx» such that:

fuX) = > KXY VX eU: XY <r (12)
ANy xn

Using Equation 11, each component fs of f canbe expressed as:

fo(x) = Z & (x —y)*, where ) = cf:(s)’“(s))_

mmn
aeNy

19



Under review as a conference paper at ICLR 2026

This series converges for all x € U with |[x—y||2 = [|[X Y| < 7. Hence, each scalar component
of f has a convergent power series at y, proving that f is real-analytic there.

(<) The reverse direction follows by symmetry: assume f is real-analytic at y, write the expan-
sion at y using definition Definition A.l, and repeat the argument using Equation 10 to construct
component-wise expansions for f, at Y. O

Remark 8. Consider the function f = vec,,, : R™*" — R™*1 which vectorizes an m x n
matrix by stacking its columns. Its corresponding vectorized form is
f(x) = (V€Cmn,1 O VECpy p O Maby, 5 )(X) = VeCyp,1(X) = X,

since x € R™" is already a column vector . This composition yields the identity map on R™",
which is clearly real analytic. Therefore, by Lemma A.1, both vecy, r, is real analytic, and similarly,
50 is maty, n. It is now evident that the composition of two matrix-valued real-analytic function is
real-analytic, and we will prove it.

Proposition A.3 (Composition on matrix spaces is real-analytic). Suppose f : R™*" — R*® and
g : R®*Y 5 RPX4 gre real-analytic (in the sense of Definition A.2). Then g o f : R™X™ — RPX4 jg
real-analytic.
Proof. Consider the vectorized forms

f = VeCqp © f omaty, , : R™" — R, § 1= vecp 40 gomatgy : R — RPY,

By Lemma A.1, f is real-analytic iff f is, and g is real-analytic iff g is. Hence f and g are real-
analytic maps between Euclidean spaces.

The vectorized form of the composition is

go f=vecyq0(go f)omaty,, = (vecyq0gomatyy) o (veca, o f omaty,,) =go 1,

g !
where we inserted the identity (mat, ,ovec, ) (X) = X. By the vector-space composition property

(Proposition A.2), go f is real-analytic on R™". Applying Lemma A.l once more, we get that go f
is real-analytic. O

A.2.3 REAL ANALYTICITY OF COMMON COMPONENTS

We now collect several building blocks that will be used repeatedly. Throughout, all maps are
defined on R™*™, an open set, so Definition A.2 applies.

Proposition A.4 (Polynomials are real-analytic). Let p : R™ — R be a polynomial in the coor-
dinates of x € R™, i.e., p(x) = Z|a|§d G X for some d € Nq and coefficients ao, € R. Then

p € C¥(R™).
Proof. Polynomials are C°°, and d*p = 0 whenever || > d. Hence the Taylor expansion of p at

any y € R™ truncates:
d*p(y) o
e = 3 P e,

la|<d
which holds for all x € R™ (radius » = +0o0). Therefore p is real-analytic. O

Proposition A.5 (The exponential is real-analytic). The map exp : R — (0, 00) is real-analytic on
R.

Proof. Define E(z) := Y 72, %;: By the ratio test this power series has infinite radius of conver-
gence, hence converges absolutely for all z € R. Standard results on power series imply that &/
is C'*° on R and can be differentiated termwise within its radius of convergence; in particular, for
every j € No,

k=j ’ r=0

20



Under review as a conference paper at ICLR 2026

Fix y € R. Taylor’s theorem for power series then yields

o) ; oo .

EY)(y) - (x —y)

E() =Y T(@" —y) =Ey)) BT
=0 i=0

which is a convergent power series in z — y with infinite radius of convergence. Hence F is real-

analytic at every y € R. As FE is the usual exponential function defined by its power series, exp is

real-analytic on R. O

Proposition A.6 (The logarithm is real-analytic). The map log : (0,00) — R is real-analytic on
(0, 00).

Proof. For brevity, we present only a proof sketch;

The exponential map exp : R — (0, 00) is real-analytic with exp’(y) # 0 for all y. By the real-
analytic inverse function theorem (see Krantz & Parks 2002, Thm. 2.3.1), its local inverse log is
real-analytic on (0, 00). O

Proposition A.7 (Softmax is real-analytic). The map softmax : R™ — R™ with components

Xi

€

Z;nzl exi’

softmax;(x) = i=1,...,m,

is real-analytic on R™.

Proof. Fix i. The numerator x +— e*i is the composition of the coordinate projection 7;(x) =
x; (a linear, hence real-analytic, map) with exp; by Proposition A.5 and the composition rule in
Proposition A.1, it is real-analytic. The denominator

H(x) = Zexj

is a finite sum of real-analytic functions, hence real-analytic. Moreover, H(x) > 0 for all x € R™
because e”7 > 0. Therefore, by the quotient rule in Proposition A.1, the map

H(x)

is real-analytic on R™. Since this holds for each i = 1,...,m, the vector-valued map softmax is
real-analytic. O

X —

Proposition A.8 (Row normalization is real-analytic on positive row-sum domain). Let
Dr:={Y eR"7" : Y1y € (0,00)"}.

Define RN(Y) = diag(Y17) ™YY on Dr. Then RN : Dy — RT*T is real-analytic (in the sense
of Definition A.2).

Proof. The map Y + s := Yl is linear, hence real-analytic. On (0,00)7, the entrywise re-
ciprocal s + s®(=1) is real-analytic (componentwise ¢ — 1/t). The map s ~— diag(s) is linear.
Matrix multiplication (A,Y) — AY is real-analytic (Proposition A.10). Composing these gives
RN(Y) = diag(Y17) 'Y real-analytic on the open set Dr.

Proposition A.9 (Entrywise matrix polynomials are real-analytic). Fix m,n € N. For coefficients
{ca € R}AeNanxn and some d € Ny, define the function p : R™*" — R by:

p(X)= > caX?, (13)
|A|<d
where XA = T[] T]'_, X2 as defined in the multi-index notation above. Then p is real-

analytic on R™*" (in the sense of Definition A.2).

Moreover, if f : R™*™ — R**Y has component functions fij of the form Equation 13, then f is
real-analytic.

21



Under review as a conference paper at ICLR 2026

Proof. Consider the vectorized form p := p o mat,, , : R™" — R. Using the coordinate identifi-
cation from equation 1 [-equation 10, each monomial satisfies
A
(matm,n(x)) = x%A,

where aca = vec, ,(A). Hence:
Plx) = ) cax™,

which is a standard multivariate polynomial in x € R™". By Proposition A.4, such functions are
real-analytic on all of R™", so p € C*(R™"). By Lemma A.l, this implies p is real-analytic on
Rmx'ﬂ'

For the second claim, observe that if each f;; is a scalar polynomial of the form Equation 13, then
each f;; is real-analytic by the argument above. Hence, by Definition A.2, f is real analytic. O

Proposition A.10 (Matrix product of real-analytic factors). Let the functions f : R™*™ — RP*"
and g : R™*™ — R"*? pe real-analytic. Then, h : R™*™ — RP*? defined as h(X) = f(X) g(X),
is real-analytic on R™*",

Proof. For each (4, §) € [p] x [g], it holds that h;;(X) = S"4_, fir(X) grj(X).

Each factor f;; and gy; is a real-analytic scalar map by assumption; their product is real-analytic
by Proposition A.1, and a finite sum of real-analytic functions is real-analytic. Thus every h;; is
real-analytic, hence h is real-analytic.

Proposition A.11 (Hadamard (element-wise) scaling). Let A € R™*" be a fixed matrix. Then, the
map [ : R™*" — R™*" defined as f(X) = A ® X is real-analytic on R™*™,

Proof. Componentwise, (A ® X);; = A;; X;; is a product of a constant and a coordinate function,
hence a polynomial (degree < 1) and thus real-analytic. O

Proposition A.12 (Concatenation/stacking of real-analytic blocks). Let f, : R™*" — RPX4 pe
real-analytic for ¢ € [L]. The horizontal concatenation operation g : R™*" — Rp*(ait--+ar)

defined as:
9X)=[AX) fo(X) -+ fL(X)]

is real-analytic. Likewise, if f; : R™*™ — RP¢*4 are real-analytic, then the vertical stacking
operation h : R™*" — R@1+4PL)X4_ dofined as:

hX) = [AX)T LX) - fX)T]T
is real-analytic.

Proof. Each scalar component of g (respectively h) is exactly one scalar component of some fy,
hence real-analytic. Therefore g and h are real-analytic by definition Definition A.2. O

Proposition A.13 (Noncommutative matrix polynomials are real-analytic). Let n,p,q € N, let
X € R™ ™, and fix coefficient matrices Ay € RP*™ and By, € R™"*? for k = 0,...,d. Define

d
fX) = > AXFB € R, X0:=1,, XM=XEX.
k=0
Then f is real analytic in the sense of Definition A.2.

Proof. The identity map X — X is linear, hence a degree-1 entrywise polynomial; by Proposi-
tion A.9 it is real-analytic. Assume X + X is real-analytic. With f(X) = X* and ¢(X) = X,
Proposition A.10 yields X¥*+1 = f(X)g(X) real-analytic; by induction, all powers X + X* are
real-analytic.

For each k, left/right multiplication by fixed matrices preserves real-analyticity via Proposition A.10:
since the constant maps X +— Ay and X — By, are real-analytic (components are constant polyno-
mials), the composition X ~— A X* By, is real-analytic. Finally, f is a finite sum of real-analytic
maps, hence real-analytic by closure under addition (apply Proposition A.1 componentwise). [

22



Under review as a conference paper at ICLR 2026

Remark 9. We highlight several standard constructions that yield real-analytic maps, omitting
proofs for brevity:

* Affine and bilinear maps. Functions of the form X — AXB + C are real-analytic, as they are
obtained via matrix multiplication and addition of constant matrices (Proposition A.10, Proposi-
tion A.1).

» Algebraic expressions in X. Any expression constructed from X using finitely many additions and
matrix multiplications with fixed coefficient matrices, e.g. Ag+ A1XB1 + As XByXCs- defines
a real-analytic map. This follows from repeated application of Proposition A.10 and closure under
addition.

* Scalar polynomial invariants. Coordinate functions X,;;, the trace tr(X), all principal and non-
principal minors, and the determinant det(X) are scalar polynomials in the entries of X, and
hence real-analytic by Proposition A.9.

A.3 DIFFERENTIAL, MEASURE-THEORETIC, AND TOPOLOGICAL TOOLS

This subsection collects the minimal calculus, measure, and topology we will use later. In finite di-
mensions, Fréchet derivatives let us speak uniformly about Jacobians and Hessians; basic Euclidean
topology lets us control neighborhoods and compactness; the inverse function theorem gives lo-
cal invertibility; and pushforwards/absolute continuity formalize how distributions transform under
measurable maps.

Definition A.5 (Fréchet derivative (Luenberger, 1997, §7.2-§7.3)). LetU C R™ open, and consider
a function f : U — R™. We say that f is Fréchet differentiable ar x € U if there exists a bounded
linear map A : R™ — R” such that

[f(x+h) — f(x) — Ahl,

= 0.
Ihil—0 [hl2

The unique operator A is denoted by D f(x) and called the (Fréchet) derivative of f at x.

Definition A.6 (Second Fréchet derivative (Magnus & Neudecker, 2019, Ch. 18)). Let U4 C R™
open, and consider a function f : U — R". Suppose f is Fréchet differentiable at x. The second
Fréchet derivative of f at x is the bounded bilinear map D? f(x) : R™ x R™ — R" defined as:

D?f(x)[h, K] = lim 2 XTI = D) [k]

t—0 t

Proposition A.14 (Connection to the Hessian). If f : U — R is C?, then D?f(x) is symmetric
(Arora et al., 2021, Thm. 5.1) and can represented by the Hessian matrix VQf(x):

D*f(x)[h,k] = h' (V?f(x))k,
as noted in Magnus & Neudecker 2019, Ch. 18.

Definition A.7 (Closure of a set in RP). Let U C RP. The closure of U, denoted U, is the smallest
closed subset of RP containing U.

Definition A.8 (Euclidean balls in R?). Fix p € N and equip R? with the Euclidean norm || - ||
Forx € RP and r > 0 we define:

B(x,r) ={yeRP:|ly—x[2<r}
B(x,r):={yeR:|y—x|s<r}

In R? with the Euclidean topology one has B(x,r) = B(x,r), i.e. the closed ball equals the
topological closure of the open ball.

Definition A.9 (Second-countable subspace of RP (Munkres, 2000, §30)). Let X C RP be equipped
with the subspace topology Tx = {UNX : U open in RP}. We say X is second-countable if there
exists a countable family F C Tx such that every O € Tx is a union of members of F. Equivalently,
the countable family

Fo = {B(X,T) NX:xeQP,re Qs },

is a basis for Tx.

23



Under review as a conference paper at ICLR 2026

Proposition A.15 (Standard facts for RP). Fix p € N. The following hold:

1. Hausdorff (Aitken, 2020, Prop. 18): RP with its Euclidean metric is Hausdorf{f.

2. Heine-Borel (Munkres, 2000, Thm. 27.3): A subset of RP is compact iff it is closed and
bounded; in particular, each closed Euclidean ball B(x,r) is compact.

3. Second countability (Munkres, 2000, §13 and Thm. 30.2) : R has a countable base (in-
tervals with rational endpoints); hence RP, being a finite product of second-countable
spaces, is second-countable. Moreover, subspaces of second-countable spaces are second-
countable.

4. Lindeldf consequence(Munkres, 2000, Thm. 30.3(a)): Every second-countable space is
Lindeldf; consequently, every open cover of any subspace of RP admits a countable sub-
cover.

5. Local compactness of RP(Munkres, 2000, Thm. 29.2): For any x € RP and open neigh-
borhood W 3 x, there exists € > 0 with B(x,¢) C W, and B(x,¢) is compact by Heine-
Borel; hence RP is locally compact. Furthermore, in a Hausdorff space, local compactness
is equivalent to shrinking neighborhoods with compact closures: for every neighborhood
W 3 x there exists an open YV withx € YV CV C W and V compact.

Definition A.10 (C* diffeomorphism Spivak 1971, Ch. 5). Let U,V C RP be open sets and let
ke NU{occ}. Amap f : U — V is a C* diffeomorphism if:

1. f is bijective;
2. fis CF (all partial derivatives up to order k exist and are continuous);
3. the inversemap f~':V — U is C*.

When k = 1 we simply say diffeomorphism. Equivalently, a C* diffeomorphism is a bijective C*
map whose inverse is also C*.

Theorem A.2 (Inverse Function Theorem Rudin 1976, Thm. 9.24). Let U C RP be open and
f:U — RP be CL. Suppose a € U satisfies det D f(a) # 0. Then there exist open sets Uy C U
witha € Uy and Vo C RP with f(a) € Vg such that

f|u0 : UQ — VO
is a C'-diffeomorphism. Moreover, the inverse f~! : Vo — Uy is C and

D(f )(fx) = (DFx)""  Vxel

Remark 10. In Theorem A.2 we assume f : U C RP — RP, so the Jacobian Df(a) isap X p
(square) matrix. In this setting,

det Df(a) #0 <= Df(a) is invertible,

and this is exactly the hypothesis that yields a local C" inverse.

Definition A.11 (Pushforward and absolute continuity (Folland, 1999, §3.2)). Consider a Borel-
measurable map T' : RP — RP and let |1 be a Borel measure on RP. The pushforward measure Ty 1
is the Borel measure on RP defined by

TyuU) = p(T7'0), U< BE?).

If v is another Borel measure on RP, we say Ty is absolutely continuous with respect to v, and
write Ty < v, if for every Borel setU € B(RP):

v(U) = 0 = Tupu(U) = 0.

In particular, for Lebesgue measure Leb,, to prove Ty 1 < Leb,, for every u < Leb,, it suffices to
verify that

Leb,(U) =0 = Leb,(T~'(U)) =0 forall BorelUd C R”.

24



Under review as a conference paper at ICLR 2026

B TRANSFORMER LANGUAGE MODEL

This appendix section gives a concise, shape-accurate specification of the decoder-only Transformer
we analyze. We include it both to keep the paper self-contained and because the measure-zero argu-
ments later hinge on architecture-dependent witnesses and exact dimension bookkeeping. We begin
with token and positional embeddings (Definition B.3), define self-attention and its causal variants
(Definition B.5, Definition B.6, Definition B.7), assemble multi-head attention, layer normalization,
and an MLP into a pre-LN residual block (Definition B.8, Definition B.9, Definition B.4, Defini-
tion B.11), stack L such blocks to obtain the model (Definition B.12), and conclude with the unem-
bedding+softmax head (Definition B.10), isolating the last-token representation used in downstream
proofs (Equation 29).

Definition B.1 (Token Embedding Layer). Let V be a vocabulary, and let d € N be the embedding
dimension. For any input sequence s = (si,...,s7) € V=K, the Token Embedding Layer is the
function defined as:

E(s) = (E,,...,Ey) | € RTX, (14)

where E € RVIX4 is a trainable embedding matrix indexed by elements of V, and E,, € R? denotes
the embedding vector for token s;.

This mapping is applied element-wise and is independent of the sequence length T

Definition B.2 (Positional Embedding Layer). Let V be a vocabulary, and let d € N be the em-
bedding dimension. For any input sequence s = (s1,...,s7) € VSE with T = |s|, the (learned
absolute) Positional Embedding Layer is the function defined as:

PE(s) = (Py,...,Pr)| e RT*4, (15)

where P € REX4 js q trainable matrix indexed by positions i € [K|, and P; € R? denotes the
embedding vector for position i. This mapping depends only on positions (not on token identities)
and returns the first T rows of P.

Definition B.3 (Embedding Layer). Let V be a vocabulary, K € N a context bound, and d € N
the embedding width. For any input sequence s = (sy,...,st) € VSE with T = |s|, define the
embedding layer as the sum of the token and positional embeddings:

Emb(s) := E(s) + PE(s) = (B, + Py, ..., B, + Pp)’ € RT*4, (16)

where E € RIVIX? s the trainable token-embedding matrix and P € R5* is the trainable
positional-embedding matrix.

Definition B.4 (Multi-Layer Perceptron). A Multi-Layer Perceptron (MLP) with M layers is a func-
tionmlp,; : R% — R defined recursively as:

h® = Wx + p® a7
h(™ = W™ g (R D) £ b, > 2 (18)
mlpy, (x) = h*) 4

where x € R% is the input, {W(™) € Rém*dm-11M_ gpd {b(™) ¢ RIIM_ . are trainable
parameters and o is an activation function.

Definition B.5 (Self-Attention). A Self-Attention module is a function n : RT*dn — RTXdn
defined as:

XQ) (XK) '
06 Q.16 V) ot XU )y, g
n
where X € RT*%x js the input, Q, K,V € R%» ¥ gre trainable parameters (query, key, and value

matrices), softmax is applied row-wise, d,, is the attention dimension (typically d,, < di), and T is
the sequence length.

25



Under review as a conference paper at ICLR 2026

Definition B.6 (Causal Self-Attention, masked form). Define the “causal mask” M e R " as:
Y
= {* 15
—00, j>i
Then, a Causal Self-Attention module is a function 7j : RT*%n — RT*dn defined as:
(XQ) (XK)'
Vdy

where X € RT*din s the input, Q, K,V € R%»* gre trainable parameters (query, key, and value
matrices), softmax is applied row-wise, d,, is the attention dimension (typically d,, < din), and T is
the sequence length.

A(X;Q,K, V) = softmax < + M) XV, @1

Definition B.7 (Causal Self-Attention, projection form). Define the unit lower-triangular matrix
L € RT*T g5 L;; = I¢j<iy and consider the row normalization operation RN : D — RTXT of

Proposition A.S. Then, a Causal Self-Attention module is a function 1 : RT*%n — RT*n_ defined

.
A(X;Q,K,V)=RN (L ® exp (M\/%K)» XV, 22)

where X € RT*%n s the input, Q, K,V € R%» % gre trainable parameters (query, key, and value
matrices), RN is applied row-wise, d,, is the attention dimension (typically d, < din), and T is the
sequence length.

Remark 11. Consider Z = ﬁ (XQ) (XK)'. Since Ly; = 1 forall i € [T), we have that

[L ® exp Z] = eZit > 0, hence the row sum ngi eZii > e%ii > 0 and RN is well-defined.

Definition B.8 (Multi-Head Self-Attention). A Multi-Head Self-Attention module with H heads is
a function attng : RT*%n — RT*douwe defined using the Self-Attention map from Definition B.5 or
Definition B.7 with different parameter sets per head:
m(X) = n(X; Q"M KM, vM), he[H], (23)
attng (X) = [m(X),...,nu(X)|W©, (24)
where {Q") KM V() ¢ Rdinxdy HL | are the head-specific parameters and WO ¢ RHdnxdout
is the output projection matrix.
Definition B.9 (Layer Normalization). Layer Normalization is a function LN : R — R?, defined

as:
X — Uxl
LN(x) =y ® =222 4 g, (25)
VoZ+te
where x € R? is the input, px = éZ?Zl x; and o2 = éZ?zl(xi — pix)? are the mean and

variance of x, vectors 3,7y € R? are learnable parameters, and ¢ € R is a small constant that
ensures we don’t divide by zero.

Definition B.10 (Unembedding Layer). Let V be a vocabulary and d € N and U € RIVI*? pe q
trainable projection matrix. Define the unembedding map UnEmb : R — RIVI by

UnEmb(h) := softmax(ULN(h)), heR%

Definition B.11 (Transformer Block). A Transformer Block consists of a composition of a Multi-
Head Self-Attention layer with H heads (Definition B.8) and an MLP with M layers (Definition B.4),
each preceded by layer normalization (Definition B.9) and wrapped with residual connections.
Given an input X € RT*4, the output TB(X) € RT*4 is computed as:

H = X + attng (X) (26)
TB(X) = H + mlp,,(H), 27)

where X, H € RT*? are the results of applying layer normalization row-wise to X and H, respec-
tively, each with its own set of learnable parameters and mlp,, is applied row-wise. All sub-layer
parameters are dimensioned appropriately.

26



Under review as a conference paper at ICLR 2026

Definition B.12 (Transformer). Fix L € N. For each { € [L], let TBY) : RT*4 — RT*4 denote a
Transformer Block (Definition B.11) with its own parameters. Define the module

Try = TBW o...oTBM,
Each TBY maps RT*? — RT*4 5o the residual additions in Definition B.11 are dimensionally
valid at every depth.

Definition B.13 (Transformer Language Model). Let V denote a finite vocabulary and K € N a
fixed context length. A Transformer Language Model with L layers is the composition of an embed-
ding layer (Definition B.3), a Transformer with L blocks (Definition B.12), and an Unembedding
Layer (Definition B.10).

Formally, it is a parameterized function
fVSE xRP 5 AVIFE

defined as follows. Without loss of generality, consider @ = (01 € RP1 05 € RP2 05 € RP3) € RP,
which collects all the model parameters.

For an input sequence s = (s1,...,sp) withT < K:
H(s; 6) = Emb(s; 6,) (embedding) (28)
r(s; 0) = (Tr|s| (H(S; 0); 02)) (last-token representation) (29)
Is|
f(s; 8) = UnEmb (r(s; 0); 03) (next-token prediction) (30)

Then, the probability of the next-token being V; is given by:
Prlsri=Vils| = (f(s;0),, Vie[V]. 31)
Proposition B.1 (Equivalence of masked and projection causal softmax). For any logits Z € RT*T,
let M and L be as in Definitions B.6—B.7. Then, row-wise,
softmax(Z 4+ M) = RN(L®expZ).
Consequently, the two definitions of the Causal Self-Attention are identical.
Proof. Fix arow i. By the mask:
[softmax(Z + M)]m = ¢ Dpeq €Z J<t,
0, Jj >,
interpreting —oo via a limit. On the other hand, it holds that:
[L®expZ)i; = Lj<;e%i.

Therefore, L © exp Z keeps exactly the entries with j < i. Then, for each row, row normalization
divides the kept entries by the same positive sum » _, _, eZi+ and leaves the others at 0, yielding the
same row as above. This holds for every row ¢, proving the identity. [

Proposition B.2 (Embedding layer is real-analytic in the parameters). Fix a sequence s =
(s1,...,87) € VSE Wwith T = |s|. Consider the map

(E,P) — Emb(s) = E(s) + PE(s) € RT*4  EeRVIX{ pecREXY

Then this map is real-analytic on RIVI*¢ x REX4 (in the sense of Definition A.2).

Proof. Let S, € {0,117Vl select rows {s;}7_,, and Ry € {0,1}7*X select the first T' rows.
Then

E(s) = SiE, PE(s) = RrP, Emb(s) = S;E + RrP.
Each map (E,P) — S:E and (E,P) — RrP is a matrix product of a constant matrix with the
variable (constant maps are real-analytic as degree-0 polynomials by Proposition A.9; the product
is real-analytic by Proposition A.10). Their sum is real-analytic by closure under addition (Proposi-
tion A.1). Hence (E, P) — Emb(s) is real-analytic. O

27



Under review as a conference paper at ICLR 2026

Proposition B.3 (Joint real-analyticity of core modules and stacks). Assume the pointwise activation
o : R — R used in the MLP is real-analytic (e.g., tanh, GELU). Fix T € [K|. For notational
convenience define the parameter tuples

Outtn = ({Q(h),K(h),V(h)}thl, WO>, eill\)I — (,},(1)7[3(1))7 98\)1 — (,),(2)”3(2))7

@mlp = ({W(m)v b(m) }n]\{:l)v 6TB = (@attna 681\)]; @izl\)la Gmlp)v @Tr,T = (6’(1’1])3, LR @’(FLB?) .
Then the following maps are jointly real-analytic in their inputs and parameters:

1. MLP. (x,0Om1p) — mlp,,(x) is real-analytic: each affine layer (W,b,x) — Wx + b isa
matrix product plus addition (Proposition A.10 and Proposition A.1); the activation o is real-
analytic by assumption, and composition preserves real-analyticity (Proposition A.2). Iteration
over M layers is repeated composition (Proposition A.2).

2. Layer Normalization. (x,~,3) — LN(x) =~ © % + B is real-analytic: jix and o2 are
o2+

(entrywise) polynomials in x (Proposition A.9); g(Xx) = o2 + ¢ satisfies g(x) > 0 (definition of
£ > 0), and the scalar map h(t) = t=/? is real-analytic on (0, 00) (classical binomial series).
Thus h o g is real-analytic (Proposition A.2); division by ¢*/? is a quotient by a nonvanishing
real-analytic function (Proposition A.1); Hadamard scaling by ~ and addition of 3 preserve real-
analyticity (Proposition A.11 and Proposition A.1). Row-wise application is handled by stacking
(Proposition A.12) and the vectorization equivalence (Lemma A.1).

3. Unembedding. (h,U,~,3) — softmax(U LN(h)) is real-analytic: LN is real-analytic by
(2); multiplication by U is real-analytic (Proposition A.10); softmax is real-analytic (Proposi-
tion A.7); the overall map is a composition (Proposition A.2) and stacking across coordinates
(Proposition A.12).

4. Self-Attention (vanilla or causal) and Multi-Head. Let 7. = \/lcT (XQ) (XK) .
n
(a) Vanilla SA: (X, Q, K, V) — softmax(Z)XV is real-analytic by: matrix products (Propo-
sition A.10), scaling, row-wise softmax (Proposition A.7 with stacking, Proposition A.12, and
Lemma A.1), and a final matrix product.

(b) Causal SA (projection form): With L unit lower-triangular and using Definition B.7,
X, Q,K,V)+— RN(L © exp Z)XV

is real-analytic: exp is real-analytic (Proposition A.5); Hadamard scaling by fixed L is real-
analytic (Proposition A.11); by Remark 11, every row of L ® exp(Z) sums to a strictly positive
value (the diagonal term), so the argument lies in the domain D of Proposition A.S; hence RN
is real-analytic there; the final multiplication by XV is real-analytic (Proposition A.10).

Therefore, each single attention head is real-analytic whether it is vanilla or causal (projec-
tion). For Multi-Head Self-Attention (Definition B.8), horizontal concatenation across heads is
real-analytic (Proposition A.12), and the output projection by W is a matrix product (Proposi-
tion A.10). Hence (X, ©a44n) — attng (X) is real-analytic regardless of which attention variant
each head uses.

5. Transformer Block (fixed T). (X,0rp) — TB(X) € RT*4 is real-analytic: apply LN row-
wise to get X (item 2 with stacking, Proposition A.12, and Lemma A.1); apply attention (item 4)
to X; add the residual (closure under addition, Proposition A.1); apply LN row-wise to get H
(item 2 with stacking and Lemma A.1); apply the row-wise MLP (item 1 with stacking, Proposi-
tion A.12); add the residual again (Proposition A.1). All intermediate matrix multiplications use
Proposition A.10, and the overall structure is a composition (Proposition A.3 via Lemma A.1).

6. Transformer (fixed T). (X,0r. 1) — Trp(X) = TB® o .. o TBW(X) is a composition of
real-analytic maps from (5), hence real-analytic by Proposition A.3.

All statements extend from vector-valued to matrix-valued, row-wise applications via Proposi-

tion A.12 and Lemma A.l, and every sum/product/quotient/composition step above invokes Propo-
sition A.1, Proposition A.10, and Proposition A.3 as indicated.

28



Under review as a conference paper at ICLR 2026

C ALMOST SURE INJECTIVITY

This section establishes a foundational structural result: for causal Transformer Language Models
with standard architectural widths and at least one attention head per block, the final hidden state
at the last token is almost surely injective with respect to the input sequence, assuming the model
parameters are drawn from any absolutely continuous distribution at initialization. Crucially, we
show this injectivity is preserved after any finite number of gradient descent (GD) updates.

We organize the section in two parts; (i) Measure-zero collisions via real-analyticity and a witness
construction and (ii) Preservation of absolute continuity under gradient descent. Each piece builds
toward the main theorem, which asserts that under mild width and head assumptions, the Trans-
former map from input sequences to last-token representations is injective almost surely, even after
multiple rounds of training. The main theorem follows.

Assumption C.1 (Minimum Embedding Dimension). We assume the embedding dimension satisfies
d > 4 and d,, > 1. Furthermore, we assume that each transformer block has at least one attention
head. These conditions are trivially satisfied in practice: for modern large language models, embed-
ding dimensions are typically in the hundreds or thousands, and each layer has multiple attention
heads, so the assumptions impose no practical restrictions on the models under consideration.

Theorem C.1 (Finite-horizon a.s. injectivity under GD). Fix a finite vocabulary V), a context bound
K € N, a time horizon T € N, and consider the causal Transformer Language Model (TLM)

of Definition B.13 under Assumption C.1. Let {(St c V=K p, ¢ A|V|_1) };T:l be any sequence

of samples and let {n; € (0,1)}._, be any sequence of step-sizes. Assume the parameters are
randomly initialized and updated by gradient descent:

00 ~ [, JURSS Lebp’
0t+1 = Bt - UtVESt,pt (0t)7

where Leb,, denotes Lebesgue measure on RP and L , : RP — R is the standard cross-entropy loss
L p(8) = CrossEntropy (f(s; 6), p).
Then, with probability one over the draw of 0y, the last-token, last-layer representation map
V<K 355 +— r(s; Op) e R?
is injective. Equivalently,
Pr{3s#te VK :r(s; 07) =r(t; 07)] =0,

where r(-; 1) denotes the last-token representation defined in Equation 29.

Proof.
Let 8y ~ p with 1 < Leb,,. For a fixed training horizon 7', define the GD update map
P : RP — RP, ®(6y) = Or,
i.e. ® is the composition of T' gradient-descent steps with step sizes {n;}7_; C (0, 1) on the loss L.

1) Absolute continuity after 7" steps. By Corollary C.5.1, since u < Leb,, the pushforward law
@ 11 of O remains absolutely continuous:

Or ~ ®up < Leb,.

2) Global almost-sure distinctness. Let S := V=X which is finite. By Corollary C.2.1, under any
absolutely continuous parameter law,

Pr[r(s; 07) #r(t; 07) Vs#te VK] = 1.
Thus the map s — r(s; O7) is injective almost surely, as claimed. [

29



Under review as a conference paper at ICLR 2026

C.1 ABSOLUTE CONTINUITY ENSURES ALMOST SURE INJECTIVITY

We begin by fixing two distinct sequences and asking when their last-token representations can
coincide. As before, in this subsection we will consider a finite vocabulary V and a finite context
window K € N. Additionally, recall that for 8 = (0, 62, 03) € R?:

r(u; 0) := (Tr‘u‘ (Emb(u; 6;); 02))|u| e RY,

and for s # t, we define the discrepancy:
2
h(B) := ||r(s; 6) — r(t; 0)”2.

By Proposition B.3, this map is real-analytic. To invoke the zero-set theorem, it suffices to show
that h # 0. We construct a parameter configuration 6, such that r(s; 6,) # r(t; 6,), treating two
exhaustive cases:

» Case A: If the sequences differ at their final token or in length, we isolate this distinction via
selective initialization of embeddings and positional encodings.

» Case B: If they differ earlier, we construct orthogonal embeddings and exploit attention heads to
differentiate the contributions to the final representation.

In both cases, we demonstrate explicit parameter settings under which the discrepancy is nonzero.
This confirms % # 0, and the zero set {6 : r(s; 8) = r(t; 0)} has measure zero by Theorem A.1.
Hence, if the parameter distribution is absolutely continuous, the probability of a collision is zero.
A union bound extends this to any finite set of inputs.

Theorem C.2 (Almost-sure pairwise distinctness of last-token representations). Let the parameter
vector @ € RP be drawn from any distribution absolutely continuous with respect to Lebesgue
measure. Then, for any fixed s # t,

Prir(s; 0) =r(t; 6)] =0.

Proof. Let Ty = |s| and Ty = |t|, and h(8) := [|r(s; 6) — r(t; 0)||; Since h is real-analytic
(Proposition B.3), it suffices to show that it is not the zero function on R?; then h~1({0}) has
Lebesgue measure zero by Theorem A.1, and absolute continuity transfers this to probability zero.

We construct a parameter setting 6, for which i (6,) > 0, treating two exhaustive cases:
Case A: T, # T} or sy, # tr,. Set all Transformer parameters to zero so that the network acts as
the identity: Trp(X) = X.
o If sy, # tr,, set By, = ey, Ei;, = e # e, and all other rows of E to zero. Set P = Ok 4.
Thenr(s; 0,) = e, r(t; 6,) = ez, s0 h(0,) = ||e; — ez]|3 > 0.
« If Ty # Ti, set E = O)y|«q and P1, = e;, P71, = ey # ey (all others zero). Then, again,
r(s; 0,) = ey, r(t; 0,) = ez, 50 h(6,) > 0.
Case B: T := T, = Tt and sy = tr, but s; # t; for some i € [T — 1]. Let i* be the smallest such
index. Note T' > 2.

We construct a model with (i) all blocks after the first set to identity (zero parameters), (ii) in the
first block, all heads set to zero except head 1 and the MLP is zero.

We explicitly construct embeddings and head-1 parameters (Q, K, V), as well as the output projec-
tion WO, so that r(s; 0,) # r(t; 0,).

1) Embedding Construction. Choose orthogonal vectors e, p,q € R? satisfying:
(e,p) =(e,q) = (p,q) =0, (lg,€) = (14,p) = (1a,q) =0, |lell2=[pl2 = llall =1.

Such vectors exist due to Assumption C.1 (requires d > 4). Set embeddings:

NS 4
v € {s;=,s7} P )=

e
E,=<" P,= =T
! {Od, otherwise ! a4 .
04, otherwise

30



Under review as a conference paper at ICLR 2026

Thus, the input rows before LayerNorm are:

e+p, j=1 P, Jj=1
{H(S§0*)]: e+aq, i=T [H(t;&)}? e+aq, j=T
’ € {e,04}, otherwise ! € {e,04}, otherwise

2) LayerNorm Output. Use LayerNorm with (v,3) = (1,0). Since all components have zero
mean, the normalization is:

LN(x) = S S c(x)x.
Valxl?+e
Define: s o
o= (47 e (Y
Then:
- Cep(e + p)v Jj= i - CeP, Jj= i*
{H(S§ 0*):| = Cep(e + q)a Jj=T ) {H(t; 9*):| . Cep<e + q)7 j=T
! € {04, cce}, otherwise ! € {04, cce}, otherwise

3) Head Parameters. Let e; € R% be the first standard basis vector. Set:
T T T
Q = aeey K = Ope,, V =ee,
where «, § > 0 are scalars to be chosen.

Then for any j, attention vectors are:

qj = a<[H('; 9*)L_, e> e, kj= 5<[H('; 6’*)L, P> e, Vj= <[H('; 9*)]],7 e> er.

Atrow T, qgf) = qgf) = aceper. Only the key at 7* is nonzero:

kgf) = feepen, kl(.f) = Bcee;.

Value vectors at 7* differ: ) 9

— (
v,. = cepe1, Vo =04

And véf) = vg,f) = Cepel.

4) Attention Weights. The only nonzero score is at ¢*:

S¥ = Q—BCQ , s — ap CepCe, SY) =0 for j #£ i*.
T,i \/CTn ep T,i \/@ epte T,j J#
Fix § € (0,3) and define L := log (:52(T —1)). Set aff = VdyL/cZ,. so S(Ts,)i* = L and
ng?i* > L. Then:

AP >1-06, AP >1-4, AD <

0 .
_Tilforj;éz.

5) Self-Attention Output.
v = (1= 8)eqer+ > AP VE yl = N AL VO,
JF#* JFE*
Tails are bounded by:

S A0 <o
gt )

31



Under review as a conference paper at ICLR 2026

Since both outputs lie in span{e; }, we compare:

(& =y 1) > (1 =6y — 20ce.

Choosing § < CEPC_T_”ZCQ makes this strictly positive.
6) Output Projection and Propagation. Let W© be the matrix with (Wo)l,l = 1 and all other
entries zero. Then the head output is projected into coordinate 1, making the last row of the first
transformer block differ between s and t in the first coordinate. Since the original rows at T were
identical and the rest of the network is identity, this difference propagates to the final output, and we
getr(s; 0) #r(t; 0,).

O

Remark 12 (Causal Self-Attention). The same construction works for causal self-attention. In our
setup, attention at position T' only needs to consider tokens at positions j < T, and we only rely on
attention from T to i* < T. All nonzero scores occur at these allowable indices, so causal masking
does not affect the computation or the argument.

Corollary C.2.1 (Almost-sure global distinctness over a finite input family). Let S C V<X be any
Sfinite collection of inputs. If 0 is drawn from a law absolutely continuous w.r.t. Leb,, then

Pr[r(s; 0) #r(t; 0) forall distincts,t € S| = 1.

In particular, the last-token representations are pairwise distinct almost surely across all inputs.

Proof. For each unordered pair {s,t} C S with s # t, Theorem C.2 gives Pr[r(s; ) =r(t; 0)] =
0. By the union bound over the finitely many pairs ((|‘§|) in total),

Pr[ﬂs;&tES:r(s; ) =r(t; 9)] <3 Prlr(s; ) = x(t; 8)] = 0.

Hence the complement event has probability 1. O

Remark 13 (Pointwise vs. last-token injectivity). Sutter et al. (2025) establish a related but distinct
guarantee. They analyze the mapping from a prompt to the entire sequence (matrix) of hidden states,
which already rules out collisions for inputs of different lengths. Their result is pointwise injectivity:
if two prompts differ at position t, then the t-th hidden state (row) differs. This does not, by itself,
imply injectivity of the map to the final hidden state / last-token embedding that we study, so two
different prompts could still coincide at the last token—our quantity of operational interest.

C.2 ABSOLUTE CONTINUITY OF THE PARAMETER DISTRIBUTION IS PRESERVED UNDER GD

Our goal in this subsection is to explain why absolute continuity of the parameter law at initialization
survives any finite number of gradient—descent (GD) steps, thereby allowing the almost-sure injec-
tivity argument from the previous subsection to persist throughout training. The story begins with
regularity: by Proposition B.3 and Proposition A.6, the loss L , is real-analytic, and real-analyticity
is closed under differentiation and composition. Consequently the GD map ¢(0) = 6 —nV L, ,(0)
is real-analytic, its Jacobian D¢ (0) = I, — nV2L; () is real-analytic, and so is 8 — det D¢ (0)
(the determinant is a polynomial in the matrix entries). We then rule out the degenerate case by a
witness: at 8 = 0,, our Hessian calculation (Lemma C.4) shows det D¢(6*) > 0, hence det D¢
is not identically zero and its zero set C := {det D¢ = 0} has Lebesgue measure zero by the
real-analytic zero—set theorem (Theorem A.l; summarized in Theorem C.3). On the complement
RP \ C, the Inverse Function Theorem (Theorem A.2) provides, for every 6, a neighborhood on
which ¢ is a C! diffeomorphism. Although these neighborhoods form an a priori uncountable
cover, the second countability of R? (and of its subspaces) ensures a countable subcover of such
charts (Proposition A.15, Lemma C.5). This countability is crucial because it lets us pass from
local statements to a global measure statement via countable unions. With this cover in hand, the
change-of-variables formula on each chart (Theorem C.4) implies that the image under the local
inverse of any null set remains null; piecing the charts together and adding the null set C shows that
preimages of Lebesgue-null sets under ¢ are null (Lemma C.6). Equivalently, ¢ pushes absolutely
continuous laws to absolutely continuous laws (Theorem C.5); iterating across finitely many GD

32



Under review as a conference paper at ICLR 2026

steps preserves absolute continuity (Corollary C.5.1). Finally, combining this preservation with the
almost-sure pairwise distinctness of last-token representations over any finite input family (Corol-
lary C.2.1) yields the main consequence we need for training: the last-token representation map
remains injective almost surely after any finite GD horizon.

C.2.1 WITNESS CONSTRUCTION

Lemma C.1 (Zero-gate through scalar loss). LetU C R™%9 be open and write points as v = (€,1))
with € € R™ and 1 € RY. Let w : R™T9 — R™ be the projection 7n(€,1p) = €. Consider

g € C3R™; R™"), heC*(U; R,
and define f : U — R™ by
F&,) = g(&) h(&, ) = g(m(&.)) h(E, ).
Let £ € C*(R™;R) and set
R:=Lof:U—=R,  R(&p)=L(g(&)NE)).
Fix vy = (&o,%0) € U and assume g(&y) = Oy xr. Then the Hessian of R at v has block form

Vi R(vo) Vi, R(vo)> _ (vggR(VO) oqu> |

V2R(vo) =
(vo) (VfbsR(vo) V2, R(vo)

0gxm 0454
i.e. all mixed and v—only second partials vanish.
Proof.

1) Introduce the bilinear multiplication map x : R**" x R — R", u(M,y) = My, and the C?
map H : U — R"*" x R", H(&,v) = (g(&), h(&,1)). Then f = po H and we write:

9o = g(&0) = Onxr  ho:=h(&,%0)  H(vo) = (9o, ho).
Because i is bilinear, Du(M,y)[(AM, Ay)] = AMy + M Ay. By the chain rule:

Df(vo)[(he,hy)] = Du(go, ho) | Dg(€o)[he], Dh(vo)[(he, hy)]
= Dg(&o)[he] ho +\99_/ Dh(vo)[(hg, hy)]

Onxr

= Dyg(&o)[he] ho.

In particular, D f(vo)[(0p, - )] = 0,. The second-order chain rule for Fréchet derivatives (e.g.
Magnus & Neudecker 2019, Thm. 18.4) yields:

D f(vo)[b, K| = D2u(H(vo)) [ DH(vo)[b], DH(vo)[K]] + Du(H(vo)) [ D*H(vo)[n, K] ].
Because p is bilinear, D? 1 = 0 and the first term is 0. Furthermore,
D2H (vo)h, K] = ( D*g(0)[he, kel D*h(vo)[(he. by (ke ky)] )
and it holds that:
D? f(vo)[h, k] = Dp(go, ho) [ng(éo)[hsa ke, D*h(vo)[(he, hy), (ke ky)] }

= (D29(€o)[hgakd) ho+\ggl(DQh(Vo)[(hs’hw)v(kgakw)])

= (D?(€0)he. ke ) ho.

If at least one of the two directions has €&~component zero, then D?g(&y) [he, ke] = 0, so the bilinear
form vanishes.

33



Under review as a conference paper at ICLR 2026

2) Apply the second-order chain rule to R = L o f at vy:
D?R(vo)[h,k] = D*L(f(vo)) [ Df (vo)[h], Df(vo)[k] | + DL(f(vo))[ D*f(vo)[h, k] ]. )

By (1), if at least one of the two directions is pure 1), both terms on the right-hand side of vanish.
Therefore

D?*R(vo)[h, k] =0 whenever at least one of h, k is of the form (0,,, - ).

Invoking Proposition A.14, this is exactly the statement that the £, 1€ and 1) Hessian blocks are
0. The remaining block VégR(vo) is whatever is induced by (%) for pairs

(hv k) = ((hﬁa 0q)7 (kﬁa Oq))
O

Lemma C.2 (Spectrum under block-diagonal extension). Let f € C?(R™%9; R), and fix v =
(&0, %0) € R™T9. Assume the Hessian of f at v has the block form

B 0m><q

0q><m quq

H:=V%f(v) = ( ) B € R™*™,

Then the characteristic polynomial factorizes as
xu(A) = det (AL 44 — H) = det (AL, — B) A9
Consequently,
oc(H) =0(B)U{0}, and multiz(0) = multg(0) + g,
i.e., the spectrum of H consists of the eigenvalues of B together with q additional zeros, and the
algebraic multiplicity of the eigenvalue 0 for H equals that for B plus q.

Proof. Since H is block diagonal,
AL, — B oqu>

AL, —H=
4 ( Opm AL

The determinant of a block triangular (in particular block diagonal) matrix equals the product of the
determinants of its diagonal blocks (e.g. Horn & Johnson 2013, Cor. 0.8.5). Hence

xu(A) = det(AL,,, — B) - det(A\l;) = det(AI,,, — B) - A9,
The zeros of g are the eigenvalues of H counted with algebraic multiplicity, which yields o(H) =
o(B) U {0} and multyz(0) = multg(0) + g. O
Remark 14. If 0 € o(B), then 0 appears in o(H) with multiplicity strictly larger than q; the
statement above accounts for this by adding q to the algebraic multiplicity of 0 carried over from B.

Lemma C.3 (Hessian of £ w.r.t. U, 3 at 8* = 0 and its spectrum). Let n := |V| and d be the
embedding width. Fix (s,p) € V=K x A"~1 and consider the Transformer Language Model of
Definition B.13. In the unembedding layer, set the LayerNorm scale to zero, v = 04. Let the
parameter be ordered as

6= (upB,~,96), u = vec, 4(U) € R™ g cR%
Restrict attention to the (u, B)-coordinates and the base point
0,=0, ie. U=0,x4,8=04 =046 =0.
Write b := %ln andw :=b —p e R"
Then the Hessian of the cross-entropy loss
L£(0) = CrossEntropy (f(s; 0), p)

with respect to (u, 3) at 0, is the symmetric block matrix
V2 r0,) = Onixna Ia®@w
(u,8) =\ L,ow’ 0dsd '

The spectrum of this Hessian is
spec(V%uﬁ)E(B*)) ={+|[wllz2,...,+|Wl]2, =llWl2,-..,—|W|2, 0,...,0}.
d(n—1)
d d n—

34



Under review as a conference paper at ICLR 2026

Proof.

1) Logits in vectorized form. With v = 04, the LayerNorm output at the unembedding is constant:
LN(h) = B8 (Definition B.9). Thus the logits before the final softmax are

Z=UpgBecR"

Using vec(AXb) = (b ® A) vec(X) (standard identity for vectorization, cf. Henderson & Searle
(1981)), with A = I,, and b = 3,

z = vec(Z) = vec(UB) = (8" @ I,,) u.
Therefore, near (u, 3) = (0,4, 04), the logits map is the bilinear function
z(u,B) = (B' ®I,)ueR"
2) First and second differentials. Let (h, n7) and (k, &) be directions in R™® x R<. Differentiating
z(u,B) = (BT @ I,)u gives
Dz(u,B)lh, 5] = (8T @ L)h+ (nT @ L)u.

At (u, 8) = (0ng, 0a),
DZ(Ond; Od)[ha 7” = Onx(nd+<i)

(since both terms are multiplied by u or 3). Differentiating once more (or, equivalently, using
bilinearity of z) yields the constant symmetric bilinear form

D?2(0na,0,) [(,m), (k,§)] = (€T @ L) h+ (n" 9 L)k
3) Gradient of the CE-in-softmax at the origin. Let F'(z) := CrossEntropy (softmax(z), p). A
standard computation (softmax Jacobian) gives
V. F(z) = softmax(z) — p.
Atz = 0,,, softmax (0,,) = 11, =: b, hence
V.F(0,)=b—p=:w.

4) Second-order chain rule for ' o Z at (0, 0). Similarly to the proof of Lemma C.1, the second
differential of a composition is

D*(F o z)(v)[h,k] = D*F(2(v))[Dz(v)h, Dz(v)k] + DF(z(v))[D*z(v)[h, k]].
Atv = (0,4,04), Dz(v) = 0, (na+a) and DF(2(v)) = V,F(0,)" =w',s0
D*L(v)[(h,n), (k,€)] = w ' D*2(v)[(h,n), (k,€)]
=w' (" ®L)h+ (n" @1,)k)
=h'Tsow)¢ + k' (Iyow)n,
where we used the mixed-product rule for Kronecker products and the identity

wi (ETel)=¢"ow'.

5) Identification of the Hessian blocks. By definition of the Hessian as a bilinear form,

2 o T T Ondxnd aduziaﬁﬁ k
D2L()[(h,m), (k. €)] = (b7 n7) s .

3350 Oaxa ) \&
Comparing with the expression obtained in Step 4 for arbitrary (h, n) and (k, &) forces
0*L 2L
(e*):Id®W, (9*): (Id®W)T:Id®WT’

dB Ou

35



Under review as a conference paper at ICLR 2026

and, because Dz(v) = 0,,5 (na+aq) (S0 no quadratic term survives in either u or 3 alone),
0%L 0%L
0,) = On nd;
Budn Or) = Ondxnd B 0B

This gives exactly the claimed block matrix.

(0x) = 0gxa.

6) Spectrum. Let

H: V2 (9 ) < O’nand Id ® W)
T V()T T -

Liow' 04xd
Then
H2 = (Id ® W)(Id ® WT) Ondaxa _ Ii® (WWT) Ondxd
Odxnd (Id b2y WT)(Id & W) Odxnd I,® (WTW)

T

The eigenvalues of ww ' are ||w/||3 (multiplicity 1) and O (multiplicity n — 1); the eigenvalues of

w 'w equal |w]|3 (scalar). Therefore the eigenvalues of H? are
[wli3, ..., Iwl3, 0,....0 .
~——
2d times d(n—1) times

Because H is symmetric, its eigenvalues are the real square-roots of those of H?, namely +|wl||2
(each with multiplicity d) and 0 (with multiplicity d(n — 1)). This is exactly the set stated in the
lemma. O

Lemma C.4 (Full Hessian at the witness: block form and spectrum). Let n := |V| and d be the
embedding width. Write the parameter as

0 = ((u,8),(7.0)), u=vec,q(U)eR™, B,yeR? 0 cR”,
so p =nd+ 2d + p'. Consider the witness point
0, = Op (U = 0pxd, B =04, v=0g, 0 = Od).

Letb := %1n and w := b — p € R"™. Then the Hessian of the cross-entropy loss L(0) at 0, admits
the block-diagonal decomposition

B 0 0,dxn I, @w
V2L(6,) = , B = et :
00 I;ow Ogxd

pec(V2L(0,)) = { +Iwla, ., +IWl, —[wlla,- W]z, 0,0}

d d p—2d

Consequently,

Proof. Set~ = 04. Then the unembedding LayerNorm output is constant, LN(h) = 3, so the logits
equal z = U 3. Hence, in a neighborhood of 6., the loss depends only on (u, 3) and is independent
of (v,0).

We will apply Lemma C.1 with the open set Y = R"4+2d+2" coordinates € = (u,3) and ¢ =
(7, 0’) and with n = |V|, r = d. Define

g(€) :== maty, g(u) € R™4,  h(€, ) := B R,

so that
f(&, ) =g h(&,¢) = UBeR",
and, with £(z) := CrossEntropy (softmax(z), p),

R(&,¢) := L(f(&,4)) = CrossEntropy (softmax(U@3), p).

36



Under review as a conference paper at ICLR 2026

At the witness vo = (&, %) we have g(&9) = O,xd, so by Lemma C.1 all mixed and tp—only
second partials of R vanish at vy, i.e.

V2R(vo) = (v?u,,a)R(Vo) O) .

0 0

Identifying R(&, 1) = £(60) under the correspondence above yields

2
v2r(e,) — [ Vet 0
0 0

Combining, Lemma C.2 and Lemma C.3, we get that
spec(V2L(6*)) = spec(V%uﬁ)ﬁ(G*)) U {0} ¢+’
= { + ||w||2 (each mult. d), 0 (mult. d(n — 1) +d +p’)}.

Since p = nd+ 2d + p’, the multiplicity of 0 equals p — 2d, which yields the claimed spectrum. ]

Theorem C.3 (GD Jacobian is nondegenerate a.e.). Consider the setup of Theorem C.5. In partic-
ular, let ¢ : RP — RP be the one-step GD map from that theorem:

$(0) =0 —nVeLlsp(0), (32)
with stepsize 1 € (0,1). Then the critical set
C := {0 eRP:det Dp(0) =0}
has Lebesgue measure zero in RP.
Proof. By Proposition B.3, Proposition A.6 and the closure properties of real analyticity, L is
real-analytic; hence so are its gradient and Hessian. Therefore ¢ is real-analytic (Lewis, 2014,

Thm. 1.1.15) and
Dg¢(0) = I, - 77V3['57p(0)~

Since the determinant is a polynomial in the entries, 8 — det D¢(80) is real-analytic.
It is not identically zero: at the witness 8, = 0, Lemma C.4 gives
spec(V2L(8.)) = {+[wllas.., +wllo, ~[Wlv- ... [ w]l2,0,...,0}, wi=11—p.
2d
d d p—

Hence the eigenvalues of D¢p(6,) = I, — n V2L(6,) are

L—nfwllz, 1+nlwls, 1,

d times d times p—2d times
SO
det DG(6*) = (1 — n||w]|2)* > 0.
Thus det D¢ is a nontrivial real-analytic function. By Theorem A.l, its zero set has Lebesgue
measure 0. -

C.2.2 GRADIENT DESCENT PRESERVES ABSOLUTE CONTINUITY

Lemma C.5 (Countable chart cover of R? \ C). Consider the setup of Theorem C.5. In particular,
let ¢ : RP — RP be the one-step GD map from that theorem:

$(0) =0 —nVoLsp(0), (33)
with stepsize ) € (0,1), and the measure-zero critical-set (Theorem C.3):
C := {6 e RP:det D¢(0) = 0}.

Then there exist open sets (Uy)i>1 covering X := RP \ C such that, for each k, the restriction
bk = dlu, Uk — Vi := ¢(Uy) is a C* diffeomorphism with C* inverse 1y, := (;S,;l.

37



Under review as a conference paper at ICLR 2026

Proof.

1) X is open: By Proposition B.3, Proposition A.6 and the closure rules of real-analyticity, L p
is C2, hence ¢ is C'. The map 6 +— D¢(8) is continuous, and the determinant is a continuous
polynomial in the entries, so g(8) := det D¢(0) is continuous. Therefore C = g—*({0}) is closed
(Rudin, 1976, Thm. 4.8) and X = RP \ C is open.

2) Local diffeomorphisms by the Inverse Function Theorem: Fix 6 € X. Then g(0) # 0,
so by the Inverse Function Theorem (Theorem A.2) there exist open neighborhoods Uy > 6 and
Vo 3 ¢(0) such that

(bg = (b‘ua ZU@ — Ve

is a O diffeomorphism with C inverse 1 := ¢, '. Moreover,

Dye(¢(x)) = (Dd(x)) " Vx €U

In particular D¢(x) is invertible for all x € Uy, whence Uy C X. Thus {Ug }oc x is an open cover
of X by IFT charts.

3) Select a countable subcover: By Proposition A.15(3), R? is second-countable; subspaces
of second-countable spaces are second-countable, hence X is second-countable. By Proposi-
tion A.15(4), every open cover of a second-countable space admits a countable subcover. Therefore
there exist points 61,0, ... € X such that X = Uzozl U,

SetUy :=Ug,, Vi := Vo, , and ¢y, := |y, = b, ¥k := Ve, . Each ¢y is a C! diffeomorphism
with C'! inverse 1), by Step 2. This yields the desired countable chart cover of X O

Theorem C.4 (Change of Variables Folland 1999, Thm. 2.47(b)). Let U,V C RP be open and
YV — U a C! diffeomorphism. If E C 'V is Lebesgue measurable, then

Leb, (4(€)) = /£ | det Dys(y)| dy.

Lemma C.6 (Pre-images of null sets are null). Consider the setup of Theorem C.5, in particular the
C! gradient descent map:

¢(0) =0 nv9£s,p(0)a n S (07 1)7
and its critical set C := {0 € RP : det D¢(0) = 0}. Then, for every measurable A C RP,
Leb,(A) =0 = Leb,(¢ '(A)) = 0.

Proof. Let X = RP \ C and decompose the pre-image:
oA = (o7 (A NC)U (o7 (A N X).

The first set is contained in C, a measure zero set (Theorem C.3), hence has Leb,—measure 0. By

Lemma C.5, cover X by countably many charts {{, } on which ¢y, := ¢y, isa C* diffeomorphism
onto Vi, := ¢(U},) with inverse 1, € C*(V}, ; Uy). Then, it holds that:

(b_l(A) NUL =Yg (.Aﬁ Vk>.

Since Leb,,(\A) = 0 and both A and V;, are measurable, ,A NV, is measurable and has measure 0.
By Theorem C.4 applied to vy, with € = AN Vy,

Leb, (Vr(ANVy)) = /A y | det Doy, (y)| dy = 0.

Therefore, each ¢! (LA) NU}, is null and because a countable union of null sets is null, it holds that:

Leb, (¢! (A)) = 0.

38



Under review as a conference paper at ICLR 2026

Theorem C.5 (Preservation of absolute continuity under one GD step). Fix a finite vocabulary V, a
context bound K € N, and the Transformer language model f of Definition B.13. For any sample
(s,p) € V=K x AVI=1 and any learning rate n € (0,1), let ¢ : RP — RP be the gradient-descent
update, defined as:

$(0) = 6 — nVeLsp(0),
where L, : RP — R is the standard Cross Entropy loss:

Ls,p(0) = CrossEntropy (f(s; 0),p).

Then, gradient-descent preserves absolute continuity: for every absolutely continuous probability
law 1 on RP, its image under ¢ remains absolutely continuous:

pup <K Leb,.

Therefore, the updated parameters 0' := ¢(0) are absolutely continuous.
Proof. By Proposition B.3 and closure properties, Lsp, is C?, hence ¢ € C! and is Borel-
measurable. From Theorem C.3 the critical set
C := {0 €RP:det Dp(0) =0}
has Leb,-measure 0. Therefore, the hypothesis of Lemma C.6 holds, and we have the property:
Leb,(A) =0 = Leb,(¢"'(A)) =0  forevery measurable A C R”. )
Let A be any Borel set with Leb, (AA) = 0. Then
dpn(A) = p(¢7'(A) = 0,

because ;< Leb,, and Leb,, (¢~ (A)) = 0 by (1). Since this holds for every Leb,-null set A, we
conclude ¢4 u < Leb,. O

Corollary C.5.1 (Preservation of absolute continuity under finitely many GD steps). Fix a finite
vocabulary V, a context bound K € N, and the Transformer language model f of Definition B.13.
Fort=1,...,T, let (s;,p;) € V=K x AVI= and n, € (0,1), and define the t-th GD update

&(0) = 0 — VoL, p,(0), Ls, p,(0) = CrossEntropy (f(s; ; 0),pt)-
Let the T'-step update map be the composition
d := ¢pro---0¢; : RF - RP,

Then, for every absolutely continuous probability law 11 on RP, its image under ® remains absolutely
continuous:

Sup < Leby,.
Equivalently, if 0 ~ p with u < Leb,, and
0+ = ¢, (0"), t=0,...,T-1,

then the T-step parameters 0T) = & (0(0)) are absolutely continuous.

Proof. Since the result of Lemma C.6 holds for each ¢, for any null set .A, repeated preimages
remain null:

Leb, ((¢r o+ 0 ¢1) 1 (A)) =0.

The same argument as in the proof of Theorem C.5 then yields the claim. O

39



Under review as a conference paper at ICLR 2026

D LEFT-INVERTIBILITY VIA SIP-IT

Goal. We study when and how the hidden states of a causal decoder-only Transformer admit a left
inverse: given the layer-£ representation at position ¢ and the true prefix m = s3.;—1, can we recover
the next token s;?

Main idea. Under mild randomness in the parameters and causal masking, the one-step last-token
map that sends a candidate token v to the layer-¢ representation at position ¢ (conditioning on ) is
almost-surely injective, and in fact has a positive separation margin. This yields a simple verifier:
declare v correct iff the observed hidden state lies in a small ball around F'(v; 7, ).

Algorithmic consequence. Because causality localizes the dependence to (m,s;), we can invert
an entire sequence sequentially with a single pass over the vocabulary per position. We call this
procedure STP-IT (Sequential Inversion via Prefixwise Injective Tests), and we show exact (and
robust) recovery holds almost surely, with worst-case time O (T|V]).

Standing conventions for this section. Fix a layer index ¢ € [L]. For any input sequence s =
(s1,...,87), define the layer outputs row-wise by

HO(s) := Emb(s),  H(s):= TBOHV(s)) € RT*,
and write h,(s) to denote the row of H()(s) at position ¢. Furthermore, we use @ for sequence
concatenation: if s = (sy,...,8;—1) and v € V, then s D v = (S1,...,8t—1,0).
The parameters 6 and target layer ¢ are considered fixed and omitted for simplicity.
Assumption D.1 (Causal self-attention throughout). Every attention layer in every block is causal
in the sense of Definitions B.6/B.7. Consequently, for any s and any t € [T,
h;(s) depends only on the prefix (s1,...,st). (34)

Assumption D.2 (Injectivity Assumption). SIP-IT is applied to models initialized with parameters
drawn from an absolutely continuous distribution and trained via (mini-batch) gradient descent with
step sizes in (0,1), as described in Appendix C. Under these conditions, any network considered in
the sequel is almost-surely injective (Theorem C.1).

D.1 ONE-STEP LAST-TOKEN MAPS

We first isolate the positionwise map that drives inversion. Fix a position ¢ and prefix m € V=1, The
one-step map F(-;m,t) sends a candidate token v to the layer-¢ hidden state at position ¢ obtained
when the prefix is 7 and the token at ¢ is v. Causality implies that h; depends only on (7, v) (not on
any future tokens), and we show that, for almost all parameter settings, ' is injective with a strictly
positive pairwise margin over ).

Definition D.1 (One-step map at time ¢ under prefix 7). Let 7 € V=1 be a fixed prefix (possibly
t = 1, when w is empty). Define
F:V—RY F(v; m,t) := he(m @ o).

Remark 15. F' is simply a function that returns the hidden output of token v at the { transformer
block given that 7 is used a fixed prefix. This map allows us to have a convenient notation for
introducing results about inversion. Furthermore, since F is built using { transformer blocks, it is
parameterized by 0. Nevertheless, for the sake of simplicity, we will refer to Fy g simply as F.

Once the One-step map (Definition D.1) is introduced, one can present its a.s. injectivity through
an application of the previously obtained result (Theorem C.1). Furthermore, one can deploy the
common prefix to introduce a stronger notion of injectivity: margin separation (Lemma D.1).

Theorem D.1 (A.s. one-step injectivity). Fix t and the prefix m € V=1 Under Assumptions D.]
and D.2, it holds that:

Pr[Jv#0v €V:F(u;mt)=F@;mt)] = 0.

Equivalently, F is injective almost-surely.

40



Under review as a conference paper at ICLR 2026

Proof. Set the finite family S; » := {r @ v : v € V} C V' and view hy(s) as the last-token
representation of the truncated Transformer consisting of the first £ blocks. All assumptions used in
Corollary C.2.1 remain valid for this truncated model. Applying the corollary with S = S;  yields,
almost-surely, h; (7 @ v) # h(m @ v') whenever v # v'. This is exactly the injectivity of F. [

Lemma D.1 (Strict separation margin a.s.). Under the conditions of Theorem D. 1, define the (data-
dependent) margin
JAVPREES i F(v; —F@';
,t U;g})}IElV || (U ;T t) (U ;T t)”g
Then,
PI'[Aﬂ_yt > 0] =1.

Proof. By Theorem D.1, with probability 1 the set
{F(v; m,t):veV}

consists of || distinct points in R%. On this event of full probability, every pairwise distance among
these finitely many points is strictly positive, so their minimum is strictly positive as well.

Thus, the event {A, ; > 0} coincides with the event that F is injective on ). Since injectivity holds
almost-surely by assumption, we conclude that Pr[A, ; > 0] = 1.

D.2 THE CORE ROUTINES: LOCAL VERIFIERS, ACCEPTANCE REGIONS, AND POLICIES

Given F(-; 7,t), inversion reduces to a local hypothesis test: for an observed flt, which token’s
predicted representation is closest? We formalize this with acceptance regions—closed balls around

F(v; m,t)-and a verifier that accepts v iff h; lies in its ball. Almost-sure injectivity yields unique-
ness at radius 0, and a positive margin yields uniqueness for any ¢ < A, ;/2. To explore candidates
efficiently, we couple the verifier with any policy that enumerates untried tokens (e.g., uniform with-
out replacement or a gradient-guided ranking).

Definition D.2 (Local verifier and acceptance tolerance). Given a tolerance € > 0, define the ac-
ceptance region for symbol v as the closed ball (Definition A.8):

Ari(vse) = E(F(v; 7r,t)75).

A candidate token v € V is verified for observation hy if and only if h, € Az i(v;€).

Remark 16 (Decoding via acceptance regions). Given a prefix 1 € V'~! and the observation Ht
at position t, we identify the next token by checking in which acceptance region lAlt lies: declare v
verified iff by € Ay ((vie). By Lemma D.1, for any € < .t/ the regions { Ay i(vie)}vey are
pairwise disjoint; hence there is at most one verified token (and in the noiseless case € = 0, exactly
one).

Building on the intuition in Remark 16, we introduce two radii to define acceptance regions that
avoid collisions:

Proposition D.1 (Probabilistic soundness and uniqueness of the local verifier). Fix position t and
prefix m € V=1, Under Assumptions D.1 and D.2, for all v € V), the following hold with probabil-
ity one:

1. Noiseless soundness. If ¢ = 0 and h,=F (v*; m,t), then v* is the unique verified symbol.

2. Robust uniqueness. If ¢ < 2x.t/2 and h; € Az (v*; €), then v* is the unique verified symbol.

Proof. Recall that under Assumptions D.1 and D.2, F' is injective and A, ; > 0 almost-surely.

(1) Noiseless soundness. Forany v € V, A 1(v; 0) = {F(v; m,t)}. If hy = F(v*; m,t) and some
v # v* were also verified at e = 0, we would have F'(v; 7,t) = F(v*; m,t), which is a probability
zero event under the assumptions made. Hence v* is uniquely verified almost-surely.

41



Under review as a conference paper at ICLR 2026

(2) Robust uniqueness. Assume € < Ax.¢/2 and ||ﬁt — F(v*; m,t)||2 < e. If some v # v* were also
verified, then ||h; — F'(v; 7,t)||2 < €. By the triangle inequality,
|F(v; m,t) — F(v*; 7r,t)H2 < ||f1t — F(v; 7r,t)H2 + Hﬁt —F* 7 t)”2 < 26 < Agy,

contradicting the definition of A ; (again, valid under the assumptions made). Thus v* is uniquely
verified almost-surely. O

Finally, we introduce the last conceptual block required to build the inversion algorithm:

Definition D.3 (Policy algorithm). Let V be a finite vocabulary. A policy algorithm is a (possibly
randomized) map

Im: {CCV}y —V  suchthat  TI(C) € V\C forallC C V.
(When C =V the map is undefined.)

Remark 17 (Enumeration property). Intuitively, a policy chooses any token not tried yet. Starting
from Cy = @ and iterating

V; = H(C¢_1)7 Cz = C,;_lu{vi} (Z:L,|VD,
produces a sequence (v1, . ..,v)y|) that is a (possibly random) permutation of V. Thus, in exactly
|V| steps, every token is output once with no repetitions.

Two examples of policy algorithms. We give (i) a uniform-random without replacement policy
and (ii) a gradient-guided policy.

Algorithm 2 Policy (Random)

Require: Vocabulary V; visited set C; embedding matrix E € RIVI*d
Ensure: Next token ID and embedding

: Sample a permutation L = (vy, ..., v}y|) uniformly from V

Define p(v; m) as the rank of v in L

v* = argmin,ey\o p(v; )

return v*, E «

bl e

Algorithm 3 Policy (Gradient-based)

Require: Vocabulary V; visited set C; embedding matrix E € RIVIX? ; prefix m € V!~1; layer ¢;
previous continuous embedding e/~ ; step size v > 0; gradlent based update rule G
Ensure: Next token ID and embedding

‘ 12

I: g “ Veun % HF (et s mt) — By
) G(eV, g,7) _

Get L = (v1,...,vpy|) by ordering v; based on /5(E,,, el)

Define p(v; ) as the rank of v in L

v* = argmin,ey\ o p(v; )

return v*, e?)

Gu‘bw'\’

Remark 18 (Bypassing the embedding layer). We slightly overload notation and write F(e;m,t).
Here we bypass the token embedding lookup and inject a continuous vector at the current position:
the first t—1 rows of H(®) are set to Emb () and the t-th row is set to e. This extension is used only to
guide the search (e.g., in Policy-Gradient). All theoretical guarantees are stated for F(v; 7, t) with
v € V and are unaffected by allowing I to accept a continuous proxy during candidate scoring.
Any extra inputs/side outputs used by a policy (such as the updated proxy) are orthogonal to the
correctness statements.

Remark 19 (Practical choice of policy). Both Alg. 2 and Alg. 3 satisfy Definition D.3. In practice we
use the gradient-guided policy with standard gradient descent updates, as it tends to find the verified
token with far fewer proposals: the next token is chosen by ranking V by the distance |E, — el Il2
to the updated proxy €\9). This preserves the same worst-case guarantees (single pass over V) while
improving empirical efficiency.

42



Under review as a conference paper at ICLR 2026

D.3 GLOBAL INVERSION VIA SIP-IT

We now compose the local verifier into a sequential decoder. At step ¢, causality ensures h;(s) =
F(s¢;m,t) for the true prefix 1 = s;..—1. Since the verifier uniquely accepts s; (noiselessly, and
robustly under perturbations below half the margin), any covering policy must encounter and accept
the true token within a single pass over V. Iterating from ¢ = 1 to T" yields exact recovery almost
surely; we also quantify robustness and the worst-case runtime.

We are now ready to introduce our inversion algorithm: SIP-IT (Alg. 1). The algorithms applies
to decoder-only transformers with causal self-attention (Assumption D.1), and assumes injectivity,
which occurs with almost-surely (Assumption D.2). We assume access to the layer-¢ hidden states

T
per position {ht}

t=
for arbitrary (¢, , j), as well as the gradient (when needed), namely to the model up to layer £. A
policy algorithm is fixed (e.g., Alg. 3).

and to the parameters needed to evaluate the local verifier from Definition D.2
1

We begin by recording the following standard lemma and omitting the proof, as it is immediate from
causal masking: under causal self-attention, the representation at position ¢ is independent of future
tokens.

Lemma D.2 (Causal factorization and prefixwise identifiability). Under Assumptions D.1 and D.2,
fix position t € [T). Foranys = (s1,...,s7) withm = (s1,...,8t-1),

ht(s) = F(St; 7T,t),

where F' is the one-step map from Definition D. 1.

Proof. With causal masking, position ¢ attends only to positions < ¢. Evaluating the network up to
layer ¢ therefore yields a representation at ¢ that is a function of the prefix 7 and the current token s;
only, i.e. F(s;; m,t), as claimed. O

Proposition D.2 (The verifier is the right primitive). Fix t and a true prefixm = (s1,...,8;-1). Un-
der Assumption D. 1, the observed hidden state at step t satisfies hy(s) = F(s¢; 7, t) (Lemma D.2).
In addition, under Assumption D.2, F is injective and has positive margin A, ; > 0 almost-surely
(Theorem D.l and Lemma D.1). Consequently, for the local verifier of Definition D.2, the following
hold with probability one:

1. (Noiseless) With € = 0 and observation ﬂt = hy(s), the unique verified token is s;.

2. (Robust) Ifh, = h.(s) + e; with ||e¢||2 < € < Ar.t/2, then s, is the unique verified token.

Proof. Immediate from Lemma D.2 and Proposition D.1 applied with v* = s;, which holds almost-
surely by Theorem D.1 and Lemma D.1. O

Proposition D.3 (Eventual acceptance under increasing enumeration). Fix a position t and the true
prefix m = (s1,...,8¢—1). Under Assumption D.l and Assumption D.2, let ¢ > 0 and work on
the probability-one event where the local verifier uniquely accepts the true token s; (e.g., € = 0 or
e < A,r’t/2; see Proposition D.2).

Let 11 be any policy algorithm (Definition D.3). Define the increasing visited sets by Cy = O,
v; :=II(C;—1), and C; := C;—1 U {w;} for i > 1, and stop at the first index
T = min{z’ >1: ﬁt € Az (v €) }

Then (v;);>1 enumerates V without replacement and 7 < |V| almost surely. In particular, for the
fixed prefix 7, the policy’s increasingly expanding search over V eventually proposes the unique
verified token s; and accepts it with probability 1.

Proof. Work on the probability-one event of Proposition D.2 (under Assumption D.1 and Assump-
tion D.2 with the stated <), on which the local verifier at step ¢ uniquely accepts the true token s;.
Equivalently,

hy € Agi(v;e) < v=s,. (35)

43



Under review as a conference paper at ICLR 2026

Enumeration without replacement. By the definition of a policy algorithm (Definition D.3),
v = H(Ci_l) ey \ Ci—l and Cz = Ci—l U {’Ul} Hence v; ¢ Ci—l and |Cl| = |Ci_1| + 1. Inducting
on ¢ yields that (Ui)1'21 has no repetitions and C; contains exactly ¢ distinct tokens. Since V is finite,

after |V| steps we have Cy) = V, i.e., (v;) LZ‘I is a permutation of V (this holds pathwise, for any

realization of the policy’s internal randomness).

Eventual acceptance. Because (v;) is a permutation of V), there exists a unique index j €
{1,...,|V|} with v; = s;. By equation 35,

r=min{i>1: hy € Az (vi;e)}=min{i>1: v; =s,} = j,
so 7 < |V| and the process accepts s;.

Since the event on which equation 35 holds has probability 1, the conclusion (eventual acceptance
at finite 7) holds almost surely. O

Theorem D.2 (Correctness of SIP-IT (noiseless & robust)). For each t € {1,...,T} let 1, =
(81,...,8t—1) and let A, ; > 0 be the margin of the one-step map F(-;m,t) from Lemma D.I.
Under Assumptions D.1 and D.2, run STP-1IT (Alg. 1) with a tolerance € > 0 and observations

hy=h(s)+e (t=1,...,T),
where the perturbations satisfy ||e;||2 < € for all t and
e < % Ag, v forallt.

Then, with probability 1 over the model parameters: (i) for every t, the inner for-loop over j (the
loop over vocabulary candidates) terminates within |V| iterations by accepting the true token s;;
and (ii) after the outer for-loop over t (the loop over positions) finishes, the algorithm outputs the
exact sequence’s = s.

In particular, this covers the noiseless case by taking ¢ = 0 and hy = hy(s), and the robust case
with any uniform € such that max; ||e:]|2 < e < % ming Ar, ¢

Proof. By Assumption D.2, Theorem D.I, and Lemma D.1, there is a probability-one event on
which, for all ¢, F'(-; m;, t) is injective with strictly positive margin A, ;. Intersecting across finitely
many t preserves probability 1. Work on this event.

By Assumption D.1 and Lemma D.2, h¢(s) = F(s¢; 7, t). Since |le¢]|2 < e,
ﬁt = F(St; 7Tt,t) =+ (S S E(F(St, Wt,t),g) = sAﬂ't’t(St; E),

so the local verifier accepts s;. Moreover, because ¢ < %Amt, Proposition D.1(2) implies robust
uniqueness:

hy € A i(vie) < v=s,. (36)

When ¢ = 0, equation 36 also holds by Proposition D.1(1). We now analyze SIP-IT and proceed by
induction on ¢.

Base case (t = 1). The outer for-loop over t begins with § = () = ;. Inside the inner for-
loop over j (the loop over vocabulary candidates), the policy (Definition D.3) enumerates )V without
replacement. By Proposition D.3, there exists j* < |V| such that v;» = s, which is accepted and
triggers the break; the algorithm appends s;.

Inductive step. Suppose after completing the inner loop at step t — 1 the algorithm has appended
St—1, so the prefix entering step ¢t is S = m;. By equation 36, within the inner loop the verifier accepts
exactly when v; = s;. Because the policy enumerates V without replacement, some j < |V| satisfies
v; = s, which is accepted, appended, and the inner loop breaks.

Thus for every ¢, the inner loop terminates by accepting s; within || iterations, and after the outer
loop finishes we have appended (s1, . ..,s7), i.e., S = s. Since the reasoning holds on a probability-
one event (independent of the policy’s internal randomness), the conclusion is almost sure. O

44



Under review as a conference paper at ICLR 2026

gpt2

PTTTTTITITIT

107 Collision threshold

L2 Distance

gpt2-medium

e e e s s s e e A

L2 Distance

104 Collision threshold

gpt2-large

FTTTTITTITITITITTTIITTIITITITITTITIITIIINT

,_.

=) =
i =)
! !

L2 Distance
=)

L

1

Collision threshold

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
Layer

Figure 7: Seeking collisions in a large-scale prompt set (§4.1). For each layer, boxplots show
the distribution (log scale) of the minimum pairwise {5 distances between last-token states across
prompts for the GPT-2 model family (Small, Medium, and Large); red bars mark medians and
the dashed line indicates the collision threshold 1076,

Proposition D.4 (Termination and linear step bound). Run SIP-IT (Alg. 1) on a length-T sequence
with any policy that enumerates V without replacement. Then the algorithm halts after a finite
number of iterations. Moreover, in the worst case the inner for-loop over j executes at most |V|
iterations at each position t, so the total number of verifier tests across the entire run is at most
T |V|. In particular, the number of loop iterations grows linearly with T - |V|.

Proof. Fix a position t. The inner for-loop over j proposes unvisited tokens and stops when a
candidate verifies, or after exhausting V. Because the policy enumerates without replacement, the
loop can execute at most |V| iterations at step t. The outer for-loop over t runs for exactly T

positions, hence the total number of inner-loop iterations (i.e., verifier tests) is at most Zthl V| =
T|V| < oo. Therefore the algorithm halts and the total number of tests is linear in T"- |V|.

Remark 20 (Iterations vs. wall-clock time). Proposition D.4 bounds the number of iterations/tests:
the inner loop performs at most |V| verifier tests per position, so the total is O(T|V|). This is an
iteration complexity statement that holds for any policy satisfying the “enumerate ) without replace-
ment” property. Actual wall—clock time also depends on the per—test cost (one call to F(v;, t) plus
a distance) and on any policy overhead (e.g., forward/backward proxy updates, scoring, sorting). A
generic decomposition is

T

time = @(T|V| 'Ctesl) + Zcpt)lic'y(t)7

t=1

where Ciy is the cost of one membership test and Cppjicy(t) captures policy-specific work at step
t. Thus, if |V| is treated as fixed and Cies, Cpolicy(t) are bounded (e.g., a constant number of proxy
updates and at most one ranking per update), wall-clock time is O(T). If |V| grows or the policy
sorts per update, additional factors like |V| or log |V| may appear in the time, but the termination
and the ©(T|V|) iteration bound remain unchanged.

Remark 21 (Choosing the tolerance €). Theory guarantees uniqueness whenever € < %Amt
(Proposition D.1). Since A ; is unknown, two practical choices work well: (i) backoff: start with

45



Under review as a conference paper at ICLR 2026

"l rrrrapoianonettETHHEETTE

Collision threshold

------------------------------------------------

L2 Distance

gemma-3-4b-pt

e EE L L AR RRRR

Collision threshold

------------------------------------------------

L2 Distance

gemma-3-12b-pt

T e e e e e L C L LR LR

= =
S =)

L2 Distance
=)
C

Collision threshold

123456 7 8 9101112131415 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48
Layer

Figure 8: Seeking collisions in a large-scale prompt set (§4.1). For each layer, boxplots (log scale)
show the distribution of minimum pairwise {5 distances between last-token states across prompts for
the Gemma—3 model family (1B, 4B, 12B); red bars denote medians and the dashed line marks the
collision threshold 1076.

a small € and increase only if no token verifies, (ii) calibration: set € from held-out hidden states at
layer £. In all cases the decision rule remains a simple yes/no membership test.

Remark 22 (Why S1P-IT is sequential). The algorithm never solves a global assignment. At posi-
tion t it conditions on the current prefix w and queries the local verifier for a single token. Causality
(Assumption D.1) ensures h; depends only on (m,8¢), so these local, prefixwise decisions compose
to recover the full sequence.

E ADDITIONAL EXPERIMENTS AND IMPLEMENTATION DETAILS

E.1 IMPLEMENTATION DETAILS

What is a collision in practice. In the theoretical parts of the paper we use “collision” in the usual
functional sense: two distinct prompts s # s’ such that their last-token representations coincide
exactly,

r(s; ) =r(s'; O7).
This is the event whose probability is controlled in theorems 2.2 and 2.3 and in Appendix C, and all
proofs are carried out at the level of exact equality (no numerical threshold is required).

In the experiments, however, representations are stored in floating-point format, so exact equality of
r(s; Or) and r(s’; O7) may not be a meaningful or robust criterion. We therefore adopt a numer-
ical proxy: given two prompts s,s’ and their embeddings r(s; 87),r(s’; O7) € R?, we declare a
practical collision only if

torch.allclose(r(s; Or),r(s’; O7)) = True,

i.e., every coordinate falls within PyTorch’s prescribed tolerances, namely 10> and 10~ for rel-
evant and absolute tolerance respectively. Across all of the billions to trilions of empirical checks,
every pair of distinct prompts s # s’ failed this criterion: torch.allclose always returned
False, and the observed ¢s distances were consistently bounded away from zero. Thus, at the
resolution of our numerical precision, we did not observe any collisions in practice.

46



Under review as a conference paper at ICLR 2026

S1P-IT implementation. We implement SIP-IT exactly as in Alg. | with the gradient-guided pol-
icy. To stabilize the continuous proxy used for ranking, we apply gradient clipping (capping the
gradient norm at 1) and we periodically project it back to the nearest token embedding every K =50
candidate proposals:

vl = arg min HEv_e(j)sz

e(j) — EUT s
veV\C

without taking gradients through this projection. These heuristics affect efficiency only; the verifier
and all correctness guarantees remain unchanged.

HARDPROMPTS implementation. The original HARDPROMPTS method Wen et al. (2023) tar-
gets multimodal vision-language models and optimizes prompts via a CLIP-based similarity objec-
tive. In our text-only setting we lack the vision branch and CLIP loss, so we adapt Algorithm 1
of Wen et al. (2023) to language models by replacing the objective with the same /5 loss used in
SIP-IT’s gradient calculation, and setting the optimization steps 7' = 1# tokens - [V|. All other
details (step sizes, stopping rules) mirror our SIP-IT setup to ensure a fair comparison.

E.2 ADDITIONAL ABLATIONS

E.2.1 COLLISION EXPERIMENTS

We report three complementary ablations that probe how separation behaves across depth, length,
and model family.

GPT-2 family across depth. For GPT-2 Small, GPT-2 Medium, and GPT-2 Large, the
per-layer boxplots (log scale) of the minimum pairwise {5 distances between last-token states in
Figure 7 show that all minima sit orders of magnitude above the collision threshold 1076 at every
depth, and the typical separation increases with depth (median red bars drift upward). This rules out
collisions in practice and indicates that deeper blocks monotonically sharpen last-token distinctions
in these models.

Gemma-3 family across depth and scale.
Across Gemma3-1B, Gemma3-4B, and
Gemma3-12B, the layerwise boxplots (log

L2 Distance

scale) in Figure 8 again show minima far above
1076 at all depths. Both depth and model size
trend positively with separation: medians and
lower whiskers move upward in deeper layers

mearn

and larger models, indicating progressively
stronger margins and no observed collisions.

\
\
s\ . .
10 \ min
\
\

max

400 so0  Effect of sequence length (Gemma-1B).
Varying the prompt length reveals that
min/mean/max pairwise distances rise quickly
for short sequences and then plateau, with the
minimum never approaching zero (see Fig-
ure 9). This suggests that beyond a modest context size, additional tokens do not erode separability;

margins stabilize rather than collapse, making collisions unlikely for any prompt length explored.

200 300
Sequence length

Figure 9: Sequence length versus distance over all
pairs of distinct prompts for Gemma-1B.

Overall, these ablations corroborate the main text: last-token states remain well-separated across
architectures and depths, separation typically grows with depth (and scale for Gemma), and margins
stabilize with sequence length, aligning with our almost-sure injectivity guarantees and with SIP-
IT’s exact recovery behavior.

E.2.2 SipIT

Vocabulary Size. To further validate our findings (as presented in section 4) regarding the scaling
of SIPIT with vocabulary size, we conducted additional experiments on the two models with substan-
tially different vocabulary sizes, Mistral-7B-v0.1 (= 32K vocabulary) and L1ama-3.1-8B
(= 128K). For a fair comparison, we construct sentences that tokenize to exactly the same se-
quence of tokens across both models. The results are reported in the Table 6. We observe that, in

47



Under review as a conference paper at ICLR 2026

Inversion performance

Model Vocab size
Accuracy Time (s) Vocab explored (%)
Mistral-7B-v0.1 32000 100% 72.99 + 37.57 0.21 £0.11 %
Llama—-3.1-8B 128255 100% 345.35 + 181.30 0.22 +0.12 %

Table 6: Performance of STPIT on different vocabulary sizes

practice, the inversion time grows linearly with vocabulary size, as expected, reflected by the nearly
constant percentage of tokens explored between the small-vocabulary model (Mistral) and the
larger-vocabulary model (L.1ama). Importantly, for both models, the fraction of tokens explored re-
mains below 0.25%, indicating that the gradient-based heuristic is both robust and highly efficient.

Dataset  Inversion Time (s) Accuracy

Train Data 146.48 + 91.52 100%
Test Data 128.62 4 83.40 100%
OOD 106.87 + 39.10 100%

Table 7: Performance of SIPIT on in-distribution vs. out-of-distribution data

Robustness of SIPIT on unseen and random sequences. Based on GPT-2, we constructed three
datasets, which we refer to as Train, Test, and OOD (Out-of-Distribution). The Train set is formed
by sampling sentences from WebText (the dataset used to train GPT—2 Radford et al. (2019)); the
Test set contains sentences sampled from Wikipedia (not in the training set); and the OQOD set con-
sists of random token sequences. Each dataset contains 50 prompts of length 100 tokens. We report
the findings in Table 7. Interestingly, the OOD samples are significantly faster to invert than the
Train and Test samples. We hypothesize that this difference stems from the geometry of the hidden
representations: natural language sentences (Train and Test) tend to lie on a structured, clustered
manifold, which can make the inversion landscape locally flatter and less well-conditioned. In con-
trast, random token sequences produce more dispersed and isolated hidden states, yielding clearer
descent directions and effectively stronger gradient signals, which accelerates convergence. Across
all three datasets, we obtain exact recovery for every sequence, further supporting the theoretical
guarantees of SIPIT.

E.3 IDENTICAL NEXT-TOKEN

An interesting question is what happens to the representations when deliberately constructing
prompts that force the exact same next token across diverse contexts. To answer this question
we designed a set of new experiments where two different prompt are specifically constructed
to yield the exact same target answer. First, we focused on word-to-word machine transla-
tion (google/smol) and math tasks (ProCreations/SimpleMath) on Llama-3.1-8B,
Mistral-7B, and Phi-4-mini-instruct. From these datasets, we built few shot prompts
that differed only in their delimiters (e.g. —> vs :) while preserving identical translations or arith-
metic solutions. Some qualitative examples are shown below:

Translate into French. Translate into French.
Hello —-> Bonjour Hello : Bonjour
Goodbye —-> Au revoir Goodbye : Au revoir
House —-> House

48



Under review as a conference paper at ICLR 2026

£5 Distance (min)

Model
layer 1 layer L/2 layer L
Llama-3.1-8B 0.694 1.632 4.202
Mistral-7B-v0.1 0.207 1.056 2.348

Phi-4-mini-instruct 4.375 6.974 17.328

Table 8: Distances for Translation (En—Fr) separator-token embeddings across layers.

£5 Distance (min)

Model
layer 1 layer L/2 layer L
Llama-3.1-8B 0.789 2.126 8.245
Mistral-7B-v0.1 0.222 1.664 4.362

Phi-4-mini-instruct 4.447 8.497 37.262

Table 9: Distances for Math separator-token embeddings across layers.

Do the additions. Do the additions.
2790 + 6698 —> 9488 2790 + 6698 = 9488
8262 + 3848 —> 12110 8262 + 3848 = 12110
1628 + 132 —> 1628 + 132 =

We then assessed collisions involving four different separator token embeddings across all dataset
pairs, specifically —>, :, =, and —. Despite producing the exact same answer the corresponding
embeddings remain clearly distinct (no “collision”) since the minimum /5 distance is well above the
collision threshold over the ~ 140K possible pairs, as seen in tables § and 9.

Furthermore, we constructed a dataset of random prefixes sampled from internet text, each
followed by the fixed suffix “Complete this: The quick brown fox jumps over
the lazy”. To build the dataset, we sampled 10K prefix sequences of length 50 tokens from
Wikipedia and appended the tokenized suffix to each. The minimum /- distances obtained are re-
ported in Table 10. Even in this setting, although the next token prediction is exactly “dog”, all
last-token embeddings remain far above the tolerance threshold.

£5 Distance (min)

Model
layer 1 layer L/2 layer L
Mistral-7B-v0.1 0.012 0.265 3.494
Llama—-3.1-8B 0.046 0.733 6.227

Phi-4-mini-instruct 0.087 2.302 18.913

Table 10: Distances for random-prefix dataset with fixed “quick brown fox” suffix.

E.4 PROMPTS WITH SIMILAR REPRESENTATIONS

To complement the quantitative injectivity results in the main text, we inspected qualitative examples
of sequences whose last-token hidden states are among the closest we observed. For a given model,

49



Under review as a conference paper at ICLR 2026

we computed the Euclidean distance between last-layer representations hy,(s) and hy,(t) of the final
token in two sequences s and ¢, and manually examined pairs with the smallest /5 distances.

For both Llama-3.1-8B and Mistral-7B-v0.1, the closest pairs correspond to Python code snippets
that are almost identical, typically differing only by a small shift such as one or more trailing newline
tokens. In most of the close pairs we examined, the two sequences satisfy

s = to (new line token)”

for some small £ > 1. Even in these extremal cases, however, the last-token representations remain
clearly separated in {5 distance.

Llama-3.1-8B. One of the closest pairs we found for Llama-3.1-8B is shown below. The only
difference between the two sequences is the presence of several trailing newline characters at the
end of the second snippet.

# —— Options for HTML output

# The theme to use for HTML and HTML Help pages
html_theme = "default’

# Theme options are theme-specific and customize the
#html_theme_options = {}

# Add any paths that contain custom themes here
#html

# —— Options for HTML output

# The theme to use for HTML and HTML Help pages
html_theme = ’'default’

# Theme options are theme-specific and customize the
#html_theme_options = {}

# Add any paths that contain custom themes here
#html

\n

\n

\n

The last-token /5 distance at the final layer for this pair is 1.274, which is small relative to typical
distances but still far from zero, and thus consistent with the absence of collisions observed in our
exhaustive tests.

Mistral-7B-v0.1. A similar phenomenon occurs for Mistral-7B-v0.1. Again, one of the closest
pairs consists of two almost identical code snippets, where the second sequence appends a single
newline token:

50



Under review as a conference paper at ICLR 2026

# The reST default role to use for all documents.
#default_role = None

# If true, " ()’ will be appended to :func:
#add_function_parentheses = True

# If true, the current module

# The reST default role to use for all documents.
#default_role = None

# If true, " ()’ will be appended to :func:
#add_function_parentheses = True

# If true, the current module

\n

For this pair, the last-token /o distance at the last layer is 1.146. As in the Llama example, the
nearest neighbors arise from almost identical contexts differing only in trailing whitespace tokens,
and even these extremal cases exhibit a non-negligible separation in representation space.

Summary. Across all models and pairs we inspected, we did not observe qualitatively different
prompts whose last-layer, last-token embeddings were comparably close. Instead, the nearest neigh-
bors consistently involved near-duplicate snippets (often code or documentation) differing only by
whitespace or other minor formatting tokens. These qualitative observations align with the injectiv-
ity margins reported in the main text and support the view that small perturbations in formatting do
not lead to collisions in the representations used by SIPIT.

E.5 RELATION WITH ANISOTROPY AND INTRINSIC DIMENSION

As part of our broader investigation, we also examined connections to the analyses presented in
the works of Razzhigaev et al. (2025) (LLM-Microscope) and Razzhigaev et al. (2024), and ran a
targeted experiment in this spirit.

Experimental setup. We performed a proof-of-concept study using GPT-2 Small. We sampled
100 natural-language prompts of fixed length K and, for each prompt, generated 1000 single-token
continuations by appending each token from a fixed vocabulary subset of size 1000. For every layer
¢, we extracted the hidden representation of the last token for all 1000 continuations, producing a
1000 x d matrix for each (layer, prompt) pair. On each matrix we computed (i) anisotropy and intrin-
sic dimension as in LLM-Microscope, and (ii) simple “injectivity margin” statistics: the minimum
pairwise Euclidean distance between continuation embeddings, averaged over prompts. Aggregat-
ing over the 100 prompts yields, for each layer, a triple consisting of anisotropy, intrinsic dimension,
and injectivity margin.

Experiment 1: anisotropy vs. injectivity margin. Across layers, we correlated mean anisotropy
with the mean injectivity margin. The resulting Pearson correlation is 0.72, and the Spearman corre-
lation is 0.45. In this setting, layers with higher anisotropy tend to exhibit larger injectivity margins:
continuation clouds become both more structured (anisotropic) and farther from collisions. This
suggests that anisotropy is compatible with, and may even reinforce, numerically robust injectivity.

Experiment 2: intrinsic dimension vs. injectivity margin. Repeating the analysis with intrinsic
dimension, we observe a Pearson correlation of -0.60 and a Spearman correlation of -0.79 between
intrinsic dimension and injectivity margin. Thus, layers with lower intrinsic dimensionality tend to

51



Under review as a conference paper at ICLR 2026

Layer Anisotropy (mean) ID (mean) Margin (min)

1 0.089579 20.754620 1.850306
2 0.076049 17.565538 1.956753
3 0.071429 16.765265 2.064488
4 0.075067 16.679382 2.241199
5 0.083282 17.183246 2.382355
6 0.089542 17.697870 2.499817
7 0.088463 17.018419 2.704958
8 0.083261 16.296431 2.886434
9 0.081803 16.040713 3.025268
10 0.083083 15.730601 3.330774
11 0.090206 15.635035 3.918343
12 0.288352 16.434897 4.640457

Table 11: Layer-wise anisotropy, intrinsic dimension, and injectivity margin.

have larger margins: compressed-looking manifolds are, if anything, more separated. This aligns
with our theorem that injectivity rules out information-destroying collapses.

Discussion. This line of analysis is highly complementary to our injectivity framework. Whereas
our results establish that internal representations are almost surely lossless, LLM-Microscope offers
fine-grained geometric diagnostics of how these representations evolve across depth and training.
Particularly notable is the observation that anisotropy and intrinsic dimension follow a reverse-U
profile: representations become more anisotropic and lower-dimensional in intermediate layers, then
partially re-expand near the output, offering a concrete geometric picture of how structure is carved
into aligned directions and low-dimensional manifolds.

This is especially relevant given that our paper challenges classic accounts of learning via bottleneck
compression (e.g. Shwartz-Ziv & Tishby (2017)). If information is preserved along the residual
stream, learning cannot proceed layer by layer purely through compression. Our preliminary exper-
iments suggest a different picture: as depth increases, margins grow, intrinsic dimension decreases,
and anisotropy follows a concave trajectory with a late spike. Early layers expand and reorganize,
intermediate layers carve information into low-dimensional directional manifolds, and upper layers
sharpen this structure. Overall, this is consistent with a network that preserves injectivity while
funneling information into increasingly structured, well-separated representations.

F REAL-ANALYTIC ACTIVATION FUNCTIONS IN MODERN LLMS

A natural question raised by our analysis is to what extent modern large language models actually
use real-analytic activation functions in their feed-forward networks. Since our results apply most
directly when the non-linearities are real-analytic, it is important to check whether this assumption
holds in practice.

To get a concrete picture, we surveyed a set of widely used open-source and proprietary-style ar-
chitectures and recorded the activation function used in their feed-forward blocks. The models and
their reported activations are summarized in Table 12. For each model, we also indicate whether the
activation is real-analytic. Activations such as SiLU/Swish, SwiGLU, GeGLU, and GELU are all
real-analytic, being compositions and products of elementary analytic functions (e.g., linear maps,
exponentials, and the error function).

Across this representative sample, we find that all models (18 out of 18) use real-analytic activations
in their feed-forward blocks. In other words, the analyticity assumption is not merely a technical
convenience but accurately reflects common design practice. This supports the relevance of our
theoretical results for real-world large language models: the vast majority of modern transformers

52



Under review as a conference paper at ICLR 2026

Model (HF example) Activation in FFN  Real-analytic?

Llama-2 SwiGLU Yes
Llama-3 SwiGLU Yes
Mistral-7B-v0.1 SiLU Yes
Mixtral-8x7B-v0.1 SiLU Yes
Gemma GeGLU Yes
Gemma-2 GELU Yes
Qwen2MoE SwiGLU Yes
Qwen-—2 SiLU Yes
Qwen3MoE SiLU Yes
Qwen-3 SiLU Yes
Phi GELU Yes
Phi-3 SiLU Yes
GPT-2 GELU Yes
GPT-J GELU Yes
GptOss SiLU Yes
Grok-1 GELU Yes
DeepSeek-V2 SiLU Yes
DeepSeek-V3 SiLU Yes

Table 12: Activation functions used in the feed-forward networks of representative modern LLMs.

already operate in a regime where the non-linearities are real-analytic, and hence fall directly within
the scope of our analysis. We now formally prove that SiLU and GELU are real-analytic scalar
functions, and that the corresponding gated constructions SwiGLU and GeGLU define real-analytic
vector-valued maps.

Proposition F.1 (Logistic sigmoid is real-analytic). The logistic sigmoid

1

o) = e

z € R,

is real-analytic on R.

Proof. By Proposition A.5, the map  — e~" is real-analytic on R. By Proposition A.1, the sum
x +— 1 + e~ 7" is real-analytic; moreover 1 + e¢~% > 0 for all x € R, so it never vanishes. By the
quotient rule in Proposition A.1, the reciprocal

T —

1+e®

is therefore real-analytic on R. O

Proposition F.2 (SiLU / Swish is real-analytic). The SiLU (or Swish) activation

T

SiLU(z) := xzo(x) = [y

z € R,

is real-analytic on R.

Proof. The identity map = > x is a polynomial, hence real-analytic by Proposition A.4. By Propo-
sition F.1, o is real-analytic. The product of two real-analytic functions is real-analytic by Proposi-
tion A.1, so & + x o(x) is real-analytic on R. O

53



Under review as a conference paper at ICLR 2026

Lemma F.1 (Error function is real-analytic). The error function

2 x
erf(z) = ﬁ/ et dt, r €R,
0

is real-analytic on R.

Proof. By Proposition A.5, exp is real-analytic on R with power series e* = >~ 77 and infinite

radius of convergence. Substituting z = —#? yields
0 k
—t? _ (=1)" ok
€ = Z Tt 5 teR.
k=0

This series has infinite radius of convergence, so it converges uniformly on every bounded interval.
By standard results on termwise integration of power series (e.g. Rudin 1976), we may integrate

termwise:
T 2 (=1)k = (—1)F
=3 / Rt =) gt
Multiplying by 2/+/m we obtain

2k+1

_ 2 o~ (D
erf(x)—ﬁg:%mx ,

a power series with infinite radius of convergence. Hence erf is real-analytic on R by Definition A.1.

O
Proposition F.3 (GELU is real-analytic). Let
1 xT
O(x) = 3 (1 + erf(ﬁ))
be the CDF of a standard normal random variable. The (exact) GELU activation
GELU(z) := z ®(x)
is real-analytic on R.
Proof. By Lemma F.1, erf is real-analytic. The map = +— -%= is linear, hence real-analytic; by

V2
Proposition A.2, the composition = — erf (%) is real-analytic. Adding the constant 1 and scaling

by % preserves real-analyticity by Proposition A.1, so ® is real-analytic. The identity map = — =
is a polynomial (Proposition A.4), hence real-analytic; their product x +— x ®(z) is therefore real-
analytic by Proposition A.1. O

Proposition F.4 (Vector-valued SiLU and GELU are real-analytic). Let m € N. Define the coordi-
natewise maps

SiLU,,(x) := (SiLU(x3),...,SiLU(x)) |,  GELU,,(x) := (GELU(x), ..., GELU(x)) ',

for x € R™, where SiLU and GELU are as in Proposition F.2 and Proposition F.3. Then both
SiLU,,, and GELU,, are real-analytic maps R™ — R™.

Proof. Each scalar component x — SiLU(x;) (resp. GELU(x;)) is the composition of the projec-
tion onto coordinate ¢ (a linear map) with the real-analytic scalar function SiLU (resp. GELU). By
Proposition A.2, each component is real-analytic. Therefore, by Definition A.1, the vector-valued
maps SiLU,,, and GELU,, are real-analytic. O
Proposition F.5 (GLU-style blocks are real-analytic). Lef diy, dniq € N and consider affine maps
A1<X) = W;x + by, AQ(X) = Wsyx + bo,

with W1, Wy € R®iaXdin gnd by, by € R%bid. Let ¢ : Rid — Rvia pe ejther SiLUg,,, or
GELUyg, ., from Proposition F.4. Define the GLU-style block

GLUy(x) = A1(x) @ ¢(A2(x)), x € R,
where © denotes the Hadamard product.

Then GLU, : R%» — Réid js real-analytic. In particular:

54



Under review as a conference paper at ICLR 2026

* Taking ¢ = SiLUg,,, recovers SwiGLU, which is real-analytic.
*» Taking ¢ = GELUy,,, recovers GeGLU, which is real-analytic.

Proof. Each affine map A; is real-analytic as a matrix product plus addition (Proposition A.10,
Proposition A.1). By Proposition F.4, ¢ is real-analytic, so x +— ¢(A2(x)) is a composition of
real-analytic maps (Proposition A.2), hence real-analytic. The map x — A;(x) ® ¢(A2(x)) is
a Hadamard product of two real-analytic vector-valued functions; componentwise this is just the
product of real-analytic scalars, so it is real-analytic by Proposition A.1 (equivalently, by Proposi-
tion A.11). Thus GLUy is real-analytic. The SwiGLU and GeGLU cases follow by choosing ¢
accordingly. O

Relation to universal-approximation and expressivity results. The material above concerns
only the analyticity of the non-linearities used in our analysis. For completeness, we also record
here how our injectivity theorem fits alongside existing expressivity results for Transformers; this
discussion is logically independent of the real-analyticity assumptions.

Classical expressivity results for Transformers are primarily existential. Universal-approximation
theorems (e.g. Yun et al. (2020); Sun & Yang (2020)) show that for any continuous sequence-to-
sequence function f on a compact domain and any € > 0, there exists a Transformer with suitable
depth and width whose outputs are within € of those of f. Turing-completeness results for en-
coder—decoder Transformers (e.g. Pérez et al., 2019) similarly establish the existence of parameter
settings that simulate any Turing machine. Taken together, these works characterise what the archi-
tecture can represent in principle: they do not model random initialization or gradient-based train-
ing, and they are not formulated in our discrete setting with finite context length, fixed decoder-only
architecture, and real-analytic activations.

Our results are complementary and instead concern what happens typically under standard training.
We fix a concrete decoder-only architecture and a finite prompt set, and study the map from prompts
to last-token representations. In this setting we prove that (i) for any fixed architecture, the set of
parameters for which this map is non-injective has Lebesgue measure zero, and (ii) gradient-based
training from standard random initializations preserves absolute continuity of the parameter distri-
bution and therefore almost surely avoids this “collision set”. Non-injective Transformers certainly
exist (we explicitly construct such failure cases in section 2), but our results show that they form a
thin subset that typical optimization trajectories do not reach.

Our contribution is thus orthogonal to prior expressivity theory. We do not claim that Transformers
can only represent injective functions. Rather, within the specific regime we study (decoder-only,
real-analytic activations, cross-entropy loss, GD-type training from standard initialization), we show
that the resulting last-token map is injective with probability one over initialization and training. In
short, classical expressivity results describe what is mathematically possible for the Transformer
function class, while our analysis characterizes what is almost surely implemented when that class
is explored via standard training procedures.

55



	Introduction
	Transformers are injective
	Exact prompt recovery via SipIt
	Experiments
	Searching for collisions
	Invertibility results

	Related work
	Discussion and conclusions
	Preliminaries
	Notation
	Real-Analyticity
	Real-Analytic Functions with Vector Inputs
	Real-Analytic Functions with Matrix Inputs
	Real Analyticity of Common Components

	Differential, Measure-Theoretic, and Topological Tools

	Transformer Language Model
	Almost Sure Injectivity
	Absolute continuity ensures almost sure injectivity
	Absolute continuity of the parameter distribution is preserved under GD
	Witness Construction
	Gradient Descent preserves absolute continuity


	Left-Invertibility Via SIP-It
	One-Step Last-Token Maps
	The Core Routines: Local Verifiers, Acceptance Regions, and Policies
	Global Inversion via Sip-It

	Additional Experiments and Implementation Details
	Implementation Details
	Additional Ablations
	Collision Experiments
	SipIt

	Identical Next-Token
	Prompts with Similar Representations
	Relation with Anisotropy and Intrinsic Dimension

	Real-Analytic Activation Functions in Modern LLMs

