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ABSTRACT

Generative Adversarial Networks (GANs) have been widely studied as generative
models, which map a latent distribution to the target distribution. Although many
efforts have been made in terms of backbone architecture design, loss function,
and training techniques, few results have been obtained on how the sampling in
latent space can affect the final performance, and existing works on latent space
mainly focus on controllability. We observe that, as the neural generator is a
continuous function, two close samples in latent space would be mapped into two
nearby images, while their quality can differ much as the quality is not a continuous
function in pixel space. From the above continuous mapping function perspective,
on the other hand, two distant latent samples are also possible to be mapped into
two close images. If the latent samples are mapped in aggregation into limited
modes or even a single mode, mode collapse occurs. Accordingly, we propose
adding an implicit latent transform before the mapping function to improve latent
z from its initial distribution, e.g., Gaussian. In this paper, this is specifically
achieved by using the iterative fast gradient sign method (I-FGSM). We further
propose new GAN training strategies to obtain better generation mappings w.r.t
quality and diversity by introducing targeted latent transforms into the bi-level
optimization of GAN. Experimental results on visual data show that our method
can effectively achieve improvement in both quality and diversity.

1 INTRODUCTION

Generative Adversarial Networks (GANs) (Goodfellow et al., 2014a) have shown effectiveness for
generating high-fidelity data, especially for images under various settings (Ledig et al., 2017; Wang
et al., 2018; Zhu et al., 2017; Zhan et al., 2019; Chakraborty et al., 2018). Based on the zero-sum
game, the model is trained by the adversarial process between the generator and the discriminator.
Many efforts have been made to achieve a more realistic generation from different perspectives.
WGAN (Arjovsky et al., 2017), SNGAN (Miyato et al., 2018), LSGAN (Mao et al., 2017) aim to
design better objective functions. ImprovedGAN (Salimans et al., 2016), AC-GAN (Odena et al.,
2017) propose practical training techniques. While more complex network structures are studied in
BigGAN (Brock et al., 2018), StyleGAN (Karras et al., 2019a), SAGAN (Zhang et al., 2019).

Despite the above progress, an intriguing and relatively less studied question is how the latent
space affects the generation in terms of quality and diversity, which can be orthogonal to the above
frequently studied factors like model architectures and training techniques. Specifically, we argue that
the latent samples from a standard continuous distribution (e.g., Gaussian) can often be mapped to
varying-quality samples for the generation. One reason is that the generator is a continuous function
(by neural nets) while the generation quality (e.g., images in pixel space) is not. Moreover, it has also
been shown in GAN literature (Khayatkhoei et al., 2018) that many image objects lie upon multiple
disjoint manifolds, and a continuous mapping from continuous latent distribution, e.g., Gaussian
must generate many invalid samples in the between of the manifolds when the generator seeks to
cover all the meaningful modes. See Fig. 1 (a) for the schematic diagram. This fact also implies a
dilemma: for complex real-world data, there is a trade-off between quality and diversity when the
latent vectors are sampled from a simple uni-mode distribution, e.g., Gaussian, and the generator is a
continuous mapping based on neural networks. Moreover, by realizing that the mapping function in
fact allows for many-to-one mapping, mode collapse (Srivastava et al., 2017) can naturally happen
when different latent samples are mapped into limited or even a single mode in target space.
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(a) Quality Discontinuity (b) Proposed Sampling Tranform

Figure 1: Red dashed lines denote real data manifolds in pixel space and their inverse images in
latent space; yellow circles and squares denote samples for sound generation in latent space and pixel
space; black circles and squares denote samples for bad generation in latent space and pixel space; the
orange dashed lines denote the generator mapping; the blue dashed lines denote z transform in latent
space; blue shades and solid blue lines denote the latent distribution and the generated distribution.
Due to the continuity of the neural network-based generator, close samples in latent space will be
mapped to close images in pixel space, while the images’ quality can vary. Cat (a) and Cat (b) are
close in pixel space, but Cat (a) loses its right ear. Our method allows bad latent z to transform
towards the inverse image of the nearest real manifold, thus avoiding terrible generation.

(a) Quality (b) Diversity

Figure 2: Red dashed lines denote real data manifolds; blue shades and blue lines denote the generated
distribution. The generated distributions mapped from a fixed latent distribution reflect the mapping
quality. (a) shows the case of bad quality when the generated distribution does not match the real
distribution well. (b) shows the case of bad diversity when the mapping misses modes. Our method
tries to train mappings with better properties, as shown on the right side of each case.

The above contradiction between the discontinuity in generation data quality (e.g., images) and the
continuity of latent distribution as well as mapping function, can be one of the significant factors to
the well-known difficulty in GANs training, especially for generators, as one unreasonably hopes to
enforce a discontinuous mapping via continuous neural nets. Meanwhile, the mapping property can
largely affect the generative performance for functions with continuous nature, which is associated
with most previous works devoted to improving generative performance.

To tackle these issues, we impose an extra (implicit) transform function z∗(·) on the raw sampling
z, and the generation can be written by G(z∗(z)). From this perspective, most existing works,
including the vanilla GAN, employ z∗(·) with an identical form. Specifically, the implicit function
based transform z∗(·) can be achieved by updating the latent z ∼ p(z) to minimize lossG (i.e.
log(1−D(G(z)))) using iterative fast gradient sign method (I-FGSM) (Kurakin et al., 2016) with
the parameters of G and D fixed, and we name the method as AdvLatGAN-z. See Fig. 1 (b) for the
schematic diagram. On top of the first effort, we propose a novel training strategy to improve the
generative mapping G respectively for quality and diversity. See Fig. 2 for the schematic diagram.
This is achieved by introducing z iterations (i.e., targeted implicit transforms on z) into GAN training,
specifically, updating z ∼ p(z) using I-FGSM to find more optimization-friendly ones in the bi-level
optimization of vanilla GAN. Respectively for quality and diversity, we use two iterative updating
strategies for z under different objective functions in training, and we name the two training algorithms
respectively as AdvLatGAN-qua and AdvLatGAN-div. The highlights of this paper include:

1) We rethink the role of the generator as a continuous function, which may incur quality discontinuity
in target space and mode aggregation (collapse) when the latent samples are directly sampled from
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a continuous distribution e.g. Gaussian. Based on above theoretical considerations, we propose a
composite generation perspective by formulating the mapping fromG(z) toG(z∗(z)). This treatment
provides a new methodological guidance to the progress of the generative model.

2) We propose a new pipeline for both G(·) and z∗(·), by first training generative mappings for better
generation quality and diversity, respectively, and then the transform z∗(·) is enforced and computed
implicitly to obtain an improved distribution for more effective generation. Specifically, the training
involves adversarial learning under different objective functions for quality and diversity, leading to
new GAN models: AdvLatGAN-qua/div and their further variants.

3) Experimental results on synthetic and visual data show the notable improvement of our approach
on both generation quality and diversity. Our technique is orthogonal to existing GAN techniques.

2 RELATED WORK

Implicitly adapting the raw latent vectors z from Gaussian to improve the generation relates to
latent space learning for GAN. While the specific training algorithm using latent vector adapting to
mine optimization-friendly samples in training relates to adversarial training, which views the latent
adapting in training as an attack to mine hard samples.

Latent space exploration in GANs. Techniques have been proposed for latent space exploration
for GANs. By utilizing the steerability of GANs in latent space, StyleGAN (Karras et al., 2019a)
introduce an latent space transform by using a mapping network to better decouple the various
styles and Jahanian et al. (2019) shift the distribution to fit camera movement transformation. In-
terFaceGAN (Shen et al., 2020) decouples entangled semantics with subspace projection to control
facial attributes more precisely. Mishra et al. (2020), Mukherjee et al. (2019) and Wu et al. (2019)
introduce the latent exploration into training to achieve clustering objectives or benefit GAN training.
In addition to the preceding works, some recent works focus on improving latent sampling quality to
generate high-quality images. For example, interactive evolutionary computation is used to make the
generation process more controllable in Bontrager et al. (2018), which meanwhile also brings addi-
tional manual efforts. To reduce manual intervention, Roziere et al. (2020; 2021) use Koncept512
(Hosu et al., 2020) as a criterion to improve the quality of fake images. However, as discussed
in Roziere et al. (2020), this strategy is somehow biased, can not work well in each dataset (e.g.,
Pokemons). The reason is that the quality estimator is not even designated to access the real-data
distribution information. Instead, the generation is guided by a predefined score function.

Compared to the above works, we take a relevant idea to Roziere et al. (2020) that also adapt the latent
vectors to an improved condition before input to the generator G. Differently, our latent adaption
approach incorporates the target distribution and utilize I-FGSM iterations to adapt latent vectors.

Mitigating mode collapse for GANs. There are also efforts in mitigating mode collapse, which are
based on the thinking that many real-world samples lie in disjoint manifolds (Khayatkhoei et al.,
2018). One way is to introduce a collection of generators such that each generator may cover a
specific mode since a single generator can hardly fulfill a discontinuous function (Khayatkhoei et al.,
2018). However, more works focus on improving the properties of mapping, explicitly obtaining a
mapping covering more modes (Elfeki et al., 2019; Meulemeester et al., 2020; Mao et al., 2019). Note
that the generated distribution obtained by this method will contain invalid parts due to the continuity
of the latent distribution and the mapping. This calls for selective sampling of the continuous latent
distribution or directly amending the latent distribution, which is rarely noticed in these works.

Adversarial samples and adversarial training. Adversarial samples are malicious samples that can
easily fool deep models, which are indistinguishable to human eyes. Since the seminal work (Szegedy
et al., 2013), various adversarial attack methods have been devised (Goodfellow et al., 2014b; Akhtar
& Mian, 2018; Kurakin et al., 2016; Madry et al., 2017). To defend the models from attacks,
adversarial training is meanwhile developed (Goodfellow et al., 2014b; Wang et al., 2019; Nøkland,
2015). In particular, it is worth noting that several recent studies have shown that adversarial training
can bring many benefits to GANs, not just improving robustness. RGAN (Zhang et al., 2020) shows
that adversarial training can enhance the generalization of the generator and discriminator. Based on
both theoretical analysis and empirical results, Zhong et al. (2020); Liu et al. (2021); Liu & Hsieh
(2019) show that updating discriminator’s parameters with the loss calculated by adversarial samples
generated by authentic images can stabilize training and accelerate convergence.
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Figure 3: Generation examples of StyleGAN2-ada (Karras et al., 2020). Sampling equidistantly from
p(z) in the latent space, the samples in the generated distribution pg(x) of the pixel space are shown
here. The beginning and ending images of each row locate in different manifolds. The intermediate
results are sampled by crossing between disconnected manifolds. The discontinuity causes weird
generation in the transition, marked with yellow boxes (first row: the cat misses an ear, and its head
is crooked; second row: white spots on the nose; third row: two bodies share one head).

In this paper, we utilize the adversarial sample search method, the iterative fast gradient sign method
(I-FGSM) (Kurakin et al., 2016) to conduct latent transform and mine optimization-friendly z samples
in the GAN training process, which matches up with the procedure of adversarial training. While
most existing works make perturbations on pixel space (real samples or generated samples), instead
we focus on mining the latent space and making perturbations on latent samples.

3 PROPOSED METHOD

This section presents AdvLatGAN-z to achieve a transformation z∗(·), and further AdvLatGAN-qua
and AdvLatGAN-div to obtain generation mapping G with better generation quality (i.e., -qua) and
diversity (i.e., -div). Both methods are derived from the iterative updating in latent space.

3.1 PRELIMINARIES

We introduce adversarial samples and adversarial training used to derive z∗(z) and devise training
algorithms, and the regularization technique in MSGAN (Mao et al., 2019) for mode seeking.

Adversarial samples and adversarial training. Adversarial training aims to defend against adver-
sarial attacks. It uses adversarial samples to calculate the optimized loss. In classification, for each
image-label pair (xi, yi) ∈ S from the labeled training set, the adversarial samples x′ is defined as:

x′ = argmax
||x′−xi||p≤ε

l(fθ(x
′), yi) (1)

Here ε is the radius of the closed ball to constrain perturbation. While fθ and l denote the attack target
(a neural net) and the corresponding loss (e.g. cross-entropy loss). p denotes the norm dimension.
Given in total n adversarial samples, adversarial training is fulfilled by the optimization:

θ = min
θ

1

n

n∑
i=1

l(fθ(x
′
i), yi) (2)

Mode coverage by regularizing distance between generated samples. MSGAN (mode seeking
GAN) (Mao et al., 2019) mitigates mode collapse in conditional generation setting by introducing a
regularization term for training G over two latent samples z1 and z2 as follows. The hope is that the
two generated targets shall be far away from each other as much as possible:

Lms =
dI (G(c, z1), G(c, z2))

dz (z1, z2)
(3)

where c is the condition vector for generation, and dI and dz are the distance metrics in the target
(image) space and latent space, respectively. It encourages the distance to be maintained or even
enlarged in the target space to avoid the generated samples being trapped into an aggregation.
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Figure 4: Results of latent sample transform on the SNGAN model pre-trained on STL-10. The
original generated images are shown on the left, and the images generated with the newly found zs
after 100 steps iteration of I-FGSM are shown on the right. We notice that the right figures contain
richer colors and more realistic details, with the main content remaining consistent. We measure
generation quality in a batch by Inception Score, which increases from 6.944 to 7.475.

By integrating the regularization term with the original objective function of cGANs (Mirza &
Osindero, 2014), the final objective for minimization in MSGAN for training G and D is given by:

L =Lori + λmsLms
Lori =Ec,x[logD(c,x)] + Ec,z[log(1−D(c,G(c, z)))]

(4)

where Lori denotes the original objective, x denotes real data, and λms is the weight hyper-parameter.
Note since Eq. 3 is aimed to be maximized hence one can interpret λms to be negative.

3.2 LATENT SPACE ADVERSARIAL SAMPLE SEARCH FOR GENERATION QUALITY

We show how to implicitly transform the latent raw samples from Gaussian (or other popular forms
e.g. uniform) to a new distribution via the idea of searching adversarial samples as introduced
above. This transform breaks the dilemma in diversity and quality where the bottleneck is due to the
continuous latent distribution and a continuous mapping function. Moreover, conducting the implicit
transform in training to obtain the new (probably disconnected) latent distribution for each iteration
can compensate for the difficulty for generators to align the pace of generators and discriminators1,
which cannot map a continuous distribution to a disconnected one with multiple modes.

Specifically, we design the following constrained optimization task that encourages the new z∗ to be
close enough2 to z. Its prediction score (as real data) by the discriminator D should be as high as
possible to improve the generation quality. Recall otherwise the given z0 may correspond to a poor
generation as discussed in Sec. 1. Note here that both G and D are fixed.

z∗(z0) = argmin
z∈{z|d(z0,z)≤ε}

log(1−D(G(z))) (5)

where z0 denotes the original latent vectors, z∗(z0) denotes the newly computed z, d(·) denotes the
distance of two vectors which is an `∞ distance in this paper, in line with the popular protocol in
adversarial attack literature (Goodfellow et al., 2014b).

By borrowing the well-developed tools in adversarial attack, the solution of the above problem can
be estimated by the so-called iterative fast gradient sign method (I-FGSM) (Kurakin et al., 2016):

zi+1 ← zi − εsgn{∇zi log(1−D(G(zi)))} (6)

From the distribution perspective, the transform can be characterized by:

p∗z = arg min
D(pz,p0z)≤ε

Ez∼pz [log(1−D(G(z)))] (7)

where p0z denotes the original latent distribution, p∗z denotes the newly searched one. D(pz, p
0
z) ≤ ε

means that there is a limit to the distribution variation. A newly searched z can be considered as
a sample from p∗z if the sampling is within the perturbation circle. Fig. 4 shows the results by the
pre-trained SNGAN (Miyato et al., 2018) (i.e. the given G and D) on STL-10 (Coates et al., 2011).

We develop a novel GAN training algorithm by conducting the above latent distribution shift to the
initial sampling of Gaussian in D updating iterations, while the rest of the training algorithm remains
consistent with vanilla GAN (Goodfellow et al., 2014a). We present the algorithm in Alg. 1 which
we call Adversarial Latent GAN (AdvLatGAN-qua) with a post meaning quality. The latent tranform
is first computed using the I-FGSM to find the adversarial samples in latent space, then D and G are
updated. The iteration continues until enough steps or convergence of G.

1In literature, it is widely recognized that it is much more challenging to train the generator than discriminator.
2We do not want to departure too much from the basic GAN training protocol, and also the transform shall

keep mode consistent to maintain overall diversity.
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Figure 5: Each of the six columns shows two compared pairs of generated example (first pair: 1st
+ 2nd row; second pair: 3rd row + 2nd row) by our diversity driven iterative transform scheme in
latent space with the same number of iterations to obtain z∗ from initial z. Middle row: generation
by vanilla latent sampling z; Top: by latent sample transformed by Eq. 8; Bottom: by latent sample
transformed by Eq. 8’s inverse form. It shows using Eq. 8 generates more similar image pairs serving
as hard samples for training, rather than using its inverse form (see quantitative results in Table 1).

The above latent transform model does not consider how to avoid mode collapse, as each time
only one latent sample is considered for optimization in isolation. Similar constrained optimization
formulation can be designed to improve the generation diversity, as shown in the following subsection.

3.3 LATENT SPACE ADVERSARIAL SAMPLE SEARCH FOR GENERATION DIVERSITY

We take a hard sample mining perspective to improve mode coverage. Given a sample z0 from the
raw latent distribution, we aim to search its paired sample z∗ to form a hard sample pair, in the sense
that their generations are close in the target space given G. We consider two aspects. First, as hard
samples, the paired samples shall still belong to the same category c which can be modeled with
conditional GAN. Second, their distance in the latent space shall also be not too close otherwise, they
may be aggregated in target space due to continuous mapping. In other words, hard samples causing
mode collapse shall be those close-in target space while apart in the latent space, when G is given.
Based on the above considerations, we adopt the form of Eq. 3 to design our search procedure:

z∗(z0) = argmin
z∈{z|d(z0,z)≤ε}

dI(G(c, z0), G(c, z))

dz(z0, z)
(8)

Table 1: Ratio between image and
latent distance by Eq. 8 to derive new
z∗. -inv means using inverse form.

Dataset Eq. 8 Eq. 8-inv
CIFAR-10 0.241 4.023
FACADES 0.3785 1.3385

The symbols and terms are similar to Eq. 3. Akin to
AdvLatGAN-qua, we use I-FGSM to obtain z∗ and again
use `∞ to control change magnitude. For each update step,
we randomly select the first latent vector z0, and the second
vector z∗ is searched by n iterations of the I-FGSM method
under the `∞ restriction starting from the neighborhood of z0,
and the iterations are guided by Eq. 8.

Table 1 shows the effectiveness of the above paired complex sample seeking approach, with ex-
periments on CIFAR-10 (Krizhevsky et al., 2009) and Facades (Tyleček & Šára, 2013) with DC-
GAN (Radford et al., 2016) as backbone. The visual results on Facades are shown in Fig. 5. We
can see that the pair obtained by solving Eq. 8 tend to collapse (as they are hard samples), while the
opposite leads to better diversity by using the inverse form of Eq. 8.

The above experiments show the effectiveness of our iteration method, and we further introduce
it into the initial training process of MSGAN (Mao et al., 2019). In MSGAN, the regularization
term 3 is used to regularize the model optimization process, where the selection of the pair is entirely
random, without using any heuristic information. We instead use the z pair that are more inclined to
collapse by randomly taking one z and iterating by the method mentioned above to get another z. We
keep the other settings of the algorithm unchanged.
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Table 3: Post-training latent sampling improvement with two architectures on STL-10.

Architecture Method SNGAN (two initials) WGANGP (two initials)
IS(↑) FID(↓) IS(↑) FID(↓) IS(↑) FID(↓) IS(↑) FID(↓)

ResNet Original 7.244 64.573 6.285 46.076 7.287 73.625 6.791 47.765
AdvLatGAN-z 8.116 62.184 6.833 43.099 7.743 73.443 7.369 45.121

DCGAN Original 6.183 46.701 7.344 64.289 6.701 48.454 7.112 69.263
AdvLatGAN-z 6.748 43.386 7.860 64.165 7.376 46.490 7.767 68.929

By using Eq. 8 to generate adversarial sample pairs to address mode collapse, we finally develop our
new diversity enhancing GAN training approach AdvLatGAN-div as shown in Alg. 2 in the appendix,
which are further enhanced by post-training as discussed in experiments.

4 EXPERIMENTS

Figure 6: The logic of our 5 variant
methods in Sec. 4.1. Blue and red
is for quality and diversity.
Table 2: Components of our 5 vari-
ant methods in Sec. 4.1.

Latent
Transform z∗

Improved
mapping G

i) X %

ii) % X
iii) % X
iv) X X
v X X

Experiments are performed on a single GPU of GeForce RTX
3090. All datasets used in experiments are publicly available.

4.1 EXPERIMENTAL SETUP

We validate the effectiveness of the proposed methods for two
parts, respectively for effective latent sampling improvement
z∗ and better generation mapping G. In particular, five methods
can be derived for different targets, among which AdvLatGAN-
qua+ and AdvLatGAN-div+ are the final full version of our
contributions. We present the methods below:

i) AdvLatGAN-z: post-training latent sampling improvement
fighting against quality discontinuity; ii) AdvLatGAN-qua:
GAN training algorithm for better generative quality using in-
training latent sampling improvement; iii) AdvLatGAN-div:
GAN training algorithm for a more diverse generation using
in-training latent sampling improvement; iv) AdvLatGAN-
qua+: both in and post-training latent sampling improvement
for generation quality; v) AdvLatGAN-div+: both in and post-
training latent sampling improvement for generation diversity.

For illustrative comparison, we show the schematic overview of these methods in Fig. 6 and Table 2.

We adopt Inception Score (Salimans et al., 2017) and Fréchet Inception Distance (Heusel et al.,
2017) to evaluate the performance, which utilizes the classification results of the generated images by
the Inception Network to evaluate the performance of the model. Following (Richardson & Weiss,
2018), JSD is adopted to measure the similarity between generated images and real images, which
first clusters real images and generated images into the same number of classes using the K-means
algorithm, then calculate the similarity between real and fake clusters w.r.t. the clustering property.
We also adopt recently proposed evaluation metrics density/coverage (Naeem et al., 2020), which
separates the fidelity evaluation and the diversity evaluation.

4.2 ADVLATGAN-Z: POST-TRAINING LATENT SAMPLING IMPROVEMENT

This section shows the effectiveness of the post-training latent sampling improvement AdvLatGAN-z
(denoted as z∗ in previous sections, which is an implicit transform on the original latent sampling
from Gaussian), which aims to mitigate the issue of quality discontinuity.

Figure 7: Post-training latent sampling improve-
ment on Grid and Ring by AdvLatGAN-qua.

Results on Synthetic Data. In line with (Metz
et al., 2017), we apply the proposed iterative
strategy guided by Eq. 5 in both Grid and Ring
datasets to evaluate its performance. By up-
dating latent space variables, we achieve high-
quality generated samples. The results in Fig. 7
show the effectiveness of our method.

Results on MNIST. MNIST contains 70,000 images of handwritten digits (LeCun et al., 1998),
which can be generated from a two-dimensional latent space in which the iterative latent distribution
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Figure 8: Latent distribution transform with WGAN-GP/DCGAN as backbone on MNIST. As the
I-FGSM iteration continues, the latent distribution deviates from the standard Gaussian, and contains
more valleys and peaks which can be mapped into generated images as shown in the bottom. Note
the generations by the valley points are of low quality and they can be effectively avoided by our
scheme as the sampling probability is low (valley) in our transformed distribution.

.
Table 4: The results of AdvLatGAN-qua and AdvLatGAN-qua+ for CIFAR10.

Architecture Inception Score(↑) Fréchet Inception Distance(↓)
vanilla AdvLatGAN-qua AdvLatGAN-qua+ vanilla AdvLatGAN-qua AdvLatGAN-qua+

DCGAN 5.92± 0.05 6.21± 0.07 6.58± 0.34 46.4± 0.7 41.7± 1.0 40.1± 1.5
WGAN 6.63± 0.05 7.21± 0.04 7.76± 0.07 32.8± 0.5 27.3± 0.7 27.2± 0.5

WGAN-GP 7.47± 0.09 7.60± 0.06 8.59± 0.10 24.7± 0.2 22.6± 0.4 18.3± 1.1
SNGAN 7.29± 0.09 7.58± 0.03 8.13± 0.06 25.5± 0.3 22.3± 0.5 21.9± 0.3
LSGAN 5.87± 0.14 6.13 ± 0.27 6.38 ± 0.18 49.3 ± 2.2 42.8 ± 1.3 41.0 ± 1.3

WGAN-div 7.43± 0.02 0.02 ± 0.03 8.67 ± 0.11 23.8 ± 0.3 20.6 ± 0.4 16.0 ± 0.5
ACGAN 6.02± 0.28 6.06 ± 0.21 6.21 ± 0.30 59.5 ± 1.5 53.7 ± 1.6 53.1 ± 0.4

Table 5: The results of AdvLatGAN-qua and AdvLatGAN-qua+ for STL10
Architecture Inception Score(↑) Fréchet Inception Distance(↓)

vanilla AdvLatGAN-qua AdvLatGAN-qua+ vanilla AdvLatGAN-qua AdvLatGAN-qua+
DCGAN 7.18± 0.09 7.33± 0.07 7.79± 0.06 61.2± 1.2 56.3± 1.0 54.6± 1.3
WGAN 6.51± 0.07 7.62± 0.04 8.16± 0.27 73.0± 0.2 51.0± 0.6 49.1± 1.2

WGAN-GP 8.86± 0.05 8.90± 0.05 10.32± 0.34 37.4± 0.4 34.2± 0.9 26.7± 1.1
SNGAN 8.49± 0.09 8.63± 0.08 9.37± 0.05 36.8± 0.4 34.5± 0.21 30.9± 0.4
LSGAN 7.08± 0.12 7.16 ± 0.15 7.55 ± 0.18 62.9 ± 2.2 58.5 ± 1.3 57.1 ± 1.5

WGAN-div 8.82± 0.02 9.00 ± 0.01 10.68 ± 0.17 37.7 ± 0.2 32.0 ± 0.6 24.3 ± 1.0

change is illustrated in Fig. 8. We respectively conduct the experiments for the trained DCGAN
model and WGAN-GP (Gulrajani et al., 2017) model, with single-step iteration constraint using `∞
and iterated step size ε is set to 0.03. To better reflect changes in the distribution, we only show the
first 30 iterations that can reflect larger changes. For WGAN test, Fig. 8 shows the transformed latent
distribution which contains more peaks and valleys and is different from the raw Gaussian.

Results on CIFAR-10 and STL-10. We run experiments on CIFAR-10 (Krizhevsky et al., 2009)
and STL-10 (Coates et al., 2011). CIFAR-10 has been widely used with more diverse and closer to
the quality of high-resolution images than MNIST. STL-10 has a higher resolution and richer image
representation. We use implicit transform in the latent space for pre-trained DCGAN and SNGAN
respectively, with the single-step iteration constraint using `∞ and iteration step size ε is set to 0.01.
We conduct 100 steps for each iteration process. Inception Score and Fréchet Inception Distance are
used to evaluate the generation quality, which are calculated over 1500 generated images for STL-10
and over 3000 images for CIFAR-10. For each of the four cases, we use two different initializations,
each initialized randomly and not explicitly chosen. As shown in Table 3, our method has a significant
impact on generation quality, with a maximum improvement of 12.03% by Inception Score.

Results on AFHQ and FFHQ. To show the effectiveness of AdvLatGAN-z to solve issues in Fig. 3,
we evaluate on AFHQ (Choi et al., 2020) and FFHQ (Karras et al., 2019b) based on the StyleGAN2-
ada (Karras et al., 2020) model. Note that AdvLatGAN-z works at the sample level (or distribution
level as a distribution shift characterized by sample transforms) in the latent space. In the Fig. 3
setting, when the sampling encounters invalid examples, AdvLatGAN-z is able to transform the bad
z to z∗(z) with better ability to avoid bad generation. Here we verify whether invalid samples can be
improved with AdvLatGAN-z. We select six bad generations with the first three correspond to those
in Fig. 3 and conducting AdvLatGAN-z to their latent vectors. The results show that AdvLatGAN-z
can effectively fix or avoid image defects, as shown in Fig. 9.

4.3 ADVLATGAN-QUA/DIV: IMPROVING THE GENERATION MAPPING

This section shows the effectiveness of the GAN training algorithms, which aims to improve the
generation mapping G for better performance respectively on quality and diversity.
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Figure 9: Results of AdvlatGAN-z on AFHQ and FFHQ. The first row are bad generations (the
first three correspond to those in Fig. 3) with the defects as follows: first column: the cat misses
an ear; second column: white spots on the nose; third column: two bodies share one head; fourth
column: green face; fifth and sixth columns: semi-existing glasses. The second row are results
under AdvLatGAN-z. The results show that AdvLatGAN-z can effectively mitigate image defects.

.
Table 6: FID and JSD results on CIFAR-10.

Metrics Models overall airplane automobile bird cat deer dog frog horse ship truck

FID(↓) MSGAN 30.225 73.083 69.518 78.258 74.525 57.778 86.831 63.287 69.705 69.994 66.434
AdvLatGAN-div+ 26.763 70.142 69.642 75.922 66.507 53.725 83.912 54.893 64.943 69.715 62.173

JSD(↓) MSGAN 0.00783 0.03004 0.02737 0.02861 0.02571 0.02722 0.02670 0.03381 0.04340 0.03796 0.04093
AdvLatGAN-div+ 0.00542 0.02694 0.02201 0.02795 0.02623 0.02835 0.02805 0.02776 0.03548 0.03635 0.03210

density(↑) MSGAN 0.350 0.338 0.216 0.308 0.635 0.532 0.272 0.665 0.296 0.331 0.224
AdvLatGAN-div+ 0.516 0.333 0.255 0.267 0.679 0.511 0.318 0.674 0.300 0.353 0.231

coverage(↑) MSGAN 0.568 0.651 0.690 0.460 0.674 0.736 0.452 0.776 0.779 0.817 0.612
AdvLatGAN-div+ 0.726 0.677 0.752 0.464 0.748 0.797 0.466 0.843 0.743 0.877 0.604

Table 7: FID and JSD results on STL-10.
Metrics Models overall airplane bird car cat deer dog horse monkey ship truck

FID(↓) MSGAN 67.849 92.021 125.723 108.434 118.938 111.784 133.680 140.486 121.907 101.232 101.059
AdvLatGAN-div+ 65.349 92.169 124.155 109.3590 118.385 105.966 132.681 139.372 117.149 95.298 99.590

JSD(↓) MSGAN 0.00661 0.02968 0.02818 0.03177 0.03849 0.03522 0.03107 0.03996 0.03498 0.02681 0.03157
AdvLatGAN-div+ 0.00423 0.02852 0.02717 0.03638 0.03518 0.03773 0.03132 0.03198 0.03891 0.02239 0.02751

density(↑) MSGAN 0.332 0.192 0.264 0.089 0.598 0.399 0.397 0.150 0.251 0.251 0.116
AdvLatGAN-div+ 0.443 0.235 0.328 0.111 0.733 0.456 0.429 0.194 0.353 0.165 0.126

coverage(↑) MSGAN 0.361 0.383 0.364 0.169 0.418 0.306 0.289 0.271 0.280 0.329 0.226
AdvLatGAN-div+ 0.396 0.408 0.329 0.226 0.508 0.424 0.309 0.390 0.335 0.395 0.395

AdvLatGAN-qua for Quality Improvement. We conduct experiments on CIFAR-10 and STL-10,
using the mainstream architectures including DCGAN, WGAN, WGAN-GP, SNGAN, LSGAN,
WGAN-div (Wu et al., 2018) and ACGAN (Kang et al., 2021). We do not include ACGAN in the
STL-10 setting because it does not work on unlabeled dataset. We adversarially train GAN using a
quality-enhanced strategy previously mentioned as AdvLatGAN-qua, and the results show that the
proposed method can greatly improve the quality of generated images. IS and FID are adopted to
evaluate the performance of the model. We conduct only one latent iteration to save computation
cost per generator step, and more details will be given in the appendix. We also try to use implicit
transform after training to improve the generation quality further. The result is shown in Table 4 and
Table 5. It can be seen that the proposed method achieves a significant improvement in generative
performance compared to that without the latent space transformation strategy. In the WGAN STL-10
setting, IS is improved from 6.51 to 8.16, and FID from 73.0 to 49.1.

AdvLatGAN-div for Diversity Improvement. We conduct experiments on both CIFAR-10 and
STL-10 for conditional generation and adopt FID, JSD, density and coverage as the metrics, re-
spectively for the entire set of generated images and each class. We test the training results on the
basis of implicit latent transform to fight against quality discontinuity. We can find that the proposed
method is prior over MSGAN reflected by JSD and FID metrics. The results are shown in Table 6
and Table 7. For the overall set which models are trained, AdvLatGAN-div+ has achieved at most
11.5% improvement in FID, 36.0% in JSD, 47.4% in density and 27.8% in coverage.

5 CONCLUSION

This work begins with two basic observations in GANs from the perspective of continuous mapping.
Based on the observations, we introduce the adversarial attack techniques in GAN to explore latent
space and derive novel training algorithms to improve the mapping property. With the efforts of both
latent transform and mapping improvement, the proposed AdvLatGAN has shown promising ability
for achieving generation with both quality and diversity verified by extensive experiments.
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APPENDIX

A DETAILED ALGORITHM FOR ADVLATGAN-QUA AND ADVLATGAN-DIV

The specific algorithm for AdvLatGAN-qua in Sec. 3.2 is presented in Alg. 1.

Algorithm 1 AdvLatGAN-qua tz, tD: the number of steps, other symbols are consistent with vanilla
GAN.
Input: pz e.g. Gaussian, pr e.g. real images distribution; randomly initialized G and D;
Output: trained generator G and discriminator D;
1: while G has not converged do
2: // update D:
3: for i = 1 to tD do
4: Sample {z(k)0 }mk=1 ∼ pz;
5: // the proposed sampling shift (t-step I-FGSM):
6: for i = 1 to tz do
7: Obtain {z(k)i }mk=1 by Eq. 5;
8: Sample {x(k)

i }mk=1 ∼ pr;
9: Calculate lossD with {x(k)

i }mk=1 and {z(k)t }mk=1;
10: Update D with lossD;
11: // update G:
12: Sample {z(k)}mk=1 ∼ pz;
13: Calculate lossG with {z(k)}mk=1;
14: Update G with lossG;

The specific algorithm for AdvLatGAN-div in Sec. 3.3 is presented in Alg. 2.

Algorithm 2 AdvLatGAN-div tz, tD: the number of steps, other symbols are consistent with vanilla
GAN.
Input: pz e.g. Gaussian, pr e.g. real images distribution; λms is a hyper-parameter; randomly

initialized G and D;
Output: trained generator G and discriminator D;
1: while G has not converged do
2: // update D:
3: for i = 1 to tD do
4: Sample {z(k)i }mk=1 ∼ pz;
5: Sample {(x(k)

i , c
(k)
i )}mk=1 ∼ pr;

6: Compute lossD with {(x(k)
i , c

(k)
i ), z

(k)
i }mk=1;

7: Update D with lossD;
8: // update G:
9: Randomly generate labels {c(k)}mk=1;

10: Sample {z(k)0 }mk=1 ∼ pz;
11: // the proposed sampling shift (t-step I-FGSM):
12: for i = 1 to tz do
13: Obtain {z(k)i }mk=1 by Eq. 8;
14: Calculate lossG and lossms (Eq. 3) with {c(k)}mk=1, {z(k)0 }mk=1 and {z(k)t }mk=1;
15: loss← lossG + λmslossms;
16: Update G with loss;

B RELATIONSHIP WITH ADVERSARIAL ATTACKS AND DEFENSES

Our approach is closely related to adversarial attacks and defenses. As for works in adversarial
attacks, the fundamental standpoint is that deep neural networks’ performance can vary significantly
in the face of small perturbations. This scenario can be very similar to our starting point as described
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in Sec 1 that a small perturbation of the latent vectors can lead to massive quality variation. Thus it is
quite natural to combine the adversarial attacks and defenses with generative adversarial networks,
and specifically, we utilize the latent transform using I-FGSM iterative method to overcome the
quality discontinuity.

Our GAN training algorithms AdvLatGAN-qua and AdvLatGAN-div can be analogous to adversarial
training techniques in the adversarial defense field. Adversarial training is a proactive defense
approach that strengthens the model against attacks or enhances its performance by modifying
the inputs to use adversarial samples to train the model, making the model naturally defensive
against attacks. This process involves conducting adversarial attacks during training and can be
explained as mining targeted optimization-friendly samples for training. While in AdvLatGAN-qua
and AdvLatGAN-div, we conduct z iterations in the GAN training referencing attack method, which
can be viewed as the same process as adversarial training. AdvLatGAN introduces the latent vector
z iterations into the bi-level optimization between the generator G and the discriminator D. The
training involves iterations of three components z, G ,and D, among which the introduced z iterations
can mine the latent space during training, to some extent leading to the superiority of the method.

C DESCRIPTION OF CONSTRAINTS FOR ITERATION

There are two basic types of constraint used in the field of adversarial attack: 1) `2 norm constraint;
2) `∞ norm constraint. In this paper, we follow the well-known attack method, iterative fast gradient
sign method (I-FGSM) (Kurakin et al., 2016) to conduct the iterations of latent variables and we
adopt the `∞ norm as our constraint.

D DIFFERENCES AND COMPARISONS TO OTHER ALGORITHMS

We present the differences between our approach and other previous works, involving two topics i.e.
latent exploration and GAN model with adversarial training. An overview is presented in Table 8.
Meanwhile, we conduct experiments to show our superiority over other representative works.

D.1 LATENT EXPLORATION

EvolGAN (Roziere et al., 2020), Tarsier (Roziere et al., 2021). These two models both use the
well-known quality evaluator Koncept512 (which is actually a classifier) to guide the latent iterations.
Their drawback is that they do not exploit the information of the real distribution, which leads to that
the optimization criterion of sampling quality is not for the proximity to the real distribution, but to
match the data trained for the Koncept512 classifier. Our approach uses a discriminator to guide the
latent variable updating, which makes full use of the information from the real distribution, while
further achieving novel training algorithm to improve the generative mapping.

DDLS (Che et al., 2020). DDLS analyzes the sample-improving approach from the perspective of
the energy-based model, which differs from ours in terms of methodology. Besides, it didn’t notice
that when we enhance the quality, we hope that the image is changed as little as possible. Combing
the above two points, we explain the problem from the perspective of attack, which is quite different
from the specialized sampling approach Langevin Dynamics used in (Che et al., 2020).

D.2 GAN MODEL WITH ADVERSARIAL TRAINING

Our GAN training algorithm can be considered as a kind of adversarial training from the perspective
of adversarial attack and defense, and we differ from several previous works that combine adversarial
training and GAN.

ASGAN (Liu et al., 2021), FastGAN (Zhong et al., 2020), Rob-GAN (Liu & Hsieh, 2019). These
methods add perturbation to the real images (the latter is an improvement in the loss function
compared to the former), while we focus on the latent space, perturbing latent space vectors.

Robust GAN training (Zhou & Krähenbühl, 2018). This algorithm shows that a robust discrimina-
tor can benefit training and this robustness only need to be enforced in expectation over the generated
samples, again without focusing on the latent space compared to us.
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Table 8: Differences from Other Algorithms

Viewpoint Method Different point Detailed Description
Theirs Ours

Latent Exploration

EvolGAN Guide of the
transform

Quality estimator
Koncept512

D ·G

Achieving method Evolutionary
Algorithm

I-FGSM iterations

Tarsier
Guide of the

transform
Quality estimator

Koncept512
D ·G

Achieving method Diagonal Covariance
Matrix Adaptation

I-FGSM iterations

Targeted Task Super-resolution
generation tasks

General generation
tasks

AE-OT-GAN
Timing for the

transform
Before training G

and D
After training G and

D
Achieving method First train an

Auto-Encoder to
learn a latent

distribution then use
optimal trasport to

achieve the transform

I-FGSM iterations

Calculating cost Need to train an
Auto-Encoder for
finding the latent

distribution

No extra networks
are trained (guided

by G and D)

DDLS Basis of theoretical
analysis

Energy-based theory General GAN theory

Achieving method Markov Chain Monte
Carlo

I-FGSM iterations

AdvLatGAN-qua vanilla GAN z in the training of D Samples from
Gaussian

Transformation of
the original sampling

AdvLatGAN-div MSGAN z pair used in
ms-regularization

term

Individually sampled
from Gaussian

Randomly choose z1,
then transform z1 to
get z2, forming a pair

Adversarial Training Common
differences

Objects to which
perturbations are

added

x z

Table 9: Experimental comparisons over GAN with adversarial training evaluated by Inception
Score.

Framework Evolgan
(a=0,b=80)

Evolgan
(a=0.5,b=80)

Evolgan
(a=0.5,b=20)

Evolgan
(a=1,b=20) DDLS AdvLatGAN-z

DCGAN 5.815 5.887 5.825 5.791 5.502 6.086
WGAN 6.528 6.496 6.521 6.546 2.607 7.334

WGAN-GP 7.349 7.316 7.441 7.236 7.074 8.279
SNGAN 7.195 7.274 7.298 7.221 6.879 7.832

D.3 EXPERIMENTAL COMPARISON OVER LATENT EXPLORATION

We compare our methods AdvLatGAN-z with two representative works Evolgan and DDLS that
combine latent exploration and GANs. For Evolgan implementation, we choose four sets of hyper-
parameters for evaluation. Note that we did not find the official codes for Evolgan and DDLS for
real-world experiment, so we reproduce the methods according to their papers. The experimental
setting is aligned with Table 4 and we evaluate on CIFAR-10 with four framworks: DCGAN, WGAN,
WGANGP and SNGAN. We conduct AdvLatGAN-z on a 10000 generated images batch and then
evaluate the results. Inception Score and Fréchet Inception Distance are adopted as the evaluation
metrics. The experimental results are presented in Table 9 and Table 10.

D.4 EXPERIMENTAL COMPARISON OVER GAN MODEL WITH ADVERSARIAL TRAINING

We compare our methods AdvLatGAN-qua and AdvLatGAN-qua+ with two representative works
ASGAN and Robust GAN training that combine adversarial training and GANs. These two methods
are related to perturbations on the generated samples and the real samples respectively. The experi-
mental setting is aligned with Table 4 and we evaluate on CIFAR-10 with four framworks: DCGAN,

15



Under review as a conference paper at ICLR 2022

Table 10: Experimental comparisons over GAN with adversarial training evaluated by Fréchet
Inception Distance.

Framework Evolgan
(a=0,b=80)

Evolgan
(a=0.5,b=80)

Evolgan
(a=0.5,b=20)

Evolgan
(a=1,b=20) DDLS AdvLatGAN-z

DCGAN 49.237 48.428 49.080 48.945 58.133 45.763
WGAN 34.685 34.650 34.564 34.565 221.367 32.854

WGAN-GP 27.004 26.252 26.497 26.492 32.516 22.870
SNGAN 27.661 27.418 27.542 27.542 27.542 23.531

Table 11: Experimental comparisons over GAN with adversarial training evaluated by Inception
Score.

Framework ASGAN RobDis AdvLatGAN-qua AdvLatGAN-qua+
DCGAN 6.21± 0.07 6.03± 0.03 6.28± 0.04 6.58± 0.34
WGAN 4.10± 0.01 6.84± 0.04 7.21± 0.04 7.76± 0.07

WGAN-GP 6.80± 0.02 7.41± 0.06 7.60± 0.06 8.59± 0.10
SNGAN 7.21± 0.03 0.03± 0.06 7.58± 0.03 8.13± 0.06

Table 12: Experimental comparisons over GAN with adversarial training evaluated by Fréchet
Inception Distance.

Framework ASGAN RobDis AdvLatGAN-qua AdvLatGAN-qua+
DCGAN 45.3± 0.4 41.9± 0.4 41.7± 1.0 40.1± 1.5
WGAN 89.7± 1.3 1.3± 0.4 27.3± 0.7 27.2± 0.5

WGAN-GP 32.3± 0.3 24.5± 0.1 22.6± 0.4 18.3± 1.1
SNGAN 26.7± 0.5 50.9± 2.7 22.3± 0.5 21.9± 0.3

WGAN, WGANGP and SNGAN. Inception Score and Fréchet Inception Distance are adopted as the
evaluation metrics. The experimental results are presented in Table 11 and Table 12.

E DETAILS OF LATENT SAMPLING IMPROVEMENT EXPERIMENT

E.1 PROTOCOLS FOR SYNTHETIC EXPERIMENTS.

We simulate two synthetic datasets. Ring dataset is a mixture of 8 2-D Gaussians p(z) with mean
{(2 cos (iπ/4), 2 cos (iπ/4))}8i=1 and standard deviation 0.001. 12.5K samples are simulated from
each Gaussian distribution. 50K samples from p(z) are used to generate x for test. Grid dataset is a
mixture of 25 2-D isotropic Gaussians i.e. p(z) with mean {(2i, 2j)}2i,j=−2 and standard deviation
0.0025. 4K samples are simulated from each Gaussian. 20K samples from p(z) are used to generate
target samples {x̃} for test. In the synthetic experiments, we apply fully-connected networks for
generation and the architectures are shown in Table 13 and Table 14.

Table 13: Architecture of generator G.

Layer Output size Activation
Linear 100 ReLu
Linear 200 ReLu
Linear 100 ReLu
Linear 2 -

Table 14: Architecture of discriminator D.
Layer Output size Activation
Linear 100 ReLu
Linear 200 ReLu
Linear 100 ReLu
Linear 1 -

E.2 DETAILS FOR RING SYNTHESIZING EXPERIMENTS.

To better demonstrate the practical effect and to show the characteristics of the network during the
training process, we choose 2000 as the total number of iterations (1 epoch), and the result is shown in
the left picture in Fig. 10. We apply the latent transform technique for the network in the left picture:
frozen all parameters of the neural network and iterating 20,000 points sampled in a 2D-Gaussian
distribution under the constraint of L-infinity norm. The step size is set as 0.003 and its optimizing
target is upgrading discriminator judged score. After iterating 8,000 times, We get the high-quality
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(a) Insufficient Train (b) Quality-enhance (c) Sufficient Train

Figure 10: Left: points generated by the generator after training for one epoch. Middle: apply latent
iterative sampling strategy for the generator shown in the left image. Right: generated points after
training 100 epochs.

.

(a) vanilla points (b) iterate 10 times (c) iterate 30 times (d) iterate 8000 times

Figure 11: Results of using AdvLatGAN-qua.
.

samples in Fig. 10 (shown in the middle) which outperform the results after training 100 epochs. It is
a powerful evidence to prove the problem of imbalance in the input latent space and that discriminator
tends to converge faster.

E.3 DETAILS FOR GRID SYNTHESIZING EXPERIMENTS.

We try to simulate the case that the inappropriate selection of network architecture to prove the
application prospects of latent transform in this situation. All hyperparameters are consistent with
the previous ring experiment besides choosing training 50 epochs to make sure the network is fully
trained. Because of the inappropriate choosing model architecture, the training result is terrible.
However, by applying with latent transform policy, almost all points converge towards target points.
The result is shown in Fig. 10.

E.4 DETAILS FOR MNIST EXPERIMENT.

The DCGAN model and WGAN-GP model are used in this experiment. We use DCGAN model
for generating images of CIFAR-10 and ResNet model for STL-10 dataset. The hyperparameters
and model structures are consistent with that used in https://github.com/w86763777/
pytorch-gan-collections with a total of 30 iterations, each with a step size of 0.03 and a
batch size of 8000. The configuration of the trained DCGAN model: batch size is 128, D-learning
rate and G-learning rate are both 0.0002, the loss function is bce loss, the discriminator updates
one step per generator iteration, the latent dimension is 2, and the total training step is 20,000. The
configuration of training WGAN-GP model: the batch size is 128, the D-learning rate and G-learning
rate are both 0.0002, the parameters of discriminator updates one step per generator iteration, the
latent dimension is 2, and the total training step is 50,000.

Details for CIFAR-10 and STL-10 Experiment. The SNGAN and WGAN-GP
are used in this experiment, referencing https://github.com/w86763777/
pytorch-gan-collections with a total of 100 iterations, each with step size of 0.01
and the batch size is set as 1500 for STL-10 and 3000 for CIFAR-10.
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(a) CIFAR-10

(b) STL-10

Figure 12: Results of SNGAN on CIFAR-10 and STL-10.

The configuration of SNGAN for CIFAR-10: the batch size is 128, the D-learning rate and G-learning
rate are both 0.0002, the loss function is hinge loss, the discriminator updates one step per generator
iteration, the latent dimension is 100, and the total training step is 100,000. The training configuration
of the trained WGAN-GP model for CIFAR-10: the loss function is Wasserstein loss and other
configurations are the same as SNGAN.

The training configuration of SNGAN model for STL-10: the batch size is 64, the D-learning rate and
G-learning rate are both 0.0002, the loss function is hinge loss, the discriminator updates 5 steps per
generator iteration, the latent dimension is 128, and the total training step is 100,000. The training
configuration of the trained WGAN-GP model for CIFAR-10: the loss function is Wasserstein loss
and other configurations are the same with SNGAN. The results are shown in Fig. 12, Fig. 13.

F EXPERIMENT FOR ADVERSARIAL SAMPLE SEARCH FOR DIVERSITY

We propose AdvLatGAN-div to improve the mapping property for diversity, which introduces the
latent z iterations by Eq. 8 into the original bi-level optimization process. The validity of the algorithm
requires the effectiveness of the z iterations searching for samples with varying diversity performance
guided by Eq. 8, which we verify by experiments.

Details for CIFAR-10 Experiment. We first find a random latent vector of batch size 64, respectively
do multiple-step gradient sign descent and multiple-step gradient sign ascent on the ratio of the
distance between the original image and the target image to the distance of original input vector and
target input vector (which denoted as Eq. 8). The results are presented in Fig. 14. The number of
iterative steps is set to 300 and the step length is 0.03. The model is a pre-trained CIFAR-10 DCGAN
model.

Details for FACADES Experiment. Under the condition of the same image input, 20 latent space
vectors are randomly generated to complete the generation, and each vector is updated in two
directions to obtain 20 sets of comparison images.
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(a) CIFAR-10

(b) STL-10

Figure 13: Results of WGAN-GP on CIFAR-10 and STL-10.

Figure 14: Results of latent iterations for diversity by using DCGAN Radford et al. (2016) pre-trained
on CIFAR-10.

G DETAILS OF ADVERSARIAL LATENT GAN EXPERIMENT

G.1 EXPERIMENT FOR ITERATIVE QUALITY IMPROVEMENT

G.1.1 DETAILS FOR CIFAR-10 EXPERIMENT

We regard latent space variables as iterable parameters and in case of divergence, we apply learning
rate ε for latent vector updating process. And the hyperparameters we use in this experiment are
shown in Table 17. We use basic convolutional neural networks for test. The architectures are
presented in Table 15 and Table 16.
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learning rate ε DCGAN WGAN WGAN-GP SNGAN
AT+GD 0.006 0.0008 0.001 0.005
AT+LIN 0.01 0.003 0.005 0.02

Table 17: The hyperparameter setting in CIFAR-10 adversarial training experiment.

learning rate ε DCGAN WGAN WGAN-GP SNGAN
AT+LIN 0.01 0.003 0.005 0.02

Table 18: Hyperparameter setting in adversarial training Experiment on STL-10.

Table 15: Architecture of generator G in CI-
FAR10 experiment.

Layer Output size
ConvTranspose2d 2× 2× 1024

BatchNorm2d 2× 2× 1024
Relu 2× 2× 1024

ConvTranspose2d 4× 4× 512
BatchNorm2d 4× 4× 512

Relu 4× 4× 512
ConvTranspose2d 8× 8× 256

BatchNorm2d 8× 8× 256
Relu 8× 8× 256

ConvTranspose2d 16× 16× 128
BatchNorm2d 16× 16× 128

Relu 16× 16× 128
ConvTranspose2d 32× 32× 3

Tanh 32× 32× 3

Table 16: Architecture of discriminator D in
CIFAR10 experiment.

Layer Output size
Conv2d 16× 16× 64

LeakyRelu 16× 16× 64
Conv2d 8× 8× 128

LeakyRelu 8× 8× 128
BatchNorm2d 8× 8× 128

Conv2d 4× 4× 256
LeakyRelu 4× 4× 256

BatchNorm2d 4× 4× 256
Conv2d 2× 2× 512

LeakyRelu 2× 2× 512
BatchNorm2d 2× 2× 512

faltten 2048
linear 1

Table 19: Architecture of generator G in STL-
10 experiment.

Layer Output size
ConvTranspose2d 3× 3× 1024

BatchNorm2d 3× 3× 1024
Relu 3× 3× 1024

ConvTranspose2d 6× 6× 512
BatchNorm2d 6× 6× 512

Relu 6× 6× 512
ConvTranspose2d 12× 12× 256

BatchNorm2d 12× 12× 256
Relu 12× 12× 256

ConvTranspose2d 24× 24× 128
BatchNorm2d 24× 24× 128

Relu 24× 24× 128
ConvTranspose2d 48× 48× 3

Tanh 48× 48× 3

Table 20: Architecture of discriminator D in
STL-10 experiment.

Layer Output size
Conv2d 24× 24× 64

LeakyRelu 24× 24× 64
Conv2d 12× 12× 128

LeakyRelu 12× 12× 128
BatchNorm2d 12× 12× 128

Conv2d 6× 6× 256
LeakyRelu 6× 6× 256

BatchNorm2d 6× 6× 256
Conv2d 3× 3× 512

LeakyRelu 3× 3× 512
BatchNorm2d 3× 3× 512

faltten 4608
linear 1

G.2 DETAILS FOR STL-10 EXPERIMENT.

The learning rates for updating latent variables in STL-10 experiment are presented in Table 18. We
use basic convolutional neural networks for test. The architectures are presented in Table 19 and
Table 20,
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G.3 EXPERIMENT FOR ITERATIVE DIVERSITY IMPROVEMENT

G.3.1 DETAILS FOR CIFAR-10 EXPRIMENT

The experiment is obtained based on the experimental extension of MSGAN (Mao et al., 2019), and
the operation of latent variable search is added to the original design. The latent vector is updated in
the experiment guided by Eq. 8 with a gradient update strategy constrained by `∞. In our experimental
setting, we adopt 3 updates per iteration and the step size is set as 0.01. Other training parameters
are referred to the original MSGAN experiment https://github.com/HelenMao/MSGAN
without modification. The FID and JSD metrics for each class are calculated based on 5000 images
generated for each class, and the total FID and JSD metrics are calculated by the collection of
generated images for each class mentioned above.

G.3.2 DETAILS FOR STL-10 EXPRIMENT

The basic setup of this experiment follows the CIFAR-10 experiment, and one difference is that: we
use the supervised test part of STL10 as the real dataset for training and calculate the JSD and FID
metrics for the generated images and the labeled training part of STL10.
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