
Embodied Executable Policy Learning with Language-based
Scene Summarization

Anonymous ACL submission

Abstract
Large Language models (LLMs) have shown001
remarkable success in assisting robot learning002
tasks, i.e., complex household planning. How-003
ever, the performance of pretrained LLMs heav-004
ily relies on domain-specific templated text005
data, which may be infeasible in real-world006
robot learning tasks with image-based obser-007
vations. Moreover, existing LLMs with text008
inputs lack the capability to evolve with non-009
expert interactions with environments. In this010
work, we introduce a novel learning paradigm011
that generates robots’ executable actions in the012
form of text, derived solely from visual ob-013
servations, using language-based summariza-014
tion of visual observations as the connecting015
bridge between both domains. Our proposed016
paradigm stands apart from previous works,017
which utilized either language instructions or018
a combination of language and visual data as019
inputs. Moreover, our method does not re-020
quire oracle text summarization of the scene021
in the testing time, which makes it more prac-022
tical for real-world robot learning tasks. Our023
proposed paradigm consists of two modules:024
the SUM module, which interprets the envi-025
ronment using visual observations and pro-026
duces a text summary of the scene, and the027
APM module, which generates executable ac-028
tion policies based on the natural language de-029
scriptions provided by the SUM module. We030
demonstrate that our proposed method can em-031
ploy two fine-tuning strategies, including imi-032
tation learning and reinforcement learning ap-033
proaches, to adapt to the target test tasks ef-034
fectively. We conduct extensive experiments035
involving various SUM/APM model selections,036
environments, and tasks across 7 house layouts037
in the VirtualHome environment. Our exper-038
imental results demonstrate that our method039
surpasses existing baselines, confirming the ef-040
fectiveness of this novel learning paradigm.041

1 Introduction042

There has been a surge of interest in building Large043

Language Models (LLMs) pretrained on large-044

scale datasets and exploring LLMs’ capability in 045

various downstream tasks. LLMs start from the 046

Transformer model (Vaswani et al., 2017b) and 047

are first developed to solve different natural lan- 048

guage processing (NLP) applications (Devlin et al., 049

2019; Liu et al., 2019; Brown et al., 2020). Re- 050

cently, LLMs also show great potential for acceler- 051

ating learning in many other domains by generating 052

learned embeddings as meaningful representations 053

for downstream tasks and encoding transferable 054

knowledge in large pretraining datasets. Exam- 055

ples include transferring the knowledge of LLM 056

to, i.e., robotics control (Liang et al., 2022; Ahn 057

et al., 2022), multimodal learning (Zeng et al., 058

2022; Zellers et al., 2021), decision-making (Li 059

et al., 2022b; Huang et al., 2022a), code genera- 060

tion (Fried et al., 2022), laws (Kaplan et al., 2020), 061

computer vision (Radford et al., 2021), and so on. 062

In this paper, we focus on the problem of fa- 063

cilitating robot learning by having a LLM in the 064

loop. The robot generates actions according to 065

its environment observations, which are, in gen- 066

eral, sensory information in the format of images, 067

point clouds, or kinematic states. We identify one 068

key challenge in massively deploying LLMs to 069

assist robots is that LLMs lack the capability to 070

understand such non-text-based environment ob- 071

servations. To solve this challenge, Liang et al. 072

(2022) utilize rule-based perception APIs to trans- 073

form image-based observations into text formats, 074

which then serve as inputs to the LLM. We in- 075

stead propose to integrate the multimodal learning 076

paradigm to transform images into texts, which al- 077

lows more principled and efficient transfer to novel 078

robot learning tasks than rule-based APIs. Another 079

key challenge is the widely-existing large distri- 080

bution shifts between the training tasks of large 081

pretrained models and testing tasks in the domain 082

of robot learning. To close the domain gap, Li 083

et al. (2022b) adapt the pretrained LLM to down- 084

stream tasks via finetuning with observations con- 085

1

verted into text descriptions. In the presence of086

realistic visual observations, it is still being deter-087

mined what is an appropriate method to co-adapt088

pretrained foundation models for testing tasks in089

robot learning.090

To address the above challenges, we propose091

a new visual-based robot learning paradigm that092

takes advantage of embedded knowledge in both093

multimodal models and LLMs. To align different094

modalities in the visual observations and text-based095

actions, we consider language as the bridge infor-096

mation. We build a scene-understanding model097

(SUM) with a pretrained image captioning model098

to grant the robot the ability to describe the sur-099

rounding environment with natural language. We100

then build an action prediction model (APM) with101

a LLM to generate execution actions according102

to the scene caption in the format of natural lan-103

guage. To adapt pretrained models in SUM and104

APM to downstream robot learning tasks, we pro-105

pose to finetune the multimodal model in SUM106

with pre-collected domain-specific image-caption107

pairs and the language model in APM with corre-108

sponding language-action pairs. Besides finetuning109

with expert demonstrations, we further propose a110

finetuning paradigm of APM based on the sparse111

environment feedback to endow APM’s capability112

to evolute with non-expert data. An illustration of113

the proposed framework is Figure 1.114

Our contributions are summarised as follows:115

• We introduce a novel robot learning paradigm116

with LLM in the loop that handles multiple117

modalities of visual observations and text-118

based actions in a principled manner. We119

bridge both modalities with natural language120

generated by a pretrained multimodal model.121

• To adapt to target testing tasks, we propose122

two fine-tuning strategies, including imita-123

tion learning and reinforcement learning ap-124

proaches. We collect a new expert dataset for125

imitation learning-based finetuning.126

• We test the adaptation performance of multi-127

ple models of SUM and APM in seven house128

layouts in the VirtualHome environment. Our129

experiments demonstrate that our proposed130

paradigm shows promising results.131

2 Related Work132

Language Models in Robot Learning Recently,133

several works have successfully combined LLMs134

with robot learning by taking advantage of the135

knowledge learned by LLMs i.e., reasoning (Liang 136

et al., 2022; Zeng et al., 2022; Zellers et al., 2021), 137

planning (Shah et al., 2022; Huang et al., 2022b; 138

Kant et al., 2022; Li et al., 2022b; Huang et al., 139

2022a), manipulation (Shafiullah et al., 2022; Jiang 140

et al., 2022; Shridhar et al., 2022; Bucker et al., 141

2022; Ren et al., 2022; Tam et al., 2022; Khandel- 142

wal et al., 2022; Shridhar et al., 2021; Xu et al., 143

2022; ?), and navigation (Lin et al., 2022; Parisi 144

et al., 2022; Gadre et al., 2022; Hong et al., 2021; 145

Majumdar et al., 2020), which demonstrated the 146

feasibility of using LLM to assist robot learning. 147

Visual Feedback in Robot Learning Visual 148

feedback is commonly used in robot learning. 149

Gothoskar et al. (2020) learned a generative model 150

from actions to image observations of features to 151

control a robot from visual feedback. Ma et al. 152

(2022) proposed a self-supervised pretrained vi- 153

sual representation model which is capable of gen- 154

erating dense and smooth reward functions for 155

unseen robotic tasks. Strokina et al. (2022) re- 156

viewed the methods of reward estimation and visual 157

representations used in learning-based approaches 158

for robotics applications. Mohtasib et al. (2021) 159

studied the performance of dense, sparse, visually 160

dense, and visually sparse rewards in deep RL. 161

Pre-training and Fine-tuning of Language Mod- 162

els Over the past few years, fine-tuning (Howard 163

and Ruder, 2018) has superseded the use of fea- 164

ture extraction of pretrained embeddings (Peters 165

et al., 2018) while pretrained language models are 166

favored over models trained on many tasks due to 167

their increased sample efficiency and performance 168

(Ruder, 2021). The success of these methods has 169

led to the development of even larger models (De- 170

vlin et al., 2019; Raffel et al., 2019). But those 171

large models may not perform well on data that is 172

different from what they were pretrained on. Under 173

this case, fine-tuning pretrained contextual word 174

embedding models to supervised downstream tasks 175

has become commonplace (Hendrycks et al., 2020; 176

Dodge et al., 2020). More related works can be 177

found in Appendix E. 178

3 Method 179

In this section, we first introduce our focused prob- 180

lem in Section 3.1, which is generating a visual- 181

based policy by leveraging pretrained large models. 182

We then introduce SUM, which learns language 183

descriptions of the surrounding environment in Sec- 184

tion 3.1, and APM which predicts actions based on 185

2

Figure 1: The overall architecture of our approach, which includes a scene understanding module (SUM) and an
action prediction module (APM). The agent takes pure visual observations and encodes the information as latent
language, then the language is transferred to APM for action generation. APM fine-tuned on VirtualHome can
generate executable action plans directly.

SUM’s caption output in 3.2. To grant both SUM186

and APM the capability of making the correct un-187

derstanding and decision in the target domain, we188

propose finetuning algorithms in Section 3.1 and189

3.2. Our code and data are provided in the supple-190

mentary materials.191

3.1 Problem Formulation192

We consider a general and realistic robot learning193

task where a robot agent receives a sequential vi-194

sual observation V = [v1, v2, ..., vt], where t is the195

timestep, and aims to generate a sequence of ac-196

tions A = [a1, a2, ..., at] based on the pure visual197

observations V . Traditionally, the robot’s policy is198

trained from scratch in the target tasks. Inspired199

by the success of large pretrained models, we aim200

to explore the benefit of utilizing pretrained LLMs201

and multimodal models for general robot learning202

tasks, where only visual observations are available203

as inputs. Given the prevailing domain shift be-204

tween the training domain of the pretrained models205

and the robot learning tasks, we are motivated to206

develop a principled finetuning method.207

SUM: Learning Scene Descriptions from Visual208

Observations into Language. The goal of the209

SUM (scene understanding module) is to trans-210

form visual observations into language descriptions211

that contain an actionable trait to it. SUM shares212

similar functionalities of visual captioning models,213

which aim to automatically generate fluent and in-214

formative language descriptions of an image (Ke215

et al., 2019). For the SUM to be capable of provid-216

ing scene descriptions from visual observations, it217

needs to distill representative and meaningful vi-218

sual representations from an image, then generate219

coherent and intelligent language descriptions. In220

our framework, we adopt models with image cap- 221

tioning ability as our SUM, such as OFA (Wang 222

et al., 2022), BLIP (Li et al., 2022a), and GRIT 223

(Nguyen et al., 2022). We will discuss the details 224

of possible image captioning models to use in Sec- 225

tion 4. Generally, image captioning models em- 226

ploy a visual understanding system and a language 227

model capable of generating meaningful and syn- 228

tactically correct captions (Stefanini et al., 2021). 229

In a standard configuration, the task can be defined 230

as an image-to-sequence problem, where the inputs 231

are pixels, which will be encoded as one or multiple 232

feature vectors in the visual encoding step. The lan- 233

guage model will take the information to produce a 234

sequence of words or subwords decoded according 235

to a given vocabulary in a generative way. 236

With the development of self-attention (Vaswani 237

et al., 2017a), the visual features achieved remark- 238

able performance due to multimodal pretraining 239

and early-fusion strategies (Tan and Bansal, 2019; 240

Lu et al., 2019; Li et al., 2020; Zhou et al., 2019). 241

As for language models, the goal is to predict the 242

probability of a given sequence of words occur- 243

ring in a sentence. As such, it is a crucial com- 244

ponent in image captioning, as it gives the abil- 245

ity to deal with natural language as a stochastic 246

process. Formally, given a sequence of n words 247

y1, . . . , yn, the language model component of an 248

image captioning algorithm assigns a probability 249

P (y1, y2, . . . , yn |X) to the sequence as: 250

P (y1, y2, . . . yn |X) =

n∏
i=1

P (yi | y1, y2, . . . , yi−1,X)

(1) 251

where X represents the visual encoding on which 252

the language model is specifically conditioned. No- 253

tably, when predicting the next word given the pre- 254

vious ones, the language model is autoregressive, 255

3

which means that each predicted word is condi-256

tioned on the previous ones. Additionally, the lan-257

guage model usually decides when to stop gen-258

erating captions by outputting a special end-of-259

sequence token.260

3.2 APM: Decoding Language Information261

into Executable Action Plans262

The goal of APM (action prediction module) is263

to transform latent language information from the264

SUM output into executable action plans. Since265

both latent language information and executable ac-266

tion plans are sequential data, a LLM with encoder-267

decoder architecture is a good option for APM in268

our framework. In addition, a LLM pretrained on a269

vast corpus of text already has adequate knowledge,270

which can be fine-tuned on other tasks to improve271

learning efficiency.272

A LLM with encoder-decoder architecture suits273

well for our setting. The encoder is responsible for274

reading and understanding the input language infor-275

mation from SUM, which is usually based on trans-276

former architecture, and creates a fixed-length vec-277

tor representation, called the context vector. The278

decoder then takes the context vector as input and279

generates the output, in our case, the executable280

action plans. The decoder uses the context vector281

to guide its generation of the output and make sure282

it is coherent and consistent with the input infor-283

mation. However, due to the distribution change284

between the data that LLM was pretrained on and285

the new task, the LLM needs to be fine-tuned on286

the task-specific data to transfer the knowledge.287

The fine-tuning strategies will be introduced in the288

following sections. For our LLMs, we use well-289

adopted pretrained architectures, including BERT290

(Devlin et al., 2019), RoBERTa (Liu et al., 2019),291

and BART (Lewis et al., 2020), as both the encoder292

and decoder. The goal of the LLM is to learn how293

to generate programmable, executable actions from294

the language descriptions outputted by SUM.295

3.3 Training Pipeline296

The training pipeline contains two steps. We first297

fine-tune SUM with the curated VirtualHome ob-298

servations (More details about data collection are299

introduced in Section 4.2). This fine-tuning step is300

to familiarize SUM with the types of scenes present301

in the task-specific data. We present pseudocode to302

fine-tune the SUM in Algorithm 1 in Appendix A.303

In the second stage, we load the fine-tuned SUM304

and encode the outputs as latent language embed-305

dings. The embeddings are then fed into the APM, 306

which is then fine-tuned using different fine-tuning 307

loss objectives (supervised one or policy gradient, 308

more details are introduced in Section 4), to achieve 309

the optimal policy with maximum rewards. The 310

pseudocode for finetuning APM with IL and REIN- 311

FORCE are in Algorithms 2 and 3 in Appendix A, 312

respectively. 313

3.4 Fine-tuning APM with IL and RL 314

For LLM, the output word is sampled from a 315

learned distribution over the vocabulary words. In 316

the most simple scenario, i.e. the greedy decoding 317

mechanism, the word with the highest probabil- 318

ity is output. The main drawback of this setting 319

is that possible prediction errors quickly accumu- 320

late along the way. To alleviate this drawback, 321

one effective strategy is to use the beam search 322

algorithm (Cho et al., 2014; Koehn, 2007) that, in- 323

stead of outputting the word with maximum prob- 324

ability at each time step, maintaining k sequence 325

candidates and finally outputs the most probable 326

one. For the training or fine-tuning strategies, most 327

strategies are based on cross-entropy (CE) loss and 328

masked language model (MLM). But recently, RL- 329

based learning objective has also been explored, 330

which allows optimizing for captioning-specific 331

non-differentiable metrics directly. 332

Imitation Learning with Cross-Entropy Loss 333

CE loss aims to minimize negative log-likelihood 334

of the current word given the previous ground-truth 335

words at each timestep. Given a sequence of target 336

words y1:T , the loss is defined as: 337

LXE(θ) = −
n∑

i=1

log (P (yi | y1:i−1,X)) (2) 338

where P is the probability distribution induced by 339

LLM, yi the ground-truth word at time i, y1:i−1 in- 340

dicate the previous ground-truth words, and X the 341

visual encoding. The cross-entropy loss is designed 342

to operate at the word level and optimize the prob- 343

ability of each word in the ground-truth sequence 344

without considering longer-range dependencies be- 345

tween generated words. The traditional training 346

setting with cross-entropy also suffers from the ex- 347

posure bias problem (Ranzato et al., 2015) caused 348

by the discrepancy between the training data dis- 349

tribution as opposed to the distribution of its own 350

predicted words. 351

Reinforcement Learning with REINFORCE 352

Given the limitations of word-level training strate- 353

4

gies observed when using limited amounts of data,354

a significant improvement was achieved by apply-355

ing the RL approach. Under this setting, the LLM356

is considered as an agent whose parameters deter-357

mine a policy. At each time step, the agent executes358

the policy to choose an action, i.e. the prediction of359

the next word in the generated sentence. Once the360

end-of-sequence is reached, the agent receives a re-361

ward, and the aim of the training is to optimize the362

agent parameters to maximize the expected reward363

(Stefanini et al., 2021).364

Similar to Ranzato et al. (2015), for our policy365

gradient method, we use REINFORCE (Williams,366

1992; Sutton et al., 1999), which uses the full tra-367

jectory, making it a Monte-Carlo method, to sam-368

ple episodes to update the policy parameter. For369

fine-tuning LLMs using RL, we need to frame the370

problem into an Agent-Environment setting where371

the agent (policy) can interact with the environ-372

ment to get the reward for its actions. This reward373

is then used as feedback to train the model. The374

mapping of the entities is from the agent (policy),375

which is an LLM, and the environment (the reward376

function, also named the model), which generates377

rewards. The reward function consumes the input378

as well as the output of the LLM to generate the379

reward. The reward is then used in a loss function,380

and the policy is updated. Formally, to compute381

the loss gradient, beam search and greedy decoding382

are leveraged as follows:383

∇θL(θ) = −
1

k

k∑
i=1

((
r
(
wi

)
− b

)
∇θ logP

(
wi

))
(3)384

where wi is the i-th sentence in the beam or a385

sampled collection, r(·) is the reward function, and386

b is the baseline, computed as the reward of the387

sentence obtained via greedy decoding (Rennie388

et al., 2016), or as the average reward of the beam389

candidates (Cornia et al., 2019). Note that, since it390

would be difficult for a random policy to improve in391

an acceptable amount of time, the usual procedure392

entails pretraining with cross-entropy or masked393

language model first, and then fine-tuning stage394

with RL by employing a sequence level metric as395

the reward. This ensures the initial RL policy is396

more suitable than the random one.397

4 Experiments398

This section introduces the environment we used399

in the experiments, the experimental settings, eval-400

uations, and results. We would like to answer the401

following questions with experiments: (1) Can the 402

proposed paradigm take pure visual observations to 403

generate executable robot actions; (2) What kinds 404

of SUM are able to provide better scene descrip- 405

tions for robot learning; (3) What kinds of APM 406

show better action decoding ability in generating 407

executable actions; (4) What kinds of fine-tuning 408

strategies show better performance under this set- 409

ting; (5) Can the model achieve consistent perfor- 410

mance across different environments? 411

4.1 Environments and Metrics 412

Environments We build the experiment environ- 413

ments based on VirtualHome (Puig et al., 2018a; 414

Liao et al., 2019), a multi-agent, virtual platform 415

for simulating daily household activities. (Puig 416

et al., 2018b). Puig et al. (2018a) provides a dataset 417

of possible tasks in their respective environments. 418

Each task includes a natural language description 419

of the task ("Put groceries in the fridge."), an 420

elongated and more detailed natural language de- 421

scription of the task ("I put my groceries into the 422

fridge."), and the executable actions to perform 423

the task in VirtualHome ([[Walk] < groceries > (1), 424

[Grab] < groceries > (1), ... [Close] < fridge > (1)]). 425

We define the training and testing tasks based on 426

the natural language descriptions of the task due to 427

their straightforwardness. 428

In VirtualHome, the agents are represented as 429

3D humanoid avatars that interact with given envi- 430

ronments through provided, high-level instructions. 431

Puig et al. (2018a) accumulated a knowledge base 432

of instructions by using human annotators from 433

AMT to first yield verbal descriptions of verbal 434

activities. These descriptions were further trans- 435

lated by AMT annotators into programs utilizing 436

a graphical programming language, thus amassing 437

around 3,000 household activities in 50 different 438

environments (Puig et al., 2018a). In this study, 439

we evaluate our model’s performance in 7 unique 440

environments, which are shown in Figure 4 in the 441

Appendix. Each environment has a distinctive set 442

of objects and actions that may be interacted with 443

by agents. 444

Metrics We used standard NLP evaluation met- 445

rics, i.e., BLEU (Papineni et al., 2002), ROUGE 446

(Lin, 2004), METEOR (Banerjee and Lavie, 2005), 447

CIDEr (Vedantam et al., 2015), and SPICE (Ander- 448

son et al., 2016), for evaluating LLMs. In addition, 449

we introduced the execution rate following Li et al. 450

(2022b). The execution rate is defined as the prob- 451

5

ability of the agent’s success in performing the out-452

putted action from APM over the whole trajectory.453

More experimental setup details about SUM and454

APM are listed in Appendix B. We run 10 seeds455

for each environment.456

4.2 Datasets457

To fine-tune SUM and APM on task-specific robot458

learning scenarios, we collect data via Virtual-459

Home, including the agent’s observations, language460

instructions, and action sequences. During data461

collection, a household activity program can be462

described as: [[actioni] < objecti > (idi), ...463

[actionn] < objectn > (idn)], where i denotes464

each step of the program, actioni and objecti de-465

notes the action performed on the object at step i,466

and idi symbolizes the unique identifier of objecti467

(Puig et al., 2018a). The original dataset was aug-468

mented by ResActGraph (Liao et al., 2019). Af-469

ter augmentation, the dataset contains over 30,000470

executable programs, with each environment con-471

taining over 300 objects and 4,000 spatial relations.472

Additionally, we collect the image and text pairs473

separated by the environments they were executed474

in. This is important due to the different objects475

and actions available in each environment. How-476

ever, as noted in Puig et al. (2018a) and Liao et al.477

(2019), not all programs were executable.478

During data collection, we observed that the text479

was comprised of two words (e.g. walk bathroom,480

sitting chair, run treadmill). To have a more ro-481

bust text description, we prompt engineered the482

texts with a fill-mask pipeline using BERT (De-483

vlin et al., 2019; Song et al., 2019). For this484

study, we collect programs executed in three dif-485

ferent views: ‘AUTO’, ‘FIRST_PERSON’, and486

‘FRONT_PERSON’ as shown in Figure 2. In the487

‘AUTO’ view, there are locked cameras in every488

scene through which the program randomly iterates489

through. The ‘FIRST_PERSON’ view observes490

the agent’s actions through the first-person point of491

view. The ‘FRONT_PERSON’ view monitors the492

agent’s actions through the front in a locked third-493

person point of view. Therefore, the final count494

of image-text pairs for our dataset in the ‘AUTO’,495

‘FIRST_PERSON’, and ‘FRONT_PERSON’ views496

are 26,600, 26,607, and 26,608, respectively.497

4.3 Experimental Setup498

SUM Setting For SUM, we use the following499

image captioning models to serve as SUM: OFA500

(Wang et al., 2022), BLIP (Li et al., 2022a), and501

Figure 2: ‘AUTO’, ‘FIRST PERSON’, ‘FRONT PER-
SON’ views.

GRIT (Nguyen et al., 2022). Both OFA and BLIP 502

are pretrained on the same five datasets, while the 503

GRIT model (Nguyen et al., 2022) is pretrained on 504

a different combination of datasets. For OFA, we 505

adopted OFALarge due to its superior performance 506

in five variations. OFALarge wields ResNet152 (He 507

et al., 2015) modules with 472M parameters and 508

12 encoders and decoder layers. For BLIP, we used 509

ViT-L/16 as the image encoder due to its better 510

performance. For GRIP, we follow Nguyen et al. 511

(2022) which utilizes the Deformable DETR (Zhu 512

et al., 2020) framework. Note that in our study we 513

want SUM to generate captions that not only de- 514

scribe the scene but also try to derive action from it. 515

We observe that adding the prompt "a picture of " 516

following Wang et al. (2021) causes the model to be 517

biased in solely describing the scene, which would 518

in turn not be helpful for generating actionable cap- 519

tions. Therefore, we remove prompts in the SUM 520

setting. We load pretrained models and fine-tune 521

them for 7 epochs on our collected VirtualHome 522

dataset. We keep the hyper-parameters consistent 523

with the original implementations (Li et al., 2022a; 524

Wang et al., 2022; Nguyen et al., 2022). 525

APM Setting We take LLM to act as our APM. 526

The goal of APM is to generate executable pro- 527

grams for the VirtualHome simulator. We deem 528

the program outputted by the APM executable if 529

the agent in the VirtualHome simulator is able to 530

understand and perform the action. When the ac- 531

tion is executed by the agent, the simulator is then 532

directed to output images and captions that are syn- 533

onymous with the input of SUM. The output hidden 534

layers of SUM acts as the input embeddings to the 535

APM, while the tokenized executable actions act 536

as labels. The last hidden layer of APM acts as 537

input embeddings for the tokenizer and generates 538

token identifiers. The token identifiers are finally 539

decoded into programmable actions. 540

6

Table 1: Results by different SUM fine-tuned by imitation learning (IL) objective, where BERT serves as APM.
The results are shown on 7 different environments in VirtualHome and also the average performance. The best
result in each environment and each SUM model is marked in black and bold. The best SUM result with the highest
average performance across 7 environments is marked in orange and bold.

SUM/Results(%) Environment Bleu-1 Bleu-2 Bleu-3 Bleu-4 ROUGE-L METEOR CIDEr SPICE Execution Rate

OFA (Wang et al., 2022)

1 55.1±0.05 45.4±0.10 36.5±0.20 23.0±0.00 60.0±0.16 33.4±0.00 30.2±0.44 49.9±0.43 78.0±2.39
2 58.0±0.20 41.7±0.19 35.1±1.01 22.1±0.73 60.1±0.50 34.1±0.52 30.3±0.71 48.1±0.41 79.9±2.37
3 55.3±0.30 42.3±0.62 34.9±0.15 23.0±0.00 60.5±0.01 34.8±0.64 31.2±0.55 48.4±0.17 80.0±3.29
4 57.8±0.73 42.2±0.31 35.3±0.38 24.5±0.67 59.9±0.45 34.6±0.54 33.1±0.63 49.0±0.66 79.9±4.14
5 59.4±0.44 40.3±0.03 34.8±0.02 24.2±0.37 59.7±0.25 35.1±0.62 32.7±0.24 38.0±0.13 77.4±1.12
6 60.5±0.01 48.1±0.53 36.6±0.07 25.1±0.15 61.9±0.13 36.2±0.60 34.6±1.07 49.9±0.77 80.5±1.13

. 7 58.2±0.30 46.5±0.58 34.6±0.04 22.3±0.08 58.3±0.92 35.6±0.62 30.8±0.37 44.2±0.33 69.2±2.31
Average 57.8±0.92 43.8±1.02 35.4±0.63 23.5±0.77 60.1±0.41 34.8±0.62 31.8±1.31 46.8±0.80 77.8±3.26

BLIP (Li et al., 2022a)

1 51.1±0.50 42.6±0.41 33.2±0.34 21.1±0.63 60.8±0.73 34.7±0.63 35.5±00.09 42.7±0.91 72.6±1.99
2 50.5±0.87 41.8±0.72 30.5±28 22.3±0.34 60.3±0.64 33.6±0.87 30.0±0.72 42.8±0.99 66.1±4.21
3 52.4±0.54 43.2±0.65 33.6±0.13 21.1±0.52 61.4±0.29 34.5±0.12 31.1±0.00 48.9±0.80 85.0±3.32
4 51.0±1.19 42.1±0.87 33.8±0.54 22.8±0.65 60.6±0.76 34.4±0.98 35.1±0.85 46.0±0.74 73.0±3.65
5 49.0±0.53 38.8±0.43 30.4±0.72 20.0±0.47 58.6±0.65 34.1±0.75 21.0±0.66 30.8±0.69 67.2±0.93
6 52.6±0.79 44.5±0.00 31.0±0.63 24.8±0.62 62.0±0.73 35.3±1.02 31.0±0.02 42.4±0.87 84.1±3.54
7 52.7±0.50 44.0±0.21 33.6±0.18 24.0±0.52 61.7±0.08 34.5±0.60 34.5±0.81 48.8±0.28 86.0±4.92

Average 51.3±0.31 42.4±0.54 32.3±0.66 22.3±0.31 60.7±0.63 34.4±0.75 31.2±0.87 43.2±0.97 76.3±5.22

GRIT (Nguyen et al., 2022)

1 50.5±0.99 40.5±0.86 31.8±1.82 20.7±1.02 60.0±1.44 33.1±0.97 30.4±1.42 41.7±0.85 69.2±5.57
2 52.1±0.66 41.8±1.77 31.7±1.92 20.1±0.97 59.9±0.65 32.1±0.76 29.4±0.87 42.0±0.88 71.4±5.52
3 52.3±0.88 40.3±0.82 32.1±0.77 19.9±1.53 60.4±0.68 31.7±0.66 30.1±2.52 43.5±1.64 71.3±5.98
4 51.9±0.93 39.8±0.92 31.8±0.97 21.3±1.72 59.7±1.22 32.0±0.76 30.0±0.79 42.8±0.84 72.8±4.65
5 54.7±0.93 42.3±1.02 33.2±1.25 24.5±0.93 62.3±1.42 33.8±1.77 30.7±1.32 44.6±1.23 78.5±5.07
6 54.6±1.42 44.7±1.64 34.1±1.32 25.8±1.22 65.8±1.25 30.1±2.31 34.5±0.72 44.0±0.96 78.4±3.66
7 53.9±0.88 42.0±1.79 32.6±2.00 22.5±0.90 63.4±1.00 31.8±1.23 32.3±1.31 43.1±1.41 70.0±3.99

Average 52.9±0.18 41.6±0.87 32.4±0.72 22.1±0.68 61.6±0.53 32.1±0.33 31.1±0.25 43.1±0.76 73.1±3.11

Table 2: Results by different APM fine-tuned by imitation learning (IL) loss objective. The results are shown by the
average of 7 different environments in VirtualHome. The best results are marked in bold.

APM SUM Bleu-1 Bleu-2 Bleu-3 Bleu-4 ROUGE-L METEOR CIDEr SPICE Execution Rate

BERT
OFA 57.8±0.92 43.8±1.02 35.4±0.63 23.5±0.77 60.1±0.41 34.8±0.62 31.8±1.31 46.8±0.80 77.8±3.26
BLIP 51.3±0.31 42.4±0.54 32.3±0.66 22.3±0.31 60.7±0.63 34.4±0.75 31.2±0.87 43.2±0.97 76.3±5.22
GRIT 52.9±0.18 41.6±0.87 32.4±0.72 22.1±0.68 61.6±0.53 32.1±0.33 31.1±0.25 43.1±0.76 73.1±3.11

RoBERTa
OFA 57.7±0.01 43.2±0.00 35.6±0.48 24.1±0.36 59.9±0.26 34.7±0.51 31.4±0.47 47.3±0.38 75.4±3.86
BLIP 50.5±0.71 41.1±0.29 32.0±0.11 23.5±0.64 61.1±0.88 33.0±0.70 31.8±0.81 42.9±0.94 77.7±0.71
GRIT 53.1±1.02 42.0±0.90 34.1±1.01 23.1±1.22 60.4±1.92 31.5±0.59 31.5±1.42 42.8±1.77 75.4±4.39

BART
OFA 59.5±0.09 45.9±0.31 39.8±0.37 28.1±0.72 61.3±0.65 37.2±0.69 34.4±0.78 47.0±0.88 79.0±1.91
BLIP 52.9±0.80 44.3±0.52 35.5±0.49 25.3±0.62 62.2±1.12 35.3±1.62 32.0±0.97 44.5±0.88 76.0±1.98
GRIT 54.2±1.68 43.2±1.85 33.6±1.60 25.3±0.93 62.7±1.85 33.8±0.62 33.7±0.74 44.7±1.12 77.9±1.77

5 Results and Discussions541

5.1 Model Performance with IL Fine-tuning542

We first want to show the benefit of the proposed543

framework compared with other model architec-544

tures. Concretely, in the IL setting with expert data,545

we compare the execution rate of our model with546

the MLP, MLP-1 and LSTM baselines in Li et al.547

(2022b). Our model has OFA in SUM and BART548

as APM. Note that all the baselines are not trained549

by datasets in other domains and have structured550

text input instead of realistic visual inputs as our551

proposed model. In the LSTM baseline, the hid-552

den representation from the last timestep, together553

with the goal and current observation, are used to554

predict the next action. MLP and MLP-1 both take555

the goal, histories, and the current observation as556

input and send them to MLPs to predict actions.557

MLP-1 has three more average-pooling layers than558

MLP that average the features of tokens in the goal,559

history actions, and the current observation, re-560

spectively, before sending them to the MLP layer.561

More details about the baselines can be found in562

Li et al. (2022b). As shown in Figure 3, our ap-563

Figure 3: Comparison with baselines in the imitation
learning setting evaluated by the execution rate.

proach outperforms baselines in Li et al. (2022b) 564

in terms of a higher average execution rate and a 565

smaller standard deviation, though all the methods 566

are trained on expert data with imitation learning 567

objectives. The results show that the pretrained em- 568

beddings and large model architecture benefit the 569

performance in downstream robot learning tasks. 570

5.2 Model Performance with RL Fine-tuning 571

We provide the model performance after fine- 572

tuning SUM with a frozen BERT in Table 1 for the 573

IL setting with expert data and in Table 3 for the RL 574

setting. The results after fine-tuning APM with the 575

fine-tuned SUM are shown in Table 2 and Table 4. 576

We found that fine-tuning with expert data in IL 577

results in higher average and per-environment per- 578

7

Table 3: Execution Rates by different SUM fine-tuned by REINFORCE, where BERT serves as APM. The results
are shown on 7 different environments and also the average performance. The best results are marked in bold.

SUM Env-1 Env-2 Env-3 Env-4 Env-5 Env-6 Env-7 Average

OFA (Wang et al., 2022) 50.1±0.65 50.3±0.52 51.5±0.48 57.8±0.88 55.2±0.00 56.6±0.37 59.3±0.48 54.4±0.55
BLIP (Li et al., 2022a) 52.7±0.78 53.4±1.00 53.5±0.92 55.6±0.68 60.1±0.49 59.3±0.91 49.9±0.90 54.9±1.99
GRIT (Nguyen et al., 2022) 38.7±1.02 40.0±1.11 51.3±0.99 48.2±0.90 46.5±0.85 55.8±0.70 45.3±1.08 46.5±2.01

Table 4: Results by different APM fine-tuned by
REINFORCE loss objective, averaging on 7 different
environments. The best results are marked in bold.

APM SUM Execution Rate (%)

BERT
OFA 54.7±1.15
BLIP 54.1±1.37
GRIT 53.9±3.00

RoBERTa
OFA 55.6±4.31
BLIP 55.2±1.16
GRIT 54.8±2.54

BART
OFA 57.2±2.43
BLIP 57.0±3.12
GRIT 55.8±0.99

formance than fine-tuning with RL, which shows579

the benefit of having access to the expert datasets.580

However, fine-tuning with RL still brings perfor-581

mance improvement to 57.2% as in Table 4. Note582

that without finetuning, the outputs of the LLMs583

in APM are generally not executable as shown in584

Figure 1. Moreover, we consistently observe that585

the combination of having OFA in SUM and BART586

as APM achieves the best performance after both587

IL (Table 2) and RL (Table 4) fine-tuning.588

5.3 Ablation Study589

To deeply understand the importance of different590

components in our paradigm that affect the over-591

all performance, we conduct ablation studies on592

different factors including different components in593

SUM, different components in APM, and different594

environment variations.595

Different Components in SUM The perfor-596

mances of using different components in SUM for597

IL and RL fine-tuning are in Table 1 and Table 3,598

respectively. From Table 1, we see that with expert599

data, OFA achieves better results than BLIP and600

GRIT on the average performance over 7 environ-601

ments. We conjecture that this may be due to OFA602

being pretrained on 20M image-text pairs, which603

is larger than the size of other models’ pretrain-604

ing data. While under REINFORCE fine-tuning605

loss, as in Table 3, BLIP slightly outperforms OFA606

in terms of average performance but has around 4607

times larger standard deviation than OFA.608

Different Components in APM The results of609

using different components in APM for IL and RL610

fine-tuning are presented in Table 2 and Table 4,611

respectively. We found that BART consistently out-612

performs other LLMs in both settings. We hypoth- 613

esize that due to BART’s architectural nature as a 614

denoising autoencoder, it is more suitable for trans- 615

lating natural language descriptions into executable 616

action programs for the VirtualHome simulator. 617

Different Environments To test the performance 618

variations under different environments, we con- 619

ducted the experiments separately for each unique 620

environment. The results are shown in Table 1 and 621

Table 3, for fine-tuning SUM under IL and RL set- 622

tings, respectively. Due to image observation vari- 623

ations having the most impact on SUM instead of 624

APM, so we only test the performance of SUM un- 625

der different environment settings. Through Table 1 626

and Table 3, we could find that the variations exist 627

among different environments. Generally, environ- 628

ment 6 seems to have the easiest environmental 629

settings for the model to learn. 630

Stability To evaluate the stability of different 631

models under different environments, we also cal- 632

culated the standard deviation (stds) of the results 633

across different trials. The results are shwon in 634

Tables 1,2,3,4, which shows that BART as APM 635

and OFA seem to be more stable than the rest of 636

the combinations. 637

6 Conclusion 638

In this work, we introduce a novel robot learning 639

paradigm with LLM in the loop that handles mul- 640

tiple modalities of visual observations and text- 641

based actions in a principled manner. We bridge 642

both modalities with natural language generated 643

by a pretrained multimodal model. Our model 644

contains SUM and APM, where SUM uses image 645

observations as inputs taken by the robot to gen- 646

erate language descriptions of the current scene, 647

and APM predicts the corresponding actions for 648

the next step. We tested our method in the Virtual- 649

Home under 7 unique environments, and the results 650

demonstrated that our proposed paradigm outper- 651

forms baselines in terms of execution rates and 652

shows strong stability across environments. One in- 653

teresting future direction is extending our proposed 654

framework to solve generalization tasks in a more 655

data and parameter-efficient manner. 656

8

7 Limitations.657

• In our current study, we primarily focused on658

abstract high-level actions represented by lan-659

guage commands, without taking into account660

low-level controls such as joint motor control.661

This omission of the low-level control mod-662

ule may limit the overall effectiveness of the663

learned policies and their ability to function664

in complex and dynamic environments. An in-665

teresting future direction would be to consider666

the physical capabilities of embodied agents667

by learning universal low-level controllers for668

various morphologies.669

• Our study might encounter challenges related670

to long-tailed actions. In our collected dataset,671

there are actions that occur infrequently, and672

the current method may not have effectively673

learned policies for scenarios involving such674

actions that rarely appear in the collected675

dataset. This limitation could constrain the676

overall effectiveness of the learned policies in677

real-world situations.678

• Given that we fine-tuned the model using a679

dataset collected in the VirtualHome environ-680

ment, the generalizability of the learned poli-681

cies to other platforms might be insufficient682

due to significant differences between various683

simulated platforms.684

References685

Michael Ahn et al. 2022. Do as i can, not as i say:686
Grounding language in robotic affordances. ArXiv,687
abs/2204.01691.688

Peter Anderson, Basura Fernando, Mark Johnson, and689
Stephen Gould. 2016. SPICE: semantic propositional690
image caption evaluation. CoRR, abs/1607.08822.691

Satanjeev Banerjee and Alon Lavie. 2005. Meteor: An692
automatic metric for mt evaluation with improved693
correlation with human judgments. In IEEvalua-694
tion@ACL.695

Tom B. Brown et al. 2020. Language models are few-696
shot learners. ArXiv, abs/2005.14165.697

Arthur Fender C. Bucker, Luis F. C. Figueredo, Sami698
Haddadin, Ashish Kapoor, Shuang Ma, Sai Vemprala,699
and Rogerio Bonatti. 2022. Latte: Language trajec-700
tory transformer. ArXiv, abs/2208.02918.701

Kyunghyun Cho, Bart van Merrienboer, Çaglar702
Gülçehre, Dzmitry Bahdanau, Fethi Bougares, Hol-703
ger Schwenk, and Yoshua Bengio. 2014. Learning704

phrase representations using rnn encoder–decoder for 705
statistical machine translation. In EMNLP. 706

Marcella Cornia, Matteo Stefanini, Lorenzo Baraldi, 707
and Rita Cucchiara. 2019. Meshed-memory trans- 708
former for image captioning. CVPR, pages 10575– 709
10584. 710

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and 711
Kristina Toutanova. 2019. Bert: Pre-training of deep 712
bidirectional transformers for language understand- 713
ing. In NAACL. 714

Jesse Dodge, Gabriel Ilharco, Roy Schwartz, Ali 715
Farhadi, Hannaneh Hajishirzi, and Noah A. Smith. 716
2020. Fine-tuning pretrained language models: 717
Weight initializations, data orders, and early stop- 718
ping. ArXiv, abs/2002.06305. 719

Daniel Fried, Armen Aghajanyan, Jessy Lin, Sida I. 720
Wang, Eric Wallace, Freda Shi, Ruiqi Zhong, Wen 721
tau Yih, Luke Zettlemoyer, and Mike Lewis. 2022. 722
Incoder: A generative model for code infilling and 723
synthesis. ArXiv, abs/2204.05999. 724

Samir Yitzhak Gadre, Mitchell Wortsman, Gabriel Il- 725
harco, Ludwig Schmidt, and Shuran Song. 2022. 726
Clip on wheels: Zero-shot object navigation as object 727
localization and exploration. ArXiv, abs/2203.10421. 728

Nishad Gothoskar, Miguel Lázaro-Gredilla, Abhishek 729
Agarwal, Yasemin Bekiroglu, and Dileep George. 730
2020. Learning a generative model for robot control 731
using visual feedback. ArXiv, abs/2003.04474. 732

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian 733
Sun. 2015. Deep residual learning for image recogni- 734
tion. 735

Dan Hendrycks, Xiaoyuan Liu, Eric Wallace, Adam 736
Dziedzic, R. Krishnan, and Dawn Xiaodong Song. 737
2020. Pretrained transformers improve out-of- 738
distribution robustness. In ACL. 739

Yicong Hong, Qi Wu, Yuankai Qi, Cristian Rodriguez- 740
Opazo, and Stephen Gould. 2021. Vln-bert: A recur- 741
rent vision-and-language bert for navigation. CVPR, 742
pages 1643–1653. 743

Jeremy Howard and Sebastian Ruder. 2018. Universal 744
language model fine-tuning for text classification. In 745
ACL. 746

Wenlong Huang, P. Abbeel, Deepak Pathak, and Igor 747
Mordatch. 2022a. Language models as zero-shot 748
planners: Extracting actionable knowledge for em- 749
bodied agents. In ICML. 750

Wenlong Huang et al. 2022b. Inner monologue: Em- 751
bodied reasoning through planning with language 752
models. ArXiv, abs/2207.05608. 753

Yunfan Jiang, Agrim Gupta, Zichen Vincent Zhang, 754
Guanzhi Wang, Yongqiang Dou, Yanjun Chen, Li Fei- 755
Fei, Anima Anandkumar, Yuke Zhu, and Linxi (Jim) 756
Fan. 2022. Vima: General robot manipulation with 757
multimodal prompts. ArXiv, abs/2210.03094. 758

9

http://arxiv.org/abs/1607.08822
http://arxiv.org/abs/1607.08822
http://arxiv.org/abs/1607.08822

Yash Kant et al. 2022. Housekeep: Tidying virtual759
households using commonsense reasoning. ArXiv,760
abs/2205.10712.761

Jared Kaplan et al. 2020. Scaling laws for neural lan-762
guage models. ArXiv, abs/2001.08361.763

Lei Ke, Wenjie Pei, Ruiyu Li, Xiaoyong Shen, and Yu-764
Wing Tai. 2019. Reflective decoding network for765
image captioning. ICCV, pages 8887–8896.766

Apoorv Khandelwal, Luca Weihs, Roozbeh Mottaghi,767
and Aniruddha Kembhavi. 2022. Simple but effec-768
tive: Clip embeddings for embodied ai. CVPR, pages769
14809–14818.770

Philipp Koehn. 2007. Statistical machine translation.771

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan772
Ghazvininejad, Abdelrahman Mohamed, Omer Levy,773
Veselin Stoyanov, and Luke Zettlemoyer. 2020. Bart:774
Denoising sequence-to-sequence pre-training for nat-775
ural language generation, translation, and compre-776
hension. In ACL.777

Junnan Li, Dongxu Li, Caiming Xiong, and Steven Hoi.778
2022a. Blip: Bootstrapping language-image pre-779
training for unified vision-language understanding780
and generation. arXiv:2201.12086 [cs].781

Shuang Li, Xavier Puig, Yilun Du, Clinton Jia Wang,782
Ekin Akyürek, Antonio Torralba, Jacob Andreas,783
and Igor Mordatch. 2022b. Pre-trained language784
models for interactive decision-making. ArXiv,785
abs/2202.01771.786

Xiujun Li et al. 2020. Oscar: Object-semantics aligned787
pre-training for vision-language tasks. In ECCV.788

J. Liang, Wenlong Huang, F. Xia, Peng Xu, Karol Haus-789
man, Brian Ichter, Peter R. Florence, and Andy Zeng.790
2022. Code as policies: Language model programs791
for embodied control. ArXiv, abs/2209.07753.792

Yuan-Hong Liao, Xavier Puig, Marko Boben, Anto-793
nio Torralba, and Sanja Fidler. 2019. Synthesizing794
environment-aware activities via activity sketches.795

Bingqian Lin, Yi Zhu, Zicong Chen, Xiwen Liang, Jian796
zhuo Liu, and Xiaodan Liang. 2022. Adapt: Vision-797
language navigation with modality-aligned action798
prompts. CVPR, pages 15375–15385.799

Chin-Yew Lin. 2004. Rouge: A package for automatic800
evaluation of summaries. In ACL 2004.801

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-802
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,803
Luke Zettlemoyer, and Veselin Stoyanov. 2019.804
Roberta: A robustly optimized bert pretraining ap-805
proach. ArXiv, abs/1907.11692.806

Jiasen Lu, Dhruv Batra, Devi Parikh, and Stefan Lee.807
2019. Vilbert: Pretraining task-agnostic visiolinguis-808
tic representations for vision-and-language tasks. In809
Neural Information Processing Systems.810

Yecheng Jason Ma et al. 2022. Vip: Towards universal 811
visual reward and representation via value-implicit 812
pre-training. ArXiv, abs/2210.00030. 813

Arjun Majumdar, Ayush Shrivastava, Stefan Lee, Peter 814
Anderson, Devi Parikh, and Dhruv Batra. 2020. Im- 815
proving vision-and-language navigation with image- 816
text pairs from the web. ArXiv, abs/2004.14973. 817

Harry McGurk and John MacDonald. 1976. Hearing 818
lips and seeing voices. Nature, 264:746–748. 819

Abdalkarim Mohtasib, Gerhard Neumann, and Herib- 820
erto Cuayáhuitl. 2021. A study on dense and sparse 821
(visual) rewards in robot policy learning. In TAROS. 822

Van-Quang Nguyen, Masanori Suganuma, and Takayuki 823
Okatani. 2022. Grit: Faster and better image caption- 824
ing transformer using dual visual features. ArXiv, 825
abs/2207.09666. 826

Kishore Papineni, Salim Roukos, Todd Ward, and Wei- 827
Jing Zhu. 2002. Bleu: a method for automatic evalu- 828
ation of machine translation. In ACL. 829

Simone Parisi, Aravind Rajeswaran, Senthil Purush- 830
walkam, and Abhinav Kumar Gupta. 2022. The un- 831
surprising effectiveness of pre-trained vision models 832
for control. In ICML. 833

Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt 834
Gardner, Christopher Clark, Kenton Lee, and Luke 835
Zettlemoyer. 2018. Deep contextualized word repre- 836
sentations. In NAACL. 837

Xavier Puig, Kevin Ra, Marko Boben, Jiaman Li, 838
Tingwu Wang, Sanja Fidler, and Antonio Torralba. 839
2018a. Virtualhome: Simulating household activities 840
via programs. arXiv:1806.07011 [cs]. 841

Xavier Puig, Kevin Kyunghwan Ra, Marko Boben, Jia- 842
man Li, Tingwu Wang, Sanja Fidler, and Antonio 843
Torralba. 2018b. Virtualhome: Simulating household 844
activities via programs. CVPR, pages 8494–8502. 845

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya 846
Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sas- 847
try, Amanda Askell, Pamela Mishkin, Jack Clark, 848
Gretchen Krueger, and Ilya Sutskever. 2021. Learn- 849
ing transferable visual models from natural language 850
supervision. In ICML. 851

Colin Raffel, Noam M. Shazeer, Adam Roberts, Kather- 852
ine Lee, Sharan Narang, Michael Matena, Yanqi 853
Zhou, Wei Li, and Peter J. Liu. 2019. Exploring the 854
limits of transfer learning with a unified text-to-text 855
transformer. ArXiv, abs/1910.10683. 856

Marc’Aurelio Ranzato, Sumit Chopra, Michael Auli, 857
and Wojciech Zaremba. 2015. Sequence level 858
training with recurrent neural networks. CoRR, 859
abs/1511.06732. 860

Allen Z. Ren, Bharat Govil, Tsung-Yen Yang, Karthik 861
Narasimhan, and Anirudha Majumdar. 2022. Lever- 862
aging language for accelerated learning of tool ma- 863
nipulation. ArXiv, abs/2206.13074. 864

10

https://doi.org/10.1109/CVPR.2019.00645
https://doi.org/10.1109/CVPR.2019.00645
https://doi.org/10.1109/CVPR.2019.00645

Steven J. Rennie, Etienne Marcheret, Youssef Mroueh,865
Jerret Ross, and Vaibhava Goel. 2016. Self-critical866
sequence training for image captioning. CVPR, pages867
1179–1195.868

Sebastian Ruder. 2021. Recent advances in language869
model fine-tuning.870

Nur Muhammad (Mahi) Shafiullah, Chris Paxton, Lerrel871
Pinto, Soumith Chintala, and Arthur D. Szlam. 2022.872
Clip-fields: Weakly supervised semantic fields for873
robotic memory. ArXiv, abs/2210.05663.874

Dhruv Shah, Blazej Osinski, Brian Ichter, and Sergey875
Levine. 2022. Lm-nav: Robotic navigation with large876
pre-trained models of language, vision, and action.877
ArXiv, abs/2207.04429.878

Mohit Shridhar, Lucas Manuelli, and Dieter Fox. 2021.879
Cliport: What and where pathways for robotic ma-880
nipulation. ArXiv, abs/2109.12098.881

Mohit Shridhar, Lucas Manuelli, and Dieter Fox. 2022.882
Perceiver-actor: A multi-task transformer for robotic883
manipulation. ArXiv, abs/2209.05451.884

Kaitao Song, Xu Tan, Tao Qin, Jianfeng Lu, and Tie-Yan885
Liu. 2019. Mass: Masked sequence to sequence pre-886
training for language generation. arXiv:1905.02450887
[cs].888

Matteo Stefanini et al. 2021. From show to tell: A sur-889
vey on deep learning-based image captioning. IEEE890
Transactions on Pattern Analysis and Machine Intel-891
ligence, 45:539–559.892

Nataliya Strokina, Wenyan Yang, Joni Pajarinen, Niko-893
lay Serbenyuk, Joni-Kristian Kämäräinen, and Reza894
Ghabcheloo. 2022. Visual rewards from observa-895
tion for sequential tasks: Autonomous pile loading.896
Frontiers in Robotics and AI, 9.897

Richard S Sutton, David McAllester, Satinder Singh,898
and Yishay Mansour. 1999. Policy gradient methods899
for reinforcement learning with function approxima-900
tion. In NeurIPS, volume 12. MIT Press.901

Allison C. Tam et al. 2022. Semantic exploration from902
language abstractions and pretrained representations.903
ArXiv, abs/2204.05080.904

Hao Hao Tan and Mohit Bansal. 2019. Lxmert: Learn-905
ing cross-modality encoder representations from906
transformers. ArXiv, abs/1908.07490.907

Kaisa Tiippana. 2014. What is the mcgurk effect? Fron-908
tiers in Psychology, 5.909

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob910
Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz911
Kaiser, and Illia Polosukhin. 2017a. Attention is all912
you need.913

Ashish Vaswani, Noam M. Shazeer, Niki Parmar, Jakob914
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz915
Kaiser, and Illia Polosukhin. 2017b. Attention is all916
you need. ArXiv, abs/1706.03762.917

Ramakrishna Vedantam, C. Lawrence Zitnick, and Devi 918
Parikh. 2015. Cider: Consensus-based image de- 919
scription evaluation. arXiv:1411.5726 [cs]. 920

Jianfeng Wang, Xiaowei Hu, Pengchuan Zhang, Xiu- 921
jun Li, Lijuan Wang, Lei Zhang, Jianfeng Gao, and 922
Zicheng Liu. 2020. Minivlm: A smaller and faster 923
vision-language model. CoRR, abs/2012.06946. 924

Peng Wang, An Yang, Rui Men, Junyang Lin, Shuai Bai, 925
Zhikang Li, Jianxin Ma, Chang Zhou, Jingren Zhou, 926
and Hongxia Yang. 2022. Unifying architectures, 927
tasks, and modalities through a simple sequence-to- 928
sequence learning framework. arXiv:2202.03052 929
[cs]. 930

Zirui Wang, Jiahui Yu, Adams Wei Yu, Zihang Dai, Yu- 931
lia Tsvetkov, and Yuan Cao. 2021. Simvlm: Simple 932
visual language model pretraining with weak super- 933
vision. arXiv:2108.10904 [cs]. 934

Ronald J. Williams. 1992. Simple statistical gradient- 935
following algorithms for connectionist reinforcement 936
learning. Machine Learning, 8:229–256. 937

Mengdi Xu, Yikang Shen, Shun Zhang, Yuchen Lu, 938
Ding Zhao, Joshua Tenenbaum, and Chuang Gan. 939
2022. Prompting decision transformer for few-shot 940
policy generalization. In International Conference 941
on Machine Learning, pages 24631–24645. PMLR. 942

B.P. Yuhas, M.H. Goldstein, and T.J. Sejnowski. 1989. 943
Integration of acoustic and visual speech signals us- 944
ing neural networks. IEEE Communications Maga- 945
zine, 27:65–71. 946

Rowan Zellers, Ari Holtzman, Matthew E. Peters, 947
Roozbeh Mottaghi, Aniruddha Kembhavi, Ali 948
Farhadi, and Yejin Choi. 2021. Piglet: Language 949
grounding through neuro-symbolic interaction in a 950
3d world. In ACL. 951

Andy Zeng, Adrian S. Wong, Stefan Welker, Krzysztof 952
Choromanski, Federico Tombari, Aveek Purohit, 953
Michael S. Ryoo, Vikas Sindhwani, Johnny Lee, Vin- 954
cent Vanhoucke, and Peter R. Florence. 2022. So- 955
cratic models: Composing zero-shot multimodal rea- 956
soning with language. ArXiv, abs/2204.00598. 957

Pengchuan Zhang, Xiujun Li, Xiaowei Hu, Jianwei 958
Yang, Lei Zhang, Lijuan Wang, Yejin Choi, and Jian- 959
feng Gao. 2021. Vinvl: Revisiting visual represen- 960
tations in vision-language models. In CVPR, pages 961
5579–5588. 962

Luowei Zhou, Hamid Palangi, Lei Zhang, Houdong Hu, 963
Jason J. Corso, and Jianfeng Gao. 2019. Unified 964
vision-language pre-training for image captioning 965
and vqa. ArXiv, abs/1909.11059. 966

Xizhou Zhu, Weijie Su, Lewei Lu, Bin Li, Xiaogang 967
Wang, and Jifeng Dai. 2020. Deformable DETR: 968
deformable transformers for end-to-end object detec- 969
tion. CoRR, abs/2010.04159. 970

11

http://arxiv.org/abs/2012.06946
http://arxiv.org/abs/2012.06946
http://arxiv.org/abs/2012.06946
https://doi.org/10.1109/35.41402
https://doi.org/10.1109/35.41402
https://doi.org/10.1109/35.41402
http://arxiv.org/abs/2010.04159
http://arxiv.org/abs/2010.04159
http://arxiv.org/abs/2010.04159
http://arxiv.org/abs/2010.04159
http://arxiv.org/abs/2010.04159

A Algorithms of Fine-tuning SUM and APM with Imitation Learning or REINFORCE971

We provide the pseudo code for training SUM and APM in this section.972

Algorithm 1 Fine-tuning SUM
Initialize pretrained SUM model
Load VirtualHome dataset for fine-tuning
for n in num_epochs do

for Imaget and Captiont in batchn do
1. ˆCaptiont = SUM(Imaget)
2. LossXEt(θt) = LXE(Captiont,

ˆCaptiont)

3. θt ← θt − α∇θtL(Captiont,
ˆCaptiont)

end for
repeat

Steps 1 through 3
until max(num_epochs) or convergence

end for

Algorithm 2 Fine-tuning APM with Imitation Learning
Initialize fine-tuned SUM and pretrained APM
Load VirtualHome dataset for fine-tuning
for n in num_epochs do

for Imaget, Captiont Actiont in batchn do
1. ˆCaptiont = SUM(Imaget)
2. ˆActiont+1 = APM(ˆCaptiont,Actiont)

3. LossXEt(θt) = LXE(Actiont, ˆActiont+1)

4. θt ← θt − α∇θtLXE(Actiont, ˆActiont+1)
end for
repeat

Steps 1 through 3
until max(num_epochs) or convergence

end for

973

Algorithm 3 Fine-tuning APM with REINFORCE
Initialize fine-tuned SUM, pretrained APM, and VirtualHome environment (env)
Load VirtualHome dataset for fine-tuning
for n in num_epochs do

Trajectoriest = []
state = env.reset()
for Imaget, Captiont Actiont in batchn do

1. ˆCaptiont = SUM(Imaget)
2. ˆActiont = APM(ˆCaptiont,Actiont)
3. Trajectoriest.append(ˆActiont)

end for
sort(Trajectoriest) by Task ID
for i in range(len(Trajectoriest)) do

4. ˆActiont = sample_action(Trajectoriest[i])
5. Rewardt = env.step(Actiont, ˆActiont)
6. Compute∇θt logP (ˆActiont|Actiont)
7. θt ← θt + αr∇θt logP (ˆActiont|Actiont)

end for
repeat

Steps 1 through 7
until max(num_epochs) or convergence

end for

B Experimental Setup974

Figure 4: Top-down views of 7 different environments from VirtualHome.

SUM Setting For SUM, we use the following image captioning models to serve as SUM: OFA (Wang975

et al., 2022), BLIP (Li et al., 2022a), and GRIT (Nguyen et al., 2022). Both OFA and BLIP are pretrained976

12

on the same five datasets, while the GRIT model (Nguyen et al., 2022) is pretrained on a different 977

combination of datasets. For OFA, we adopted OFALarge due to its superior performance in five variations. 978

OFALarge wields ResNet152 (He et al., 2015) modules with 472M parameters and 12 encoders and 979

decoder layers. For BLIP, we used ViT-L/16 as the image encoder due to its better performance. For GRIP, 980

we follow Nguyen et al. (2022) which utilizes the Deformable DETR (Zhu et al., 2020) framework. Note 981

that in our study we want SUM to generate captions that not only describe the scene but also try to derive 982

action from it. We observe that adding the prompt "a picture of " following Wang et al. (2021) causes 983

the model to be biased in solely describing the scene, which would in turn not be helpful for generating 984

actionable captions. Therefore, we remove prompts in the SUM setting. We load pretrained models 985

and fine-tune them for 7 epochs on our collected VirtualHome dataset. We keep the hyper-parameters 986

consistent with the original implementations (Li et al., 2022a; Wang et al., 2022; Nguyen et al., 2022). 987

APM Setting We take LLM to act as the sole component in our APM. The goal of APM is to generate 988

executable programs for the VirtualHome simulator. We deem the program outputted by the APM 989

executable if the agent in the VirtualHome simulator is able to understand and perform the action. When 990

the action is executed by the agent, the simulator is then directed to output images and captions that are 991

synonymous with the input of SUM. The output hidden layers of SUM acts as the input embeddings to 992

the APM, while the tokenized executable actions act as labels. The last hidden layer of APM acts as input 993

embeddings for the tokenizer and generates token identifiers. The token identifiers are finally decoded 994

into programmable actions that are fed into the VirtualHome simulator. 995

Training and Testing Tasks . We train and test on seven environments considering that in VirtualHome, 996

there are seven environments in total. We use VirtualHome v0.1.0 due to its stability and to be consistent 997

with previous works. We split the training and testing sets in terms of actions and tasks instead of 998

environments (e.g., 20,000 actions in training and 3,000 in testing; 500 tasks in training, 200 in testing). 999

We do this because each environment has different tasks and actions only executable in the given 1000

environment. The boundary between training and testing was chosen randomly based on the distribution 1001

of actions and tasks. As mentioned before, if there are a total of 10,000 different tasks or actions, we 1002

would randomly split the training and testing set to a proportion of 70:30, respectively. Unseen tasks are 1003

defined as tasks that are not included in the training set. For example, if we have the following example 1004

task of "Walk to the groceries" (e.g. [WALK] ⟨groceries⟩ (1)) in the training set, we would not have this 1005

task in the test set and vice versa. 1006

Executable Actions: Here is the list of all actions executable in VirtualHome: [FIND, TOUCH, WALK, 1007

SWITCH ON, GRAB, READ, TURN TO, LOOK AT, SIT, POINT AT, OPEN, WATCH, RUN, DRINK, 1008

SWITCH OFF, PUT OBJECT BACK, CLOSE, STAND UP]. 1009

C Experiment Parameters 1010

In this section, we listed the experimental parameters in the following tables. 1011

Table 5: Experiment parameters used in SUMs, where the best ones are marked in bold.

SUM Batch Size Encoder Layers Att. Heads Learning Rate Dropout Epochs

OFA [4, 8, 16, 32] [24] [16] [1e-4, 1e-5, 1e-7] [0.1, 0.2, 0.3] [2, 5, 10, 20, 50]
BLIP [8, 16, 32, 64] [12] [12] [1e-4, 1e-5, 1e-7] [0.1, 0.2, 0.3] [2, 5, 10, 20, 50]
GRIT [4, 8, 16, 32] [6] [8] [1e-4, 1e-5, 1e-6] [0.1, 0.2, 0.3] [2, 5, 10, 20, 50]

Table 6: Experiment parameters used in Supervised APMs, where the best ones are marked in bold

APM Batch Size Encoder Layers Att. Heads Learning Rate Dropout Epochs

BERT [4, 8, 16, 32] [12] [12] [1e-4, 1e-5, 1e-7] [0.1, 0.2, 0.3] [2, 5, 10, 20, 50]
BART [8, 16, 32, 64] [12] [16] [1e-4, 1e-5, 1e-7] [0.1, 0.2, 0.3] [2, 5, 10, 20, 50]
RoBERTa [4, 8, 16, 32] [12] [12] [1e-4, 1e-5, 1e-7] [0.1, 0.2, 0.3] [2, 5, 10, 20, 50]

13

Table 7: Experiment parameters used in REINFORCE APMs, where the best ones are marked in bold

APM Batch Size Encoder Layers Att. Heads Learning Rate Dropout Epochs

BERT [4, 8, 16, 32] [12] [12] [1e-4, 1e-5, 1e-7] [0.1, 0.2, 0.3] [2, 5, 10, 20, 50]
BART [8, 16, 32, 64] [12] [16] [1e-4, 1e-5, 1e-7] [0.1, 0.2, 0.3] [2, 5, 10, 20, 50]
RoBERTa [4, 8, 16, 32] [12] [12] [1e-4, 1e-5, 1e-7] [0.1, 0.2, 0.3] [2, 5, 10, 20, 50]

D More Experimental Results1012

Fine-tuning performance on in-distribution tasks and unseen tasks To further support our findings,1013

we conducted additional experiments that tested the fine-tuning performance on in-distribution tasks1014

and unseen tasks in the VirtualHome environment following the setting in Li et al. (2022b). Li et al.1015

(2022b) used reinforcement learning to adapt to downstream tasks. It’s important to note that Li et al.1016

(2022b) used oracle text-based inputs that summarize the current observation, whereas we use raw image1017

inputs and understand the scene with our fine-tuned SUM module. We measure the performance with the1018

episode success rate and summarize the main comparison results with Li et al. (2022b)) in Table 8. Our1019

results show that when fine-tuning with REINFORCE, our method outperforms Li et al. (2022b) in both1020

in-distribution tasks and novel tasks. Additionally, when expert data is available in the downstream tasks,1021

fine-tuning with imitation learning outperforms the REINFORCE approach.1022

Table 8: Comparison of episode success rate.

Method In-Distribution Tasks Novel Tasks

Li et al. (2022b) 53.7 27.8
Ours (REINFORCE) 58.4 33.7
Ours (Imitation Learning) 68.4 44.8

Table 9: Our fine-tuning results for different SUM/APM configurations in in-distribution and novel tasks, as well as
using REINFORCE and imitation learning strategies. We measure the performance based on the episode success
rate.

SUM APM In-Distribution REINFORCE Novel Tasks REINFORCE In-Distribution Imitation Novel Tasks Imitation

OFA
BERT 56.1 31.4 65.2 40.7
BART 58.4 33.7 68.4 44.8

RoBERTa 51.7 32.3 66.0 42.8

BLIP
BERT 53.7 28.5 61.1 39.5
BART 55.2 31.2 64.3 40.3

RoBERTa 50.6 29.3 62.8 39.8

GRIT
BERT 50.5 28.8 61.3 40.4
BART 51.2 30.0 63.7 39.6

RoBERTa 49.0 27.1 59.2 38.7

Importance and necessity of fine-tuning To underscore the importance and necessity of fine-tuning,1023

we present additional zero-shot testing performances without fine-tuning in Table 10 and Table 11. Our1024

findings reveal that the episode success rate and action execution rates are significantly lower without fine-1025

tuning in both methods, which highlights the crucial role that fine-tuning plays in improving performance.1026

Table 10: Comparison action execution rates in zero-shot and fine-tuned settings using both REINFORCE and
Imitation Learning.

Method APM SUM REINFORCE Imitation Learning

1 Zero-shot Zero-shot 0.1 0.1
2 Zero-shot Fine-tuned 14.5 21.4
3 Fine-tuned Zero-shot 5.8 6.9
4 Fine-tuned Fine-tuned 57.2 77.8

14

Table 11: Comparison episode success rate in zero-shot and fine-tuned settings using both REINFORCE and
Imitation Learning.

Method APM SUM REINFORCE Imitation Learning

1 Zero-shot Zero-shot 0.7 0.7
2 Zero-shot Fine-tuned 16.7 19.5
3 Fine-tuned Zero-shot 7.7 8.7
4 Fine-tuned Fine-tuned 58.4 76.8

E More Related Work 1027

Multimodal Learning Formalized multimodal learning research dates back to 1989 when (Yuhas et al., 1028

1989) conducted an experiment that built off the McGurk Effect for audio-visual speech recognition 1029

using neural networks (Tiippana, 2014; McGurk and MacDonald, 1976). Researchers in NLP and CV 1030

collaborated to make large and multimodal datasets available, catering to specific downstream tasks, such 1031

as classification, translation, and detection. In correlation, improvements in LLMs opened the gates to 1032

include other modalities of data, most frequently visual data (Wang et al., 2022; Nguyen et al., 2022; Li 1033

et al., 2022a; Wang et al., 2021; Shah et al., 2022; Zhang et al., 2021; Wang et al., 2020). By utilizing 1034

the learned embeddings that have been pretrained on both language and image datasets, vision-language 1035

models are able to perform very well. Within the above success, image captioning has been an important 1036

task in multimodal learning, which aims at generating textual descriptions for the given images. 1037

Visual Feedback in Robot Learning Visual feedback is commonly used in robot learning. Gothoskar 1038

et al. (2020) learned a generative model from actions to image observations of features to control a robot 1039

from visual feedback. Ma et al. (2022) proposed a self-supervised pretrained visual representation model 1040

which is capable of generating dense and smooth reward functions for unseen robotic tasks. Strokina 1041

et al. (2022) reviewed the methods of reward estimation and visual representations used in learning-based 1042

approaches for robotics applications. Mohtasib et al. (2021) studied the performance of dense, sparse, 1043

visually dense, and visually sparse rewards in deep RL. 1044

F Markov Decision Processes 1045

Markov decision process. A Markov decision process (MDP) is defined as a 5-tuple (S,A, T,R, γ), 1046

where S and A are the state and action space, respectively. In our situation, the states are the visual 1047

observations V . T : S × A → ∆(S) is the transition function, R : S × A → R is the reward function, 1048

and γ is the discount factor. We consider a sparse reward setting and assume the γ = 1. We aim to find 1049

an optimal policy π =: S → A that maximizes the expected return Eτ∼π

[∑H−1
t=0 γtr (st, at)

]
. H is the 1050

episode length. 1051

15

