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ABSTRACT

The topological patterns exhibited by many real-world networks motivate the de-
velopment of topology-based methods for assessing the similarity of networks.
However, extracting topological structure is difficult, especially for large and dense
networks whose node degrees range over multiple orders of magnitude. In this
paper, we propose a novel and computationally practical topological clustering
method that clusters complex networks with intricate topology using principled
theory from persistent homology and optimal transport. Such networks are aggre-
gated into clusters through a centroid-based clustering strategy based on both their
topological and geometric structure, preserving correspondence between nodes in
different networks. The notions of topological proximity and centroid are char-
acterized using a novel and efficient approach to computation of the Wasserstein
distance and barycenter for persistence barcodes associated with connected compo-
nents and cycles. The proposed method is demonstrated to be effective using both
simulated networks and measured functional brain networks.

1 INTRODUCTION

Network models are extremely useful representations for complex data. Significant attention has
been given to cluster analysis within a single network, such as detecting community structure
(Newman, 2006; Rohe et al., 2011; Yin et al., 2017). Less attention has been given to clustering
of collections of network representations. Clustering approaches typically group similar networks
based on comparisons of edge weights (Xu & Wunsch, 2005), not topology. Assessing similarity
of networks based on topological structure offers the potential for new insight, given the inherent
topological patterns exhibited by most real-world networks. However, extracting meaningful network
topology is a very difficult task, especially for large and dense networks whose node degrees range
over multiple orders of magnitude (Barrat et al., 2004; Bullmore & Sporns, 2009; Honey et al., 2007).

Persistent homology (Barannikov, 1994; Edelsbrunner et al., 2000) has recently emerged as a powerful
tool for understanding, characterizing and quantifying complex networks (Songdechakraiwut et al.,
2021). Persistent homology represents a network using topological features such as connected
components and cycles. Many networks naturally divide into modules or connected components
(Bullmore & Sporns, 2009; Honey et al., 2007). Similarly, cycles are ubiquitous and are often used
to describe information propagation, robustness and feedback mechanisms (Kwon & Cho, 2007;
Lind et al., 2005). Effective use of such topological descriptors requires a notion of proximity that
quantifies the similarity between persistence barcodes, a convenient representation for connected
components and cycles (Ghrist, 2008). Wasserstein distance, which measures the minimal effort
to modify one persistence barcode to another (Rabin et al., 2011), is an excellent choice due to its

∗Code for topological clustering is available at https://github.com/topolearn.
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appealing geometric properties (Staerman et al., 2021) and its effectiveness shown in many machine
learning applications (Kolouri et al., 2017; Mi et al., 2018; Solomon et al., 2015). Importantly,
Wasserstein distance can be used to interpolate networks while preserving topological structure
(Songdechakraiwut et al., 2021), and the mean under the Wasserstein distance, known as Wasserstein
barycenter (Agueh & Carlier, 2011), can be viewed as the topological centroid of a set of networks.

The high cost of computing persistence barcodes, Wasserstein distance and the Wasserstein barycenter
limit their applications to small scale problems, see, e.g., (Clough et al., 2020; Hu et al., 2019; Kolouri
et al., 2017; Mi et al., 2018). Although approximation algorithms have been developed (Cuturi, 2013;
Cuturi & Doucet, 2014; Lacombe et al., 2018; Li et al., 2020; Solomon et al., 2015; Vidal et al., 2019;
Xie et al., 2020; Ye et al., 2017), it is unclear whether these approximations are effective for clustering
complex networks as they inevitably limit sensitivity to subtle topological features. Indeed, more
and more studies, see, e.g., (Robins & Turner, 2016; Xia & Wei, 2014) have demonstrated that such
subtle topological patterns are important for the characterization of complex networks, suggesting
these approximation algorithms are undesirable.

Recently, it was shown that the Wasserstein distance and barycenter for network graphs have closed-
form solutions that can be computed exactly and efficiently (Songdechakraiwut et al., 2021) because
the persistence barcodes are inherently one dimensional. Motivated by this result, we present a novel
and computationally practical topological clustering method that clusters complex networks of the
same size with intricate topological characteristics. Topological information alone is effective at
clustering networks when there is no correspondence between nodes in different networks. However,
when networks have meaningful node correspondence, we perform cluster analysis using combined
topological and geometric information to preserve node correspondence. Statistical validation
based on ground truth information is used to demonstrate the effectiveness of our method when
discriminating subtle topological features in simulated networks. The method is further illustrated
by clustering measured functional brain networks associated with different levels of arousal during
administration of general anesthesia. Our proposed method outperforms other clustering approaches
in both the simulated and measured data.

The paper is organized as follows. Background on our one-dimensional representation of persistence
barcodes is given in section 2, while section 3 presents our topological clustering method. In sections
4 and 5, we compare the performance of our method to several baseline algorithms using simulated
and measured networks, and conclude the paper with a brief discussion of the potential impact of this
work.

2 ONE-DIMENSIONAL PERSISTENCE BARCODES

2.1 GRAPH FILTRATION

Consider a network represented as a weighted graph G = (V,w) comprising a set of nodes V with
symmetric adjacency matrix w = (wij), with edge weight wij representing the relationship between
node i and node j. The number of nodes is denoted as |V |. The binary graph Gε = (V,wε) of G is
defined as a graph consisting of the node set V and binary edge weights wε,ij = 1 if wij > ε and
wε,ij = 0 otherwise. We view the binary network Gε as a 1-skeleton (Munkres, 2018), a simplicial
complex comprising only nodes and edges. In the 1-skeleton, there are two types of topological
features: connected components (0-dimensional topological features) and cycles (1-dimensional
topological features). There are no topological features of higher dimensions in the 1-skeleton, in
contrast to well-known Rips (Ghrist, 2008) and clique complexes (Otter et al., 2017). The number of
connected components and the number of cycles in the binary network are referred to as the 0-th Betti
number β0(Gε) and the 1-st Betti number β1(Gε), respectively. A graph filtration of G is defined as
a collection of nested binary networks (Lee et al., 2012):

Gε0 ⊇ Gε1 ⊇ · · · ⊇ Gεk ,

where ε0 ≤ ε1 ≤ · · · ≤ εk are filtration values. As ε increases, more and more edges are removed
from the network G since we threshold the edge weights at higher connectivity. For instance, G−∞
has each pair of nodes connected by an edge and thus is a complete graph consisting of a single
connected component, while G∞ has no edges and represents the node set. Figure 1 illustrates
the graph filtration of a four-node network and the corresponding Betti numbers. Note that other
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Figure 1: Graph filtration of four-node network G. As the filtration value increases, the number of
connected components β0 monotonically increases while the number of cycles β1 monotonically
decreases. Connected components are born at the edge weights e3, e5, e6 while cycles die at e1, e2, e4.

filtrations for analyzing graphs have been proposed, including use of descriptor functions such as
heat kernels (Carrière et al., 2020) and task-specific learning (Hofer et al., 2020).

2.2 BIRTH-DEATH DECOMPOSITION

Persistent homology keeps track of birth and death of connected components and cycles over filtration
values ε to deduce their persistence, i.e., the lifetime from their birth to death over ε. The persistence
is represented as a persistence barcode PB(G) comprising intervals [bi, di] representing the lifetime
of a connected component or a cycle that appears at the filtration value bi and vanishes at di.

In the edge-weight threshold graph filtration defined in Section 2.1, connected components are born
and cycles die as the filtration value increases (Songdechakraiwut et al., 2021). Specifically, β0 is
monotonically increasing from β0(G−∞) = 1 to β0(G∞) = |V |. There are β0(G∞)− β0(G−∞) =
|V | − 1 connected components that are born over the filtration. Connected components will never
die once they are born, implying that every connected component has a death value at ∞. Thus,
we can represent their persistence as a collection of finite birth values B(G) = {bi}|V |−1

i=1 . On the
other hand, G−∞ is a complete graph containing all possible cycles; thus, all cycles have birth values
at −∞. Again, we can represent the persistence of the cycles as a collection of finite death values
D(G) = {di}. How many cycles are there? Since the deletion of an edge wij must result in either
the birth of a connected component or the death of a cycle, every edge weight must be in either B(G)
or D(G). Thus, the edge weight set W = {wij |i > j} decomposes into the collection of birth values
B(G) and the collection of death values D(G). Since G−∞ is a complete graph with |V |(|V |−1)

2
edge weights and |V | − 1 of these weights are associated with the birth of connected components, the
number of cycles in G−∞ is thus equal to |V |(|V |−1)

2 − (|V |−1) = 1 + |V |(|V |−3)
2 . In the example of

Figure 1, we have B(G) = {e3, e5, e6} and D(G) = {e1, e2, e4}. Other graph filtrations (Carrière
et al., 2020; Hofer et al., 2020) do not necessarily share this monotonicity property and consequently
one-dimensional barcode representations are not applicable.

Finding the birth values in B(G) is equivalent to finding edge weights comprising the maximum
spanning tree of G and can be done using well-known methods such as Prim’s and Kruskal’s
algorithms (Lee et al., 2012). Once B(G) is known, D(G) is simply given as the remaining edge
weights. Finding B(G) and D(G) requires only O(n log n) operations, where n is the number of
edges in the network, and thus is extremely computationally efficient.

3 CLUSTERING METHOD

3.1 TOPOLOGICAL DISTANCE SIMPLIFICATION

Use of edge-weight threshold filtration and limiting consideration to connected components and
cycles as topological features results in significant simplification of the 2-Wasserstein distance (Rabin
et al., 2011) between barcode descriptors (Cohen-Steiner et al., 2010) of networks as follows. Let
G and H be two given networks that have the same number of nodes. The topological distance
dtop(G,H) is defined as the optimal matching cost:(

min
τ

∑
p∈PB(G)

||p− τ(p)||2
) 1

2

=
(

min
τ

∑
p=[bp,dp]∈PB(G)

[
bp − bτ(p)

]2
+
[
dp − dτ(p)

]2) 1
2

, (1)
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where the optimization is over all possible bijections τ from barcode PB(G) to barcode PB(H).
Intuitively, we can think of each interval [bi, di] as a point (bi, di) in a 2-dimensional plane. The
topological distance measures the minimal amount of work to move points in PB(G) to PB(H).
Note this alternative representation of points in the plane is equivalent to the persistence barcode and
called the persistence diagram (Edelsbrunner & Harer, 2008). Moving a connected component point
(bi,∞) to a cycle point (−∞, dj) or vice versa takes an infinitely large amount of work. Thus, we
only need to optimize over bijections that match the same type of topological features. Subsequently,
we can equivalently rewrite dtop in terms of B(G), D(G), B(H) and D(H) as

dtop(G,H) =
(

min
τ0

∑
b∈B(G)

[
b− τ0(b)

]2
+ min

τ1

∑
d∈D(G)

[
d− τ1(d)

]2) 1
2

, (2)

where τ0 is a bijection from B(G) to B(H) and τ1 is a bijection from D(G) to D(H). The first term
matches connected components to connected components and the second term matches cycles to
cycles. Matching each type of topological feature separately is commonly done in medical imaging
and machine learning studies (Clough et al., 2020; Hu et al., 2019). The topological distance dtop
has a closed-form solution that allows for efficient computation as follows (Songdechakraiwut et al.,
2021).

dtop(G,H) =
( ∑
b∈B(G)

[
b− τ∗0 (b)

]2
+

∑
d∈D(G)

[
d− τ∗1 (d)

]2) 1
2

, (3)

where τ∗0 maps the l-th smallest birth value in B(G) to the l-th smallest birth value in B(H) and τ∗1
maps the l-th smallest death value in D(G) to the l-th smallest death value in D(H) for all l.

A proof is provided in Appendix A. As a result, the optimal matching cost can be computed quickly
and efficiently by sorting birth and death values, and matching them in order. The computational cost
of evaluating dtop is O(n log n), where n is the number of edges in networks.

3.2 TOPOLOGICAL CLUSTERING

Let G = (V,w) and H = (V,u) be two networks. We define the network dissimilarity d2
net between

G and H as a weighted sum of the squared geometric distance and the squared topological distance:

d2
net

(
G,H

)
= (1− λ)

∑
i

∑
j>i

(
wij − uij

)2
+ λd2

top

(
G,H

)
, (4)

where λ ∈ [0, 1] controls the relative weight between the geometric and topological terms. The
geometric distance measures the node-by-node dissimilarity in the networks that is not captured by
topology alone and is helpful when node identity is meaningful, such as in neuroscience applications.
Given observed networks with identical node sets, the goal is to partition the networks into k clusters
C = {Ch}kh=1 with corresponding cluster centroids or representativesM = {Mh}kh=1 such that the
sum of the network dissimilarities d2

net from the networks to their representatives is minimized, i.e.,

min
C,M

L(C,M) = min
C,M

k∑
h=1

∑
G∈Ch

d2
net(Mh, G). (5)

The topological clustering formulation given in (5) suggests a natural iterative relocation algorithm
using coordinate descent (Banerjee et al., 2005). In particular, the algorithm alternates between
two steps: an assignment step and a re-estimation step. In the assignment step, L is minimized
with respect to C while holdingM fixed. Minimization of L is achieved simply by assigning each
observed network to the cluster whose representative Mh is the nearest in terms of the criterion d2

net.
In the re-estimation step, the algorithm minimizes L with respect toM while holding C fixed. In this
case, L is minimized by re-estimating the representatives for each individual cluster:

min
M

k∑
h=1

∑
G∈Ch

d2
net(Mh, G) =

k∑
h=1

min
Mh

∑
G∈Ch

d2
net(Mh, G). (6)

We will consider solving the objective function given in (6) for λ = 0, λ = 1 and λ ∈ (0, 1).
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λ = 0 describes conventional edge clustering (MacQueen, 1967) since the topological term is
excluded.

λ = 1 describes clustering based on pure topology and ignores correspondence of edge weights. This
case is potentially useful for clustering networks whose node sets are not identical or of different size.
Each representative Mh of cluster Ch minimizes the sum of the squared topological distances, i.e.,

min
Mh

∑
G∈Ch

d2
top(Mh, G) = min

B(Mh),D(Mh)

∑
G∈Ch

( ∑
b∈B(Mh)

[
b− τ∗0 (b)

]2
+

∑
d∈D(Mh)

[
d− τ∗1 (d)

]2)
.

(7)
Thus, we only need to optimize over the topology of the network, i.e., B(Mh) and D(Mh), instead
of the original network Mh itself. The topology solving (7) is the topological centroid of networks in
cluster Ch. Interestingly, the topological centroid has a closed-form solution and can be calculated
analytically as follows.
Lemma 1. Let G1, ..., Gn be n networks each with m nodes. Let B(Gi) : bi,1 ≤ · · · ≤ bi,m−1 and
D(Gi) : di,1 ≤ · · · ≤ di,1+m(m−3)/2 be the topology of Gi. It follows that the l-th smallest birth
value of the topological centroid of the n networks is given by the mean of all the l-th smallest birth
values of such networks, i.e.,

∑n
i=1 bi,l/n. Similarly, the l-th smallest death value of the topological

centroid is given by
∑n
i=1 di,l/n.

Since Eq. (7) is quadratic, Lemma 1 can be proved by setting its derivative equal to zero. The complete
proof is given in Appendix A. The results in (Songdechakraiwut & Chung, 2020; Songdechakraiwut
et al., 2022) may be used to find the centroid of different size networks.

For the most general case considering both correspondence of edge weights and topology, i.e., when
λ ∈ (0, 1), we can optimize the objective function given in (6) by gradient descent. Let H = (V,u)
be a cluster representative being estimated given Ch. The gradient of the squared topological distance
∇Hd2

top(H,G) with respect to edge weights u = (uij) is given as a gradient matrix whose ij-th
entry is

∂d2
top(H,G)

∂uij
=

{
2
[
uij − τ∗0 (uij)

]
if uij ∈ B(H);

2
[
uij − τ∗1 (uij)

]
if uij ∈ D(H).

(8)

This follows because the edge weight set decomposes into the collection of births and the collection
of deaths. Intuitively, by slightly adjusting the edge weight uij , we have the slight adjustment of
either a birth value in B(H) or a death value in D(H), which slightly changes the topology of the
network H . The gradient computation consists of computing persistence barcodes and finding the
optimal matching using the closed-form solution given in (3), requiring O(n log n) operations, where
n is the number of edges in networks.

Evaluating the gradient for (6) requires computing the gradients of all the observed networks. This
can be computationally demanding when the size of a dataset is large. However, an equivalent
minimization problem that allows faster computation is possible using the following result:
Lemma 2.
k∑
h=1

min
Hh

∑
G∈Ch

d2
net(Hh, G) =

k∑
h=1

min
Hh

(
(1− λ)

∑
i

∑
j>i

(
uh,ij − wh,ij

)2
+ λd2

top

(
Hh, M̂top,h

))
,

(9)

where wh = (wh,ij) are edge weights in the sample mean network Mh = (V,wh) of cluster Ch,
and M̂top,h is the topological centroid of networks in cluster Ch.

Thus, instead of computing the gradient for every network in the set, it is sufficient to compute the
gradient at the cluster sample means Mh and topological centroids M̂top,h. Hence, one only needs
to perform topological interpolation between the sample mean network Mh and the topological
centroid M̂top,h of each cluster. That is, the optimal representative is the one whose geometric
location is close to Mh and topology is similar to M̂top,h. At each current iteration, we take a step in
the direction of negative gradient with respect to an updated Hh from the previous iteration. Note
that the proposed method constrains the search of cluster centroids to a space of meaningful networks
through topological interpolation. In contrast, the sample mean, such as would be used in a naive
application of k-means, does not necessarily represent a meaningful network.
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Furthermore, we have the following theorem:

Theorem 1. The topological clustering algorithm monotonically decreases L in (5) and terminates
in a finite number of steps at a locally optimal partition.

The proofs for Lemma 2 and Theorem 1 are provided in Appendix A.

4 VALIDATION USING SIMULATED NETWORKS

Simulated networks of different topological structure are used to evaluate the clustering performance
of the proposed approach relative to that of seven other methods. We use the term topology to
denote the proposed approach with λ > 0. Clustering using the special case of λ = 0 is termed the
edge-weight method. Recall the graph filtration defined in section 2.2 decomposes the edge weights
into two groups of birth and death values corresponding to connected components and cycles. In
order to assess the impact of separating edge weights into birth and death sets, we evaluate an ad hoc
method called sort that applies k-means to feature vectors obtained by simply sorting edge weights.

In addition, we evaluate several clustering algorithms that utilize network representations. Two
persistent homology clustering methods based on conventional two-dimensional barcodes (Otter
et al., 2017) are evaluated. The Wasserstein method performs clustering using k-medoids based
on Wasserstein distance between two-dimensional barcodes for connected components and cycles.
The computational complexity of the Wasserstein method is managed by utilizing an approximation
algorithm (Lacombe et al., 2018) to compute the Wasserstein distance. A Wasserstein barycenter
clustering algorithm called Bregman Alternating Direction Method of Multipliers (B-ADMM) (Ye
et al., 2017) is used to cluster two-dimensional barcodes for cycles. In order to make B-ADMM
computationally tractable, each barcode is limited to no more than the 50 most persistent cycles.

The Net Stats clustering approach uses k-means to cluster three-dimensional feature vectors composed
of the following network summary statistics: (1) average weighted degree over all nodes (Rubinov &
Sporns, 2010), (2) average clustering coefficient over all nodes (Rubinov & Sporns, 2010) and (3)
modularity (Newman, 2006; Reichardt & Bornholdt, 2006).

Lastly, we evaluate two graph kernel based clustering approaches using kernel k-means (Dhillon
et al., 2004): the GraphHopper kernel (Feragen et al., 2013) and the propagation kernel (Neumann
et al., 2016). Supplementary description and implementation details of the candidate methods are
provided in Appendix B.

Initial clusters for all methods are selected at random.

Figure 2: Example networks
with |V | = 60 nodes andm = 5
modules exhibit different within-
module connection probabilities
r = 0.9, 0.8, 0.7 and 0.6.

Modular network structure Random modular networks Xi are sim-
ulated with |V | nodes and m modules such that the nodes are evenly
distributed among modules. Figure 2 displays modular networks with
|V | = 60 nodes and m = 5 modules such that |V |/m = 12 nodes
are in each module. Edges connecting two nodes within the same
module are assigned a random weight following a normal distribution
N (µ, σ2) with probability r or otherwise Gaussian noise N (0, σ2)
with probability 1− r. On the other hand, edges connecting nodes in
different modules have probability 1− r of beingN (µ, σ2) and prob-
ability r of being N (0, σ2). The modular structure becomes more
pronounced as the within-module connection probability r increases.
Any negative edge weights are set to zero. This procedure yields
random networks Xi that exhibit topological connectedness. We use
µ = 1 and σ = 0.5 universally throughout the study.

Simulation Three groups of modular networks L1 = {Xi}20
i=1, L2 = {Xi}40

i=21 and L3 = {Xi}60
i=41

corresponding to m = 2, 3 and 5 modules, respectively, are simulated. This results in 60 networks in
the dataset, each of which has a group label L1, L2 or L3. We consider r = 0.9, 0.8, 0.7 and 0.6 to
vary the strength of the modular structure, as illustrated in Figure 2.

The dataset is partitioned into three clusters C1, C2 and C3 using the candidate algorithms. Clustering
performance is then evaluated by first assigning each cluster to the group label that is most frequent in
that cluster and then calculating the accuracy statistic s as the fraction of correctly labeled networks,
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Figure 3: Clustering performance comparison for the dataset of simulated networks with |V | = 60
nodes and m = 2, 3, 5 modules with respect to average accuracy (left) and average p-values (right).
Results for within-module connection probabilities r = 0.6, 0.7, 0.8 and 0.9 are shown. Data points
(middle horizontal lines) indicate the averages over results for 100 different initial conditions, and
vertical error bars indicate standard deviations.

i.e., s = 1
60

∑3
i=1 maxj{|Ci ∩ Lj |}, where |Ci ∩ Lj | denotes the number of common networks in

both Ci and Lj . Note this evaluation of clustering performance is called purity, which not only is
transparent and interpretable but also works well in this simulation study where the number and size
of clusters are small and balanced, respectively (Manning et al., 2008). Since the distribution of
the accuracy s is unknown, a permutation test is used to determine the empirical distribution under
the null hypothesis that sample networks and their group labels are independent (Ojala & Garriga,
2010). The empirical distribution is calculated by repeatedly shuffling the group labels and then
re-computing the corresponding accuracy for one million random permutations. By comparing the
observed accuracy to this empirical distribution, we can determine the statistical significance of the
clustering performance. The p-value is calculated as the fraction of permutations that give accuracy
higher than the observed accuracy s. The average p-value and average accuracy across 100 different
initial assignments are reported.

Figure 4: Clustering performance for simulated
networks with |V | = 60 nodes and m = 2, 3, 5
modules as a function of λ for within-module
connection probabilities r = 0.9 (top row) and
r = 0.6 (bottom row).

Results Figure 3 indicates that all methods consid-
ered perform relatively well with pronounced mod-
ularity (r = 0.9). As the modularity strength dimin-
ishes with decreasing r, clustering performance also
decreases. The proposed topological clustering algo-
rithm (λ = 1) performs relatively well for the more
nuanced modularity associated with r = 0.7 and 0.6.
Since the dataset is purposefully generated to exhibit
dependency between the sample networks and their
group labels, the p-value indicates the degree of statis-
tical significance to which structure is differentiated
(Ojala & Garriga, 2010). Small p-values indicate the
algorithm is able to differentiate network structure.
The proposed method has very low p-values indicat-
ing that its improved accuracy over the baseline meth-
ods is significant. The Wasserstein and B-ADMM
methods require very high computation costs for the conventional two-dimensional barcodes (Otter
et al., 2017), and the approximations of Wasserstein distance (Lacombe et al., 2018) and barycenter
(Ye et al., 2017). The ad hoc sort method performs nearly identically to the topology approach,
showing that the separation into births of connected components and deaths of cycles has no apparent
impact for these simulated networks with densely connected structure. However, we hypothesize the
separation will impact performance when networks are sparse. Supplementary experimental results
including an additional set of module sizes m = 2, 5 and 10 are provided in Appendix B.

Figure 4 displays topological clustering performance as a function of λ for the strongest (r = 0.9)
and weakest (r = 0.6) degree of modularity. The performance is not very sensitive to the value of
λ. When the within-module connection probability is small (r = 0.6), increasing the weight of the
topological distance by increasing λ results in the best performance. We hypothesize that in this case
the relatively strong random nature of the edge weights introduces noise into the geometric term that
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Figure 5: Representative data from a single subject (ID R376). For this subject there are 36 measured
networks in each of three conditions: wake, sedated, and unresponsive states for a total of 108
networks. (a) Sample mean networks during wake, sedated and unresponsive states of the subject
computed using ground truth labels. (b) Betti plots based on ground truth labels. Thick lines represent
topological centroids. Shaded areas around the centroids represent standard deviation.

hinders performance as λ decreases. Conversely, the topological distance appears less sensitive to
this particular edge weight noise, resulting in the best performance when λ = 1.

5 APPLICATION TO FUNCTIONAL BRAIN NETWORKS

Dataset We evaluate our method using an extended brain network dataset from the anesthesia study
reported by Banks et al. (2020) (see Appendix C). The measured brain networks are based on alpha
band (8-12 Hz) weighted phase lag index (Vinck et al., 2011) applied to 10-second segments of resting
state intracranial electroencephalography recordings from eleven neurosurgical patients administered
increasing doses of the general anesthetic propofol just prior to surgery. The network size varies from
89 to 199 nodes while the number of networks (10-second segments) per subject varies from 71 to 119.
Each segment is labeled as one of the three arousal states: pre-drug wake (W), sedated/responsive (S),
or unresponsive (U); these labels are used as ground truth in the cluster analysis. Figure 5 illustrates
sample mean networks and Betti plots describing topology for a representative subject.

Performance evaluation We apply the adjusted Rand index (ARI) (Hubert & Arabie, 1985) to
compare clustering performance against ground truth. Lower scores indicate less similarity while
higher scores show higher similarity between estimated and ground-truth clusters. Perfect agreement
is scored as 1.0. For each subject, we calculate these performance metrics by running the algorithm
for 100 different initial conditions, resulting in 100 scores which are then averaged. We also average
across subjects (11× 100 scores) to obtain a final overall score, which describes the overall output
clusters across trials and subjects. We calculate average confusion matrices for each method by
assigning each cluster to the state that is most frequent in that cluster.

Figure 6: Average ARI per subject (gray lines) and
across all eleven subjects (red line) as a function of λ.

Cluster analysis All baselines used in the sim-
ulation study are evaluated on the brain net-
work dataset. In addition, we consider cluster-
ing using k-medoids and three previously pro-
posed network distance measures for brain net-
work analyses: Gromov-Hausdorff (GH) (Lee
et al., 2012); Kolmogorov-Smirnov (KS) (Chung
et al., 2019); and the spectral norm (Banks
et al., 2020). Supplementary description of the
three methods is provided in Appendix B. Ini-
tial clusters are selected at random for all meth-
ods. Figure 6 reports the ARI of the topological
approach for multiple predefined λ’s including
λ = 0 and λ = 1. The relative performance of
topological clustering is reported in Figures 7
and 8 assuming λ = 0.5, which results in equal weighting of topological and geometric distances.

Results Figure 6 indicates that the performance on the brain network data set varies significantly
across subjects, but in general varies stably with λ. The best performance occurs with λ between 0.4
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Figure 7: ARI performance for the brain network dataset. Data points (middle horizontal lines)
indicate averages over 100 random initial conditions, and error bars indicate standard deviations.

Figure 8: Average confusion matrices over 100 random initializations for select methods for subject
R376 (see Figure 5). Results for the other methods are provided in Appendix B.

and 0.7, suggesting that a combination of geometric and topological distances gives the best result
and that performance is not sensitive to the exact value chosen for λ. Note that different regions of
the brain are functionally differentiated, so it is plausible that topological changes due to changing
arousal level vary with location, giving geometric distance a role in the clustering of brain networks.
Prior expectations of this sort can be used to determine whether to cluster based only on topology
(λ = 1) or a combination of geometry and topology.

Figure 7 compares the ARI performance metric for individual subjects and the combination of all
the subjects. All methods demonstrate significant variability in individual subject performance.
This is expected due to the variations in effective signal to noise ratio, the number of nodes, and
the number of networks in each underlying state. Consequently the combined performance across
subjects has high variability. The topological method with λ = 0.5 performs relatively well across
all subjects. Figure 8 illustrates that the proposed approach is particularly effective at separating
wake (W) and unresponsive (U) states. Transitioning from the wake state to the unresponsive state
results in dramatic changes in brain connectivity (Banks et al., 2020). The majority of errors from the
proposed topological clustering approach are associated with the natural overlap between wake and
sedated states (S). The sedated brain, in which subjects have been administered propofol but are still
conscious, is expected to be more like the wake brain than the unresponsive brain. Thus, errors are
expected to be more likely in differentiating sedated and wake states than sedated and unresponsive
states. This suggests that the types of errors observed in the proposed method are consistent with
prior biological expectations.

Impact The demonstrated effectiveness and computational elegance of our approach to clustering
networks based on topological similarity will have a high impact on the analysis of large and
complex network representations. In the study of brain networks, algorithms that can demonstrate
correlates of behavioral states are of considerable interest. The derived biomarkers of changes in
arousal state presented here demonstrate potential for addressing the important clinical problem
of passively assessing arousal state in clinical settings, e.g., monitoring depth of anesthesia and in
establishing diagnosis and prognosis for patients with traumatic brain injury and other disorders of
consciousness. More broadly, the algorithm presented here will contribute to elucidating the neural
basis of consciousness, one of the most important open problems in biomedical science.
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APPENDIX

A PROOFS

A.1 CLOSED-FORM SOLUTION OF TOPOLOGICAL DISTANCE

The topological distance dtop has the closed-form solution as follows

dtop(G,H) =
( ∑
b∈B(G)

[
b− τ∗0 (b)

]2
+

∑
d∈D(G)

[
d− τ∗1 (d)

]2) 1
2

,

where τ∗0 maps the l-th smallest birth value in B(G) to the l-th smallest birth value in B(H) and τ∗1
maps the l-th smallest death value in D(G) to the l-th smallest death value in D(H) for all l.

Proof. Let G and H be networks with m nodes. The topological distance is originally defined as

dtop(G,H) =
(

min
τ0

∑
b∈B(G)

[
b− τ0(b)

]2
+ min

τ1

∑
d∈D(G)

[
d− τ1(d)

]2) 1
2

.

We rewrite the first term as follows.

min
τ0

∑
b∈B(G)

[
b− τ0(b)

]2
= min

τ0

∑
b∈B(G)

[
b2 − 2bτ0(b) + τ2

0 (b)
]

= min
τ0

∑
b∈B(G)

−2bτ0(b) + C1

= max
τ0

∑
b∈B(G)

bτ0(b),

where C1 is a constant. Note that
∑
b∈B(G) τ

2
0 (b) is equivalent to

∑
b∈B(H) b

2, which is a constant
over all bijections τ0. Similarly for the second term, we have

min
τ1

∑
d∈D(G)

[
d− τ1(d)

]2
= max

τ1

∑
d∈D(G)

dτ1(d).

Let B(G) : x1 ≤ · · · ≤ xm−1 and B(H) : y1 ≤ · · · ≤ ym−1 be the collections of birth values for G
and H respectively. By the rearrangement inequality (Mitrinovic, 1970), it is known that

x1y1 + · · ·+ xm−1ym−1 ≥ xπ(1)y1 + · · ·+ xπ(m−1)y(m−1)

for every permutation xπ(1), ..., xπ(m−1) of x1, ..., xm−1. Thus, optimal bijection τ∗0 maps the l-th
smallest birth value in B(G) to the l-th smallest birth value in B(H). Similarly for the second
term, we have τ∗1 that maps the l-th smallest death value in D(G) to the l-th smallest death value in
D(H).

A.2 CLOSED-FORM SOLUTION OF TOPOLOGICAL CENTROID

Lemma 1. Let G1, ..., Gn be n networks each with m nodes. Let B(Gi) : bi,1 ≤ · · · ≤ bi,m−1 and
D(Gi) : di,1 ≤ · · · ≤ di,1+m(m−3)/2 be the topology of Gi. It follows that the l-th smallest birth
value of the topological centroid of the n networks is given by the mean of all the l-th smallest birth
values of such networks, i.e.,

∑n
i=1 bi,l/n. Similarly, the l-th smallest death value of the topological

centroid is given by
∑n
i=1 di,l/n.

Proof. Let M be a cluster representative. Recall that the topological centroid minimizes the sum of
the squared topological distances, i.e.,

min
M

n∑
i=1

d2
top(M,Gi) = min

B(M),D(M)

n∑
i=1

( ∑
b∈B(M)

[
b− τ∗0 (b)

]2
+

∑
d∈D(M)

[
d− τ∗1 (d)

]2)
.
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Let B(M) : γ1 ≤ · · · ≤ γm−1 and D(M) : δ1 ≤ · · · ≤ δ1+m(m−3)/2 be the topology of M . The
first term can be expanded as

n∑
i=1

( ∑
b∈B(M)

[
b− τ∗0 (b)

]2)
=

n∑
i=1

(
[γ1 − bi,1]2 + · · ·+ [γm−1 − bi,m−1]2

)
,

which is quadratic and thus can be solved by setting its derivative equal to zero. The solution is given
by γ̂l =

∑n
i=1 bi,l/n. Similarly, the second term can be expanded as

n∑
i=1

( ∑
d∈D(M)

[
d− τ∗1 (d)

]2)
=

n∑
i=1

(
[δ1 − di,1]2 + · · ·+ [δ1+m(m−3)/2 − di,1+m(m−3)/2]2

)
,

which is again quadratic. By setting its derivative equal to zero, we find the minimum at δ̂l =∑n
i=1 di,l/n.

A.3 TOPOLOGICAL INTERPOLATION

Lemma 2.
k∑
h=1

min
Θh

∑
G∈Ch

dnet(Θh, G) =

k∑
h=1

min
Θh

(
(1− λ)

∑
i

∑
j>i

(
θh,ij − wh,ij

)2
+ λd2

top

(
Θh, M̂top,h

))
,

(10)
where wh = (wh,ij) are edge weights in the sample mean network Mh = (V,wh) of cluster Ch,
and M̂top,h is the topological centroid of networks in cluster Ch.

Proof. Let G = (V,w) ∈ C and Θ = (V,θ). Denote the cardinality of C by m. We will show that

min
Θ

∑
G∈C

dnet(Θ, G) = min
Θ

(
(1− λ)

∑
i

∑
j>i

(
θij − wij

)2
+ λd2

top(Θ, M̂top)
)
.

We first rewrite the geometric term as follows.∑
G∈C

∑
i

∑
j>i

(
θij − wij

)2
=
∑
G∈C

∑
i

∑
j>i

(
θ2
ij − 2θijwij + w2

ij

)
=
∑
i

∑
j>i

(
mθ2

ij − 2θij
∑
G∈C

wij +
∑
G∈C

w2
ij

)
= m

∑
i

∑
j>i

(
θ2
ij −

2θij
m

∑
G∈C

wij
)

+ C1

= m
∑
i

∑
j>i

(
θ2
ij −

2θij
m

∑
G∈C

wij + (
∑
G∈C

wij/m)2
)

+ C2

= m
∑
i

∑
j>i

(
θij −

∑
G∈C

wij/m
)2

+ C2

= m
∑
i

∑
j>i

(
θij − wij

)2
+ C2,

where C1, C2 are constants. Similarly for the topological term, we have∑
G∈C

d2
top

(
Θ, G

)
=
∑
G∈C

( ∑
b∈B(Θ)

[
b− τ∗0 (b)

]2
+

∑
d∈D(Θ)

[
d− τ∗1 (d)

]2)
=
∑
b

[
mb2 − 2b

∑
G∈C

τ∗0 (b)
]

+
∑
d

[
md2 − 2d

∑
G∈C

τ∗1 (d)
]

+ C3

= m
(∑

b

[
b−

∑
G∈C

τ∗0 (b)/m
]2

+
∑
d

[
d−

∑
G∈C

τ∗1 (d)/m
]2)

+ C4

= md2
top(Θ, M̂top) + C4.
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Thus,

min
Θ

∑
G∈C

dnet(Θ, G) = min
Θ

(1− λ)
(
m
∑
i

∑
j>i

(
θij − wij

)2
+ C2

)
+ λ
(
md2

top(Θ, M̂top) + C4

)
= min

Θ
m
(

(1− λ)
∑
i

∑
j>i

(
θij − wij

)2
+ λd2

top(Θ, M̂top)
)

+ C5

= min
Θ

(
(1− λ)

∑
i

∑
j>i

(
θij − wij

)2
+ λd2

top(Θ, M̂top)
)
.

A.4 CONVERGENCE TO A LOCALLY OPTIMAL PARTITION

Theorem 1. The topological clustering algorithm monotonically decreases L and terminates in a
finite number of steps at a locally optimal partition.

Proof. Let C(t) = {C(t)
h }kh=1 be a partition of observed networks with corresponding representatives

M(t) = {M (t)
h }kh=1 after the t-th iteration. Then,

L(C(t),M(t)) =

k∑
h=1

∑
G∈C(t)

h

dnet(M
(t)
h , G)

(a)
≥

k∑
h=1

∑
G∈C(t+1)

h

dnet(M
(t)
h , G)

(b)
≥

k∑
h=1

∑
G∈C(t+1)

h

dnet(M
(t+1)
h , G) = L(C(t+1),M(t+1)),

where (a) follows from the assignment step and (b) follows from applying Lemma 1 (when λ = 1) and
Lemma 2 (when λ ∈ (0, 1) and step size in gradient descent is sufficiently small) to the re-estimation
step. Note that λ = 0 describes conventional edge clustering (MacQueen, 1967). This result shows
that the algorithm monotonically decreases L. Since the number of distinct partitions is finite and L
is monotonically decreasing, eventually L will not be decreased either by (a) the assignment step or
(b) re-estimation step and the algorithm terminates.

B EXPERIMENTAL DETAILS

B.1 SUPPLEMENTARY DESCRIPTION FOR CANDIDATE METHODS

METHODS BASED ON TWO-DIMENSIONAL BARCODES

The Wasserstein method clusters conventional two-dimensional barcodes representing connected
components and cycles. To this end, two separate Wasserstein distances are needed to match
connected components to connected components and cycles to cycles. The Wasserstein method
performs clustering using k-medoids based on the sum of the two Wasserstein distances for connected
components and cycles.

Bregman Alternating Direction Method of Multipliers (B-ADMM) (Ye et al., 2017) is a Wasserstein
barycenter based algorithm for clustering discrete distributions. We follow the standard approach
(Turner et al., 2014) to representing underlying discrete distributions on two-dimensional barcodes in
the form of Dirac masses. The high computational complexity of B-ADMM is managed by limiting
the clustering to no more than the 50 most persistent cycles.

The two methods require computation of two-dimensional persistence barcodes from networks. We
compute a two-dimensional persistence barcode using the approach of Otter et al. (2017) in which
edge weights are inverted via the function f(w) = 1/(1 + w). Then a point cloud is obtained from
the shortest path distance between nodes. Finally, we compute Rips filtration (Ghrist, 2008) and its
corresponding persistence barcode from the point cloud.
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Supplementary Figure 1: Average confusion matrices over 100 random initializations for subject
R376. W: wake, S: sedated, U: unresponsive.

METHODS BASED ON GRAPH KERNELS

The two graph kernel methods based on GraphHopper and propagation kernels require node con-
tinuous attributes. We follow the experimental protocol of Borgwardt et al. (2020) in which a node
attribute is set to the sum of edge weights incident to the node.

METHODS BASED ON NETWORK DISTANCE MEASURES FOR BRAIN NETWORK ANALYSES

Gromov-Hausdorff (GH) distance (Lee et al., 2012) compares dendrogram shape differences in brain
networks. GH distance requires brain networks that exhibit metric spaces. To this end, we follow the
approach of Otter et al. (2017) for converting a brain network to a metric space. The metric space
is obtained by first inverting edge weights via the function f(w) = 1/(1 + w) and then using the
shortest path distance between nodes as a metric.

Kolmogorov-Smirnov (KS) distance (Chung et al., 2019) compares topological differences in brain
networks using their Betti numbers. Two separate KS distances are needed to compare 0-th Betti
numbers to 0-th Betti numbers and 1-st Betti numbers to 1-st Betti numbers. The sum of the two KS
distances is used to compare brain networks.

We follow the approach of Banks et al. (2020) to comparing brain networks using the operator or
spectral norm of the difference between network adjacency matrices.

B.2 IMPLEMENTATION OF CANDIDATE METHODS

For all the baseline methods, we used existing implementation codes from authors’ publications
and publicly available repository websites. We used parameters recommended in the public code
without any modification. Code for Wasserstein distance approximation (Lacombe et al., 2018) is
available at https://gudhi.inria.fr/. Code for Bregman Alternating Direction Method of
Multipliers (B-ADMM) method (Ye et al., 2017) is available at https://github.com/bobye/
WBC_Matlab. Code for the three network summary statistics used in the Net Stats method is
available at https://sites.google.com/site/bctnet/. Code for GraphHopper and
propagation graph kernels is available at https://github.com/ysig/GraKeL.

B.3 SUPPLEMENTARY RESULTS FOR SIMULATED AND MEASURED DATASETS

For simulated networks, clustering performance comparison is reported in Supplementary Table 1.
For measured brain networks, confusion matrices of all the candidate methods for subject R376 (see
Supplementary Table 2) are reported in Supplementary Figure 1.
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Supplementary Table 1: Clustering performance comparison for simulated networks with |V | = 60
nodes. (a) average accuracy and (b) average p-values for various parameter settings of m (number of
modules) and r (within-module connection probability).

m r Top (λ = 1) Edge-weight Sort Wasserstein B-ADMM Net Stats GraphHopper Propagation

2/3/5

0.6 0.75± 0.06 0.46± 0.04 0.76± 0.06 0.57± 0.06 0.61± 0.05 0.75± 0.06 0.69± 0.08 0.60± 0.12
0.7 0.95± 0.06 0.62± 0.13 0.94± 0.08 0.77± 0.08 0.81± 0.08 0.96± 0.02 0.90± 0.12 0.75± 0.13
0.8 0.97± 0.10 0.75± 0.17 0.97± 0.10 0.88± 0.12 0.92± 0.08 0.98± 0.09 0.98± 0.09 0.80± 0.16
0.9 0.94± 0.13 0.81± 0.17 0.93± 0.14 0.90± 0.15 0.96± 0.09 0.95± 0.12 0.97± 0.13 0.82± 0.20

2/5/10

0.6 0.78± 0.07 0.44± 0.05 0.78± 0.07 0.63± 0.06 0.66± 0.05 0.77± 0.07 0.73± 0.11 0.65± 0.14
0.7 0.85± 0.13 0.59± 0.10 0.85± 0.12 0.81± 0.09 0.86± 0.07 0.89± 0.10 0.85± 0.21 0.81± 0.12
0.8 0.90± 0.14 0.72± 0.13 0.89± 0.15 0.88± 0.14 0.91± 0.13 0.91± 0.14 0.85± 0.26 0.85± 0.15
0.9 0.92± 0.14 0.78± 0.15 0.92± 0.14 0.92± 0.14 0.91± 0.15 0.90± 0.15 0.73± 0.33 0.85± 0.17

(a) Average accuracy

m r Top (λ = 1) Edge-weight Sort Wasserstein B-ADMM Net Stats GraphHopper Propagation

2/3/5

0.6 < 0.001 0.28± 0.26 < 0.001 0.02± 0.12 0.003± 0.021 < 0.001 0.02± 0.14 0.09± 0.27
0.7 < 0.001 0.07± 0.21 < 0.001 < 0.001 < 0.001 < 0.001 0.04± 0.20 0.01± 0.10
0.8 < 0.001 0.03± 0.13 < 0.001 < 0.001 < 0.001 < 0.001 0.02± 0.14 0.04± 0.20
0.9 < 0.001 0.01± 0.09 < 0.001 < 0.001 < 0.001 < 0.001 0.04± 0.20 0.08± 0.27

2/5/10

0.6 < 0.001 0.37± 0.33 < 0.001 0.004± 0.034 < 0.001 < 0.001 0.06± 0.24 0.12± 0.31
0.7 < 0.001 0.05± 0.14 < 0.001 < 0.001 < 0.001 < 0.001 0.14± 0.35 0.01± 0.10
0.8 < 0.001 0.03± 0.15 < 0.001 < 0.001 < 0.001 < 0.001 0.20± 0.40 0.03± 0.17
0.9 < 0.001 0.004± 0.039 < 0.001 < 0.001 < 0.001 < 0.001 0.41± 0.49 0.04± 0.20

(b) Average p-values

Supplementary Table 2

Subject Age Gender Network size

R369 30 M 199
L372 34 M 174
R376 48 F 189
B384 38 M 89
R399 22 F 175
L400 59 F 126
L403 56 F 194
L405 19 M 127
L409 31 F 160
L423 51 M 152
L514 46 M 118

C BRAIN NETWORK DATASET

Brain network data were obtained from eleven neurosurgical patients (5 female, ages 19 - 59 years old,
median age 38 years old; Supplementary Table 2). The patients had been diagnosed with medically
refractory epilepsy and were undergoing chronic invasive intracranial electroencephalography (iEEG)
monitoring to identify potentially resectable seizure foci. All human subjects experiments were
carried out in accordance with The Code of Ethics of the World Medical Association (Declaration of
Helsinki) for experiments involving humans. The research protocols were approved by the University
of Iowa Institutional Review Board and the National Institutes of Health. Written informed consent
was obtained from all subjects. Research participation did not interfere with acquisition of clinically
required data. Subjects could rescind consent at any time without interrupting their clinical evaluation.
Recordings were made using subdural and depth electrodes (Ad-Tech Medical, Oak Creek, WI)
placed solely on the basis of clinical requirements, as determined by the team of epileptologists and
neurosurgeons. The brain network dataset was based on recordings made in the operating room prior
to electrode removal, before and during induction of general anesthesia with propofol. Details of the
experimental procedure, recording, and electrophysiological data analysis are available in (Banks
et al., 2020).
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Supplementary Figure 2: Toy illustration of performing topological clustering using only topological
centroids (λ = 1). Clustering is performed on 15 networks: five each with m = 2, 5 and 10 modules.
All networks use |V | = 30, within module connection probability r = 0.9 and edge weight standard
deviation σ = 0.1. (a) Network examples for m = 2 (top), 5 (middle) and 10 (bottom) modules.
(b) Illustration of topological clustering. Topological centroids M̂top,i (thick lines) and individual
network topologies are visualized using Betti numbers as a function of edge weights (filtration values).
The algorithm converges in three iterations and the final partition (last column) perfectly matches the
ground truth, i.e., C1, C2 and C3 corresponds to m = 2, 5 and 10.

D TOY ILLUSTRATION OF TOPOLOGICAL CLUSTERING

Supplementary Figure 2 illustrates a cluster analysis of the proposed topological approach using only
topological centroids (λ = 1) on a toy dataset generated using random modular networks described
in Section 4 in the main body of the paper.
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