

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 LANGUAGE MODELS ARE INJECTIVE AND HENCE INVERTIBLE

Anonymous authors

Paper under double-blind review

ABSTRACT

Transformer components such as non-linear activations and normalization are inherently non-injective, suggesting that different inputs could map to the same output and prevent exact recovery of the input from a model’s representations. In this paper, we challenge this view. First, we prove mathematically that transformer language models mapping discrete input sequences to their corresponding sequence of continuous representations are injective and therefore lossless, a property established at initialization and preserved during training. Second, we confirm this result empirically through billions of collision tests on six state-of-the-art language models, and observe no collisions. Third, we operationalize injectivity: we introduce SIPIT, the first algorithm that provably and efficiently reconstructs the **exact** input text from hidden activations, establishing linear-time guarantees and demonstrating exact invertibility in practice. Overall, our work establishes injectivity as a fundamental and exploitable property of language models, with direct implications for transparency, interpretability, and safe deployment.

1 INTRODUCTION

A core question in understanding large language models is whether their internal representations faithfully preserve the information in their inputs. Since Transformer architectures rely heavily on nonlinearities, normalization, and many-to-one attention mechanisms, it is often assumed that they discard information: different inputs could collapse to the same hidden state, making exact recovery of the input impossible. This view motivates concerns around transparency, robustness, and safe deployment, as it suggests that the link between text and representation is inherently *lossy*.

In this paper, we show that this intuition is misleading. Despite their apparent complexity, standard decoder-only Transformer language models (seen as maps from prompts to hidden states) are in fact **almost-surely injective**; for essentially all parameter settings and during the course of training, different prompts yield different last-token representations (e.g., see Figure 1).

Building upon this property, we further provide a practical algorithm, SIPIT, that reconstructs the *exact* input from hidden activations. To our knowledge, it is the first to guarantee exact recovery in provable linear time (worst case bound), often faster in practice, turning injectivity from a theoretical property into an operational tool.

Our approach. To establish our result, we take a rigorous mathematical view of Transformers as functions. The key idea is that their components (embeddings, LayerNorm, causal attention, MLPs, and residual wiring) are smooth and structured enough that the model, as a whole, behaves predictably with respect to its parameters. Using tools from real analysis, we show that collisions (two different prompts producing the exact same representation) can only occur on a set of parameter values that has measure zero; that is, they are mathematical *exceptions* rather than possibilities one should expect in practice. Moreover, we prove that common training procedures (gradient descent

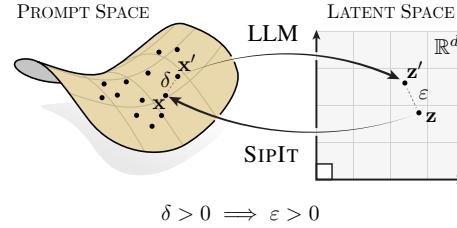


Figure 1: The map from prompts to latent space is injective. SIPIT inverts it.

054 with standard step sizes) never move parameters into this exceptional set. In layman’s terms, almost
 055 all models at initialization are injective, and training preserves this property.
 056

057 Technically, our proofs rely on two ingredients. First, we establish that Transformers are real-
 058 analytic functions of their parameters, which allows us to reason precisely about when and where
 059 collisions could occur. Second, we construct parameter settings where no two prompts collide, and
 060 show that gradient descent (GD) does not collapse such separation, i.e., collisions remain a measure-
 061 zero event. The end result is a finite-horizon *guarantee*: after any fixed number of training steps, and
 062 under mild assumptions, injectivity holds with probability one. We provide complete formal proofs
 063 of these statements.
 064

065 **Main result.** Our central finding is that causal decoder-only Transformer language models are
 066 injective almost surely. Formally, consider one such model with embedding width d , at least one
 067 attention head per block, real-analytic components, finite vocabulary \mathcal{V} , and finite context length K .
 068 Initialize its parameters θ at random, using any distribution that has a density¹ (such as Gaussian,
 069 uniform, or Xavier/Glorot), and train for any finite number T of GD steps with step sizes in $(0, 1)$.
 Then, with probability one over the random initialization,

$$s \neq s' \implies \mathbf{r}(s; \theta_T) \neq \mathbf{r}(s'; \theta_T),$$

070 i.e., the map from prompts s to *last-token* representations $\mathbf{r}(s; \theta_T)$ is injective across all prompts in
 071 $\mathcal{V}^{\leq K}$. In short, collisions in practical settings form a measure-zero set, and neither initialization nor
 072 training will ever place a model inside that set.
 073

074 **Significance.** Our result shows that in standard decoder-only Transformers, different prompts al-
 075 most surely yield different last-token representations across all practically relevant parameter set-
 076 tings and training procedures. The guarantee is both *generic* (it fails only on a measure-zero set
 077 of pathological parameters) and *practical* (it holds at finite width, depth, and training time under
 078 common initializations).
 079

080 Conceptually, we replace a long-assumed property with a rigorous theorem, showing that injectivity
 081 is not an asymptotic idealization but a structural consequence of the architecture itself. Tech-
 082 nically, our analytic framework pinpoints when collisions can arise (through deliberate non-analytic
 083 choices such as quantization or tying), and clarifies that otherwise the model is inherently lossless.
 084 Importantly, it establishes that last-token states almost everywhere *identify* the input.

085 Finally, we turn this theoretical guarantee into an operational tool: our algorithm SIPIT uses
 086 gradient-based reconstruction to recover prompts *exactly* from internal activations, efficiently and
 087 with provable *linear-time* guarantees. This confirms empirically that collisions do not occur in
 088 practice. Beyond transparency and safety, this elevates *invertibility* to a first-class property of Trans-
 089 former language models, enabling stronger interpretability, probing, and causal analyses.
 090

091 2 TRANSFORMERS ARE INJECTIVE

092 **Summary.** In this section we show that decoder-only Transformers almost surely map different
 093 prompts to different hidden states. Collisions can only occur under measure-zero parameter choices,
 094 and gradient-based training never creates them. In simple terms, Transformer representations are
 095 structurally lossless.
 096

097 **Approach.** We consider causal decoder-only Transformer language models with vocabulary \mathcal{V} ,
 098 finite context window K , and embedding dimension d . For an input sequence $s \in \mathcal{V}^{\leq K}$, let $\mathbf{r}(s; \theta)$
 099 denote the final hidden representation at the *last* token position², given parameters θ .
 100

101 Our analysis relies on three facts:

102 (i) *Real-analyticity.* Each component of the architecture (embeddings, positional encodings,
 103 LayerNorm with $\varepsilon > 0$, causal attention, MLPs with analytic activations, residuals) is real-
 104 analytic in its parameters (see Appendix A.2 for the mathematical background). This

105
 106 ¹Put simply, parameters are not drawn from a degenerate or hand-crafted set.
 107 ²We focus on the last-token state, since it alone drives next-token prediction; earlier rows matter only insofar
 as they shape this final state. Injectivity at the last token is the property of real operational interest.

108 smoothness implies that the set of parameter values causing two distinct prompts to col-
 109 lide is extremely thin (measure zero).
 110 (ii) *Initialization.* Standard initialization schemes (Gaussian, uniform, Xavier/Glorot, etc.)
 111 draw parameters from continuous distributions with densities, so they avoid measure-zero
 112 sets with probability one.
 113 (iii) *Training.* Gradient-based updates (including SGD and mini-batch/full-batch GD) preserve
 114 absolute continuity of the parameter distribution after any finite number of steps; thus,
 115 training cannot generate collisions.
 116

117 These facts allow us to state and prove injectivity results without relying on asymptotics.
 118

119 We begin by establishing the analytic structure of the architecture.
 120

121 **Theorem 2.1** (Transformers are real-analytic). *Fix embedding dimension d and context length K .
 122 Assume the MLP activation is real-analytic (e.g. \tanh , GELU). Then for every input sequence $s \in
 123 \mathcal{V}^{\leq K}$, the map*

$$124 \quad (s, \theta) \mapsto r(s; \theta) \in \mathbb{R}^d \quad (1)$$

125 is real-analytic jointly in the parameters θ and the input embeddings.
 126

127 *Sketch of proof (full proof in Appendix B, Proposition B.3).* Each building block is real-analytic:
 128 polynomials (embeddings, projections), exponential and softmax (attention), reciprocal square root
 129 (LayerNorm with $\varepsilon > 0$), analytic activations in the MLP, and affine maps. Real-analytic functions
 130 are closed under addition, multiplication, quotient, and composition. Since the Transformer is a
 131 finite composition of such blocks, the entire map is real-analytic. \square
 132

133 This smoothness result drives everything that follows:
 134 it ensures that collisions, if they exist, are confined to
 135 measure-zero parameter sets. We now ask: what happens
 136 at initialization?
 137

138 **Theorem 2.2** (Almost-sure injectivity at initialization).
 139 *Let θ be drawn from any distribution with a density (e.g.
 140 Gaussian or uniform). Then for any two distinct prompts
 141 $s, s' \in \mathcal{V}^{\leq K}$,*

$$142 \quad \Pr[r(s; \theta) = r(s'; \theta)] = 0. \quad (2)$$

143 *Sketch of proof (full proof in Appendix C, Theorem C.2).*
 144 Fix $s \neq s'$ and consider

$$145 \quad h(\theta) = \|r(s; \theta) - r(s'; \theta)\|_2^2. \quad (3)$$

146 By Theorem 2.1, h is real-analytic. A fundamental di-
 147 chotomy of real-analytic functions states that either h is
 148 identically zero, or its zero set has Lebesgue measure zero (see Figure 2 for an illustration). There-
 149 fore, to rule out the pathological case $h \equiv 0$ it suffices to exhibit a single parameter setting where
 150 $r(s; \theta) \neq r(s'; \theta)$.
 151

152 This can always be done: if s and s' differ at the last position (symbol or length), freeze the network
 153 so that the last state reduces to embedding plus position, and choose distinct rows; this already
 154 separates $r(s)$ and $r(s')$. If instead they differ earlier, let i^* be the first mismatch and set one attention
 155 head so the last position attends almost entirely to i^* , encoding its token in the value; this forces
 156 different outputs for s and s' .
 157

158 Hence h is not identically zero, and so the collision set $\{\theta : h(\theta) = 0\}$ has Lebesgue measure
 159 zero. Since standard initializations have densities, the probability of sampling such θ is zero, and
 160 $r(s; \theta) \neq r(s'; \theta)$ (injectivity) holds almost surely at initialization. \square
 161

According to Theorem 2.2, at initialization, collisions are mathematically impossible except on a
 vanishingly small set of parameter values. Finally, with the following Theorem we ensure training
 does not break injectivity.

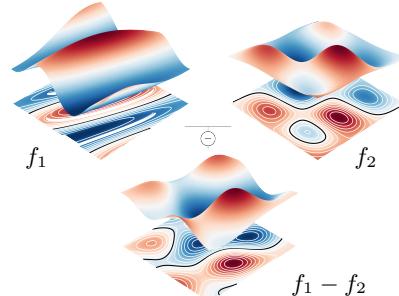


Figure 2: Two real-analytic functions f_1 and f_2 and their difference $f_1 - f_2$. Black contours show the zero sets, which form thin curves (measure zero) rather than regions of positive measure.

162 **Theorem 2.3** (Injectivity preserved under training). *Let θ_0 be initialized from a distribution with a
163 density, and let θ_T be the parameters after T steps of gradient descent with step sizes in $(0, 1)$. Then
164 with probability one,*

$$165 \quad s \neq s' \implies \mathbf{r}(s; \theta_T) \neq \mathbf{r}(s'; \theta_T), \quad (4)$$

168 *Sketch of proof (full proof in Theorems C.1 and C.5).* At initialization, θ_0 is drawn from a distribution
169 with a density, hence absolutely continuous. To break injectivity during training, GD would
170 need to map this continuous law onto the measure-zero collision set identified in Theorem 2.2. We
171 show this cannot happen.

172 A single GD step is the map $\phi(\theta) = \theta - \eta \nabla \mathcal{L}(\theta)$, where \mathcal{L} is the training loss. Because the network
173 and the softmax cross-entropy loss are real-analytic, ϕ is also real-analytic. Its Jacobian determinant
174 $\det D\phi(\theta)$ is itself real-analytic and not identically zero (one can check this by evaluating at a
175 simple parameter setting). Hence the set where $\det D\phi = 0$ has measure zero. Away from that set,
176 the Inverse Function Theorem applies: ϕ is a smooth, locally invertible change of coordinates that
177 can stretch or bend space but cannot collapse regions of positive volume onto lower-dimensional
178 sets. Therefore, pushing forward an absolutely continuous distribution through ϕ yields another
179 absolutely continuous distribution.

180 Since this argument holds for each step, any finite sequence of GD updates preserves absolute con-
181 tinuity of the parameter law. Combining with Theorem 2.2, which shows that collision sets are
182 measure-zero, we conclude that $\mathbf{r}(s; \theta_T) \neq \mathbf{r}(s'; \theta_T)$ almost surely for all $s \neq s'$. \square

183 Thus injectivity is not just an initialization property but remains true throughout training. A simple
184 but important corollary follows.

186 **Corollary 2.3.1** (SGD and mini-batch GD). *Under the assumptions of Theorem 2.3, the same con-
187 clusion holds when the updates are $\theta_{t+1} = \theta_t - \eta_t \nabla_{\theta} \mathcal{L}_{\mathcal{B}_t}(\theta_t)$ with arbitrary (possibly random or
188 adversarial) batch selections \mathcal{B}_t , thus including the singleton case of SGD and the full dataset.*

190 *Proof.* The proof argument of Theorem 2.3 is unchanged: for each fixed batch \mathcal{B} , the update map
191 $\phi_{\mathcal{B}}(\theta) = \theta - \eta \nabla \mathcal{L}_{\mathcal{B}}(\theta)$ is real-analytic with a Jacobian that is not identically zero. Indeed, the
192 batch loss is the average $\mathcal{L}_{\mathcal{B}} = \frac{1}{|\mathcal{B}|} \sum_{i=1}^{|\mathcal{B}|} \mathcal{L}_i$, so at the point θ_* from the single-sample proof (where
193 the Jacobian determinant is sample-independent and nonzero) the batch Jacobian coincides with the
194 single-sample one by linearity of differentiation, and its determinant is therefore also nonzero. Thus,
195 the finite composition of such maps preserves absolute continuity of the parameter law. \square

197 Together with this robustness to different training regimes, we can also strengthen the guarantee
198 itself: injectivity holds not just pairwise, but globally across finite sets of prompts.

199 **Corollary 2.3.2** (Distinctness for finite sets). *For any finite set of prompts $\mathcal{S} \subseteq \mathcal{V}^{\leq K}$, the represen-
200 tations $\{\mathbf{r}(s; \theta_T) : s \in \mathcal{S}\}$ are almost surely all distinct.*

202 *Proof.* See Appendix C, Corollary C.2.1. \square

204 These results show that decoder-only Transformer language models are structurally injective: dif-
205 ferent prompts almost surely yield different last-token states. Collisions can be manufactured,
206 e.g., through deliberate non-analytic choices (quantization, non-smooth activations), but in practical
207 training pipelines, injectivity is guaranteed; extensive experiments in §4.1 confirm this empirically.

209 **Failure cases.** We showed that non-injective transformers are overwhelmingly unlikely, though it
210 is still possible for an adversary to construct collisions by hand. For instance, if two vocabulary
211 items $v_i \neq v_j$ are assigned *exactly* the same embedding vector, then any prompts differing only by
212 swapping v_i and v_j yield identical representations. Likewise, if two absolute positional embeddings
213 are made exactly equal and the remaining weights are tuned to suppress other positional signals,
214 one can force collisions between sequences that differ only at those positions. These scenarios,
215 however, require deliberately engineered parameter choices: under continuous random initialization
and standard training, the probability of such coincidences is zero.

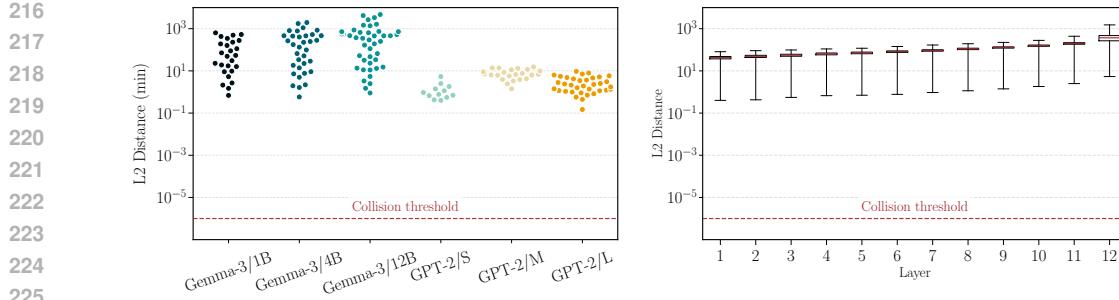


Figure 3: Seeking collisions in a large-scale prompt set (§4.1). The minimum distances between last-token states are far above the collision threshold 10^{-6} : (left) across layers for GPT-2 and Gemma-3 families (one dot per layer), (right) across depth for GPT-2 Small, where distances grow with depth.

3 EXACT PROMPT RECOVERY VIA SIPIT

In the previous section, we have proven that decoder-only Transformers are almost surely injective, i.e., different prompts map to different hidden states. We now show how this property can be used in practice to **reconstruct the exact input prompt** given hidden states at some layer. We call this algorithm SIPIT (Sequential Inverse Prompt via Iterative updates).

Formally, recall from §2 that the mapping from a prompt s to its last-token state is almost surely injective. Since the last state is itself a deterministic function of the hidden matrix at any layer ℓ , injectivity extends to the full representation

$$s \mapsto \mathbf{H}^{(\ell)}(s) \in \mathbb{R}^{T \times d}. \quad (5)$$

We denote by $\mathbf{h}_t(s)$ the row of $\mathbf{H}^{(\ell)}(s)$ at position t . In the following, the parameters θ and target layer ℓ are considered fixed and omitted for simplicity.

The algorithm exploits the causal structure of Transformers: the hidden state at position t depends only on the prefix $\langle s_1, \dots, s_{t-1} \rangle$ and the current token s_t . This means that if we already know the prefix, then the hidden state at position t uniquely identifies s_t .

Example. Suppose the vocabulary is a, b, c and the true prompt is $\langle a, b \rangle$. At $t = 1$, the hidden state depends only on s_1 . By comparing the observed state with the three candidate states produced by trying a, b , and c , we can tell exactly which one matches, thus recovering $s_1 = a$. Then at $t = 2$, we know the prefix $\langle a \rangle$, so we try appending each candidate token and again match the resulting hidden state to recover $s_2 = b$. Iterating this procedure reconstructs the full sequence.

More generally, we can look at the “one-step” map

$$v_j \mapsto \mathbf{h}_t(\pi \oplus v_j), \quad v_j \in \mathcal{V}, \quad (6)$$

which gives the hidden state at step t for each possible next token, given the fixed prefix $\pi = \langle s_1, \dots, s_{t-1} \rangle$ (here \oplus denotes concatenation).

Remark. By the analytic arguments of §2, the one-step map is almost surely injective: with a fixed prefix, any two distinct tokens almost surely yield distinct hidden states.

This property makes sequence recovery straightforward. At each step t , given the hidden state $\widehat{\mathbf{h}}_t$ and the already recovered prefix, we simply check which candidate token produces a matching hidden state. That token must be the true s_t . Repeating this process recovers the entire sequence.

This leads to the SIPIT algorithm, shown in Algorithm 1. At every position, the algorithm cycles through vocabulary candidates (according to some policy such as random order or gradient-guided search) until it finds the unique match³, then appends it to the reconstructed prefix and moves on.

³In practice, we accept matches if the observed hidden state is within an ε -ball around the predicted one.

270 **Algorithm 1** SIP-IT: Sequential Inverse Prompt via Iterative Updates

271
Require: Observed layer- ℓ states $\widehat{\mathbf{H}}^{(\ell)} \in \mathbb{R}^{T \times d}$; vocabulary \mathcal{V} ; tolerance $\varepsilon \geq 0$.
Ensure: Recovered sequence $\widehat{\mathbf{s}} = \langle \widehat{s}_1, \dots, \widehat{s}_T \rangle$.

1: $\widehat{\mathbf{s}} \leftarrow \langle \rangle$
2: **for** $t = 1$ **to** T **do** \triangleright tested candidates
3: $\mathcal{C} \leftarrow \emptyset$
4: **for** $j = 1$ **to** $|\mathcal{V}|$ **do** \triangleright new candidate token v_j (see Alg. 2 and 3)
5: $v_j \leftarrow \text{POLICY}(\mathcal{V}, \mathcal{C}, \widehat{\mathbf{s}}, \ell)$
6: **if** $\widehat{\mathbf{h}}_t \in \mathcal{A}_{\pi, t}(v_j; \varepsilon)$ **then** \triangleright verify v_j (see Def. D.2)
7: $\widehat{\mathbf{s}} \leftarrow \widehat{\mathbf{s}} \oplus v_j$ \triangleright hit!
8: **break**
9: **else**
10: $\mathcal{C} \leftarrow \mathcal{C} \cup \{v_j\}$
11: **end if**
12: **end for**
13: **end for**
14: **return** $\widehat{\mathbf{s}}$

288 To rule out edge cases and analyze the computational cost of SIPIT, we now state a formal guarantee.

289
290 **Theorem 3.1** (Correctness of SIPIT). *Under the assumptions of Theorem 2.3, given observed hidden*
291 *states $\widehat{\mathbf{H}}^{(\ell)}$, SIPIT recovers the true input sequence \mathbf{s} with probability one in at most $T|\mathcal{V}|$ steps.*

292
293 *Sketch of proof (full proof in Appendix D, Thm. D.2, Prop. D.4).* At each step, local injectivity en-
294 sures a unique token matches the observed state. As the policy spans the vocabulary, this token will
295 be found in at most $|\mathcal{V}|$ trials. Induction over $t = 1, \dots, T$ completes the argument. \square

296
297 **Theorem 3.2** (Robustness of SIPIT). *Under the assumptions of Theorem 2.3, define the (data-
298 dependent) margin*

$$\Delta_{\pi, t} := \min_{v \neq v' \in \mathcal{V}} \|\mathbf{h}_t(\pi \oplus v) - \mathbf{h}_t(\pi \oplus v')\|_2.$$

300 Let $\mathbf{s} = \langle s_1, \dots, s_T \rangle$ be the input sequence, and for each $t \in [T - 1]$ define the prefix sequence:

$$\pi_t = \begin{cases} \langle \rangle, & t = 0 \\ \langle s_1, \dots, s_{t-1} \rangle, & \text{otherwise} \end{cases}.$$

305 Then, given the perturbed hidden states

$$\widehat{\mathbf{h}}_t(\pi_t \oplus \mathbf{s}_t) = \mathbf{h}_t(\pi_t \oplus \mathbf{s}_t) + \mathbf{e}_t, \quad \|\mathbf{e}_t\|_2 < \frac{\Delta_{\pi_t, t}}{2},$$

309 SIPIT recovers the true input sequence \mathbf{s} with probability one in at most $T|\mathcal{V}|$ steps.

310
311 *Proof in Appendix D, Thm. D.2, Prop. D.2.* \square

312 In short, SIPIT turns the almost-sure injectivity of Transformer representations into a constructive
313 procedure: not only are hidden states unique identifiers of prompts, but the exact input sequence
314 can be efficiently *recovered* in linear time, and often faster in practice. It is a structural property of
315 Transformer representations, not a quirk of initialization or training.

317
318 **4 EXPERIMENTS**

320 We previously proved that decoder-only Transformers are injective (§2) and introduced an algorithm,
321 SIPIT, that leverages this property to recover the exact input prompt from hidden states at a given
322 layer (§3). We now provide extensive empirical evidence supporting our theory by showing that
323 distinct prompts yield distinct embeddings, i.e., no collisions occur by a large margin (§4.1). We
then demonstrate that SIPIT successfully reconstructs the original input prompt (§4.2).

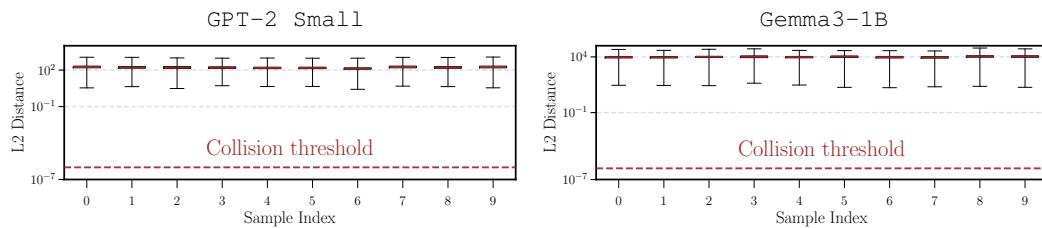


Figure 4: Exhaustive collision search on the 10 closest prefix prompts. The boxplots look flat and uneventful, and that is the point: even under stress-test conditions with billions of candidate pairs, all minima stay well above the collision threshold, showing that nothing collapses.

Environment. All experiments were run on a single NVIDIA A100-SXM (64 GB) GPU. Python 3.11, CUDA 12.2, PyTorch 2.8.0, and transformers 4.50.0 were used for all experiments. Reported runtimes refer to this setup.

4.1 SEARCHING FOR COLLISIONS

We collected 100k prompts by uniformly sampling from a mixture of four datasets: wikipedia-en⁴, C4 (Raffel et al., 2020), The Pile (Gao et al., 2020), and python-github-code⁵. For each prompt, we extracted the last-token representation and systematically checked whether any two distinct prompts produced identical embeddings. This process required around **5 billion** pairwise comparisons.

We observed **no collisions** across all models and layers: distinct prompts always yielded distinct last-token states. Figure 3 (left) shows the per-layer minimum distances for the Gemma3 pretrained (Team et al., 2025) and GPT-2 (Radford et al., 2019) families, with strictly positive values throughout. Table 1 complements this by reporting the same statistic for Llama-3.1-8B (Grattafiori et al., 2024), Mistral-7B-v0.1 (Jiang et al., 2023), Phi-4-mini-instruct (Microsoft et al., 2025) and TinyStories-33M (Eldan & Li, 2023), again showing clear separation at the first, middle, and last layers.

Finally, Figure 3 (right) zooms in on GPT-2 Small, revealing that these distances typically increase with depth. Additional results for GPT-2 Medium, GPT-2 Large and Gemma3 (1B, 4B, 12B) appear in Appendix E, confirming the same trend.

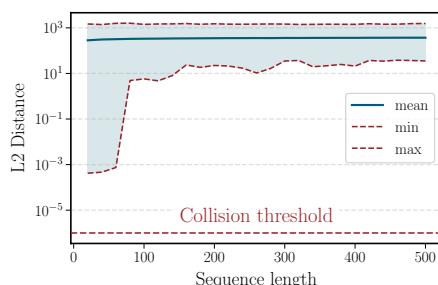


Figure 5: Sequence length vs. pairwise distance for GPT-2. Min, mean, and max distances rise at short lengths and then stabilize, indicating consistent separability.

Figure 5 shows how pairwise distances between last-token states vary with prompt length in GPT-2 Small. Three patterns emerge: (i) the *minimum* distance is never close to zero at all lengths, and (ii) it grows rapidly at short lengths but then levels off, suggesting that beyond a moderate context size, adding tokens does not affect separability; (iii) the overall spread (min-max) stays bounded, with no sign of pathological collapses. Similar behavior is seen in Gemma3 (see Appendix E, Figure 9). Overall, clear margins emerge quickly and then stabilize, making collisions unlikely at any sequence length.

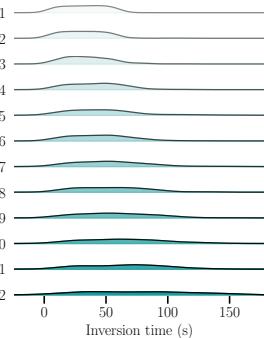
Exhaustive collision test. Different from previous experiments, in this setting (Figure 4), we restrict our analysis to the 10 prompts from the dataset mixture

⁴<https://huggingface.co/datasets/wikimedia/wikipedia>

⁵<https://huggingface.co/datasets/angie-chen55/python-github-code>

378
379
380
381
382

Model	ℓ_2 Distance (min)		
	FP4	INT8	FP32
Llama-3.1-8B	2.281	6.597	1.274
Mistral-7B-v0.1	1.748	2.692	1.136
Phi-4-mini-instruct	18.368	20.956	8.780

383
384 Table 2: **Quantized Models**: Minimum pairwise
385 distance between last-token states in the
386 final layer of three quantized models.
387388 whose embeddings have the smallest last-token distances. For each of these prompts, we appended
389 *every* vocabulary token and computed all pairwise distances between the resulting last-token states,
390 effectively performing an exhaustive search over continuations and yielding more than **343 billion**
391 prompt pairs per model.404 Figure 6: Inversion time
405 as a function of depth.
406 Runtimes rise only mildly
407 across layers.
408392 This exhaustive experiment helps rule out the possibility that earlier
393 observations were simply due to chance in random sampling rather
394 than a true absence of collisions. While a complete search over
395 all possible prompts would be ideal, it is computationally infeasible.
396 The number of unique prompts grows exponentially with sequence
397 length, and the number of pairwise comparisons grows even faster.
398 For context, even with single-token prompts and the vocabulary size of
399 Gemma3-1B, there are already over 34 trillion possible prompt pairs,
400 making exhaustive evaluation entirely impractical. Our compromise
401 still revealed structure: we identified 5 prompt pairs with highly sim-
402 ilar last-token embeddings, suggesting overlapping semantic content
403 and motivating us to ask whether distinct next tokens could preserve
404 meaning, i.e., yield essentially identical last-token hidden states.
405406 Figure 4 reports the resulting distributions as boxplots for both GPT-2
407 Small and Gemma3-1B, with distances far from zero (no collision),
408 **confirming local injectivity** as predicted by our theory.409 **FP4 and INT8 weight quantization.** To assess how weight quantization affects pairwise rep-
410 resentation distances, we conducted additional experiments with FP4 and INT8 quantization on
411 several models (Llama-3.1-8B, Phi-4-mini-instruct, and Mistral-7B-v0.1). We
412 further extended this analysis to FP4-quantized **14B** and **70B** parameter models, namely Phi-4
413 (14B) and Llama-3.1-70B. As shown in tables 2 and 3, across all tested models quantization **(1)**
414 does not introduce any collisions, **(2)** more than doubles the minimum distance between representa-
415 tions, thereby preserving the integrity of the representation space, and **(3)** maintains this separation
416 even as model size increases substantially.417

4.2 INVERTIBILITY RESULTS

418
419 We now test whether the theoretical injectivity trans-
420 lates into exact recovery on pre-trained models. Using
421 SIPIT with only the hidden states at a fixed layer, we at-
422 tempt to reconstruct the full prompt token-by-token for
423 GPT-2 Small. We sample 100 prompts, with a 90%-
424 10% split between meaningful sentences and random to-
425 ken sequences (to test robustness in unstructured cases),
426 and attempt to reconstruct them from hidden states.427 We compare against HARDPROMPTS (Wen et al., 2023),
428 which leverages gradient signals for approximate prompt discovery, and against a SIPIT ablation that
429 replaces the gradient-guided candidate policy with the **uniformly random policy** (BRUTEFORCE).430 Other inversion approaches (Morris et al., 2023a;b; Nazir et al., 2025) tackle a different setting
431 altogether: they operate in black box access, using sequences of next-token logprobs or encoder
logits rather than hidden states, and train auxiliary inverters to reconstruct text, at high computational

Model	Size	ℓ_2 Distance (min)		
		layer 1	layer $L/2$	layer L
phi-4	14B	0.010	1.025	8.759
Llama-3.1-70B	70B	0.005	0.465	3.975

383
384 Table 3: **Large Models**: Minimum pairwise
385 distance between last-token states in the first,
386 middle, and final layers of two large models.
387

Method	Mean Time (s)	Accuracy
HARDPROMPTS	6132.59 ± 104.61	0.00
BRUTEFORCE (ours)	3889.61 ± 691.17	1.00
SIPIT (ours)	28.01 ± 35.87	1.00

432 Table 4: Prompt inversion: SIPIT en-
433 sures exact recovery efficiently, unlike
434 HARDPROMPTS (no recovery) or brute
435 force (infeasible runtimes).

432	433	Model	Vocab size	Inversion Performance		
				434	Accuracy	Time (s)
435		Mistral-7B-v0.1	32000	100%	111.78 \pm 46.50	0.19 \pm 0.08 %
436		Llama-3.1-8B	128255	100%	549.48 \pm 265.75	0.21 \pm 0.10 %

437
438 Table 5: Inversion performance on FP4-quantized models with different vocabulary sizes. SIPIT re-
439 covers all tokens with 100% accuracy while exploring less than 0.22% of the vocabulary on average.
440

441 cost. Their outputs are typically approximate and not guaranteed exact. These differences make
442 them complementary but not directly comparable to our setting of training-free, *exact* inversion
443 from *hidden states* in decoder-only LMs.
444

445 Results are reported in Table 4. Across all prompts (20 tokens each), SIPIT recovers the **exact** se-
446 quence with 100% token-level accuracy (no errors, no collisions), matching the theoretical guarantee
447 of linear-time convergence.

448 In contrast, HARDPROMPTS fails to recover the true input in most cases, while BRUTEFORCE even-
449 tually succeeds but at a prohibitive computational cost, requiring several orders of magnitude longer.
450

451 **Robustness and vocabulary scaling.** The theoretical analysis in [Theorem 3.2](#) shows that our in-
452 version algorithm is robust to a certain level of noise while maintaining linear scaling in vocabulary
453 size. To empirically validate this, we use FP4-quantized versions of `Mistral-7B-v0.1` ($\approx 32K$
454 vocabulary size) and `Llama-3.1-8B` ($\approx 128K$). We sample 50 prompts (100 tokens each) and
455 attempt to reconstruct them from hidden states corrupted by FP4 weight quantization. As shown in
456 [Table 5](#), SIPIT reconstructs all inputs with perfect accuracy while exploring, on average, less than
457 0.22% of the vocabulary, demonstrating that the gradient-based heuristic is both robust to quanti-
458 zation noise and highly efficient. From a complexity perspective, the nearly constant percentage of
459 tokens explored across the two vocabulary scales empirically confirms the predicted linear scaling.
460

461 **Effect of layer depth.** Finally, Figure 6 shows inversion times by layer for longer prompts (ranging
462 from 20 to 200 tokens). Although deeper layers are costlier in principle (since verifying a candidate
463 and computing gradients require traversing more blocks), the effect is minor: runtimes rise only
464 slightly from first to last layer, and the scaling remains graceful overall. Likely, earlier layers need
465 more iterations to converge, while deep layers store richer information that reduces the search effort.
466 As a result, the net cost remains stable, confirming SIPIT is efficient across depth.

467 5 RELATED WORK

468 Our results connect to two active lines of research: theoretical analyses of Transformer architectures,
469 and inverse problems in language modeling. We briefly review both to position our contributions.
470

471 **Analytical properties of Transformers.** Viewed as functions on \mathbb{R}^d , individual Transformer
472 components are clearly non-injective: LayerNorm collapses along per-example statistics ([Ba
473 et al., 2016](#)), residual connections can cancel, and in attention-only stacks, rank decays doubly-
474 exponentially with depth ([Dong et al., 2021](#)). Likewise, on the output side, the softmax bottleneck
475 constrains the distributions reachable by language models ([Yang et al., 2018](#)). From this algebraic
476 perspective, Transformers seem inherently many-to-one, an intuition echoed by classical complete-
477 ness and universal-approximation theorems for Transformers, which show that highly many-to-one
478 maps can be represented in principle; we briefly review these results in [appendix F](#).
479

480 Our focus is different: we study the discrete-to-continuous map from *prompts* $s \in \mathcal{V}^{\leq K}$ to *hidden*
481 *states* in \mathbb{R}^d . In this setting, analytic viewpoints on Transformer computation become powerful:
482 treating each layer as a real-analytic map yields almost-sure guarantees that hold at finite width,
483 depth, and training horizon. Recent work has adopted this angle for related properties: [Jiang &
484 Haghatalab \(2025\)](#) show that building blocks of modern architectures are *almost always surjective*,
485 while [Sutter et al. \(2025\)](#) prove that Transformers at random initialization are *almost surely injective*
with respect to the entire hidden-state matrix (and only at initialization).

486 Differently, we prove injectivity with respect to the *parameters* and at the task-relevant *last-token*
 487 *state*; crucially, we show that injectivity is not an initialization artifact but *persists under training*.
 488

489 **Inverse problems in language modeling.** Inverse problems seek to recover an unknown input
 490 x from observations y produced by a forward process $y = f(x)$ (Sun et al., 2021). Within this
 491 landscape, language model inversion asks whether one can reconstruct a model’s input prompt from
 492 outputs or internal signals.

493 Several approaches have explored this idea. Output-to-prompt methods infer prompts from gener-
 494 ated continuations, yielding approximate reconstructions that are often semantically similar rather
 495 than exact (Zhang et al., 2024). Recent work by Morris and coauthors shows that model *outputs* are
 496 information-rich even in black-box settings: Morris et al. (2023b) train a separate inverter to map
 497 next-token probability vectors to text, and Nazir et al. (2025) extend this by taking sequences of
 498 logprobs, applying a linear compression to embedding dimension, and training an encoder-decoder
 499 inverter; this achieves higher exact-match rates but still without guarantees. Complementarily, Morris
 500 et al. (2023a) reconstruct text from encoder logits via a trained iterative inverter. These contribu-
 501 tions highlight privacy risks when probabilities or embeddings are exposed, but they differ from
 502 our setting: they rely on trained inverters, remain approximate, and do not invert *hidden states* of
 503 decoder-only LMs.

504 A related line of work frames the task as automated prompt optimization, casting prompt design as
 505 discrete sequence optimization aligned with downstream performance (Guo et al., 2025; Sun et al.,
 506 2022; Deng et al., 2022); methods such as AutoPrompt (Shin et al., 2020) and Hard Prompts Made
 507 Easy (Wen et al., 2023) use gradient signals to discover effective, but approximate, prompts.

508 Unlike prior work, which yields approximate reconstructions from outputs, logits, or logprobs, our
 509 approach is training-free, efficient, and comes with *provable* linear-time guarantees for *exact* recov-
 510 ery from internal states.

512 6 DISCUSSION AND CONCLUSIONS

514 This work establishes that decoder-only Transformers are almost surely injective: distinct prompts
 515 produce distinct hidden states under standard initialization and training. Building on this structural
 516 result, we introduced SIPIT, the first algorithm that can recover the *exact* input sequence from hidden
 517 activations, with provable linear-time guarantees. Together, these contributions move injectivity
 518 from an informal belief to a rigorously grounded and operational property of language models.

519 The scientific impact is clear. Our findings reconcile two competing views in the community: Trans-
 520 formers as “lossy” due to nonlinearities, normalization, and many-to-one attention, versus language
 521 models as injective in their hidden representations. We advocate viewing language models as maps
 522 on the *sequence* space rather than the embedding space; under this perspective, we prove that all
 523 information about the input sequence is almost surely preserved end-to-end. The constructive in-
 524 version offered by SIPIT strengthens this point in practice, establishing a clean baseline for inter-
 525 pretability and auditing: if probes or inversion methods fail, it is not because the information is
 526 missing. For mechanistic interpretability in particular, injectivity guarantees that last-token states
 527 faithfully encode the full input, giving a sound foundation for causal and probing analyses.

528 Beyond theory, the findings carry practical and legal implications. Hidden states are not abstractions
 529 but the prompt in disguise. Any system that stores or transmits them is effectively handling user
 530 text itself. This affects privacy, deletion, and compliance: even after prompt deletion, embeddings
 531 retain the content. Regulators have sometimes argued otherwise; for example, the Hamburg Data
 532 Protection Commissioner claimed that weights do not qualify as personal data since training exam-
 533 ples cannot be trivially reconstructed and even during inference it “remains doubtful whether any
 534 extractable data records constitute personal data”(HmbBfDI, 2024). Our results show that at infer-
 535 ence time user inputs remain fully recoverable and thus should be treated as personal data. There is
 536 no “free privacy” once data enters a Transformer.

537 Finally, this work opens several directions. Extending the analysis to multimodal architectures such
 538 as music and vision Transformers is an open problem. Studying approximate inversion under noise
 539 or quantization will clarify how robust invertibility remains in practice. Bridging these technical
 insights with evolving regulatory frameworks will be crucial for safe and responsible deployment.

540 REPRODUCIBILITY STATEMENT
541

542 We provide complete resources to ensure reproducibility of our results. The assumptions, definitions,
543 and full proofs can be found in section 2 and appendices A to D (analytic tools and model
544 specification in appendices A and B; almost-sure injectivity and preservation under training in ap-
545 pendix C; SIP-IT correctness, verifier, and margin analysis in appendix D). Implementation details
546 for SIP-IT, including pseudocode, are provided in section 3 and algorithm 1 and further elaborated
547 in appendix E. Our experimental setup (hardware and software versions) is described in section 4,
548 while dataset details and the prompt-sampling procedure for the 100k-prompt benchmark are given
549 in section 4.1. Finally, the supplementary materials include an anonymized code repository with
550 end-to-end scripts, fixed seeds, configuration files, and a comprehensive README with step-by-
551 step reproduction instructions.

552 REFERENCES
553

554 W. E. Aitken. General topology. part 4: Metric spaces, 2020. URL https://public.csusm.edu/aitken_html/Essays/Topology/metric_spaces.pdf. 24

555 Shane Arora, Hazel Browne, and Daniel Daners. An alternative approach to fréchet derivatives.
556 *Journal of the Australian Mathematical Society*, 111(2):202–220, 2021. 23

557 Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E. Hinton. Layer normalization. *arXiv preprint*
558 *arXiv:1607.06450*, 2016. URL <https://arxiv.org/abs/1607.06450>. 9

559 José E Chacón and Tarn Duong. Higher order differential analysis with vectorized derivatives. *arXiv*
560 *preprint arXiv:2011.01833*, 2020. 18

561 Mingkai Deng, Jianyu Wang, Cheng-Ping Hsieh, Yihan Wang, Han Guo, Tianmin Shu, Meng Song,
562 Eric P. Xing, and Zhiting Hu. Rlprompt: Optimizing discrete text prompts with reinforcement
563 learning, 2022. URL <https://arxiv.org/abs/2205.12548>. 10

564 Yihe Dong, Jean-Baptiste Cordonnier, and Andreas Loukas. Attention is not all you need: Pure
565 attention loses rank doubly exponentially with depth. In *Proceedings of the 38th International*
566 *Conference on Machine Learning (ICML)*, volume 139 of *Proceedings of Machine Learning Re-*
567 *search*, 2021. URL <https://proceedings.mlr.press/v139/dong21a.html>. 9

568 Ronen Eldan and Yuanzhi Li. Tinystories: How small can language models be and still speak
569 coherent english?, 2023. URL <https://arxiv.org/abs/2305.07759>. 7

570 Gerald B Folland. *Real analysis*. Pure and Applied Mathematics: A Wiley Series of Texts, Mono-
571 graphs and Tracts. John Wiley & Sons, Nashville, TN, 2 edition, March 1999. 24, 38

572 Leo Gao, Stella Biderman, Sid Black, Laurence Golding, Travis Hoppe, Charles Foster, Jason
573 Phang, Horace He, Anish Thite, Noa Nabeshima, Shawn Presser, and Connor Leahy. The pile:
574 An 800gb dataset of diverse text for language modeling, 2020. URL <https://arxiv.org/abs/2101.00027>. 7

575 Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad
576 Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, Amy Yang, Angela Fan,
577 Anirudh Goyal, Anthony Hartshorn, Aobo Yang, Archi Mitra, Archie Sravankumar, Artem Ko-
578 rennev, Arthur Hinsvark, Arun Rao, Aston Zhang, Aurelien Rodriguez, Austen Gregerson, Ava
579 Spataru, Baptiste Roziere, Bethany Biron, Bin Tang, Bobbie Chern, Charlotte Caucheteux,
580 Chaya Nayak, Chloe Bi, Chris Marra, Chris McConnell, Christian Keller, Christophe Touret,
581 Chunyang Wu, Corinne Wong, Cristian Canton Ferrer, Cyrus Nikolaidis, Damien Allonsius,
582 Daniel Song, Danielle Pintz, Danny Livshits, Danny Wyatt, David Esiobu, Dhruv Choudhary,
583 Dhruv Mahajan, Diego Garcia-Olano, Diego Perino, Dieuwke Hupkes, Egor Lakomkin, Ehab
584 AlBadawy, Elina Lobanova, Emily Dinan, Eric Michael Smith, Filip Radenovic, Francisco
585 Guzmán, Frank Zhang, Gabriel Synnaeve, Gabrielle Lee, Georgia Lewis Anderson, Govind That-
586 tai, Graeme Nail, Gregoire Mialon, Guan Pang, Guillem Cucurell, Hailey Nguyen, Hannah Kore-
587 vaar, Hu Xu, Hugo Touvron, Iliyan Zarov, Imanol Arrieta Ibarra, Isabel Kloumann, Ishan Misra,

594 Ivan Evtimov, Jack Zhang, Jade Copet, Jaewon Lee, Jan Geffert, Jana Vranes, Jason Park, Jay Ma-
 595 hadeokar, Jeet Shah, Jelmer van der Linde, Jennifer Billock, Jenny Hong, Jenya Lee, Jeremy Fu,
 596 Jianfeng Chi, Jianyu Huang, Jiawen Liu, Jie Wang, Jiecao Yu, Joanna Bitton, Joe Spisak, Jong-
 597 so Park, Joseph Rocca, Joshua Johnstun, Joshua Saxe, Junteng Jia, Kalyan Vasudevan Alwala,
 598 Karthik Prasad, Kartikeya Upasani, Kate Plawiak, Ke Li, Kenneth Heafield, Kevin Stone, Khalid
 599 El-Arini, Krithika Iyer, Kshitiz Malik, Kuenley Chiu, Kunal Bhalla, Kushal Lakhotia, Lauren
 600 Rantala-Yearly, Laurens van der Maaten, Lawrence Chen, Liang Tan, Liz Jenkins, Louis Martin,
 601 Lovish Madaan, Lubo Malo, Lukas Blecher, Lukas Landzaat, Luke de Oliveira, Madeline Muzzi,
 602 Mahesh Pasupuleti, Mannat Singh, Manohar Paluri, Marcin Kardas, Maria Tsimpoukelli, Mathew
 603 Oldham, Mathieu Rita, Maya Pavlova, Melanie Kambadur, Mike Lewis, Min Si, Mitesh Ku-
 604 mar Singh, Mona Hassan, Naman Goyal, Narjes Torabi, Nikolay Bashlykov, Nikolay Bogoy-
 605 chev, Niladri Chatterji, Ning Zhang, Olivier Duchenne, Onur Çelebi, Patrick Alrassy, Pengchuan
 606 Zhang, Pengwei Li, Petar Vasic, Peter Weng, Prajjwal Bhargava, Pratik Dubal, Praveen Krishnan,
 607 Punit Singh Koura, Puxin Xu, Qing He, Qingxiao Dong, Ragavan Srinivasan, Raj Ganapathy, Ra-
 608 mon Calderer, Ricardo Silveira Cabral, Robert Stojnic, Roberta Raileanu, Rohan Maheswari, Ro-
 609 hit Girdhar, Rohit Patel, Romain Sauvestre, Ronnie Polidoro, Roshan Sumbaly, Ross Taylor, Ruan
 610 Silva, Rui Hou, Rui Wang, Saghar Hosseini, Sahana Chennabasappa, Sanjay Singh, Sean Bell,
 611 Seohyun Sonia Kim, Sergey Edunov, Shaoliang Nie, Sharan Narang, Sharath Raparth, Sheng
 612 Shen, Shengye Wan, Shruti Bhosale, Shun Zhang, Simon Vandenhende, Soumya Batra, Spencer
 613 Whitman, Sten Sootla, Stephane Collot, Suchin Gururangan, Sydney Borodinsky, Tamar Herman,
 614 Tara Fowler, Tarek Sheasha, Thomas Georgiou, Thomas Scialom, Tobias Speckbacher, Todor Mi-
 615 haylov, Tong Xiao, Ujjwal Karn, Vedanuj Goswami, Vibhor Gupta, Vignesh Ramanathan, Viktor
 616 Kerkez, Vincent Gonguet, Virginie Do, Vish Vogeti, Vitor Albiero, Vladan Petrovic, Weiwei
 617 Chu, Wenhan Xiong, Wenyin Fu, Whitney Meers, Xavier Martinet, Xiaodong Wang, Xiaofang
 618 Wang, Xiaoqing Ellen Tan, Xide Xia, Xinfeng Xie, Xuchao Jia, Xuwei Wang, Yaelle Gold-
 619 schlag, Yashesh Gaur, Yasmine Babaei, Yi Wen, Yiwen Song, Yuchen Zhang, Yue Li, Yuning
 620 Mao, Zacharie Delpierre Coudert, Zheng Yan, Zhengxing Chen, Zoe Papakipos, Aaditya Singh,
 621 Aayushi Srivastava, Abha Jain, Adam Kelsey, Adam Shajnfeld, Adithya Gangidi, Adolfo Victoria,
 622 Ahuva Goldstand, Ajay Menon, Ajay Sharma, Alex Boesenberg, Alexei Baevski, Allie Feinstein,
 623 Amanda Kallet, Amit Sangani, Amos Teo, Anam Yunus, Andrei Lupu, Andres Alvarado, An-
 624 drew Caples, Andrew Gu, Andrew Ho, Andrew Poulton, Andrew Ryan, Ankit Ramchandani, An-
 625 nie Dong, Annie Franco, Anuj Goyal, Aparajita Saraf, Arkabandhu Chowdhury, Ashley Gabriel,
 626 Ashwin Bharambe, Assaf Eisenman, Azadeh Yazdan, Beau James, Ben Maurer, Benjamin Leon-
 627 hardi, Bernie Huang, Beth Loyd, Beto De Paola, Bhargavi Paranjape, Bing Liu, Bo Wu, Boyu
 628 Ni, Braden Hancock, Bram Wasti, Brandon Spence, Brani Stojkovic, Brian Gamido, Britt Mon-
 629 talvo, Carl Parker, Carly Burton, Catalina Mejia, Ce Liu, Changhan Wang, Changkyu Kim, Chao
 630 Zhou, Chester Hu, Ching-Hsiang Chu, Chris Cai, Chris Tindal, Christoph Feichtenhofer, Cynthia
 631 Gao, Damon Civin, Dana Beaty, Daniel Kreymer, Daniel Li, David Adkins, David Xu, Davide
 632 Testuggine, Delia David, Devi Parikh, Diana Liskovich, Didem Foss, Dingkang Wang, Duc Le,
 633 Dustin Holland, Edward Dowling, Eissa Jamil, Elaine Montgomery, Eleonora Presani, Emily
 634 Hahn, Emily Wood, Eric-Tuan Le, Erik Brinkman, Esteban Arcaute, Evan Dunbar, Evan Smo-
 635 thers, Fei Sun, Felix Kreuk, Feng Tian, Filippos Kokkinos, Firat Ozgenel, Francesco Caggioni,
 636 Frank Kanayet, Frank Seide, Gabriela Medina Florez, Gabriella Schwarz, Gada Badeer, Georgia
 637 Swee, Gil Halpern, Grant Herman, Grigory Sizov, Guangyi, Zhang, Guna Lakshminarayanan,
 638 Hakan Inan, Hamid Shojanazeri, Han Zou, Hannah Wang, Hanwen Zha, Haroun Habeeb, Harri-
 639 son Rudolph, Helen Suk, Henry Aspegren, Hunter Goldman, Hongyuan Zhan, Ibrahim Damlaj,
 640 Igor Molybog, Igor Tufanov, Ilias Leontiadis, Irina-Elena Veliche, Itai Gat, Jake Weissman, James
 641 Geboski, James Kohli, Janice Lam, Japhet Asher, Jean-Baptiste Gaya, Jeff Marcus, Jeff Tang, Jen-
 642 nifer Chan, Jenny Zhen, Jeremy Reizenstein, Jeremy Teboul, Jessica Zhong, Jian Jin, Jingyi Yang,
 643 Joe Cummings, Jon Carvill, Jon Shepard, Jonathan McPhie, Jonathan Torres, Josh Ginsburg, Jun-
 644 jie Wang, Kai Wu, Kam Hou U, Karan Saxena, Kartikay Khandelwal, Katayoun Zand, Kathy
 645 Matosich, Kaushik Veeraraghavan, Kelly Michelena, Keqian Li, Kiran Jagadeesh, Kun Huang,
 646 Kunal Chawla, Kyle Huang, Lailin Chen, Lakshya Garg, Lavender A, Leandro Silva, Lee Bell,
 647 Lei Zhang, Liangpeng Guo, Licheng Yu, Liron Moshkovich, Luca Wehrstedt, Madian Khabsa,
 Manav Avalani, Manish Bhatt, Martynas Mankus, Matan Hasson, Matthew Lennie, Matthias
 Reso, Maxim Groshev, Maxim Naumov, Maya Lathi, Meghan Keneally, Miao Liu, Michael L.
 Seltzer, Michal Valko, Michelle Restrepo, Mihir Patel, Mik Vyatskov, Mikayel Samvelyan, Mike
 Clark, Mike Macey, Mike Wang, Miquel Jubert Hermoso, Mo Metanat, Mohammad Rastegari,
 Munish Bansal, Nandhini Santhanam, Natascha Parks, Natasha White, Navyata Bawa, Nayan

648 Singhal, Nick Egebo, Nicolas Usunier, Nikhil Mehta, Nikolay Pavlovich Laptev, Ning Dong,
 649 Norman Cheng, Oleg Chernoguz, Olivia Hart, Omkar Salpekar, Ozlem Kalinli, Parkin Kent,
 650 Parth Parekh, Paul Saab, Pavan Balaji, Pedro Rittner, Philip Bontrager, Pierre Roux, Piotr Dollar,
 651 Polina Zvyagina, Prashant Ratanchandani, Pritish Yuvraj, Qian Liang, Rachad Alao, Rachel Ro-
 652 driguez, Rafi Ayub, Raghotham Murthy, Raghu Nayani, Rahul Mitra, Rangaprabhu Parthasarathy,
 653 Raymond Li, Rebekkah Hogan, Robin Battey, Rocky Wang, Russ Howes, Ruty Rinott, Sachin
 654 Mehta, Sachin Siby, Sai Jayesh Bondu, Samyak Datta, Sara Chugh, Sara Hunt, Sargun Dhillon,
 655 Sasha Sidorov, Satadru Pan, Saurabh Mahajan, Saurabh Verma, Seiji Yamamoto, Sharadh Ra-
 656 maswamy, Shaun Lindsay, Shaun Lindsay, Sheng Feng, Shenghao Lin, Shengxin Cindy Zha,
 657 Shishir Patil, Shiva Shankar, Shuqiang Zhang, Shuqiang Zhang, Sinong Wang, Sneha Agarwal,
 658 Soji Sajuyigbe, Soumith Chintala, Stephanie Max, Stephen Chen, Steve Kehoe, Steve Satter-
 659 field, Sudarshan Govindaprasad, Sumit Gupta, Summer Deng, Sungmin Cho, Sunny Virk, Suraj
 660 Subramanian, Sy Choudhury, Sydney Goldman, Tal Remez, Tamar Glaser, Tamara Best, Thilo
 661 Koehler, Thomas Robinson, Tianhe Li, Tianjun Zhang, Tim Matthews, Timothy Chou, Tzook
 662 Shaked, Varun Vontimitta, Victoria Ajayi, Victoria Montanez, Vijai Mohan, Vinay Satish Ku-
 663 mar, Vishal Mangla, Vlad Ionescu, Vlad Poenaru, Vlad Tiberiu Mihailescu, Vladimir Ivanov,
 664 Wei Li, Wencheng Wang, Wenwen Jiang, Wes Bouaziz, Will Constable, Xiaocheng Tang, Xiao-
 665 jian Wu, Xiaolan Wang, Xilun Wu, Xinbo Gao, Yaniv Kleinman, Yanjun Chen, Ye Hu, Ye Jia,
 666 Ye Qi, Yenda Li, Yilin Zhang, Ying Zhang, Yossi Adi, Youngjin Nam, Yu, Wang, Yu Zhao,
 667 Yuchen Hao, Yundi Qian, Yunlu Li, Yuzi He, Zach Rait, Zachary DeVito, Zef Rosnbrick, Zhao-
 668 duo Wen, Zhenyu Yang, Zhiwei Zhao, and Zhiyu Ma. The llama 3 herd of models, 2024. URL
<https://arxiv.org/abs/2407.21783>. 7

669 Qingyan Guo, Rui Wang, Junliang Guo, Bei Li, Kaitao Song, Xu Tan, Guoqing Liu, Jiang Bian, and
 670 Yujiu Yang. Evoprompt: Connecting llms with evolutionary algorithms yields powerful prompt
 671 optimizers, 2025. URL <https://arxiv.org/abs/2309.08532>. 10

672 Harold V Henderson and Shayle R Searle. The vec-permutation matrix, the vec operator and kro-
 673 necker products: A review. *Linear and multilinear algebra*, 9(4):271–288, 1981. 18, 35

674 HmbBfDI. Discussion paper: Large language models and personal data, 2024. URL
https://datenschutz-hamburg.de/fileadmin/user_upload/HmbBfDI/Datenschutz/Informationen/240715_Discussion_Paper_Hamburg_DPA_KI_Models.pdf. 10

675 Roger A. Horn and Charles R. Johnson. *Matrix Analysis*. Cambridge University Press, Cambridge,
 676 2 edition, 2013. 34

677 Albert Q. Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chap-
 678 lot, Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier,
 679 Lélio Renard Lavaud, Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Thibaut Lavril,
 680 Thomas Wang, Timothée Lacroix, and William El Sayed. Mistral 7b, 2023. URL <https://arxiv.org/abs/2310.06825>. 7

681 Haozhe Jiang and Nika Haghtalab. On surjectivity of neural networks: Can you elicit any behavior
 682 from your model? *arXiv preprint arXiv:2508.19445*, 2025. URL <https://arxiv.org/abs/2508.19445>. 9

683 Tamara G. Kolda and Brett W. Bader. Tensor decompositions and applications. *SIAM Review*,
 684 51(3):455–500, 2009. doi: 10.1137/07070111X. URL <https://doi.org/10.1137/07070111X>. 16

685 Steven G Krantz and Harold R Parks. *A primer of real analytic functions*. Springer Science &
 686 Business Media, 2002. 21

687 Andrew D. Lewis. Chapter 1: Holomorphic and real analytic calculus. Notes on Global Analysis,
 688 Vol. 1, Queen’s University, February 2014. URL <https://mast.queensu.ca/~andrew/teaching/math942/pdf/1chapter1.pdf>. Version: 2014-02-28. 17, 18, 37

689 David G. Luenberger. *Optimization by vector space methods*. Wiley-Interscience, 1997. 23

690 Jan R. Magnus and Heinz Neudecker. *Matrix differential calculus with applications in statistics and
 691 Econometrics*. John Wiley & Sons, Inc, 2019. 23, 33

702 Microsoft, :, Abdelrahman Abouelenin, Atabak Ashfaq, Adam Atkinson, Hany Awadalla, Nguyen
 703 Bach, Jianmin Bao, Alon Benhaim, Martin Cai, Vishrav Chaudhary, Congcong Chen, Dong Chen,
 704 Dongdong Chen, Junkun Chen, Weizhu Chen, Yen-Chun Chen, Yi ling Chen, Qi Dai, Xiyang Dai,
 705 Ruchao Fan, Mei Gao, Min Gao, Amit Garg, Abhishek Goswami, Junheng Hao, Amr Hendy,
 706 Yuxuan Hu, Xin Jin, Mahmoud Khademi, Dongwoo Kim, Young Jin Kim, Gina Lee, Jinyu Li,
 707 Yunsheng Li, Chen Liang, Xihui Lin, Zeqi Lin, Mengchen Liu, Yang Liu, Gilsinia Lopez, Chong
 708 Luo, Piyush Madan, Vadim Mazalov, Arindam Mitra, Ali Mousavi, Anh Nguyen, Jing Pan, Daniel
 709 Perez-Becker, Jacob Platin, Thomas Portet, Kai Qiu, Bo Ren, Liliang Ren, Sambuddha Roy,
 710 Ning Shang, Yelong Shen, Saksham Singhal, Subhajit Som, Xia Song, Tetyana Sych, Praneetha
 711 Vaddamanu, Shuohang Wang, Yiming Wang, Zhenghao Wang, Haibin Wu, Haoran Xu, Weijian
 712 Xu, Yifan Yang, Ziyi Yang, Donghan Yu, Ishmam Zabir, Jianwen Zhang, Li Lyra Zhang, Yunan
 713 Zhang, and Xiren Zhou. Phi-4-mini technical report: Compact yet powerful multimodal language
 714 models via mixture-of-loras, 2025. URL <https://arxiv.org/abs/2503.01743>. 7

715 Boris Mityagin. The zero set of a real analytic function. *arXiv preprint arXiv:1512.07276*, 2015. 18

716 John X. Morris, Volodymyr Kuleshov, Vitaly Shmatikov, and Alexander M. Rush. Text embeddings
 717 reveal (almost) as much as text, 2023a. URL <https://arxiv.org/abs/2310.06816>. 8,
 718 10

720 John X. Morris, Wenting Zhao, Justin T. Chiu, Vitaly Shmatikov, and Alexander M. Rush. Language
 721 model inversion, 2023b. URL <https://arxiv.org/abs/2311.13647>. 8, 10

722 James R. Munkres. *Topology*. Prentice Hall, Upper Saddle River, NJ, 2 edition, 2000. 23, 24

724 Murtaza Nazir, Matthew Finlayson, John X. Morris, Xiang Ren, and Swabha Swayamdipta. Better
 725 language model inversion by compactly representing next-token distributions, 2025. URL
 726 <https://arxiv.org/abs/2506.17090>. 8, 10

728 Jorge Pérez, Javier Marinković, and Pablo Barceló. On the turing completeness of modern neural
 729 network architectures. In *International Conference on Learning Representations*, 2019. URL
 730 <https://openreview.net/forum?id=HyGBdo0qFm>. 55

731 Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever.
 732 Language models are unsupervised multitask learners. 2019. URL <https://api.semanticscholar.org/CorpusID:160025533>. 7, 48

735 Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
 736 Zhou, Wei Li, and Peter J. Liu. Exploring the limits of transfer learning with a unified text-to-
 737 text transformer. *Journal of Machine Learning Research*, 21(140):1–67, 2020. URL <http://jmlr.org/papers/v21/20-074.html>. 7

739 Anton Razzhigaev, Matvey Mikhalkhuk, Elizaveta Goncharova, Ivan Oseledets, Denis Dimitrov, and
 740 Andrey Kuznetsov. The shape of learning: Anisotropy and intrinsic dimensions in transformer-
 741 based models, 2024. URL <https://arxiv.org/abs/2311.05928>. 51

743 Anton Razzhigaev, Matvey Mikhalkhuk, Temurbek Rahmatullaev, Elizaveta Goncharova, Polina
 744 Druzhinina, Ivan Oseledets, and Andrey Kuznetsov. Llm-microscope: Uncovering the hidden
 745 role of punctuation in context memory of transformers, 2025. URL <https://arxiv.org/abs/2502.15007>. 51

747 Walter Rudin. *Principles of Mathematical Analysis*. McGraw–Hill, New York, 3 edition, 1976. 24,
 748 38, 54

750 Taylor Shin, Yasaman Razeghi, Robert L. Logan IV, Eric Wallace, and Sameer Singh. Autoprompt:
 751 Eliciting knowledge from language models with automatically generated prompts, 2020. URL
 752 <https://arxiv.org/abs/2010.15980>. 10

753 Ravid Shwartz-Ziv and Naftali Tishby. Opening the black box of deep neural networks via informa-
 754 tion, 2017. URL <https://arxiv.org/abs/1703.00810>. 52

755 Michael Spivak. *Calculus on manifolds*. Westview Press, Philadelphia, PA, January 1971. 24

756 Tianxiang Sun, Yunfan Shao, Hong Qian, Xuanjing Huang, and Xipeng Qiu. Black-box tuning for
 757 language-model-as-a-service, 2022. URL <https://arxiv.org/abs/2201.03514>. 10
 758

759 Zhaodong Sun, Fabian Latorre, Thomas Sanchez, and Volkan Cevher. A plug-and-play deep im-
 760 age prior. In *ICASSP 2021 - 2021 IEEE International Conference on Acoustics, Speech and*
 761 *Signal Processing (ICASSP)*, pp. 8103–8107. IEEE, June 2021. doi: 10.1109/icassp39728.2021.
 762 9414879. URL <http://dx.doi.org/10.1109/ICASSP39728.2021.9414879>. 10

763 Zhiqing Sun and Yiming Yang. An em approach to non-autoregressive conditional sequence gen-
 764 eration. In *International Conference on Machine Learning*, 2020. URL <https://api.semanticscholar.org/CorpusID:220265867>. 55

765

766 Denis Sutter, Julian Minder, Thomas Hofmann, and Tiago Pimentel. The non-linear representation
 767 dilemma: Is causal abstraction enough for mechanistic interpretability?, 2025. URL <https://arxiv.org/abs/2507.08802>. 9, 32

768

769 Gemma Team, Aishwarya Kamath, Johan Ferret, Shreya Pathak, Nino Vieillard, Ramona Merhej,
 770 Sarah Perrin, Tatiana Matejovicova, Alexandre Ramé, Morgane Rivière, Louis Rouillard, Thomas
 771 Mesnard, Geoffrey Cideron, Jean bastien Grill, Sabela Ramos, Edouard Yvinec, Michelle Cas-
 772 bon, Etienne Pot, Ivo Penchev, Gaël Liu, Francesco Visin, Kathleen Kenealy, Lucas Beyer, Xi-
 773 aohai Zhai, Anton Tsitsulin, Robert Busa-Fekete, Alex Feng, Noveen Sachdeva, Benjamin Cole-
 774 man, Yi Gao, Basil Mustafa, Iain Barr, Emilio Parisotto, David Tian, Matan Eyal, Colin Cherry,
 775 Jan-Thorsten Peter, Danila Sinopalnikov, Surya Bhupatiraju, Rishabh Agarwal, Mehran Kazemi,
 776 Dan Malkin, Ravin Kumar, David Vilar, Idan Brusilovsky, Jiaming Luo, Andreas Steiner, Abe
 777 Friesen, Abhanshu Sharma, Abheesh Sharma, Adi Mayrav Gilady, Adrian Goedeckemeyer, Alaa
 778 Saade, Alex Feng, Alexander Kolesnikov, Alexei Bendebury, Alvin Abdagic, Amit Vadi, András
 779 György, André Susano Pinto, Anil Das, Ankur Bapna, Antoine Miech, Antoine Yang, Antonia
 780 Paterson, Ashish Shenoy, Ayan Chakrabarti, Bilal Piot, Bo Wu, Bobak Shahriari, Bryce Petrini,
 781 Charlie Chen, Charline Le Lan, Christopher A. Choquette-Choo, CJ Carey, Cormac Brick, Daniel
 782 Deutsch, Danielle Eisenbud, Dee Cattle, Derek Cheng, Dimitris Paparas, Divyashree Shivaku-
 783 mar Sreepathihalli, Doug Reid, Dustin Tran, Dustin Zelle, Eric Noland, Erwin Huizenga, Eu-
 784 gene Kharitonov, Frederick Liu, Gagik Amirkhanyan, Glenn Cameron, Hadi Hashemi, Hanna
 785 Klimczak-Plucińska, Harman Singh, Harsh Mehta, Harshal Tushar Lehri, Hussein Hazimeh, Ian
 786 Ballantyne, Idan Szpektor, Ivan Nardini, Jean Pouget-Abadie, Jetha Chan, Joe Stanton, John Wi-
 787 eting, Jonathan Lai, Jordi Orbay, Joseph Fernandez, Josh Newlan, Ju yeong Ji, Jyotinder Singh,
 788 Kat Black, Kathy Yu, Kevin Hui, Kiran Vodrahalli, Klaus Greff, Linhai Qiu, Marcella Valentine,
 789 Marina Coelho, Marvin Ritter, Matt Hoffman, Matthew Watson, Mayank Chaturvedi, Michael
 790 Moynihan, Min Ma, Nabila Babar, Natasha Noy, Nathan Byrd, Nick Roy, Nikola Momchev, Ni-
 791 lay Chauhan, Noveen Sachdeva, Oskar Bunyan, Pankil Botarda, Paul Caron, Paul Kishan Ruben-
 792 stein, Phil Culliton, Philipp Schmid, Pier Giuseppe Sessa, Pingmei Xu, Piotr Stanczyk, Pouya
 793 Tafti, Rakesh Shivanna, Renjie Wu, Renke Pan, Reza Rokni, Rob Willoughby, Rohith Vallu,
 794 Ryan Mullins, Sammy Jerome, Sara Smoot, Sertan Girgin, Shariq Iqbal, Shashir Reddy, Shruti
 795 Sheth, Siim Pöder, Sijal Bhatnagar, Sindhu Raghuram Panyam, Sivan Eiger, Susan Zhang, Tianqi
 796 Liu, Trevor Yacovone, Tyler Liechty, Uday Kalra, Utku Evcı, Vedant Misra, Vincent Roseberry,
 797 Vlad Feinberg, Vlad Kolesnikov, Woohyun Han, Woosuk Kwon, Xi Chen, Yinlam Chow, Yuvein
 798 Zhu, Zichuan Wei, Zoltan Egyed, Victor Cotruta, Minh Giang, Phoebe Kirk, Anand Rao, Kat
 799 Black, Nabila Babar, Jessica Lo, Erica Moreira, Luiz Gustavo Martins, Omar Sanseviero, Lucas
 800 Gonzalez, Zach Gleicher, Tris Warkentin, Vahab Mirrokni, Evan Senter, Eli Collins, Joelle Bar-
 801 rral, Zoubin Ghahramani, Raia Hadsell, Yossi Matias, D. Sculley, Slav Petrov, Noah Fiedel, Noam
 802 Shazeer, Oriol Vinyals, Jeff Dean, Demis Hassabis, Koray Kavukcuoglu, Clement Farabet, Elena
 803 Buchatskaya, Jean-Baptiste Alayrac, Rohan Anil, Dmitry Lepikhin, Sebastian Borgeaud, Olivier
 804 Bachem, Armand Joulin, Alek Andreev, Cassidy Hardin, Robert Dadashi, and Léonard Hussenot.
 805 Gemma 3 technical report, 2025. URL <https://arxiv.org/abs/2503.19786>. 7

806

807 Yuxin Wen, Neel Jain, John Kirchenbauer, Micah Goldblum, Jonas Geiping, and Tom Goldstein.
 808 Hard prompts made easy: Gradient-based discrete optimization for prompt tuning and discovery,
 809 2023. URL <https://arxiv.org/abs/2302.03668>. 8, 10, 47

810

811 Zhilin Yang, Zihang Dai, Ruslan Salakhutdinov, and William W. Cohen. Breaking the softmax
 812 bottleneck: A high-rank rnn language model. In *International Conference on Learning Represen-
 813 tations (ICLR)*, 2018. URL <https://arxiv.org/abs/1711.03953>. 9

810 Chulhee Yun, Srinadh Bhojanapalli, Ankit Singh Rawat, Sashank Reddi, and Sanjiv Kumar. Are
 811 transformers universal approximators of sequence-to-sequence functions? In *International Con-*
 812 *ference on Learning Representations*, 2020. URL [https://openreview.net/forum?](https://openreview.net/forum?id=ByxRM0Ntv)
 813 [id=ByxRM0Ntv](https://openreview.net/forum?id=ByxRM0Ntv). 55

814 Collin Zhang, John X. Morris, and Vitaly Shmatikov. Extracting prompts by inverting llm outputs,
 815 2024. URL <https://arxiv.org/abs/2405.15012>. 10

818 A PRELIMINARIES

820 This section fixes notation the notation used throughout the main paper and the appendix (subsection
 821 A.1), and it introduces *real-analyticity* as the organizing theme (subsection A.2). We first review
 822 the vector-space notion and its basic closure/composition properties (subsubsection A.2.1), together
 823 with a zero-set principle used in measure-zero arguments. We then extend these ideas to maps
 824 between matrix spaces (subsubsection A.2.2) via vectorization/matrixization and note that analytic-
 825 ity is preserved under matrix compositions. To streamline later proofs, we summarize real-analytic
 826 building blocks commonly used in transformer layers—polynomials, exponential/logarithm, softmax,
 827 row normalization, matrix products, Hadamard scaling, and stacking (subsubsection A.2.3). Finally,
 828 in subsection A.3, we collect differential and topological tools—Fréchet derivatives and the Hessian,
 829 standard facts on \mathbb{R}^p , the inverse function theorem, and pushforwards/absolute continuity—which
 830 we use for local invertibility and absolute-continuity arguments. Readers already comfortable with
 831 these topics can skim now and return to specific subsections as needed.

832 A.1 NOTATION

834 For arbitrary $T \in \mathbb{N}$, we write $[T] = \{1, 2, \dots, T\}$ to denote the set of positive integers up to T .
 835 Additionally, we denote the strictly positive real numbers as $\mathbb{R}^+ = (0, \infty)$ and the non-negative real
 836 numbers as $\mathbb{R}_0^+ = [0, \infty)$. Similarly, we let $\mathbb{N}_0 = \mathbb{N} \cup \{0\}$.

838 Discrete sets are denoted by uppercase calligraphic letters \mathcal{V} , and a sequence of length K is denoted
 839 by lowercase letters: $s = \langle s_1, \dots, s_K \rangle \in \mathcal{V}^K$. We write $|s| = K$ to denote the length of the
 840 sequence. The set of non-empty sequences of length at most K is denoted as $\mathcal{V}^{\leq K} = \bigcup_{k=1}^K \mathcal{V}^k$.
 841 Non-discrete sets are denoted by uppercase calligraphic bold-face letters \mathcal{B} .

842 **Remark 1.** We will often refer to a discrete set \mathcal{V} as the vocabulary and to an element $s \in \mathcal{V}^{\leq K}$ as
 843 an input, context, or prompt.

844 Matrices (vectors) are denoted by uppercase (lowercase) bold-face letters: $\mathbf{X} \in \mathbb{R}^{d_1 \times d_2}$ ($\mathbf{x} \in \mathbb{R}^d$).
 845 For vectors and matrices, we frequently use standard norms and common matrix operations. The
 846 Hadamard and Kronecker products are defined following Kolda & Bader (2009):

- 847 • **p-norm:** For a vector $\mathbf{x} \in \mathbb{R}^d$, the ℓ_p norm is defined as

$$849 \quad \|\mathbf{x}\|_p = \left(\sum_{i=1}^d |\mathbf{x}_i|^p \right)^{\frac{1}{p}}.$$

- 850 • **Frobenius norm:** For a matrix $\mathbf{X} \in \mathbb{R}^{d_1 \times d_2}$, the Frobenius norm is defined as

$$855 \quad \|\mathbf{X}\|_F = \sqrt{\text{tr}(\mathbf{X}\mathbf{X}^\top)} = \sqrt{\sum_{i=1}^{d_1} \sum_{j=1}^{d_2} \mathbf{X}_{ij}^2}.$$

- 856 • **Hadamard product:** The Hadamard (element-wise) product is defined for vectors and matrices
 857 of the same shape:

$$861 \quad (\mathbf{x} \odot \mathbf{y})_i = \mathbf{x}_i \mathbf{y}_i, \quad \text{for all } i \in [d],$$

$$862 \quad (\mathbf{X} \odot \mathbf{Y})_{ij} = \mathbf{X}_{ij} \mathbf{Y}_{ij}, \quad \text{for all } i \in [d_1], j \in [d_2],$$

863 where $\mathbf{x}, \mathbf{y} \in \mathbb{R}^d$ and $\mathbf{X}, \mathbf{Y} \in \mathbb{R}^{d_1 \times d_2}$.

864 • **Kronecker product:** The Kronecker product of $\mathbf{X} \in \mathbb{R}^{d_1 \times d_2}$ and $\mathbf{Z} \in \mathbb{R}^{d_3 \times d_4}$ is denoted $\mathbf{X} \otimes \mathbf{Z}$
 865 and defined blockwise as

$$866 \quad \mathbf{X} \otimes \mathbf{Z} = \begin{bmatrix} \mathbf{X}_{11}\mathbf{Z} & \cdots & \mathbf{X}_{1d_2}\mathbf{Z} \\ \vdots & \ddots & \vdots \\ \mathbf{X}_{d_11}\mathbf{Z} & \cdots & \mathbf{X}_{d_1d_2}\mathbf{Z} \end{bmatrix} \in \mathbb{R}^{(d_1d_3) \times (d_2d_4)}.$$

$$867$$

$$868$$

$$869$$

$$870$$

871 We denote the all-zeros matrix of size $m \times n$ as $\mathbf{0}_{m \times n}$, and the all-zeros vector of length m as $\mathbf{0}_m$.
 872 Similarly, we write $\mathbf{1}_m$ for the all-ones vector of length m , and \mathbf{I}_m (or $\mathbf{I}_{m \times m}$ when dimensions must
 873 be explicit) for the $m \times m$ identity matrix.

874 Let $f : \mathcal{V}^{\leq K} \times \mathbb{R}^p \rightarrow \mathbb{R}^d$ be a function over a finite vocabulary \mathcal{V} and $K \in \mathbb{N}$. We refer to f as the
 875 *model*, to its first argument as the *input sequence*, and to its second argument as the *parameters*.

876 **Remark 2.** *Throughout our analysis, we assume a finite set of possible input sequences, reflecting
 877 the practical limitations and design choices of modern LLMs, specifically the bounded context
 878 length.*

879 **Remark 3.** *We take the codomain of the model to be \mathbb{R}^d , corresponding to the space of token
 880 embeddings. This allows us to study how the final embedding (typically used to compute next-token
 881 probabilities) depends on both the input sequence and the model parameters.*

883 A.2 REAL-ANALYTICITY

885 We now introduce the central notion for our analysis: real-analyticity. In its standard form, real-
 886 analyticity is defined for functions $f : \mathcal{U} \rightarrow \mathbb{R}^n$, where $\mathcal{U} \subseteq \mathbb{R}^m$ is an open set. Since the
 887 transformer architecture is naturally expressed in terms of matrices, it will be convenient to extend
 888 this notion to maps of the form $f : \mathbb{R}^{m \times n} \rightarrow \mathbb{R}^{a \times b}$.

889 **Multi-index notation.** We use multi-index notation for both vectors and matrices.

890 *Vector case.* Let $\alpha = (\alpha_1, \dots, \alpha_m)^\top \in \mathbb{N}_0^m$ and $\mathbf{x}, \mathbf{y} \in \mathbb{R}^m$. Define:

$$891 \quad |\alpha| = \sum_{j=1}^m \alpha_j, \quad \alpha! = \prod_{j=1}^m \alpha_j!, \quad (\mathbf{x} - \mathbf{y})^\alpha = \prod_{j=1}^m (\mathbf{x}_j - \mathbf{y}_j)^{\alpha_j}.$$

$$892$$

$$893$$

$$894$$

$$895$$

896 *Matrix case.* Let $\mathbf{A} = (\alpha_{uv}) \in \mathbb{N}_0^{m \times n}$ and $\mathbf{X}, \mathbf{Y} \in \mathbb{R}^{m \times n}$. Define:

$$897 \quad |\mathbf{A}| = \sum_{u=1}^m \sum_{v=1}^n \alpha_{uv}, \quad \mathbf{A}! = \prod_{u=1}^m \prod_{v=1}^n \alpha_{uv}!, \quad (\mathbf{X} - \mathbf{Y})^\mathbf{A} = \prod_{u=1}^m \prod_{v=1}^n (\mathbf{X}_{uv} - \mathbf{Y}_{uv})^{\alpha_{uv}}.$$

$$898$$

$$899$$

$$900$$

901 Given an open set $\mathcal{U} \subseteq \mathbb{R}^m$ and a map $f : \mathcal{U} \rightarrow \mathbb{R}$, we write

$$902 \quad \mathbf{d}^\alpha f(\mathbf{x}) := \frac{\partial^{|\alpha|} f}{\partial \mathbf{x}_1^{\alpha_1} \cdots \partial \mathbf{x}_m^{\alpha_m}}(\mathbf{x})$$

$$903$$

$$904$$

905 for the mixed partial derivative (when it exists). Unless stated otherwise, we assume $f \in C^\infty(\mathcal{U})$, so
 906 $\mathbf{d}^\alpha f$ exists and is continuous for all $\alpha \in \mathbb{N}_0^m$; for vector-valued maps $f = (f_1, \dots, f_n)$ the operator
 907 \mathbf{d}^α acts componentwise. We also use the convention $\mathbf{d}^0 f = f$.

908 A.2.1 REAL-ANALYTIC FUNCTIONS WITH VECTOR INPUTS

910 **Definition A.1** (Real-analytic functions, Lewis 2014, Definition 1.1.3). *Let $\mathcal{U} \subseteq \mathbb{R}^m$ be open. A
 911 function $f : \mathcal{U} \rightarrow \mathbb{R}$ is **real-analytic** on \mathcal{U} if, for every $\mathbf{y} \in \mathcal{U}$, there exist coefficients $\{c_\alpha \in \mathbb{R}\}_{\alpha \in \mathbb{N}_0^m}$
 912 and $r > 0$ such that*

$$913 \quad f(\mathbf{x}) = \sum_{\alpha \in \mathbb{N}_0^m} c_\alpha (\mathbf{x} - \mathbf{y})^\alpha$$

$$914$$

915 for all $\mathbf{x} \in \mathcal{U}$ with $\|\mathbf{x} - \mathbf{y}\|_2 < r$. The set of real-analytic functions on \mathcal{U} is denoted by $C^\omega(\mathcal{U})$.

916 *A map $f : \mathcal{U} \rightarrow \mathbb{R}^n$ is **real-analytic** on \mathcal{U} if each of its components $f_1, \dots, f_n : \mathcal{U} \rightarrow \mathbb{R}$ is
 917 real-analytic. The set of such maps is denoted $C^\omega(\mathcal{U}; \mathbb{R}^n)$.*

918 **Remark 4.** To establish real-analyticity of a vector-valued mapping (e.g., an MLP, attention mech-
 919 anism, or LayerNorm), it suffices to prove real-analyticity of each scalar component.

920 **Proposition A.1** (Closure properties, Lewis 2014, Proposition 1.2.1). Let $f, g : \mathbb{R}^m \rightarrow \mathbb{R}$ be real-
 921 analytic maps. Then, the following hold:

922 1. **Addition:** $f + g \in C^\omega(\mathbb{R}^m)$.
 923 2. **Product:** $fg \in C^\omega(\mathbb{R}^m)$.
 924 3. **Quotient:** If $g(\mathbf{x}) \neq 0$ for all $\mathbf{x} \in \mathbb{R}^m$, then $f/g \in C^\omega(\mathbb{R}^m)$.

925 **Proposition A.2** (Composition, Lewis 2014, Proposition 1.2.2). Let $f : \mathbb{R}^m \rightarrow \mathbb{R}^n$ and $g : \mathbb{R}^n \rightarrow$
 926 \mathbb{R}^k be real-analytic maps. Then, the composition $g \circ f : \mathbb{R}^m \rightarrow \mathbb{R}^k$ is real-analytic.

927 **Remark 5.** For simplicity, we do not state the closure properties in their most general form, where
 928 f and g may be defined on different open subsets of \mathbb{R}^m . This avoids additional notation involving
 929 intersections of domains. Since every function of interest in our later analysis is defined on the whole
 930 space \mathbb{R}^m , this restriction entails no loss of generality.

931 **Theorem A.1** (Zero sets of nontrivial real-analytic maps Mityagin 2015). Let $\mathcal{U} \subseteq \mathbb{R}^m$ be connected
 932 and open, and let $f \in C^\omega(\mathcal{U}; \mathbb{R}^n)$. If $f \not\equiv \mathbf{0}_n$, then its zero set

$$933 Z(f) := f^{-1}(\{\mathbf{0}_n\}) = \{\mathbf{x} \in \mathcal{U} : f(\mathbf{x}) = \mathbf{0}_n\}$$

934 has Lebesgue measure zero in \mathbb{R}^m (i.e. $\text{Leb}_m(Z(f)) = 0$). Equivalently, if there exists $\mathbf{x} \in \mathcal{U}$ with
 935 $f(\mathbf{x}) \neq \mathbf{0}_n$, then $\text{Leb}_m(f^{-1}(\{\mathbf{0}_n\})) = 0$.

936 **Remark 6.** The result in Mityagin (2015) is stated for scalar-valued maps $f : \mathcal{U} \rightarrow \mathbb{R}$. The
 937 extension to vector-valued maps $f = (f_1, \dots, f_n) : \mathcal{U} \rightarrow \mathbb{R}^n$ is immediate: the zero set of f is the
 938 intersection of the zero sets of its scalar components,

$$939 Z(f) = \bigcap_{i=1}^n Z(f_i),$$

940 and if $f \not\equiv \mathbf{0}_n$, then at least one component $f_j \not\equiv 0$, so $Z(f) \subseteq Z(f_j)$, which has measure zero by
 941 the scalar case.

942 A.2.2 REAL-ANALYTIC FUNCTIONS WITH MATRIX INPUTS

943 **Definition A.2** (Real-analyticity on matrix spaces). Let $\mathcal{U} \subseteq \mathbb{R}^{m \times n}$ be open. A function $f : \mathcal{U} \rightarrow \mathbb{R}$
 944 is **real-analytic** on \mathcal{U} if, for every $\mathbf{Y} \in \mathcal{U}$, there exist coefficients $\{c_{\mathbf{A}} \in \mathbb{R}\}_{\mathbf{A} \in \mathbb{N}_0^{m \times n}}$ and $r > 0$ such
 945 that

$$946 f(\mathbf{X}) = \sum_{\mathbf{A} \in \mathbb{N}_0^{m \times n}} c_{\mathbf{A}} (\mathbf{X} - \mathbf{Y})^{\mathbf{A}}$$

947 for all $\mathbf{X} \in \mathcal{U}$ with $\|\mathbf{X} - \mathbf{Y}\|_{\text{F}} < r$.

948 A map $f : \mathcal{U} \rightarrow \mathbb{R}^{a \times b}$ is **real-analytic** on \mathcal{U} if each of its components $f_{ij} : \mathcal{U} \rightarrow \mathbb{R}$ is real-analytic.
 949 The set of such maps is denoted $C^\omega(\mathcal{U}; \mathbb{R}^{a \times b})$.

950 **Remark 7.** In the special case where $n = b = 1$, the domain and codomain reduce to \mathbb{R}^m and
 951 \mathbb{R}^a , respectively. Then Definition A.2 recovers Definition A.1. Thus, Definition A.2 generalizes
 952 real-analyticity to functions between matrix spaces.

953 **Definition A.3** (Vectorization and matricization Operators). Let $\text{vec}_{m,n} : \mathbb{R}^{m \times n} \rightarrow \mathbb{R}^{mn}$ denote the
 954 standard **vectorization operator**, which stacks the columns of a matrix into a single column vector
 955 (Henderson & Searle, 1981).

956 We also define the corresponding **matricization operator** $\text{mat}_{m,n} : \mathbb{R}^{mn} \rightarrow \mathbb{R}^{m \times n}$. As shown in
 957 Chacón & Duong 2020, the vectorization and matricization operators are mutual inverses:

$$958 \text{mat}_{m,n}(\text{vec}_{m,n}(\mathbf{X})) = \mathbf{X} \quad \forall \mathbf{X} \in \mathbb{R}^{m \times n} \tag{7}$$

$$959 \text{vec}_{m,n}(\text{mat}_{m,n}(\mathbf{x})) = \mathbf{x} \quad \forall \mathbf{x} \in \mathbb{R}^{mn} \tag{8}$$

960 Furthermore, if $\mathbf{x} \in \mathbb{R}^{mn}$ and $\mathbf{X} \in \mathbb{R}^{m \times n}$ are related by vectorization and matricization, i.e.,
 961 $\mathbf{x} = \text{vec}_{m,n}(\mathbf{X})$ and $\mathbf{X} = \text{mat}_{m,n}(\mathbf{x})$, then their norms coincide:

$$962 \|\mathbf{x}\|_2 = \|\mathbf{X}\|_{\text{F}}.$$

972 **Definition A.4** (Vectorized Form of Function). Let $\mathcal{U} \subseteq \mathbb{R}^{m \times n}$ be open and $\tilde{\mathcal{U}} = \text{vec}_{m,n}(\mathcal{U})$ (also open since vec is a linear homeomorphism). We denote the **vectorized form** of a function $f : \mathcal{U} \rightarrow \mathbb{R}^{a \times b}$ as

$$975 \quad \tilde{f} := \text{vec}_{a,b} \circ f \circ \text{mat}_{m,n} : \tilde{\mathcal{U}} \rightarrow \mathbb{R}^{ab}.$$

977 Equivalently, for all $\mathbf{X} \in \mathcal{U}$:

$$978 \quad 979 \quad f(\mathbf{X}) = \text{mat}_{a,b} \left(\tilde{f}(\text{vec}_{m,n}(\mathbf{X})) \right) \quad (9)$$

980 **Lemma A.1** (Equivalence real-analyticity). Let $\mathcal{U} \subseteq \mathbb{R}^{m \times n}$ be open, $\tilde{\mathcal{U}} = \text{vec}_{m,n}(\mathcal{U})$, and let
981 $f : \mathcal{U} \rightarrow \mathbb{R}^{a \times b}$ with its vectorized form $\tilde{f} : \tilde{\mathcal{U}} \rightarrow \mathbb{R}^{ab}$.

983 Fix $\mathbf{Y} \in \mathcal{U}$ and set $\mathbf{y} = \text{vec}_{m,n}(\mathbf{Y}) \in \tilde{\mathcal{U}}$. Then the following are equivalent:

984

1. f is real-analytic at \mathbf{Y} (in the sense of [Definition A.2](#)).
2. \tilde{f} is real-analytic at \mathbf{y} (in the sense of [Definition A.1](#)).

988 *Proof.* We begin by establishing the correspondence between matrix and vector indices in $\mathbb{R}^{k \times \ell}$ and
989 $\mathbb{R}^{k\ell}$. For $s \in [k\ell]$, define:

$$990 \quad u(s) := 1 + (s - 1) \bmod k \quad (\text{row index})$$

$$992 \quad v(s) := 1 + \left\lfloor \frac{s - 1}{k} \right\rfloor \quad (\text{column index})$$

994 Then $(u(s), v(s)) \in [k] \times [\ell]$ gives the matrix coordinates corresponding to the s th entry of the
995 vectorization. Conversely, for $(u, v) \in [k] \times [\ell]$, define:

$$996 \quad s(u, v) := u + (v - 1)k \in [k\ell]$$

998 to recover the linear index.

999 When clear from context, we omit arguments and simply write u , v , or s for readability.

1000 Let $\mathbf{X}, \mathbf{Y} \in \mathbb{R}^{m \times n}$, with vectorizations $\mathbf{x} = \text{vec}_{m,n}(\mathbf{X})$ and $\mathbf{y} = \text{vec}_{m,n}(\mathbf{Y})$. For a vector multi-
1001 index $\alpha \in \mathbb{N}_0^{mn}$, define the corresponding matrix multi-index $\mathbf{A}_\alpha := \text{mat}_{m,n}(\alpha)$, so that:

$$1003 \quad 1004 \quad (\mathbf{x} - \mathbf{y})^\alpha = \prod_{s=1}^{mn} (\mathbf{x}_s - \mathbf{y}_s)^{\alpha_s} = \prod_{u=1}^m \prod_{v=1}^n (\mathbf{X}_{uv} - \mathbf{Y}_{uv})^{(\mathbf{A}_\alpha)_{uv}} = (\mathbf{X} - \mathbf{Y})^{\mathbf{A}_\alpha}. \quad (10)$$

1006 Similarly, for a matrix multi-index $\mathbf{A} \in \mathbb{N}_0^{m \times n}$, define the corresponding vector multi-index $\alpha_{\mathbf{A}} :=$
1007 $\text{vec}_{m,n}(\mathbf{A})$, giving:

$$1009 \quad 1010 \quad (\mathbf{X} - \mathbf{Y})^{\mathbf{A}} = \prod_{u=1}^m \prod_{v=1}^n (\mathbf{X}_{uv} - \mathbf{Y}_{uv})^{\mathbf{A}_{uv}} = \prod_{s=1}^{mn} (\mathbf{x}_s - \mathbf{y}_s)^{(\alpha_{\mathbf{A}})_s} = (\mathbf{x} - \mathbf{y})^{\alpha_{\mathbf{A}}}. \quad (11)$$

1012 Now let $\mathbf{M} \in \mathcal{U}$, and let $\mathbf{m} = \text{vec}_{m,n}(\mathbf{M}) \in \tilde{\mathcal{U}}$. By definition of the vectorization,

$$1014 \quad f_{uv}(\mathbf{M}) = \tilde{f}_s(\mathbf{m}), \quad \text{where } s = s(u, v).$$

1015 This coordinate-wise correspondence underlies the equivalence stated in the lemma.

1017 (\Rightarrow) Assume f is real-analytic at \mathbf{Y} . Then by [Definition A.2](#), there exists $r > 0$ and, for each (u, v) ,
1018 coefficients $\{c_{\mathbf{A}}^{(uv)}\}_{\mathbf{A} \in \mathbb{N}_0^{m \times n}}$ such that:

$$1020 \quad 1021 \quad f_{uv}(\mathbf{X}) = \sum_{\mathbf{A} \in \mathbb{N}_0^{m \times n}} c_{\mathbf{A}}^{(uv)} (\mathbf{X} - \mathbf{Y})^{\mathbf{A}}, \quad \forall \mathbf{X} \in \mathcal{U} : \|\mathbf{X} - \mathbf{Y}\|_{\text{F}} < r. \quad (12)$$

1023 Using [Equation 11](#), each component \tilde{f}_s of \tilde{f} can be expressed as:

$$1024 \quad 1025 \quad \tilde{f}_s(\mathbf{x}) = \sum_{\alpha \in \mathbb{N}_0^{mn}} \tilde{c}_{\alpha}^{(s)} (\mathbf{x} - \mathbf{y})^\alpha, \quad \text{where } \tilde{c}_{\alpha}^{(s)} := c_{\mathbf{A}}^{(u(s), v(s))}.$$

1026 This series converges for all $\mathbf{x} \in \tilde{\mathcal{U}}$ with $\|\mathbf{x} - \mathbf{y}\|_2 = \|\mathbf{X} - \mathbf{Y}\|_F < r$. Hence, each scalar component
 1027 of \tilde{f} has a convergent power series at \mathbf{y} , proving that \tilde{f} is real-analytic there.
 1028

1029 (\Leftarrow) The reverse direction follows by symmetry: assume \tilde{f} is real-analytic at \mathbf{y} , write the expansion
 1030 at \mathbf{y} using definition [Definition A.1](#), and repeat the argument using [Equation 10](#) to construct
 1031 component-wise expansions for f_{uv} at \mathbf{Y} . \square
 1032

1033 **Remark 8.** Consider the function $f = \text{vec}_{m,n} : \mathbb{R}^{m \times n} \rightarrow \mathbb{R}^{mn \times 1}$, which vectorizes an $m \times n$
 1034 matrix by stacking its columns. Its corresponding vectorized form is
 1035

$$\tilde{f}(\mathbf{x}) = (\text{vec}_{mn,1} \circ \text{vec}_{m,n} \circ \text{mat}_{m,n})(\mathbf{x}) = \text{vec}_{mn,1}(\mathbf{x}) = \mathbf{x},$$

1036 since $\mathbf{x} \in \mathbb{R}^{mn}$ is already a column vector. This composition yields the identity map on \mathbb{R}^{mn} ,
 1037 which is clearly real analytic. Therefore, by [Lemma A.1](#), both $\text{vec}_{m,n}$ is real analytic, and similarly,
 1038 so is $\text{mat}_{m,n}$. It is now evident that the composition of two matrix-valued real-analytic function is
 1039 real-analytic, and we will prove it.
 1040

1041 **Proposition A.3** (Composition on matrix spaces is real-analytic). Suppose $f : \mathbb{R}^{m \times n} \rightarrow \mathbb{R}^{a \times b}$ and
 1042 $g : \mathbb{R}^{a \times b} \rightarrow \mathbb{R}^{p \times q}$ are real-analytic (in the sense of [Definition A.2](#)). Then $g \circ f : \mathbb{R}^{m \times n} \rightarrow \mathbb{R}^{p \times q}$ is
 1043 real-analytic.
 1044

1044 *Proof.* Consider the vectorized forms

$$\tilde{f} := \text{vec}_{a,b} \circ f \circ \text{mat}_{m,n} : \mathbb{R}^{mn} \rightarrow \mathbb{R}^{ab}, \quad \tilde{g} := \text{vec}_{p,q} \circ g \circ \text{mat}_{a,b} : \mathbb{R}^{ab} \rightarrow \mathbb{R}^{pq}.$$

1045 By [Lemma A.1](#), f is real-analytic iff \tilde{f} is, and g is real-analytic iff \tilde{g} is. Hence \tilde{f} and \tilde{g} are real-
 1046 analytic maps between Euclidean spaces.
 1047

1048 The vectorized form of the composition is
 1049

$$\widetilde{g \circ f} = \text{vec}_{p,q} \circ (g \circ f) \circ \text{mat}_{m,n} = \underbrace{(\text{vec}_{p,q} \circ g \circ \text{mat}_{a,b})}_{\tilde{g}} \circ \underbrace{(\text{vec}_{a,b} \circ f \circ \text{mat}_{m,n})}_{\tilde{f}} = \tilde{g} \circ \tilde{f},$$

1050 where we inserted the identity $(\text{mat}_{a,b} \circ \text{vec}_{a,b})(\mathbf{X}) = \mathbf{X}$. By the vector-space composition property
 1051 ([Proposition A.2](#)), $\tilde{g} \circ \tilde{f}$ is real-analytic on \mathbb{R}^{mn} . Applying [Lemma A.1](#) once more, we get that $g \circ f$
 1052 is real-analytic. \square
 1053

1054 A.2.3 REAL ANALYTICITY OF COMMON COMPONENTS

1055 We now collect several building blocks that will be used repeatedly. Throughout, all maps are
 1056 defined on $\mathbb{R}^{m \times n}$, an open set, so [Definition A.2](#) applies.
 1057

1058 **Proposition A.4** (Polynomials are real-analytic). Let $p : \mathbb{R}^m \rightarrow \mathbb{R}$ be a polynomial in the coordinates of $\mathbf{x} \in \mathbb{R}^m$, i.e., $p(\mathbf{x}) = \sum_{|\alpha| \leq d} a_\alpha \mathbf{x}^\alpha$ for some $d \in \mathbb{N}_0$ and coefficients $a_\alpha \in \mathbb{R}$. Then
 1059 $p \in C^\omega(\mathbb{R}^m)$.
 1060

1061 *Proof.* Polynomials are C^∞ , and $\mathbf{d}^\alpha p \equiv 0$ whenever $|\alpha| > d$. Hence the Taylor expansion of p at
 1062 any $\mathbf{y} \in \mathbb{R}^m$ truncates:
 1063

$$p(\mathbf{x}) = \sum_{|\alpha| \leq d} \frac{\mathbf{d}^\alpha p(\mathbf{y})}{\alpha!} (\mathbf{x} - \mathbf{y})^\alpha,$$

1064 which holds for all $\mathbf{x} \in \mathbb{R}^m$ (radius $r = +\infty$). Therefore p is real-analytic. \square
 1065

1066 **Proposition A.5** (The exponential is real-analytic). The map $\exp : \mathbb{R} \rightarrow (0, \infty)$ is real-analytic on
 1067 \mathbb{R} .
 1068

1069 *Proof.* Define $E(x) := \sum_{k=0}^{\infty} \frac{x^k}{k!}$. By the ratio test this power series has infinite radius of convergence,
 1070 hence converges absolutely for all $x \in \mathbb{R}$. Standard results on power series imply that E
 1071 is C^∞ on \mathbb{R} and can be differentiated termwise within its radius of convergence; in particular, for
 1072 every $j \in \mathbb{N}_0$,
 1073

$$E^{(j)}(x) = \sum_{k=j}^{\infty} \frac{k(k-1) \cdots (k-j+1)}{k!} x^{k-j} = \sum_{r=0}^{\infty} \frac{x^r}{r!} = E(x).$$

1080 Fix $y \in \mathbb{R}$. Taylor's theorem for power series then yields
 1081

$$1082 E(x) = \sum_{j=0}^{\infty} \frac{E^{(j)}(y)}{j!} (x-y)^j = E(y) \sum_{j=0}^{\infty} \frac{(x-y)^j}{j!},$$

1083 which is a convergent power series in $x-y$ with infinite radius of convergence. Hence E is real-
 1084 analytic at every $y \in \mathbb{R}$. As E is the usual exponential function defined by its power series, \exp is
 1085 real-analytic on \mathbb{R} . \square
 1086

1087 **Proposition A.6** (The logarithm is real-analytic). *The map $\log : (0, \infty) \rightarrow \mathbb{R}$ is real-analytic on
 1088 $(0, \infty)$.*

1089 *Proof.* For brevity, we present only a proof sketch;

1090 The exponential map $\exp : \mathbb{R} \rightarrow (0, \infty)$ is real-analytic with $\exp'(y) \neq 0$ for all y . By the real-
 1091 analytic inverse function theorem (see Krantz & Parks 2002, Thm. 2.3.1), its local inverse \log is
 1092 real-analytic on $(0, \infty)$. \square
 1093

1094 **Proposition A.7** (Softmax is real-analytic). *The map $\text{softmax} : \mathbb{R}^m \rightarrow \mathbb{R}^m$ with components*

$$1095 \text{softmax}_i(\mathbf{x}) = \frac{e^{\mathbf{x}_i}}{\sum_{j=1}^m e^{\mathbf{x}_j}}, \quad i = 1, \dots, m,$$

1096 is real-analytic on \mathbb{R}^m .

1097 *Proof.* Fix i . The numerator $\mathbf{x} \mapsto e^{\mathbf{x}_i}$ is the composition of the coordinate projection $\pi_i(\mathbf{x}) =$
 1098 \mathbf{x}_i (a linear, hence real-analytic, map) with \exp ; by Proposition A.5 and the composition rule in
 1099 Proposition A.1, it is real-analytic. The denominator

$$1100 H(\mathbf{x}) = \sum_{j=1}^m e^{\mathbf{x}_j}$$

1101 is a finite sum of real-analytic functions, hence real-analytic. Moreover, $H(\mathbf{x}) > 0$ for all $\mathbf{x} \in \mathbb{R}^m$
 1102 because $e^{\mathbf{x}_j} > 0$. Therefore, by the quotient rule in Proposition A.1, the map

$$1103 \mathbf{x} \mapsto \frac{e^{\mathbf{x}_i}}{H(\mathbf{x})}$$

1104 is real-analytic on \mathbb{R}^m . Since this holds for each $i = 1, \dots, m$, the vector-valued map softmax is
 1105 real-analytic. \square

1106 **Proposition A.8** (Row normalization is real-analytic on positive row-sum domain). *Let*

$$1107 \mathcal{D}_T := \{\mathbf{Y} \in \mathbb{R}^{T \times T} : \mathbf{Y}\mathbf{1}_T \in (0, \infty)^T\}.$$

1108 Define $\text{RN}(\mathbf{Y}) = \text{diag}(\mathbf{Y}\mathbf{1}_T)^{-1}\mathbf{Y}$ on \mathcal{D}_T . Then $\text{RN} : \mathcal{D}_T \rightarrow \mathbb{R}^{T \times T}$ is real-analytic (in the sense
 1109 of Definition A.2).

1110 *Proof.* The map $\mathbf{Y} \mapsto \mathbf{s} := \mathbf{Y}\mathbf{1}_T$ is linear, hence real-analytic. On $(0, \infty)^T$, the entrywise re-
 1111 ciprocal $\mathbf{s} \mapsto \mathbf{s}^{\odot(-1)}$ is real-analytic (componentwise $t \mapsto 1/t$). The map $\mathbf{s} \mapsto \text{diag}(\mathbf{s})$ is linear.
 1112 Matrix multiplication $(\mathbf{A}, \mathbf{Y}) \mapsto \mathbf{A}\mathbf{Y}$ is real-analytic (Proposition A.10). Composing these gives
 1113 $\text{RN}(\mathbf{Y}) = \text{diag}(\mathbf{Y}\mathbf{1}_T)^{-1}\mathbf{Y}$ real-analytic on the open set \mathcal{D}_T . \square

1114 **Proposition A.9** (Entrywise matrix polynomials are real-analytic). *Fix $m, n \in \mathbb{N}$. For coefficients
 1115 $\{c_{\mathbf{A}} \in \mathbb{R}\}_{\mathbf{A} \in \mathbb{N}_0^{m \times n}}$ and some $d \in \mathbb{N}_0$, define the function $p : \mathbb{R}^{m \times n} \rightarrow \mathbb{R}$ by:*

$$1116 p(\mathbf{X}) = \sum_{|\mathbf{A}| \leq d} c_{\mathbf{A}} \mathbf{X}^{\mathbf{A}}, \quad (13)$$

1117 where $\mathbf{X}^{\mathbf{A}} = \prod_{u=1}^m \prod_{v=1}^n \mathbf{X}_{uv}^{\mathbf{A}_{uv}}$ as defined in the multi-index notation above. Then p is real-
 1118 analytic on $\mathbb{R}^{m \times n}$ (in the sense of Definition A.2).

1119 Moreover, if $f : \mathbb{R}^{m \times n} \rightarrow \mathbb{R}^{a \times b}$ has component functions f_{ij} of the form Equation 13, then f is
 1120 real-analytic.

1134 *Proof.* Consider the vectorized form $\tilde{p} := p \circ \text{mat}_{m,n} : \mathbb{R}^{mn} \rightarrow \mathbb{R}$. Using the coordinate identification from equation 11-equation 10, each monomial satisfies

$$(1137) \quad (\text{mat}_{m,n}(\mathbf{x}))^{\mathbf{A}} = \mathbf{x}^{\alpha_{\mathbf{A}}},$$

1138 where $\alpha_{\mathbf{A}} = \text{vec}_{m,n}(\mathbf{A})$. Hence:

$$(1139) \quad \tilde{p}(\mathbf{x}) = \sum_{|\mathbf{A}| \leq d} c_{\mathbf{A}} \mathbf{x}^{\alpha_{\mathbf{A}}},$$

1140 which is a standard multivariate polynomial in $\mathbf{x} \in \mathbb{R}^{mn}$. By [Proposition A.4](#), such functions are
1141 real-analytic on all of \mathbb{R}^{mn} , so $\tilde{p} \in C^{\omega}(\mathbb{R}^{mn})$. By [Lemma A.1](#), this implies p is real-analytic on
1142 $\mathbb{R}^{m \times n}$.

1143 For the second claim, observe that if each f_{ij} is a scalar polynomial of the form [Equation 13](#), then
1144 each f_{ij} is real-analytic by the argument above. Hence, by [Definition A.2](#), f is real analytic. \square

1145 **Proposition A.10** (Matrix product of real-analytic factors). *Let the functions $f : \mathbb{R}^{m \times n} \rightarrow \mathbb{R}^{p \times r}$ and $g : \mathbb{R}^{m \times n} \rightarrow \mathbb{R}^{r \times q}$ be real-analytic. Then, $h : \mathbb{R}^{m \times n} \rightarrow \mathbb{R}^{p \times q}$ defined as $h(\mathbf{X}) = f(\mathbf{X})g(\mathbf{X})$, is real-analytic on $\mathbb{R}^{m \times n}$.*

1146 *Proof.* For each $(i, j) \in [p] \times [q]$, it holds that $h_{ij}(\mathbf{X}) = \sum_{k=1}^r f_{ik}(\mathbf{X})g_{kj}(\mathbf{X})$.

1147 Each factor f_{ik} and g_{kj} is a real-analytic scalar map by assumption; their product is real-analytic
1148 by [Proposition A.1](#), and a finite sum of real-analytic functions is real-analytic. Thus every h_{ij} is
1149 real-analytic, hence h is real-analytic. \square

1150 **Proposition A.11** (Hadamard (element-wise) scaling). *Let $\mathbf{A} \in \mathbb{R}^{m \times n}$ be a fixed matrix. Then, the map $f : \mathbb{R}^{m \times n} \rightarrow \mathbb{R}^{m \times n}$ defined as $f(\mathbf{X}) = \mathbf{A} \odot \mathbf{X}$ is real-analytic on $\mathbb{R}^{m \times n}$.*

1151 *Proof.* Componentwise, $(\mathbf{A} \odot \mathbf{X})_{ij} = \mathbf{A}_{ij} \mathbf{X}_{ij}$ is a product of a constant and a coordinate function,
1152 hence a polynomial (degree ≤ 1) and thus real-analytic. \square

1153 **Proposition A.12** (Concatenation/stacking of real-analytic blocks). *Let $f_{\ell} : \mathbb{R}^{m \times n} \rightarrow \mathbb{R}^{p \times q_{\ell}}$ be
1154 real-analytic for $\ell \in [L]$. The horizontal concatenation operation $g : \mathbb{R}^{m \times n} \rightarrow \mathbb{R}^{p \times (q_1 + \dots + q_L)}$,
1155 defined as:*

$$(1156) \quad g(\mathbf{X}) = [f_1(\mathbf{X}) \ f_2(\mathbf{X}) \ \dots \ f_L(\mathbf{X})]$$

1157 *is real-analytic. Likewise, if $f_{\ell} : \mathbb{R}^{m \times n} \rightarrow \mathbb{R}^{p_{\ell} \times q}$ are real-analytic, then the vertical stacking
1158 operation $h : \mathbb{R}^{m \times n} \rightarrow \mathbb{R}^{(p_1 + \dots + p_L) \times q}$, defined as:*

$$(1159) \quad h(\mathbf{X}) = [f_1(\mathbf{X})^{\top} \ f_2(\mathbf{X})^{\top} \ \dots \ f_L(\mathbf{X})^{\top}]^{\top}$$

1160 *is real-analytic.*

1161 *Proof.* Each scalar component of g (respectively h) is exactly one scalar component of some f_{ℓ} ,
1162 hence real-analytic. Therefore g and h are real-analytic by definition [Definition A.2](#). \square

1163 **Proposition A.13** (Noncommutative matrix polynomials are real-analytic). *Let $n, p, q \in \mathbb{N}$, let
1164 $\mathbf{X} \in \mathbb{R}^{n \times n}$, and fix coefficient matrices $\mathbf{A}_k \in \mathbb{R}^{p \times n}$ and $\mathbf{B}_k \in \mathbb{R}^{n \times q}$ for $k = 0, \dots, d$. Define*

$$(1165) \quad f(\mathbf{X}) := \sum_{k=0}^d \mathbf{A}_k \mathbf{X}^k \mathbf{B}_k \in \mathbb{R}^{p \times q}, \quad \mathbf{X}^0 := \mathbf{I}_n, \quad \mathbf{X}^{k+1} := \mathbf{X}^k \mathbf{X}.$$

1166 *Then f is real analytic in the sense of [Definition A.2](#).*

1167 *Proof.* The identity map $\mathbf{X} \mapsto \mathbf{X}$ is linear, hence a degree-1 entrywise polynomial; by [Proposition A.9](#) it is real-analytic. Assume $\mathbf{X} \mapsto \mathbf{X}^k$ is real-analytic. With $f(\mathbf{X}) = \mathbf{X}^k$ and $g(\mathbf{X}) = \mathbf{X}$, [Proposition A.10](#) yields $\mathbf{X}^{k+1} = f(\mathbf{X})g(\mathbf{X})$ real-analytic; by induction, all powers $\mathbf{X} \mapsto \mathbf{X}^k$ are
1168 real-analytic.

1169 For each k , left/right multiplication by fixed matrices preserves real-analyticity via [Proposition A.10](#):
1170 since the constant maps $\mathbf{X} \mapsto \mathbf{A}_k$ and $\mathbf{X} \mapsto \mathbf{B}_k$ are real-analytic (components are constant polynomials),
1171 the composition $\mathbf{X} \mapsto \mathbf{A}_k \mathbf{X}^k \mathbf{B}_k$ is real-analytic. Finally, f is a finite sum of real-analytic
1172 maps, hence real-analytic by closure under addition (apply [Proposition A.1](#) componentwise). \square

1188
 1189 **Remark 9.** We highlight several standard constructions that yield real-analytic maps, omitting
 1190 proofs for brevity:
 1191

- 1191 • **Affine and bilinear maps.** Functions of the form $\mathbf{X} \mapsto \mathbf{AXB} + \mathbf{C}$ are real-analytic, as they are
 1192 obtained via matrix multiplication and addition of constant matrices (Proposition A.10, Proposi-
 1193 tion A.1).
- 1194 • **Algebraic expressions in \mathbf{X} .** Any expression constructed from \mathbf{X} using finitely many additions and
 1195 matrix multiplications with fixed coefficient matrices, e.g. $\mathbf{A}_0 + \mathbf{A}_1 \mathbf{XB}_1 + \mathbf{A}_2 \mathbf{XB}_2 \mathbf{XC}_2$ defines
 1196 a real-analytic map. This follows from repeated application of Proposition A.10 and closure under
 1197 addition.
- 1198 • **Scalar polynomial invariants.** Coordinate functions \mathbf{X}_{ij} , the trace $\text{tr}(\mathbf{X})$, all principal and non-
 1199 principal minors, and the determinant $\det(\mathbf{X})$ are scalar polynomials in the entries of \mathbf{X} , and
 1200 hence real-analytic by Proposition A.9.

1202 A.3 DIFFERENTIAL, MEASURE-THEORETIC, AND TOPOLOGICAL TOOLS
 1203

1204 This subsection collects the minimal calculus, measure, and topology we will use later. In finite di-
 1205 mensions, Fréchet derivatives let us speak uniformly about Jacobians and Hessians; basic Euclidean
 1206 topology lets us control neighborhoods and compactness; the inverse function theorem gives lo-
 1207 cal invertibility; and pushforwards/absolute continuity formalize how distributions transform under
 1208 measurable maps.

1209 **Definition A.5** (Fréchet derivative (Luenberger, 1997, §7.2-§7.3)). Let $\mathcal{U} \subseteq \mathbb{R}^m$ open, and consider
 1210 a function $f : \mathcal{U} \rightarrow \mathbb{R}^n$. We say that f is Fréchet differentiable at $\mathbf{x} \in \mathcal{U}$ if there exists a bounded
 1211 linear map $\mathbf{A} : \mathbb{R}^m \rightarrow \mathbb{R}^n$ such that

$$1212 \lim_{\|\mathbf{h}\|_2 \rightarrow 0} \frac{\|f(\mathbf{x} + \mathbf{h}) - f(\mathbf{x}) - \mathbf{A}\mathbf{h}\|_2}{\|\mathbf{h}\|_2} = 0.$$

1215 The unique operator \mathbf{A} is denoted by $Df(\mathbf{x})$ and called the (Fréchet) derivative of f at \mathbf{x} .

1216 **Definition A.6** (Second Fréchet derivative (Magnus & Neudecker, 2019, Ch. 18)). Let $\mathcal{U} \subseteq \mathbb{R}^m$
 1217 open, and consider a function $f : \mathcal{U} \rightarrow \mathbb{R}^n$. Suppose f is Fréchet differentiable at \mathbf{x} . The second
 1218 Fréchet derivative of f at \mathbf{x} is the bounded bilinear map $D^2 f(\mathbf{x}) : \mathbb{R}^m \times \mathbb{R}^m \rightarrow \mathbb{R}^n$ defined as:

$$1219 D^2 f(\mathbf{x})[\mathbf{h}, \mathbf{k}] := \lim_{t \rightarrow 0} \frac{Df(\mathbf{x} + t\mathbf{h})[\mathbf{k}] - Df(\mathbf{x})[\mathbf{k}]}{t}.$$

1222 **Proposition A.14** (Connection to the Hessian). If $f : \mathcal{U} \rightarrow \mathbb{R}$ is C^2 , then $D^2 f(\mathbf{x})$ is symmetric
 1223 (Arora et al., 2021, Thm. 5.1) and can be represented by the Hessian matrix $\nabla^2 f(\mathbf{x})$:

$$1224 D^2 f(\mathbf{x})[\mathbf{h}, \mathbf{k}] = \mathbf{h}^\top (\nabla^2 f(\mathbf{x})) \mathbf{k},$$

1226 as noted in Magnus & Neudecker 2019, Ch. 18.

1227 **Definition A.7** (Closure of a set in \mathbb{R}^p). Let $\mathcal{U} \subseteq \mathbb{R}^p$. The closure of \mathcal{U} , denoted $\overline{\mathcal{U}}$, is the smallest
 1228 closed subset of \mathbb{R}^p containing \mathcal{U} .

1229 **Definition A.8** (Euclidean balls in \mathbb{R}^p). Fix $p \in \mathbb{N}$ and equip \mathbb{R}^p with the Euclidean norm $\|\cdot\|_2$.
 1230 For $\mathbf{x} \in \mathbb{R}^p$ and $r > 0$ we define:

$$1231 B(\mathbf{x}, r) := \{ \mathbf{y} \in \mathbb{R}^p : \|\mathbf{y} - \mathbf{x}\|_2 < r \}$$

$$1232 \overline{B}(\mathbf{x}, r) := \{ \mathbf{y} \in \mathbb{R}^p : \|\mathbf{y} - \mathbf{x}\|_2 \leq r \}$$

1234 In \mathbb{R}^p with the Euclidean topology one has $\overline{B}(\mathbf{x}, r) = \overline{B(\mathbf{x}, r)}$, i.e. the closed ball equals the
 1235 topological closure of the open ball.

1237 **Definition A.9** (Second-countable subspace of \mathbb{R}^p (Munkres, 2000, §30)). Let $\mathcal{X} \subseteq \mathbb{R}^p$ be equipped
 1238 with the subspace topology $\tau_{\mathcal{X}} := \{ \mathcal{U} \cap \mathcal{X} : \mathcal{U} \text{ open in } \mathbb{R}^p \}$. We say \mathcal{X} is second-countable if there
 1239 exists a countable family $\mathcal{F} \subseteq \tau_{\mathcal{X}}$ such that every $\mathcal{O} \in \tau_{\mathcal{X}}$ is a union of members of \mathcal{F} . Equivalently,
 1240 the countable family

$$1241 \mathcal{F}_{\mathbb{Q}} := \{ B(\mathbf{x}, r) \cap \mathcal{X} : \mathbf{x} \in \mathbb{Q}^p, r \in \mathbb{Q}_{>0} \},$$

1241 is a basis for $\tau_{\mathcal{X}}$.

1242 **Proposition A.15** (Standard facts for \mathbb{R}^p). Fix $p \in \mathbb{N}$. The following hold:
1243

- 1244 1. **Hausdorff** (Aitken, 2020, Prop. 18): \mathbb{R}^p with its Euclidean metric is Hausdorff.
1245
- 1246 2. **Heine-Borel** (Munkres, 2000, Thm. 27.3): A subset of \mathbb{R}^p is compact iff it is closed and
1247 bounded; in particular, each closed Euclidean ball $\bar{B}(x, r)$ is compact.
1248
- 1249 3. **Second countability** (Munkres, 2000, §13 and Thm. 30.2) : \mathbb{R} has a countable base (intervals with rational endpoints); hence \mathbb{R}^p , being a finite product of second-countable
1250 spaces, is second-countable. Moreover, subspaces of second-countable spaces are second-
1251 countable.
1252
- 1253 4. **Lindelöf consequence** (Munkres, 2000, Thm. 30.3(a)): Every second-countable space is
1254 Lindelöf; consequently, every open cover of any subspace of \mathbb{R}^p admits a countable sub-
1255 cover.
1256
- 1257 5. **Local compactness of \mathbb{R}^p** (Munkres, 2000, Thm. 29.2): For any $\mathbf{x} \in \mathbb{R}^p$ and open neighbor-
1258 hood $\mathcal{W} \ni \mathbf{x}$, there exists $\varepsilon > 0$ with $\bar{B}(\mathbf{x}, \varepsilon) \subseteq \mathcal{W}$, and $\bar{B}(\mathbf{x}, \varepsilon)$ is compact by Heine-
1259 Borel; hence \mathbb{R}^p is locally compact. Furthermore, in a Hausdorff space, local compactness
1260 is equivalent to shrinking neighborhoods with compact closures: for every neighborhood
1261 $\mathcal{W} \ni \mathbf{x}$ there exists an open \mathcal{V} with $\mathbf{x} \in \mathcal{V} \subseteq \bar{\mathcal{V}} \subseteq \mathcal{W}$ and $\bar{\mathcal{V}}$ compact.
1262

1263 **Definition A.10** (C^k diffeomorphism Spivak 1971, Ch. 5). Let $U, V \subseteq \mathbb{R}^p$ be open sets and let
1264 $k \in \mathbb{N} \cup \{\infty\}$. A map $f : U \rightarrow V$ is a C^k **diffeomorphism** if:

- 1265 1. f is bijective;
- 1266 2. f is C^k (all partial derivatives up to order k exist and are continuous);
- 1267 3. the inverse map $f^{-1} : V \rightarrow U$ is C^k .

1268 When $k = 1$ we simply say diffeomorphism. Equivalently, a C^k diffeomorphism is a bijective C^k
1269 map whose inverse is also C^k .
1270

1271 **Theorem A.2** (Inverse Function Theorem Rudin 1976, Thm. 9.24). Let $\mathcal{U} \subset \mathbb{R}^p$ be open and
1272 $f : \mathcal{U} \rightarrow \mathbb{R}^p$ be C^1 . Suppose $\mathbf{a} \in \mathcal{U}$ satisfies $\det Df(\mathbf{a}) \neq 0$. Then there exist open sets $\mathcal{U}_0 \subset \mathcal{U}$
1273 with $\mathbf{a} \in \mathcal{U}_0$ and $\mathcal{V}_0 \subset \mathbb{R}^p$ with $f(\mathbf{a}) \in \mathcal{V}_0$ such that

$$1274 f|_{\mathcal{U}_0} : \mathcal{U}_0 \rightarrow \mathcal{V}_0$$

1275 is a C^1 -diffeomorphism. Moreover, the inverse $f^{-1} : \mathcal{V}_0 \rightarrow \mathcal{U}_0$ is C^1 and

$$1276 D(f^{-1})(f(\mathbf{x})) = (Df(\mathbf{x}))^{-1} \quad \forall \mathbf{x} \in \mathcal{U}_0.$$

1277 **Remark 10.** In Theorem A.2 we assume $f : \mathcal{U} \subseteq \mathbb{R}^p \rightarrow \mathbb{R}^p$, so the Jacobian $Df(\mathbf{a})$ is a $p \times p$
1278 (square) matrix. In this setting,

$$1279 \det Df(\mathbf{a}) \neq 0 \iff Df(\mathbf{a}) \text{ is invertible},$$

1280 and this is exactly the hypothesis that yields a local C^1 inverse.
1281

1282 **Definition A.11** (Pushforward and absolute continuity (Folland, 1999, §3.2)). Consider a Borel-
1283 measurable map $T : \mathbb{R}^p \rightarrow \mathbb{R}^p$ and let μ be a Borel measure on \mathbb{R}^p . The pushforward measure $T_\# \mu$
1284 is the Borel measure on \mathbb{R}^p defined by

$$1285 T_\# \mu(\mathcal{U}) := \mu(T^{-1}(\mathcal{U})), \quad \mathcal{U} \in \mathcal{B}(\mathbb{R}^p).$$

1286 If ν is another Borel measure on \mathbb{R}^p , we say $T_\# \mu$ is absolutely continuous with respect to ν , and
1287 write $T_\# \mu \ll \nu$, iff for every Borel set $\mathcal{U} \in \mathcal{B}(\mathbb{R}^p)$:

$$1288 \nu(\mathcal{U}) = 0 \implies T_\# \mu(\mathcal{U}) = 0.$$

1289 In particular, for Lebesgue measure Leb_p , to prove $T_\# \mu \ll \text{Leb}_p$ for every $\mu \ll \text{Leb}_p$, it suffices to
1290 verify that

$$1291 \text{Leb}_p(\mathcal{U}) = 0 \implies \text{Leb}_p(T^{-1}(\mathcal{U})) = 0 \quad \text{for all Borel } \mathcal{U} \subseteq \mathbb{R}^p.$$

1296 **B TRANSFORMER LANGUAGE MODEL**
1297

1298 This appendix section gives a concise, shape-accurate specification of the decoder-only Transformer
1299 we analyze. We include it both to keep the paper self-contained and because the measure-zero argu-
1300 ments later hinge on architecture-dependent witnesses and exact dimension bookkeeping. We begin
1301 with token and positional embeddings ([Definition B.3](#)), define self-attention and its causal variants
1302 ([Definition B.5](#), [Definition B.6](#), [Definition B.7](#)), assemble multi-head attention, layer normalization,
1303 and an MLP into a pre-LN residual block ([Definition B.8](#), [Definition B.9](#), [Definition B.4](#), [Definition
1304 B.11](#)), stack L such blocks to obtain the model ([Definition B.12](#)), and conclude with the unem-
1305 bedding+softmax head ([Definition B.10](#)), isolating the last-token representation used in downstream
1306 proofs ([Equation 29](#)).

1307 **Definition B.1** (Token Embedding Layer). *Let \mathcal{V} be a vocabulary, and let $d \in \mathbb{N}$ be the embedding
1308 dimension. For any input sequence $s = \langle s_1, \dots, s_T \rangle \in \mathcal{V}^{\leq K}$, the Token Embedding Layer is the
1309 function defined as:*

$$1310 \quad E(s) = (E_{s_1}, \dots, E_{s_T})^\top \in \mathbb{R}^{T \times d}, \quad (14)$$

1312 where $E \in \mathbb{R}^{|\mathcal{V}| \times d}$ is a trainable embedding matrix indexed by elements of \mathcal{V} , and $E_{s_i} \in \mathbb{R}^d$ denotes
1313 the embedding vector for token s_i .

1314 This mapping is applied element-wise and is independent of the sequence length T .

1316 **Definition B.2** (Positional Embedding Layer). *Let \mathcal{V} be a vocabulary, and let $d \in \mathbb{N}$ be the em-
1317 bedding dimension. For any input sequence $s = \langle s_1, \dots, s_T \rangle \in \mathcal{V}^{\leq K}$ with $T = |s|$, the (learned
1318 absolute) Positional Embedding Layer is the function defined as:*

$$1319 \quad PE(s) = (P_1, \dots, P_T)^\top \in \mathbb{R}^{T \times d}, \quad (15)$$

1321 where $P \in \mathbb{R}^{K \times d}$ is a trainable matrix indexed by positions $i \in [K]$, and $P_i \in \mathbb{R}^d$ denotes the
1322 embedding vector for position i . This mapping depends only on positions (not on token identities)
1323 and returns the first T rows of P .

1324 **Definition B.3** (Embedding Layer). *Let \mathcal{V} be a vocabulary, $K \in \mathbb{N}$ a context bound, and $d \in \mathbb{N}$
1325 the embedding width. For any input sequence $s = \langle s_1, \dots, s_T \rangle \in \mathcal{V}^{\leq K}$ with $T = |s|$, define the
1326 embedding layer as the sum of the token and positional embeddings:*

$$1328 \quad \text{Emb}(s) := E(s) + PE(s) = (E_{s_1} + P_1, \dots, E_{s_T} + P_T)^\top \in \mathbb{R}^{T \times d}, \quad (16)$$

1329 where $E \in \mathbb{R}^{|\mathcal{V}| \times d}$ is the trainable token-embedding matrix and $P \in \mathbb{R}^{K \times d}$ is the trainable
1330 positional-embedding matrix.

1332 **Definition B.4** (Multi-Layer Perceptron). *A Multi-Layer Perceptron (MLP) with M layers is a func-
1333 tion $\text{mlp}_M : \mathbb{R}^{d_0} \rightarrow \mathbb{R}^{d_M}$, defined recursively as:*

$$1335 \quad h^{(1)} = W^{(1)}x + b^{(1)} \quad (17)$$

$$1336 \quad h^{(m)} = W^{(m)} \sigma(h^{(m-1)}) + b^{(m)}, \quad m \geq 2 \quad (18)$$

$$1338 \quad \text{mlp}_M(x) = h^{(M)} \quad (19)$$

1340 where $x \in \mathbb{R}^{d_0}$ is the input, $\{W^{(m)} \in \mathbb{R}^{d_m \times d_{m-1}}\}_{m=1}^M$ and $\{b^{(m)} \in \mathbb{R}^{d_m}\}_{m=1}^M$ are trainable
1341 parameters and σ is an activation function.

1342 **Definition B.5** (Self-Attention). *A Self-Attention module is a function $\eta : \mathbb{R}^{T \times d_{in}} \rightarrow \mathbb{R}^{T \times d_\eta}$,
1343 defined as:*

$$1345 \quad \eta(X; Q, K, V) = \text{softmax} \left(\frac{(XQ)(XK)^\top}{\sqrt{d_\eta}} \right) X V, \quad (20)$$

1348 where $X \in \mathbb{R}^{T \times d_{in}}$ is the input, $Q, K, V \in \mathbb{R}^{d_{in} \times d_\eta}$ are trainable parameters (query, key, and value
1349 matrices), softmax is applied row-wise, d_η is the attention dimension (typically $d_\eta < d_{in}$), and T is
the sequence length.

1350 **Definition B.6** (Causal Self-Attention, masked form). Define the “causal mask” $\mathbf{M} \in \mathbb{R}^{T \times T}$ as:
 1351

$$1352 \quad \mathbf{M}_{ij} = \begin{cases} 0, & j \leq i, \\ 1353 \quad -\infty, & j > i \end{cases}$$

1354 Then, a Causal Self-Attention module is a function $\tilde{\eta} : \mathbb{R}^{T \times d_{\text{in}}} \rightarrow \mathbb{R}^{T \times d_{\eta}}$, defined as:
 1355

$$1356 \quad \tilde{\eta}(\mathbf{X}; \mathbf{Q}, \mathbf{K}, \mathbf{V}) = \text{softmax} \left(\frac{(\mathbf{XQ})(\mathbf{XK})^\top}{\sqrt{d_{\eta}}} + \mathbf{M} \right) \mathbf{XV}, \quad (21)$$

1359 where $\mathbf{X} \in \mathbb{R}^{T \times d_{\text{in}}}$ is the input, $\mathbf{Q}, \mathbf{K}, \mathbf{V} \in \mathbb{R}^{d_{\text{in}} \times d_{\eta}}$ are trainable parameters (query, key, and value
 1360 matrices), softmax is applied row-wise, d_{η} is the attention dimension (typically $d_{\eta} < d_{\text{in}}$), and T is
 1361 the sequence length.

1362 **Definition B.7** (Causal Self-Attention, projection form). Define the unit lower-triangular matrix
 1363 $\mathbf{L} \in \mathbb{R}^{T \times T}$ as $\mathbf{L}_{ij} = \mathbb{I}_{\{j \leq i\}}$ and consider the row normalization operation $\text{RN} : \mathcal{D}_T \rightarrow \mathbb{R}^{T \times T}$ of
 1364 [Proposition A.8](#). Then, a Causal Self-Attention module is a function $\tilde{\eta} : \mathbb{R}^{T \times d_{\text{in}}} \rightarrow \mathbb{R}^{T \times d_{\eta}}$, defined
 1365 as:

$$1366 \quad \tilde{\eta}(\mathbf{X}; \mathbf{Q}, \mathbf{K}, \mathbf{V}) = \text{RN} \left(\mathbf{L} \odot \exp \left(\frac{(\mathbf{XQ})(\mathbf{XK})^\top}{\sqrt{d_{\eta}}} \right) \right) \mathbf{XV}, \quad (22)$$

1369 where $\mathbf{X} \in \mathbb{R}^{T \times d_{\text{in}}}$ is the input, $\mathbf{Q}, \mathbf{K}, \mathbf{V} \in \mathbb{R}^{d_{\text{in}} \times d_{\eta}}$ are trainable parameters (query, key, and value
 1370 matrices), RN is applied row-wise, d_{η} is the attention dimension (typically $d_{\eta} < d_{\text{in}}$), and T is the
 1371 sequence length.

1372 **Remark 11.** Consider $\mathbf{Z} = \frac{1}{\sqrt{d_{\eta}}} (\mathbf{XQ})(\mathbf{XK})^\top$. Since $\mathbf{L}_{ii} = 1$ for all $i \in [T]$, we have that
 1373 $[\mathbf{L} \odot \exp \mathbf{Z}]_{ii} = e^{\mathbf{Z}_{ii}} > 0$, hence the row sum $\sum_{j \leq i} e^{\mathbf{Z}_{ij}} \geq e^{\mathbf{Z}_{ii}} > 0$ and RN is well-defined.

1375 **Definition B.8** (Multi-Head Self-Attention). A Multi-Head Self-Attention module with H heads is
 1376 a function $\text{attn}_H : \mathbb{R}^{T \times d_{\text{in}}} \rightarrow \mathbb{R}^{T \times d_{\text{out}}}$, defined using the Self-Attention map from [Definition B.5](#) or
 1377 [Definition B.7](#) with different parameter sets per head:

$$1378 \quad \eta_h(\mathbf{X}) = \eta(\mathbf{X}; \mathbf{Q}^{(h)}, \mathbf{K}^{(h)}, \mathbf{V}^{(h)}), \quad h \in [H], \quad (23)$$

$$1379 \quad \text{attn}_H(\mathbf{X}) = [\eta_1(\mathbf{X}), \dots, \eta_H(\mathbf{X})] \mathbf{W}^O, \quad (24)$$

1381 where $\{\mathbf{Q}^{(h)}, \mathbf{K}^{(h)}, \mathbf{V}^{(h)} \in \mathbb{R}^{d_{\text{in}} \times d_{\eta}}\}_{h=1}^H$ are the head-specific parameters and $\mathbf{W}^O \in \mathbb{R}^{Hd_{\eta} \times d_{\text{out}}}$
 1382 is the output projection matrix.

1383 **Definition B.9** (Layer Normalization). Layer Normalization is a function $\text{LN} : \mathbb{R}^d \rightarrow \mathbb{R}^d$, defined
 1384 as:

$$1385 \quad \text{LN}(\mathbf{x}) = \gamma \odot \frac{\mathbf{x} - \mu_{\mathbf{x}} \mathbf{1}_d}{\sqrt{\sigma_{\mathbf{x}}^2 + \varepsilon}} + \beta, \quad (25)$$

1388 where $\mathbf{x} \in \mathbb{R}^d$ is the input, $\mu_{\mathbf{x}} = \frac{1}{d} \sum_{i=1}^d \mathbf{x}_i$ and $\sigma_{\mathbf{x}}^2 = \frac{1}{d} \sum_{i=1}^d (\mathbf{x}_i - \mu_{\mathbf{x}})^2$ are the mean and
 1389 variance of \mathbf{x} , vectors $\beta, \gamma \in \mathbb{R}^d$ are learnable parameters, and $\varepsilon \in \mathbb{R}^+$ is a small constant that
 1390 ensures we don't divide by zero.

1391 **Definition B.10** (Unembedding Layer). Let \mathcal{V} be a vocabulary and $d \in \mathbb{N}$ and $\mathbf{U} \in \mathbb{R}^{|\mathcal{V}| \times d}$ be a
 1392 trainable projection matrix. Define the unembedding map $\text{UnEmb} : \mathbb{R}^d \rightarrow \mathbb{R}^{|\mathcal{V}|}$ by

$$1393 \quad \text{UnEmb}(\mathbf{h}) := \text{softmax}(\mathbf{U} \text{LN}(\mathbf{h})), \quad \mathbf{h} \in \mathbb{R}^d.$$

1395 **Definition B.11** (Transformer Block). A Transformer Block consists of a composition of a Multi-
 1396 Head Self-Attention layer with H heads ([Definition B.8](#)) and an MLP with M layers ([Definition B.4](#)),
 1397 each preceded by layer normalization ([Definition B.9](#)) and wrapped with residual connections.
 1398 Given an input $\mathbf{X} \in \mathbb{R}^{T \times d}$, the output $\text{TB}(\mathbf{X}) \in \mathbb{R}^{T \times d}$ is computed as:

$$1399 \quad \mathbf{H} = \mathbf{X} + \text{attn}_H(\overline{\mathbf{X}}) \quad (26)$$

$$1400 \quad \text{TB}(\mathbf{X}) = \mathbf{H} + \text{mlp}_M(\overline{\mathbf{H}}), \quad (27)$$

1402 where $\overline{\mathbf{X}}, \overline{\mathbf{H}} \in \mathbb{R}^{T \times d}$ are the results of applying layer normalization row-wise to \mathbf{X} and \mathbf{H} , respec-
 1403 tively, each with its own set of learnable parameters and mlp_M is applied row-wise. All sub-layer
 parameters are dimensioned appropriately.

1404
 1405 **Definition B.12** (Transformer). Fix $L \in \mathbb{N}$. For each $\ell \in [L]$, let $\text{TB}^{(\ell)} : \mathbb{R}^{T \times d} \rightarrow \mathbb{R}^{T \times d}$ denote a
 1406 *Transformer Block* (Definition B.11) with its own parameters. Define the module
 1407

$$\text{Tr}_T := \text{TB}^{(L)} \circ \dots \circ \text{TB}^{(1)}.$$

1408 Each $\text{TB}^{(\ell)}$ maps $\mathbb{R}^{T \times d} \rightarrow \mathbb{R}^{T \times d}$, so the residual additions in Definition B.11 are dimensionally
 1409 valid at every depth.

1410 **Definition B.13** (Transformer Language Model). Let \mathcal{V} denote a finite vocabulary and $K \in \mathbb{N}$ a
 1411 fixed context length. A Transformer Language Model with L layers is the composition of an embed-
 1412 ding layer (Definition B.3), a Transformer with L blocks (Definition B.12), and an Unembedding
 1413 Layer (Definition B.10).

1414 Formally, it is a parameterized function

$$f : \mathcal{V}^{\leq K} \times \mathbb{R}^p \rightarrow \Delta^{|\mathcal{V}|-1}$$

1417 defined as follows. Without loss of generality, consider $\theta = (\theta_1 \in \mathbb{R}^{p_1}, \theta_2 \in \mathbb{R}^{p_2}, \theta_3 \in \mathbb{R}^{p_3}) \in \mathbb{R}^p$,
 1418 which collects all the model parameters.

1419 For an input sequence $s = \langle s_1, \dots, s_T \rangle$ with $T \leq K$:

$$\mathbf{H}(s; \theta) = \text{Emb}(s; \theta_1) \quad (embedding) \quad (28)$$

$$\mathbf{r}(s; \theta) = \left(\text{Tr}_{|s|} \left(\mathbf{H}(s; \theta); \theta_2 \right) \right)_{|s|} \quad (last-token\ representation) \quad (29)$$

$$f(s; \theta) = \text{UnEmb} \left(\mathbf{r}(s; \theta); \theta_3 \right) \quad (next-token\ prediction) \quad (30)$$

1426 Then, the probability of the next-token being \mathcal{V}_i is given by:

$$\Pr [s_{T+1} = \mathcal{V}_i \mid s] = (f(s; \theta))_i, \quad \forall i \in [|\mathcal{V}|]. \quad (31)$$

1429 **Proposition B.1** (Equivalence of masked and projection causal softmax). For any logits $\mathbf{Z} \in \mathbb{R}^{T \times T}$,
 1430 let \mathbf{M} and \mathbf{L} be as in Definitions B.6–B.7. Then, row-wise,

$$\text{softmax}(\mathbf{Z} + \mathbf{M}) = \text{RN}(\mathbf{L} \odot \exp \mathbf{Z}).$$

1433 Consequently, the two definitions of the Causal Self-Attention are identical.

1435 *Proof.* Fix a row i . By the mask:

$$[\text{softmax}(\mathbf{Z} + \mathbf{M})]_{ij} = \begin{cases} \frac{e^{\mathbf{Z}_{ij}}}{\sum_{k \leq i} e^{\mathbf{Z}_{ik}}}, & j \leq i, \\ 0, & j > i, \end{cases}$$

1440 interpreting $-\infty$ via a limit. On the other hand, it holds that:

$$[\mathbf{L} \odot \exp \mathbf{Z}]_{ij} = \mathbb{I}_{j \leq i} e^{\mathbf{Z}_{ij}}.$$

1443 Therefore, $\mathbf{L} \odot \exp \mathbf{Z}$ keeps exactly the entries with $j \leq i$. Then, for each row, row normalization
 1444 divides the kept entries by the same positive sum $\sum_{k \leq i} e^{\mathbf{Z}_{ik}}$ and leaves the others at 0, yielding the
 1445 same row as above. This holds for every row i , proving the identity. \square

1446 **Proposition B.2** (Embedding layer is real-analytic in the parameters). Fix a sequence $s =$
 1447 $\langle s_1, \dots, s_T \rangle \in \mathcal{V}^{\leq K}$ with $T = |s|$. Consider the map

$$(\mathbf{E}, \mathbf{P}) \mapsto \text{Emb}(s) = \mathbf{E}(s) + \text{PE}(s) \in \mathbb{R}^{T \times d}, \quad \mathbf{E} \in \mathbb{R}^{|\mathcal{V}| \times d}, \mathbf{P} \in \mathbb{R}^{K \times d}.$$

1450 Then this map is real-analytic on $\mathbb{R}^{|\mathcal{V}| \times d} \times \mathbb{R}^{K \times d}$ (in the sense of Definition A.2).

1452 *Proof.* Let $S_s \in \{0, 1\}^{T \times |\mathcal{V}|}$ select rows $\{s_i\}_{i=1}^T$, and $R_T \in \{0, 1\}^{T \times K}$ select the first T rows.
 1453 Then

$$\mathbf{E}(s) = S_s \mathbf{E}, \quad \text{PE}(s) = R_T \mathbf{P}, \quad \text{Emb}(s) = S_s \mathbf{E} + R_T \mathbf{P}.$$

1455 Each map $(\mathbf{E}, \mathbf{P}) \mapsto S_s \mathbf{E}$ and $(\mathbf{E}, \mathbf{P}) \mapsto R_T \mathbf{P}$ is a matrix product of a *constant* matrix with the
 1456 variable (*constant maps are real-analytic* as degree-0 polynomials by Proposition A.9; the product
 1457 is real-analytic by Proposition A.10). Their sum is real-analytic by closure under addition (Proposi-
 1458 tion A.1). Hence $(\mathbf{E}, \mathbf{P}) \mapsto \text{Emb}(s)$ is real-analytic. \square

1458 **Proposition B.3** (Joint real-analyticity of core modules and stacks). *Assume the pointwise activation*
 1459 *$\sigma : \mathbb{R} \rightarrow \mathbb{R}$ used in the MLP is real-analytic (e.g., tanh, GELU). Fix $T \in [K]$. For notational*
 1460 *convenience define the parameter tuples*

1461 $\Theta_{\text{attn}} := \left(\{\mathbf{Q}^{(h)}, \mathbf{K}^{(h)}, \mathbf{V}^{(h)}\}_{h=1}^H, \mathbf{W}^O \right), \quad \Theta_{\text{LN}}^{(1)} := (\gamma^{(1)}, \beta^{(1)}), \quad \Theta_{\text{LN}}^{(2)} := (\gamma^{(2)}, \beta^{(2)}),$
 1462 $\Theta_{\text{mlp}} := \left(\{\mathbf{W}^{(m)}, \mathbf{b}^{(m)}\}_{m=1}^M \right), \quad \Theta_{\text{TB}} := (\Theta_{\text{attn}}, \Theta_{\text{LN}}^{(1)}, \Theta_{\text{LN}}^{(2)}, \Theta_{\text{mlp}}), \quad \Theta_{\text{Tr},T} := (\Theta_{\text{TB}}^{(1)}, \dots, \Theta_{\text{TB}}^{(L)}).$

1463 *Then the following maps are jointly real-analytic in their inputs and parameters:*

1. **MLP.** $(\mathbf{x}, \Theta_{\text{mlp}}) \mapsto \text{mlp}_M(\mathbf{x})$ is real-analytic: each affine layer $(\mathbf{W}, \mathbf{b}, \mathbf{x}) \mapsto \mathbf{W}\mathbf{x} + \mathbf{b}$ is a matrix product plus addition (Proposition A.10 and Proposition A.1); the activation σ is real-analytic by assumption, and composition preserves real-analyticity (Proposition A.2). Iteration over M layers is repeated composition (Proposition A.2).
2. **Layer Normalization.** $(\mathbf{x}, \gamma, \beta) \mapsto \text{LN}(\mathbf{x}) = \gamma \odot \frac{\mathbf{x} - \mu_{\mathbf{x}}}{\sqrt{\sigma_{\mathbf{x}}^2 + \varepsilon}} + \beta$ is real-analytic: $\mu_{\mathbf{x}}$ and $\sigma_{\mathbf{x}}^2$ are (entrywise) polynomials in \mathbf{x} (Proposition A.9); $g(\mathbf{x}) = \sigma_{\mathbf{x}}^2 + \varepsilon$ satisfies $g(\mathbf{x}) > 0$ (definition of $\varepsilon > 0$), and the scalar map $h(t) = t^{-1/2}$ is real-analytic on $(0, \infty)$ (classical binomial series). Thus $h \circ g$ is real-analytic (Proposition A.2); division by $g^{1/2}$ is a quotient by a nonvanishing real-analytic function (Proposition A.1); Hadamard scaling by γ and addition of β preserve real-analyticity (Proposition A.11 and Proposition A.1). Row-wise application is handled by stacking (Proposition A.12) and the vectorization equivalence (Lemma A.1).
3. **Unembedding.** $(\mathbf{h}, \mathbf{U}, \gamma, \beta) \mapsto \text{softmax}(\mathbf{U} \text{LN}(\mathbf{h}))$ is real-analytic: LN is real-analytic by (2); multiplication by \mathbf{U} is real-analytic (Proposition A.10); softmax is real-analytic (Proposition A.7); the overall map is a composition (Proposition A.2) and stacking across coordinates (Proposition A.12).
4. **Self-Attention (vanilla or causal) and Multi-Head.** Let $\mathbf{Z} = \frac{1}{\sqrt{d_{\eta}}} (\mathbf{XQ})(\mathbf{XK})^{\top}$.

1485 (a) Vanilla SA: $(\mathbf{X}, \mathbf{Q}, \mathbf{K}, \mathbf{V}) \mapsto \text{softmax}(\mathbf{Z})\mathbf{X}\mathbf{V}$ is real-analytic by: matrix products (Proposition A.10), scaling, row-wise softmax (Proposition A.7 with stacking, Proposition A.12, and Lemma A.1), and a final matrix product.

1486 (b) Causal SA (projection form): With \mathbf{L} unit lower-triangular and using Definition B.7,

$$(\mathbf{X}, \mathbf{Q}, \mathbf{K}, \mathbf{V}) \mapsto \text{RN}(\mathbf{L} \odot \exp \mathbf{Z})\mathbf{X}\mathbf{V}$$

1487 is real-analytic: \exp is real-analytic (Proposition A.5); Hadamard scaling by fixed \mathbf{L} is real-analytic (Proposition A.11); by Remark 11, every row of $\mathbf{L} \odot \exp(\mathbf{Z})$ sums to a strictly positive value (the diagonal term), so the argument lies in the domain \mathcal{D}_T of Proposition A.8; hence RN is real-analytic there; the final multiplication by $\mathbf{X}\mathbf{V}$ is real-analytic (Proposition A.10).

1488 Therefore, each single attention head is real-analytic whether it is vanilla or causal (projection). For Multi-Head Self-Attention (Definition B.8), horizontal concatenation across heads is 1489 real-analytic (Proposition A.12), and the output projection by \mathbf{W}^O is a matrix product (Proposition A.10). Hence $(\mathbf{X}, \Theta_{\text{attn}}) \mapsto \text{attn}_H(\mathbf{X})$ is real-analytic regardless of which attention variant 1490 each head uses.

5. **Transformer Block (fixed T).** $(\mathbf{X}, \Theta_{\text{TB}}) \mapsto \text{TB}(\mathbf{X}) \in \mathbb{R}^{T \times d}$ is real-analytic: apply LN row-wise to get $\bar{\mathbf{X}}$ (item 2 with stacking, Proposition A.12, and Lemma A.1); apply attention (item 4) to $\bar{\mathbf{X}}$; add the residual (closure under addition, Proposition A.1); apply LN row-wise to get $\bar{\mathbf{H}}$ (item 2 with stacking and Lemma A.1); apply the row-wise MLP (item 1 with stacking, Proposition A.12); add the residual again (Proposition A.1). All intermediate matrix multiplications use Proposition A.10, and the overall structure is a composition (Proposition A.3 via Lemma A.1).
6. **Transformer (fixed T).** $(\mathbf{X}, \Theta_{\text{Tr},T}) \mapsto \text{Tr}_T(\mathbf{X}) = \text{TB}^{(L)} \circ \dots \circ \text{TB}^{(1)}(\mathbf{X})$ is a composition of real-analytic maps from (5), hence real-analytic by Proposition A.3.

1509 All statements extend from vector-valued to matrix-valued, row-wise applications via Proposition A.12 and Lemma A.1, and every sum/product/quotient/composition step above invokes Proposition A.1, Proposition A.10, and Proposition A.3 as indicated.

1512 **C ALMOST SURE INJECTIVITY**

1514 This section establishes a foundational structural result: for causal Transformer Language Models
 1515 with standard architectural widths and at least one attention head per block, the final hidden state
 1516 at the last token is almost surely injective with respect to the input sequence, assuming the model
 1517 parameters are drawn from any absolutely continuous distribution at initialization. Crucially, we
 1518 show this injectivity is preserved after any finite number of gradient descent (GD) updates.

1519 We organize the section in two parts; **(i)** Measure-zero collisions via real-analyticity and a witness
 1520 construction and **(ii)** Preservation of absolute continuity under gradient descent. Each piece builds
 1521 toward the main theorem, which asserts that under mild width and head assumptions, the Trans-
 1522 former map from input sequences to last-token representations is injective almost surely, even after
 1523 multiple rounds of training. The main theorem follows.

1524 **Assumption C.1** (Minimum Embedding Dimension). *We assume the embedding dimension satisfies*
 1525 $d \geq 4$ *and* $d_\eta \geq 1$. *Furthermore, we assume that each transformer block has at least one attention*
 1526 *head. These conditions are trivially satisfied in practice: for modern large language models, embed-*
 1527 *ding dimensions are typically in the hundreds or thousands, and each layer has multiple attention*
 1528 *heads, so the assumptions impose no practical restrictions on the models under consideration.*

1529 **Theorem C.1** (Finite-horizon a.s. injectivity under GD). *Fix a finite vocabulary \mathcal{V} , a context bound*
 1530 $K \in \mathbb{N}$, *a time horizon $T \in \mathbb{N}$, and consider the causal Transformer Language Model (TLM)*
 1531 *of Definition B.13 under Assumption C.1. Let $\{(s_t \in \mathcal{V}^{\leq K}, p_t \in \Delta^{|\mathcal{V}|-1})\}_{t=1}^T$ be any sequence*
 1532 *of samples and let $\{\eta_t \in (0, 1)\}_{t=1}^T$ be any sequence of step-sizes. Assume the parameters are*
 1533 *randomly initialized and updated by gradient descent:*

$$\theta_0 \sim \mu, \quad \mu \ll \text{Leb}_p,$$

$$\theta_{t+1} = \theta_t - \eta_t \nabla \mathcal{L}_{s_t, p_t}(\theta_t),$$

1535 where Leb_p denotes Lebesgue measure on \mathbb{R}^p and $\mathcal{L}_{s, p} : \mathbb{R}^p \rightarrow \mathbb{R}$ is the standard cross-entropy loss

$$\mathcal{L}_{s, p}(\theta) = \text{CrossEntropy}(f(s; \theta), p).$$

1536 Then, with probability one over the draw of θ_0 , the last-token, last-layer representation map

$$\mathcal{V}^{\leq K} \ni s \longmapsto r(s; \theta_T) \in \mathbb{R}^d$$

1537 is injective. Equivalently,

$$\Pr [\exists s \neq t \in \mathcal{V}^{\leq K} : r(s; \theta_T) = r(t; \theta_T)] = 0,$$

1538 where $r(\cdot; \theta_T)$ denotes the last-token representation defined in Equation 29.

1539 *Proof.*

1540 Let $\theta_0 \sim \mu$ with $\mu \ll \text{Leb}_p$. For a fixed training horizon T , define the *GD update map*

$$\Phi : \mathbb{R}^p \rightarrow \mathbb{R}^p, \quad \Phi(\theta_0) = \theta_T,$$

1541 i.e. Φ is the composition of T gradient-descent steps with step sizes $\{\eta_t\}_{t=1}^T \subset (0, 1)$ on the loss \mathcal{L} .

1542 **1) Absolute continuity after T steps.** By Corollary C.5.1, since $\mu \ll \text{Leb}_p$, the pushforward law
 1543 $\Phi_\# \mu$ of θ_T remains absolutely continuous:

$$\theta_T \sim \Phi_\# \mu \ll \text{Leb}_p.$$

1544 **2) Global almost-sure distinctness.** Let $\mathcal{S} := \mathcal{V}^{\leq K}$, which is finite. By Corollary C.2.1, under any
 1545 absolutely continuous parameter law,

$$\Pr [r(s; \theta_T) \neq r(t; \theta_T) \quad \forall s \neq t \in \mathcal{V}^{\leq K}] = 1.$$

1546 Thus the map $s \mapsto r(s; \theta_T)$ is injective almost surely, as claimed. \square

1566
1567

C.1 ABSOLUTE CONTINUITY ENSURES ALMOST SURE INJECTIVITY

1568
1569
1570

We begin by fixing two distinct sequences and asking when their last-token representations can coincide. As before, in this subsection we will consider a finite vocabulary \mathcal{V} and a finite context window $K \in \mathbb{N}$. Additionally, recall that for $\theta = (\theta_1, \theta_2, \theta_3) \in \mathbb{R}^p$:

1571
1572

$$\mathbf{r}(u; \theta) := \left(\text{Tr}_{|u|}(\text{Emb}(u; \theta_1); \theta_2) \right)_{|u|} \in \mathbb{R}^d,$$

1573
1574
1575

and for $s \neq t$, we define the discrepancy:

$$h(\theta) := \|\mathbf{r}(s; \theta) - \mathbf{r}(t; \theta)\|_2^2.$$

1576
1577
1578

By [Proposition B.3](#), this map is real-analytic. To invoke the zero-set theorem, it suffices to show that $h \not\equiv 0$. We construct a parameter configuration θ_* such that $\mathbf{r}(s; \theta_*) \neq \mathbf{r}(t; \theta_*)$, treating two exhaustive cases:

1579
1580
1581
1582
1583

- **Case A:** If the sequences differ at their final token or in length, we isolate this distinction via selective initialization of embeddings and positional encodings.
- **Case B:** If they differ earlier, we construct orthogonal embeddings and exploit attention heads to differentiate the contributions to the final representation.

1584
1585
1586
1587

In both cases, we demonstrate explicit parameter settings under which the discrepancy is nonzero. This confirms $h \not\equiv 0$, and the zero set $\{\theta : \mathbf{r}(s; \theta) = \mathbf{r}(t; \theta)\}$ has measure zero by [Theorem A.1](#). Hence, if the parameter distribution is absolutely continuous, the probability of a collision is zero. A union bound extends this to any finite set of inputs.

1588
1589
1590

Theorem C.2 (Almost-sure pairwise distinctness of last-token representations). *Let the parameter vector $\theta \in \mathbb{R}^p$ be drawn from any distribution absolutely continuous with respect to Lebesgue measure. Then, for any fixed $s \neq t$,*

1591
1592

$$\Pr[\mathbf{r}(s; \theta) = \mathbf{r}(t; \theta)] = 0.$$

1593
1594
1595
1596

Proof. Let $T_s = |s|$ and $T_t = |t|$, and $h(\theta) := \|\mathbf{r}(s; \theta) - \mathbf{r}(t; \theta)\|_2^2$. Since h is real-analytic ([Proposition B.3](#)), it suffices to show that it is not the zero function on \mathbb{R}^p ; then $h^{-1}(\{0\})$ has Lebesgue measure zero by [Theorem A.1](#), and absolute continuity transfers this to probability zero.

1597
1598
1599
1600

We construct a parameter setting θ_* for which $h(\theta_*) > 0$, treating two exhaustive cases:

Case A: $T_s \neq T_t$ or $s_{T_s} \neq t_{T_t}$. Set all Transformer parameters to zero so that the network acts as the identity: $\text{Tr}_T(\mathbf{X}) = \mathbf{X}$.

1601
1602
1603

- If $s_{T_s} \neq t_{T_t}$, set $\mathbf{E}_{s_{T_s}} = \mathbf{e}_1$, $\mathbf{E}_{t_{T_t}} = \mathbf{e}_2 \neq \mathbf{e}_1$, and all other rows of \mathbf{E} to zero. Set $\mathbf{P} = \mathbf{0}_{K \times d}$. Then $\mathbf{r}(s; \theta_*) = \mathbf{e}_1$, $\mathbf{r}(t; \theta_*) = \mathbf{e}_2$, so $h(\theta_*) = \|\mathbf{e}_1 - \mathbf{e}_2\|_2^2 > 0$.
- If $T_s \neq T_t$, set $\mathbf{E} = \mathbf{0}_{|\mathcal{V}| \times d}$ and $\mathbf{P}_{T_s} = \mathbf{e}_1$, $\mathbf{P}_{T_t} = \mathbf{e}_2 \neq \mathbf{e}_1$ (all others zero). Then, again, $\mathbf{r}(s; \theta_*) = \mathbf{e}_1$, $\mathbf{r}(t; \theta_*) = \mathbf{e}_2$, so $h(\theta_*) > 0$.

1606
1607
1608

Case B: $T := T_s = T_t$ and $s_T = t_T$, but $s_i \neq t_i$ for some $i \in [T-1]$. Let i^* be the smallest such index. Note $T \geq 2$.

1609
1610

We construct a model with (i) all blocks after the first set to identity (zero parameters), (ii) in the first block, all heads set to zero except head 1 and the MLP is zero.

1611
1612
1613

We explicitly construct embeddings and head-1 parameters $(\mathbf{Q}, \mathbf{K}, \mathbf{V})$, as well as the output projection \mathbf{W}^O , so that $\mathbf{r}(s; \theta_*) \neq \mathbf{r}(t; \theta_*)$.

1614
1615
1616
1617

1) Embedding Construction. Choose orthogonal vectors $\mathbf{e}, \mathbf{p}, \mathbf{q} \in \mathbb{R}^d$ satisfying:

$$\langle \mathbf{e}, \mathbf{p} \rangle = \langle \mathbf{e}, \mathbf{q} \rangle = \langle \mathbf{p}, \mathbf{q} \rangle = 0, \quad \langle \mathbf{1}_d, \mathbf{e} \rangle = \langle \mathbf{1}_d, \mathbf{p} \rangle = \langle \mathbf{1}_d, \mathbf{q} \rangle = 0, \quad \|\mathbf{e}\|_2 = \|\mathbf{p}\|_2 = \|\mathbf{q}\|_2 = 1.$$

Such vectors exist due to [Assumption C.1](#) (requires $d \geq 4$). Set embeddings:

1618
1619

$$\mathbf{E}_v = \begin{cases} \mathbf{e}, & v \in \{s_{i^*}, s_T\} \\ \mathbf{0}_d, & \text{otherwise} \end{cases}, \quad \mathbf{P}_j = \begin{cases} \mathbf{p}, & j = i^* \\ \mathbf{q}, & j = T \\ \mathbf{0}_d, & \text{otherwise} \end{cases}.$$

1620 Thus, the input rows before LayerNorm are:
 1621

$$1622 \quad \left[\mathbf{H}(\mathbf{s}; \boldsymbol{\theta}_*) \right]_j = \begin{cases} \mathbf{e} + \mathbf{p}, & j = i^* \\ \mathbf{e} + \mathbf{q}, & j = T \\ \in \{\mathbf{e}, \mathbf{0}_d\}, & \text{otherwise} \end{cases}, \quad \left[\mathbf{H}(\mathbf{t}; \boldsymbol{\theta}_*) \right]_j = \begin{cases} \mathbf{p}, & j = i^* \\ \mathbf{e} + \mathbf{q}, & j = T \\ \in \{\mathbf{e}, \mathbf{0}_d\}, & \text{otherwise} \end{cases}.$$

$$1623$$

$$1624$$

$$1625$$

1626 **2) LayerNorm Output.** Use LayerNorm with $(\gamma, \beta) = (\mathbf{1}, \mathbf{0})$. Since all components have zero
 1627 mean, the normalization is:

$$1628 \quad \text{LN}(\mathbf{x}) = \frac{\mathbf{x}}{\sqrt{\frac{1}{d}\|\mathbf{x}\|^2 + \varepsilon}} =: c(\mathbf{x})\mathbf{x}.$$

$$1629$$

$$1630$$

$$1631$$

1632 Define:

$$1633 \quad c_{ep} := \left(\frac{2}{d} + \varepsilon\right)^{-1/2}, \quad c_e := \left(\frac{1}{d} + \varepsilon\right)^{-1/2}.$$

$$1634$$

1635 Then:

$$1636 \quad \left[\bar{\mathbf{H}}(\mathbf{s}; \boldsymbol{\theta}_*) \right]_j = \begin{cases} c_{ep}(\mathbf{e} + \mathbf{p}), & j = i^* \\ c_{ep}(\mathbf{e} + \mathbf{q}), & j = T \\ \in \{\mathbf{0}_d, c_e \mathbf{e}\}, & \text{otherwise} \end{cases}, \quad \left[\bar{\mathbf{H}}(\mathbf{t}; \boldsymbol{\theta}_*) \right]_j = \begin{cases} c_e \mathbf{p}, & j = i^* \\ c_{ep}(\mathbf{e} + \mathbf{q}), & j = T \\ \in \{\mathbf{0}_d, c_e \mathbf{e}\}, & \text{otherwise} \end{cases}.$$

$$1637$$

$$1638$$

$$1639$$

1640 **3) Head Parameters.** Let $\mathbf{e}_1 \in \mathbb{R}^{d_\eta}$ be the first standard basis vector. Set:

$$1641 \quad \mathbf{Q} = \alpha \mathbf{e} \mathbf{e}_1^\top, \quad \mathbf{K} = \beta \mathbf{p} \mathbf{e}_1^\top, \quad \mathbf{V} = \mathbf{e} \mathbf{e}_1^\top,$$

$$1642$$

1643 where $\alpha, \beta > 0$ are scalars to be chosen.

1644 Then for any j , attention vectors are:

$$1645 \quad \mathbf{q}_j = \alpha \left\langle \left[\bar{\mathbf{H}}(\cdot; \boldsymbol{\theta}_*) \right]_j, \mathbf{e} \right\rangle \mathbf{e}_1, \quad \mathbf{k}_j = \beta \left\langle \left[\bar{\mathbf{H}}(\cdot; \boldsymbol{\theta}_*) \right]_j, \mathbf{p} \right\rangle \mathbf{e}_1, \quad \mathbf{v}_j = \left\langle \left[\bar{\mathbf{H}}(\cdot; \boldsymbol{\theta}_*) \right]_j, \mathbf{e} \right\rangle \mathbf{e}_1.$$

$$1646$$

$$1647$$

$$1648$$

1649 At row T , $\mathbf{q}_T^{(s)} = \mathbf{q}_T^{(t)} = \alpha c_{ep} \mathbf{e}_1$. Only the key at i^* is nonzero:

$$1650 \quad \mathbf{k}_{i^*}^{(s)} = \beta c_{ep} \mathbf{e}_1, \quad \mathbf{k}_{i^*}^{(t)} = \beta c_e \mathbf{e}_1.$$

$$1651$$

$$1652$$

1653 Value vectors at i^* differ:

$$1654 \quad \mathbf{v}_{i^*}^{(s)} = c_{ep} \mathbf{e}_1, \quad \mathbf{v}_{i^*}^{(t)} = \mathbf{0}_d.$$

$$1655$$

1656 And $\mathbf{v}_T^{(s)} = \mathbf{v}_T^{(t)} = c_{ep} \mathbf{e}_1$.

1657 **4) Attention Weights.** The only nonzero score is at i^* :

$$1658 \quad \mathbf{S}_{T,i^*}^{(s)} = \frac{\alpha\beta}{\sqrt{d_\eta}} c_{ep}^2, \quad \mathbf{S}_{T,i^*}^{(t)} = \frac{\alpha\beta}{\sqrt{d_\eta}} c_{ep} c_e, \quad \mathbf{S}_{T,j}^{(\cdot)} = 0 \text{ for } j \neq i^*.$$

$$1659$$

$$1660$$

1661 Fix $\delta \in (0, \frac{1}{2})$ and define $L := \log(\frac{1-\delta}{\delta}(T-1))$. Set $\alpha\beta = \sqrt{d_\eta}L/c_{ep}^2$, so $\mathbf{S}_{T,i^*}^{(s)} = L$ and
 1662 $\mathbf{S}_{T,i^*}^{(t)} > L$. Then:

$$1663 \quad \mathbf{A}_{T,i^*}^{(s)} \geq 1 - \delta, \quad \mathbf{A}_{T,i^*}^{(t)} > 1 - \delta, \quad \mathbf{A}_{T,j}^{(\cdot)} \leq \frac{\delta}{T-1} \text{ for } j \neq i^*.$$

$$1664$$

$$1665$$

$$1666$$

1667 **5) Self-Attention Output.**

$$1668 \quad \mathbf{y}_T^{(s)} = (1 - \delta) c_{ep} \mathbf{e}_1 + \sum_{j \neq i^*} \mathbf{A}_{T,j}^{(s)} \mathbf{v}_j^{(s)}, \quad \mathbf{y}_T^{(t)} = \sum_{j \neq i^*} \mathbf{A}_{T,j}^{(t)} \mathbf{v}_j^{(t)}.$$

$$1669$$

$$1670$$

1671 Tails are bounded by:

$$1672 \quad \left\| \sum_{j \neq i^*} \mathbf{A}_{T,j}^{(\cdot)} \mathbf{v}_j^{(\cdot)} \right\|_2 \leq \delta c_e.$$

$$1673$$

1674 Since both outputs lie in $\text{span}\{\mathbf{e}_1\}$, we compare:
 1675

$$\langle \mathbf{y}_T^{(s)} - \mathbf{y}_T^{(t)}, \mathbf{e}_1 \rangle \geq (1 - \delta)c_{ep} - 2\delta c_e.$$

1677 Choosing $\delta < \frac{c_{ep}}{c_{ep} + 2c_e}$ makes this strictly positive.
 1678

1679 **6) Output Projection and Propagation.** Let \mathbf{W}^O be the matrix with $(\mathbf{W}^O)_{1,1} = 1$ and all other
 1680 entries zero. Then the head output is projected into coordinate 1, making the last row of the first
 1681 transformer block differ between s and t in the first coordinate. Since the original rows at T were
 1682 identical and the rest of the network is identity, this difference propagates to the final output, and we
 1683 get $\mathbf{r}(s; \theta_*) \neq \mathbf{r}(t; \theta_*)$.
 1684

□

1685 **Remark 12** (Causal Self-Attention). *The same construction works for causal self-attention. In our
 1686 setup, attention at position T only needs to consider tokens at positions $j \leq T$, and we only rely on
 1687 attention from T to $i^* < T$. All nonzero scores occur at these allowable indices, so causal masking
 1688 does not affect the computation or the argument.*
 1689

1690 **Corollary C.2.1** (Almost-sure global distinctness over a finite input family). *Let $\mathcal{S} \subseteq \mathcal{V}^{\leq K}$ be any
 1691 finite collection of inputs. If θ is drawn from a law absolutely continuous w.r.t. Leb_p , then*

$$\Pr[\mathbf{r}(s; \theta) \neq \mathbf{r}(t; \theta) \text{ for all distinct } s, t \in \mathcal{S}] = 1.$$

1692 In particular, the last-token representations are pairwise distinct almost surely across all inputs.
 1693

1694 *Proof.* For each unordered pair $\{s, t\} \subset \mathcal{S}$ with $s \neq t$, Theorem C.2 gives $\Pr[\mathbf{r}(s; \theta) = \mathbf{r}(t; \theta)] = 0$. By the union bound over the finitely many pairs ($\binom{|\mathcal{S}|}{2}$ in total),
 1695

$$\Pr[\exists s \neq t \in \mathcal{S} : \mathbf{r}(s; \theta) = \mathbf{r}(t; \theta)] \leq \sum_{s,t} \Pr[\mathbf{r}(s; \theta) = \mathbf{r}(t; \theta)] = 0.$$

1696 Hence the complement event has probability 1.
 1697

□

1698 **Remark 13** (Pointwise vs. last-token injectivity). *Sutter et al. (2025) establish a related but distinct
 1699 guarantee. They analyze the mapping from a prompt to the entire sequence (matrix) of hidden states,
 1700 which already rules out collisions for inputs of different lengths. Their result is pointwise injectivity:
 1701 if two prompts differ at position t , then the t -th hidden state (row) differs. This does not, by itself,
 1702 imply injectivity of the map to the final hidden state / last-token embedding that we study, so two
 1703 different prompts could still coincide at the last token—our quantity of operational interest.*
 1704

1705 C.2 ABSOLUTE CONTINUITY OF THE PARAMETER DISTRIBUTION IS PRESERVED UNDER GD

1706 Our goal in this subsection is to explain why absolute continuity of the parameter law at initialization
 1707 survives any finite number of gradient-descent (GD) steps, thereby allowing the almost-sure injectivity
 1708 argument from the previous subsection to persist throughout training. The story begins with
 1709 regularity: by Proposition B.3 and Proposition A.6, the loss $\mathcal{L}_{s,p}$ is real-analytic, and real-analyticity
 1710 is closed under differentiation and composition. Consequently the GD map $\phi(\theta) = \theta - \eta \nabla \mathcal{L}_{s,p}(\theta)$
 1711 is real-analytic, its Jacobian $D\phi(\theta) = \mathbf{I}_p - \eta \nabla^2 \mathcal{L}_{s,p}(\theta)$ is real-analytic, and so is $\theta \mapsto \det D\phi(\theta)$
 1712 (the determinant is a polynomial in the matrix entries). We then rule out the degenerate case by a
 1713 witness: at $\theta^* = \mathbf{0}_p$, our Hessian calculation (Lemma C.4) shows $\det D\phi(\theta^*) > 0$, hence $\det D\phi$
 1714 is not identically zero and its zero set $\mathcal{C} := \{\det D\phi = 0\}$ has Lebesgue measure zero by the
 1715 real-analytic zero-set theorem (Theorem A.1; summarized in Theorem C.3). On the complement
 1716 $\mathbb{R}^p \setminus \mathcal{C}$, the Inverse Function Theorem (Theorem A.2) provides, for every θ , a neighborhood on
 1717 which ϕ is a C^1 diffeomorphism. Although these neighborhoods form an a priori uncountable
 1718 cover, the second countability of \mathbb{R}^p (and of its subspaces) ensures a *countable* subcover of such
 1719 charts (Proposition A.15, Lemma C.5). This countability is crucial because it lets us pass from
 1720 local statements to a global measure statement via countable unions. With this cover in hand, the
 1721 change-of-variables formula on each chart (Theorem C.4) implies that the image under the local
 1722 inverse of any null set remains null; piecing the charts together and adding the null set \mathcal{C} shows that
 1723 preimages of Lebesgue-null sets under ϕ are null (Lemma C.6). Equivalently, ϕ pushes absolutely
 1724 continuous laws to absolutely continuous laws (Theorem C.5); iterating across finitely many GD
 1725

1728 steps preserves absolute continuity (Corollary C.5.1). Finally, combining this preservation with the
 1729 almost-sure pairwise distinctness of last-token representations over any finite input family (Corol-
 1730 lary C.2.1) yields the main consequence we need for training: the last-token representation map
 1731 remains injective almost surely after any finite GD horizon.

1732
 1733 **C.2.1 WITNESS CONSTRUCTION**

1734
 1735 **Lemma C.1** (Zero-gate through scalar loss). *Let $\mathcal{U} \subseteq \mathbb{R}^{m+q}$ be open and write points as $\mathbf{v} = (\xi, \psi)$
 1736 with $\xi \in \mathbb{R}^m$ and $\psi \in \mathbb{R}^q$. Let $\pi : \mathbb{R}^{m+q} \rightarrow \mathbb{R}^m$ be the projection $\pi(\xi, \psi) = \xi$. Consider*

1737
$$g \in C^2(\mathbb{R}^m ; \mathbb{R}^{n \times r}), \quad h \in C^2(\mathcal{U} ; \mathbb{R}^r),$$

1738 and define $f : \mathcal{U} \rightarrow \mathbb{R}^n$ by

1739
$$f(\xi, \psi) := g(\xi) h(\xi, \psi) = g(\pi(\xi, \psi)) h(\xi, \psi).$$

1740 Let $\mathcal{L} \in C^2(\mathbb{R}^n ; \mathbb{R})$ and set

1741
$$R := \mathcal{L} \circ f : \mathcal{U} \rightarrow \mathbb{R}, \quad R(\xi, \psi) = \mathcal{L}(g(\xi) h(\xi, \psi)).$$

1742 Fix $\mathbf{v}_0 = (\xi_0, \psi_0) \in \mathcal{U}$ and assume $g(\xi_0) = \mathbf{0}_{n \times r}$. Then the Hessian of R at \mathbf{v}_0 has block form

1743
$$\nabla^2 R(\mathbf{v}_0) = \begin{pmatrix} \nabla_{\xi\xi}^2 R(\mathbf{v}_0) & \nabla_{\xi\psi}^2 R(\mathbf{v}_0) \\ \nabla_{\psi\xi}^2 R(\mathbf{v}_0) & \nabla_{\psi\psi}^2 R(\mathbf{v}_0) \end{pmatrix} = \begin{pmatrix} \nabla_{\xi\xi}^2 R(\mathbf{v}_0) & \mathbf{0}_{m \times q} \\ \mathbf{0}_{q \times m} & \mathbf{0}_{q \times q} \end{pmatrix}.$$

1744 i.e. all mixed and ψ -only second partials vanish.

1745 *Proof.*

1746 1) Introduce the bilinear multiplication map $\mu : \mathbb{R}^{n \times r} \times \mathbb{R}^r \rightarrow \mathbb{R}^n$, $\mu(\mathbf{M}, \mathbf{y}) = \mathbf{M}\mathbf{y}$, and the C^2
 1747 map $H : \mathcal{U} \rightarrow \mathbb{R}^{n \times r} \times \mathbb{R}^r$, $H(\xi, \psi) = (g(\xi), h(\xi, \psi))$. Then $f = \mu \circ H$ and we write:

1748
$$g_0 := g(\xi_0) = \mathbf{0}_{n \times r} \quad h_0 := h(\xi_0, \psi_0) \quad H(\mathbf{v}_0) = (g_0, h_0).$$

1749 Because μ is bilinear, $D\mu(\mathbf{M}, \mathbf{y})[(\Delta\mathbf{M}, \Delta\mathbf{y})] = \Delta\mathbf{M}\mathbf{y} + \mathbf{M}\Delta\mathbf{y}$. By the chain rule:

1750
$$\begin{aligned} Df(\mathbf{v}_0)[(\mathbf{h}_\xi, \mathbf{h}_\psi)] &= D\mu(g_0, h_0) \left[Dg(\xi_0)[\mathbf{h}_\xi], Dh(\mathbf{v}_0)[(\mathbf{h}_\xi, \mathbf{h}_\psi)] \right] \\ &= Dg(\xi_0)[\mathbf{h}_\xi] h_0 + \underbrace{g_0}_{\mathbf{0}_{n \times r}} Dh(\mathbf{v}_0)[(\mathbf{h}_\xi, \mathbf{h}_\psi)] \\ &= Dg(\xi_0)[\mathbf{h}_\xi] h_0. \end{aligned}$$

1751 In particular, $Df(\mathbf{v}_0)[(\mathbf{0}_m, \cdot)] = \mathbf{0}_n$. The second-order chain rule for Fréchet derivatives (e.g.
 1752 [Magnus & Neudecker 2019](#), Thm. 18.4) yields:

1753
$$D^2 f(\mathbf{v}_0)[\mathbf{h}, \mathbf{k}] = D^2 \mu(H(\mathbf{v}_0)) \left[DH(\mathbf{v}_0)[\mathbf{h}], DH(\mathbf{v}_0)[\mathbf{k}] \right] + D\mu(H(\mathbf{v}_0)) \left[D^2 H(\mathbf{v}_0)[\mathbf{h}, \mathbf{k}] \right].$$

1754 Because μ is bilinear, $D^2 \mu \equiv \mathbf{0}$ and the first term is 0. Furthermore,

1755
$$D^2 H(\mathbf{v}_0)[\mathbf{h}, \mathbf{k}] = \left(D^2 g(\xi_0)[\mathbf{h}_\xi, \mathbf{k}_\xi], D^2 h(\mathbf{v}_0)[(\mathbf{h}_\xi, \mathbf{h}_\psi), (\mathbf{k}_\xi, \mathbf{k}_\psi)] \right),$$

1756 and it holds that:

1757
$$\begin{aligned} D^2 f(\mathbf{v}_0)[\mathbf{h}, \mathbf{k}] &= D\mu(g_0, h_0) \left[D^2 g(\xi_0)[\mathbf{h}_\xi, \mathbf{k}_\xi], D^2 h(\mathbf{v}_0)[(\mathbf{h}_\xi, \mathbf{h}_\psi), (\mathbf{k}_\xi, \mathbf{k}_\psi)] \right] \\ &= \left(D^2 g(\xi_0)[\mathbf{h}_\xi, \mathbf{k}_\xi] \right) h_0 + \underbrace{g_0}_{\mathbf{0}_{n \times r}} \left(D^2 h(\mathbf{v}_0)[(\mathbf{h}_\xi, \mathbf{h}_\psi), (\mathbf{k}_\xi, \mathbf{k}_\psi)] \right) \\ &= \left(D^2 g(\xi_0)[\mathbf{h}_\xi, \mathbf{k}_\xi] \right) h_0. \end{aligned}$$

1758 If at least one of the two directions has ξ -component zero, then $D^2 g(\xi_0)[\mathbf{h}_\xi, \mathbf{k}_\xi] = \mathbf{0}$, so the bilinear
 1759 form vanishes.

1782 2) Apply the second-order chain rule to $R = \mathcal{L} \circ f$ at \mathbf{v}_0 :

$$1783 D^2 R(\mathbf{v}_0)[\mathbf{h}, \mathbf{k}] = D^2 \mathcal{L}(f(\mathbf{v}_0)) [Df(\mathbf{v}_0)[\mathbf{h}], Df(\mathbf{v}_0)[\mathbf{k}]] + D\mathcal{L}(f(\mathbf{v}_0)) [D^2 f(\mathbf{v}_0)[\mathbf{h}, \mathbf{k}]]. \quad (\star)$$

1784 By (1), if at least one of the two directions is pure ψ , both terms on the right-hand side of vanish.
1785 Therefore

$$1786 D^2 R(\mathbf{v}_0)[\mathbf{h}, \mathbf{k}] = 0 \quad \text{whenever at least one of } \mathbf{h}, \mathbf{k} \text{ is of the form } (\mathbf{0}_m, \cdot).$$

1788 Invoking [Proposition A.14](#), this is exactly the statement that the $\xi\psi$, $\psi\xi$ and $\psi\psi$ Hessian blocks are
1789 0. The remaining block $\nabla_{\xi\xi}^2 R(\mathbf{v}_0)$ is whatever is induced by (\star) for pairs

$$1790 (\mathbf{h}, \mathbf{k}) = ((\mathbf{h}_\xi, \mathbf{0}_q), (\mathbf{k}_\xi, \mathbf{0}_q)).$$

□

1793 **Lemma C.2** (Spectrum under block-diagonal extension). *Let $f \in C^2(\mathbb{R}^{m+q}; \mathbb{R})$, and fix $\mathbf{v} =$
1794 $(\xi_0, \psi_0) \in \mathbb{R}^{m+q}$. Assume the Hessian of f at \mathbf{v} has the block form*

$$1795 \mathbf{H} := \nabla^2 f(\mathbf{v}) = \begin{pmatrix} \mathbf{B} & \mathbf{0}_{m \times q} \\ \mathbf{0}_{q \times m} & \mathbf{0}_{q \times q} \end{pmatrix}, \quad \mathbf{B} \in \mathbb{R}^{m \times m}.$$

1798 Then the characteristic polynomial factorizes as

$$1799 \chi_{\mathbf{H}}(\lambda) := \det(\lambda \mathbf{I}_{m+q} - \mathbf{H}) = \det(\lambda \mathbf{I}_m - \mathbf{B}) \lambda^q.$$

1800 Consequently,

$$1802 \sigma(\mathbf{H}) = \sigma(\mathbf{B}) \cup \{0\}, \quad \text{and} \quad \text{mult}_{\mathbf{H}}(0) = \text{mult}_{\mathbf{B}}(0) + q,$$

1803 i.e., the spectrum of H consists of the eigenvalues of B together with q additional zeros, and the
1804 algebraic multiplicity of the eigenvalue 0 for H equals that for B plus q .

1806 *Proof.* Since \mathbf{H} is block diagonal,

$$1807 \lambda \mathbf{I}_{m+q} - \mathbf{H} = \begin{pmatrix} \lambda \mathbf{I}_m - \mathbf{B} & \mathbf{0}_{m \times q} \\ \mathbf{0}_{q \times m} & \lambda \mathbf{I}_q \end{pmatrix}.$$

1810 The determinant of a block triangular (in particular block diagonal) matrix equals the product of the
1811 determinants of its diagonal blocks (e.g. [Horn & Johnson 2013](#), Cor. 0.8.5). Hence

$$1812 \chi_{\mathbf{H}}(\lambda) = \det(\lambda \mathbf{I}_m - \mathbf{B}) \cdot \det(\lambda \mathbf{I}_q) = \det(\lambda \mathbf{I}_m - \mathbf{B}) \cdot \lambda^q.$$

1813 The zeros of $\chi_{\mathbf{H}}$ are the eigenvalues of \mathbf{H} counted with algebraic multiplicity, which yields $\sigma(\mathbf{H}) =$
1814 $\sigma(\mathbf{B}) \cup \{0\}$ and $\text{mult}_{\mathbf{H}}(0) = \text{mult}_{\mathbf{B}}(0) + q$. □

1816 **Remark 14.** If $0 \in \sigma(\mathbf{B})$, then 0 appears in $\sigma(\mathbf{H})$ with multiplicity strictly larger than q ; the
1817 statement above accounts for this by adding q to the algebraic multiplicity of 0 carried over from \mathbf{B} .

1818 **Lemma C.3** (Hessian of \mathcal{L} w.r.t. \mathbf{U}, β at $\theta^* = \mathbf{0}$ and its spectrum). Let $n := |\mathcal{V}|$ and d be the
1819 embedding width. Fix $(\mathbf{s}, \mathbf{p}) \in \mathcal{V}^{\leq K} \times \Delta^{n-1}$, and consider the Transformer Language Model of
1820 [Definition B.13](#). In the unembedding layer, set the LayerNorm scale to zero, $\gamma = \mathbf{0}_d$. Let the
1821 parameter be ordered as

$$1822 \theta = (\mathbf{u}, \beta, \gamma, \theta'), \quad \mathbf{u} := \text{vec}_{n,d}(\mathbf{U}) \in \mathbb{R}^{nd}, \beta \in \mathbb{R}^d.$$

1823 Restrict attention to the (\mathbf{u}, β) -coordinates and the base point

$$1824 \theta_* = \mathbf{0}_p \quad \text{i.e.} \quad \mathbf{U} = \mathbf{0}_{n \times d}, \beta = \mathbf{0}_d, \gamma = \mathbf{0}_d, \theta' = \mathbf{0}.$$

1825 Write $\mathbf{b} := \frac{1}{n} \mathbf{1}_n$ and $\mathbf{w} := \mathbf{b} - \mathbf{p} \in \mathbb{R}^n$.

1827 Then the Hessian of the cross-entropy loss

$$1828 \mathcal{L}(\theta) = \text{CrossEntropy}(f(\mathbf{s}; \theta), \mathbf{p})$$

1829 with respect to (\mathbf{u}, β) at θ_* is the symmetric block matrix

$$1831 \nabla_{(\mathbf{u}, \beta)}^2 \mathcal{L}(\theta_*) = \begin{pmatrix} \mathbf{0}_{nd \times nd} & \mathbf{I}_d \otimes \mathbf{w} \\ \mathbf{I}_d \otimes \mathbf{w}^\top & \mathbf{0}_{d \times d} \end{pmatrix}.$$

1833 The spectrum of this Hessian is

$$1835 \text{spec}(\nabla_{(\mathbf{u}, \beta)}^2 \mathcal{L}(\theta_*)) = \{ \underbrace{+\|\mathbf{w}\|_2, \dots, +\|\mathbf{w}\|_2}_d, \underbrace{-\|\mathbf{w}\|_2, \dots, -\|\mathbf{w}\|_2}_d, \underbrace{0, \dots, 0}_{d(n-1)} \}.$$

1836 *Proof.*

1837

1838 **1) Logits in vectorized form.** With $\gamma = \mathbf{0}_d$, the LayerNorm output at the unembedding is constant:
1839 $\text{LN}(\mathbf{h}) \equiv \beta$ (Definition B.9). Thus the logits before the final softmax are

1840

1841

$$\mathbf{Z} = \mathbf{U}\beta \in \mathbb{R}^n.$$

1842 Using $\text{vec}(\mathbf{AXb}) = (\mathbf{b}^\top \otimes \mathbf{A}) \text{vec}(\mathbf{X})$ (standard identity for vectorization, cf. Henderson & Searle
1843 (1981)), with $\mathbf{A} = \mathbf{I}_n$ and $\mathbf{b} = \beta$,

1844

1845

$$\mathbf{z} = \text{vec}(\mathbf{Z}) = \text{vec}(\mathbf{U}\beta) = (\beta^\top \otimes \mathbf{I}_n) \mathbf{u}.$$

1846 Therefore, near $(\mathbf{u}, \beta) = (\mathbf{0}_{nd}, \mathbf{0}_d)$, the logits map is the bilinear function

1847

1848

$$z(\mathbf{u}, \beta) := (\beta^\top \otimes \mathbf{I}_n) \mathbf{u} \in \mathbb{R}^n.$$

1849

1850 **2) First and second differentials.** Let (\mathbf{h}, η) and (\mathbf{k}, ξ) be directions in $\mathbb{R}^{nd} \times \mathbb{R}^d$. Differentiating
1851 $z(\mathbf{u}, \beta) = (\beta^\top \otimes \mathbf{I}_n) \mathbf{u}$ gives

1852

1853

$$Dz(\mathbf{u}, \beta)[\mathbf{h}, \eta] = (\beta^\top \otimes \mathbf{I}_n) \mathbf{h} + (\eta^\top \otimes \mathbf{I}_n) \mathbf{u}.$$

1854

1855

At $(\mathbf{u}, \beta) = (\mathbf{0}_{nd}, \mathbf{0}_d)$,

$$Dz(\mathbf{0}_{nd}, \mathbf{0}_d)[\mathbf{h}, \eta] = \mathbf{0}_{n \times (nd+d)}$$

1856

1857

(since both terms are multiplied by \mathbf{u} or β). Differentiating once more (or, equivalently, using
1858 bilinearity of z) yields the constant symmetric bilinear form

1859

1860

$$D^2z(\mathbf{0}_{nd}, \mathbf{0}_n)[(\mathbf{h}, \eta), (\mathbf{k}, \xi)] = (\xi^\top \otimes \mathbf{I}_n) \mathbf{h} + (\eta^\top \otimes \mathbf{I}_n) \mathbf{k}.$$

1861

1862

3) Gradient of the CE-in-softmax at the origin. Let $F(\mathbf{z}) := \text{CrossEntropy}(\text{softmax}(\mathbf{z}), \mathbf{p})$. A
1863 standard computation (softmax Jacobian) gives

1864

1865

$$\nabla_{\mathbf{z}} F(\mathbf{z}) = \text{softmax}(\mathbf{z}) - \mathbf{p}.$$

At $\mathbf{z} = \mathbf{0}_n$, $\text{softmax}(\mathbf{0}_n) = \frac{1}{n} \mathbf{1}_n =: \mathbf{b}$, hence

1866

1867

$$\nabla_{\mathbf{z}} F(\mathbf{0}_n) = \mathbf{b} - \mathbf{p} =: \mathbf{w}.$$

1868

1869

4) Second-order chain rule for $F \circ Z$ at $(\mathbf{0}, \mathbf{0})$. Similarly to the proof of Lemma C.1, the second
1870 differential of a composition is

1871

1872

$$D^2(F \circ z)(\mathbf{v})[\mathbf{h}, \mathbf{k}] = D^2F(z(\mathbf{v}))[Dz(\mathbf{v})\mathbf{h}, Dz(\mathbf{v})\mathbf{k}] + DF(z(\mathbf{v}))[D^2z(\mathbf{v})[\mathbf{h}, \mathbf{k}]].$$

1873

1874

At $\mathbf{v} = (\mathbf{0}_{nd}, \mathbf{0}_d)$, $Dz(\mathbf{v}) = \mathbf{0}_{n \times (nd+d)}$ and $DF(z(\mathbf{v})) = \nabla_{\mathbf{z}} F(\mathbf{0}_n)^\top = \mathbf{w}^\top$, so

1875

1876

1877

1878

$$\begin{aligned} D^2\mathcal{L}(\mathbf{v})[(\mathbf{h}, \eta), (\mathbf{k}, \xi)] &= \mathbf{w}^\top D^2z(\mathbf{v})[(\mathbf{h}, \eta), (\mathbf{k}, \xi)] \\ &= \mathbf{w}^\top ((\xi^\top \otimes \mathbf{I}_n) \mathbf{h} + (\eta^\top \otimes \mathbf{I}_n) \mathbf{k}) \\ &= \mathbf{h}^\top (\mathbf{I}_d \otimes \mathbf{w}) \xi + \mathbf{k}^\top (\mathbf{I}_d \otimes \mathbf{w}) \eta, \end{aligned}$$

1879

where we used the mixed-product rule for Kronecker products and the identity

1880

1881

1882

1883

5) Identification of the Hessian blocks. By definition of the Hessian as a bilinear form,

1884

1885

1886

$$D^2\mathcal{L}(\mathbf{v})[(\mathbf{h}, \eta), (\mathbf{k}, \xi)] = \begin{pmatrix} \mathbf{h}^\top & \eta^\top \end{pmatrix} \begin{pmatrix} \mathbf{0}_{nd \times nd} & \frac{\partial^2 \mathcal{L}}{\partial \mathbf{u} \partial \beta} \\ \frac{\partial^2 \mathcal{L}}{\partial \beta \partial \mathbf{u}} & \mathbf{0}_{d \times d} \end{pmatrix} \begin{pmatrix} \mathbf{k} \\ \xi \end{pmatrix}.$$

1887

1888

Comparing with the expression obtained in Step 4 for arbitrary (\mathbf{h}, η) and (\mathbf{k}, ξ) forces

1889

$$\frac{\partial^2 \mathcal{L}}{\partial \mathbf{u} \partial \beta}(\theta_*) = \mathbf{I}_d \otimes \mathbf{w}, \quad \frac{\partial^2 \mathcal{L}}{\partial \beta \partial \mathbf{u}}(\theta_*) = (\mathbf{I}_d \otimes \mathbf{w})^\top = \mathbf{I}_d \otimes \mathbf{w}^\top,$$

1890 and, because $Dz(\mathbf{v}) = \mathbf{0}_{n \times (nd+d)}$ (so no quadratic term survives in either \mathbf{u} or β alone),
 1891

$$1892 \quad \frac{\partial^2 \mathcal{L}}{\partial \mathbf{u} \partial \mathbf{u}}(\boldsymbol{\theta}_*) = \mathbf{0}_{nd \times nd}, \quad \frac{\partial^2 \mathcal{L}}{\partial \beta \partial \beta}(\boldsymbol{\theta}_*) = \mathbf{0}_{d \times d}.$$

1894 This gives exactly the claimed block matrix.
 1895

1896 **6) Spectrum.** Let

$$1897 \quad \mathbf{H} := \nabla_{(\mathbf{u}, \beta)}^2 \mathcal{L}(\boldsymbol{\theta}_*) = \begin{pmatrix} \mathbf{0}_{nd \times nd} & \mathbf{I}_d \otimes \mathbf{w} \\ \mathbf{I}_d \otimes \mathbf{w}^\top & \mathbf{0}_{d \times d} \end{pmatrix}.$$

1900 Then

$$1901 \quad \mathbf{H}^2 = \begin{pmatrix} (\mathbf{I}_d \otimes \mathbf{w})(\mathbf{I}_d \otimes \mathbf{w}^\top) & \mathbf{0}_{nd \times d} \\ \mathbf{0}_{d \times nd} & (\mathbf{I}_d \otimes \mathbf{w}^\top)(\mathbf{I}_d \otimes \mathbf{w}) \end{pmatrix} = \begin{pmatrix} \mathbf{I}_d \otimes (\mathbf{w}\mathbf{w}^\top) & \mathbf{0}_{nd \times d} \\ \mathbf{0}_{d \times nd} & \mathbf{I}_d \otimes (\mathbf{w}^\top \mathbf{w}) \end{pmatrix}.$$

1905 The eigenvalues of $\mathbf{w}\mathbf{w}^\top$ are $\|\mathbf{w}\|_2^2$ (multiplicity 1) and 0 (multiplicity $n-1$); the eigenvalues of
 1906 $\mathbf{w}^\top \mathbf{w}$ equal $\|\mathbf{w}\|_2^2$ (scalar). Therefore the eigenvalues of \mathbf{H}^2 are

$$1907 \quad \underbrace{\|\mathbf{w}\|_2^2, \dots, \|\mathbf{w}\|_2^2}_{2d \text{ times}}, \quad \underbrace{0, \dots, 0}_{d(n-1) \text{ times}}.$$

1910 Because \mathbf{H} is symmetric, its eigenvalues are the real square-roots of those of \mathbf{H}^2 , namely $\pm \|\mathbf{w}\|_2$
 1911 (each with multiplicity d) and 0 (with multiplicity $d(n-1)$). This is exactly the set stated in the
 1912 lemma. \square

1913 **Lemma C.4** (Full Hessian at the witness: block form and spectrum). *Let $n := |\mathcal{V}|$ and d be the
 1914 embedding width. Write the parameter as*

$$1916 \quad \boldsymbol{\theta} = ((\mathbf{u}, \beta), (\gamma, \theta')), \quad \mathbf{u} = \text{vec}_{n,d}(\mathbf{U}) \in \mathbb{R}^{nd}, \beta, \gamma \in \mathbb{R}^d, \theta' \in \mathbb{R}^{p'},$$

1918 so $p = nd + 2d + p'$. Consider the witness point

$$1919 \quad \boldsymbol{\theta}_* = \mathbf{0}_p \quad (\mathbf{U} = \mathbf{0}_{n \times d}, \beta = \mathbf{0}_d, \gamma = \mathbf{0}_d, \theta' = \mathbf{0}_d).$$

1921 Let $\mathbf{b} := \frac{1}{n} \mathbf{1}_n$ and $\mathbf{w} := \mathbf{b} - \mathbf{p} \in \mathbb{R}^n$. Then the Hessian of the cross-entropy loss $\mathcal{L}(\boldsymbol{\theta})$ at $\boldsymbol{\theta}_*$ admits
 1922 the block-diagonal decomposition

$$1924 \quad \nabla^2 \mathcal{L}(\boldsymbol{\theta}_*) = \begin{pmatrix} \mathbf{B} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{pmatrix}, \quad \mathbf{B} = \begin{pmatrix} \mathbf{0}_{nd \times nd} & \mathbf{I}_d \otimes \mathbf{w} \\ \mathbf{I}_d \otimes \mathbf{w}^\top & \mathbf{0}_{d \times d} \end{pmatrix}.$$

1927 Consequently,

$$1928 \quad \text{spec}(\nabla^2 \mathcal{L}(\boldsymbol{\theta}_*)) = \left\{ \underbrace{+\|\mathbf{w}\|_2, \dots, +\|\mathbf{w}\|_2}_d, \underbrace{-\|\mathbf{w}\|_2, \dots, -\|\mathbf{w}\|_2}_d, \underbrace{0, \dots, 0}_{p-2d} \right\}.$$

1932 *Proof.* Set $\gamma = \mathbf{0}_d$. Then the unembedding LayerNorm output is constant, $\text{LN}(\mathbf{h}) \equiv \beta$, so the logits
 1933 equal $\mathbf{z} = \mathbf{U} \beta$. Hence, in a neighborhood of $\boldsymbol{\theta}_*$, the loss depends only on (\mathbf{u}, β) and is independent
 1934 of (γ, θ') .

1935 We will apply Lemma C.1 with the open set $\mathcal{U} = \mathbb{R}^{nd+2d+p'}$, coordinates $\boldsymbol{\xi} = (\mathbf{u}, \beta)$ and $\boldsymbol{\psi} =$
 1936 (γ, θ') and with $n = |\mathcal{V}|$, $r = d$. Define
 1937

$$1938 \quad g(\boldsymbol{\xi}) := \text{mat}_{n,d}(\mathbf{u}) \in \mathbb{R}^{n \times d}, \quad h(\boldsymbol{\xi}, \boldsymbol{\psi}) := \beta \in \mathbb{R}^d,$$

1939 so that

$$1941 \quad f(\boldsymbol{\xi}, \boldsymbol{\psi}) := g(\boldsymbol{\xi}) h(\boldsymbol{\xi}, \boldsymbol{\psi}) = \mathbf{U} \beta \in \mathbb{R}^n,$$

1942 and, with $\mathcal{L}(\mathbf{z}) := \text{CrossEntropy}(\text{softmax}(\mathbf{z}), \mathbf{p})$,

$$1943 \quad R(\boldsymbol{\xi}, \boldsymbol{\psi}) := \mathcal{L}(f(\boldsymbol{\xi}, \boldsymbol{\psi})) = \text{CrossEntropy}(\text{softmax}(\mathbf{U} \beta), \mathbf{p}).$$

1944 At the witness $\mathbf{v}_0 = (\xi_0, \psi_0)$ we have $g(\xi_0) = \mathbf{0}_{n \times d}$, so by [Lemma C.1](#) all mixed and ψ -only
 1945 second partials of R vanish at \mathbf{v}_0 , i.e.
 1946

$$\nabla^2 R(\mathbf{v}_0) = \begin{pmatrix} \nabla_{(\mathbf{u}, \boldsymbol{\beta})}^2 R(\mathbf{v}_0) & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{pmatrix}.$$

1949 Identifying $R(\xi, \psi) \equiv \mathcal{L}(\boldsymbol{\theta})$ under the correspondence above yields
 1950

$$\nabla^2 \mathcal{L}(\boldsymbol{\theta}_*) = \begin{pmatrix} \nabla_{(\mathbf{u}, \boldsymbol{\beta})}^2 \mathcal{L}(\boldsymbol{\theta}_*) & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{pmatrix}.$$

1954 Combining, [Lemma C.2](#) and [Lemma C.3](#), we get that
 1955

$$\begin{aligned} \text{spec}(\nabla^2 \mathcal{L}(\boldsymbol{\theta}^*)) &= \text{spec}(\nabla_{(\mathbf{u}, \boldsymbol{\beta})}^2 \mathcal{L}(\boldsymbol{\theta}_*)) \cup \{0\}^{d+p'} \\ &= \left\{ \pm \|\mathbf{w}\|_2 \text{ (each mult. } d\text{), } 0 \text{ (mult. } d(n-1) + d + p'\right\}. \end{aligned}$$

1959 Since $p = nd + 2d + p'$, the multiplicity of 0 equals $p - 2d$, which yields the claimed spectrum. \square
 1960

1961 **Theorem C.3** (GD Jacobian is nondegenerate a.e.). *Consider the setup of [Theorem C.5](#). In particular, let $\phi : \mathbb{R}^p \rightarrow \mathbb{R}^p$ be the one-step GD map from that theorem:*
 1962

$$\phi(\boldsymbol{\theta}) = \boldsymbol{\theta} - \eta \nabla_{\boldsymbol{\theta}} \mathcal{L}_{s, \mathbf{p}}(\boldsymbol{\theta}), \quad (32)$$

1965 with stepsize $\eta \in (0, 1)$. Then the critical set
 1966

$$\mathcal{C} := \{\boldsymbol{\theta} \in \mathbb{R}^p : \det D\phi(\boldsymbol{\theta}) = 0\}$$

1968 has Lebesgue measure zero in \mathbb{R}^p .
 1969

1970 *Proof.* By [Proposition B.3](#), [Proposition A.6](#) and the closure properties of real analyticity, $\mathcal{L}_{s, \mathbf{p}}$ is
 1971 real-analytic; hence so are its gradient and Hessian. Therefore ϕ is real-analytic ([Lewis, 2014](#),
 1972 Thm. 1.1.15) and

$$D\phi(\boldsymbol{\theta}) = \mathbf{I}_p - \eta \nabla_{\boldsymbol{\theta}}^2 \mathcal{L}_{s, \mathbf{p}}(\boldsymbol{\theta}).$$

1973 Since the determinant is a polynomial in the entries, $\boldsymbol{\theta} \mapsto \det D\phi(\boldsymbol{\theta})$ is real-analytic.
 1974

1975 It is not identically zero: at the witness $\boldsymbol{\theta}_* = \mathbf{0}_p$, [Lemma C.4](#) gives
 1976

$$\text{spec}(\nabla^2 \mathcal{L}(\boldsymbol{\theta}_*)) = \underbrace{\{+\|\mathbf{w}\|_2, \dots, +\|\mathbf{w}\|_2\}}_d, \underbrace{\{-\|\mathbf{w}\|_2, \dots, -\|\mathbf{w}\|_2\}}_d, \underbrace{\{0, \dots, 0\}}_{p-2d}, \quad \mathbf{w} := \frac{1}{n} \mathbf{1} - \mathbf{p}.$$

1979 Hence the eigenvalues of $D\phi(\boldsymbol{\theta}_*) = \mathbf{I}_p - \eta \nabla^2 \mathcal{L}(\boldsymbol{\theta}_*)$ are
 1980

$$\underbrace{1 - \eta \|\mathbf{w}\|_2}_d \text{ times}, \quad \underbrace{1 + \eta \|\mathbf{w}\|_2}_d \text{ times}, \quad \underbrace{1}_{p-2d \text{ times}},$$

1983 so

$$\det D\phi(\boldsymbol{\theta}^*) = (1 - \eta^2 \|\mathbf{w}\|_2^2)^d > 0.$$

1985 Thus $\det D\phi$ is a nontrivial real-analytic function. By [Theorem A.1](#), its zero set has Lebesgue
 1986 measure 0. \square
 1987

1988 C.2.2 GRADIENT DESCENT PRESERVES ABSOLUTE CONTINUITY 1989

1990 **Lemma C.5** (Countable chart cover of $\mathbb{R}^p \setminus \mathcal{C}$). *Consider the setup of [Theorem C.5](#). In particular,
 1991 let $\phi : \mathbb{R}^p \rightarrow \mathbb{R}^p$ be the one-step GD map from that theorem:*

$$\phi(\boldsymbol{\theta}) = \boldsymbol{\theta} - \eta \nabla_{\boldsymbol{\theta}} \mathcal{L}_{s, \mathbf{p}}(\boldsymbol{\theta}), \quad (33)$$

1994 with stepsize $\eta \in (0, 1)$, and the measure-zero critical-set ([Theorem C.3](#)):
 1995

$$\mathcal{C} := \{\boldsymbol{\theta} \in \mathbb{R}^p : \det D\phi(\boldsymbol{\theta}) = 0\}.$$

1996 Then there exist open sets $(\mathcal{U}_k)_{k \geq 1}$ covering $\mathcal{X} := \mathbb{R}^p \setminus \mathcal{C}$ such that, for each k , the restriction
 1997 $\phi_k := \phi|_{\mathcal{U}_k} : \mathcal{U}_k \rightarrow \mathcal{V}_k := \phi(\mathcal{U}_k)$ is a C^1 diffeomorphism with C^1 inverse $\psi_k := \phi_k^{-1}$.

1998 *Proof.*

1999
 2000 **1) \mathcal{X} is open:** By [Proposition B.3](#), [Proposition A.6](#) and the closure rules of real-analyticity, $\mathcal{L}_{s,p}$
 2001 is C^2 , hence ϕ is C^1 . The map $\theta \mapsto D\phi(\theta)$ is continuous, and the determinant is a continuous
 2002 polynomial in the entries, so $g(\theta) := \det D\phi(\theta)$ is continuous. Therefore $\mathcal{C} = g^{-1}(\{0\})$ is closed
 2003 ([Rudin, 1976](#), Thm. 4.8) and $\mathcal{X} = \mathbb{R}^p \setminus \mathcal{C}$ is open.

2004 **2) Local diffeomorphisms by the Inverse Function Theorem:** Fix $\theta \in \mathcal{X}$. Then $g(\theta) \neq 0$,
 2005 so by the Inverse Function Theorem ([Theorem A.2](#)) there exist open neighborhoods $\mathcal{U}_\theta \ni \theta$ and
 2006 $\mathcal{V}_\theta \ni \phi(\theta)$ such that

$$\phi_\theta := \phi|_{\mathcal{U}_\theta} : \mathcal{U}_\theta \rightarrow \mathcal{V}_\theta$$

2007 is a C^1 diffeomorphism with C^1 inverse $\psi_\theta := \phi_\theta^{-1}$. Moreover,

$$D\psi_\theta(\phi(\mathbf{x})) = (D\phi(\mathbf{x}))^{-1} \quad \forall \mathbf{x} \in \mathcal{U}_\theta.$$

2012 In particular $D\phi(\mathbf{x})$ is invertible for all $\mathbf{x} \in \mathcal{U}_\theta$, whence $\mathcal{U}_\theta \subset \mathcal{X}$. Thus $\{\mathcal{U}_\theta\}_{\theta \in \mathcal{X}}$ is an open cover
 2013 of \mathcal{X} by IFT charts.

2014 **3) Select a countable subcover:** By [Proposition A.15\(3\)](#), \mathbb{R}^p is second-countable; subspaces
 2015 of second-countable spaces are second-countable, hence \mathcal{X} is second-countable. By [Proposition A.15\(4\)](#),
 2016 every open cover of a second-countable space admits a countable subcover. Therefore
 2017 there exist points $\theta_1, \theta_2, \dots \in \mathcal{X}$ such that $\mathcal{X} = \bigcup_{k=1}^{\infty} \mathcal{U}_{\theta_k}$.

2018 Set $\mathcal{U}_k := \mathcal{U}_{\theta_k}$, $\mathcal{V}_k := \mathcal{V}_{\theta_k}$, and $\phi_k := \phi|_{\mathcal{U}_k} = \phi_{\theta_k}$, $\psi_k := \psi_{\theta_k}$. Each ϕ_k is a C^1 diffeomorphism
 2019 with C^1 inverse ψ_k by Step 2. This yields the desired countable chart cover of \mathcal{X} . \square

2020 **Theorem C.4** (Change of Variables [Folland 1999](#), Thm. 2.47(b)). *Let $\mathcal{U}, \mathcal{V} \subseteq \mathbb{R}^p$ be open and
 2021 $\psi : \mathcal{V} \rightarrow \mathcal{U}$ a C^1 diffeomorphism. If $\mathcal{E} \subseteq \mathcal{V}$ is Lebesgue measurable, then*

$$\text{Leb}_p(\psi(\mathcal{E})) = \int_{\mathcal{E}} |\det D\psi(\mathbf{y})| d\mathbf{y}.$$

2022 **Lemma C.6** (Pre-images of null sets are null). *Consider the setup of [Theorem C.5](#), in particular the
 2023 C^1 gradient descent map:*

$$\phi(\theta) = \theta - \eta \nabla_\theta \mathcal{L}_{s,p}(\theta), \quad \eta \in (0, 1),$$

2024 and its critical set $\mathcal{C} := \{\theta \in \mathbb{R}^p : \det D\phi(\theta) = 0\}$. Then, for every measurable $\mathcal{A} \subseteq \mathbb{R}^p$,

$$\text{Leb}_p(\mathcal{A}) = 0 \implies \text{Leb}_p(\phi^{-1}(\mathcal{A})) = 0.$$

2025 *Proof.* Let $\mathcal{X} = \mathbb{R}^p \setminus \mathcal{C}$ and decompose the pre-image:

$$\phi^{-1}(\mathcal{A}) = (\phi^{-1}(\mathcal{A}) \cap \mathcal{C}) \cup (\phi^{-1}(\mathcal{A}) \cap \mathcal{X}).$$

2026 The first set is contained in \mathcal{C} , a measure zero set ([Theorem C.3](#)), hence has Leb_p -measure 0. By
 2027 [Lemma C.5](#), cover \mathcal{X} by countably many charts $\{\mathcal{U}_k\}$ on which $\phi_k := \phi|_{\mathcal{U}_k}$ is a C^1 diffeomorphism
 2028 onto $\mathcal{V}_k := \phi(\mathcal{U}_k)$ with inverse $\psi_k \in C^1(\mathcal{V}_k; \mathcal{U}_k)$. Then, it holds that:

$$\phi^{-1}(\mathcal{A}) \cap \mathcal{U}_k = \psi_k(\mathcal{A} \cap \mathcal{V}_k).$$

2029 Since $\text{Leb}_p(\mathcal{A}) = 0$ and both \mathcal{A} and \mathcal{V}_k are measurable, $\mathcal{A} \cap \mathcal{V}_k$ is measurable and has measure 0.
 2030 By [Theorem C.4](#) applied to ψ_k with $\mathcal{E} = \mathcal{A} \cap \mathcal{V}_k$,

$$\text{Leb}_p(\psi_k(\mathcal{A} \cap \mathcal{V}_k)) = \int_{\mathcal{A} \cap \mathcal{V}_k} |\det D\psi_k(\mathbf{y})| d\mathbf{y} = 0.$$

2031 Therefore, each $\phi^{-1}(\mathcal{A}) \cap \mathcal{U}_k$ is null and because a countable union of null sets is null, it holds that:

$$\text{Leb}_p(\phi^{-1}(\mathcal{A})) = 0.$$

\square

2052 **Theorem C.5** (Preservation of absolute continuity under one GD step). *Fix a finite vocabulary \mathcal{V} , a*
 2053 *context bound $K \in \mathbb{N}$, and the Transformer language model f of [Definition B.13](#). For any sample*
 2054 *$(s, \mathbf{p}) \in \mathcal{V}^{\leq K} \times \Delta^{|\mathcal{V}|-1}$ and any learning rate $\eta \in (0, 1)$, let $\phi : \mathbb{R}^p \rightarrow \mathbb{R}^p$ be the gradient-descent*
 2055 *update, defined as:*

$$\phi(\boldsymbol{\theta}) = \boldsymbol{\theta} - \eta \nabla_{\boldsymbol{\theta}} \mathcal{L}_{s, \mathbf{p}}(\boldsymbol{\theta}),$$

2056 *where $\mathcal{L}_{s, \mathbf{p}} : \mathbb{R}^p \rightarrow \mathbb{R}$ is the standard Cross Entropy loss:*

$$\mathcal{L}_{s, \mathbf{p}}(\boldsymbol{\theta}) = \text{CrossEntropy}(f(s; \boldsymbol{\theta}), \mathbf{p}).$$

2061 *Then, gradient-descent preserves absolute continuity: for every absolutely continuous probability*
 2062 *law μ on \mathbb{R}^p , its image under ϕ remains absolutely continuous:*

$$\phi_{\#}\mu \ll \text{Leb}_p.$$

2064 *Therefore, the updated parameters $\boldsymbol{\theta}' := \phi(\boldsymbol{\theta})$ are absolutely continuous.*

2068 *Proof.* By [Proposition B.3](#) and closure properties, $\mathcal{L}_{s, \mathbf{p}}$ is C^2 , hence $\phi \in C^1$ and is Borel-measurable. From [Theorem C.3](#) the critical set

$$\mathcal{C} := \{\boldsymbol{\theta} \in \mathbb{R}^p : \det D\phi(\boldsymbol{\theta}) = 0\}$$

2073 has Leb_p -measure 0. Therefore, the hypothesis of [Lemma C.6](#) holds, and we have the property:

$$\text{Leb}_p(\mathcal{A}) = 0 \implies \text{Leb}_p(\phi^{-1}(\mathcal{A})) = 0 \quad \text{for every measurable } \mathcal{A} \subseteq \mathbb{R}^p. \quad (\dagger)$$

2076 Let \mathcal{A} be any Borel set with $\text{Leb}_p(\mathcal{A}) = 0$. Then

$$\phi_{\#}\mu(\mathcal{A}) = \mu(\phi^{-1}(\mathcal{A})) = 0,$$

2080 because $\mu \ll \text{Leb}_p$ and $\text{Leb}_p(\phi^{-1}(\mathcal{A})) = 0$ by (\dagger) . Since this holds for every Leb_p -null set \mathcal{A} , we
 2081 conclude $\phi_{\#}\mu \ll \text{Leb}_p$. \square

2083 **Corollary C.5.1** (Preservation of absolute continuity under finitely many GD steps). *Fix a finite*
 2084 *vocabulary \mathcal{V} , a context bound $K \in \mathbb{N}$, and the Transformer language model f of [Definition B.13](#).*
 2085 *For $t = 1, \dots, T$, let $(s_t, \mathbf{p}_t) \in \mathcal{V}^{\leq K} \times \Delta^{|\mathcal{V}|-1}$ and $\eta_t \in (0, 1)$, and define the t -th GD update*

$$\phi_t(\boldsymbol{\theta}) = \boldsymbol{\theta} - \eta_t \nabla_{\boldsymbol{\theta}} \mathcal{L}_{s_t, \mathbf{p}_t}(\boldsymbol{\theta}), \quad \mathcal{L}_{s_t, \mathbf{p}_t}(\boldsymbol{\theta}) = \text{CrossEntropy}(f(s_t; \boldsymbol{\theta}), \mathbf{p}_t).$$

2088 *Let the T -step update map be the composition*

$$\Phi := \phi_T \circ \dots \circ \phi_1 : \mathbb{R}^p \rightarrow \mathbb{R}^p.$$

2092 *Then, for every absolutely continuous probability law μ on \mathbb{R}^p , its image under Φ remains absolutely*
 2093 *continuous:*

$$\Phi_{\#}\mu \ll \text{Leb}_p.$$

2095 *Equivalently, if $\boldsymbol{\theta}^{(0)} \sim \mu$ with $\mu \ll \text{Leb}_p$ and*

$$\boldsymbol{\theta}^{(t+1)} = \phi_t(\boldsymbol{\theta}^{(t)}), \quad t = 0, \dots, T-1,$$

2099 *then the T -step parameters $\boldsymbol{\theta}^{(T)} = \Phi(\boldsymbol{\theta}^{(0)})$ are absolutely continuous.*

2102 *Proof.* Since the result of [Lemma C.6](#) holds for each ϕ_t , for any null set \mathcal{A} , repeated preimages
 2103 remain null:

$$\text{Leb}_p((\phi_T \circ \dots \circ \phi_1)^{-1}(\mathcal{A})) = 0.$$

2104 The same argument as in the proof of [Theorem C.5](#) then yields the claim. \square

2106 **D LEFT-INVERTIBILITY VIA SIP-IT**
 2107

2108 **Goal.** We study when and how the hidden states of a causal decoder-only Transformer admit a *left*
 2109 *inverse*: given the layer- ℓ representation at position t and the true prefix $\pi = s_{1:t-1}$, can we recover
 2110 the next token s_t ?

2111 **Main idea.** Under mild randomness in the parameters and causal masking, the *one-step last-token*
 2112 *map* that sends a candidate token v to the layer- ℓ representation at position t (conditioning on π) is
 2113 almost-surely injective, and in fact has a positive separation margin. This yields a simple verifier:
 2114 declare v correct iff the observed hidden state lies in a small ball around $F(v; \pi, t)$.
 2115

2116 **Algorithmic consequence.** Because causality localizes the dependence to (π, s_t) , we can invert
 2117 an entire sequence sequentially with a single pass over the vocabulary per position. We call this
 2118 procedure **SIP-IT** (Sequential Inversion via Prefixwise Injective Tests), and we show exact (and
 2119 robust) recovery holds almost surely, with worst-case time $\Theta(T|\mathcal{V}|)$.

2120 **Standing conventions for this section.** Fix a layer index $\ell \in [L]$. For any input sequence $s =$
 2121 $\langle s_1, \dots, s_T \rangle$, define the layer outputs row-wise by
 2122

$$2123 \mathbf{H}^{(0)}(s) := \text{Emb}(s), \quad \mathbf{H}^{(\ell)}(s) := \text{TB}^{(\ell)}(\mathbf{H}^{(\ell-1)}(s)) \in \mathbb{R}^{T \times d},$$

2125 and write $\mathbf{h}_t(s)$ to denote the row of $\mathbf{H}^{(\ell)}(s)$ at position t . Furthermore, we use \oplus for sequence
 2126 concatenation: if $s = \langle s_1, \dots, s_{t-1} \rangle$ and $v \in \mathcal{V}$, then $s \oplus v = \langle s_1, \dots, s_{t-1}, v \rangle$.

2127 The parameters θ and target layer ℓ are considered fixed and omitted for simplicity.

2128 **Assumption D.1** (Causal self-attention throughout). *Every attention layer in every block is causal*
 2129 *in the sense of Definitions B.6/B.7. Consequently, for any s and any $t \in [T]$,*

$$2131 \mathbf{h}_t(s) \text{ depends only on the prefix } \langle s_1, \dots, s_t \rangle. \quad (34)$$

2132 **Assumption D.2** (Injectivity Assumption). *SIP-IT is applied to models initialized with parameters*
 2133 *drawn from an absolutely continuous distribution and trained via (mini-batch) gradient descent with*
 2134 *step sizes in $(0, 1)$, as described in Appendix C. Under these conditions, any network considered in*
 2135 *the sequel is almost-surely injective (Theorem C.1).*

2137 **D.1 ONE-STEP LAST-TOKEN MAPS**
 2138

2139 We first isolate the positionwise map that drives inversion. Fix a position t and prefix $\pi \in \mathcal{V}^{t-1}$. The
 2140 *one-step map* $F(\cdot; \pi, t)$ sends a candidate token v to the layer- ℓ hidden state at position t obtained
 2141 when the prefix is π and the token at t is v . Causality implies that \mathbf{h}_t depends only on (π, v) (not on
 2142 any future tokens), and we show that, for almost all parameter settings, F is injective with a strictly
 2143 positive pairwise margin over \mathcal{V} .

2144 **Definition D.1** (One-step map at time t under prefix π). *Let $\pi \in \mathcal{V}^{t-1}$ be a fixed prefix (possibly*
 2145 *$t = 1$, when π is empty). Define*

$$2146 F : \mathcal{V} \longrightarrow \mathbb{R}^d, \quad F(v; \pi, t) := \mathbf{h}_t(\pi \oplus v).$$

2148 **Remark 15.** *F* is simply a function that returns the hidden output of token v at the ℓ transformer
 2149 block given that π is used a fixed prefix. This map allows us to have a convenient notation for
 2150 introducing results about inversion. Furthermore, since F is built using ℓ transformer blocks, it is
 2151 parameterized by θ . Nevertheless, for the sake of simplicity, we will refer to $F_{\ell, \theta}$ simply as F .

2153 Once the One-step map (Definition D.1) is introduced, one can present its a.s. injectivity through
 2154 an application of the previously obtained result (Theorem C.1). Furthermore, one can deploy the
 2155 common prefix to introduce a stronger notion of injectivity: margin separation (Lemma D.1).

2156 **Theorem D.1** (A.s. one-step injectivity). *Fix t and the prefix $\pi \in \mathcal{V}^{t-1}$. Under Assumptions D.1*
 2157 *and D.2, it holds that:*

$$2158 \Pr \left[\exists v \neq v' \in \mathcal{V} : F(v; \pi, t) = F(v'; \pi, t) \right] = 0.$$

2159 Equivalently, F is injective almost-surely.

2160 *Proof.* Set the finite family $\mathcal{S}_{t,\pi} := \{\pi \oplus v : v \in \mathcal{V}\} \subseteq \mathcal{V}^t$ and view $\mathbf{h}_t(\mathbf{s})$ as the last-token
 2161 representation of the *truncated* Transformer consisting of the first ℓ blocks. All assumptions used in
 2162 Corollary C.2.1 remain valid for this truncated model. Applying the corollary with $\mathcal{S} = \mathcal{S}_{t,\pi}$ yields,
 2163 almost-surely, $\mathbf{h}_t(\pi \oplus v) \neq \mathbf{h}_t(\pi \oplus v')$ whenever $v \neq v'$. This is exactly the injectivity of F . \square
 2164

2165 **Lemma D.1** (Strict separation margin a.s.). *Under the conditions of Theorem D.1, define the (data-
 2166 dependent) margin*

$$2167 \Delta_{\pi,t} := \min_{v \neq v' \in \mathcal{V}} \|F(v; \pi, t) - F(v'; \pi, t)\|_2$$

2169 *Then,*

$$2170 \Pr[\Delta_{\pi,t} > 0] = 1.$$

2172 *Proof.* By Theorem D.1, with probability 1 the set

$$2174 \{F(v; \pi, t) : v \in \mathcal{V}\}$$

2176 consists of $|\mathcal{V}|$ distinct points in \mathbb{R}^d . On this event of full probability, every pairwise distance among
 2177 these finitely many points is strictly positive, so their minimum is strictly positive as well.

2178 Thus, the event $\{\Delta_{\pi,t} > 0\}$ coincides with the event that F is injective on \mathcal{V} . Since injectivity holds
 2179 almost-surely by assumption, we conclude that $\Pr[\Delta_{\pi,t} > 0] = 1$. \square
 2180

2181 D.2 THE CORE ROUTINES: LOCAL VERIFIERS, ACCEPTANCE REGIONS, AND POLICIES

2183 Given $F(\cdot; \pi, t)$, inversion reduces to a local hypothesis test: for an observed $\widehat{\mathbf{h}}_t$, which token's
 2184 predicted representation is closest? We formalize this with *acceptance regions*—closed balls around
 2185 $F(v; \pi, t)$ —and a *verifier* that accepts v iff $\widehat{\mathbf{h}}_t$ lies in its ball. Almost-sure injectivity yields uniqueness
 2186 at radius 0, and a positive margin yields uniqueness for any $\varepsilon < \Delta_{\pi,t}/2$. To explore candidates
 2187 efficiently, we couple the verifier with any *policy* that enumerates untried tokens (e.g., uniform with-
 2188 out replacement or a gradient-guided ranking).

2189 **Definition D.2** (Local verifier and acceptance tolerance). *Given a tolerance $\varepsilon \geq 0$, define the ac-
 2190 ceptance region for symbol v as the closed ball (Definition A.8):*

$$2191 \mathcal{A}_{\pi,t}(v; \varepsilon) := \overline{B}(F(v; \pi, t), \varepsilon).$$

2193 A candidate token $v \in \mathcal{V}$ is verified for observation $\widehat{\mathbf{h}}_t$ if and only if $\widehat{\mathbf{h}}_t \in \mathcal{A}_{\pi,t}(v; \varepsilon)$.

2195 **Remark 16** (Decoding via acceptance regions). *Given a prefix $\pi \in \mathcal{V}^{t-1}$ and the observation $\widehat{\mathbf{h}}_t$
 2196 at position t , we identify the next token by checking in which acceptance region $\widehat{\mathbf{h}}_t$ lies: declare v
 2197 verified iff $\widehat{\mathbf{h}}_t \in \mathcal{A}_{\pi,t}(v; \varepsilon)$. By Lemma D.1, for any $\varepsilon < \Delta_{\pi,t}/2$ the regions $\{\mathcal{A}_{\pi,t}(v; \varepsilon)\}_{v \in \mathcal{V}}$ are
 2198 pairwise disjoint; hence there is at most one verified token (and in the noiseless case $\varepsilon = 0$, exactly
 2199 one).*

2200 Building on the intuition in Remark 16, we introduce two radii to define acceptance regions that
 2201 avoid collisions:

2203 **Proposition D.1** (Probabilistic soundness and uniqueness of the local verifier). *Fix position t and
 2204 prefix $\pi \in \mathcal{V}^{t-1}$. Under Assumptions D.1 and D.2, for all $v^* \in \mathcal{V}$, the following hold with proba-
 2205 bility one:*

- 2206 1. **Noiseless soundness.** If $\varepsilon = 0$ and $\widehat{\mathbf{h}}_t = F(v^*; \pi, t)$, then v^* is the unique verified symbol.
- 2207 2. **Robust uniqueness.** If $\varepsilon < \Delta_{\pi,t}/2$ and $\widehat{\mathbf{h}}_t \in \mathcal{A}_{\pi,t}(v^*; \varepsilon)$, then v^* is the unique verified symbol.

2210 *Proof.* Recall that under Assumptions D.1 and D.2, F is injective and $\Delta_{\pi,t} > 0$ almost-surely.

2212 (1) **Noiseless soundness.** For any $v \in \mathcal{V}$, $\mathcal{A}_{\pi,t}(v; 0) = \{F(v; \pi, t)\}$. If $\widehat{\mathbf{h}}_t = F(v^*; \pi, t)$ and some
 2213 $v \neq v^*$ were also verified at $\varepsilon = 0$, we would have $F(v; \pi, t) = F(v^*; \pi, t)$, which is a probability
 2214 zero event under the assumptions made. Hence v^* is uniquely verified almost-surely.

2214 (2) *Robust uniqueness.* Assume $\varepsilon < \Delta_{\pi,t}/2$ and $\|\hat{\mathbf{h}}_t - F(v^*; \pi, t)\|_2 < \varepsilon$. If some $v \neq v^*$ were also
 2215 verified, then $\|\hat{\mathbf{h}}_t - F(v; \pi, t)\|_2 \leq \varepsilon$. By the triangle inequality,
 2216
$$\|F(v; \pi, t) - F(v^*; \pi, t)\|_2 \leq \|\hat{\mathbf{h}}_t - F(v; \pi, t)\|_2 + \|\hat{\mathbf{h}}_t - F(v^*; \pi, t)\|_2 < 2\varepsilon < \Delta_{\pi,t},$$

 2217 contradicting the definition of $\Delta_{\pi,t}$ (again, valid under the assumptions made). Thus v^* is uniquely
 2218 verified almost-surely. \square
 2219

2220 Finally, we introduce the last conceptual block required to build the inversion algorithm:

2221 **Definition D.3** (Policy algorithm). *Let \mathcal{V} be a finite vocabulary. A policy algorithm is a (possibly
 2222 randomized) map*

$$2224 \quad \Pi : \{\mathcal{C} \subsetneq \mathcal{V}\} \longrightarrow \mathcal{V} \quad \text{such that} \quad \Pi(\mathcal{C}) \in \mathcal{V} \setminus \mathcal{C} \text{ for all } \mathcal{C} \subsetneq \mathcal{V}.$$

2225 (When $\mathcal{C} = \mathcal{V}$ the map is undefined.)

2226 **Remark 17** (Enumeration property). *Intuitively, a policy chooses any token not tried yet. Starting
 2227 from $\mathcal{C}_0 = \emptyset$ and iterating*

$$2229 \quad v_i := \Pi(\mathcal{C}_{i-1}), \quad \mathcal{C}_i := \mathcal{C}_{i-1} \cup \{v_i\} \quad (i = 1, \dots, |\mathcal{V}|),$$

2230 produces a sequence $(v_1, \dots, v_{|\mathcal{V}|})$ that is a (possibly random) permutation of \mathcal{V} . Thus, in exactly
 2231 $|\mathcal{V}|$ steps, every token is output once with no repetitions.

2232 **Two examples of policy algorithms.** We give (i) a *uniform-random without replacement* policy
 2233 and (ii) a *gradient-guided* policy.

2235 **Algorithm 2 Policy (Random)**

2237 **Require:** Vocabulary \mathcal{V} ; visited set \mathcal{C} ; embedding matrix $\mathbf{E} \in \mathbb{R}^{|\mathcal{V}| \times d}$

2238 **Ensure:** Next token ID and embedding

- 2239 1: Sample a permutation $L = (v_1, \dots, v_{|\mathcal{V}|})$ uniformly from \mathcal{V}
- 2240 2: Define $\rho(v; \pi)$ as the rank of v in L
- 2241 3: $v^* = \arg \min_{v \in \mathcal{V} \setminus \mathcal{C}} \rho(v; \pi)$
- 2242 4: **return** v^*, \mathbf{E}_{v^*}

2243

2244 **Algorithm 3 Policy (Gradient-based)**

2246 **Require:** Vocabulary \mathcal{V} ; visited set \mathcal{C} ; embedding matrix $\mathbf{E} \in \mathbb{R}^{|\mathcal{V}| \times d}$; prefix $\pi \in \mathcal{V}^{t-1}$; layer ℓ ;
 2247 previous continuous embedding $\mathbf{e}^{(j-1)}$; step size $\gamma > 0$; gradient-based update rule \mathcal{G}

2248 **Ensure:** Next token ID and embedding

- 2249 1: $\mathbf{g} \leftarrow \nabla_{\mathbf{e}^{(j-1)}} \frac{1}{2} \|F(\mathbf{e}^{(j-1)}; \pi, t) - \hat{\mathbf{h}}_t\|_2^2$
- 2250 2: $\mathbf{e}^{(j)} \leftarrow \mathcal{G}(\mathbf{e}^{(j-1)}, \mathbf{g}, \gamma)$
- 2251 3: Get $L = (v_1, \dots, v_{|\mathcal{V}|})$ by ordering v_i based on $\ell_2(\mathbf{E}_{v_i}, \mathbf{e}^{(j)})$
- 2252 4: Define $\rho(v; \pi)$ as the rank of v in L
- 2253 5: $v^* = \arg \min_{v \in \mathcal{V} \setminus \mathcal{C}} \rho(v; \pi)$
- 2254 6: **return** $v^*, \mathbf{e}^{(j)}$

2256 **Remark 18** (Bypassing the embedding layer). *We slightly overload notation and write $F(\mathbf{e}; \pi, t)$. Here we bypass the token embedding lookup and inject a continuous vector at the current position: the first $t-1$ rows of $\mathbf{H}^{(0)}$ are set to $\text{Emb}(\pi)$ and the t -th row is set to \mathbf{e} . This extension is used only to guide the search (e.g., in **Policy-Gradient**). All theoretical guarantees are stated for $F(v; \pi, t)$ with $v \in \mathcal{V}$ and are unaffected by allowing F to accept a continuous proxy during candidate scoring. Any extra inputs/side outputs used by a policy (such as the updated proxy) are orthogonal to the correctness statements.*

2264 **Remark 19** (Practical choice of policy). *Both Alg. 2 and Alg. 3 satisfy Definition D.3. In practice we
 2265 use the **gradient-guided** policy with standard gradient descent updates, as it tends to find the verified
 2266 token with far fewer proposals: the next token is chosen by ranking \mathcal{V} by the distance $\|\mathbf{E}_v - \mathbf{e}^{(j)}\|_2$
 2267 to the updated proxy $\mathbf{e}^{(j)}$. This preserves the same worst-case guarantees (single pass over \mathcal{V}) while
 2268 improving empirical efficiency.*

2268 D.3 GLOBAL INVERSION VIA SIP-IT
2269

2270 We now compose the local verifier into a sequential decoder. At step t , causality ensures $\mathbf{h}_t(\mathbf{s}) =$
2271 $F(\mathbf{s}_t; \pi, t)$ for the true prefix $\pi = \langle \mathbf{s}_1, \dots, \mathbf{s}_{t-1} \rangle$. Since the verifier uniquely accepts \mathbf{s}_t (noiselessly, and
2272 robustly under perturbations below half the margin), any covering policy must encounter and accept
2273 the true token within a single pass over \mathcal{V} . Iterating from $t = 1$ to T yields exact recovery almost
2274 surely; we also quantify robustness and the worst-case runtime.

2275 We are now ready to introduce our inversion algorithm: SIP-IT (Alg. 1). The algorithms applies
2276 to decoder-only transformers with *causal* self-attention (Assumption D.1), and assumes injectivity,
2277 which occurs with almost-surely (Assumption D.2). We assume access to the layer- ℓ hidden states
2278 per position $\{\hat{\mathbf{h}}_t\}_{t=1}^T$ and to the parameters needed to evaluate the local verifier from Definition D.2
2279 for arbitrary (t, π, j) , as well as the gradient (when needed), namely to the model up to layer ℓ . A
2280 policy algorithm is fixed (e.g., Alg. 3).
2281

2282 We begin by recording the following standard lemma and omitting the proof, as it is immediate from
2283 causal masking: under causal self-attention, the representation at position t is independent of future
2284 tokens.

2285 **Lemma D.2** (Causal factorization and prefixwise identifiability). *Under Assumptions D.1 and D.2,
2286 fix position $t \in [T]$. For any $\mathbf{s} = \langle \mathbf{s}_1, \dots, \mathbf{s}_T \rangle$ with $\pi = \langle \mathbf{s}_1, \dots, \mathbf{s}_{t-1} \rangle$,*

$$2287 \mathbf{h}_t(\mathbf{s}) = F(\mathbf{s}_t; \pi, t),$$

2288 where F is the one-step map from Definition D.1.
2289

2290 *Proof.* With causal masking, position t attends only to positions $\leq t$. Evaluating the network up to
2291 layer ℓ therefore yields a representation at t that is a function of the prefix π and the current token \mathbf{s}_t
2292 only, i.e. $F(\mathbf{s}_t; \pi, t)$, as claimed. \square
2293

2294 **Proposition D.2** (The verifier is the right primitive). *Fix t and a true prefix $\pi = \langle \mathbf{s}_1, \dots, \mathbf{s}_{t-1} \rangle$. Under Assumption D.1, the observed hidden state at step t satisfies $\mathbf{h}_t(\mathbf{s}) = F(\mathbf{s}_t; \pi, t)$ (Lemma D.2). In addition, under Assumption D.2, F is injective and has positive margin $\Delta_{\pi, t} > 0$ almost-surely (Theorem D.1 and Lemma D.1). Consequently, for the local verifier of Definition D.2, the following hold with probability one:*

- 2300 1. (Noiseless) With $\varepsilon = 0$ and observation $\hat{\mathbf{h}}_t = \mathbf{h}_t(\mathbf{s})$, the unique verified token is \mathbf{s}_t .
- 2301 2. (Robust) If $\hat{\mathbf{h}}_t = \mathbf{h}_t(\mathbf{s}) + \mathbf{e}_t$ with $\|\mathbf{e}_t\|_2 < \varepsilon < \Delta_{\pi, t}/2$, then \mathbf{s}_t is the unique verified token.

2302 *Proof.* Immediate from Lemma D.2 and Proposition D.1 applied with $v^* = \mathbf{s}_t$, which holds almost-
2303 surely by Theorem D.1 and Lemma D.1. \square
2304

2305 **Proposition D.3** (Eventual acceptance under increasing enumeration). *Fix a position t and the true
2306 prefix $\pi = \langle \mathbf{s}_1, \dots, \mathbf{s}_{t-1} \rangle$. Under Assumption D.1 and Assumption D.2, let $\varepsilon \geq 0$ and work on
2307 the probability-one event where the local verifier uniquely accepts the true token \mathbf{s}_t (e.g., $\varepsilon = 0$ or
2308 $\varepsilon < \Delta_{\pi, t}/2$; see Proposition D.2).*

2309 Let Π be any policy algorithm (Definition D.3). Define the increasing visited sets by $\mathcal{C}_0 = \emptyset$,
2310 $v_i := \Pi(\mathcal{C}_{i-1})$, and $\mathcal{C}_i := \mathcal{C}_{i-1} \cup \{v_i\}$ for $i \geq 1$, and stop at the first index
2311

$$2312 \tau := \min \{ i \geq 1 : \hat{\mathbf{h}}_t \in \mathcal{A}_{\pi, t}(v_i; \varepsilon) \}.$$

2313 Then $(v_i)_{i \geq 1}$ enumerates \mathcal{V} without replacement and $\tau \leq |\mathcal{V}|$ almost surely. In particular, for the
2314 fixed prefix π , the policy's increasingly expanding search over \mathcal{V} eventually proposes the unique
2315 verified token \mathbf{s}_t and accepts it with probability 1.
2316

2317 *Proof.* Work on the probability-one event of Proposition D.2 (under Assumption D.1 and Assumption
2318 D.2 with the stated ε), on which the local verifier at step t uniquely accepts the true token \mathbf{s}_t . Equivalently,
2319

$$2320 \hat{\mathbf{h}}_t \in \mathcal{A}_{\pi, t}(v; \varepsilon) \iff v = \mathbf{s}_t. \tag{35}$$

Enumeration without replacement. By the definition of a policy algorithm (Definition D.3), $v_i = \Pi(\mathcal{C}_{i-1}) \in \mathcal{V} \setminus \mathcal{C}_{i-1}$ and $\mathcal{C}_i = \mathcal{C}_{i-1} \cup \{v_i\}$. Hence $v_i \notin \mathcal{C}_{i-1}$ and $|\mathcal{C}_i| = |\mathcal{C}_{i-1}| + 1$. Inducting on i yields that $(v_i)_{i \geq 1}$ has no repetitions and \mathcal{C}_i contains exactly i distinct tokens. Since \mathcal{V} is finite, after $|\mathcal{V}|$ steps we have $\mathcal{C}_{|\mathcal{V}|} = \mathcal{V}$, i.e., $(v_i)_{i=1}^{|\mathcal{V}|}$ is a permutation of \mathcal{V} (this holds pathwise, for any realization of the policy's internal randomness).

Eventual acceptance. Because (v_i) is a permutation of \mathcal{V} , there exists a unique index $j \in \{1, \dots, |\mathcal{V}|\}$ with $v_j = s_t$. By equation 35,

$$\tau = \min\{i \geq 1 : \hat{\mathbf{h}}_t \in \mathcal{A}_{\pi_t, t}(v_i; \varepsilon)\} = \min\{i \geq 1 : v_i = s_t\} = j,$$

so $\tau \leq |\mathcal{V}|$ and the process accepts s_t .

Since the event on which equation 35 holds has probability 1, the conclusion (eventual acceptance at finite τ) holds almost surely. \square

Theorem D.2 (Correctness of SIP-IT (noiseless & robust)). *For each $t \in \{1, \dots, T\}$ let $\pi_t = \langle s_1, \dots, s_{t-1} \rangle$ and let $\Delta_{\pi_t, t} > 0$ be the margin of the one-step map $F(\cdot; \pi_t, t)$ from Lemma D.1. Under Assumptions D.1 and D.2, run SIP-IT (Alg. 1) with a tolerance $\varepsilon \geq 0$ and observations*

$$\hat{\mathbf{h}}_t = \mathbf{h}_t(s) + \mathbf{e}_t \quad (t = 1, \dots, T),$$

where the perturbations satisfy $\|\mathbf{e}_t\|_2 \leq \varepsilon$ for all t and

$$\varepsilon < \frac{1}{2} \Delta_{\pi_t, t} \quad \text{for all } t.$$

Then, with probability 1 over the model parameters: (i) for every t , the inner for-loop over j (the loop over vocabulary candidates) terminates within $|\mathcal{V}|$ iterations by accepting the true token s_t ; and (ii) after the outer for-loop over t (the loop over positions) finishes, the algorithm outputs the exact sequence $\hat{s} = s$.

In particular, this covers the noiseless case by taking $\varepsilon = 0$ and $\hat{\mathbf{h}}_t = \mathbf{h}_t(s)$, and the robust case with any uniform ε such that $\max_t \|\mathbf{e}_t\|_2 \leq \varepsilon < \frac{1}{2} \min_t \Delta_{\pi_t, t}$.

Proof. By Assumption D.2, Theorem D.1, and Lemma D.1, there is a probability-one event on which, for all t , $F(\cdot; \pi_t, t)$ is injective with strictly positive margin $\Delta_{\pi_t, t}$. Intersecting across finitely many t preserves probability 1. Work on this event.

By Assumption D.1 and Lemma D.2, $\mathbf{h}_t(s) = F(s_t; \pi_t, t)$. Since $\|\mathbf{e}_t\|_2 \leq \varepsilon$,

$$\hat{\mathbf{h}}_t = F(s_t; \pi_t, t) + \mathbf{e}_t \in \overline{B}(F(s_t; \pi_t, t), \varepsilon) = \mathcal{A}_{\pi_t, t}(s_t; \varepsilon),$$

so the local verifier accepts s_t . Moreover, because $\varepsilon < \frac{1}{2} \Delta_{\pi_t, t}$, Proposition D.1(2) implies robust uniqueness:

$$\hat{\mathbf{h}}_t \in \mathcal{A}_{\pi_t, t}(v; \varepsilon) \iff v = s_t. \tag{36}$$

When $\varepsilon = 0$, equation 36 also holds by Proposition D.1(1). We now analyze SIP-IT and proceed by induction on t .

Base case ($t = 1$). The outer for-loop over t begins with $\hat{s} = \langle \rangle = \pi_1$. Inside the inner for-loop over j (the loop over vocabulary candidates), the policy (Definition D.3) enumerates \mathcal{V} without replacement. By Proposition D.3, there exists $j^* \leq |\mathcal{V}|$ such that $v_{j^*} = s_1$, which is accepted and triggers the **break**; the algorithm appends s_1 .

Inductive step. Suppose after completing the inner loop at step $t - 1$ the algorithm has appended s_{t-1} , so the prefix entering step t is $\hat{s} = \pi_t$. By equation 36, within the inner loop the verifier accepts exactly when $v_j = s_t$. Because the policy enumerates \mathcal{V} without replacement, some $j \leq |\mathcal{V}|$ satisfies $v_j = s_t$, which is accepted, appended, and the inner loop **breaks**.

Thus for every t , the inner loop terminates by accepting s_t within $|\mathcal{V}|$ iterations, and after the outer loop finishes we have appended (s_1, \dots, s_T) , i.e., $\hat{s} = s$. Since the reasoning holds on a probability-one event (independent of the policy's internal randomness), the conclusion is almost sure. \square

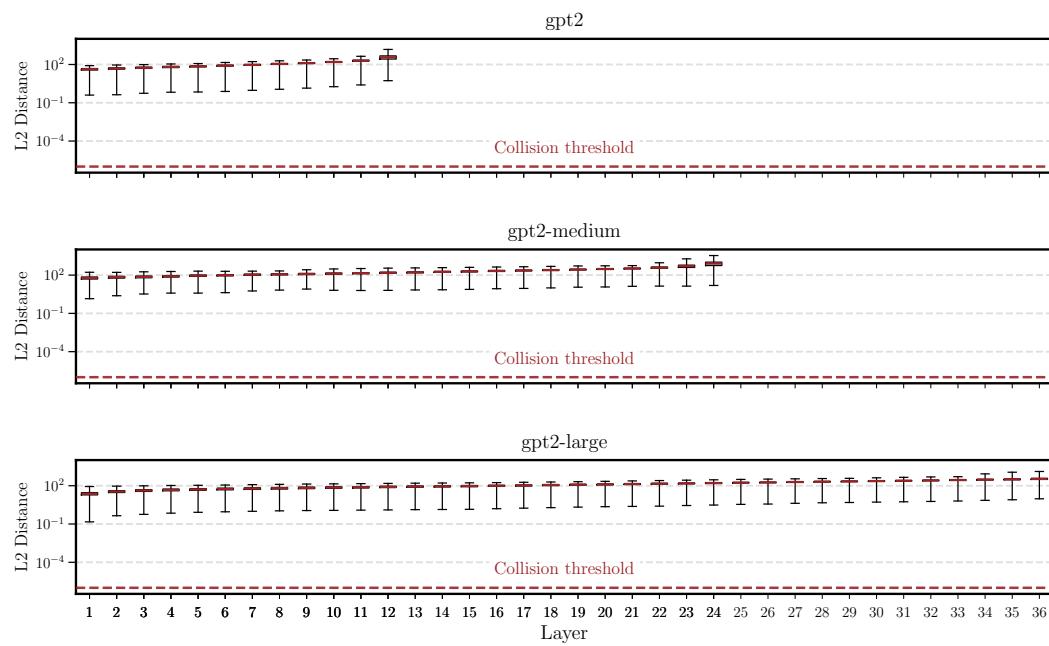


Figure 7: Seeking collisions in a large-scale prompt set (§4.1). For each layer, boxplots show the distribution (log scale) of the *minimum pairwise* ℓ_2 distances between last-token states across prompts for the GPT-2 model family (Small, Medium, and Large); red bars mark medians and the dashed line indicates the collision threshold 10^{-6} .

Proposition D.4 (Termination and linear step bound). *Run SIP-IT (Alg. 1) on a length- T sequence with any policy that enumerates \mathcal{V} without replacement. Then the algorithm halts after a finite number of iterations. Moreover, in the worst case the inner for-loop over j executes at most $|\mathcal{V}|$ iterations at each position t , so the total number of verifier tests across the entire run is at most $T|\mathcal{V}|$. In particular, the number of loop iterations grows linearly with $T \cdot |\mathcal{V}|$.*

Proof. Fix a position t . The *inner for-loop over j* proposes unvisited tokens and stops when a candidate verifies, or after exhausting \mathcal{V} . Because the policy enumerates without replacement, the loop can execute at most $|\mathcal{V}|$ iterations at step t . The *outer for-loop over t* runs for exactly T positions, hence the total number of inner-loop iterations (i.e., verifier tests) is at most $\sum_{t=1}^T |\mathcal{V}| = T|\mathcal{V}| < \infty$. Therefore the algorithm halts and the total number of tests is linear in $T \cdot |\mathcal{V}|$. \square

Remark 20 (Iterations vs. wall-clock time). *Proposition D.4 bounds the number of iterations/tests: the inner loop performs at most $|\mathcal{V}|$ verifier tests per position, so the total is $\Theta(T|\mathcal{V}|)$. This is an iteration complexity statement that holds for any policy satisfying the “enumerate \mathcal{V} without replacement” property. Actual wall-clock time also depends on the per-test cost (one call to $F(v; \pi, t)$ plus a distance) and on any policy overhead (e.g., forward/backward proxy updates, scoring, sorting). A generic decomposition is*

$$\text{time} = \Theta(T|\mathcal{V}| \cdot C_{\text{test}}) + \sum_{t=1}^T C_{\text{policy}}(t),$$

where C_{test} is the cost of one membership test and $C_{\text{policy}}(t)$ captures policy-specific work at step t . Thus, if $|\mathcal{V}|$ is treated as fixed and C_{test} , $C_{\text{policy}}(t)$ are bounded (e.g., a constant number of proxy updates and at most one ranking per update), wall-clock time is $O(T)$. If $|\mathcal{V}|$ grows or the policy sorts per update, additional factors like $|\mathcal{V}|$ or $\log |\mathcal{V}|$ may appear in the time, but the termination and the $\Theta(T|\mathcal{V}|)$ iteration bound remain unchanged.

Remark 21 (Choosing the tolerance ε). *Theory guarantees uniqueness whenever $\varepsilon < \frac{1}{2}\Delta_{\pi,t}$ (Proposition D.1). Since $\Delta_{\pi,t}$ is unknown, two practical choices work well: (i) backoff: start with*

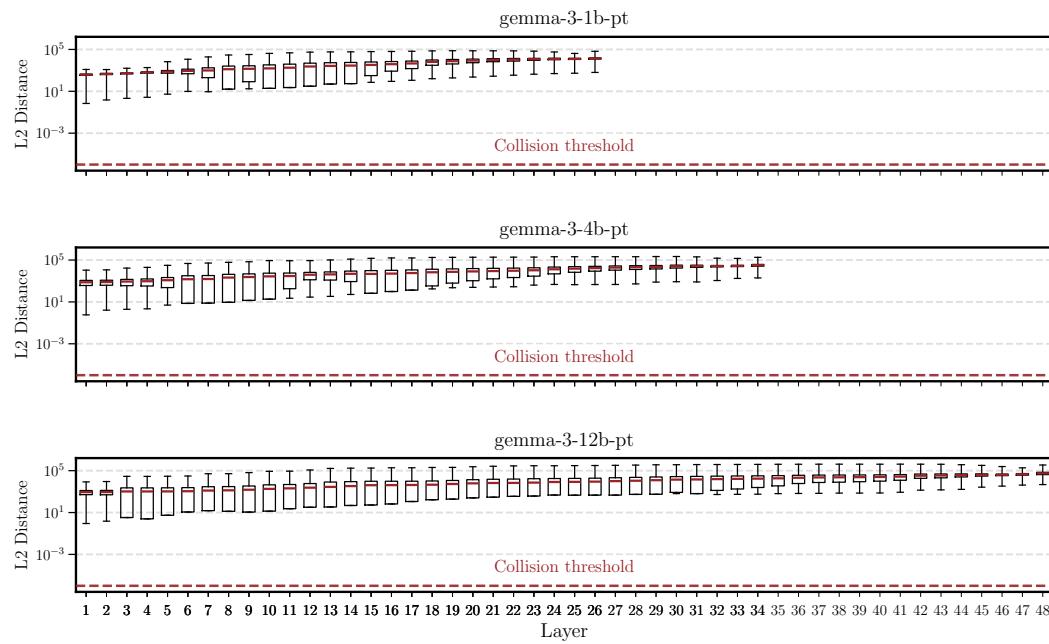


Figure 8: Seeking collisions in a large-scale prompt set (§4.1). For each layer, boxplots (log scale) show the distribution of *minimum pairwise* ℓ_2 distances between last-token states across prompts for the Gemma-3 model family (1B, 4B, 12B); red bars denote medians and the dashed line marks the collision threshold 10^{-6} .

a small ε and increase only if no token verifies; (ii) calibration: set ε from held-out hidden states at layer ℓ . In all cases the decision rule remains a simple yes/no membership test.

Remark 22 (Why SIP-IT is sequential). *The algorithm never solves a global assignment. At position t it conditions on the current prefix π and queries the local verifier for a single token. Causality (Assumption D.1) ensures \mathbf{h}_t depends only on (π, \mathbf{s}_t) , so these local, prefixwise decisions compose to recover the full sequence.*

E ADDITIONAL EXPERIMENTS AND IMPLEMENTATION DETAILS

E.1 IMPLEMENTATION DETAILS

What is a collision in practice. In the theoretical parts of the paper we use ‘‘collision’’ in the usual functional sense: two distinct prompts $\mathbf{s} \neq \mathbf{s}'$ such that their last-token representations coincide exactly,

$$\mathbf{r}(\mathbf{s}; \boldsymbol{\theta}_T) = \mathbf{r}(\mathbf{s}'; \boldsymbol{\theta}_T).$$

This is the event whose probability is controlled in theorems 2.2 and 2.3 and in Appendix C, and all proofs are carried out at the level of exact equality (no numerical threshold is required).

In the experiments, however, representations are stored in floating-point format, so exact equality of $\mathbf{r}(\mathbf{s}; \boldsymbol{\theta}_T)$ and $\mathbf{r}(\mathbf{s}'; \boldsymbol{\theta}_T)$ may not be a meaningful or robust criterion. We therefore adopt a numerical proxy: given two prompts \mathbf{s}, \mathbf{s}' and their embeddings $\mathbf{r}(\mathbf{s}; \boldsymbol{\theta}_T), \mathbf{r}(\mathbf{s}'; \boldsymbol{\theta}_T) \in \mathbb{R}^d$, we declare a *practical collision* only if

$$\text{torch.allclose}(\mathbf{r}(\mathbf{s}; \boldsymbol{\theta}_T), \mathbf{r}(\mathbf{s}'; \boldsymbol{\theta}_T)) = \text{True},$$

i.e., every coordinate falls within PyTorch’s prescribed tolerances, namely 10^{-5} and 10^{-8} for relative and absolute tolerance respectively. Across all of the billions to trillions of empirical checks, every pair of distinct prompts $\mathbf{s} \neq \mathbf{s}'$ failed this criterion: `torch.allclose` always returned `False`, and the observed ℓ_2 distances were consistently bounded away from zero. Thus, at the resolution of our numerical precision, we did not observe any collisions in practice.

2484 **SIP-IT implementation.** We implement SIP-IT exactly as in Alg. 1 with the gradient-guided policy. To stabilize the continuous proxy used for ranking, we apply gradient clipping (capping the 2485 gradient norm at 1) and we periodically project it back to the nearest token embedding every $K=50$ 2486 candidate proposals:

$$\mathbf{e}^{(j)} \leftarrow \mathbf{E}_{v^\dagger}, \quad v^\dagger = \arg \min_{v \in \mathcal{V} \setminus \mathcal{C}} \|\mathbf{E}_v - \mathbf{e}^{(j)}\|_2,$$

2490 without taking gradients through this projection. These heuristics affect efficiency only; the verifier 2491 and all correctness guarantees remain unchanged.

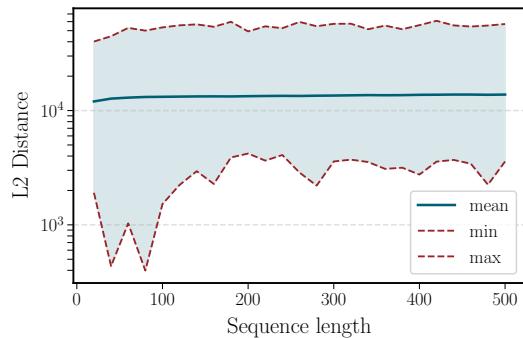
2493 **HARDPROMPTS implementation.** The original HARDPROMPTS method [Wen et al. \(2023\)](#) targets 2494 multimodal vision-language models and optimizes prompts via a CLIP-based similarity objective. 2495 In our text-only setting we lack the vision branch and CLIP loss, so we adapt Algorithm 1 2496 of [Wen et al. \(2023\)](#) to language models by replacing the objective with the same ℓ_2 loss used in 2497 SIP-IT’s gradient calculation, and setting the optimization steps $T = \frac{1}{4} \# \text{tokens} \cdot |\mathcal{V}|$. All other 2498 details (step sizes, stopping rules) mirror our SIP-IT setup to ensure a fair comparison.

2500 E.2 ADDITIONAL ABLATIONS

2502 E.2.1 COLLISION EXPERIMENTS

2504 We report three complementary ablations that probe how separation behaves across depth, length, 2505 and model family.

2506 **GPT-2 family across depth.** For GPT-2 Small, GPT-2 Medium, and GPT-2 Large, the 2507 per-layer boxplots (log scale) of the *minimum pairwise* ℓ_2 distances between last-token states in 2508 [Figure 7](#) show that all minima sit orders of magnitude above the collision threshold 10^{-6} at every 2509 depth, and the typical separation *increases with depth* (median red bars drift upward). This rules out 2510 collisions in practice and indicates that deeper blocks monotonically sharpen last-token distinctions 2511 in these models.



2523 Figure 9: Sequence length versus distance over all 2524 pairs of distinct prompts for Gemma-1B.

2525 [ure 9](#)). This suggests that beyond a modest context size, additional tokens do not erode separability; 2526 margins stabilize rather than collapse, making collisions unlikely for any prompt length explored.

2528 Overall, these ablations corroborate the main text: last-token states remain well-separated across 2529 architectures and depths, separation typically grows with depth (and scale for Gemma), and margins 2530 stabilize with sequence length, aligning with our almost-sure injectivity guarantees and with SIP- 2531 IT’s exact recovery behavior.

2532 E.2.2 SIPIT

2534 **Vocabulary Size.** To further validate our findings (as presented in [section 4](#)) regarding the scaling 2535 of SIPIT with vocabulary size, we conducted additional experiments on the two models with substan- 2536 tially different vocabulary sizes, [Mistral-7B-v0.1](#) ($\approx 32K$ vocabulary) and [Llama-3.1-8B](#) ($\approx 128K$). For a fair 2537 comparison, we construct sentences that tokenize to exactly the same sequence of tokens across both models. The results are reported in the [Table 6](#). We observe that, in

2512 **Gemma-3 family across depth and scale.** 2513 Across Gemma3-1B, Gemma3-4B, and 2514 Gemma3-12B, the layerwise boxplots (log 2515 scale) in [Figure 8](#) again show minima far above 2516 10^{-6} at all depths. Both depth *and* model size 2517 trend positively with separation: medians and 2518 lower whiskers move upward in deeper layers 2519 and larger models, indicating progressively 2520 stronger margins and no observed collisions.

2522 **Effect of sequence length (Gemma-1B).** 2523 Varying the prompt length reveals that 2524 min/mean/max pairwise distances rise quickly 2525 for short sequences and then plateau, with the 2526 minimum never approaching zero (see [Fig-](#)

2538 2539 2540 2541 2542 2543 2544	Model	Vocab size	Inversion performance		
			Accuracy	Time (s)	Vocab explored (%)
	Mistral-7B-v0.1	32000	100%	72.99 \pm 37.57	0.21 \pm 0.11 %
	Llama-3.1-8B	128255	100%	345.35 \pm 181.30	0.22 \pm 0.12 %

2545 Table 6: Performance of SIPIT on different vocabulary sizes

2548 practice, the inversion time grows linearly with vocabulary size, as expected, reflected by the nearly
2549 constant percentage of tokens explored between the small-vocabulary model (Mistral) and the
2550 larger-vocabulary model (Llama). Importantly, for both models, the fraction of tokens explored re-
2551 mains below 0.25%, indicating that the gradient-based heuristic is both robust and highly efficient.

2553 2554	Dataset	Inversion Time (s)	Accuracy
2555	Train Data	146.48 \pm 91.52	100%
2556	Test Data	128.62 \pm 83.40	100%
2557	OOD	106.87 \pm 39.10	100%

2559 Table 7: Performance of SIPIT on in-distribution vs. out-of-distribution data

2562 **Robustness of SIPIT on unseen and random sequences.** Based on GPT-2, we constructed three
2563 datasets, which we refer to as **Train**, **Test**, and **OOD** (Out-of-Distribution). The **Train** set is formed
2564 by sampling sentences from WebText (the dataset used to train GPT-2 Radford et al. (2019)); the
2565 **Test** set contains sentences sampled from Wikipedia (not in the training set); and the **OOD** set con-
2566 sists of random token sequences. Each dataset contains 50 prompts of length 100 tokens. We report
2567 the findings in Table 7. Interestingly, the **OOD** samples are significantly faster to invert than the
2568 **Train** and **Test** samples. We hypothesize that this difference stems from the geometry of the hidden
2569 representations: natural language sentences (**Train** and **Test**) tend to lie on a structured, clustered
2570 manifold, which can make the inversion landscape locally flatter and less well-conditioned. In con-
2571 trast, random token sequences produce more dispersed and isolated hidden states, yielding clearer
2572 descent directions and effectively stronger gradient signals, which accelerates convergence. Across
2573 all three datasets, we obtain exact recovery for every sequence, further supporting the theoretical
2574 guarantees of SIPIT.

2575

E.3 IDENTICAL NEXT-TOKEN

2577 An interesting question is what happens to the representations when deliberately constructing
2578 prompts that force the exact same next token across diverse contexts. To answer this question
2579 we designed a set of new experiments where two different prompt are specifically constructed
2580 to yield the exact same target answer. First, we focused on word-to-word machine transla-
2581 tion (google/sm1) and math tasks (ProCreations/SimpleMath) on Llama-3.1-8B,
2582 Mistral-7B, and Phi-4-mini-instruct. From these datasets, we built few shot prompts
2583 that differed only in their delimiters (e.g. \rightarrow vs $:$) while preserving identical translations or arith-
2584 metic solutions. Some qualitative examples are shown below:

2586 2587 2588 2589 2590 2591	Delimiter: \rightarrow Translate into French. Hello \rightarrow Bonjour Goodbye \rightarrow Au revoir House \rightarrow	Delimiter: $:$ Translate into French. Hello : Bonjour Goodbye : Au revoir House :
--	---	---

Model	ℓ_2 Distance (min)		
	layer 1	layer $L/2$	layer L
Llama-3.1-8B	0.694	1.632	4.202
Mistral-7B-v0.1	0.207	1.056	2.348
Phi-4-mini-instruct	4.375	6.974	17.328

Table 8: Distances for Translation (En-Fr) separator-token embeddings across layers.

Model	ℓ_2 Distance (min)		
	layer 1	layer $L/2$	layer L
Llama-3.1-8B	0.789	2.126	8.245
Mistral-7B-v0.1	0.222	1.664	4.362
Phi-4-mini-instruct	4.447	8.497	37.262

Table 9: Distances for Math separator-token embeddings across layers.

Delimiter: \rightarrow	Delimiter: $=$
<p>Do the additions.</p> <p>2790 + 6698 \rightarrow 9488 8262 + 3848 \rightarrow 12110 1628 + 132 \rightarrow</p>	<p>Do the additions.</p> <p>2790 + 6698 = 9488 8262 + 3848 = 12110 1628 + 132 =</p>

We then assessed collisions involving four different separator token embeddings across all dataset pairs, specifically \rightarrow , $:$, $=$, and $-$. Despite producing the exact same answer the corresponding embeddings remain clearly distinct (no “collision”) since the minimum ℓ_2 distance is well above the collision threshold over the $\approx 140K$ possible pairs, as seen in tables 8 and 9.

Furthermore, we constructed a dataset of random prefixes sampled from internet text, each followed by the fixed suffix “Complete this: The quick brown fox jumps over the lazy”. To build the dataset, we sampled 10K prefix sequences of length 50 tokens from Wikipedia and appended the tokenized suffix to each. The minimum ℓ_2 distances obtained are reported in Table 10. Even in this setting, although the next token prediction is exactly “dog”, all last-token embeddings remain far above the tolerance threshold.

Model	ℓ_2 Distance (min)		
	layer 1	layer $L/2$	layer L
Mistral-7B-v0.1	0.012	0.265	3.494
Llama-3.1-8B	0.046	0.733	6.227
Phi-4-mini-instruct	0.087	2.302	18.913

Table 10: Distances for random-prefix dataset with fixed “quick brown fox” suffix.

E.4 PROMPTS WITH SIMILAR REPRESENTATIONS

To complement the quantitative injectivity results in the main text, we inspected qualitative examples of sequences whose last-token hidden states are among the closest we observed. For a given model,

2646 we computed the Euclidean distance between last-layer representations $h_L(s)$ and $h_L(t)$ of the final
 2647 token in two sequences s and t , and manually examined pairs with the smallest ℓ_2 distances.
 2648

2649 For both Llama-3.1-8B and Mistral-7B-v0.1, the closest pairs correspond to Python code snippets
 2650 that are almost identical, typically differing only by a small shift such as one or more trailing newline
 2651 tokens. In most of the close pairs we examined, the two sequences satisfy

$$s = t \circ \langle \text{new line token} \rangle^k$$

2655 for some small $k \geq 1$. Even in these extremal cases, however, the last-token representations remain
 2656 clearly separated in ℓ_2 distance.
 2657

2658 **Llama-3.1-8B.** One of the closest pairs we found for Llama-3.1-8B is shown below. The only
 2659 difference between the two sequences is the presence of several trailing newline characters at the
 2660 end of the second snippet.
 2661

2662

2663 **Llama-3.1-8B: Sequence s**

2664 ...

2665 # -- Options for HTML output ...

2666

2667 # The theme to use for HTML and HTML Help pages ...

2668 html_theme = 'default'

2669

2670 # Theme options are theme-specific and customize the ...

2671 html_theme_options = {}

2672

2673 # Add any paths that contain custom themes here ...

2674 #html

2675

2676

2677

2678 **Llama-3.1-8B: Sequence t**

2679 ...

2680 # -- Options for HTML output ...

2681

2682 # The theme to use for HTML and HTML Help pages ...

2683 html_theme = 'default'

2684

2685 # Theme options are theme-specific and customize the ...

2686 html_theme_options = {}

2687

2688 # Add any paths that contain custom themes here ...

2689 #html

2690 \n

2691 \n

2692

2693 The last-token ℓ_2 distance at the final layer for this pair is 1.274, which is small relative to typical
 2694 distances but still far from zero, and thus consistent with the absence of collisions observed in our
 2695 exhaustive tests.
 2696

2697 **Mistral-7B-v0.1.** A similar phenomenon occurs for Mistral-7B-v0.1. Again, one of the closest
 2698 pairs consists of two almost identical code snippets, where the second sequence appends a single
 2699 newline token:

```

2700 Mistral-7B-v0.1: Sequence s
2701
2702 ...
2703 # The reST default role to use for all documents.
2704 #default_role = None
2705
2706 # If true, '()' will be appended to :func: ...
2707 #add_function_parentheses = True
2708
2709 # If true, the current module ...
2710
2711 Mistral-7B-v0.1: Sequence t
2712
2713 # The reST default role to use for all documents.
2714 #default_role = None
2715
2716 # If true, '()' will be appended to :func: ...
2717 #add_function_parentheses = True
2718
2719 # If true, the current module ...
2720 \n

```

For this pair, the last-token ℓ_2 distance at the last layer is 1.146. As in the Llama example, the nearest neighbors arise from almost identical contexts differing only in trailing whitespace tokens, and even these extremal cases exhibit a non-negligible separation in representation space.

Summary. Across all models and pairs we inspected, we did not observe qualitatively different prompts whose last-layer, last-token embeddings were comparably close. Instead, the nearest neighbors consistently involved near-duplicate snippets (often code or documentation) differing only by whitespace or other minor formatting tokens. These qualitative observations align with the injectivity margins reported in the main text and support the view that small perturbations in formatting do not lead to collisions in the representations used by SIPIT.

E.5 RELATION WITH ANISOTROPY AND INTRINSIC DIMENSION

As part of our broader investigation, we also examined connections to the analyses presented in the works of [Razzhigaev et al. \(2025\)](#) (LLM-Microscope) and [Razzhigaev et al. \(2024\)](#), and ran a targeted experiment in this spirit.

Experimental setup. We performed a proof-of-concept study using GPT-2 Small. We sampled 100 natural-language prompts of fixed length K and, for each prompt, generated 1000 single-token continuations by appending each token from a fixed vocabulary subset of size 1000. For every layer ℓ , we extracted the hidden representation of the last token for all 1000 continuations, producing a $1000 \times d$ matrix for each (layer, prompt) pair. On each matrix we computed (i) anisotropy and intrinsic dimension as in LLM-Microscope, and (ii) simple “injectivity margin” statistics: the minimum pairwise Euclidean distance between continuation embeddings, averaged over prompts. Aggregating over the 100 prompts yields, for each layer, a triple consisting of anisotropy, intrinsic dimension, and injectivity margin.

Experiment 1: anisotropy vs. injectivity margin. Across layers, we correlated mean anisotropy with the mean injectivity margin. The resulting Pearson correlation is **0.72**, and the Spearman correlation is **0.45**. In this setting, layers with higher anisotropy tend to exhibit larger injectivity margins: continuation clouds become both more structured (anisotropic) and farther from collisions. This suggests that anisotropy is compatible with, and may even reinforce, numerically robust injectivity.

Experiment 2: intrinsic dimension vs. injectivity margin. Repeating the analysis with intrinsic dimension, we observe a Pearson correlation of **-0.60** and a Spearman correlation of **-0.79** between intrinsic dimension and injectivity margin. Thus, layers with lower intrinsic dimensionality tend to

2754	2755	Layer	Anisotropy (mean)	ID (mean)	Margin (min)
2756		1	0.089579	20.754620	1.850306
2757		2	0.076049	17.565538	1.956753
2758		3	0.071429	16.765265	2.064488
2759		4	0.075067	16.679382	2.241199
2760		5	0.083282	17.183246	2.382355
2761		6	0.089542	17.697870	2.499817
2762		7	0.088463	17.018419	2.704958
2763		8	0.083261	16.296431	2.886434
2764		9	0.081803	16.040713	3.025268
2765		10	0.083083	15.730601	3.330774
2766		11	0.090206	15.635035	3.918343
2767		12	0.288352	16.434897	4.640457
2768					
2769					
2770					

Table 11: Layer-wise anisotropy, intrinsic dimension, and injectivity margin.

have larger margins: compressed-looking manifolds are, if anything, more separated. This aligns with our theorem that injectivity rules out information-destroying collapses.

Discussion. This line of analysis is highly complementary to our injectivity framework. Whereas our results establish that internal representations are almost surely lossless, LLM-Microscope offers fine-grained geometric diagnostics of how these representations evolve across depth and training. Particularly notable is the observation that anisotropy and intrinsic dimension follow a reverse-U profile: representations become more anisotropic and lower-dimensional in intermediate layers, then partially re-expand near the output, offering a concrete geometric picture of how structure is carved into aligned directions and low-dimensional manifolds.

This is especially relevant given that our paper challenges classic accounts of learning via bottleneck compression (e.g. [Shwartz-Ziv & Tishby \(2017\)](#)). If information is preserved along the residual stream, learning cannot proceed layer by layer purely through compression. Our preliminary experiments suggest a different picture: as depth increases, margins grow, intrinsic dimension decreases, and anisotropy follows a concave trajectory with a late spike. Early layers expand and reorganize, intermediate layers carve information into low-dimensional directional manifolds, and upper layers sharpen this structure. Overall, this is consistent with a network that preserves injectivity while funneling information into increasingly structured, well-separated representations.

F REAL-ANALYTIC ACTIVATION FUNCTIONS IN MODERN LLMs

A natural question raised by our analysis is to what extent modern large language models actually use real-analytic activation functions in their feed-forward networks. Since our results apply most directly when the non-linearities are real-analytic, it is important to check whether this assumption holds in practice.

To get a concrete picture, we surveyed a set of widely used open-source and proprietary-style architectures and recorded the activation function used in their feed-forward blocks. The models and their reported activations are summarized in [Table 12](#). For each model, we also indicate whether the activation is real-analytic. Activations such as SiLU/Swish, SwiGLU, GeGLU, and GELU are all real-analytic, being compositions and products of elementary analytic functions (e.g., linear maps, exponentials, and the error function).

Across this representative sample, we find that *all* models (18 out of 18) use real-analytic activations in their feed-forward blocks. In other words, the analyticity assumption is not merely a technical convenience but accurately reflects common design practice. This supports the relevance of our theoretical results for real-world large language models: the vast majority of modern transformers

2808	2809	Model (HF example)	Activation in FFN	Real-analytic?
2810		Llama-2	SwiGLU	Yes
2811		Llama-3	SwiGLU	Yes
2812		Mistral-7B-v0.1	SiLU	Yes
2813		Mixtral-8x7B-v0.1	SiLU	Yes
2814		Gemma	GeGLU	Yes
2815		Gemma-2	GELU	Yes
2816		Qwen2MoE	SwiGLU	Yes
2817		Qwen-2	SiLU	Yes
2818		Qwen3MoE	SiLU	Yes
2819		Qwen-3	SiLU	Yes
2820		Phi	GELU	Yes
2821		Phi-3	SiLU	Yes
2822		GPT-2	GELU	Yes
2823		GPT-J	GELU	Yes
2824		GptOss	SiLU	Yes
2825		Grok-1	GELU	Yes
2826		DeepSeek-V2	SiLU	Yes
2827		DeepSeek-V3	SiLU	Yes

Table 12: Activation functions used in the feed-forward networks of representative modern LLMs.

already operate in a regime where the non-linearities are real-analytic, and hence fall directly within the scope of our analysis. We now formally prove that SiLU and GELU are real-analytic scalar functions, and that the corresponding gated constructions SwiGLU and GeGLU define real-analytic vector-valued maps.

Proposition F.1 (Logistic sigmoid is real-analytic). *The logistic sigmoid*

$$\sigma(x) := \frac{1}{1 + e^{-x}}, \quad x \in \mathbb{R},$$

is real-analytic on \mathbb{R} .

Proof. By [Proposition A.5](#), the map $x \mapsto e^{-x}$ is real-analytic on \mathbb{R} . By [Proposition A.1](#), the sum $x \mapsto 1 + e^{-x}$ is real-analytic; moreover $1 + e^{-x} > 0$ for all $x \in \mathbb{R}$, so it never vanishes. By the quotient rule in [Proposition A.1](#), the reciprocal

$$x \mapsto \frac{1}{1 + e^{-x}}$$

is therefore real-analytic on \mathbb{R} . □

Proposition F.2 (SiLU / Swish is real-analytic). *The SiLU (or Swish) activation*

$$\text{SiLU}(x) := x \sigma(x) = \frac{x}{1 + e^{-x}}, \quad x \in \mathbb{R},$$

is real-analytic on \mathbb{R} .

Proof. The identity map $x \mapsto x$ is a polynomial, hence real-analytic by [Proposition A.4](#). By [Proposition F.1](#), σ is real-analytic. The product of two real-analytic functions is real-analytic by [Proposition A.1](#), so $x \mapsto x \sigma(x)$ is real-analytic on \mathbb{R} . □

2862 **Lemma F.1** (Error function is real-analytic). *The error function*

$$2864 \quad \text{erf}(x) := \frac{2}{\sqrt{\pi}} \int_0^x e^{-t^2} dt, \quad x \in \mathbb{R},$$

2865 *is real-analytic on \mathbb{R} .*

2866 *Proof.* By [Proposition A.5](#), \exp is real-analytic on \mathbb{R} with power series $e^z = \sum_{k=0}^{\infty} \frac{z^k}{k!}$ and infinite
2867 radius of convergence. Substituting $z = -t^2$ yields

$$2870 \quad e^{-t^2} = \sum_{k=0}^{\infty} \frac{(-1)^k}{k!} t^{2k}, \quad t \in \mathbb{R}.$$

2871 This series has infinite radius of convergence, so it converges uniformly on every bounded interval.
2872 By standard results on termwise integration of power series (e.g. [Rudin 1976](#)), we may integrate
2873 termwise:

$$2874 \quad \int_0^x e^{-t^2} dt = \sum_{k=0}^{\infty} \frac{(-1)^k}{k!} \int_0^x t^{2k} dt = \sum_{k=0}^{\infty} \frac{(-1)^k}{k!(2k+1)} x^{2k+1}.$$

2875 Multiplying by $2/\sqrt{\pi}$ we obtain

$$2876 \quad \text{erf}(x) = \frac{2}{\sqrt{\pi}} \sum_{k=0}^{\infty} \frac{(-1)^k}{k!(2k+1)} x^{2k+1},$$

2877 a power series with infinite radius of convergence. Hence erf is real-analytic on \mathbb{R} by [Definition A.1](#).
2878 \square

2879 **Proposition F.3** (GELU is real-analytic). *Let*

$$2880 \quad \Phi(x) := \frac{1}{2} \left(1 + \text{erf} \left(\frac{x}{\sqrt{2}} \right) \right)$$

2881 *be the CDF of a standard normal random variable. The (exact) GELU activation*

$$2882 \quad \text{GELU}(x) := x \Phi(x)$$

2883 *is real-analytic on \mathbb{R} .*

2884 *Proof.* By [Lemma F.1](#), erf is real-analytic. The map $x \mapsto \frac{x}{\sqrt{2}}$ is linear, hence real-analytic; by
2885 [Proposition A.2](#), the composition $x \mapsto \text{erf} \left(\frac{x}{\sqrt{2}} \right)$ is real-analytic. Adding the constant 1 and scaling
2886 by $\frac{1}{2}$ preserves real-analyticity by [Proposition A.1](#), so Φ is real-analytic. The identity map $x \mapsto x$
2887 is a polynomial ([Proposition A.4](#)), hence real-analytic; their product $x \mapsto x \Phi(x)$ is therefore real-
2888 analytic by [Proposition A.1](#). \square

2889 **Proposition F.4** (Vector-valued SiLU and GELU are real-analytic). *Let $m \in \mathbb{N}$. Define the coordinate-
2890 wise maps*

2891 $\text{SiLU}_m(\mathbf{x}) := (\text{SiLU}(\mathbf{x}_1), \dots, \text{SiLU}(\mathbf{x}_m))^{\top}$, $\text{GELU}_m(\mathbf{x}) := (\text{GELU}(\mathbf{x}_1), \dots, \text{GELU}(\mathbf{x}_m))^{\top}$,
2892 for $\mathbf{x} \in \mathbb{R}^m$, where SiLU and GELU are as in [Proposition F.2](#) and [Proposition F.3](#). Then both
2893 SiLU_m and GELU_m are real-analytic maps $\mathbb{R}^m \rightarrow \mathbb{R}^m$.
2894

2895 *Proof.* Each scalar component $\mathbf{x} \mapsto \text{SiLU}(\mathbf{x}_i)$ (resp. $\text{GELU}(\mathbf{x}_i)$) is the composition of the projection
2896 onto coordinate i (a linear map) with the real-analytic scalar function SiLU (resp. GELU). By
2897 [Proposition A.2](#), each component is real-analytic. Therefore, by [Definition A.1](#), the vector-valued
2898 maps SiLU_m and GELU_m are real-analytic. \square

2899 **Proposition F.5** (GLU-style blocks are real-analytic). *Let $d_{\text{in}}, d_{\text{hid}} \in \mathbb{N}$ and consider affine maps*

$$2900 \quad A_1(\mathbf{x}) = \mathbf{W}_1 \mathbf{x} + \mathbf{b}_1, \quad A_2(\mathbf{x}) = \mathbf{W}_2 \mathbf{x} + \mathbf{b}_2,$$

2901 *with $\mathbf{W}_1, \mathbf{W}_2 \in \mathbb{R}^{d_{\text{hid}} \times d_{\text{in}}}$ and $\mathbf{b}_1, \mathbf{b}_2 \in \mathbb{R}^{d_{\text{hid}}}$. Let $\phi : \mathbb{R}^{d_{\text{hid}}} \rightarrow \mathbb{R}^{d_{\text{hid}}}$ be either $\text{SiLU}_{d_{\text{hid}}}$ or
2902 $\text{GELU}_{d_{\text{hid}}}$ from [Proposition F.4](#). Define the GLU-style block*

$$2903 \quad \text{GLU}_{\phi}(\mathbf{x}) := A_1(\mathbf{x}) \odot \phi(A_2(\mathbf{x})), \quad \mathbf{x} \in \mathbb{R}^{d_{\text{in}}},$$

2904 *where \odot denotes the Hadamard product.*

2905 *Then $\text{GLU}_{\phi} : \mathbb{R}^{d_{\text{in}}} \rightarrow \mathbb{R}^{d_{\text{hid}}}$ is real-analytic. In particular:*

- Taking $\phi = \text{SiLU}_{d_{\text{hid}}}$ recovers SwiGLU, which is real-analytic.
- Taking $\phi = \text{GELU}_{d_{\text{hid}}}$ recovers GeGLU, which is real-analytic.

Proof. Each affine map A_j is real-analytic as a matrix product plus addition (Proposition A.10, Proposition A.1). By Proposition F.4, ϕ is real-analytic, so $\mathbf{x} \mapsto \phi(A_2(\mathbf{x}))$ is a composition of real-analytic maps (Proposition A.2), hence real-analytic. The map $\mathbf{x} \mapsto A_1(\mathbf{x}) \odot \phi(A_2(\mathbf{x}))$ is a Hadamard product of two real-analytic vector-valued functions; componentwise this is just the product of real-analytic scalars, so it is real-analytic by Proposition A.1 (equivalently, by Proposition A.11). Thus GLU_ϕ is real-analytic. The SwiGLU and GeGLU cases follow by choosing ϕ accordingly. \square

Relation to universal-approximation and expressivity results. The material above concerns only the analyticity of the non-linearities used in our analysis. For completeness, we also record here how our injectivity theorem fits alongside existing expressivity results for Transformers; this discussion is logically independent of the real-analyticity assumptions.

Classical expressivity results for Transformers are primarily *existential*. Universal-approximation theorems (e.g. Yun et al. (2020); Sun & Yang (2020)) show that for any continuous sequence-to-sequence function f on a compact domain and any $\varepsilon > 0$, there exists a Transformer with suitable depth and width whose outputs are within ε of those of f . Turing-completeness results for encoder-decoder Transformers (e.g. Pérez et al., 2019) similarly establish the existence of parameter settings that simulate any Turing machine. Taken together, these works characterise what the architecture can represent *in principle*: they do not model random initialization or gradient-based training, and they are not formulated in our discrete setting with finite context length, fixed decoder-only architecture, and real-analytic activations.

Our results are complementary and instead concern what happens *typically* under standard training. We fix a concrete decoder-only architecture and a finite prompt set, and study the map from prompts to last-token representations. In this setting we prove that (i) for any fixed architecture, the set of parameters for which this map is non-injective has Lebesgue measure zero, and (ii) gradient-based training from standard random initializations preserves absolute continuity of the parameter distribution and therefore almost surely avoids this ‘‘collision set’’. Non-injective Transformers certainly exist (we explicitly construct such failure cases in section 2), but our results show that they form a thin subset that typical optimization trajectories do not reach.

Our contribution is thus orthogonal to prior expressivity theory. We do *not* claim that Transformers can only represent injective functions. Rather, within the specific regime we study (decoder-only, real-analytic activations, cross-entropy loss, GD-type training from standard initialization), we show that the resulting last-token map is injective with probability one over initialization and training. In short, classical expressivity results describe what is mathematically *possible* for the Transformer function class, while our analysis characterizes what is *almost surely implemented* when that class is explored via standard training procedures.

2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969