
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

LANGUAGE MODELS ARE INJECTIVE
AND HENCE INVERTIBLE

Anonymous authors
Paper under double-blind review

ABSTRACT

Transformer components such as non-linear activations and normalization are in-
herently non-injective, suggesting that different inputs could map to the same out-
put and prevent exact recovery of the input from a model’s representations. In
this paper, we challenge this view. First, we prove mathematically that trans-
former language models mapping discrete input sequences to their corresponding
sequence of continuous representations are injective and therefore lossless, a prop-
erty established at initialization and preserved during training. Second, we confirm
this result empirically through billions of collision tests on six state-of-the-art lan-
guage models, and observe no collisions. Third, we operationalize injectivity: we
introduce SIPIT, the first algorithm that provably and efficiently reconstructs the
exact input text from hidden activations, establishing linear-time guarantees and
demonstrating exact invertibility in practice. Overall, our work establishes injec-
tivity as a fundamental and exploitable property of language models, with direct
implications for transparency, interpretability, and safe deployment.

1 INTRODUCTION

LATENT SPACE

ε
δ
x

x′
z′

z

Rd

δ > 0 =⇒ ε > 0

PROMPT SPACE
LLM

SIPIT

Figure 1: The map from prompts to latent
space is injective. SIPIT inverts it.

A core question in understanding large language
models is whether their internal representations
faithfully preserve the information in their inputs.
Since Transformer architectures rely heavily on non-
linearities, normalization, and many-to-one atten-
tions mechanisms, it is often assumed that they dis-
card information: different inputs could collapse to
the same hidden state, making exact recovery of
the input impossible. This view motivates concerns
around transparency, robustness, and safe deploy-
ment, as it suggests that the link between text and
representation is inherently lossy.

In this paper, we show that this intuition is misleading. Despite their apparent complexity, standard
decoder-only Transformer language models (seen as maps from prompts to hidden states) are in
fact almost-surely injective; for essentially all parameter settings and during the course of training,
different prompts yield different last-token representations (e.g., see Figure 1).

Building upon this property, we further provide a practical algorithm, SIPIT, that reconstructs the
exact input from hidden activations. To our knowledge, it is the first to guarantee exact recovery in
provable linear time (worst case bound), often faster in practice, turning injectivity from a theoretical
property into an operational tool.

Our approach. To establish our result, we take a rigorous mathematical view of Transformers
as functions. The key idea is that their components (embeddings, LayerNorm, causal attention,
MLPs, and residual wiring) are smooth and structured enough that the model, as a whole, behaves
predictably with respect to its parameters. Using tools from real analysis, we show that collisions
(two different prompts producing the exact same representation) can only occur on a set of parameter
values that has measure zero; that is, they are mathematical exceptions rather than possibilities one
should expect in practice. Moreover, we prove that common training procedures (gradient descent

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

with standard step sizes) never move parameters into this exceptional set. In layman’s terms, almost
all models at initialization are injective, and training preserves this property.

Technically, our proofs rely on two ingredients. First, we establish that Transformers are real-
analytic functions of their parameters, which allows us to reason precisely about when and where
collisions could occur. Second, we construct parameter settings where no two prompts collide, and
show that gradient descent (GD) does not collapse such separation, i.e., collisions remain a measure-
zero event. The end result is a finite-horizon guarantee: after any fixed number of training steps, and
under mild assumptions, injectivity holds with probability one. We provide complete formal proofs
of these statements.

Main result. Our central finding is that causal decoder-only Transformer language models are
injective almost surely. Formally, consider one such model with embedding width d, at least one
attention head per block, real-analytic components, finite vocabulary V , and finite context length K.
Initialize its parameters θ at random, using any distribution that has a density1 (such as Gaussian,
uniform, or Xavier/Glorot), and train for any finite number T of GD steps with step sizes in (0, 1).
Then, with probability one over the random initialization,

s ̸= s′ =⇒ r(s ; θT) ̸= r(s′ ; θT) ,

i.e., the map from prompts s to last-token representations r(s ; θT) is injective across all prompts in
V≤K . In short, collisions in practical settings form a measure-zero set, and neither initialization nor
training will ever place a model inside that set.

Significance. Our result shows that in standard decoder-only Transformers, different prompts al-
most surely yield different last-token representations across all practically relevant parameter set-
tings and training procedures. The guarantee is both generic (it fails only on a measure-zero set
of pathological parameters) and practical (it holds at finite width, depth, and training time under
common initializations).

Conceptually, we replace a long-assumed property with a rigorous theorem, showing that injectivity
is not an asymptotic idealization but a structural consequence of the architecture itself. Techni-
cally, our analytic framework pinpoints when collisions can arise (through deliberate non-analytic
choices such as quantization or tying), and clarifies that otherwise the model is inherently lossless.
Importantly, it establishes that last-token states almost everywhere identify the input.

Finally, we turn this theoretical guarantee into an operational tool: our algorithm SIPIT uses
gradient-based reconstruction to recover prompts exactly from internal activations, efficiently and
with provable linear-time guarantees. This confirms empirically that collisions do not occur in
practice. Beyond transparency and safety, this elevates invertibility to a first-class property of Trans-
former language models, enabling stronger interpretability, probing, and causal analyses.

2 TRANSFORMERS ARE INJECTIVE

Summary. In this section we show that decoder-only Transformers almost surely map different
prompts to different hidden states. Collisions can only occur under measure-zero parameter choices,
and gradient-based training never creates them. In simple terms, Transformer representations are
structurally lossless.

Approach. We consider causal decoder-only Transformer language models with vocabulary V ,
finite context window K, and embedding dimension d. For an input sequence s ∈ V≤K , let r(s ; θ)
denote the final hidden representation at the last token position2, given parameters θ.

Our analysis relies on three facts:

(i) Real-analyticity. Each component of the architecture (embeddings, positional encodings,
LayerNorm with ε > 0, causal attention, MLPs with analytic activations, residuals) is real-
analytic in its parameters (see Appendix A.2 for the mathematical background). This

1Put simply, parameters are not drawn from a degenerate or hand-crafted set.
2We focus on the last-token state, since it alone drives next-token prediction; earlier rows matter only insofar

as they shape this final state. Injectivity at the last token is the property of real operational interest.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

smoothness implies that the set of parameter values causing two distinct prompts to col-
lide is extremely thin (measure zero).

(ii) Initialization. Standard initialization schemes (Gaussian, uniform, Xavier/Glorot, etc.)
draw parameters from continuous distributions with densities, so they avoid measure-zero
sets with probability one.

(iii) Training. Gradient-based updates (including SGD and mini-batch/full-batch GD) preserve
absolute continuity of the parameter distribution after any finite number of steps; thus,
training cannot generate collisions.

These facts allow us to state and prove injectivity results without relying on asymptotics.

We begin by establishing the analytic structure of the architecture.
Theorem 2.1 (Transformers are real-analytic). Fix embedding dimension d and context length K.
Assume the MLP activation is real-analytic (e.g. tanh, GELU). Then for every input sequence s ∈
V≤K , the map

(s,θ) 7→ r(s ; θ) ∈ Rd (1)

is real-analytic jointly in the parameters θ and the input embeddings.

Sketch of proof (full proof in Appendix B, Proposition B.3). Each building block is real-analytic:
polynomials (embeddings, projections), exponential and softmax (attention), reciprocal square root
(LayerNorm with ε > 0), analytic activations in the MLP, and affine maps. Real-analytic functions
are closed under addition, multiplication, quotient, and composition. Since the Transformer is a
finite composition of such blocks, the entire map is real-analytic.

f1 f2

f1 − f2

Figure 2: Two real-analytic functions
f1 and f2 and their difference f1 −
f2. Black contours show the zero sets,
which form thin curves (measure zero)
rather than regions of positive measure.

This smoothness result drives everything that follows:
it ensures that collisions, if they exist, are confined to
measure-zero parameter sets. We now ask: what happens
at initialization?
Theorem 2.2 (Almost-sure injectivity at initialization).
Let θ be drawn from any distribution with a density (e.g.
Gaussian or uniform). Then for any two distinct prompts
s, s′ ∈ V≤K ,

Pr[r(s ; θ) = r(s′ ; θ)] = 0 . (2)

Sketch of proof (full proof in Appendix C, Theorem C.2).
Fix s ̸= s′ and consider

h(θ) = ∥r(s ; θ)− r(s′ ; θ)∥22 . (3)

By Theorem 2.1, h is real-analytic. A fundamental di-
chotomy of real-analytic functions states that either h is
identically zero, or its zero set has Lebesgue measure zero (see Figure 2 for an illustration). There-
fore, to rule out the pathological case h ≡ 0 it suffices to exhibit a single parameter setting where
r(s ; θ) ̸= r(s′ ; θ).

This can always be done: if s and s′ differ at the last position (symbol or length), freeze the network
so that the last state reduces to embedding plus position, and choose distinct rows; this already
separates r(s) and r(s′). If instead they differ earlier, let i⋆ be the first mismatch and set one attention
head so the last position attends almost entirely to i⋆, encoding its token in the value; this forces
different outputs for s and s′.

Hence h is not identically zero, and so the collision set {θ : h(θ) = 0} has Lebesgue measure
zero. Since standard initializations have densities, the probability of sampling such θ is zero, and
r(s ; θ) ̸= r(s′ ; θ) (injectivity) holds almost surely at initialization.

According to Theorem 2.2, at initialization, collisions are mathematically impossible except on a
vanishingly small set of parameter values. Finally, with the following Theorem we ensure training
does not break injectivity.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Theorem 2.3 (Injectivity preserved under training). Let θ0 be initialized from a distribution with a
density, and let θT be the parameters after T steps of gradient descent with step sizes in (0, 1). Then
with probability one,

s ̸= s′ =⇒ r(s ; θT) ̸= r(s′ ; θT) , (4)

Sketch of proof (full proof in Theorems C.1 and C.5). At initialization, θ0 is drawn from a distribu-
tion with a density, hence absolutely continuous. To break injectivity during training, GD would
need to map this continuous law onto the measure-zero collision set identified in Theorem 2.2. We
show this cannot happen.

A single GD step is the map ϕ(θ) = θ−η∇L(θ), where L is the training loss. Because the network
and the softmax cross-entropy loss are real-analytic, ϕ is also real-analytic. Its Jacobian determinant
detDϕ(θ) is itself real-analytic and not identically zero (one can check this by evaluating at a
simple parameter setting). Hence the set where detDϕ = 0 has measure zero. Away from that set,
the Inverse Function Theorem applies: ϕ is a smooth, locally invertible change of coordinates that
can stretch or bend space but cannot collapse regions of positive volume onto lower-dimensional
sets. Therefore, pushing forward an absolutely continuous distribution through ϕ yields another
absolutely continuous distribution.

Since this argument holds for each step, any finite sequence of GD updates preserves absolute con-
tinuity of the parameter law. Combining with Theorem 2.2, which shows that collision sets are
measure-zero, we conclude that r(s ; θT) ̸= r(s′ ; θT) almost surely for all s ̸= s′.

Thus injectivity is not just an initialization property but remains true throughout training. A simple
but important corollary follows.

Corollary 2.3.1 (SGD and mini-batch GD). Under the assumptions of Theorem 2.3, the same con-
clusion holds when the updates are θt+1 = θt − ηt∇θLBt(θt) with arbitrary (possibly random or
adversarial) batch selections Bt, thus including the singleton case of SGD and the full dataset.

Proof. The proof argument of Theorem 2.3 is unchanged: for each fixed batch B, the update map
ϕB(θ) = θ − η∇LB(θ) is real-analytic with a Jacobian that is not identically zero. Indeed, the
batch loss is the average LB = 1

|B|
∑|B|

i=1 Li, so at the point θ⋆ from the single-sample proof (where
the Jacobian determinant is sample-independent and nonzero) the batch Jacobian coincides with the
single-sample one by linearity of differentiation, and its determinant is therefore also nonzero. Thus,
the finite composition of such maps preserves absolute continuity of the parameter law.

Together with this robustness to different training regimes, we can also strengthen the guarantee
itself: injectivity holds not just pairwise, but globally across finite sets of prompts.

Corollary 2.3.2 (Distinctness for finite sets). For any finite set of prompts S ⊆ V≤K , the represen-
tations {r(s ; θT) : s ∈ S} are almost surely all distinct.

Proof. See Appendix C, Corollary C.2.1.

These results show that decoder-only Transformer language models are structurally injective: dif-
ferent prompts almost surely yield different last-token states. Collisions can be manufactured,
e.g., through deliberate non-analytic choices (quantization, non-smooth activations), but in practical
training pipelines, injectivity is guaranteed; extensive experiments in §4.1 confirm this empirically.

Failure cases. We showed that non-injective transformers are overwhelmingly unlikely, though it
is still possible for an adversary to construct collisions by hand. For instance, if two vocabulary
items vi ̸= vj are assigned exactly the same embedding vector, then any prompts differing only by
swapping vi and vj yield identical representations. Likewise, if two absolute positional embeddings
are made exactly equal and the remaining weights are tuned to suppress other positional signals,
one can force collisions between sequences that differ only at those positions. These scenarios,
however, require deliberately engineered parameter choices: under continuous random initialization
and standard training, the probability of such coincidences is zero.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Gemma-3/1B

Gemma-3/4B

Gemma-3/12B
GPT-2/S

GPT-2/M
GPT-2/L

10−5

10−3

10−1

101

103

L
2

D
is

ta
n

ce
(m

in
)

Collision threshold

1 2 3 4 5 6 7 8 9 10 11 12
Layer

10−5

10−3

10−1

101

103

L
2

D
is

ta
n

ce

Collision threshold

Figure 3: Seeking collisions in a large-scale prompt set (§4.1). The minimum distances between
last-token states are far above the collision threshold 10−6: (left) across layers for GPT-2 and
Gemma-3 families (one dot per layer), (right) across depth for GPT-2 Small, where distances
grow with depth.

3 EXACT PROMPT RECOVERY VIA SIPIT

In the previous section, we have proven that decoder-only Transformers are almost surely injective,
i.e., different prompts map to different hidden states. We now show how this property can be used
in practice to reconstruct the exact input prompt given hidden states at some layer. We call this
algorithm SIPIT (Sequential Inverse Prompt via ITerative updates).

Formally, recall from §2 that the mapping from a prompt s to its last-token state is almost surely
injective. Since the last state is itself a deterministic function of the hidden matrix at any layer ℓ,
injectivity extends to the full representation

s 7→ H(ℓ)(s) ∈ RT×d . (5)

We denote by ht(s) the row of H(ℓ)(s) at position t. In the following, the parameters θ and target
layer ℓ are considered fixed and omitted for simplicity.

The algorithm exploits the causal structure of Transformers: the hidden state at position t depends
only on the prefix ⟨s1, . . . , st−1⟩ and the current token st. This means that if we already know the
prefix, then the hidden state at position t uniquely identifies st.

Example. Suppose the vocabulary is a, b, c and the true prompt is ⟨a, b⟩. At t = 1, the hidden state
depends only on s1. By comparing the observed state with the three candidate states produced by
trying a, b, and c, we can tell exactly which one matches, thus recovering s1 = a. Then at t = 2, we
know the prefix ⟨a⟩, so we try appending each candidate token and again match the resulting hidden
state to recover s2 = b. Iterating this procedure reconstructs the full sequence.

More generally, we can look at the “one-step” map

vj 7→ ht(π ⊕ vj) , vj ∈ V , (6)

which gives the hidden state at step t for each possible next token, given the fixed prefix π =
⟨s1, . . . , st−1⟩ (here ⊕ denotes concatenation).

Remark. By the analytic arguments of §2, the one-step map is almost surely injective: with a fixed
prefix, any two distinct tokens almost surely yield distinct hidden states.

This property makes sequence recovery straightforward. At each step t, given the hidden state ĥt and
the already recovered prefix, we simply check which candidate token produces a matching hidden
state. That token must be the true st. Repeating this process recovers the entire sequence.

This leads to the SIPIT algorithm, shown in Algorithm 1. At every position, the algorithm cycles
through vocabulary candidates (according to some policy such as random order or gradient-guided
search) until it finds the unique match3, then appends it to the reconstructed prefix and moves on.

3In practice, we accept matches if the observed hidden state is within an ε-ball around the predicted one.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Algorithm 1 SIP-IT: Sequential Inverse Prompt via Iterative Updates

Require: Observed layer-ℓ states Ĥ(ℓ) ∈ RT×d; vocabulary V; tolerance ε ≥ 0.
Ensure: Recovered sequence ŝ = ⟨ŝ1, . . . , ŝT ⟩.

1: ŝ← ⟨ ⟩
2: for t = 1 to T do
3: C ← ∅ ▷ tested candidates
4: for j = 1 to |V| do
5: vj ← POLICY (V, C, ŝ, ℓ) ▷ new candidate token vj (see Alg. 2 and 3)
6: if ĥt ∈ Aπ,t(vj ; ε) then ▷ verify vj (see Def. D.2)
7: ŝ← ŝ⊕ vj ▷ hit!
8: break
9: else

10: C ← C ∪ {vj}
11: end if
12: end for
13: end for
14: return ŝ

To rule out edge cases and analyze the computational cost of SIPIT, we now state a formal guarantee.

Theorem 3.1 (Correctness of SIPIT). Under the assumptions of Theorem 2.3, given observed hidden
states Ĥ(ℓ), SIPIT recovers the true input sequence s with probability one in at most T |V| steps.

Sketch of proof (full proof in Appendix D, Thm. D.2, Prop. D.4). At each step, local injectivity en-
sures a unique token matches the observed state. As the policy spans the vocabulary, this token will
be found in at most |V| trials. Induction over t = 1, . . . , T completes the argument.

Theorem 3.2 (Robustness of SIPIT). Under the assumptions of Theorem 2.3, define the (data-
dependent) margin

∆π,t := min
v ̸=v′∈V

∥∥ht(π ⊕ v)− ht(π ⊕ v′)
∥∥
2
.

Let s = ⟨s1, . . . , sT ⟩ be the input sequence, and for each t ∈ [T − 1] define the prefix sequence:

πt =

{⟨ ⟩, t = 0

⟨s1, . . . , st−1⟩, otherwise
.

Then, given the perturbed hidden states

ĥt(πt ⊕ st) = ht(πt ⊕ st) + et, ∥et∥2 < ∆πt,t

2 ,

SIPIT recovers the true input sequence s with probability one in at most T |V| steps.

Proof in Appendix D, Thm. D.2, Prop. D.2.

In short, SIPIT turns the almost-sure injectivity of Transformer representations into a constructive
procedure: not only are hidden states unique identifiers of prompts, but the exact input sequence
can be efficiently recovered in linear time, and often faster in practice. It is a structural property of
Transformer representations, not a quirk of initialization or training.

4 EXPERIMENTS

We previously proved that decoder-only Transformers are injective (§2) and introduced an algorithm,
SIPIT, that leverages this property to recover the exact input prompt from hidden states at a given
layer (§3). We now provide extensive empirical evidence supporting our theory by showing that
distinct prompts yield distinct embeddings, i.e., no collisions occur by a large margin (§4.1). We
then demonstrate that SIPIT successfully reconstructs the original input prompt (§4.2).

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

0 1 2 3 4 5 6 7 8 9

Sample Index

10−7

10−1

102

L
2

D
is

ta
n

ce

Collision threshold

GPT-2 Small

0 1 2 3 4 5 6 7 8 9

Sample Index

10−7

10−1

104

L
2

D
is

ta
n

ce

Collision threshold

Gemma3-1B

Figure 4: Exhaustive collision search on the 10 closest prefix prompts. The boxplots look flat and
uneventful, and that is the point: even under stress-test conditions with billions of candidate pairs,
all minima stay well above the collision threshold, showing that nothing collapses.

Environment. All experiments were run on a single NVIDIA A100-SXM (64 GB) GPU.
Python 3.11, CUDA 12.2, PyTorch 2.8.0, and transformers 4.50.0 were used for all experi-
ments. Reported runtimes refer to this setup.

4.1 SEARCHING FOR COLLISIONS

We collected 100k prompts by uniformly sampling from a mixture of four datasets:
wikipedia-en4, C4 (Raffel et al., 2020), The Pile (Gao et al., 2020), and
python-github-code5. For each prompt, we extracted the last-token representation and
systematically checked whether any two distinct prompts produced identical embeddings. This
process required around 5 billion pairwise comparisons.

Model ℓ2 Distance (min)

layer 1 layer L
2 layer L

Llama-3.1-8B 0.001 0.129 0.620
Mistral-7B-v0.1 0.002 0.187 1.274
Phi-4-mini-ins 0.014 1.336 9.020
TinyStories-33M 0.029 1.434 2.793

Table 1: Minimum pairwise distance
between last-token states in the first,
middle, and final layers of four models.
All values are well above the collision
threshold 10−6 (no collisions).

We observed no collisions across all models and layers:
distinct prompts always yielded distinct last-token states.
Figure 3 (left) shows the per-layer minimum distances for
the Gemma3 pretrained (Team et al., 2025) and GPT-2
(Radford et al., 2019) families, with strictly positive val-
ues throughout. Table 1 complements this by report-
ing the same statistic for Llama-3.1-8B (Grattafiori
et al., 2024), Mistral-7B-v0.1 (Jiang et al., 2023),
Phi-4-mini-instruct (Microsoft et al., 2025) and
TinyStories-33M (Eldan & Li, 2023), again show-
ing clear separation at the first, middle, and last layers.

Finally, Figure 3 (right) zooms in on GPT-2 Small, revealing that these distances typically in-
crease with depth. Additional results for GPT-2 Medium, GPT-2 Large and Gemma3 (1B, 4B,
12B) appear in Appendix E, confirming the same trend.

0 100 200 300 400 500

Sequence length

10−5

10−3

10−1

101

103

L
2

D
is

ta
n

ce

Collision threshold

mean

min

max

Figure 5: Sequence length vs. pairwise
distance for GPT-2. Min, mean, and max
distances rise at short lengths and then sta-
bilize, indicating consistent separability.

Figure 5 shows how pairwise distances between last-
token states vary with prompt length in GPT-2
Small. Three patterns emerge: (i) the minimum dis-
tance is never close to zero at all lengths, and (ii) it
grows rapidly at short lengths but then levels off, sug-
gesting that beyond a moderate context size, adding to-
kens does not affect separability; (iii) the overall spread
(min-max) stays bounded, with no sign of pathologi-
cal collapses. Similar behavior is seen in Gemma3 (see
Appendix E, Figure 9). Overall, clear margins emerge
quickly and then stabilize, making collisions unlikely at
any sequence length.

Exhaustive collision test. Different from previous ex-
periments, in this setting (Figure 4), we restrict our
analysis to the 10 prompts from the dataset mixture

4https://huggingface.co/datasets/wikimedia/wikipedia
5https://huggingface.co/datasets/angie-chen55/python-github-code

7

https://huggingface.co/datasets/wikimedia/wikipedia
https://huggingface.co/datasets/angie-chen55/python-github-code

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Model ℓ2 Distance (min)

FP4 INT8 FP32

Llama-3.1-8B 2.281 6.597 1.274
Mistral-7B-v0.1 1.748 2.692 1.136

Phi-4-mini-instruct 18.368 20.956 8.780

Table 2: Quantized Models: Minimum pair-
wise distance between last-token states in the
final layer of three quantized models.

Model Size ℓ2 Distance (min)

layer 1 layer L/2 layer L

phi-4 14B 0.010 1.025 8.759
Llama-3.1-70B 70B 0.005 0.465 3.975

Table 3: Large Models: Minimum pairwise
distance between last-token states in the first,
middle, and final layers of two large models.

whose embeddings have the smallest last-token distances. For each of these prompts, we appended
every vocabulary token and computed all pairwise distances between the resulting last-token states,
effectively performing an exhaustive search over continuations and yielding more than 343 billion
prompt pairs per model.

0 50 100 150
Inversion time (s)

1

2

3

4

5

6

7

8

9

10

11

12

Figure 6: Inversion time
as a function of depth.
Runtimes rise only mildly
across layers.

This exhaustive experiment helps rule out the possibility that earlier
observations were simply due to chance in random sampling rather
than a true absence of collisions. While a complete search over
all possible prompts would be ideal, it is computationally infeasible.
The number of unique prompts grows exponentially with sequence
length, and the number of pairwise comparisons grows even faster.
For context, even with single-token prompts and the vocabulary size of
Gemma3-1B, there are already over 34 trillion possible prompt pairs,
making exhaustive evaluation entirely impractical. Our compromise
still revealed structure: we identified 5 prompt pairs with highly sim-
ilar last-token embeddings, suggesting overlapping semantic content
and motivating us to ask whether distinct next tokens could preserve
meaning, i.e., yield essentially identical last-token hidden states.

Figure 4 reports the resulting distributions as boxplots for both GPT-2
Small and Gemma3-1B, with distances far from zero (no collision),
confirming local injectivity as predicted by our theory.

FP4 and INT8 weight quantization. To assess how weight quantization affects pairwise rep-
resentation distances, we conducted additional experiments with FP4 and INT8 quantization on
several models (Llama-3.1-8B, Phi-4-mini-instruct, and Mistral-7B-v0.1). We
further extended this analysis to FP4-quantized 14B and 70B parameter models, namely Phi-4
(14B) and Llama-3.1-70B. As shown in tables 2 and 3, across all tested models quantization (1)
does not introduce any collisions, (2) more than doubles the minimum distance between representa-
tions, thereby preserving the integrity of the representation space, and (3) maintains this separation
even as model size increases substantially.

4.2 INVERTIBILITY RESULTS

Method Mean Time (s) Accuracy

HARDPROMPTS 6132.59± 104.61 0.00
BRUTEFORCE (ours) 3889.61± 691.17 1.00

SIPIT (ours) 28.01± 35.87 1.00

Table 4: Prompt inversion: SIPIT en-
sures exact recovery efficiently, unlike
HARDPROMPTS (no recovery) or brute
force (infeasible runtimes).

We now test whether the theoretical injectivity trans-
lates into exact recovery on pre-trained models. Using
SIPIT with only the hidden states at a fixed layer, we at-
tempt to reconstruct the full prompt token-by-token for
GPT-2 Small. We sample 100 prompts, with a 90%-
10% split between meaningful sentences and random to-
ken sequences (to test robustness in unstructured cases),
and attempt to reconstruct them from hidden states.

We compare against HARDPROMPTS (Wen et al., 2023),
which leverages gradient signals for approximate prompt discovery, and against a SIPIT ablation that
replaces the gradient-guided candidate policy with the uniformly random policy (BRUTEFORCE).

Other inversion approaches (Morris et al., 2023a;b; Nazir et al., 2025) tackle a different setting
altogether: they operate in black box access, using sequences of next-token logprobs or encoder
logits rather than hidden states, and train auxiliary inverters to reconstruct text, at high computational

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Model Vocab size Inversion Performance

Accuracy Time (s) Vocab explored (%)

Mistral-7B-v0.1 32000 100% 111.78 ± 46.50 0.19 ± 0.08 %
Llama-3.1-8B 128255 100% 549.48 ± 265.75 0.21 ± 0.10 %

Table 5: Inversion performance on FP4-quantized models with different vocabulary sizes. SIPIT re-
covers all tokens with 100% accuracy while exploring less than 0.22% of the vocabulary on average.

cost. Their outputs are typically approximate and not guaranteed exact. These differences make
them complementary but not directly comparable to our setting of training-free, exact inversion
from hidden states in decoder-only LMs.

Results are reported in Table 4. Across all prompts (20 tokens each), SIPIT recovers the exact se-
quence with 100% token-level accuracy (no errors, no collisions), matching the theoretical guarantee
of linear-time convergence.

In contrast, HARDPROMPTS fails to recover the true input in most cases, while BRUTEFORCE even-
tually succeeds but at a prohibitive computational cost, requiring several orders of magnitude longer.

Robustness and vocabulary scaling. The theoretical analysis in Theorem 3.2 shows that our in-
version algorithm is robust to a certain level of noise while maintaining linear scaling in vocabulary
size. To empirically validate this, we use FP4-quantized versions of Mistral-7B-v0.1 (≈ 32K
vocabulary size) and Llama-3.1-8B (≈ 128K). We sample 50 prompts (100 tokens each) and
attempt to reconstruct them from hidden states corrupted by FP4 weight quantization. As shown in
Table 5, SIPIT reconstructs all inputs with perfect accuracy while exploring, on average, less than
0.22% of the vocabulary, demonstrating that the gradient-based heuristic is both robust to quanti-
zation noise and highly efficient. From a complexity perspective, the nearly constant percentage of
tokens explored across the two vocabulary scales empirically confirms the predicted linear scaling.

Effect of layer depth. Finally, Figure 6 shows inversion times by layer for longer prompts (ranging
from 20 to 200 tokens). Although deeper layers are costlier in principle (since verifying a candidate
and computing gradients require traversing more blocks), the effect is minor: runtimes rise only
slightly from first to last layer, and the scaling remains graceful overall. Likely, earlier layers need
more iterations to converge, while deep layers store richer information that reduces the search effort.
As a result, the net cost remains stable, confirming SIPIT is efficient across depth.

5 RELATED WORK

Our results connect to two active lines of research: theoretical analyses of Transformer architectures,
and inverse problems in language modeling. We briefly review both to position our contributions.

Analytical properties of Transformers. Viewed as functions on Rd, individual Transformer
components are clearly non-injective: LayerNorm collapses along per-example statistics (Ba
et al., 2016), residual connections can cancel, and in attention-only stacks, rank decays doubly-
exponentially with depth (Dong et al., 2021). Likewise, on the output side, the softmax bottleneck
constrains the distributions reachable by language models (Yang et al., 2018). From this algebraic
perspective, Transformers seem inherently many-to-one, an intuition echoed by classical complete-
ness and universal-approximation theorems for Transformers, which show that highly many-to-one
maps can be represented in principle; we briefly review these results in appendix F.

Our focus is different: we study the discrete-to-continuous map from prompts s ∈ V≤K to hidden
states in Rd. In this setting, analytic viewpoints on Transformer computation become powerful:
treating each layer as a real-analytic map yields almost-sure guarantees that hold at finite width,
depth, and training horizon. Recent work has adopted this angle for related properties: Jiang &
Haghtalab (2025) show that building blocks of modern architectures are almost always surjective,
while Sutter et al. (2025) prove that Transformers at random initialization are almost surely injective
with respect to the entire hidden-state matrix (and only at initialization).

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

Differently, we prove injectivity with respect to the parameters and at the task-relevant last-token
state; crucially, we show that injectivity is not an initialization artifact but persists under training.

Inverse problems in language modeling. Inverse problems seek to recover an unknown input
x from observations y produced by a forward process y = f(x) (Sun et al., 2021). Within this
landscape, language model inversion asks whether one can reconstruct a model’s input prompt from
outputs or internal signals.

Several approaches have explored this idea. Output-to-prompt methods infer prompts from gener-
ated continuations, yielding approximate reconstructions that are often semantically similar rather
than exact (Zhang et al., 2024). Recent work by Morris and coauthors shows that model outputs are
information-rich even in black-box settings: Morris et al. (2023b) train a separate inverter to map
next-token probability vectors to text, and Nazir et al. (2025) extend this by taking sequences of
logprobs, applying a linear compression to embedding dimension, and training an encoder-decoder
inverter; this achieves higher exact-match rates but still without guarantees. Complementarily, Mor-
ris et al. (2023a) reconstruct text from encoder logits via a trained iterative inverter. These contri-
butions highlight privacy risks when probabilities or embeddings are exposed, but they differ from
our setting: they rely on trained inverters, remain approximate, and do not invert hidden states of
decoder-only LMs.

A related line of work frames the task as automated prompt optimization, casting prompt design as
discrete sequence optimization aligned with downstream performance (Guo et al., 2025; Sun et al.,
2022; Deng et al., 2022); methods such as AutoPrompt (Shin et al., 2020) and Hard Prompts Made
Easy (Wen et al., 2023) use gradient signals to discover effective, but approximate, prompts.

Unlike prior work, which yields approximate reconstructions from outputs, logits, or logprobs, our
approach is training-free, efficient, and comes with provable linear-time guarantees for exact recov-
ery from internal states.

6 DISCUSSION AND CONCLUSIONS

This work establishes that decoder-only Transformers are almost surely injective: distinct prompts
produce distinct hidden states under standard initialization and training. Building on this structural
result, we introduced SIPIT, the first algorithm that can recover the exact input sequence from hidden
activations, with provable linear-time guarantees. Together, these contributions move injectivity
from an informal belief to a rigorously grounded and operational property of language models.

The scientific impact is clear. Our findings reconcile two competing views in the community: Trans-
formers as “lossy” due to nonlinearities, normalization, and many-to-one attention, versus language
models as injective in their hidden representations. We advocate viewing language models as maps
on the sequence space rather than the embedding space; under this perspective, we prove that all
information about the input sequence is almost surely preserved end-to-end. The constructive in-
version offered by SIPIT strengthens this point in practice, establishing a clean baseline for inter-
pretability and auditing: if probes or inversion methods fail, it is not because the information is
missing. For mechanistic interpretability in particular, injectivity guarantees that last-token states
faithfully encode the full input, giving a sound foundation for causal and probing analyses.

Beyond theory, the findings carry practical and legal implications. Hidden states are not abstractions
but the prompt in disguise. Any system that stores or transmits them is effectively handling user
text itself. This affects privacy, deletion, and compliance: even after prompt deletion, embeddings
retain the content. Regulators have sometimes argued otherwise; for example, the Hamburg Data
Protection Commissioner claimed that weights do not qualify as personal data since training exam-
ples cannot be trivially reconstructed and even during inference it “remains doubtful whether any
extractable data records constitute personal data”(HmbBfDI, 2024). Our results show that at infer-
ence time user inputs remain fully recoverable and thus should be treated as personal data. There is
no “free privacy” once data enters a Transformer.

Finally, this work opens several directions. Extending the analysis to multimodal architectures such
as music and vision Transformers is an open problem. Studying approximate inversion under noise
or quantization will clarify how robust invertibility remains in practice. Bridging these technical
insights with evolving regulatory frameworks will be crucial for safe and responsible deployment.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

REPRODUCIBILITY STATEMENT

We provide complete resources to ensure reproducibility of our results. The assumptions, defini-
tions, and full proofs can be found in section 2 and appendices A to D (analytic tools and model
specification in appendices A and B; almost-sure injectivity and preservation under training in ap-
pendix C; SIP-IT correctness, verifier, and margin analysis in appendix D). Implementation details
for SIP-IT, including pseudocode, are provided in section 3 and algorithm 1 and further elaborated
in appendix E. Our experimental setup (hardware and software versions) is described in section 4,
while dataset details and the prompt-sampling procedure for the 100k-prompt benchmark are given
in section 4.1. Finally, the supplementary materials include an anonymized code repository with
end-to-end scripts, fixed seeds, configuration files, and a comprehensive README with step-by-
step reproduction instructions.

REFERENCES

W. E. Aitken. General topology. part 4: Metric spaces, 2020. URL https://public.csusm.
edu/aitken_html/Essays/Topology/metric_spaces.pdf. 24

Shane Arora, Hazel Browne, and Daniel Daners. An alternative approach to fréchet derivatives.
Journal of the Australian Mathematical Society, 111(2):202–220, 2021. 23

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E. Hinton. Layer normalization. arXiv preprint
arXiv:1607.06450, 2016. URL https://arxiv.org/abs/1607.06450. 9

José E Chacón and Tarn Duong. Higher order differential analysis with vectorized derivatives. arXiv
preprint arXiv:2011.01833, 2020. 18

Mingkai Deng, Jianyu Wang, Cheng-Ping Hsieh, Yihan Wang, Han Guo, Tianmin Shu, Meng Song,
Eric P. Xing, and Zhiting Hu. Rlprompt: Optimizing discrete text prompts with reinforcement
learning, 2022. URL https://arxiv.org/abs/2205.12548. 10

Yihe Dong, Jean-Baptiste Cordonnier, and Andreas Loukas. Attention is not all you need: Pure
attention loses rank doubly exponentially with depth. In Proceedings of the 38th International
Conference on Machine Learning (ICML), volume 139 of Proceedings of Machine Learning Re-
search, 2021. URL https://proceedings.mlr.press/v139/dong21a.html. 9

Ronen Eldan and Yuanzhi Li. Tinystories: How small can language models be and still speak
coherent english?, 2023. URL https://arxiv.org/abs/2305.07759. 7

Gerald B Folland. Real analysis. Pure and Applied Mathematics: A Wiley Series of Texts, Mono-
graphs and Tracts. John Wiley & Sons, Nashville, TN, 2 edition, March 1999. 24, 38

Leo Gao, Stella Biderman, Sid Black, Laurence Golding, Travis Hoppe, Charles Foster, Jason
Phang, Horace He, Anish Thite, Noa Nabeshima, Shawn Presser, and Connor Leahy. The pile:
An 800gb dataset of diverse text for language modeling, 2020. URL https://arxiv.org/
abs/2101.00027. 7

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad
Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, Amy Yang, Angela Fan,
Anirudh Goyal, Anthony Hartshorn, Aobo Yang, Archi Mitra, Archie Sravankumar, Artem Ko-
renev, Arthur Hinsvark, Arun Rao, Aston Zhang, Aurelien Rodriguez, Austen Gregerson, Ava
Spataru, Baptiste Roziere, Bethany Biron, Binh Tang, Bobbie Chern, Charlotte Caucheteux,
Chaya Nayak, Chloe Bi, Chris Marra, Chris McConnell, Christian Keller, Christophe Touret,
Chunyang Wu, Corinne Wong, Cristian Canton Ferrer, Cyrus Nikolaidis, Damien Allonsius,
Daniel Song, Danielle Pintz, Danny Livshits, Danny Wyatt, David Esiobu, Dhruv Choudhary,
Dhruv Mahajan, Diego Garcia-Olano, Diego Perino, Dieuwke Hupkes, Egor Lakomkin, Ehab
AlBadawy, Elina Lobanova, Emily Dinan, Eric Michael Smith, Filip Radenovic, Francisco
Guzmán, Frank Zhang, Gabriel Synnaeve, Gabrielle Lee, Georgia Lewis Anderson, Govind That-
tai, Graeme Nail, Gregoire Mialon, Guan Pang, Guillem Cucurell, Hailey Nguyen, Hannah Kore-
vaar, Hu Xu, Hugo Touvron, Iliyan Zarov, Imanol Arrieta Ibarra, Isabel Kloumann, Ishan Misra,

11

https://public.csusm.edu/aitken_html/Essays/Topology/metric_spaces.pdf
https://public.csusm.edu/aitken_html/Essays/Topology/metric_spaces.pdf
https://arxiv.org/abs/1607.06450
https://arxiv.org/abs/2205.12548
https://proceedings.mlr.press/v139/dong21a.html
https://arxiv.org/abs/2305.07759
https://arxiv.org/abs/2101.00027
https://arxiv.org/abs/2101.00027

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Ivan Evtimov, Jack Zhang, Jade Copet, Jaewon Lee, Jan Geffert, Jana Vranes, Jason Park, Jay Ma-
hadeokar, Jeet Shah, Jelmer van der Linde, Jennifer Billock, Jenny Hong, Jenya Lee, Jeremy Fu,
Jianfeng Chi, Jianyu Huang, Jiawen Liu, Jie Wang, Jiecao Yu, Joanna Bitton, Joe Spisak, Jong-
soo Park, Joseph Rocca, Joshua Johnstun, Joshua Saxe, Junteng Jia, Kalyan Vasuden Alwala,
Karthik Prasad, Kartikeya Upasani, Kate Plawiak, Ke Li, Kenneth Heafield, Kevin Stone, Khalid
El-Arini, Krithika Iyer, Kshitiz Malik, Kuenley Chiu, Kunal Bhalla, Kushal Lakhotia, Lauren
Rantala-Yeary, Laurens van der Maaten, Lawrence Chen, Liang Tan, Liz Jenkins, Louis Martin,
Lovish Madaan, Lubo Malo, Lukas Blecher, Lukas Landzaat, Luke de Oliveira, Madeline Muzzi,
Mahesh Pasupuleti, Mannat Singh, Manohar Paluri, Marcin Kardas, Maria Tsimpoukelli, Mathew
Oldham, Mathieu Rita, Maya Pavlova, Melanie Kambadur, Mike Lewis, Min Si, Mitesh Ku-
mar Singh, Mona Hassan, Naman Goyal, Narjes Torabi, Nikolay Bashlykov, Nikolay Bogoy-
chev, Niladri Chatterji, Ning Zhang, Olivier Duchenne, Onur Çelebi, Patrick Alrassy, Pengchuan
Zhang, Pengwei Li, Petar Vasic, Peter Weng, Prajjwal Bhargava, Pratik Dubal, Praveen Krishnan,
Punit Singh Koura, Puxin Xu, Qing He, Qingxiao Dong, Ragavan Srinivasan, Raj Ganapathy, Ra-
mon Calderer, Ricardo Silveira Cabral, Robert Stojnic, Roberta Raileanu, Rohan Maheswari, Ro-
hit Girdhar, Rohit Patel, Romain Sauvestre, Ronnie Polidoro, Roshan Sumbaly, Ross Taylor, Ruan
Silva, Rui Hou, Rui Wang, Saghar Hosseini, Sahana Chennabasappa, Sanjay Singh, Sean Bell,
Seohyun Sonia Kim, Sergey Edunov, Shaoliang Nie, Sharan Narang, Sharath Raparthy, Sheng
Shen, Shengye Wan, Shruti Bhosale, Shun Zhang, Simon Vandenhende, Soumya Batra, Spencer
Whitman, Sten Sootla, Stephane Collot, Suchin Gururangan, Sydney Borodinsky, Tamar Herman,
Tara Fowler, Tarek Sheasha, Thomas Georgiou, Thomas Scialom, Tobias Speckbacher, Todor Mi-
haylov, Tong Xiao, Ujjwal Karn, Vedanuj Goswami, Vibhor Gupta, Vignesh Ramanathan, Viktor
Kerkez, Vincent Gonguet, Virginie Do, Vish Vogeti, Vı́tor Albiero, Vladan Petrovic, Weiwei
Chu, Wenhan Xiong, Wenyin Fu, Whitney Meers, Xavier Martinet, Xiaodong Wang, Xiaofang
Wang, Xiaoqing Ellen Tan, Xide Xia, Xinfeng Xie, Xuchao Jia, Xuewei Wang, Yaelle Gold-
schlag, Yashesh Gaur, Yasmine Babaei, Yi Wen, Yiwen Song, Yuchen Zhang, Yue Li, Yuning
Mao, Zacharie Delpierre Coudert, Zheng Yan, Zhengxing Chen, Zoe Papakipos, Aaditya Singh,
Aayushi Srivastava, Abha Jain, Adam Kelsey, Adam Shajnfeld, Adithya Gangidi, Adolfo Victoria,
Ahuva Goldstand, Ajay Menon, Ajay Sharma, Alex Boesenberg, Alexei Baevski, Allie Feinstein,
Amanda Kallet, Amit Sangani, Amos Teo, Anam Yunus, Andrei Lupu, Andres Alvarado, An-
drew Caples, Andrew Gu, Andrew Ho, Andrew Poulton, Andrew Ryan, Ankit Ramchandani, An-
nie Dong, Annie Franco, Anuj Goyal, Aparajita Saraf, Arkabandhu Chowdhury, Ashley Gabriel,
Ashwin Bharambe, Assaf Eisenman, Azadeh Yazdan, Beau James, Ben Maurer, Benjamin Leon-
hardi, Bernie Huang, Beth Loyd, Beto De Paola, Bhargavi Paranjape, Bing Liu, Bo Wu, Boyu
Ni, Braden Hancock, Bram Wasti, Brandon Spence, Brani Stojkovic, Brian Gamido, Britt Mon-
talvo, Carl Parker, Carly Burton, Catalina Mejia, Ce Liu, Changhan Wang, Changkyu Kim, Chao
Zhou, Chester Hu, Ching-Hsiang Chu, Chris Cai, Chris Tindal, Christoph Feichtenhofer, Cynthia
Gao, Damon Civin, Dana Beaty, Daniel Kreymer, Daniel Li, David Adkins, David Xu, Davide
Testuggine, Delia David, Devi Parikh, Diana Liskovich, Didem Foss, Dingkang Wang, Duc Le,
Dustin Holland, Edward Dowling, Eissa Jamil, Elaine Montgomery, Eleonora Presani, Emily
Hahn, Emily Wood, Eric-Tuan Le, Erik Brinkman, Esteban Arcaute, Evan Dunbar, Evan Smoth-
ers, Fei Sun, Felix Kreuk, Feng Tian, Filippos Kokkinos, Firat Ozgenel, Francesco Caggioni,
Frank Kanayet, Frank Seide, Gabriela Medina Florez, Gabriella Schwarz, Gada Badeer, Georgia
Swee, Gil Halpern, Grant Herman, Grigory Sizov, Guangyi, Zhang, Guna Lakshminarayanan,
Hakan Inan, Hamid Shojanazeri, Han Zou, Hannah Wang, Hanwen Zha, Haroun Habeeb, Harri-
son Rudolph, Helen Suk, Henry Aspegren, Hunter Goldman, Hongyuan Zhan, Ibrahim Damlaj,
Igor Molybog, Igor Tufanov, Ilias Leontiadis, Irina-Elena Veliche, Itai Gat, Jake Weissman, James
Geboski, James Kohli, Janice Lam, Japhet Asher, Jean-Baptiste Gaya, Jeff Marcus, Jeff Tang, Jen-
nifer Chan, Jenny Zhen, Jeremy Reizenstein, Jeremy Teboul, Jessica Zhong, Jian Jin, Jingyi Yang,
Joe Cummings, Jon Carvill, Jon Shepard, Jonathan McPhie, Jonathan Torres, Josh Ginsburg, Jun-
jie Wang, Kai Wu, Kam Hou U, Karan Saxena, Kartikay Khandelwal, Katayoun Zand, Kathy
Matosich, Kaushik Veeraraghavan, Kelly Michelena, Keqian Li, Kiran Jagadeesh, Kun Huang,
Kunal Chawla, Kyle Huang, Lailin Chen, Lakshya Garg, Lavender A, Leandro Silva, Lee Bell,
Lei Zhang, Liangpeng Guo, Licheng Yu, Liron Moshkovich, Luca Wehrstedt, Madian Khabsa,
Manav Avalani, Manish Bhatt, Martynas Mankus, Matan Hasson, Matthew Lennie, Matthias
Reso, Maxim Groshev, Maxim Naumov, Maya Lathi, Meghan Keneally, Miao Liu, Michael L.
Seltzer, Michal Valko, Michelle Restrepo, Mihir Patel, Mik Vyatskov, Mikayel Samvelyan, Mike
Clark, Mike Macey, Mike Wang, Miquel Jubert Hermoso, Mo Metanat, Mohammad Rastegari,
Munish Bansal, Nandhini Santhanam, Natascha Parks, Natasha White, Navyata Bawa, Nayan

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Singhal, Nick Egebo, Nicolas Usunier, Nikhil Mehta, Nikolay Pavlovich Laptev, Ning Dong,
Norman Cheng, Oleg Chernoguz, Olivia Hart, Omkar Salpekar, Ozlem Kalinli, Parkin Kent,
Parth Parekh, Paul Saab, Pavan Balaji, Pedro Rittner, Philip Bontrager, Pierre Roux, Piotr Dollar,
Polina Zvyagina, Prashant Ratanchandani, Pritish Yuvraj, Qian Liang, Rachad Alao, Rachel Ro-
driguez, Rafi Ayub, Raghotham Murthy, Raghu Nayani, Rahul Mitra, Rangaprabhu Parthasarathy,
Raymond Li, Rebekkah Hogan, Robin Battey, Rocky Wang, Russ Howes, Ruty Rinott, Sachin
Mehta, Sachin Siby, Sai Jayesh Bondu, Samyak Datta, Sara Chugh, Sara Hunt, Sargun Dhillon,
Sasha Sidorov, Satadru Pan, Saurabh Mahajan, Saurabh Verma, Seiji Yamamoto, Sharadh Ra-
maswamy, Shaun Lindsay, Shaun Lindsay, Sheng Feng, Shenghao Lin, Shengxin Cindy Zha,
Shishir Patil, Shiva Shankar, Shuqiang Zhang, Shuqiang Zhang, Sinong Wang, Sneha Agarwal,
Soji Sajuyigbe, Soumith Chintala, Stephanie Max, Stephen Chen, Steve Kehoe, Steve Satter-
field, Sudarshan Govindaprasad, Sumit Gupta, Summer Deng, Sungmin Cho, Sunny Virk, Suraj
Subramanian, Sy Choudhury, Sydney Goldman, Tal Remez, Tamar Glaser, Tamara Best, Thilo
Koehler, Thomas Robinson, Tianhe Li, Tianjun Zhang, Tim Matthews, Timothy Chou, Tzook
Shaked, Varun Vontimitta, Victoria Ajayi, Victoria Montanez, Vijai Mohan, Vinay Satish Ku-
mar, Vishal Mangla, Vlad Ionescu, Vlad Poenaru, Vlad Tiberiu Mihailescu, Vladimir Ivanov,
Wei Li, Wenchen Wang, Wenwen Jiang, Wes Bouaziz, Will Constable, Xiaocheng Tang, Xiao-
jian Wu, Xiaolan Wang, Xilun Wu, Xinbo Gao, Yaniv Kleinman, Yanjun Chen, Ye Hu, Ye Jia,
Ye Qi, Yenda Li, Yilin Zhang, Ying Zhang, Yossi Adi, Youngjin Nam, Yu, Wang, Yu Zhao,
Yuchen Hao, Yundi Qian, Yunlu Li, Yuzi He, Zach Rait, Zachary DeVito, Zef Rosnbrick, Zhao-
duo Wen, Zhenyu Yang, Zhiwei Zhao, and Zhiyu Ma. The llama 3 herd of models, 2024. URL
https://arxiv.org/abs/2407.21783. 7

Qingyan Guo, Rui Wang, Junliang Guo, Bei Li, Kaitao Song, Xu Tan, Guoqing Liu, Jiang Bian, and
Yujiu Yang. Evoprompt: Connecting llms with evolutionary algorithms yields powerful prompt
optimizers, 2025. URL https://arxiv.org/abs/2309.08532. 10

Harold V Henderson and Shayle R Searle. The vec-permutation matrix, the vec operator and kro-
necker products: A review. Linear and multilinear algebra, 9(4):271–288, 1981. 18, 35

HmbBfDI. Discussion paper: Large language models and personal data, 2024. URL
https://datenschutz-hamburg.de/fileadmin/user_upload/HmbBfDI/
Datenschutz/Informationen/240715_Discussion_Paper_Hamburg_DPA_
KI_Models.pdf. 10

Roger A. Horn and Charles R. Johnson. Matrix Analysis. Cambridge University Press, Cambridge,
2 edition, 2013. 34

Albert Q. Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chap-
lot, Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier,
Lélio Renard Lavaud, Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Thibaut Lavril,
Thomas Wang, Timothée Lacroix, and William El Sayed. Mistral 7b, 2023. URL https:
//arxiv.org/abs/2310.06825. 7

Haozhe Jiang and Nika Haghtalab. On surjectivity of neural networks: Can you elicit any behavior
from your model? arXiv preprint arXiv:2508.19445, 2025. URL https://arxiv.org/
abs/2508.19445. 9

Tamara G. Kolda and Brett W. Bader. Tensor decompositions and applications. SIAM Review,
51(3):455–500, 2009. doi: 10.1137/07070111X. URL https://doi.org/10.1137/
07070111X. 16

Steven G Krantz and Harold R Parks. A primer of real analytic functions. Springer Science &
Business Media, 2002. 21

Andrew D. Lewis. Chapter 1: Holomorphic and real analytic calculus. Notes on Global Analysis,
Vol. 1, Queen’s University, February 2014. URL https://mast.queensu.ca/˜andrew/
teaching/math942/pdf/1chapter1.pdf. Version: 2014-02-28. 17, 18, 37

David G. Luenberger. Optimization by vector space methods. Wiley-Interscience, 1997. 23

Jan R. Magnus and Heinz Neudecker. Matrix differential calculus with applications in statistics and
Econometrics. John Wiley & Sons, Inc, 2019. 23, 33

13

https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2309.08532
https://datenschutz-hamburg.de/fileadmin/user_upload/HmbBfDI/Datenschutz/Informationen/240715_Discussion_Paper_Hamburg_DPA_KI_Models.pdf
https://datenschutz-hamburg.de/fileadmin/user_upload/HmbBfDI/Datenschutz/Informationen/240715_Discussion_Paper_Hamburg_DPA_KI_Models.pdf
https://datenschutz-hamburg.de/fileadmin/user_upload/HmbBfDI/Datenschutz/Informationen/240715_Discussion_Paper_Hamburg_DPA_KI_Models.pdf
https://arxiv.org/abs/2310.06825
https://arxiv.org/abs/2310.06825
https://arxiv.org/abs/2508.19445
https://arxiv.org/abs/2508.19445
https://doi.org/10.1137/07070111X
https://doi.org/10.1137/07070111X
https://mast.queensu.ca/~andrew/teaching/math942/pdf/1chapter1.pdf
https://mast.queensu.ca/~andrew/teaching/math942/pdf/1chapter1.pdf

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Microsoft, :, Abdelrahman Abouelenin, Atabak Ashfaq, Adam Atkinson, Hany Awadalla, Nguyen
Bach, Jianmin Bao, Alon Benhaim, Martin Cai, Vishrav Chaudhary, Congcong Chen, Dong Chen,
Dongdong Chen, Junkun Chen, Weizhu Chen, Yen-Chun Chen, Yi ling Chen, Qi Dai, Xiyang Dai,
Ruchao Fan, Mei Gao, Min Gao, Amit Garg, Abhishek Goswami, Junheng Hao, Amr Hendy,
Yuxuan Hu, Xin Jin, Mahmoud Khademi, Dongwoo Kim, Young Jin Kim, Gina Lee, Jinyu Li,
Yunsheng Li, Chen Liang, Xihui Lin, Zeqi Lin, Mengchen Liu, Yang Liu, Gilsinia Lopez, Chong
Luo, Piyush Madan, Vadim Mazalov, Arindam Mitra, Ali Mousavi, Anh Nguyen, Jing Pan, Daniel
Perez-Becker, Jacob Platin, Thomas Portet, Kai Qiu, Bo Ren, Liliang Ren, Sambuddha Roy,
Ning Shang, Yelong Shen, Saksham Singhal, Subhojit Som, Xia Song, Tetyana Sych, Praneetha
Vaddamanu, Shuohang Wang, Yiming Wang, Zhenghao Wang, Haibin Wu, Haoran Xu, Weijian
Xu, Yifan Yang, Ziyi Yang, Donghan Yu, Ishmam Zabir, Jianwen Zhang, Li Lyna Zhang, Yunan
Zhang, and Xiren Zhou. Phi-4-mini technical report: Compact yet powerful multimodal language
models via mixture-of-loras, 2025. URL https://arxiv.org/abs/2503.01743. 7

Boris Mityagin. The zero set of a real analytic function. arXiv preprint arXiv:1512.07276, 2015. 18

John X. Morris, Volodymyr Kuleshov, Vitaly Shmatikov, and Alexander M. Rush. Text embeddings
reveal (almost) as much as text, 2023a. URL https://arxiv.org/abs/2310.06816. 8,
10

John X. Morris, Wenting Zhao, Justin T. Chiu, Vitaly Shmatikov, and Alexander M. Rush. Language
model inversion, 2023b. URL https://arxiv.org/abs/2311.13647. 8, 10

James R. Munkres. Topology. Prentice Hall, Upper Saddle River, NJ, 2 edition, 2000. 23, 24

Murtaza Nazir, Matthew Finlayson, John X. Morris, Xiang Ren, and Swabha Swayamdipta. Bet-
ter language model inversion by compactly representing next-token distributions, 2025. URL
https://arxiv.org/abs/2506.17090. 8, 10

Jorge Pérez, Javier Marinković, and Pablo Barceló. On the turing completeness of modern neural
network architectures. In International Conference on Learning Representations, 2019. URL
https://openreview.net/forum?id=HyGBdo0qFm. 55

Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever.
Language models are unsupervised multitask learners. 2019. URL https://api.
semanticscholar.org/CorpusID:160025533. 7, 48

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J. Liu. Exploring the limits of transfer learning with a unified text-to-
text transformer. Journal of Machine Learning Research, 21(140):1–67, 2020. URL http:
//jmlr.org/papers/v21/20-074.html. 7

Anton Razzhigaev, Matvey Mikhalchuk, Elizaveta Goncharova, Ivan Oseledets, Denis Dimitrov, and
Andrey Kuznetsov. The shape of learning: Anisotropy and intrinsic dimensions in transformer-
based models, 2024. URL https://arxiv.org/abs/2311.05928. 51

Anton Razzhigaev, Matvey Mikhalchuk, Temurbek Rahmatullaev, Elizaveta Goncharova, Polina
Druzhinina, Ivan Oseledets, and Andrey Kuznetsov. Llm-microscope: Uncovering the hidden
role of punctuation in context memory of transformers, 2025. URL https://arxiv.org/
abs/2502.15007. 51

Walter Rudin. Principles of Mathematical Analysis. McGraw–Hill, New York, 3 edition, 1976. 24,
38, 54

Taylor Shin, Yasaman Razeghi, Robert L. Logan IV, Eric Wallace, and Sameer Singh. Autoprompt:
Eliciting knowledge from language models with automatically generated prompts, 2020. URL
https://arxiv.org/abs/2010.15980. 10

Ravid Shwartz-Ziv and Naftali Tishby. Opening the black box of deep neural networks via informa-
tion, 2017. URL https://arxiv.org/abs/1703.00810. 52

Michael Spivak. Calculus on manifolds. Westview Press, Philadelphia, PA, January 1971. 24

14

https://arxiv.org/abs/2503.01743
https://arxiv.org/abs/2310.06816
https://arxiv.org/abs/2311.13647
https://arxiv.org/abs/2506.17090
https://openreview.net/forum?id=HyGBdo0qFm
https://api.semanticscholar.org/CorpusID:160025533
https://api.semanticscholar.org/CorpusID:160025533
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
https://arxiv.org/abs/2311.05928
https://arxiv.org/abs/2502.15007
https://arxiv.org/abs/2502.15007
https://arxiv.org/abs/2010.15980
https://arxiv.org/abs/1703.00810

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Tianxiang Sun, Yunfan Shao, Hong Qian, Xuanjing Huang, and Xipeng Qiu. Black-box tuning for
language-model-as-a-service, 2022. URL https://arxiv.org/abs/2201.03514. 10

Zhaodong Sun, Fabian Latorre, Thomas Sanchez, and Volkan Cevher. A plug-and-play deep im-
age prior. In ICASSP 2021 - 2021 IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP), pp. 8103–8107. IEEE, June 2021. doi: 10.1109/icassp39728.2021.
9414879. URL http://dx.doi.org/10.1109/ICASSP39728.2021.9414879. 10

Zhiqing Sun and Yiming Yang. An em approach to non-autoregressive conditional sequence gen-
eration. In International Conference on Machine Learning, 2020. URL https://api.
semanticscholar.org/CorpusID:220265867. 55

Denis Sutter, Julian Minder, Thomas Hofmann, and Tiago Pimentel. The non-linear representation
dilemma: Is causal abstraction enough for mechanistic interpretability?, 2025. URL https:
//arxiv.org/abs/2507.08802. 9, 32

Gemma Team, Aishwarya Kamath, Johan Ferret, Shreya Pathak, Nino Vieillard, Ramona Merhej,
Sarah Perrin, Tatiana Matejovicova, Alexandre Ramé, Morgane Rivière, Louis Rouillard, Thomas
Mesnard, Geoffrey Cideron, Jean bastien Grill, Sabela Ramos, Edouard Yvinec, Michelle Cas-
bon, Etienne Pot, Ivo Penchev, Gaël Liu, Francesco Visin, Kathleen Kenealy, Lucas Beyer, Xi-
aohai Zhai, Anton Tsitsulin, Robert Busa-Fekete, Alex Feng, Noveen Sachdeva, Benjamin Cole-
man, Yi Gao, Basil Mustafa, Iain Barr, Emilio Parisotto, David Tian, Matan Eyal, Colin Cherry,
Jan-Thorsten Peter, Danila Sinopalnikov, Surya Bhupatiraju, Rishabh Agarwal, Mehran Kazemi,
Dan Malkin, Ravin Kumar, David Vilar, Idan Brusilovsky, Jiaming Luo, Andreas Steiner, Abe
Friesen, Abhanshu Sharma, Abheesht Sharma, Adi Mayrav Gilady, Adrian Goedeckemeyer, Alaa
Saade, Alex Feng, Alexander Kolesnikov, Alexei Bendebury, Alvin Abdagic, Amit Vadi, András
György, André Susano Pinto, Anil Das, Ankur Bapna, Antoine Miech, Antoine Yang, Antonia
Paterson, Ashish Shenoy, Ayan Chakrabarti, Bilal Piot, Bo Wu, Bobak Shahriari, Bryce Petrini,
Charlie Chen, Charline Le Lan, Christopher A. Choquette-Choo, CJ Carey, Cormac Brick, Daniel
Deutsch, Danielle Eisenbud, Dee Cattle, Derek Cheng, Dimitris Paparas, Divyashree Shivaku-
mar Sreepathihalli, Doug Reid, Dustin Tran, Dustin Zelle, Eric Noland, Erwin Huizenga, Eu-
gene Kharitonov, Frederick Liu, Gagik Amirkhanyan, Glenn Cameron, Hadi Hashemi, Hanna
Klimczak-Plucińska, Harman Singh, Harsh Mehta, Harshal Tushar Lehri, Hussein Hazimeh, Ian
Ballantyne, Idan Szpektor, Ivan Nardini, Jean Pouget-Abadie, Jetha Chan, Joe Stanton, John Wi-
eting, Jonathan Lai, Jordi Orbay, Joseph Fernandez, Josh Newlan, Ju yeong Ji, Jyotinder Singh,
Kat Black, Kathy Yu, Kevin Hui, Kiran Vodrahalli, Klaus Greff, Linhai Qiu, Marcella Valentine,
Marina Coelho, Marvin Ritter, Matt Hoffman, Matthew Watson, Mayank Chaturvedi, Michael
Moynihan, Min Ma, Nabila Babar, Natasha Noy, Nathan Byrd, Nick Roy, Nikola Momchev, Ni-
lay Chauhan, Noveen Sachdeva, Oskar Bunyan, Pankil Botarda, Paul Caron, Paul Kishan Ruben-
stein, Phil Culliton, Philipp Schmid, Pier Giuseppe Sessa, Pingmei Xu, Piotr Stanczyk, Pouya
Tafti, Rakesh Shivanna, Renjie Wu, Renke Pan, Reza Rokni, Rob Willoughby, Rohith Vallu,
Ryan Mullins, Sammy Jerome, Sara Smoot, Sertan Girgin, Shariq Iqbal, Shashir Reddy, Shruti
Sheth, Siim Põder, Sijal Bhatnagar, Sindhu Raghuram Panyam, Sivan Eiger, Susan Zhang, Tianqi
Liu, Trevor Yacovone, Tyler Liechty, Uday Kalra, Utku Evci, Vedant Misra, Vincent Roseberry,
Vlad Feinberg, Vlad Kolesnikov, Woohyun Han, Woosuk Kwon, Xi Chen, Yinlam Chow, Yuvein
Zhu, Zichuan Wei, Zoltan Egyed, Victor Cotruta, Minh Giang, Phoebe Kirk, Anand Rao, Kat
Black, Nabila Babar, Jessica Lo, Erica Moreira, Luiz Gustavo Martins, Omar Sanseviero, Lucas
Gonzalez, Zach Gleicher, Tris Warkentin, Vahab Mirrokni, Evan Senter, Eli Collins, Joelle Bar-
ral, Zoubin Ghahramani, Raia Hadsell, Yossi Matias, D. Sculley, Slav Petrov, Noah Fiedel, Noam
Shazeer, Oriol Vinyals, Jeff Dean, Demis Hassabis, Koray Kavukcuoglu, Clement Farabet, Elena
Buchatskaya, Jean-Baptiste Alayrac, Rohan Anil, Dmitry, Lepikhin, Sebastian Borgeaud, Olivier
Bachem, Armand Joulin, Alek Andreev, Cassidy Hardin, Robert Dadashi, and Léonard Hussenot.
Gemma 3 technical report, 2025. URL https://arxiv.org/abs/2503.19786. 7

Yuxin Wen, Neel Jain, John Kirchenbauer, Micah Goldblum, Jonas Geiping, and Tom Goldstein.
Hard prompts made easy: Gradient-based discrete optimization for prompt tuning and discovery,
2023. URL https://arxiv.org/abs/2302.03668. 8, 10, 47

Zhilin Yang, Zihang Dai, Ruslan Salakhutdinov, and William W. Cohen. Breaking the softmax
bottleneck: A high-rank rnn language model. In International Conference on Learning Represen-
tations (ICLR), 2018. URL https://arxiv.org/abs/1711.03953. 9

15

https://arxiv.org/abs/2201.03514
http://dx.doi.org/10.1109/ICASSP39728.2021.9414879
https://api.semanticscholar.org/CorpusID:220265867
https://api.semanticscholar.org/CorpusID:220265867
https://arxiv.org/abs/2507.08802
https://arxiv.org/abs/2507.08802
https://arxiv.org/abs/2503.19786
https://arxiv.org/abs/2302.03668
https://arxiv.org/abs/1711.03953

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Chulhee Yun, Srinadh Bhojanapalli, Ankit Singh Rawat, Sashank Reddi, and Sanjiv Kumar. Are
transformers universal approximators of sequence-to-sequence functions? In International Con-
ference on Learning Representations, 2020. URL https://openreview.net/forum?
id=ByxRM0Ntvr. 55

Collin Zhang, John X. Morris, and Vitaly Shmatikov. Extracting prompts by inverting llm outputs,
2024. URL https://arxiv.org/abs/2405.15012. 10

A PRELIMINARIES

This section fixes notation the notation used throughout the main paper and the appendix (subsec-
tion A.1), and it introduces real-analyticity as the organizing theme (subsection A.2). We first review
the vector-space notion and its basic closure/composition properties (subsubsection A.2.1), together
with a zero-set principle used in measure-zero arguments. We then extend these ideas to maps
between matrix spaces (subsubsection A.2.2) via vectorization/matricization and note that analytic-
ity is preserved under matrix compositions. To streamline later proofs, we summarize real-analytic
building blocks commonly used in transformer layers–polynomials, exponential/logarithm, softmax,
row normalization, matrix products, Hadamard scaling, and stacking (subsubsection A.2.3). Finally,
in subsection A.3, we collect differential and topological tools–Fréchet derivatives and the Hessian,
standard facts on Rp, the inverse function theorem, and pushforwards/absolute continuity–which
we use for local invertibility and absolute-continuity arguments. Readers already comfortable with
these topics can skim now and return to specific subsections as needed.

A.1 NOTATION

For arbitrary T ∈ N, we write [T] = {1, 2, . . . , T} to denote the set of positive integers up to T .
Additionally, we denote the strictly positive real numbers as R+ = (0,∞) and the non-negative real
numbers as R+

0 = [0,∞). Similarly, we let N0 = N ∪ {0}.
Discrete sets are denoted by uppercase calligraphic letters V , and a sequence of length K is denoted
by lowercase letters: s = ⟨s1, . . . , sK⟩ ∈ VK . We write |s| = K to denote the length of the
sequence. The set of non-empty sequences of length at most K is denoted as V≤K =

⋃K
k=1 Vk.

Non-discrete sets are denoted by uppercase calligraphic bold-face letters B.
Remark 1. We will often refer to a discrete set V as the vocabulary and to an element s ∈ V≤K as
an input, context, or prompt.

Matrices (vectors) are denoted by uppercase (lowercase) bold-face letters: X ∈ Rd1×d2 (x ∈ Rd).
For vectors and matrices, we frequently use standard norms and common matrix operations. The
Hadamard and Kronecker products are defined following Kolda & Bader (2009):

• p-norm: For a vector x ∈ Rd, the ℓp norm is defined as

∥x∥p =

(
d∑

i=1

|xi|p
) 1

p

.

• Frobenius norm: For a matrix X ∈ Rd1×d2 , the Frobenius norm is defined as

∥X∥F =
√
tr(XX⊤) =

√√√√ d1∑
i=1

d2∑
j=1

X2
ij .

• Hadamard product: The Hadamard (element-wise) product is defined for vectors and matrices
of the same shape:

(x⊙ y)i = xiyi, for all i ∈ [d],

(X⊙Y)ij = XijYij , for all i ∈ [d1], j ∈ [d2],

where x,y ∈ Rd and X,Y ∈ Rd1×d2 .

16

https://openreview.net/forum?id=ByxRM0Ntvr
https://openreview.net/forum?id=ByxRM0Ntvr
https://arxiv.org/abs/2405.15012

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

• Kronecker product: The Kronecker product of X ∈ Rd1×d2 and Z ∈ Rd3×d4 is denoted X⊗ Z
and defined blockwise as

X⊗ Z =


X11Z · · · X1d2

Z
...

. . .
...

Xd11Z · · · Xd1d2Z

 ∈ R(d1d3)×(d2d4).

We denote the all-zeros matrix of size m× n as 0m×n, and the all-zeros vector of length m as 0m.
Similarly, we write 1m for the all-ones vector of lengthm, and Im (or Im×m when dimensions must
be explicit) for the m×m identity matrix.

Let f : V≤K × Rp → Rd be a function over a finite vocabulary V and K ∈ N. We refer to f as the
model, to its first argument as the input sequence, and to its second argument as the parameters.
Remark 2. Throughout our analysis, we assume a finite set of possible input sequences, reflect-
ing the practical limitations and design choices of modern LLMs, specifically the bounded context
length.
Remark 3. We take the codomain of the model to be Rd, corresponding to the space of token
embeddings. This allows us to study how the final embedding (typically used to compute next-token
probabilities) depends on both the input sequence and the model parameters.

A.2 REAL-ANALYTICITY

We now introduce the central notion for our analysis: real-analyticity. In its standard form, real-
analyticity is defined for functions f : U → Rn, where U ⊆ Rm is an open set. Since the
transformer architecture is naturally expressed in terms of matrices, it will be convenient to extend
this notion to maps of the form f : Rm×n → Ra×b.

Multi-index notation. We use multi-index notation for both vectors and matrices.

Vector case. Let α = (α1, . . . , αm)⊤ ∈ Nm
0 and x,y ∈ Rm. Define:

|α| =
m∑
j=1

αj , α! =

m∏
j=1

αj !, (x− y)α =

m∏
j=1

(xj − yj)
αj .

Matrix case. Let A = (αuv) ∈ Nm×n
0 and X,Y ∈ Rm×n. Define:

|A| =
m∑

u=1

n∑
v=1

αuv, A! =

m∏
u=1

n∏
v=1

αuv!, (X−Y)A =

m∏
u=1

n∏
v=1

(Xuv −Yuv)
αuv .

Given an open set U ⊆ Rm and a map f : U → R, we write

dαf(x) :=
∂|α|f

∂xα1
1 · · · ∂xαm

m
(x)

for the mixed partial derivative (when it exists). Unless stated otherwise, we assume f ∈ C∞(U), so
dαf exists and is continuous for all α ∈ Nm

0 ; for vector-valued maps f = (f1, . . . , fn) the operator
dα acts componentwise. We also use the convention d0f = f .

A.2.1 REAL-ANALYTIC FUNCTIONS WITH VECTOR INPUTS

Definition A.1 (Real-analytic functions, Lewis 2014, Definition 1.1.3). Let U ⊆ Rm be open. A
function f : U → R is real-analytic on U if, for every y ∈ U , there exist coefficients {cα ∈ R}α∈Nm

0

and r > 0 such that
f(x) =

∑
α∈Nm

0

cα (x− y)α

for all x ∈ U with ∥x− y∥2 < r. The set of real-analytic functions on U is denoted by Cω(U).

A map f : U → Rn is real-analytic on U if each of its components f1, . . . , fn : U → R is
real-analytic. The set of such maps is denoted Cω(U ; Rn).

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Remark 4. To establish real-analyticity of a vector-valued mapping (e.g., an MLP, attention mech-
anism, or LayerNorm), it suffices to prove real-analyticity of each scalar component.
Proposition A.1 (Closure properties, Lewis 2014, Proposition 1.2.1). Let f, g : Rm → R be real-
analytic maps. Then, the following hold:

1. Addition: f + g ∈ Cω(Rm).

2. Product: fg ∈ Cω(Rm).

3. Quotient: If g(x) ̸= 0 for all x ∈ Rm, then f/g ∈ Cω(Rm).
Proposition A.2 (Composition, Lewis 2014, Proposition 1.2.2). Let f : Rm → Rn and g : Rn →
Rk be real-analytic maps. Then, the composition g ◦ f : Rm → Rk is real-analytic.
Remark 5. For simplicity, we do not state the closure properties in their most general form, where
f and g may be defined on different open subsets of Rm. This avoids additional notation involving
intersections of domains. Since every function of interest in our later analysis is defined on the whole
space Rm, this restriction entails no loss of generality.
Theorem A.1 (Zero sets of nontrivial real-analytic maps Mityagin 2015). Let U ⊆ Rm be connected
and open, and let f ∈ Cω(U ; Rn). If f ̸≡ 0n, then its zero set

Z(f) := f−1({0n}) = {x ∈ U : f(x) = 0n}
has Lebesgue measure zero in Rm (i.e. Lebm

(
Z(f)

)
= 0). Equivalently, if there exists x ∈ U with

f(x) ̸= 0n, then Lebm
(
f−1({0n})

)
= 0.

Remark 6. The result in Mityagin (2015) is stated for scalar-valued maps f : U → R. The
extension to vector-valued maps f = (f1, . . . , fn) : U → Rn is immediate: the zero set of f is the
intersection of the zero sets of its scalar components,

Z(f) =

n⋂
i=1

Z(fi),

and if f ̸≡ 0n, then at least one component fj ̸≡ 0, so Z(f) ⊆ Z(fj), which has measure zero by
the scalar case.

A.2.2 REAL-ANALYTIC FUNCTIONS WITH MATRIX INPUTS

Definition A.2 (Real-analyticity on matrix spaces). Let U ⊆ Rm×n be open. A function f : U → R
is real-analytic on U if, for every Y ∈ U , there exist coefficients {cA ∈ R}A∈Nm×n

0
and r > 0 such

that
f(X) =

∑
A∈Nm×n

0

cA(X−Y)A

for all X ∈ U with ∥X−Y∥F < r.

A map f : U → Ra×b is real-analytic on U if each of its components fij : U → R is real-analytic.
The set of such maps is denoted Cω(U ; Ra×b).
Remark 7. In the special case where n = b = 1, the domain and codomain reduce to Rm and
Ra, respectively. Then Definition A.2 recovers Definition A.1. Thus, Definition A.2 generalizes
real-analyticity to functions between matrix spaces.
Definition A.3 (Vectorization and matricization Operators). Let vecm,n : Rm×n → Rmn denote the
standard vectorization operator, which stacks the columns of a matrix into a single column vector
(Henderson & Searle, 1981).

We also define the corresponding matricization operator matm,n : Rmn → Rm×n. As shown in
Chacón & Duong 2020, the vectorization and matricization operators are mutual inverses:

matm,n

(
vecm,n(X)

)
= X ∀X ∈ Rm×n (7)

vecm,n

(
matm,n(x)

)
= x ∀x ∈ Rmn (8)

Furthermore, if x ∈ Rmn and X ∈ Rm×n are related by vectorization and matricization, i.e.,
x = vecm,n(X) and X = matm,n(x), then their norms coincide:

∥x∥2 = ∥X∥F.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Definition A.4 (Vectorized Form of Function). Let U ⊆ Rm×n be open and Ũ = vecm,n(U)
(also open since vec is a linear homeomorphism). We denote the vectorized form of a function
f : U → Ra×b as

f̃ := veca,b ◦ f ◦matm,n : Ũ → Rab.

Equivalently, for all X ∈ U :

f(X) = mata,b

(
f̃
(
vecm,n(X)

))
(9)

Lemma A.1 (Equivalence real-analyticity). Let U ⊆ Rm×n be open, Ũ = vecm,n(U), and let
f : U → Ra×b with its vectorized form f̃ : Ũ → Rab.

Fix Y ∈ U and set y = vecm,n(Y) ∈ Ũ . Then the following are equivalent:

1. f is real-analytic at Y (in the sense of Definition A.2).

2. f̃ is real-analytic at y (in the sense of Definition A.1).

Proof. We begin by establishing the correspondence between matrix and vector indices in Rk×ℓ and
Rkℓ. For s ∈ [kℓ], define:

u(s) := 1 + (s− 1) mod k (row index)

v(s) := 1 +

⌊
s− 1

k

⌋
(column index)

Then (u(s), v(s)) ∈ [k] × [ℓ] gives the matrix coordinates corresponding to the sth entry of the
vectorization. Conversely, for (u, v) ∈ [k]× [ℓ], define:

s(u, v) := u+ (v − 1)k ∈ [kℓ]

to recover the linear index.

When clear from context, we omit arguments and simply write u, v, or s for readability.

Let X,Y ∈ Rm×n, with vectorizations x = vecm,n(X) and y = vecm,n(Y). For a vector multi-
index α ∈ Nmn

0 , define the corresponding matrix multi-index Aα := matm,n(α), so that:

(x− y)α =

mn∏
s=1

(xs − ys)
αs =

m∏
u=1

n∏
v=1

(Xuv −Yuv)
(Aα)uv = (X−Y)Aα . (10)

Similarly, for a matrix multi-index A ∈ Nm×n
0 , define the corresponding vector multi-index αA :=

vecm,n(A), giving:

(X−Y)A =

m∏
u=1

n∏
v=1

(Xuv −Yuv)
Auv =

mn∏
s=1

(xs − ys)
(αA)s = (x− y)αA . (11)

Now let M ∈ U , and let m = vecm,n(M) ∈ Ũ . By definition of the vectorization,

fuv(M) = f̃s(m), where s = s(u, v).

This coordinate-wise correspondence underlies the equivalence stated in the lemma.

(⇒) Assume f is real-analytic at Y. Then by Definition A.2, there exists r > 0 and, for each (u, v),
coefficients {c(uv)A }A∈Nm×n

0
such that:

fuv(X) =
∑

A∈Nm×n
0

c
(uv)
A (X−Y)A, ∀X ∈ U : ∥X−Y∥F < r. (12)

Using Equation 11, each component f̃s of f̃ can be expressed as:

f̃s(x) =
∑

α∈Nmn
0

c̃(s)α (x− y)α, where c̃(s)αA
:= c

(u(s),v(s))
A .

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

This series converges for all x ∈ Ũ with ∥x−y∥2 = ∥X−Y∥F < r. Hence, each scalar component
of f̃ has a convergent power series at y, proving that f̃ is real-analytic there.

(⇐) The reverse direction follows by symmetry: assume f̃ is real-analytic at y, write the expan-
sion at y using definition Definition A.1, and repeat the argument using Equation 10 to construct
component-wise expansions for fuv at Y.

Remark 8. Consider the function f = vecm,n : Rm×n → Rmn×1, which vectorizes an m × n
matrix by stacking its columns. Its corresponding vectorized form is

f̃(x) = (vecmn,1 ◦ vecm,n ◦matm,n)(x) = vecmn,1(x) = x,

since x ∈ Rmn is already a column vector . This composition yields the identity map on Rmn,
which is clearly real analytic. Therefore, by Lemma A.1, both vecm,n is real analytic, and similarly,
so is matm,n. It is now evident that the composition of two matrix-valued real-analytic function is
real-analytic, and we will prove it.
Proposition A.3 (Composition on matrix spaces is real-analytic). Suppose f : Rm×n → Ra×b and
g : Ra×b → Rp×q are real-analytic (in the sense of Definition A.2). Then g ◦ f : Rm×n → Rp×q is
real-analytic.

Proof. Consider the vectorized forms

f̃ := veca,b ◦ f ◦matm,n : Rmn → Rab, g̃ := vecp,q ◦ g ◦mata,b : Rab → Rpq.

By Lemma A.1, f is real-analytic iff f̃ is, and g is real-analytic iff g̃ is. Hence f̃ and g̃ are real-
analytic maps between Euclidean spaces.

The vectorized form of the composition is

g̃ ◦ f = vecp,q ◦ (g ◦ f) ◦matm,n =
(
vecp,q ◦ g ◦mata,b

)︸ ︷︷ ︸
g̃

◦
(
veca,b ◦ f ◦matm,n

)︸ ︷︷ ︸
f̃

= g̃ ◦ f̃ ,

where we inserted the identity (mata,b◦veca,b)(X) = X. By the vector-space composition property
(Proposition A.2), g̃ ◦ f̃ is real-analytic on Rmn. Applying Lemma A.1 once more, we get that g ◦ f
is real-analytic.

A.2.3 REAL ANALYTICITY OF COMMON COMPONENTS

We now collect several building blocks that will be used repeatedly. Throughout, all maps are
defined on Rm×n, an open set, so Definition A.2 applies.
Proposition A.4 (Polynomials are real-analytic). Let p : Rm → R be a polynomial in the coor-
dinates of x ∈ Rm, i.e., p(x) =

∑
|α|≤d aα xα for some d ∈ N0 and coefficients aα ∈ R. Then

p ∈ Cω(Rm).

Proof. Polynomials are C∞, and dαp ≡ 0 whenever |α| > d. Hence the Taylor expansion of p at
any y ∈ Rm truncates:

p(x) =
∑
|α|≤d

dαp(y)

α!
(x− y)α,

which holds for all x ∈ Rm (radius r = +∞). Therefore p is real-analytic.

Proposition A.5 (The exponential is real-analytic). The map exp : R→ (0,∞) is real-analytic on
R.

Proof. Define E(x) :=
∑∞

k=0
xk

k! . By the ratio test this power series has infinite radius of conver-
gence, hence converges absolutely for all x ∈ R. Standard results on power series imply that E
is C∞ on R and can be differentiated termwise within its radius of convergence; in particular, for
every j ∈ N0,

E(j)(x) =

∞∑
k=j

k(k − 1) · · · (k − j + 1)

k!
xk−j =

∞∑
r=0

xr

r!
= E(x).

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Fix y ∈ R. Taylor’s theorem for power series then yields

E(x) =

∞∑
j=0

E(j)(y)

j!
(x− y)j = E(y)

∞∑
j=0

(x− y)j
j!

,

which is a convergent power series in x − y with infinite radius of convergence. Hence E is real-
analytic at every y ∈ R. As E is the usual exponential function defined by its power series, exp is
real-analytic on R.

Proposition A.6 (The logarithm is real-analytic). The map log : (0,∞) → R is real-analytic on
(0,∞).

Proof. For brevity, we present only a proof sketch;

The exponential map exp : R → (0,∞) is real-analytic with exp′(y) ̸= 0 for all y. By the real-
analytic inverse function theorem (see Krantz & Parks 2002, Thm. 2.3.1), its local inverse log is
real-analytic on (0,∞).

Proposition A.7 (Softmax is real-analytic). The map softmax : Rm → Rm with components

softmaxi(x) =
exi∑m
j=1 e

xj
, i = 1, . . . ,m,

is real-analytic on Rm.

Proof. Fix i. The numerator x 7→ exi is the composition of the coordinate projection πi(x) =
xi (a linear, hence real-analytic, map) with exp; by Proposition A.5 and the composition rule in
Proposition A.1, it is real-analytic. The denominator

H(x) =

m∑
j=1

exj

is a finite sum of real-analytic functions, hence real-analytic. Moreover, H(x) > 0 for all x ∈ Rm

because exj > 0. Therefore, by the quotient rule in Proposition A.1, the map

x 7→ exi

H(x)

is real-analytic on Rm. Since this holds for each i = 1, . . . ,m, the vector-valued map softmax is
real-analytic.

Proposition A.8 (Row normalization is real-analytic on positive row-sum domain). Let

DT :=
{
Y ∈ RT×T : Y1T ∈ (0,∞)T

}
.

Define RN(Y) = diag(Y1T)
−1Y on DT . Then RN : DT → RT×T is real-analytic (in the sense

of Definition A.2).

Proof. The map Y 7→ s := Y1T is linear, hence real-analytic. On (0,∞)T , the entrywise re-
ciprocal s 7→ s⊙(−1) is real-analytic (componentwise t 7→ 1/t). The map s 7→ diag(s) is linear.
Matrix multiplication (A,Y) 7→ AY is real-analytic (Proposition A.10). Composing these gives
RN(Y) = diag(Y1T)

−1Y real-analytic on the open set DT .

Proposition A.9 (Entrywise matrix polynomials are real-analytic). Fix m,n ∈ N. For coefficients
{cA ∈ R}A∈Nm×n

0
and some d ∈ N0, define the function p : Rm×n → R by:

p(X) =
∑

|A|≤d

cA XA, (13)

where XA =
∏m

u=1

∏n
v=1 X

Auv
uv as defined in the multi-index notation above. Then p is real-

analytic on Rm×n (in the sense of Definition A.2).

Moreover, if f : Rm×n → Ra×b has component functions fij of the form Equation 13, then f is
real-analytic.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Proof. Consider the vectorized form p̃ := p ◦matm,n : Rmn → R. Using the coordinate identifi-
cation from equation 11-equation 10, each monomial satisfies(

matm,n(x)
)A

= xαA ,

where αA = vecm,n(A). Hence:

p̃(x) =
∑

|A|≤d

cA xαA ,

which is a standard multivariate polynomial in x ∈ Rmn. By Proposition A.4, such functions are
real-analytic on all of Rmn, so p̃ ∈ Cω(Rmn). By Lemma A.1, this implies p is real-analytic on
Rm×n.

For the second claim, observe that if each fij is a scalar polynomial of the form Equation 13, then
each fij is real-analytic by the argument above. Hence, by Definition A.2, f is real analytic.

Proposition A.10 (Matrix product of real-analytic factors). Let the functions f : Rm×n → Rp×r

and g : Rm×n → Rr×q be real-analytic. Then, h : Rm×n → Rp×q defined as h(X) = f(X) g(X),
is real-analytic on Rm×n.

Proof. For each (i, j) ∈ [p]× [q], it holds that hij(X) =
∑r

k=1 fik(X) gkj(X).

Each factor fik and gkj is a real-analytic scalar map by assumption; their product is real-analytic
by Proposition A.1, and a finite sum of real-analytic functions is real-analytic. Thus every hij is
real-analytic, hence h is real-analytic.

Proposition A.11 (Hadamard (element-wise) scaling). Let A ∈ Rm×n be a fixed matrix. Then, the
map f : Rm×n → Rm×n defined as f(X) = A⊙X is real-analytic on Rm×n.

Proof. Componentwise, (A⊙X)ij = Aij Xij is a product of a constant and a coordinate function,
hence a polynomial (degree ≤ 1) and thus real-analytic.

Proposition A.12 (Concatenation/stacking of real-analytic blocks). Let fℓ : Rm×n → Rp×qℓ be
real-analytic for ℓ ∈ [L]. The horizontal concatenation operation g : Rm×n → Rp×(q1+···+qL),
defined as:

g(X) =
[
f1(X) f2(X) · · · fL(X)

]
is real-analytic. Likewise, if fℓ : Rm×n → Rpℓ×q are real-analytic, then the vertical stacking
operation h : Rm×n → R(p1+···+pL)×q , defined as:

h(X) =
[
f1(X)⊤ f2(X)⊤ · · · fL(X)⊤

]⊤
is real-analytic.

Proof. Each scalar component of g (respectively h) is exactly one scalar component of some fℓ,
hence real-analytic. Therefore g and h are real-analytic by definition Definition A.2.

Proposition A.13 (Noncommutative matrix polynomials are real-analytic). Let n, p, q ∈ N, let
X ∈ Rn×n, and fix coefficient matrices Ak ∈ Rp×n and Bk ∈ Rn×q for k = 0, . . . , d. Define

f(X) :=

d∑
k=0

Ak X
k Bk ∈ Rp×q, X0 := In, Xk+1 := XkX.

Then f is real analytic in the sense of Definition A.2.

Proof. The identity map X 7→ X is linear, hence a degree-1 entrywise polynomial; by Proposi-
tion A.9 it is real-analytic. Assume X 7→ Xk is real-analytic. With f(X) = Xk and g(X) = X,
Proposition A.10 yields Xk+1 = f(X)g(X) real-analytic; by induction, all powers X 7→ Xk are
real-analytic.

For each k, left/right multiplication by fixed matrices preserves real-analyticity via Proposition A.10:
since the constant maps X 7→ Ak and X 7→ Bk are real-analytic (components are constant polyno-
mials), the composition X 7→ Ak X

k Bk is real-analytic. Finally, f is a finite sum of real-analytic
maps, hence real-analytic by closure under addition (apply Proposition A.1 componentwise).

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Remark 9. We highlight several standard constructions that yield real-analytic maps, omitting
proofs for brevity:

• Affine and bilinear maps. Functions of the form X 7→ AXB +C are real-analytic, as they are
obtained via matrix multiplication and addition of constant matrices (Proposition A.10, Proposi-
tion A.1).

• Algebraic expressions in X. Any expression constructed from X using finitely many additions and
matrix multiplications with fixed coefficient matrices, e.g. A0+A1XB1+A2XB2XC2- defines
a real-analytic map. This follows from repeated application of Proposition A.10 and closure under
addition.

• Scalar polynomial invariants. Coordinate functions Xij , the trace tr(X), all principal and non-
principal minors, and the determinant det(X) are scalar polynomials in the entries of X, and
hence real-analytic by Proposition A.9.

A.3 DIFFERENTIAL, MEASURE-THEORETIC, AND TOPOLOGICAL TOOLS

This subsection collects the minimal calculus, measure, and topology we will use later. In finite di-
mensions, Fréchet derivatives let us speak uniformly about Jacobians and Hessians; basic Euclidean
topology lets us control neighborhoods and compactness; the inverse function theorem gives lo-
cal invertibility; and pushforwards/absolute continuity formalize how distributions transform under
measurable maps.
Definition A.5 (Fréchet derivative (Luenberger, 1997, §7.2-§7.3)). Let U ⊆ Rm open, and consider
a function f : U → Rn. We say that f is Fréchet differentiable at x ∈ U if there exists a bounded
linear map A : Rm → Rn such that

lim
∥h∥2→0

∥f(x+ h)− f(x)−Ah∥2
∥h∥2

= 0.

The unique operator A is denoted by Df(x) and called the (Fréchet) derivative of f at x.
Definition A.6 (Second Fréchet derivative (Magnus & Neudecker, 2019, Ch. 18)). Let U ⊆ Rm

open, and consider a function f : U → Rn. Suppose f is Fréchet differentiable at x. The second
Fréchet derivative of f at x is the bounded bilinear map D2f(x) : Rm × Rm → Rn defined as:

D2f(x)[h,k] := lim
t→0

Df(x+ th)[k]−Df(x)[k]
t

.

Proposition A.14 (Connection to the Hessian). If f : U → R is C2, then D2f(x) is symmetric
(Arora et al., 2021, Thm. 5.1) and can represented by the Hessian matrix∇2f(x):

D2f(x)[h,k] = h⊤(∇2f(x)
)
k,

as noted in Magnus & Neudecker 2019, Ch. 18.
Definition A.7 (Closure of a set in Rp). Let U ⊆ Rp. The closure of U , denoted U , is the smallest
closed subset of Rp containing U .
Definition A.8 (Euclidean balls in Rp). Fix p ∈ N and equip Rp with the Euclidean norm ∥ · ∥2.
For x ∈ Rp and r > 0 we define:

B(x, r) := {y ∈ Rp : ∥y − x∥2 < r }
B(x, r) := {y ∈ Rp : ∥y − x∥2 ≤ r }

In Rp with the Euclidean topology one has B(x, r) = B(x, r), i.e. the closed ball equals the
topological closure of the open ball.
Definition A.9 (Second-countable subspace of Rp (Munkres, 2000, §30)). Let X ⊆ Rp be equipped
with the subspace topology τX := {U ∩X : U open in Rp}. We say X is second-countable if there
exists a countable familyF ⊆ τX such that every O ∈ τX is a union of members ofF . Equivalently,
the countable family

FQ :=
{
B(x, r) ∩X : x ∈ Qp, r ∈ Q>0

}
,

is a basis for τX .

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Proposition A.15 (Standard facts for Rp). Fix p ∈ N. The following hold:

1. Hausdorff (Aitken, 2020, Prop. 18): Rp with its Euclidean metric is Hausdorff.

2. Heine-Borel (Munkres, 2000, Thm. 27.3): A subset of Rp is compact iff it is closed and
bounded; in particular, each closed Euclidean ball B(x, r) is compact.

3. Second countability (Munkres, 2000, §13 and Thm. 30.2) : R has a countable base (in-
tervals with rational endpoints); hence Rp, being a finite product of second-countable
spaces, is second-countable. Moreover, subspaces of second-countable spaces are second-
countable.

4. Lindelöf consequence(Munkres, 2000, Thm. 30.3(a)): Every second-countable space is
Lindelöf; consequently, every open cover of any subspace of Rp admits a countable sub-
cover.

5. Local compactness of Rp(Munkres, 2000, Thm. 29.2): For any x ∈ Rp and open neigh-
borhood W ∋ x, there exists ε > 0 with B(x, ε) ⊆W , and B(x, ε) is compact by Heine-
Borel; hence Rp is locally compact. Furthermore, in a Hausdorff space, local compactness
is equivalent to shrinking neighborhoods with compact closures: for every neighborhood
W ∋ x there exists an open V with x ∈ V ⊆ V ⊆W and V compact.

Definition A.10 (Ck diffeomorphism Spivak 1971, Ch. 5). Let U, V ⊆ Rp be open sets and let
k ∈ N ∪ {∞}. A map f : U → V is a Ck diffeomorphism if:

1. f is bijective;

2. f is Ck (all partial derivatives up to order k exist and are continuous);

3. the inverse map f−1 : V → U is Ck.

When k = 1 we simply say diffeomorphism. Equivalently, a Ck diffeomorphism is a bijective Ck

map whose inverse is also Ck.

Theorem A.2 (Inverse Function Theorem Rudin 1976, Thm. 9.24). Let U ⊂ Rp be open and
f : U → Rp be C1. Suppose a ∈ U satisfies detDf(a) ̸= 0. Then there exist open sets U0 ⊂ U
with a ∈ U0 and V0 ⊂ Rp with f(a) ∈ V0 such that

f
∣∣
U0

: U0 → V0

is a C1-diffeomorphism. Moreover, the inverse f−1 : V0 → U0 is C1 and

D
(
f−1

)
(f(x)) =

(
Df(x)

)−1 ∀x ∈ U0.

Remark 10. In Theorem A.2 we assume f : U ⊆ Rp → Rp, so the Jacobian Df(a) is a p × p
(square) matrix. In this setting,

detDf(a) ̸= 0 ⇐⇒ Df(a) is invertible,

and this is exactly the hypothesis that yields a local C1 inverse.

Definition A.11 (Pushforward and absolute continuity (Folland, 1999, §3.2)). Consider a Borel-
measurable map T : Rp → Rp and let µ be a Borel measure on Rp. The pushforward measure T#µ
is the Borel measure on Rp defined by

T#µ(U) := µ
(
T−1(U)

)
, U ∈ B(Rp).

If ν is another Borel measure on Rp, we say T#µ is absolutely continuous with respect to ν, and
write T#µ≪ ν, if for every Borel set U ∈ B(Rp):

ν(U) = 0 =⇒ T#µ(U) = 0.

In particular, for Lebesgue measure Lebp, to prove T#µ≪ Lebp for every µ≪ Lebp, it suffices to
verify that

Lebp(U) = 0 =⇒ Lebp
(
T−1(U)

)
= 0 for all Borel U ⊆ Rp.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

B TRANSFORMER LANGUAGE MODEL

This appendix section gives a concise, shape-accurate specification of the decoder-only Transformer
we analyze. We include it both to keep the paper self-contained and because the measure-zero argu-
ments later hinge on architecture-dependent witnesses and exact dimension bookkeeping. We begin
with token and positional embeddings (Definition B.3), define self-attention and its causal variants
(Definition B.5, Definition B.6, Definition B.7), assemble multi-head attention, layer normalization,
and an MLP into a pre-LN residual block (Definition B.8, Definition B.9, Definition B.4, Defini-
tion B.11), stack L such blocks to obtain the model (Definition B.12), and conclude with the unem-
bedding+softmax head (Definition B.10), isolating the last-token representation used in downstream
proofs (Equation 29).

Definition B.1 (Token Embedding Layer). Let V be a vocabulary, and let d ∈ N be the embedding
dimension. For any input sequence s = ⟨s1, . . . , sT ⟩ ∈ V≤K , the Token Embedding Layer is the
function defined as:

E(s) = (Es1 , . . . ,EsT)
⊤ ∈ RT×d, (14)

where E ∈ R|V|×d is a trainable embedding matrix indexed by elements of V , and Esi ∈ Rd denotes
the embedding vector for token si.

This mapping is applied element-wise and is independent of the sequence length T .

Definition B.2 (Positional Embedding Layer). Let V be a vocabulary, and let d ∈ N be the em-
bedding dimension. For any input sequence s = ⟨s1, . . . , sT ⟩ ∈ V≤K with T = |s|, the (learned
absolute) Positional Embedding Layer is the function defined as:

PE(s) = (P1, . . . ,PT)
⊤ ∈ RT×d, (15)

where P ∈ RK×d is a trainable matrix indexed by positions i ∈ [K], and Pi ∈ Rd denotes the
embedding vector for position i. This mapping depends only on positions (not on token identities)
and returns the first T rows of P.

Definition B.3 (Embedding Layer). Let V be a vocabulary, K ∈ N a context bound, and d ∈ N
the embedding width. For any input sequence s = ⟨s1, . . . , sT ⟩ ∈ V≤K with T = |s|, define the
embedding layer as the sum of the token and positional embeddings:

Emb(s) := E(s) + PE(s) =
(
Es1 +P1, . . . , EsT +PT

)⊤ ∈ RT×d, (16)

where E ∈ R|V|×d is the trainable token-embedding matrix and P ∈ RK×d is the trainable
positional-embedding matrix.

Definition B.4 (Multi-Layer Perceptron). A Multi-Layer Perceptron (MLP) withM layers is a func-
tion mlpM : Rd0 → RdM , defined recursively as:

h(1) = W(1)x+ b(1) (17)

h(m) = W(m) σ
(
h(m−1)

)
+ b(m), m ≥ 2 (18)

mlpM (x) = h(M) (19)

where x ∈ Rd0 is the input, {W(m) ∈ Rdm×dm−1}Mm=1 and {b(m) ∈ Rdm}Mm=1 are trainable
parameters and σ is an activation function.

Definition B.5 (Self-Attention). A Self-Attention module is a function η : RT×din → RT×dη ,
defined as:

η(X ;Q,K,V) = softmax

(
(XQ) (XK)

⊤√
dη

)
XV, (20)

where X ∈ RT×din is the input, Q,K,V ∈ Rdin×dη are trainable parameters (query, key, and value
matrices), softmax is applied row-wise, dη is the attention dimension (typically dη < din), and T is
the sequence length.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

Definition B.6 (Causal Self-Attention, masked form). Define the “causal mask” M ∈ RT×T
as:

Mij =

{
0, j ≤ i,
−∞, j > i

Then, a Causal Self-Attention module is a function η̃ : RT×din → RT×dη , defined as:

η̃(X ;Q,K,V) = softmax

(
(XQ) (XK)

⊤√
dη

+M

)
XV, (21)

where X ∈ RT×din is the input, Q,K,V ∈ Rdin×dη are trainable parameters (query, key, and value
matrices), softmax is applied row-wise, dη is the attention dimension (typically dη < din), and T is
the sequence length.
Definition B.7 (Causal Self-Attention, projection form). Define the unit lower-triangular matrix
L ∈ RT×T as Lij = I{j≤i} and consider the row normalization operation RN : DT → RT×T of
Proposition A.8. Then, a Causal Self-Attention module is a function η̃ : RT×din → RT×dη , defined
as:

η̃(X ;Q,K,V) = RN

(
L⊙ exp

(
(XQ) (XK)

⊤√
dη

))
XV, (22)

where X ∈ RT×din is the input, Q,K,V ∈ Rdin×dη are trainable parameters (query, key, and value
matrices), RN is applied row-wise, dη is the attention dimension (typically dη < din), and T is the
sequence length.

Remark 11. Consider Z = 1√
dη

(XQ) (XK)
⊤. Since Lii = 1 for all i ∈ [T], we have that[

L⊙ expZ
]
ii
= eZii > 0, hence the row sum

∑
j≤i e

Zij ≥ eZii > 0 and RN is well-defined.

Definition B.8 (Multi-Head Self-Attention). A Multi-Head Self-Attention module with H heads is
a function attnH : RT×din → RT×dout , defined using the Self-Attention map from Definition B.5 or
Definition B.7 with different parameter sets per head:

ηh(X) = η(X ;Q(h),K(h),V(h)), h ∈ [H], (23)

attnH(X) =
[
η1(X), . . . ,ηH(X)

]
WO, (24)

where {Q(h),K(h),V(h) ∈ Rdin×dη}Hh=1 are the head-specific parameters and WO ∈ RHdη×dout

is the output projection matrix.
Definition B.9 (Layer Normalization). Layer Normalization is a function LN : Rd → Rd, defined
as:

LN(x) = γ ⊙ x− µx1d√
σ2
x + ε

+ β, (25)

where x ∈ Rd is the input, µx = 1
d

∑d
i=1 xi and σ2

x = 1
d

∑d
i=1(xi − µx)

2 are the mean and
variance of x, vectors β,γ ∈ Rd are learnable parameters, and ε ∈ R+ is a small constant that
ensures we don’t divide by zero.
Definition B.10 (Unembedding Layer). Let V be a vocabulary and d ∈ N and U ∈ R|V|×d be a
trainable projection matrix. Define the unembedding map UnEmb : Rd → R|V| by

UnEmb(h) := softmax
(
ULN(h)

)
, h ∈ Rd.

Definition B.11 (Transformer Block). A Transformer Block consists of a composition of a Multi-
Head Self-Attention layer withH heads (Definition B.8) and an MLP withM layers (Definition B.4),
each preceded by layer normalization (Definition B.9) and wrapped with residual connections.
Given an input X ∈ RT×d, the output TB(X) ∈ RT×d is computed as:

H = X+ attnH(X) (26)

TB(X) = H+mlpM (H), (27)

where X,H ∈ RT×d are the results of applying layer normalization row-wise to X and H, respec-
tively, each with its own set of learnable parameters and mlpM is applied row-wise. All sub-layer
parameters are dimensioned appropriately.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

Definition B.12 (Transformer). Fix L ∈ N. For each ℓ ∈ [L], let TB(ℓ) : RT×d → RT×d denote a
Transformer Block (Definition B.11) with its own parameters. Define the module

TrT := TB(L) ◦ · · · ◦ TB(1).

Each TB(ℓ) maps RT×d → RT×d, so the residual additions in Definition B.11 are dimensionally
valid at every depth.
Definition B.13 (Transformer Language Model). Let V denote a finite vocabulary and K ∈ N a
fixed context length. A Transformer Language Model with L layers is the composition of an embed-
ding layer (Definition B.3), a Transformer with L blocks (Definition B.12), and an Unembedding
Layer (Definition B.10).

Formally, it is a parameterized function

f : V≤K × Rp → ∆|V|−1

defined as follows. Without loss of generality, consider θ = (θ1 ∈ Rp1 ,θ2 ∈ Rp2 ,θ3 ∈ Rp3) ∈ Rp,
which collects all the model parameters.

For an input sequence s = ⟨s1, . . . , sT ⟩ with T ≤ K:

H(s ; θ) = Emb(s ; θ1) (embedding) (28)

r(s ; θ) =

(
Tr|s|

(
H(s ; θ) ; θ2

))
|s|

(last-token representation) (29)

f(s ; θ) = UnEmb
(
r(s ; θ) ; θ3

)
(next-token prediction) (30)

Then, the probability of the next-token being Vi is given by:

Pr [sT+1 = Vi | s] =
(
f(s ; θ)

)
i
, ∀i ∈ [|V|]. (31)

Proposition B.1 (Equivalence of masked and projection causal softmax). For any logits Z ∈ RT×T ,
let M and L be as in Definitions B.6–B.7. Then, row-wise,

softmax(Z+M) = RN
(
L⊙ expZ

)
.

Consequently, the two definitions of the Causal Self-Attention are identical.

Proof. Fix a row i. By the mask:

[
softmax(Z+M)

]
ij
=


eZij∑
k≤i e

Zik
, j ≤ i,

0, j > i,

interpreting −∞ via a limit. On the other hand, it holds that:

[L⊙ expZ]ij = Ij≤i e
Zij .

Therefore, L ⊙ expZ keeps exactly the entries with j ≤ i. Then, for each row, row normalization
divides the kept entries by the same positive sum

∑
k≤i e

Zik and leaves the others at 0, yielding the
same row as above. This holds for every row i, proving the identity.

Proposition B.2 (Embedding layer is real-analytic in the parameters). Fix a sequence s =
⟨s1, . . . , sT ⟩ ∈ V≤K with T = |s|. Consider the map

(E,P) 7−→ Emb(s) = E(s) + PE(s) ∈ RT×d, E ∈ R|V|×d, P ∈ RK×d.

Then this map is real-analytic on R|V|×d × RK×d (in the sense of Definition A.2).

Proof. Let Ss ∈ {0, 1}T×|V| select rows {si}Ti=1, and RT ∈ {0, 1}T×K select the first T rows.
Then

E(s) = SsE, PE(s) = RTP, Emb(s) = SsE+RTP.

Each map (E,P) 7→ SsE and (E,P) 7→ RTP is a matrix product of a constant matrix with the
variable (constant maps are real-analytic as degree-0 polynomials by Proposition A.9; the product
is real-analytic by Proposition A.10). Their sum is real-analytic by closure under addition (Proposi-
tion A.1). Hence (E,P) 7→ Emb(s) is real-analytic.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

Proposition B.3 (Joint real-analyticity of core modules and stacks). Assume the pointwise activation
σ : R → R used in the MLP is real-analytic (e.g., tanh, GELU). Fix T ∈ [K]. For notational
convenience define the parameter tuples

Θattn :=
(
{Q(h),K(h),V(h)}Hh=1, W

O
)
, Θ

(1)
LN := (γ(1),β(1)), Θ

(2)
LN := (γ(2),β(2)),

Θmlp :=
(
{W(m),b(m)}Mm=1

)
, ΘTB :=

(
Θattn,Θ

(1)
LN,Θ

(2)
LN,Θmlp

)
, ΘTr,T :=

(
Θ

(1)
TB, . . . ,Θ

(L)
TB

)
.

Then the following maps are jointly real-analytic in their inputs and parameters:

1. MLP. (x,Θmlp) 7→ mlpM (x) is real-analytic: each affine layer (W,b,x) 7→ Wx + b is a
matrix product plus addition (Proposition A.10 and Proposition A.1); the activation σ is real-
analytic by assumption, and composition preserves real-analyticity (Proposition A.2). Iteration
over M layers is repeated composition (Proposition A.2).

2. Layer Normalization. (x,γ,β) 7→ LN(x) = γ ⊙ x−µx√
σ2
x+ε

+ β is real-analytic: µx and σ2
x are

(entrywise) polynomials in x (Proposition A.9); g(x) = σ2
x + ε satisfies g(x) > 0 (definition of

ε > 0), and the scalar map h(t) = t−1/2 is real-analytic on (0,∞) (classical binomial series).
Thus h ◦ g is real-analytic (Proposition A.2); division by g1/2 is a quotient by a nonvanishing
real-analytic function (Proposition A.1); Hadamard scaling by γ and addition of β preserve real-
analyticity (Proposition A.11 and Proposition A.1). Row-wise application is handled by stacking
(Proposition A.12) and the vectorization equivalence (Lemma A.1).

3. Unembedding. (h,U,γ,β) 7→ softmax
(
ULN(h)

)
is real-analytic: LN is real-analytic by

(2); multiplication by U is real-analytic (Proposition A.10); softmax is real-analytic (Proposi-
tion A.7); the overall map is a composition (Proposition A.2) and stacking across coordinates
(Proposition A.12).

4. Self-Attention (vanilla or causal) and Multi-Head. Let Z = 1√
dη

(XQ) (XK)
⊤.

(a) Vanilla SA: (X,Q,K,V) 7→ softmax(Z)XV is real-analytic by: matrix products (Propo-
sition A.10), scaling, row-wise softmax (Proposition A.7 with stacking, Proposition A.12, and
Lemma A.1), and a final matrix product.

(b) Causal SA (projection form): With L unit lower-triangular and using Definition B.7,

(X,Q,K,V) 7−→ RN
(
L⊙ expZ

)
XV

is real-analytic: exp is real-analytic (Proposition A.5); Hadamard scaling by fixed L is real-
analytic (Proposition A.11); by Remark 11, every row of L ⊙ exp(Z) sums to a strictly positive
value (the diagonal term), so the argument lies in the domain DT of Proposition A.8; hence RN
is real-analytic there; the final multiplication by XV is real-analytic (Proposition A.10).

Therefore, each single attention head is real-analytic whether it is vanilla or causal (projec-
tion). For Multi-Head Self-Attention (Definition B.8), horizontal concatenation across heads is
real-analytic (Proposition A.12), and the output projection by WO is a matrix product (Proposi-
tion A.10). Hence (X,Θattn) 7→ attnH(X) is real-analytic regardless of which attention variant
each head uses.

5. Transformer Block (fixed T). (X,ΘTB) 7→ TB(X) ∈ RT×d is real-analytic: apply LN row-
wise to get X (item 2 with stacking, Proposition A.12, and Lemma A.1); apply attention (item 4)
to X; add the residual (closure under addition, Proposition A.1); apply LN row-wise to get H
(item 2 with stacking and Lemma A.1); apply the row-wise MLP (item 1 with stacking, Proposi-
tion A.12); add the residual again (Proposition A.1). All intermediate matrix multiplications use
Proposition A.10, and the overall structure is a composition (Proposition A.3 via Lemma A.1).

6. Transformer (fixed T). (X,ΘTr,T) 7→ TrT (X) = TB(L) ◦ · · · ◦ TB(1)(X) is a composition of
real-analytic maps from (5), hence real-analytic by Proposition A.3.

All statements extend from vector-valued to matrix-valued, row-wise applications via Proposi-
tion A.12 and Lemma A.1, and every sum/product/quotient/composition step above invokes Propo-
sition A.1, Proposition A.10, and Proposition A.3 as indicated.

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

C ALMOST SURE INJECTIVITY

This section establishes a foundational structural result: for causal Transformer Language Models
with standard architectural widths and at least one attention head per block, the final hidden state
at the last token is almost surely injective with respect to the input sequence, assuming the model
parameters are drawn from any absolutely continuous distribution at initialization. Crucially, we
show this injectivity is preserved after any finite number of gradient descent (GD) updates.

We organize the section in two parts; (i) Measure-zero collisions via real-analyticity and a witness
construction and (ii) Preservation of absolute continuity under gradient descent. Each piece builds
toward the main theorem, which asserts that under mild width and head assumptions, the Trans-
former map from input sequences to last-token representations is injective almost surely, even after
multiple rounds of training. The main theorem follows.

Assumption C.1 (Minimum Embedding Dimension). We assume the embedding dimension satisfies
d ≥ 4 and dη ≥ 1. Furthermore, we assume that each transformer block has at least one attention
head. These conditions are trivially satisfied in practice: for modern large language models, embed-
ding dimensions are typically in the hundreds or thousands, and each layer has multiple attention
heads, so the assumptions impose no practical restrictions on the models under consideration.

Theorem C.1 (Finite-horizon a.s. injectivity under GD). Fix a finite vocabulary V , a context bound
K ∈ N, a time horizon T ∈ N, and consider the causal Transformer Language Model (TLM)
of Definition B.13 under Assumption C.1. Let

{(
st ∈ V≤K ,pt ∈ ∆|V|−1

)}T
t=1

be any sequence
of samples and let {ηt ∈ (0, 1)}Tt=1 be any sequence of step-sizes. Assume the parameters are
randomly initialized and updated by gradient descent:

θ0 ∼ µ, µ≪ Lebp,

θt+1 = θt − ηt∇Lst,pt
(θt),

where Lebp denotes Lebesgue measure on Rp and Ls,p : Rp → R is the standard cross-entropy loss

Ls,p(θ) = CrossEntropy
(
f(s ; θ), p

)
.

Then, with probability one over the draw of θ0, the last-token, last-layer representation map

V≤K ∋ s 7−→ r(s ; θT) ∈ Rd

is injective. Equivalently,

Pr
[
∃ s ̸= t ∈ V≤K : r(s ; θT) = r(t ; θT)

]
= 0,

where r(· ; θT) denotes the last-token representation defined in Equation 29.

Proof.

Let θ0 ∼ µ with µ≪ Lebp. For a fixed training horizon T , define the GD update map

Φ : Rp → Rp, Φ(θ0) = θT ,

i.e. Φ is the composition of T gradient-descent steps with step sizes {ηt}Tt=1 ⊂ (0, 1) on the loss L.

1) Absolute continuity after T steps. By Corollary C.5.1, since µ ≪ Lebp, the pushforward law
Φ#µ of θT remains absolutely continuous:

θT ∼ Φ#µ ≪ Lebp.

2) Global almost-sure distinctness. Let S := V≤K , which is finite. By Corollary C.2.1, under any
absolutely continuous parameter law,

Pr
[
r(s ; θT) ̸= r(t ; θT) ∀ s ̸= t ∈ V≤K

]
= 1.

Thus the map s 7→ r(s ; θT) is injective almost surely, as claimed.

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

C.1 ABSOLUTE CONTINUITY ENSURES ALMOST SURE INJECTIVITY

We begin by fixing two distinct sequences and asking when their last-token representations can
coincide. As before, in this subsection we will consider a finite vocabulary V and a finite context
window K ∈ N. Additionally, recall that for θ = (θ1,θ2,θ3) ∈ Rp:

r(u ; θ) :=
(
Tr|u|

(
Emb(u ; θ1) ; θ2

))
|u|
∈ Rd,

and for s ̸= t, we define the discrepancy:

h(θ) :=
∥∥r(s ; θ)− r(t ; θ)

∥∥2
2
.

By Proposition B.3, this map is real-analytic. To invoke the zero-set theorem, it suffices to show
that h ̸≡ 0. We construct a parameter configuration θ⋆ such that r(s ; θ⋆) ̸= r(t ; θ⋆), treating two
exhaustive cases:

• Case A: If the sequences differ at their final token or in length, we isolate this distinction via
selective initialization of embeddings and positional encodings.

• Case B: If they differ earlier, we construct orthogonal embeddings and exploit attention heads to
differentiate the contributions to the final representation.

In both cases, we demonstrate explicit parameter settings under which the discrepancy is nonzero.
This confirms h ̸≡ 0, and the zero set

{
θ : r(s ; θ) = r(t ; θ)

}
has measure zero by Theorem A.1.

Hence, if the parameter distribution is absolutely continuous, the probability of a collision is zero.
A union bound extends this to any finite set of inputs.
Theorem C.2 (Almost-sure pairwise distinctness of last-token representations). Let the parameter
vector θ ∈ Rp be drawn from any distribution absolutely continuous with respect to Lebesgue
measure. Then, for any fixed s ̸= t,

Pr [r(s ; θ) = r(t ; θ)] = 0.

Proof. Let Ts = |s| and Tt = |t|, and h(θ) :=
∥∥r(s ; θ) − r(t ; θ)

∥∥2
2
. Since h is real-analytic

(Proposition B.3), it suffices to show that it is not the zero function on Rp; then h−1({0}) has
Lebesgue measure zero by Theorem A.1, and absolute continuity transfers this to probability zero.

We construct a parameter setting θ⋆ for which h(θ⋆) > 0, treating two exhaustive cases:

Case A: Ts ̸= Tt or sTs ̸= tTt . Set all Transformer parameters to zero so that the network acts as
the identity: TrT (X) = X.

• If sTs ̸= tTt , set EsTs
= e1, EtTt

= e2 ̸= e1, and all other rows of E to zero. Set P = 0K×d.
Then r(s ; θ⋆) = e1, r(t ; θ⋆) = e2, so h(θ⋆) = ∥e1 − e2∥22 > 0.

• If Ts ̸= Tt, set E = 0|V|×d and PTs = e1, PTt = e2 ̸= e1 (all others zero). Then, again,
r(s ; θ⋆) = e1, r(t ; θ⋆) = e2, so h(θ⋆) > 0.

Case B: T := Ts = Tt and sT = tT , but si ̸= ti for some i ∈ [T − 1]. Let i⋆ be the smallest such
index. Note T ≥ 2.

We construct a model with (i) all blocks after the first set to identity (zero parameters), (ii) in the
first block, all heads set to zero except head 1 and the MLP is zero.

We explicitly construct embeddings and head-1 parameters (Q,K,V), as well as the output projec-
tion WO, so that r(s ; θ⋆) ̸= r(t ; θ⋆).

1) Embedding Construction. Choose orthogonal vectors e,p,q ∈ Rd satisfying:
⟨e,p⟩ = ⟨e,q⟩ = ⟨p,q⟩ = 0, ⟨1d, e⟩ = ⟨1d,p⟩ = ⟨1d,q⟩ = 0, ∥e∥2 = ∥p∥2 = ∥q∥2 = 1.

Such vectors exist due to Assumption C.1 (requires d ≥ 4). Set embeddings:

Ev =

{
e, v ∈ {si⋆ , sT }
0d, otherwise

, Pj =


p, j = i⋆

q, j = T

0d, otherwise
.

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

Thus, the input rows before LayerNorm are:

[
H(s ; θ⋆)

]
j
=


e+ p, j = i⋆

e+ q, j = T

∈ {e,0d}, otherwise
,

[
H(t ; θ⋆)

]
j
=


p, j = i⋆

e+ q, j = T

∈ {e,0d}, otherwise
.

2) LayerNorm Output. Use LayerNorm with (γ,β) = (1,0). Since all components have zero
mean, the normalization is:

LN(x) =
x√

1
d∥x∥2 + ε

=: c(x)x.

Define:
cep :=

(
2
d + ε

)−1/2
, ce :=

(
1
d + ε

)−1/2
.

Then:

[
H(s ; θ⋆)

]
j
=


cep(e+ p), j = i⋆

cep(e+ q), j = T

∈ {0d, cee}, otherwise
,
[
H(t ; θ⋆)

]
j
=


cep, j = i⋆

cep(e+ q), j = T

∈ {0d, cee}, otherwise
.

3) Head Parameters. Let e1 ∈ Rdη be the first standard basis vector. Set:

Q = αee⊤1 , K = βpe⊤1 , V = ee⊤1 ,

where α, β > 0 are scalars to be chosen.

Then for any j, attention vectors are:

qj = α

〈[
H(· ; θ⋆)

]
j
, e

〉
e1, kj = β

〈[
H(· ; θ⋆)

]
j
, p

〉
e1, vj =

〈[
H(· ; θ⋆)

]
j
, e

〉
e1.

At row T , q(s)
T = q

(t)
T = αcepe1. Only the key at i⋆ is nonzero:

k
(s)
i⋆ = βcepe1, k

(t)
i⋆ = βcee1.

Value vectors at i⋆ differ:
v
(s)
i⋆ = cepe1, v

(t)
i⋆ = 0d.

And v
(s)
T = v

(t)
T = cepe1.

4) Attention Weights. The only nonzero score is at i⋆:

S
(s)
T,i⋆ =

αβ√
dη
c2ep, S

(t)
T,i⋆ =

αβ√
dη
cepce, S

(·)
T,j = 0 for j ̸= i⋆.

Fix δ ∈ (0, 12) and define L := log
(
1−δ
δ (T − 1)

)
. Set αβ =

√
dηL/c

2
ep, so S

(s)
T,i⋆ = L and

S
(t)
T,i⋆ > L. Then:

A
(s)
T,i⋆ ≥ 1− δ, A

(t)
T,i⋆ > 1− δ, A

(·)
T,j ≤

δ

T − 1
for j ̸= i⋆.

5) Self-Attention Output.

y
(s)
T = (1− δ)cepe1 +

∑
j ̸=i⋆

A
(s)
T,jv

(s)
j , y

(t)
T =

∑
j ̸=i⋆

A
(t)
T,jv

(t)
j .

Tails are bounded by: ∥∥∥∥∥∥
∑
j ̸=i⋆

A
(·)
T,jv

(·)
j

∥∥∥∥∥∥
2

≤ δce.

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

Since both outputs lie in span{e1}, we compare:

⟨y(s)
T − y

(t)
T , e1⟩ ≥ (1− δ)cep − 2δce.

Choosing δ < cep
cep+2ce

makes this strictly positive.

6) Output Projection and Propagation. Let WO be the matrix with (WO)1,1 = 1 and all other
entries zero. Then the head output is projected into coordinate 1, making the last row of the first
transformer block differ between s and t in the first coordinate. Since the original rows at T were
identical and the rest of the network is identity, this difference propagates to the final output, and we
get r(s ; θ⋆) ̸= r(t ; θ⋆).

Remark 12 (Causal Self-Attention). The same construction works for causal self-attention. In our
setup, attention at position T only needs to consider tokens at positions j ≤ T , and we only rely on
attention from T to i⋆ < T . All nonzero scores occur at these allowable indices, so causal masking
does not affect the computation or the argument.
Corollary C.2.1 (Almost-sure global distinctness over a finite input family). Let S ⊆ V≤K be any
finite collection of inputs. If θ is drawn from a law absolutely continuous w.r.t. Lebp, then

Pr
[
r(s ; θ) ̸= r(t ; θ) for all distinct s, t ∈ S

]
= 1.

In particular, the last-token representations are pairwise distinct almost surely across all inputs.

Proof. For each unordered pair {s, t} ⊂ S with s ̸= t, Theorem C.2 gives Pr[r(s ; θ) = r(t ; θ)] =

0. By the union bound over the finitely many pairs (
(|S|

2

)
in total),

Pr
[
∃ s ̸= t ∈ S : r(s ; θ) = r(t ; θ)

]
≤
∑
s,t

Pr
[
r(s ; θ) = r(t ; θ)

]
= 0.

Hence the complement event has probability 1.

Remark 13 (Pointwise vs. last-token injectivity). Sutter et al. (2025) establish a related but distinct
guarantee. They analyze the mapping from a prompt to the entire sequence (matrix) of hidden states,
which already rules out collisions for inputs of different lengths. Their result is pointwise injectivity:
if two prompts differ at position t, then the t-th hidden state (row) differs. This does not, by itself,
imply injectivity of the map to the final hidden state / last-token embedding that we study, so two
different prompts could still coincide at the last token–our quantity of operational interest.

C.2 ABSOLUTE CONTINUITY OF THE PARAMETER DISTRIBUTION IS PRESERVED UNDER GD

Our goal in this subsection is to explain why absolute continuity of the parameter law at initialization
survives any finite number of gradient–descent (GD) steps, thereby allowing the almost-sure injec-
tivity argument from the previous subsection to persist throughout training. The story begins with
regularity: by Proposition B.3 and Proposition A.6, the loss Ls,p is real-analytic, and real-analyticity
is closed under differentiation and composition. Consequently the GD map ϕ(θ) = θ− η∇Ls,p(θ)
is real-analytic, its Jacobian Dϕ(θ) = Ip − η∇2Ls,p(θ) is real-analytic, and so is θ 7→ detDϕ(θ)
(the determinant is a polynomial in the matrix entries). We then rule out the degenerate case by a
witness: at θ⋆ = 0p, our Hessian calculation (Lemma C.4) shows detDϕ(θ⋆) > 0, hence detDϕ
is not identically zero and its zero set C := {detDϕ = 0} has Lebesgue measure zero by the
real-analytic zero–set theorem (Theorem A.1; summarized in Theorem C.3). On the complement
Rp \ C, the Inverse Function Theorem (Theorem A.2) provides, for every θ, a neighborhood on
which ϕ is a C1 diffeomorphism. Although these neighborhoods form an a priori uncountable
cover, the second countability of Rp (and of its subspaces) ensures a countable subcover of such
charts (Proposition A.15, Lemma C.5). This countability is crucial because it lets us pass from
local statements to a global measure statement via countable unions. With this cover in hand, the
change-of-variables formula on each chart (Theorem C.4) implies that the image under the local
inverse of any null set remains null; piecing the charts together and adding the null set C shows that
preimages of Lebesgue-null sets under ϕ are null (Lemma C.6). Equivalently, ϕ pushes absolutely
continuous laws to absolutely continuous laws (Theorem C.5); iterating across finitely many GD

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

steps preserves absolute continuity (Corollary C.5.1). Finally, combining this preservation with the
almost-sure pairwise distinctness of last-token representations over any finite input family (Corol-
lary C.2.1) yields the main consequence we need for training: the last-token representation map
remains injective almost surely after any finite GD horizon.

C.2.1 WITNESS CONSTRUCTION

Lemma C.1 (Zero-gate through scalar loss). Let U ⊆ Rm+q be open and write points as v = (ξ,ψ)
with ξ ∈ Rm and ψ ∈ Rq . Let π : Rm+q → Rm be the projection π(ξ,ψ) = ξ. Consider

g ∈ C2(Rm ; Rn×r), h ∈ C2(U ; Rr),

and define f : U → Rn by

f(ξ,ψ) := g(ξ)h(ξ,ψ) = g
(
π(ξ,ψ)

)
h(ξ,ψ).

Let L ∈ C2(Rn;R) and set

R := L ◦ f : U → R, R(ξ,ψ) = L
(
g(ξ)h(ξ,ψ)

)
.

Fix v0 = (ξ0,ψ0) ∈ U and assume g(ξ0) = 0n×r. Then the Hessian of R at v0 has block form

∇2R(v0) =

(
∇2
ξξ R(v0) ∇2

ξψ R(v0)

∇2
ψξ R(v0) ∇2

ψψ R(v0)

)
=

(
∇2
ξξR(v0) 0m×q

0q×m 0q×q

)
.

i.e. all mixed and ψ–only second partials vanish.

Proof.

1) Introduce the bilinear multiplication map µ : Rn×r × Rr → Rn, µ(M,y) = My, and the C2

map H : U → Rn×r × Rr, H(ξ,ψ) = (g(ξ), h(ξ,ψ)). Then f = µ ◦H and we write:

g0 := g(ξ0) = 0n×r h0 := h(ξ0,ψ0) H(v0) = (g0, h0).

Because µ is bilinear, Dµ(M,y)[(∆M,∆y)] = ∆My +M∆y. By the chain rule:

Df(v0)
[
(hξ,hψ)

]
= Dµ(g0, h0)

[
Dg(ξ0)[hξ], Dh(v0)[(hξ,hψ)]

]
= Dg(ξ0)[hξ]h0 + g0︸︷︷︸

0n×r

Dh(v0)[(hξ,hψ)]

= Dg(ξ0)[hξ]h0.

In particular, Df(v0)
[
(0m, ·)

]
= 0n. The second-order chain rule for Fréchet derivatives (e.g.

Magnus & Neudecker 2019, Thm. 18.4) yields:

D2f(v0)[h,k] = D2µ
(
H(v0)

)[
DH(v0)[h], DH(v0)[k]

]
+Dµ

(
H(v0)

)[
D2H(v0)[h,k]

]
.

Because µ is bilinear, D2µ ≡ 0 and the first term is 0. Furthermore,

D2H(v0)[h,k] =
(
D2g(ξ0)[hξ,kξ], D

2h(v0)
[
(hξ,hψ), (kξ,kψ)

])
,

and it holds that:

D2f(v0)[h,k] = Dµ(g0, h0)
[
D2g(ξ0)[hξ,kξ], D

2h(v0)
[
(hξ,hψ), (kξ,kψ)

]]
=
(
D2g(ξ0)[hξ,kξ]

)
h0 + g0︸︷︷︸

0n×r

(
D2h(v0)

[
(hξ,hψ), (kξ,kψ)

])
=
(
D2g(ξ0)[hξ,kξ]

)
h0.

If at least one of the two directions has ξ–component zero, thenD2g(ξ0)[hξ,kξ] = 0, so the bilinear
form vanishes.

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2026

2) Apply the second-order chain rule to R = L ◦ f at v0:
D2R(v0)[h,k] = D2L

(
f(v0)

)[
Df(v0)[h], Df(v0)[k]

]
+DL

(
f(v0)

)[
D2f(v0)[h,k]

]
. (⋆)

By (1), if at least one of the two directions is pure ψ, both terms on the right-hand side of vanish.
Therefore

D2R(v0)[h,k] = 0 whenever at least one of h,k is of the form (0m, ·).
Invoking Proposition A.14, this is exactly the statement that the ξψ, ψξ and ψψ Hessian blocks are
0. The remaining block∇2

ξξR(v0) is whatever is induced by (⋆) for pairs

(h,k) =
(
(hξ,0q), (kξ,0q)

)
.

Lemma C.2 (Spectrum under block-diagonal extension). Let f ∈ C2(Rm+q ; R), and fix v =
(ξ0,ψ0) ∈ Rm+q . Assume the Hessian of f at v has the block form

H := ∇2f(v) =

(
B 0m×q

0q×m 0q×q

)
, B ∈ Rm×m.

Then the characteristic polynomial factorizes as
χH(λ) := det

(
λIm+q −H

)
= det

(
λIm −B

)
λq.

Consequently,
σ(H) = σ(B) ∪ {0}, and multH(0) = multB(0) + q,

i.e., the spectrum of H consists of the eigenvalues of B together with q additional zeros, and the
algebraic multiplicity of the eigenvalue 0 for H equals that for B plus q.

Proof. Since H is block diagonal,

λIm+q −H =

(
λIm −B 0m×q

0q×m λIq

)
.

The determinant of a block triangular (in particular block diagonal) matrix equals the product of the
determinants of its diagonal blocks (e.g. Horn & Johnson 2013, Cor. 0.8.5). Hence

χH(λ) = det(λIm −B) · det(λIq) = det(λIm −B) · λ q.

The zeros of χH are the eigenvalues of H counted with algebraic multiplicity, which yields σ(H) =
σ(B) ∪ {0} and multH(0) = multB(0) + q.

Remark 14. If 0 ∈ σ(B), then 0 appears in σ(H) with multiplicity strictly larger than q; the
statement above accounts for this by adding q to the algebraic multiplicity of 0 carried over from B.
Lemma C.3 (Hessian of L w.r.t. U,β at θ⋆ = 0 and its spectrum). Let n := |V| and d be the
embedding width. Fix (s,p) ∈ V≤K × ∆n−1, and consider the Transformer Language Model of
Definition B.13. In the unembedding layer, set the LayerNorm scale to zero, γ = 0d. Let the
parameter be ordered as

θ =
(
u,β,γ,θ′

)
, u := vecn,d(U) ∈ Rnd, β ∈ Rd.

Restrict attention to the (u,β)-coordinates and the base point
θ⋆ = 0p i.e. U = 0n×d, β = 0d, γ = 0d, θ

′ = 0.

Write b := 1
n1n and w := b− p ∈ Rn.

Then the Hessian of the cross-entropy loss
L(θ) = CrossEntropy

(
f(s ; θ),p

)
with respect to (u,β) at θ⋆ is the symmetric block matrix

∇2
(u,β)L(θ⋆) =

(
0nd×nd Id ⊗w

Id ⊗w⊤ 0d×d

)
.

The spectrum of this Hessian is
spec

(
∇2

(u,β)L(θ⋆)
)
= {+∥w∥2, . . . ,+∥w∥2︸ ︷︷ ︸

d

, −∥w∥2, . . . ,−∥w∥2︸ ︷︷ ︸
d

, 0, . . . , 0︸ ︷︷ ︸
d(n−1)

}.

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2026

Proof.

1) Logits in vectorized form. With γ = 0d, the LayerNorm output at the unembedding is constant:
LN(h) ≡ β (Definition B.9). Thus the logits before the final softmax are

Z = Uβ ∈ Rn.

Using vec(AXb) = (b⊤⊗A) vec(X) (standard identity for vectorization, cf. Henderson & Searle
(1981)), with A = In and b = β,

z = vec(Z) = vec(Uβ) = (β⊤ ⊗ In)u.

Therefore, near (u,β) = (0nd,0d), the logits map is the bilinear function

z(u,β) := (β⊤ ⊗ In)u ∈ Rn.

2) First and second differentials. Let (h,η) and (k, ξ) be directions in Rnd × Rd. Differentiating
z(u,β) = (β⊤ ⊗ In)u gives

Dz(u,β)[h,η] = (β⊤ ⊗ In)h+ (η⊤ ⊗ In)u.

At (u,β) = (0nd,0d),
Dz(0nd,0d)[h,η] = 0n×(nd+d)

(since both terms are multiplied by u or β). Differentiating once more (or, equivalently, using
bilinearity of z) yields the constant symmetric bilinear form

D2z(0nd,0n)
[
(h,η), (k, ξ)

]
= (ξ⊤ ⊗ In)h+ (η⊤ ⊗ In)k.

3) Gradient of the CE-in-softmax at the origin. Let F (z) := CrossEntropy(softmax(z),p). A
standard computation (softmax Jacobian) gives

∇zF (z) = softmax(z)− p.

At z = 0n, softmax (0n) =
1
n1n =: b, hence

∇zF (0n) = b− p =: w.

4) Second-order chain rule for F ◦ Z at (0,0). Similarly to the proof of Lemma C.1, the second
differential of a composition is

D2(F ◦ z)(v)[h,k] = D2F (z(v))
[
Dz(v)h, Dz(v)k

]
+DF (z(v))

[
D2z(v)[h,k]

]
.

At v = (0nd,0d), Dz(v) = 0n×(nd+d) and DF (z(v)) = ∇zF (0n)
⊤ = w⊤, so

D2L(v)
[
(h,η), (k, ξ)

]
= w⊤D2z(v)

[
(h,η), (k, ξ)

]
= w⊤((ξ⊤ ⊗ In)h+ (η⊤ ⊗ In)k

)
= h⊤(Id ⊗w) ξ + k⊤(Id ⊗w)η,

where we used the mixed-product rule for Kronecker products and the identity

w⊤(ξ⊤ ⊗ In) = ξ
⊤ ⊗w⊤.

5) Identification of the Hessian blocks. By definition of the Hessian as a bilinear form,

D2L(v)
[
(h,η), (k, ξ)

]
=
(
h⊤ η⊤

)(0nd×nd
∂2L

∂u ∂β

∂2L
∂β ∂u 0d×d

)(
k

ξ

)
.

Comparing with the expression obtained in Step 4 for arbitrary (h,η) and (k, ξ) forces

∂2L
∂u ∂β

(θ⋆) = Id ⊗w,
∂2L
∂β ∂u

(θ⋆) =
(
Id ⊗w

)⊤
= Id ⊗w⊤,

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2026

and, because Dz(v) = 0n×(nd+d) (so no quadratic term survives in either u or β alone),

∂2L
∂u ∂u

(θ⋆) = 0nd×nd,
∂2L
∂β ∂β

(θ⋆) = 0d×d.

This gives exactly the claimed block matrix.

6) Spectrum. Let

H := ∇2
(u,β)L(θ⋆) =

(
0nd×nd Id ⊗w

Id ⊗w⊤ 0d×d

)
.

Then

H2 =

(
(Id ⊗w)(Id ⊗w⊤) 0nd×d

0d×nd (Id ⊗w⊤)(Id ⊗w)

)
=

(
Id ⊗ (ww⊤) 0nd×d

0d×nd Id ⊗ (w⊤w)

)
.

The eigenvalues of ww⊤ are ∥w∥22 (multiplicity 1) and 0 (multiplicity n − 1); the eigenvalues of
w⊤w equal ∥w∥22 (scalar). Therefore the eigenvalues of H2 are

∥w∥22, . . . , ∥w∥22︸ ︷︷ ︸
2d times

, 0, . . . , 0︸ ︷︷ ︸
d(n−1) times

.

Because H is symmetric, its eigenvalues are the real square-roots of those of H2, namely ±∥w∥2
(each with multiplicity d) and 0 (with multiplicity d(n − 1)). This is exactly the set stated in the
lemma.

Lemma C.4 (Full Hessian at the witness: block form and spectrum). Let n := |V| and d be the
embedding width. Write the parameter as

θ =
(
(u,β), (γ,θ′)

)
, u = vecn,d(U) ∈ Rnd, β,γ ∈ Rd, θ′ ∈ Rp′

,

so p = nd+ 2d+ p′. Consider the witness point

θ⋆ = 0p (U = 0n×d, β = 0d, γ = 0d, θ
′ = 0d).

Let b := 1
n1n and w := b−p ∈ Rn. Then the Hessian of the cross-entropy loss L(θ) at θ⋆ admits

the block-diagonal decomposition

∇2L(θ⋆) =

(
B 0

0 0

)
, B =

(
0nd×nd Id ⊗w

Id ⊗w⊤ 0d×d

)
.

Consequently,

spec
(
∇2L(θ⋆)

)
=
{
+∥w∥2, . . . ,+∥w∥2︸ ︷︷ ︸

d

, −∥w∥2, . . . ,−∥w∥2︸ ︷︷ ︸
d

, 0, . . . , 0︸ ︷︷ ︸
p−2d

}
.

Proof. Set γ = 0d. Then the unembedding LayerNorm output is constant, LN(h) ≡ β, so the logits
equal z = Uβ. Hence, in a neighborhood of θ⋆, the loss depends only on (u,β) and is independent
of (γ,θ′).

We will apply Lemma C.1 with the open set U = Rnd+2d+p′
, coordinates ξ = (u,β) and ψ =

(γ,θ′) and with n = |V|, r = d. Define

g(ξ) := matn,d(u) ∈ Rn×d, h(ξ,ψ) := β ∈ Rd,

so that
f(ξ,ψ) := g(ξ)h(ξ,ψ) = Uβ ∈ Rn,

and, with L(z) := CrossEntropy
(
softmax(z),p

)
,

R(ξ,ψ) := L
(
f(ξ,ψ)

)
= CrossEntropy

(
softmax(Uβ),p

)
.

36

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2026

At the witness v0 = (ξ0,ψ0) we have g(ξ0) = 0n×d, so by Lemma C.1 all mixed and ψ–only
second partials of R vanish at v0, i.e.

∇2R(v0) =

(
∇2

(u,β)R(v0) 0

0 0

)
.

Identifying R(ξ,ψ) ≡ L(θ) under the correspondence above yields

∇2L(θ⋆) =
(
∇2

(u,β)L(θ⋆) 0

0 0

)
.

Combining, Lemma C.2 and Lemma C.3, we get that

spec
(
∇2L(θ⋆)

)
= spec

(
∇2

(u,β)L(θ⋆)
)
∪ {0} d+p′

=
{
± ∥w∥2 (each mult. d), 0 (mult. d(n− 1) + d+ p′)

}
.

Since p = nd+2d+ p′, the multiplicity of 0 equals p− 2d, which yields the claimed spectrum.

Theorem C.3 (GD Jacobian is nondegenerate a.e.). Consider the setup of Theorem C.5. In partic-
ular, let ϕ : Rp → Rp be the one-step GD map from that theorem:

ϕ(θ) = θ − η∇θLs,p(θ), (32)

with stepsize η ∈ (0, 1). Then the critical set

C := {θ ∈ Rp : detDϕ(θ) = 0}
has Lebesgue measure zero in Rp.

Proof. By Proposition B.3, Proposition A.6 and the closure properties of real analyticity, Ls,p is
real-analytic; hence so are its gradient and Hessian. Therefore ϕ is real-analytic (Lewis, 2014,
Thm. 1.1.15) and

Dϕ(θ) = Ip − η∇2
θLs,p(θ).

Since the determinant is a polynomial in the entries, θ 7→ detDϕ(θ) is real-analytic.

It is not identically zero: at the witness θ⋆ = 0p, Lemma C.4 gives

spec
(
∇2L(θ⋆)

)
= {+∥w∥2, . . . ,+∥w∥2︸ ︷︷ ︸

d

,−∥w∥2, . . . ,−∥w∥2︸ ︷︷ ︸
d

, 0, . . . , 0︸ ︷︷ ︸
p−2d

}, w := 1
n1− p.

Hence the eigenvalues of Dϕ(θ⋆) = Ip − η∇2L(θ⋆) are

1− η∥w∥2︸ ︷︷ ︸
d times

, 1 + η∥w∥2︸ ︷︷ ︸
d times

, 1︸︷︷︸
p−2d times

,

so
detDϕ(θ⋆) =

(
1− η2∥w∥22

)d
> 0.

Thus detDϕ is a nontrivial real-analytic function. By Theorem A.1, its zero set has Lebesgue
measure 0.

C.2.2 GRADIENT DESCENT PRESERVES ABSOLUTE CONTINUITY

Lemma C.5 (Countable chart cover of Rp \ C). Consider the setup of Theorem C.5. In particular,
let ϕ : Rp → Rp be the one-step GD map from that theorem:

ϕ(θ) = θ − η∇θLs,p(θ), (33)

with stepsize η ∈ (0, 1), and the measure-zero critical-set (Theorem C.3):

C := {θ ∈ Rp : detDϕ(θ) = 0}.
Then there exist open sets (Uk)k≥1 covering X := Rp \ C such that, for each k, the restriction
ϕk := ϕ|Uk

: Uk → Vk := ϕ(Uk) is a C1 diffeomorphism with C1 inverse ψk := ϕ−1
k .

37

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2026

Proof.

1) X is open: By Proposition B.3, Proposition A.6 and the closure rules of real-analyticity, Ls,p

is C2, hence ϕ is C1. The map θ 7→ Dϕ(θ) is continuous, and the determinant is a continuous
polynomial in the entries, so g(θ) := detDϕ(θ) is continuous. Therefore C = g−1({0}) is closed
(Rudin, 1976, Thm. 4.8) and X = Rp \ C is open.

2) Local diffeomorphisms by the Inverse Function Theorem: Fix θ ∈ X . Then g(θ) ̸= 0,
so by the Inverse Function Theorem (Theorem A.2) there exist open neighborhoods Uθ ∋ θ and
Vθ ∋ ϕ(θ) such that

ϕθ := ϕ|Uθ
: Uθ → Vθ

is a C1 diffeomorphism with C1 inverse ψθ := ϕ−1
θ . Moreover,

Dψθ(ϕ(x)) =
(
Dϕ(x)

)−1 ∀x ∈ Uθ.

In particularDϕ(x) is invertible for all x ∈ Uθ, whence Uθ ⊂ X . Thus {Uθ}θ∈X is an open cover
of X by IFT charts.

3) Select a countable subcover: By Proposition A.15(3), Rp is second-countable; subspaces
of second-countable spaces are second-countable, hence X is second-countable. By Proposi-
tion A.15(4), every open cover of a second-countable space admits a countable subcover. Therefore
there exist points θ1,θ2, . . . ∈ X such that X =

⋃∞
k=1 Uθk .

Set Uk := Uθk , Vk := Vθk , and ϕk := ϕ|Uk
= ϕθk , ψk := ψθk . Each ϕk is a C1 diffeomorphism

with C1 inverse ψk by Step 2. This yields the desired countable chart cover of X .

Theorem C.4 (Change of Variables Folland 1999, Thm. 2.47(b)). Let U ,V ⊆ Rp be open and
ψ : V → U a C1 diffeomorphism. If E ⊆ V is Lebesgue measurable, then

Lebp
(
ψ(E)

)
=

∫
E

∣∣detDψ(y)∣∣ dy.
Lemma C.6 (Pre-images of null sets are null). Consider the setup of Theorem C.5, in particular the
C1 gradient descent map:

ϕ(θ) = θ − η∇θLs,p(θ), η ∈ (0, 1),

and its critical set C := {θ ∈ Rp : detDϕ(θ) = 0}. Then, for every measurable A ⊆ Rp,

Lebp(A) = 0 =⇒ Lebp
(
ϕ−1(A)

)
= 0.

Proof. Let X = Rp \ C and decompose the pre-image:

ϕ−1(A) =
(
ϕ−1(A) ∩ C

)
∪
(
ϕ−1(A) ∩X

)
.

The first set is contained in C, a measure zero set (Theorem C.3), hence has Lebp–measure 0. By
Lemma C.5, cover X by countably many charts {Uk} on which ϕk := ϕ|Uk

is aC1 diffeomorphism
onto Vk := ϕ(Uk) with inverse ψk ∈ C1(Vk ; Uk). Then, it holds that:

ϕ−1(A) ∩ Uk = ψk

(
A ∩ Vk

)
.

Since Lebp(A) = 0 and both A and Vk are measurable, A∩Vk is measurable and has measure 0.
By Theorem C.4 applied to ψk with E = A ∩ Vk,

Lebp
(
ψk(A ∩ Vk)

)
=

∫
A∩Vk

∣∣ detDψk(y)
∣∣ dy = 0.

Therefore, each ϕ−1(A)∩Uk is null and because a countable union of null sets is null, it holds that:

Lebp
(
ϕ−1(A)

)
= 0.

38

2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

Under review as a conference paper at ICLR 2026

Theorem C.5 (Preservation of absolute continuity under one GD step). Fix a finite vocabulary V , a
context bound K ∈ N, and the Transformer language model f of Definition B.13. For any sample
(s,p) ∈ V≤K ×∆|V|−1 and any learning rate η ∈ (0, 1), let ϕ : Rp → Rp be the gradient-descent
update, defined as:

ϕ(θ) = θ − η∇θLs,p(θ),

where Ls,p : Rp → R is the standard Cross Entropy loss:

Ls,p(θ) = CrossEntropy
(
f(s ; θ),p

)
.

Then, gradient-descent preserves absolute continuity: for every absolutely continuous probability
law µ on Rp, its image under ϕ remains absolutely continuous:

ϕ#µ ≪ Lebp.

Therefore, the updated parameters θ′ := ϕ(θ) are absolutely continuous.

Proof. By Proposition B.3 and closure properties, Ls,p is C2, hence ϕ ∈ C1 and is Borel-
measurable. From Theorem C.3 the critical set

C := {θ ∈ Rp : detDϕ(θ) = 0}

has Lebp-measure 0. Therefore, the hypothesis of Lemma C.6 holds, and we have the property:

Lebp(A) = 0 =⇒ Lebp
(
ϕ−1(A)

)
= 0 for every measurable A ⊆ Rp. (†)

Let A be any Borel set with Lebp(A) = 0. Then

ϕ#µ(A) = µ
(
ϕ−1(A)

)
= 0,

because µ≪ Lebp and Lebp
(
ϕ−1(A)

)
= 0 by (†). Since this holds for every Lebp-null set A, we

conclude ϕ#µ≪ Lebp.

Corollary C.5.1 (Preservation of absolute continuity under finitely many GD steps). Fix a finite
vocabulary V , a context bound K ∈ N, and the Transformer language model f of Definition B.13.
For t = 1, . . . , T , let (st,pt) ∈ V≤K ×∆|V|−1 and ηt ∈ (0, 1), and define the t-th GD update

ϕt(θ) = θ − ηt∇θLst,pt
(θ), Lst,pt

(θ) = CrossEntropy
(
f(st ; θ),pt

)
.

Let the T -step update map be the composition

Φ := ϕT ◦ · · · ◦ ϕ1 : Rp → Rp.

Then, for every absolutely continuous probability law µ on Rp, its image under Φ remains absolutely
continuous:

Φ#µ ≪ Lebp.

Equivalently, if θ(0) ∼ µ with µ≪ Lebp and

θ(t+1) = ϕt
(
θ(t)
)
, t = 0, . . . , T − 1,

then the T -step parameters θ(T) = Φ
(
θ(0)

)
are absolutely continuous.

Proof. Since the result of Lemma C.6 holds for each ϕt, for any null set A, repeated preimages
remain null:

Lebp
(
(ϕT ◦ · · · ◦ ϕ1)−1(A)

)
= 0.

The same argument as in the proof of Theorem C.5 then yields the claim.

39

2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159

Under review as a conference paper at ICLR 2026

D LEFT-INVERTIBILITY VIA SIP-IT

Goal. We study when and how the hidden states of a causal decoder-only Transformer admit a left
inverse: given the layer-ℓ representation at position t and the true prefix π = s1:t−1, can we recover
the next token st?

Main idea. Under mild randomness in the parameters and causal masking, the one-step last-token
map that sends a candidate token v to the layer-ℓ representation at position t (conditioning on π) is
almost-surely injective, and in fact has a positive separation margin. This yields a simple verifier:
declare v correct iff the observed hidden state lies in a small ball around F (v;π, t).

Algorithmic consequence. Because causality localizes the dependence to (π, st), we can invert
an entire sequence sequentially with a single pass over the vocabulary per position. We call this
procedure SIP-IT (Sequential Inversion via Prefixwise Injective Tests), and we show exact (and
robust) recovery holds almost surely, with worst-case time Θ(T |V|).

Standing conventions for this section. Fix a layer index ℓ ∈ [L]. For any input sequence s =
⟨s1, . . . , sT ⟩, define the layer outputs row-wise by

H(0)(s) := Emb(s), H(ℓ)(s) := TB(ℓ)
(
H(ℓ−1)(s)

)
∈ RT×d,

and write ht(s) to denote the row of H(ℓ)(s) at position t. Furthermore, we use ⊕ for sequence
concatenation: if s = ⟨s1, . . . , st−1⟩ and v ∈ V , then s⊕ v = ⟨s1, . . . , st−1, v⟩.
The parameters θ and target layer ℓ are considered fixed and omitted for simplicity.

Assumption D.1 (Causal self-attention throughout). Every attention layer in every block is causal
in the sense of Definitions B.6/B.7. Consequently, for any s and any t ∈ [T],

ht(s) depends only on the prefix ⟨s1, . . . , st⟩. (34)

Assumption D.2 (Injectivity Assumption). SIP-IT is applied to models initialized with parameters
drawn from an absolutely continuous distribution and trained via (mini-batch) gradient descent with
step sizes in (0, 1), as described in Appendix C. Under these conditions, any network considered in
the sequel is almost-surely injective (Theorem C.1).

D.1 ONE-STEP LAST-TOKEN MAPS

We first isolate the positionwise map that drives inversion. Fix a position t and prefix π ∈ Vt−1. The
one-step map F (·;π, t) sends a candidate token v to the layer-ℓ hidden state at position t obtained
when the prefix is π and the token at t is v. Causality implies that ht depends only on (π, v) (not on
any future tokens), and we show that, for almost all parameter settings, F is injective with a strictly
positive pairwise margin over V .

Definition D.1 (One-step map at time t under prefix π). Let π ∈ Vt−1 be a fixed prefix (possibly
t = 1, when π is empty). Define

F : V −→ Rd, F (v ; π, t) := ht(π ⊕ v).
Remark 15. F is simply a function that returns the hidden output of token v at the ℓ transformer
block given that π is used a fixed prefix. This map allows us to have a convenient notation for
introducing results about inversion. Furthermore, since F is built using ℓ transformer blocks, it is
parameterized by θ. Nevertheless, for the sake of simplicity, we will refer to Fℓ,θ simply as F .

Once the One-step map (Definition D.1) is introduced, one can present its a.s. injectivity through
an application of the previously obtained result (Theorem C.1). Furthermore, one can deploy the
common prefix to introduce a stronger notion of injectivity: margin separation (Lemma D.1).

Theorem D.1 (A.s. one-step injectivity). Fix t and the prefix π ∈ Vt−1. Under Assumptions D.1
and D.2, it holds that:

Pr
[
∃v ̸= v′ ∈ V : F (v ; π, t) = F (v′ ; π, t)

]
= 0.

Equivalently, F is injective almost-surely.

40

2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213

Under review as a conference paper at ICLR 2026

Proof. Set the finite family St,π := {π ⊕ v : v ∈ V} ⊆ Vt and view ht(s) as the last-token
representation of the truncated Transformer consisting of the first ℓ blocks. All assumptions used in
Corollary C.2.1 remain valid for this truncated model. Applying the corollary with S = St,π yields,
almost-surely, ht(π ⊕ v) ̸= ht(π ⊕ v′) whenever v ̸= v′. This is exactly the injectivity of F .

Lemma D.1 (Strict separation margin a.s.). Under the conditions of Theorem D.1, define the (data-
dependent) margin

∆π,t := min
v ̸=v′∈V

∥∥F (v ; π, t)− F (v′ ; π, t)∥∥
2

Then,
Pr[∆π,t > 0] = 1.

Proof. By Theorem D.1, with probability 1 the set

{F (v ; π, t) : v ∈ V}
consists of |V| distinct points in Rd. On this event of full probability, every pairwise distance among
these finitely many points is strictly positive, so their minimum is strictly positive as well.

Thus, the event {∆π,t > 0} coincides with the event that F is injective on V . Since injectivity holds
almost-surely by assumption, we conclude that Pr[∆π,t > 0] = 1.

D.2 THE CORE ROUTINES: LOCAL VERIFIERS, ACCEPTANCE REGIONS, AND POLICIES

Given F (· ; π, t), inversion reduces to a local hypothesis test: for an observed ĥt, which token’s
predicted representation is closest? We formalize this with acceptance regions–closed balls around
F (v ; π, t)–and a verifier that accepts v iff ĥt lies in its ball. Almost-sure injectivity yields unique-
ness at radius 0, and a positive margin yields uniqueness for any ε < ∆π,t/2. To explore candidates
efficiently, we couple the verifier with any policy that enumerates untried tokens (e.g., uniform with-
out replacement or a gradient-guided ranking).

Definition D.2 (Local verifier and acceptance tolerance). Given a tolerance ε ≥ 0, define the ac-
ceptance region for symbol v as the closed ball (Definition A.8):

Aπ,t(v ; ε) := B
(
F (v ; π, t), ε

)
.

A candidate token v ∈ V is verified for observation ĥt if and only if ĥt ∈ Aπ,t(v ; ε).

Remark 16 (Decoding via acceptance regions). Given a prefix π ∈ Vt−1 and the observation ĥt

at position t, we identify the next token by checking in which acceptance region ĥt lies: declare v
verified iff ĥt ∈ Aπ,t(v; ε). By Lemma D.1, for any ε < ∆π,t/2 the regions {Aπ,t(v; ε)}v∈V are
pairwise disjoint; hence there is at most one verified token (and in the noiseless case ε = 0, exactly
one).

Building on the intuition in Remark 16, we introduce two radii to define acceptance regions that
avoid collisions:

Proposition D.1 (Probabilistic soundness and uniqueness of the local verifier). Fix position t and
prefix π ∈ Vt−1. Under Assumptions D.1 and D.2, for all v⋆ ∈ V , the following hold with probabil-
ity one:

1. Noiseless soundness. If ε = 0 and ĥt = F (v⋆ ; π, t), then v⋆ is the unique verified symbol.

2. Robust uniqueness. If ε < ∆π,t/2 and ĥt ∈ Aπ,t(v
∗ ; ε), then v⋆ is the unique verified symbol.

Proof. Recall that under Assumptions D.1 and D.2, F is injective and ∆π,t > 0 almost-surely.

(1) Noiseless soundness. For any v ∈ V ,Aπ,t(v ; 0) = {F (v ; π, t)}. If ĥt = F (v⋆ ; π, t) and some
v ̸= v⋆ were also verified at ε = 0, we would have F (v ; π, t) = F (v⋆ ; π, t), which is a probability
zero event under the assumptions made. Hence v⋆ is uniquely verified almost-surely.

41

2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267

Under review as a conference paper at ICLR 2026

(2) Robust uniqueness. Assume ε < ∆π,t/2 and ∥ĥt−F (v⋆ ; π, t)∥2 < ε. If some v ̸= v⋆ were also
verified, then ∥ĥt − F (v ; π, t)∥2 ≤ ε. By the triangle inequality,∥∥F (v ; π, t)− F (v⋆ ; π, t)∥∥

2
≤
∥∥ĥt − F (v ; π, t)

∥∥
2
+
∥∥ĥt − F (v⋆ ; π, t)

∥∥
2
< 2ε < ∆π,t,

contradicting the definition of ∆π,t (again, valid under the assumptions made). Thus v⋆ is uniquely
verified almost-surely.

Finally, we introduce the last conceptual block required to build the inversion algorithm:
Definition D.3 (Policy algorithm). Let V be a finite vocabulary. A policy algorithm is a (possibly
randomized) map

Π : { C ⊊ V } −→ V such that Π(C) ∈ V \ C for all C ⊊ V.
(When C = V the map is undefined.)
Remark 17 (Enumeration property). Intuitively, a policy chooses any token not tried yet. Starting
from C0 = ∅ and iterating

vi := Π(Ci−1), Ci := Ci−1 ∪ {vi} (i = 1, . . . , |V|),
produces a sequence (v1, . . . , v|V|) that is a (possibly random) permutation of V . Thus, in exactly
|V| steps, every token is output once with no repetitions.

Two examples of policy algorithms. We give (i) a uniform-random without replacement policy
and (ii) a gradient-guided policy.

Algorithm 2 Policy (Random)

Require: Vocabulary V; visited set C; embedding matrix E ∈ R|V|×d

Ensure: Next token ID and embedding
1: Sample a permutation L = (v1, . . . , v|V|) uniformly from V
2: Define ρ(v ; π) as the rank of v in L
3: v⋆ = argminv∈V\C ρ(v ; π)
4: return v⋆, Ev⋆

Algorithm 3 Policy (Gradient-based)

Require: Vocabulary V; visited set C; embedding matrix E ∈ R|V|×d ; prefix π ∈ Vt−1; layer ℓ;
previous continuous embedding e(j−1) ; step size γ > 0; gradient-based update rule G

Ensure: Next token ID and embedding

1: g← ∇e(j−1)
1
2

∥∥∥F (e(j−1) ; π, t
)
− ĥt

∥∥∥2
2

2: e(j) ← G(e(j−1),g, γ)
3: Get L = (v1, . . . , v|V|) by ordering vi based on ℓ2(Evi , e

(j))
4: Define ρ(v ; π) as the rank of v in L
5: v⋆ = argminv∈V\C ρ(v ; π)

6: return v⋆, e(j)

Remark 18 (Bypassing the embedding layer). We slightly overload notation and write F (e;π, t).
Here we bypass the token embedding lookup and inject a continuous vector at the current position:
the first t−1 rows of H(0) are set to Emb(π) and the t-th row is set to e. This extension is used only to
guide the search (e.g., in Policy-Gradient). All theoretical guarantees are stated for F (v;π, t) with
v ∈ V and are unaffected by allowing F to accept a continuous proxy during candidate scoring.
Any extra inputs/side outputs used by a policy (such as the updated proxy) are orthogonal to the
correctness statements.
Remark 19 (Practical choice of policy). Both Alg. 2 and Alg. 3 satisfy Definition D.3. In practice we
use the gradient-guided policy with standard gradient descent updates, as it tends to find the verified
token with far fewer proposals: the next token is chosen by ranking V by the distance ∥Ev − e(j)∥2
to the updated proxy e(j). This preserves the same worst-case guarantees (single pass over V) while
improving empirical efficiency.

42

2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321

Under review as a conference paper at ICLR 2026

D.3 GLOBAL INVERSION VIA SIP-IT

We now compose the local verifier into a sequential decoder. At step t, causality ensures ht(s) =
F (st;π, t) for the true prefix π = s1:t−1. Since the verifier uniquely accepts st (noiselessly, and
robustly under perturbations below half the margin), any covering policy must encounter and accept
the true token within a single pass over V . Iterating from t = 1 to T yields exact recovery almost
surely; we also quantify robustness and the worst-case runtime.

We are now ready to introduce our inversion algorithm: SIP-IT (Alg. 1). The algorithms applies
to decoder-only transformers with causal self-attention (Assumption D.1), and assumes injectivity,
which occurs with almost-surely (Assumption D.2). We assume access to the layer-ℓ hidden states

per position
{
ĥt

}T

t=1
and to the parameters needed to evaluate the local verifier from Definition D.2

for arbitrary (t, π, j), as well as the gradient (when needed), namely to the model up to layer ℓ. A
policy algorithm is fixed (e.g., Alg. 3).

We begin by recording the following standard lemma and omitting the proof, as it is immediate from
causal masking: under causal self-attention, the representation at position t is independent of future
tokens.

Lemma D.2 (Causal factorization and prefixwise identifiability). Under Assumptions D.1 and D.2,
fix position t ∈ [T]. For any s = ⟨s1, . . . , sT ⟩ with π = ⟨s1, . . . , st−1⟩,

ht(s) = F (st ; π, t),

where F is the one-step map from Definition D.1.

Proof. With causal masking, position t attends only to positions ≤ t. Evaluating the network up to
layer ℓ therefore yields a representation at t that is a function of the prefix π and the current token st
only, i.e. F (st ; π, t), as claimed.

Proposition D.2 (The verifier is the right primitive). Fix t and a true prefix π = ⟨s1, . . . , st−1⟩. Un-
der Assumption D.1, the observed hidden state at step t satisfies ht(s) = F (st ; π, t) (Lemma D.2).
In addition, under Assumption D.2, F is injective and has positive margin ∆π,t > 0 almost-surely
(Theorem D.1 and Lemma D.1). Consequently, for the local verifier of Definition D.2, the following
hold with probability one:

1. (Noiseless) With ε = 0 and observation ĥt = ht(s), the unique verified token is st.

2. (Robust) If ĥt = ht(s) + et with ∥et∥2 < ε < ∆π,t/2, then st is the unique verified token.

Proof. Immediate from Lemma D.2 and Proposition D.1 applied with v⋆ = st, which holds almost-
surely by Theorem D.1 and Lemma D.1.

Proposition D.3 (Eventual acceptance under increasing enumeration). Fix a position t and the true
prefix π = ⟨s1, . . . , st−1⟩. Under Assumption D.1 and Assumption D.2, let ε ≥ 0 and work on
the probability-one event where the local verifier uniquely accepts the true token st (e.g., ε = 0 or
ε < ∆π,t/2; see Proposition D.2).

Let Π be any policy algorithm (Definition D.3). Define the increasing visited sets by C0 = ∅,
vi := Π(Ci−1), and Ci := Ci−1 ∪ {vi} for i ≥ 1, and stop at the first index

τ := min
{
i ≥ 1 : ĥt ∈ Aπ,t(vi ; ε)

}
.

Then (vi)i≥1 enumerates V without replacement and τ ≤ |V| almost surely. In particular, for the
fixed prefix π, the policy’s increasingly expanding search over V eventually proposes the unique
verified token st and accepts it with probability 1.

Proof. Work on the probability-one event of Proposition D.2 (under Assumption D.1 and Assump-
tion D.2 with the stated ε), on which the local verifier at step t uniquely accepts the true token st.
Equivalently,

ĥt ∈ Aπ,t(v ; ε) ⇐⇒ v = st. (35)

43

2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375

Under review as a conference paper at ICLR 2026

Enumeration without replacement. By the definition of a policy algorithm (Definition D.3),
vi = Π(Ci−1) ∈ V \ Ci−1 and Ci = Ci−1 ∪ {vi}. Hence vi /∈ Ci−1 and |Ci| = |Ci−1|+ 1. Inducting
on i yields that (vi)i≥1 has no repetitions and Ci contains exactly i distinct tokens. Since V is finite,
after |V| steps we have C|V| = V , i.e., (vi)

|V|
i=1 is a permutation of V (this holds pathwise, for any

realization of the policy’s internal randomness).

Eventual acceptance. Because (vi) is a permutation of V , there exists a unique index j ∈
{1, . . . , |V|} with vj = st. By equation 35,

τ = min{ i ≥ 1 : ĥt ∈ Aπ,t(vi ; ε) } = min{ i ≥ 1 : vi = st } = j,

so τ ≤ |V| and the process accepts st.

Since the event on which equation 35 holds has probability 1, the conclusion (eventual acceptance
at finite τ) holds almost surely.

Theorem D.2 (Correctness of SIP-IT (noiseless & robust)). For each t ∈ {1, . . . , T} let πt =
⟨s1, . . . , st−1⟩ and let ∆πt,t > 0 be the margin of the one-step map F (·;πt, t) from Lemma D.1.
Under Assumptions D.1 and D.2, run SIP-IT (Alg. 1) with a tolerance ε ≥ 0 and observations

ĥt = ht(s) + et (t = 1, . . . , T),

where the perturbations satisfy ∥et∥2 ≤ ε for all t and

ε < 1
2 ∆πt,t for all t.

Then, with probability 1 over the model parameters: (i) for every t, the inner for-loop over j (the
loop over vocabulary candidates) terminates within |V| iterations by accepting the true token st;
and (ii) after the outer for-loop over t (the loop over positions) finishes, the algorithm outputs the
exact sequence ŝ = s.

In particular, this covers the noiseless case by taking ε = 0 and ĥt = ht(s), and the robust case
with any uniform ε such that maxt ∥et∥2 ≤ ε < 1

2 mint ∆πt,t.

Proof. By Assumption D.2, Theorem D.1, and Lemma D.1, there is a probability-one event on
which, for all t, F (·;πt, t) is injective with strictly positive margin ∆πt,t. Intersecting across finitely
many t preserves probability 1. Work on this event.

By Assumption D.1 and Lemma D.2, ht(s) = F (st;πt, t). Since ∥et∥2 ≤ ε,

ĥt = F (st;πt, t) + et ∈ B
(
F (st;πt, t), ε

)
= Aπt,t(st; ε),

so the local verifier accepts st. Moreover, because ε < 1
2∆πt,t, Proposition D.1(2) implies robust

uniqueness:
ĥt ∈ Aπt,t(v; ε) ⇐⇒ v = st. (36)

When ε = 0, equation 36 also holds by Proposition D.1(1). We now analyze SIP-IT and proceed by
induction on t.

Base case (t = 1). The outer for-loop over t begins with ŝ = ⟨ ⟩ = π1. Inside the inner for-
loop over j (the loop over vocabulary candidates), the policy (Definition D.3) enumerates V without
replacement. By Proposition D.3, there exists j⋆ ≤ |V| such that vj⋆ = s1, which is accepted and
triggers the break; the algorithm appends s1.

Inductive step. Suppose after completing the inner loop at step t − 1 the algorithm has appended
st−1, so the prefix entering step t is ŝ = πt. By equation 36, within the inner loop the verifier accepts
exactly when vj = st. Because the policy enumerates V without replacement, some j ≤ |V| satisfies
vj = st, which is accepted, appended, and the inner loop breaks.

Thus for every t, the inner loop terminates by accepting st within |V| iterations, and after the outer
loop finishes we have appended (s1, . . . , sT), i.e., ŝ = s. Since the reasoning holds on a probability-
one event (independent of the policy’s internal randomness), the conclusion is almost sure.

44

2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429

Under review as a conference paper at ICLR 2026

10−4

10−1

102

L
2

D
is

ta
n

ce

Collision threshold

gpt2

10−4

10−1

102

L
2

D
is

ta
n

ce

Collision threshold

gpt2-medium

1 2 3 4 5 6 7 8 9 10 11 121 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 241 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36

Layer

10−4

10−1

102

L
2

D
is

ta
n

ce

Collision threshold

gpt2-large

Figure 7: Seeking collisions in a large-scale prompt set (§4.1). For each layer, boxplots show
the distribution (log scale) of the minimum pairwise ℓ2 distances between last-token states across
prompts for the GPT-2 model family (Small, Medium, and Large); red bars mark medians and
the dashed line indicates the collision threshold 10−6.

Proposition D.4 (Termination and linear step bound). Run SIP-IT (Alg. 1) on a length-T sequence
with any policy that enumerates V without replacement. Then the algorithm halts after a finite
number of iterations. Moreover, in the worst case the inner for-loop over j executes at most |V|
iterations at each position t, so the total number of verifier tests across the entire run is at most
T |V|. In particular, the number of loop iterations grows linearly with T · |V|.

Proof. Fix a position t. The inner for-loop over j proposes unvisited tokens and stops when a
candidate verifies, or after exhausting V . Because the policy enumerates without replacement, the
loop can execute at most |V| iterations at step t. The outer for-loop over t runs for exactly T

positions, hence the total number of inner-loop iterations (i.e., verifier tests) is at most
∑T

t=1 |V| =
T |V| <∞. Therefore the algorithm halts and the total number of tests is linear in T · |V|.

Remark 20 (Iterations vs. wall–clock time). Proposition D.4 bounds the number of iterations/tests:
the inner loop performs at most |V| verifier tests per position, so the total is Θ(T |V|). This is an
iteration complexity statement that holds for any policy satisfying the “enumerate V without replace-
ment” property. Actual wall–clock time also depends on the per–test cost (one call to F (v;π, t) plus
a distance) and on any policy overhead (e.g., forward/backward proxy updates, scoring, sorting). A
generic decomposition is

time = Θ
(
T |V| · Ctest

)
+

T∑
t=1

Cpolicy(t),

where Ctest is the cost of one membership test and Cpolicy(t) captures policy-specific work at step
t. Thus, if |V| is treated as fixed and Ctest, Cpolicy(t) are bounded (e.g., a constant number of proxy
updates and at most one ranking per update), wall–clock time is O(T). If |V| grows or the policy
sorts per update, additional factors like |V| or log |V| may appear in the time, but the termination
and the Θ(T |V|) iteration bound remain unchanged.

Remark 21 (Choosing the tolerance ε). Theory guarantees uniqueness whenever ε < 1
2∆π,t

(Proposition D.1). Since ∆π,t is unknown, two practical choices work well: (i) backoff: start with

45

2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483

Under review as a conference paper at ICLR 2026

10−3

101

105

L
2

D
is

ta
n

ce

Collision threshold

gemma-3-1b-pt

10−3

101

105

L
2

D
is

ta
n

ce

Collision threshold

gemma-3-4b-pt

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 261 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 341 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48

Layer

10−3

101

105

L
2

D
is

ta
n

ce

Collision threshold

gemma-3-12b-pt

Figure 8: Seeking collisions in a large-scale prompt set (§4.1). For each layer, boxplots (log scale)
show the distribution of minimum pairwise ℓ2 distances between last-token states across prompts for
the Gemma-3 model family (1B, 4B, 12B); red bars denote medians and the dashed line marks the
collision threshold 10−6.

a small ε and increase only if no token verifies; (ii) calibration: set ε from held-out hidden states at
layer ℓ. In all cases the decision rule remains a simple yes/no membership test.

Remark 22 (Why SIP-IT is sequential). The algorithm never solves a global assignment. At posi-
tion t it conditions on the current prefix π and queries the local verifier for a single token. Causality
(Assumption D.1) ensures ht depends only on (π, st), so these local, prefixwise decisions compose
to recover the full sequence.

E ADDITIONAL EXPERIMENTS AND IMPLEMENTATION DETAILS

E.1 IMPLEMENTATION DETAILS

What is a collision in practice. In the theoretical parts of the paper we use “collision” in the usual
functional sense: two distinct prompts s ̸= s′ such that their last-token representations coincide
exactly,

r(s ; θT) = r(s′ ; θT).

This is the event whose probability is controlled in theorems 2.2 and 2.3 and in Appendix C, and all
proofs are carried out at the level of exact equality (no numerical threshold is required).

In the experiments, however, representations are stored in floating-point format, so exact equality of
r(s ; θT) and r(s′ ; θT) may not be a meaningful or robust criterion. We therefore adopt a numer-
ical proxy: given two prompts s, s′ and their embeddings r(s ; θT), r(s

′ ; θT) ∈ Rd, we declare a
practical collision only if

torch.allclose
(
r(s ; θT), r(s

′ ; θT)
)
= True,

i.e., every coordinate falls within PyTorch’s prescribed tolerances, namely 10−5 and 10−8 for rel-
evant and absolute tolerance respectively. Across all of the billions to trilions of empirical checks,
every pair of distinct prompts s ̸= s′ failed this criterion: torch.allclose always returned
False, and the observed ℓ2 distances were consistently bounded away from zero. Thus, at the
resolution of our numerical precision, we did not observe any collisions in practice.

46

2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537

Under review as a conference paper at ICLR 2026

SIP-IT implementation. We implement SIP-IT exactly as in Alg. 1 with the gradient-guided pol-
icy. To stabilize the continuous proxy used for ranking, we apply gradient clipping (capping the
gradient norm at 1) and we periodically project it back to the nearest token embedding every K=50
candidate proposals:

e(j) ← Ev† , v† = arg min
v∈V\C

∥∥Ev − e(j)
∥∥
2
,

without taking gradients through this projection. These heuristics affect efficiency only; the verifier
and all correctness guarantees remain unchanged.

HARDPROMPTS implementation. The original HARDPROMPTS method Wen et al. (2023) tar-
gets multimodal vision-language models and optimizes prompts via a CLIP-based similarity objec-
tive. In our text-only setting we lack the vision branch and CLIP loss, so we adapt Algorithm 1
of Wen et al. (2023) to language models by replacing the objective with the same ℓ2 loss used in
SIP-IT’s gradient calculation, and setting the optimization steps T = 1

4# tokens · |V|. All other
details (step sizes, stopping rules) mirror our SIP-IT setup to ensure a fair comparison.

E.2 ADDITIONAL ABLATIONS

E.2.1 COLLISION EXPERIMENTS

We report three complementary ablations that probe how separation behaves across depth, length,
and model family.

GPT-2 family across depth. For GPT-2 Small, GPT-2 Medium, and GPT-2 Large, the
per-layer boxplots (log scale) of the minimum pairwise ℓ2 distances between last-token states in
Figure 7 show that all minima sit orders of magnitude above the collision threshold 10−6 at every
depth, and the typical separation increases with depth (median red bars drift upward). This rules out
collisions in practice and indicates that deeper blocks monotonically sharpen last-token distinctions
in these models.

0 100 200 300 400 500

Sequence length

103

104

L
2

D
is

ta
n

ce

mean

min

max

Figure 9: Sequence length versus distance over all
pairs of distinct prompts for Gemma-1B.

Gemma-3 family across depth and scale.
Across Gemma3-1B, Gemma3-4B, and
Gemma3-12B, the layerwise boxplots (log
scale) in Figure 8 again show minima far above
10−6 at all depths. Both depth and model size
trend positively with separation: medians and
lower whiskers move upward in deeper layers
and larger models, indicating progressively
stronger margins and no observed collisions.

Effect of sequence length (Gemma-1B).
Varying the prompt length reveals that
min/mean/max pairwise distances rise quickly
for short sequences and then plateau, with the
minimum never approaching zero (see Fig-

ure 9). This suggests that beyond a modest context size, additional tokens do not erode separability;
margins stabilize rather than collapse, making collisions unlikely for any prompt length explored.

Overall, these ablations corroborate the main text: last-token states remain well-separated across
architectures and depths, separation typically grows with depth (and scale for Gemma), and margins
stabilize with sequence length, aligning with our almost-sure injectivity guarantees and with SIP-
IT’s exact recovery behavior.

E.2.2 SIPIT

Vocabulary Size. To further validate our findings (as presented in section 4) regarding the scaling
of SIPIT with vocabulary size, we conducted additional experiments on the two models with substan-
tially different vocabulary sizes, Mistral-7B-v0.1 (≈ 32K vocabulary) and Llama-3.1-8B
(≈ 128K). For a fair comparison, we construct sentences that tokenize to exactly the same se-
quence of tokens across both models. The results are reported in the Table 6. We observe that, in

47

2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591

Under review as a conference paper at ICLR 2026

Model Vocab size Inversion performance

Accuracy Time (s) Vocab explored (%)

Mistral-7B-v0.1 32000 100% 72.99 ± 37.57 0.21 ± 0.11 %
Llama-3.1-8B 128255 100% 345.35 ± 181.30 0.22 ± 0.12 %

Table 6: Performance of SIPIT on different vocabulary sizes

practice, the inversion time grows linearly with vocabulary size, as expected, reflected by the nearly
constant percentage of tokens explored between the small-vocabulary model (Mistral) and the
larger-vocabulary model (Llama). Importantly, for both models, the fraction of tokens explored re-
mains below 0.25%, indicating that the gradient-based heuristic is both robust and highly efficient.

Dataset Inversion Time (s) Accuracy

Train Data 146.48 ± 91.52 100%
Test Data 128.62 ± 83.40 100%

OOD 106.87 ± 39.10 100%

Table 7: Performance of SIPIT on in-distribution vs. out-of-distribution data

Robustness of SIPIT on unseen and random sequences. Based on GPT-2, we constructed three
datasets, which we refer to as Train, Test, and OOD (Out-of-Distribution). The Train set is formed
by sampling sentences from WebText (the dataset used to train GPT-2 Radford et al. (2019)); the
Test set contains sentences sampled from Wikipedia (not in the training set); and the OOD set con-
sists of random token sequences. Each dataset contains 50 prompts of length 100 tokens. We report
the findings in Table 7. Interestingly, the OOD samples are significantly faster to invert than the
Train and Test samples. We hypothesize that this difference stems from the geometry of the hidden
representations: natural language sentences (Train and Test) tend to lie on a structured, clustered
manifold, which can make the inversion landscape locally flatter and less well-conditioned. In con-
trast, random token sequences produce more dispersed and isolated hidden states, yielding clearer
descent directions and effectively stronger gradient signals, which accelerates convergence. Across
all three datasets, we obtain exact recovery for every sequence, further supporting the theoretical
guarantees of SIPIT.

E.3 IDENTICAL NEXT-TOKEN

An interesting question is what happens to the representations when deliberately constructing
prompts that force the exact same next token across diverse contexts. To answer this question
we designed a set of new experiments where two different prompt are specifically constructed
to yield the exact same target answer. First, we focused on word-to-word machine transla-
tion (google/smol) and math tasks (ProCreations/SimpleMath) on Llama-3.1-8B,
Mistral-7B, and Phi-4-mini-instruct. From these datasets, we built few shot prompts
that differed only in their delimiters (e.g. -> vs :) while preserving identical translations or arith-
metic solutions. Some qualitative examples are shown below:

Delimiter: ->

Translate into French.

Hello -> Bonjour
Goodbye -> Au revoir
House ->

Delimiter: :

Translate into French.

Hello : Bonjour
Goodbye : Au revoir
House :

48

2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645

Under review as a conference paper at ICLR 2026

Model ℓ2 Distance (min)

layer 1 layer L/2 layer L

Llama-3.1-8B 0.694 1.632 4.202
Mistral-7B-v0.1 0.207 1.056 2.348

Phi-4-mini-instruct 4.375 6.974 17.328

Table 8: Distances for Translation (En–Fr) separator-token embeddings across layers.

Model ℓ2 Distance (min)

layer 1 layer L/2 layer L

Llama-3.1-8B 0.789 2.126 8.245
Mistral-7B-v0.1 0.222 1.664 4.362

Phi-4-mini-instruct 4.447 8.497 37.262

Table 9: Distances for Math separator-token embeddings across layers.

Delimiter: ->

Do the additions.

2790 + 6698 -> 9488
8262 + 3848 -> 12110
1628 + 132 ->

Delimiter: =

Do the additions.

2790 + 6698 = 9488
8262 + 3848 = 12110
1628 + 132 =

We then assessed collisions involving four different separator token embeddings across all dataset
pairs, specifically ->, :, =, and -. Despite producing the exact same answer the corresponding
embeddings remain clearly distinct (no “collision”) since the minimum ℓ2 distance is well above the
collision threshold over the ≈ 140K possible pairs, as seen in tables 8 and 9.

Furthermore, we constructed a dataset of random prefixes sampled from internet text, each
followed by the fixed suffix “Complete this: The quick brown fox jumps over
the lazy”. To build the dataset, we sampled 10K prefix sequences of length 50 tokens from
Wikipedia and appended the tokenized suffix to each. The minimum ℓ2 distances obtained are re-
ported in Table 10. Even in this setting, although the next token prediction is exactly “dog”, all
last-token embeddings remain far above the tolerance threshold.

Model ℓ2 Distance (min)

layer 1 layer L/2 layer L

Mistral-7B-v0.1 0.012 0.265 3.494
Llama-3.1-8B 0.046 0.733 6.227

Phi-4-mini-instruct 0.087 2.302 18.913

Table 10: Distances for random-prefix dataset with fixed “quick brown fox” suffix.

E.4 PROMPTS WITH SIMILAR REPRESENTATIONS

To complement the quantitative injectivity results in the main text, we inspected qualitative examples
of sequences whose last-token hidden states are among the closest we observed. For a given model,

49

2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699

Under review as a conference paper at ICLR 2026

we computed the Euclidean distance between last-layer representations hL(s) and hL(t) of the final
token in two sequences s and t, and manually examined pairs with the smallest ℓ2 distances.

For both Llama-3.1-8B and Mistral-7B-v0.1, the closest pairs correspond to Python code snippets
that are almost identical, typically differing only by a small shift such as one or more trailing newline
tokens. In most of the close pairs we examined, the two sequences satisfy

s = t ◦ ⟨new line token⟩k

for some small k ≥ 1. Even in these extremal cases, however, the last-token representations remain
clearly separated in ℓ2 distance.

Llama-3.1-8B. One of the closest pairs we found for Llama-3.1-8B is shown below. The only
difference between the two sequences is the presence of several trailing newline characters at the
end of the second snippet.

Llama-3.1-8B: Sequence s

...
-- Options for HTML output ...

The theme to use for HTML and HTML Help pages ...
html_theme = ’default’

Theme options are theme-specific and customize the ...
#html_theme_options = {}

Add any paths that contain custom themes here ...
#html

Llama-3.1-8B: Sequence t

...
-- Options for HTML output ...

The theme to use for HTML and HTML Help pages ...
html_theme = ’default’

Theme options are theme-specific and customize the ...
#html_theme_options = {}

Add any paths that contain custom themes here ...
#html
\n
\n
\n

The last-token ℓ2 distance at the final layer for this pair is 1.274, which is small relative to typical
distances but still far from zero, and thus consistent with the absence of collisions observed in our
exhaustive tests.

Mistral-7B-v0.1. A similar phenomenon occurs for Mistral-7B-v0.1. Again, one of the closest
pairs consists of two almost identical code snippets, where the second sequence appends a single
newline token:

50

2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753

Under review as a conference paper at ICLR 2026

Mistral-7B-v0.1: Sequence s

...
The reST default role to use for all documents.
#default_role = None

If true, ’()’ will be appended to :func: ...
#add_function_parentheses = True

If true, the current module ...

Mistral-7B-v0.1: Sequence t

The reST default role to use for all documents.
#default_role = None

If true, ’()’ will be appended to :func: ...
#add_function_parentheses = True

If true, the current module ...
\n

For this pair, the last-token ℓ2 distance at the last layer is 1.146. As in the Llama example, the
nearest neighbors arise from almost identical contexts differing only in trailing whitespace tokens,
and even these extremal cases exhibit a non-negligible separation in representation space.

Summary. Across all models and pairs we inspected, we did not observe qualitatively different
prompts whose last-layer, last-token embeddings were comparably close. Instead, the nearest neigh-
bors consistently involved near-duplicate snippets (often code or documentation) differing only by
whitespace or other minor formatting tokens. These qualitative observations align with the injectiv-
ity margins reported in the main text and support the view that small perturbations in formatting do
not lead to collisions in the representations used by SIPIT.

E.5 RELATION WITH ANISOTROPY AND INTRINSIC DIMENSION

As part of our broader investigation, we also examined connections to the analyses presented in
the works of Razzhigaev et al. (2025) (LLM-Microscope) and Razzhigaev et al. (2024), and ran a
targeted experiment in this spirit.

Experimental setup. We performed a proof-of-concept study using GPT-2 Small. We sampled
100 natural-language prompts of fixed length K and, for each prompt, generated 1000 single-token
continuations by appending each token from a fixed vocabulary subset of size 1000. For every layer
ℓ, we extracted the hidden representation of the last token for all 1000 continuations, producing a
1000×dmatrix for each (layer, prompt) pair. On each matrix we computed (i) anisotropy and intrin-
sic dimension as in LLM-Microscope, and (ii) simple “injectivity margin” statistics: the minimum
pairwise Euclidean distance between continuation embeddings, averaged over prompts. Aggregat-
ing over the 100 prompts yields, for each layer, a triple consisting of anisotropy, intrinsic dimension,
and injectivity margin.

Experiment 1: anisotropy vs. injectivity margin. Across layers, we correlated mean anisotropy
with the mean injectivity margin. The resulting Pearson correlation is 0.72, and the Spearman corre-
lation is 0.45. In this setting, layers with higher anisotropy tend to exhibit larger injectivity margins:
continuation clouds become both more structured (anisotropic) and farther from collisions. This
suggests that anisotropy is compatible with, and may even reinforce, numerically robust injectivity.

Experiment 2: intrinsic dimension vs. injectivity margin. Repeating the analysis with intrinsic
dimension, we observe a Pearson correlation of -0.60 and a Spearman correlation of -0.79 between
intrinsic dimension and injectivity margin. Thus, layers with lower intrinsic dimensionality tend to

51

2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807

Under review as a conference paper at ICLR 2026

Layer Anisotropy (mean) ID (mean) Margin (min)

1 0.089579 20.754620 1.850306
2 0.076049 17.565538 1.956753
3 0.071429 16.765265 2.064488
4 0.075067 16.679382 2.241199
5 0.083282 17.183246 2.382355
6 0.089542 17.697870 2.499817
7 0.088463 17.018419 2.704958
8 0.083261 16.296431 2.886434
9 0.081803 16.040713 3.025268

10 0.083083 15.730601 3.330774
11 0.090206 15.635035 3.918343
12 0.288352 16.434897 4.640457

Table 11: Layer-wise anisotropy, intrinsic dimension, and injectivity margin.

have larger margins: compressed-looking manifolds are, if anything, more separated. This aligns
with our theorem that injectivity rules out information-destroying collapses.

Discussion. This line of analysis is highly complementary to our injectivity framework. Whereas
our results establish that internal representations are almost surely lossless, LLM-Microscope offers
fine-grained geometric diagnostics of how these representations evolve across depth and training.
Particularly notable is the observation that anisotropy and intrinsic dimension follow a reverse-U
profile: representations become more anisotropic and lower-dimensional in intermediate layers, then
partially re-expand near the output, offering a concrete geometric picture of how structure is carved
into aligned directions and low-dimensional manifolds.

This is especially relevant given that our paper challenges classic accounts of learning via bottleneck
compression (e.g. Shwartz-Ziv & Tishby (2017)). If information is preserved along the residual
stream, learning cannot proceed layer by layer purely through compression. Our preliminary exper-
iments suggest a different picture: as depth increases, margins grow, intrinsic dimension decreases,
and anisotropy follows a concave trajectory with a late spike. Early layers expand and reorganize,
intermediate layers carve information into low-dimensional directional manifolds, and upper layers
sharpen this structure. Overall, this is consistent with a network that preserves injectivity while
funneling information into increasingly structured, well-separated representations.

F REAL-ANALYTIC ACTIVATION FUNCTIONS IN MODERN LLMS

A natural question raised by our analysis is to what extent modern large language models actually
use real-analytic activation functions in their feed-forward networks. Since our results apply most
directly when the non-linearities are real-analytic, it is important to check whether this assumption
holds in practice.

To get a concrete picture, we surveyed a set of widely used open-source and proprietary-style ar-
chitectures and recorded the activation function used in their feed-forward blocks. The models and
their reported activations are summarized in Table 12. For each model, we also indicate whether the
activation is real-analytic. Activations such as SiLU/Swish, SwiGLU, GeGLU, and GELU are all
real-analytic, being compositions and products of elementary analytic functions (e.g., linear maps,
exponentials, and the error function).

Across this representative sample, we find that all models (18 out of 18) use real-analytic activations
in their feed-forward blocks. In other words, the analyticity assumption is not merely a technical
convenience but accurately reflects common design practice. This supports the relevance of our
theoretical results for real-world large language models: the vast majority of modern transformers

52

2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861

Under review as a conference paper at ICLR 2026

Model (HF example) Activation in FFN Real-analytic?

Llama-2 SwiGLU Yes
Llama-3 SwiGLU Yes
Mistral-7B-v0.1 SiLU Yes
Mixtral-8x7B-v0.1 SiLU Yes
Gemma GeGLU Yes
Gemma-2 GELU Yes
Qwen2MoE SwiGLU Yes
Qwen-2 SiLU Yes
Qwen3MoE SiLU Yes
Qwen-3 SiLU Yes
Phi GELU Yes
Phi-3 SiLU Yes
GPT-2 GELU Yes
GPT-J GELU Yes
GptOss SiLU Yes
Grok-1 GELU Yes
DeepSeek-V2 SiLU Yes
DeepSeek-V3 SiLU Yes

Table 12: Activation functions used in the feed-forward networks of representative modern LLMs.

already operate in a regime where the non-linearities are real-analytic, and hence fall directly within
the scope of our analysis. We now formally prove that SiLU and GELU are real-analytic scalar
functions, and that the corresponding gated constructions SwiGLU and GeGLU define real-analytic
vector-valued maps.

Proposition F.1 (Logistic sigmoid is real-analytic). The logistic sigmoid

σ(x) :=
1

1 + e−x
, x ∈ R,

is real-analytic on R.

Proof. By Proposition A.5, the map x 7→ e−x is real-analytic on R. By Proposition A.1, the sum
x 7→ 1 + e−x is real-analytic; moreover 1 + e−x > 0 for all x ∈ R, so it never vanishes. By the
quotient rule in Proposition A.1, the reciprocal

x 7→ 1

1 + e−x

is therefore real-analytic on R.

Proposition F.2 (SiLU / Swish is real-analytic). The SiLU (or Swish) activation

SiLU(x) := xσ(x) =
x

1 + e−x
, x ∈ R,

is real-analytic on R.

Proof. The identity map x 7→ x is a polynomial, hence real-analytic by Proposition A.4. By Propo-
sition F.1, σ is real-analytic. The product of two real-analytic functions is real-analytic by Proposi-
tion A.1, so x 7→ xσ(x) is real-analytic on R.

53

2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915

Under review as a conference paper at ICLR 2026

Lemma F.1 (Error function is real-analytic). The error function

erf(x) :=
2√
π

∫ x

0

e−t2 dt, x ∈ R,

is real-analytic on R.

Proof. By Proposition A.5, exp is real-analytic on R with power series ez =
∑∞

k=0
zk

k! and infinite
radius of convergence. Substituting z = −t2 yields

e−t2 =

∞∑
k=0

(−1)k
k!

t2k, t ∈ R.

This series has infinite radius of convergence, so it converges uniformly on every bounded interval.
By standard results on termwise integration of power series (e.g. Rudin 1976), we may integrate
termwise: ∫ x

0

e−t2 dt =

∞∑
k=0

(−1)k
k!

∫ x

0

t2k dt =

∞∑
k=0

(−1)k
k!(2k + 1)

x2k+1.

Multiplying by 2/
√
π we obtain

erf(x) =
2√
π

∞∑
k=0

(−1)k
k!(2k + 1)

x2k+1,

a power series with infinite radius of convergence. Hence erf is real-analytic on R by Definition A.1.

Proposition F.3 (GELU is real-analytic). Let

Φ(x) :=
1

2

(
1 + erf

(
x√
2

))
be the CDF of a standard normal random variable. The (exact) GELU activation

GELU(x) := xΦ(x)

is real-analytic on R.

Proof. By Lemma F.1, erf is real-analytic. The map x 7→ x√
2

is linear, hence real-analytic; by
Proposition A.2, the composition x 7→ erf

(
x√
2

)
is real-analytic. Adding the constant 1 and scaling

by 1
2 preserves real-analyticity by Proposition A.1, so Φ is real-analytic. The identity map x 7→ x

is a polynomial (Proposition A.4), hence real-analytic; their product x 7→ xΦ(x) is therefore real-
analytic by Proposition A.1.

Proposition F.4 (Vector-valued SiLU and GELU are real-analytic). Let m ∈ N. Define the coordi-
natewise maps

SiLUm(x) :=
(
SiLU(x1), . . . ,SiLU(xm)

)⊤
, GELUm(x) :=

(
GELU(x1), . . . ,GELU(xm)

)⊤
,

for x ∈ Rm, where SiLU and GELU are as in Proposition F.2 and Proposition F.3. Then both
SiLUm and GELUm are real-analytic maps Rm → Rm.

Proof. Each scalar component x 7→ SiLU(xi) (resp. GELU(xi)) is the composition of the projec-
tion onto coordinate i (a linear map) with the real-analytic scalar function SiLU (resp. GELU). By
Proposition A.2, each component is real-analytic. Therefore, by Definition A.1, the vector-valued
maps SiLUm and GELUm are real-analytic.

Proposition F.5 (GLU-style blocks are real-analytic). Let din, dhid ∈ N and consider affine maps
A1(x) = W1x+ b1, A2(x) = W2x+ b2,

with W1,W2 ∈ Rdhid×din and b1,b2 ∈ Rdhid . Let ϕ : Rdhid → Rdhid be either SiLUdhid
or

GELUdhid
from Proposition F.4. Define the GLU-style block

GLUϕ(x) := A1(x)⊙ ϕ
(
A2(x)

)
, x ∈ Rdin ,

where ⊙ denotes the Hadamard product.

Then GLUϕ : Rdin → Rdhid is real-analytic. In particular:

54

2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969

Under review as a conference paper at ICLR 2026

• Taking ϕ = SiLUdhid
recovers SwiGLU, which is real-analytic.

• Taking ϕ = GELUdhid
recovers GeGLU, which is real-analytic.

Proof. Each affine map Aj is real-analytic as a matrix product plus addition (Proposition A.10,
Proposition A.1). By Proposition F.4, ϕ is real-analytic, so x 7→ ϕ(A2(x)) is a composition of
real-analytic maps (Proposition A.2), hence real-analytic. The map x 7→ A1(x) ⊙ ϕ(A2(x)) is
a Hadamard product of two real-analytic vector-valued functions; componentwise this is just the
product of real-analytic scalars, so it is real-analytic by Proposition A.1 (equivalently, by Proposi-
tion A.11). Thus GLUϕ is real-analytic. The SwiGLU and GeGLU cases follow by choosing ϕ
accordingly.

Relation to universal-approximation and expressivity results. The material above concerns
only the analyticity of the non-linearities used in our analysis. For completeness, we also record
here how our injectivity theorem fits alongside existing expressivity results for Transformers; this
discussion is logically independent of the real-analyticity assumptions.

Classical expressivity results for Transformers are primarily existential. Universal-approximation
theorems (e.g. Yun et al. (2020); Sun & Yang (2020)) show that for any continuous sequence-to-
sequence function f on a compact domain and any ε > 0, there exists a Transformer with suitable
depth and width whose outputs are within ε of those of f . Turing-completeness results for en-
coder–decoder Transformers (e.g. Pérez et al., 2019) similarly establish the existence of parameter
settings that simulate any Turing machine. Taken together, these works characterise what the archi-
tecture can represent in principle: they do not model random initialization or gradient-based train-
ing, and they are not formulated in our discrete setting with finite context length, fixed decoder-only
architecture, and real-analytic activations.

Our results are complementary and instead concern what happens typically under standard training.
We fix a concrete decoder-only architecture and a finite prompt set, and study the map from prompts
to last-token representations. In this setting we prove that (i) for any fixed architecture, the set of
parameters for which this map is non-injective has Lebesgue measure zero, and (ii) gradient-based
training from standard random initializations preserves absolute continuity of the parameter distri-
bution and therefore almost surely avoids this “collision set”. Non-injective Transformers certainly
exist (we explicitly construct such failure cases in section 2), but our results show that they form a
thin subset that typical optimization trajectories do not reach.

Our contribution is thus orthogonal to prior expressivity theory. We do not claim that Transformers
can only represent injective functions. Rather, within the specific regime we study (decoder-only,
real-analytic activations, cross-entropy loss, GD-type training from standard initialization), we show
that the resulting last-token map is injective with probability one over initialization and training. In
short, classical expressivity results describe what is mathematically possible for the Transformer
function class, while our analysis characterizes what is almost surely implemented when that class
is explored via standard training procedures.

55

	Introduction
	Transformers are injective
	Exact prompt recovery via SipIt
	Experiments
	Searching for collisions
	Invertibility results

	Related work
	Discussion and conclusions
	Preliminaries
	Notation
	Real-Analyticity
	Real-Analytic Functions with Vector Inputs
	Real-Analytic Functions with Matrix Inputs
	Real Analyticity of Common Components

	Differential, Measure-Theoretic, and Topological Tools

	Transformer Language Model
	Almost Sure Injectivity
	Absolute continuity ensures almost sure injectivity
	Absolute continuity of the parameter distribution is preserved under GD
	Witness Construction
	Gradient Descent preserves absolute continuity

	Left-Invertibility Via SIP-It
	One-Step Last-Token Maps
	The Core Routines: Local Verifiers, Acceptance Regions, and Policies
	Global Inversion via Sip-It

	Additional Experiments and Implementation Details
	Implementation Details
	Additional Ablations
	Collision Experiments
	SipIt

	Identical Next-Token
	Prompts with Similar Representations
	Relation with Anisotropy and Intrinsic Dimension

	Real-Analytic Activation Functions in Modern LLMs

