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Abstract

Robust aerodynamic predictions for hypersonic vehicles increasingly rely on existing
deep-learning tools. However, imbalanced datasets — often resulting from limited exper-
imental data or insufficient coverage of operational conditions — can compromise model
reliability and introduce bias into predictions. This work offers an application-centered
account of how a feed-forward multilayer perceptron (PyTorch implementation) behaves
when trained on (i) a data-rich yet operationally imbalanced set of scramjet simulations
and (ii) a deliberately balanced counterpart generated with a conventional metaheuristic
(MH) sampling scheme, but with a lower sample count. Without altering network architec-
ture, loss function, or optimizer, we expose a clear trade-off: the imbalanced model achieves
a 14% lower root mean square error (RMSE) but produces thrust predictions that violate
first-principles trends, whereas the balanced model sacrifices a small amount of numerical
accuracy to maintain physical coherence across Mach—altitude space. These results illumi-
nate both the strength (high statistical accuracy) and the weakness (loss of physical fidelity
under bias) of off-the-shelf deep neural networks (DNNs) when data coverage is uneven.
The findings serve as a cautionary example for practitioners who might otherwise deploy
such models uncritically, and underscore the methodological importance of rigorous dataset
diagnostics — rather than chasing novel algorithms — for reliable Al adoption in aerospace
design.

1 Introduction

The aerospace industry is increasingly leveraging Deep Learning (DL) techniques to enhance the design and
performance predictions of hypersonic vehicles (Ai et al., 2021} |Cui et al., 2018 McCall et al.| [2018; [Paulino
& Passarol 2023; [Wang & Ma),[2024). These vehicles, capable of traveling at speeds exceeding Mach 5 — that
is, five times higher than the speed of sound — present unique challenges due to their complex aerodynamic
behaviors and operational conditions (Russo et al., 2021} |Scarlatella et al., 2024; [Speier et al., 2017). As the
demand for efficient and reliable hypersonic travel grows, the need for accurate predictive models becomes
imperative. DL models have shown promise in this area (Mao et al., [2021; [Paulino & Passaro, [2024; Wang
& May, [2024). By integrating domain-specific knowledge into the modeling process, researchers can improve
the precision and reliability of the predictions made by DL models (Ren et al., 2023)).

Despite the potential of DL in aerospace applications, a significant challenge arises from the lack of compre-
hensive training data covering all relevant operational conditions. Understanding the underlying physics of
hypersonic flight, such as fluid dynamics, is essential in the development of predictive models, in a way that
the interaction between vehicle geometry and atmospheric conditions significantly influences aerodynamic
performance (Anderson, 2003|). Therefore, it is required that the datasets used for training DL models reflect
these complex relationships as faithfully as possible. Often, available datasets do not represent all critical
variables related to the underlying physics, leading to biased predictions that do not align with physical
reality. This imbalance may result from limited experimental data obtained from flight tests or simulations
that fail to capture the full range of possible scenarios. Furthermore, the uncertainty present in the data
can also be a problem (Paulino et al., [2020). Consequently, models trained on such datasets may perform
well under specific conditions but struggle to generalize across a broader spectrum of scenarios (Dong et al.|
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2024; |Johnson & Khoshgoftaar, |2019; |Ling et al., |2016;|Zhang et al., [2024). Thus, addressing data imbalance
is of utmost importance for developing robust predictive models in aerospace engineering.

The issue of data imbalance can be addressed through techniques specifically designed for imbalanced
datasets. Recent studies show different ways to address the problem, including the application of ensemble
methods and algorithm-level adjustments that can enhance the performance of predictive models in scenarios
with imbalanced data (Ghosh et al., |2024; [He & Garciay, [2009; [Johnson & Khoshgoftaar] 2019)). This paper
delves into one particular approach: the generation of additional samples in previously underrepresented re-
gions to mitigate the effects of imbalance. New samples are generated using a metaheuristics-based approach,
as shown in (Aratjo et al.,[2024). Metaheuristics (MHs) are particularly interesting in solving difficult prob-
lems whose complexity makes the search for exact optimal solutions unfeasible (Dogan & Olmez, 2015). A
case study is presented, which brings the impact of imbalanced data on the use of Deep Neural Networks
(DNNs), i.e., a feed-forward multilayer perceptron, in predicting the aerodynamic performance of different
compression section configurations of scramjets over a predefined operating range in terms of altitude and
Mach number.

Considering the issues presented and the contemporary research landscape in Artificial Intelligence (AI) and
Machine Learning (ML), there exists a potential for unconscious oversights. Researchers may, without due
consideration, introduce Al applications into their methodologies, potentially overlooking the serious issue
of data balance. This oversight can lead to an uncritical utilization of datasets for model training, which
can risk the introduction of bias and skewed results |Ghosh et al.| (2024). Such practices are not uncommon;
numerous scientific publications, despite their technical depth, often neglect to detail how data distribution
is managed. As stated by [Chen et al.| (2024), many scientific articles implicitly assume a relatively equal
number of samples in each studied class. This assumption could lead to a false sense of balanced data,
masking potential issues that may significantly impact the performance of the model and the interpretation
of the results [Hellin et al.| (2024).

In response to these documented shortcomings, the present work formulates and tests a clear hypothesis:
when the network architecture and training protocol are held constant, an operationally imbalanced training
set can produce misleadingly favorable global error metrics while degrading the physical consistency of
thrust predictions for underrepresented Mach-altitude regimes. To examine this proposition, we combine
two established elements: a feed-forward DNN architecture previously validated for scramjet compression
ramps (Paulino & Passarol [2024]) and a Sea Turtle Optimization (STO) routine that can populate the design
space with synthetic samples (Aratjo et al., 2024]). Two complementary datasets are constructed: Dataset
1 (236,640 samples) exhibits over and underrepresentation of certain Mach—altitude pairs, while Dataset
2 (99,000 samples) contains a uniform number of samples for each pair. Using identical topology, loss
function, and optimizer on each dataset, we will (i) compare conventional performance indicators such as
RMSE, (ii) evaluate physical plausibility through first-principles checks, and (iii) analyze error distributions
throughout the flight envelope. By isolating dataset balance as the sole independent variable, the study aims
to provide quantitative evidence and practical guidance for researchers who rely on deep learning surrogates
in hypersonic aerodynamics and other simulation-rich domains.

2 Related Work and Theoretical Framework

2.1 Training Deep Learning models and Deep Neural Networks with imbalanced data

According to |Goodfellow et al.| (2016]), ML stands out as the only feasible approach to build AI systems
capable of operating in complex environments. This methodology harnesses Neural Networks (NNs) — a
fundamental concept within ML — which draw inspiration from the structure and function of biological
brains (McCulloch & Pitts| [2021)) and can address complex problems through a flexible framework (Paulino
et al.l|2019)) that is a cost-effective alternative to expensive experiments and simulations while maintaining a
reasonable level of accuracy (Gond & Senguptal |2025). These networks are composed of interconnected units
called artificial neurons that process information across layers (Schmidhuberl, [2015). Artificially constructed
neurons aim to mimic their biological counterparts in operation; they receive input from other neurons, apply
activation functions, and transmit output signals to the subsequent layer (Haykin, 2009). DL, a specialized
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subfield of ML, utilizes NNs featuring numerous hidden layers stacked between the input and output layers,
known as DNNs. These hidden layers facilitate the ability of the network to learn increasingly complex data
representations, allowing it to address problems beyond the scope of shallower networks (Goodfellow et al.,
[2016} Haykin|, 2009; LeCun et al., [2015; Mao et all 2021). DL has brought about transformative changes
across various sectors due to its ability to discern patterns within vast datasets and achieve high precision in
tasks such as image identification, natural language understanding, and speech recognition
[2021} [Pontoh et al.| [2024; |Schmidhuber}, 2015; Sharma et al., 2020)).

In the field of aerospace engineering, particularly in hypersonics, DL applications have demonstrated advances
and challenges in data-driven modeling (Mao et al.,|2021; [Wang & Mal,[2024). Recent studies have highlighted
the effectiveness of DL techniques in optimizing various aspects of aircraft design and performance analysis.
These applications range from flight control (Bu et al., 2023; [Lv et al., [2023} Shou et al., |2023)) to trajectory
optimization (Shi et all 2022, Wang et all [2022)), and even to the prediction of flowfield characteristics
(Fujio & Ogawal, [2022; |Ozbenli et al.| 2020) and aerodynamic load estimation (Beachy et al.,|2021)). [Paulino]
[& Passaro| (2024)) proposed the use of DNNs trained with hundreds of thousands of samples derived from
multi-objective optimizations of a scramjet compression section, aiming to replace expensive simulations and
broaden the capacity for aerodynamic performance evaluation in previously unexplored flight conditions.
The results showed that DNNs were able to satisfactorily represent the solution space, evidencing their
potential as an efficient tool in the engineering of hypersonic systems.

However, training DNN models on imbalanced datasets can lead to significant performance biases
let al., [2024; Johnson & Khoshgoftaar, 2019; Wang et al., |2016). These models tend to become overly
optimized for the majority class, resulting in high accuracy under normal operating conditions but poor
detection rates for the minority classes of interest, such as faults or anomalies (Chen et all 2024; Dangut|
let al. 2020; Dong et al., |2024)). In critical aerospace applications, the failure to accurately identify these
rare events can have severe consequences for safety and operational efficiency (Shen & Zhao| [2023]). Models
may exhibit a strong bias towards predicting the most frequent class, potentially ignoring or misclassifying
instances of the minority class altogether (Ghosh et al., |2024; Johnson & Khoshgoftaar} |2019; Wang et al.
. This issue is intensified by the fact that traditional evaluation metrics such as overall accuracy can be
misleading in imbalanced scenarios, as a model that simply predicts the majority class for most instances can
still achieve a high accuracy score despite its inability to identify the minority class (Chen et al., 2024; Hellin|
2024). Therefore, the use of imbalanced data in the training of DNNs for aerospace applications can
lead to a misleading good overall performance metrics while masking a fundamental inability to detect critical
abnormal conditions (Hellin et al., 2024; |Johnson & Khoshgoftaar, [2019)). Various techniques exist to address
the problem of data imbalance, and can be broadly categorized into data-level approaches, algorithm-level
approaches, and hybrid approaches (Dangut et al., 2020; [Johnson & Khoshgoftaar, 2019; Kaur et al., 2020)).

Data-level approaches focus on rebalancing the class distribution of the training data (Chen et al., [2024}
[Thabtah et al. [2020). These techniques include oversampling the minority class by randomly duplicating
samples or by generating synthetic samples using methods like Synthetic Minority Over-sampling Technique
(SMOTE) and its variants such as Borderline-SMOTE, Adaptive Synthetic Sampling (ADASYN), Safe-
Level-SMOTE, k-means SMOTE, and Disjuncts-Robust Oversampling (DROS) (Chen et al.|, |2024; |Johnson)|
|& Khoshgoftaar], [2019; [Shen et al., [2023; Werner de Vargas et all 2023). Although oversampling aims to
increase the representation of the minority class, potentially improving classifier performance, it can also lead
to overfitting and increased computational cost (Chen et al., 2024; Khan et al., 2018; |Thabtah et al., 2020)).
Furthermore, generative methods, particularly Generative Adversarial Networks (GANs) and Variational
Autoencoders (VAEs), can be used to generate samples of synthetic minority class, effectively augmenting
the dataset and addressing the imbalance, using real data and class labels to guide the generation of realistic
and diverse synthetic samples, thus balancing the dataset for subsequent processing (Ghosh et al., 2024} Shen|
. In contrast, undersampling reduces the number of samples in the majority class by random
removal (Random Under-Sampling - RUS) or more sophisticated methods such as cluster-based selection or
One Side Selection (OSS) (Johnson & Khoshgoftaar, |2019} |Zhang et al.; [2024). Although undersampling can
balance the data and reduce training time, it can also result in the loss of potentially important information
(Khan et al., 2018; |Wang et al. 2016). Hybrid sampling methods combine oversampling and undersampling
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techniques, such as SMOTE with OSS, to leverage the benefits of both while mitigating their individual
drawbacks (Dangut et al. [2020; Kaur et al., |2020).

In turn, algorithm-level approaches aim to improve the learning process of classifiers on imbalanced datasets
without modifying the data distribution (Dangut et al., 2020; Johnson & Khoshgoftaar, 2019). Cost-sensitive
learning is a key technique that assigns different misclassification costs to different classes, typically higher
costs to misclassifications of the minority class, to encourage the model to learn the minority class better
(Boughorbel et al. [2017;|Chen et all 2024} Dangut et al.,|2020; Khan et al. 2018). This can be implemented
by adjusting the loss functions or weighting the samples based on their class. Examples of modified loss
functions include rescale weighted cross-entropy loss, focal loss, hinge loss, Kullback-Leibler divergence loss,
sparse cross-entropy, Balanced Mean Squared Error (BMSE), and Label Distribution-Aware Margin (LDAM)
loss (Chen et al., [2024; Dangut et al., 2020; Liu & Tian, 2024). Another algorithm-level strategy is threshold
moving, where the classification threshold is adjusted to favor the predictions of the minority class
let al.l |2020}; |Ghosh et al., 2024)).

Hybrid approaches integrate techniques from both data and algorithm levels to address data imbalance more
effectively (Dangut et al., 2020; |[Johnson & Khoshgoftaar, |2019; Kaur et al., 2020). A common strategy is to
combine sampling methods with ensemble learning techniques such as Bagging and Boosting. For example,
SMOTE with Boosting (SMOTEWB), WSMOTE-ensemble, and combinations of oversampling with bagging
or boosting have shown promise (Chen et al 2024} Werner de Vargas et al 2023). These methods aim to
create a more balanced dataset for training the individual members of the ensemble, leading to improved
and more robust performance. Finally, while not direct solutions to data imbalance, Transfer Learning (TL)
can leverage knowledge from pre-trained models on large, balanced datasets to improve performance on
imbalanced target datasets, especially when data is scarce (Alzubaidi et al., [2023; |Chen et al, [2024; |Zhao|
2024a)). Self-Supervised Learning (SSL) can utilize abundant unlabeled data to learn effective features
that can then be used for downstream tasks with imbalanced data, potentially improving the representation
of minority classes (Akrim et al. 2023} |Alzubaidi et al., 2023). Regularization techniques such as Dropout
and early stopping could indirectly help prevent overfitting, which can be exacerbated by oversampling
(Hellin et al. |2024} |Johnson & Khoshgoftaar, 2019). The choice of the most suitable technique depends on
the specific characteristics of the dataset, the severity of the imbalance, and the objectives of the application
(Mooijman et all 2023} [Shen & Zhao| 2023} [Shen et all 2023} [Werner de Vargas et all, [2023; [Zhao et al.]
2024a)). Often, a combination of different approaches can yield the best results (Kaur et al.l 2020; Mooijman|
et al.l [2023} |Zhao et al. [2024D).

2.2 Metaheuristics-based sampling

This research explores a data-level approach by generating two distinct datasets. These datasets are produced
using MH algorithms to derive optimized solutions from a mathematical model that accurately characterizes
the underlying physical phenomena. Although identical MH algorithms and physical models are employed in
their generation, the datasets remain independent due to the inherent stochasticity of the MH processes. Each
dataset encompasses the entire set of solutions obtained from multiple MH executions. Comprehensive details
regarding both the mathematical formulation of the physical phenomena and the corresponding optimization
model are described in (Aratjo et al.l |2024). The model offers consistent solutions in a relatively short time,
which is interesting for generating physically reliable datasets with the appropriate dimensions to structure
the problems.

Metaheuristics are best described as high-level general-purpose algorithmic frameworks designed to guide
the search for good solutions in computationally hard optimization problems. They are intelligent search
strategies that are commonly employed when exact methods are too slow or fail to find a solution
let all |2019; [Drake et al., 2020). Although MHs do not guarantee the finding of a globally optimal solution,
they are widely used due to their ability to provide near-optimal high-quality solutions in a reasonable
time in various problem domains (Houssein et al. 2024; Talbi, [2009). Unlike problem-specific heuristics,
MHs aim to overcome the limitation of being tailored to a single problem or instance. As frameworks,
MHs are domain-independent, but their implementation requires adaptation to the specific problem at hand
(Doering et al., [2019; Talbil 2009)). The effectiveness of these methods relies on their ability to adapt to the
specific instance, avoid getting stuck in local optima, and effectively exploit the mathematical structure of
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the problem. Metaheuristics can be broadly classified into population-based methods that work with a set
of solutions and single-solution methods that iteratively improve a single candidate solution. They can also
be categorized as nature-inspired (e.g., Genetic Algorithms, Particle Swarm Optimization) or non-nature-
inspired (e.g., Tabu Search, Simulated Annealing) (Dogan & Olmez, 2015; Du & Swamy, 2016; Oliveira
et al., 2020; [Sorensen), 2015). Other taxonomies may be applied as well, as seen in (Houssein et al.l [2024).

Metaheuristics inherently generate samples of the search space through their iterative optimization processes
(Talbi, 2009). In population-based MHs, a set of candidate solutions is maintained and evolves over genera-
tions, effectively exploring different regions of the search space simultaneously. This diversification allows for
a broad sampling of potentially good solutions. Particle Swarm Optimization (PSO) (Kennedy & Eberhart,
1995) is a population-based MH that uses a swarm of particles, each representing a potentially good solution,
to simultaneously explore the search space. The movement of these particles is guided by their individual
best-found positions and the overall best position discovered by the swarm, facilitating information sharing
and reducing the risk of becoming trapped in local optima. PSO has demonstrated effectiveness in tackling
diverse optimization problems, including feature selection, portfolio optimization, and as a component of
hybrid algorithms (Almaiah et al.,2024; Doering et al.| 2019; Talbi, |2009). As for single-solution MHs, while
focusing on a narrower region through intensification, they still explore the neighborhood of the current
solution, generating a sequence of samples as they attempt to improve the objective function value. For
example, the single solution Vortex Search (VS) algorithm (Dogan & Olmez, 2015) begins by searching a
wide area, thus considering a large portion of the solution space, and eventually reduces the size of the search
to the region of the most promising solutions, resembling a vortex. The ability of some MHs to temporarily
accept worse solutions allows them to escape local optima and explore other — potentially more promising
— areas of the search space, directly leading to further sampling. Therefore, both population-based and
single-solution MHs, through their mechanisms of exploration and exploitation, naturally sample the solution
space as they search for optimal or near-optimal solutions (Dogan & Olmez, 2015; [Houssein et al., [2024;
Talbi, [2009)). This study employs STO, which is a MH that has not been published to date and has also
been used in (Aratjo et al., 2024).

Aranjo et al.| (2024]) focused on the multi-objective optimization of a hypersonic air-breathing vehicle, specif-
ically a scramjet engine, an enabling technology for sustained high-speed atmospheric flight. The authors
employed multi-objective optimization techniques, utilizing MHs and an analytical model that was verified
against computational fluid dynamics (CFD) data. The primary goal of optimization was to maximize thrust
and minimize drag while simultaneously adhering to critical design constraints, such as preventing engine
unstart by ensuring that the pressure ratio across shock waves remained below the Korkegi limit (Korkegi,
1975). To determine the most effective approach, the study tested three different formulations of the multi-
objective function to identify the one that could achieve the highest net thrust while satisfying operational
limits. The research findings indicate that incorporating Total Pressure Recovery (TPR) into the optimiza-
tion process yielded superior results, concentrating the search in regions with greater uninstalled thrust and
lower drag, and the numerical simulations corroborated the reliability of their analytical methodology for
preliminary scramjet engine design, suggesting a way to efficiently design these engines in the early stages
and reduce the need for extensive computational simulations. That study generated hundreds of thousands
of samples that could be used to train DL models, as seen in (Paulino & Passaro, [2024).

This strategy is potentially capable of replacing computationally expensive simulation and optimization
calculations in the early stages of vehicle design, given that enough testing is performed. However, the
presence of data imbalance can severely degrade the quality of the predictions, as will be shown in the next
sections. The present study highlights the effect of the data imbalance on the application of DNNs to predict
the aerodynamic performance of scramjets.

3 Materials and methods

To systematically assess the impact of data imbalance on the predictive performance of DNNs, both quanti-
tative and qualitative analyzes were performed using two datasets: an imbalanced dataset (Dataset 1) and a
balanced dataset (Dataset 2). Both were created with the same optimization framework, and the imbalance
is created by imposing limitations on the search space. In this sense, the imbalance is naturally created by
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these limitations, so that the two datasets are effectively distinct — not only in terms of data distribution,
but also in terms of non-repeated data. In other words, the imbalanced dataset is not created simply by
eliminating data from the balanced dataset. The following sections describe both datasets and the balancing
procedure, incorporating quantitative summaries and visual analysis to support the discussion.

3.1 Datasets

The datasets analyzed in this study are derived from the optimization process described in Aratjo et al.
(2024), which generated candidate solutions relating net thrust to a set of input parameters representing
both operational flight conditions and geometric characteristics of generic scramjet configurations. The input
variables, detailed in Table 1, include geometric descriptors (such as the height of the combustion chamber
and the intensities of the ramp shock) and freestream conditions (temperature, pressure, and Mach number).
Thus, each sample represents a unique scramjet compression section under specific operational conditions,
allowing the DNNs to learn and generalize aerodynamic responses throughout the hypersonic flight envelope.

Table 1: Description of input parameters. Target feature is marked with an asterisk (*).

FEATURE DESCRIPTION ROLE
h3 Combustion chamber height Input
y0 1st ramp shock intensity Input
yl 2nd ramp shock intensity Input
y2 3rd ramp shock intensity Input
TO Freestream temperature Input
PO Freestream pressure Input
Mo Freestream Mach number Input
F net Scramjet’s net thrust™ Output

Dataset 1 covers a wide range of flight conditions, with Mach numbers ranging from 6 to 10 and altitudes
from 25 to 35 km. The relationship between freestream pressure (“P0”), temperature (“7°0”), and Mach
number (“M0”) results from their dependence on flight altitude (“Z”), although “Z” itself is not directly
included as an input parameter. Table 2 summarizes the distribution of samples per flight condition in
Dataset 1. In its turn, Dataset 2 was constructed to achieve a uniform representation across the parameter
space, encompassing Mach numbers from 6 to 10 and altitudes from 20 to 40 km, which doubles the range in
terms of total kilometers covered. Sampling was performed systematically, resulting in consistent coverage
of all defined Mach-altitude combinations. Table 3 presents the sample distribution in Dataset 2. Both
datasets serve as the basis for assessing the influence of data distribution on the training and performance
of the DNN model.

The differences in the sample distributions between Dataset 1 and Dataset 2 are visually illustrated in Figures
1 to 4. Figure 1 shows the histogram of Mach numbers in Dataset 1, highlighting the pronounced disparities
in sample frequency, while Figure 2 presents a scatterplot of normalized net thrust (“F_net”) as a function
of Mach number, color-coded by atmospheric pressure (“P0”). For Dataset 2, Figure 3 shows the histogram
of Mach numbers with uniform bar heights, and Figure 4 provides a scatterplot of normalized “F_net” as
a function of Mach number, also color-coded by altitude.

3.2 Characterization of data imbalance and generation of balanced dataset

Dataset 1 reveals clear asymmetries in sample representation across Mach numbers and altitudes. Mach
numbers 6, 8, and 9 are each associated with three altitude conditions, whereas Mach 7 and 10 are represented
by only two and one altitude condition(s), respectively. The sample counts per condition also vary, resulting
in aggregate disparities — such as 59,400 samples for Mach 6 and 9, compared to only 19,800 for Mach 10 —
leading to a 3:1 ratio between the most and least sampled regimes. These imbalances, summarized in Table
2, are visually confirmed by the histogram in Figure 1, which shows that Mach 6, 8, and 9 each contain
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Table 2: Number of samples per flight conditions — Dataset 1

MACH "MO0" ALTITUDE "Z" (Km) SAMPLES SAMPLES/MACH TOTAL SAMPLES

6 25 19,800

6 30 19,800 59,400
6 35 19,800

7 25 19,800

7 30 19,800 39,600
8 25 19,800

8 30 19,800 58,440 236,640
8 35 18,840

9 25 19,800

9 30 19,800 59,400
9 35 19,800

10 30 19,800 19,800

Table 3: Number of samples per flight conditions — Dataset 2

MACH "MO0" ALTITUDE "Z" (Km) SAMPLES SAMPLES/MACH TOTAL SAMPLES

6 20 3,960
6 25 3,960

6 30 3,960 19,800
6 35 3,960

6 40 3,960

7 20 3,960

7 25 3,960

7 30 3,960 19,800
7 35 3,960

7 40 3,960

8 20 3,960

8 25 3,960

8 30 3,960 19,800 99,000
8 35 3,960

8 40 3,960

9 20 3,960

9 25 3,960

9 30 3,960 19,800
9 35 3,960

9 40 3,960

10 20 3,960

10 25 3,960

10 30 3,960 19,800
10 35 3,960

10 40 3,960
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Figure 1: Histogram of “M0” values for Dataset 1.
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Figure 2: Scatterplot of the normalized values of “F__net” as a function of “M0” for Dataset 1. Each point
indicates a sample. The color-coded scale on the right shows atmospheric pressure in pascals (Pa), which
inversely correlates to the flight altitude.
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Figure 4: Scatterplot of the normalized values of “F__net” as a function of “M0” for Dataset 2. Each point
indicates a sample. The color-coded scale on the right shows atmospheric pressure in pascals (Pa), which
inversely correlates to the flight altitude.
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approximately 59,000 samples, while Mach 7 and 10 are substantially underrepresented. Figure 2 further
demonstrates coverage gaps in the parameter space: certain Mach-altitude combinations — particularly at
high altitudes for Mach 7, 9, and 10 — are insufficiently sampled or entirely absent. Furthermore, Mach 10
lacks samples at low altitudes (high pressures). Such sampling irregularities have important implications for
statistical analysis and predictive modeling.

Systematic biases may arise as a consequence of these irregularities, as models trained on the imbalanced
Dataset 1 are likely to overfit to overrepresented regimes, reducing predictive confidence and accuracy in
sparsely sampled conditions. Statistical inferences will also exhibit varying confidence levels depending on the
Mach regime, with the least represented conditions (e.g., Mach 7 and 10) particularly susceptible to reduced
reliability. To address these limitations, Dataset 2 was generated using a MH-based targeted strategy aimed
at achieving uniform coverage across Mach number and altitude. The balancing procedure involved the
definition of a systematic sampling grid, spanning Mach numbers 6 to 10 and altitudes from 20 to 40 km
in regular increments, resulting in 25 unique combinations of operating conditions. Each combination was
populated with 3,960 samples, for a total of 99,000 data points — ensuring an equitable distribution of 19,800
samples per Mach number (Table 3). Synthetic samples were generated using the STO MH, implemented
in an optimization package named LOF-SYSTEM (Sabal 2017), following the methodology presented in
(Aratjo et al., [2024). LOF-SYSTEM offers a collection of established, single-solution and population-based
MH algorithms, which have been applied in various academic research (Araujo et al., 2024} De Lima Filho
et al.l |2022; [Santana et al., |2022; [Silva et al.l 2021} [Soares et al.| [2022]).

The uniformity of sampling in Dataset 2 is confirmed by the histogram in Figure 3, where all Mach numbers
are equally represented. Figure 4 shows that the normalized net thrust increases with the Mach number
and decreases with altitude, reflecting expected physical trends such as higher air mass flow rates at lower
altitudes (higher static pressures), thus validating the physical consistency of the synthetic samples. The
homogeneous sample quantities across all experimental conditions eliminate potential weighting biases in
subsequent analyses, providing a robust basis for assessing DNN generalization performance, which is further
discussed in Section 4. By characterizing both datasets and detailing the methodology for constructing a
balanced dataset, this section establishes a comprehensive framework for evaluating the effects of data
distribution on deep learning models in the context of scramjet aerodynamic modeling.

3.3 DNNs training

This study adopts, without modification, the optimal DNN architecture proposed by [Paulino & Passaro
(2024). In that work, the architecture was determined through a systematic process that began with simple
models available in the PyTorch library (Paszke et al., [2019) and progressively increased in complexity by
adding hidden layers and tuning the number of neurons, until satisfactory performance was achieved. The
training procedure used the mean squared error (MSE) loss function (Goodfellow et al |2016]). The accuracy
of the model was evaluated using the root mean square error (RMSE) (Chai & Draxler, 2014) and the
coefficient of determination (R?), which is a statistical parameter commonly used to assess the quality of the
estimates made (Brar & Singhl 2024} [Staerk et al., 2024)), both of which are widely used in regression tasks
(Ispir et al. [2023; [Staerk et al., [2024). In this work, the previously defined architecture (illustrated in Figure
5) is used to train both Datasets. The first layer (Input) receives a matrix in which the number of rows
corresponds to the number of samples presented to the network and the number of columns matches the
selected input parameters, which also define the number of input neurons. The last layer (Output) consists
of a tensor that represents the predicted value of the target variable, “F_met”. The number of neurons
in each hidden layer was originally determined empirically, and the rectified linear unit (ReLU) activation,
whose use is recommended in the literature (Goodfellow et al., [2016), is applied to each hidden layer.

3.4 Computational implementation

The development environment for this study was based on Python, leveraging the PyTorch library (Paszke
et al., |2019) to construct, train, and evaluate the DNN models. PyTorch was selected for its intuitive
debugging, computational efficiency, and native support for GPU acceleration. Additional libraries were used
to support various tasks: NumPy (Harris et al., 2020) and Pandas (McKinney, |2010)) for data manipulation
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Figure 5: Architecture of the networks used for the experiments.

and numerical operations; Scikit-learn (Pedregosa et al., [2011) for statistical tools and machine learning
utilities; and Matplotlib (Hunter, 2007) and Plotly (Inc., |2015)) for data visualization. A complete Python-
based pipeline was developed to preprocess the datasets, define and train neural network architectures, and
carry out performance evaluation in various flight conditions. It is important to note that, as previously
described, the synthetic samples used to construct the Datasets were generated separately using the STO
MH implemented in the LOF-SYSTEM software 2017)), outside of the Python environment.

3.5 Experiments

Following the computational implementation described in the previous section, the performance of DNNs
in predicting normalized “F_net” from input parameters was evaluated using a simplified version of the
Seven-Fold Cross-Validation (7TFCV) strategy (Paulino et al., 2019; 2020). Instead of considering all 42
possible combinations of training (5 folds), validation (1 fold), and generalization (1 fold) sets among the
seven partitions, this study adopts a simplified approach, hence called “Simplified TFCV” (STFCV). Before
partitioning, all samples were randomly shuffled to ensure statistical independence across Folds. One of the
seven folds is fixed as the generalization set for all cross-validation iterations, while the remaining six folds are
used to generate all combinations of five folds for training and one for validation, resulting in six iterations
(C8-C} = 6). This configuration allows for model selection and evaluation under a consistent generalization
scenario while reducing computational cost compared to the full combinatorial approach. A depiction of the
STFCYV scheme is shown in Table 4. For Dataset 1, each fold contained 168,994 training samples and 33,799
validation samples. For Dataset 2, which is smaller but uniformly balanced, each fold had 70,715 training
samples and 14,143 validation samples. Prior to training, both datasets were normalized to the range [0, 1].
A grid search (Bergstra et all, 2012)) was applied to tune the learning rate (“Ir”), selected for its simplicity
and suitability to explore a small, manually defined hyperparameter space. The hyperparameter “Ir” was
varied in the discrete set 0.0002, 0.0005, 0.001, 0.002. This evaluation setup enables comparison of models
trained on diverse data, as detailed next.
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Table 4: Cross-validation folds and data partitioning

ITERATION FOLD A FOLDB FOLDC FOLDD FOLDE FOLDF FOLD G

1 Validation  Training Training Training Training Training  Generalization
2 Training  Validation  Training Training Training Training  Generalization
3 Training Training  Validation  Training Training Training  Generalization
4 Training Training Training  Validation  Training Training  Generalization
5 Training Training Training Training  Validation  Training  Generalization
6 Training Training Training Training Training  Validation Generalization

3.6 Prediction Comparison

This methodological framework was designed to address the data imbalance in predicting aerodynamic
performance based on deep learning for hypersonic vehicles. Using Dataset 2 — a uniformly sampled dataset
— and using the established neural architecture, the study aims to assess the extent to which balanced
sampling improves model reliability and generalization. To this end, two models were trained: Model 1,
using the imbalanced Dataset 1, and Model 2, using the balanced Dataset 2. Both models were evaluated
under identical flight condition scenarios to ensure comparability. The results and comparative analysis of
their predictive performance are presented and discussed in the next Section.

4 Results and discussions

The neural architecture adopted in this study was trained and evaluated using multiple input configurations
derived from the optimized datasets. The assessment focused on two complementary aspects: (i) the statis-
tical predictive performance of the models, measured through cross-validation using the STFCV algorithm,
and (ii) the physical coherence of the predictions under a wide range of flight conditions. These dimensions
are important to validate the applicability of the models to realistic aerodynamic scenarios.

4.1 Generalization performance

To evaluate generalizability, the predictive performance was compared between the two models. Although
both models achieved low error levels, with accuracies superior to 99%, Model 1 exhibited slightly better
RMSE (0.0122) compared to Model 2 (0.0142), representing a relative difference of approximately 14%.
This marginal advantage is most likely due to the larger sample size in Dataset 1, which contains roughly
2.4 times more training data than Dataset 2 — a factor that leads to a proportionally greater number of
weight updates during training. However, statistical analysis indicates that this difference is not significant
in practical terms. The upper and lower bounds of the prediction errors are also comparable: £0.1819 for
Model 1 and £0.1882 for Model 2 (Figures 6 and 7). In addition, both models show a high concentration of
pointwise differences near zero, suggesting similar predictive accuracy in aggregate. However, this similarity
in the numerical error metrics may create a misleading impression of interchangeability between the two
datasets. As detailed in Subsection 4.2, the limitations of Dataset 1 emerge under flight conditions deviating
from the original optimization parameters.

4.2 Evaluation of aerodynamic performance under different flight conditions

Figures 8 and 9 illustrate the predicted values of normalized “F_net” across a range of Mach number and
altitude combinations, as produced by Model 2 and Model 1, respectively, for a given scramjet geometry.
The analysis begins with Model 2 (Figure 9), which was trained on the balanced Dataset 2 and demonstrates
behavior that is consistently aligned with physical expectations. Specifically, the predicted thrust increases
monotonically with Mach number and decreases with altitude, clearly reflecting the physical principle that

[3P3

higher air mass flow (“7n”) at lower altitudes enhances thrust generation. Consequently, the resulting dis-
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Figure 6: Ordered normalized differences between predictions and original data for Model 1.
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Figure 7: Ordered normalized differences between predictions and original data for Model 2.
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tribution of predictions is smooth, continuous, and physically coherent across the entire parameter space,
thereby serving as a reliable physical consistency check.

In contrast, Model 1 (Figure 8) exhibits several physically inconsistent behaviors that significantly deviate
from the expected aerodynamic trends. For instance, at Mach 6, the model inaccurately predicts a lower
thrust at lower altitudes, clearly contradicting the physical principle that a higher air density in these regions
should yield a higher thrust (Figure 8, region 1). Another notable inconsistency is observed in the 20 km
altitude curve, which initially exhibits a positive slope up to Mach 7.9, followed by a marked flattening
at higher Mach values — an unrealistic inversion given the expected monotonic thrust increase with Mach
number (Figure 8, region 2). Furthermore, from approximately Mach 8.8 onward (Figure 8, region 3), the
derivative/slope of predicted “F_net” values increases under high-altitude conditions ( 40 km), deviating
from the more uniform and physically plausible gradient observed in Model 2. Although Model 2 is largely
consistent with physical intuition, it presents a minor anomaly at high Mach numbers (>9.5) and low altitudes
(20 km), where the thrust curve slightly flattens or inflects (Figure 9, region 1). This subtle inconsistency
could be attributed to either limited sample density in that specific parameter region or limitations in the
current network architecture (e.g., insufficient depth or nonlinearity in activation functions) to fully capture
the exponential nature of thrust variation. Further exploration of these potential architectural enhancements
is proposed as future work.

Predicted normalized F_net for each Mach X Altitude combination
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Figure 8: Predicted normalized “F_net” for each Mach X Altitude combination for Model 1. Physically
inconsistent regions represented: (1 — continuous line) inverted altitude effect at Mach 6; (2 — dotted line)

unrealistic flattening of 20 km curve at mid Mach; (3 — dashed line) anomalous slope increase at high altitude
for > 8.8 Mach.
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Figure 9: Predicted normalized “F_net” for each Mach X Altitude combination for Model 2. Minor physi-
cally inconsistent region represented: (1 — continuous line) slight flattening at low altitude (20 km) and high
Mach (>9.5).
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4.3 Discussion on Data Imbalance

Model 1 and Model 2 share the exact same neural architecture: identical depth, number of neurons per
layer, and activation functions. The sole distinction between them lies in the datasets used during training:
unbalanced Dataset 1 (236,640 samples), and balanced Dataset 2 (99,000 samples). The results of Section 4.1
suggest potential model equivalence, as evidenced by statistically similar accuracy scores, RMSE values, and
error distributions. However, examination of the predictive outputs reveals significant discrepancies in terms
of the observed physical behavior, indicating a divergence from the expected dynamics. As detailed in Section
3, Dataset 1 exhibited uneven coverage of the parameter space, with critical Mach—altitude combinations
either underrepresented or entirely absent. The problem is not quantity, that is, the lack of enough samples,
but representativeness. This imbalance — particularly the underrepresentation of certain Mach—altitude
combinations — directly contributed to the physically inconsistent behaviors observed in the predictions of
Model 1 discussed in Subsection 4.2.

The results of this study highlight that the consequences of data imbalance in AI models extend far beyond
minor statistical inaccuracies. Using an identical network topology, loss function and optimizer, we find
that Model 1 achieves a 14% lower RMSE (0.0122 vs. 0.0142) yet produces thrust profiles that violate
first-principles expectations, with local errors exceeding 100% and non-monotonic thrust at low altitude. This
outcome mirrors the concerns raised by |Ghosh et al.| (2024])), who reported that headline accuracy can hide bias
introduced by the class imbalance, and by (Chen et al.| (2024) and Hellin et al.| (2024), who noted that many
studies assume implicitly balanced data and therefore overlook critical failure modes. By isolating dataset
balance as the sole experimental variable, the present work provided a quantitative demonstration that
rigorous data engineering is a prerequisite for physically consistent deep learning predictions in hypersonic
aerodynamics applications.

In practical aerospace design, such mispredictions could propagate into downstream processes, leading to
fundamental misjudgments about vehicle performance. In the worst-case scenario, this could compromise the
flyability of scramjet-powered systems. More broadly, these findings underscore that in domains governed by
physical laws, data is not just input — it encapsulates the structure of the reality being modeled. Therefore,
ensuring that the dataset reflects the true distribution of relevant physical regimes is a methodological
imperative, not a peripheral concern. Researchers and engineers must treat data balancing as a foundational
step in responsible Al development. By doing so, we move toward models that are not only statistically
robust but also physically interpretable, less prone to bias, and more trustworthy in critical applications.
This mindset is essential for advancing the deployment of Al across disciplines where mathematical models
are inherently tied to the laws of nature — not just in aerospace engineering but across a broad range of
research domains.

5 Conclusion

Juxtaposing theoretical expectations with empirical evidence, this study has demonstrated that data im-
balance can considerably degrade the predictive quality of DNNs in modeling the aerodynamic behavior
of scramjet compression sections across broad operational regimes. By comparing two datasets — Dataset
1, which is imbalanced, and Dataset 2, which is balanced — the results showed that data imbalance does
not merely affect performance marginally; it can lead to significant and physically implausible outcomes.
Although Dataset 1 included 2.4 times more training samples than Dataset 2, Model 1 (trained on Dataset
1) did not exhibit superior global accuracy compared to Model 2 (trained on Dataset 2). Model 1 failed to
maintain robustness under flight conditions that deviated from the geometric configuration’s optimization
baseline.

Even more concerning was Model 1’s tendency to produce unrealistic aerodynamic predictions — such as
reduced net thrust at lower altitudes or inversions in slope where thrust behavior should have followed
established physical trends. These inconsistencies suggest that the model captured artifacts induced by
the biased data distribution, leading to unrealistic predictions. In contrast, Model 2 exhibited stable and
physically coherent patterns: thrust increased with Mach number and decreased with altitude, as expected
from compressible flow dynamics. This difference reinforces the principle that the balance of the dataset
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is not an auxiliary consideration, but a core requirement to preserve physical integrity in model outputs.
This work, situated within an educational context, highlights that even when established data imputation
techniques from the literature are applied, the primary issue of class imbalance can persist if absent data
instances are not populated rationally.

Such findings underscore the scientific imperative of addressing data imbalance in deep learning applications,
particularly in high-stakes domains governed by physical laws, such as hypersonics. Beyond evident improve-
ments in prediction stability, balanced data ensure that DNNs generalize reliably across the full design space
and do not embed or amplify data-driven artifacts. Adequate data balancing strategies can be used to re-
store representativeness and support interpretability, ultimately allowing the development of models that are
not only statistically valid, but physically trustworthy. The broader implication is that balanced datasets
directly contribute to the transparency, reproducibility, and credibility of Al-assisted engineering workflows.

In this framework, future studies should extend the investigation beyond the original data imbalance and
consider potential imbalances within the folds generated by the STFCV scheme. Although STFCV offers
a robust structure for model evaluation and selection, imbalanced partitions could still introduce subtle
biases that compromise model assessment. Furthermore, exploration of balancing strategies applied to the
unbalanced dataset — which encompasses data-driven, algorithmic, or hybrid approaches — is warranted
to compare performance against the metaheuristics-balanced dataset. Furthermore, variations in network
architecture, such as differences in activation functions, layer depth, or neuron count, merit investigation for
potential improvements.

Studies aiming to model the non-linear and potentially exponential behavior of scramjet systems could
benefit from more intricate architectures, including self-attention mechanisms or Transformer-based models.
Moreover, the integration of AI methodologies should be encouraged not only in compression ramp analysis
but also in broader aspects of hypersonic vehicle design. Finally, thoughtful data engineering can enhance
model realism, making it an essential component of responsible and rigorous Al deployment in aerospace
research.
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