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Abstract

Optimizing objectives under constraints, where
both the objectives and constraints are black box
functions, is a common challenge in real-world
applications such as medical therapy design, in-
dustrial process optimization, and hyperparame-
ter optimization. Bayesian Optimization (BO) is a
popular approach for tackling these complex sce-
narios. However, constrained Bayesian Optimiza-
tion (CBO) often relies on heuristics, approxima-
tions, or relaxation of objectives, which can lead to
weaker theoretical guarantees compared to canoni-
cal BO. In this paper, we address this gap by focus-
ing on identifying the interior optimum of the con-
strained objective, deliberately excluding boundary
candidates susceptible to noise perturbations. Our
approach leverages the insight that jointly optimiz-
ing the objective and learning the constraints can
help pinpoint high-confidence regions of interest
(ROI) likely to contain the interior optimum. We
introduce an efficient CBO framework, which inter-
sects these ROIs within a discretized search space
to determine a general ROI. Within this ROI, we
optimize the acquisition functions, balancing con-
straints learning and objective optimization. We
showcase the efficiency and robustness of our pro-
posed framework by deriving high-probability re-
gret bounds and validating its performance through
extensive empirical evaluations.

1 INTRODUCTION

Bayesian optimization (BO) has been extensively studied
over the past few decades as a powerful framework for
addressing expensive black-box optimization tasks in ma-
chine learning, engineering, and science. In many real-world
applications, these optimization tasks often involve black-

box constraints that are costly to evaluate [Digabel and
Wild, 2015]. Examples include choosing from a plethora of
untested medical therapies under safety constraints [Sui
et al., 2015]; determining optimal pumping rates in hy-
drology to minimize operational costs under constraints on
plume boundaries [Gramacy et al., 2016]; or tuning hyper-
parameters of a neural network under memory constraints
[Gelbart et al., 2014]. It is common to model constraints
analogously to the objectives via Gaussian processes (GP)
and then utilize an acquisition function to trade off the learn-
ing and optimization to decide subsequent query points.

Recently, significant advancements have been made in
several directions to address constrained BO (CBO). For
instance, extended Expected Improvement approaches
[Bernardo et al., 2011, Gelbart et al., 2014, Gardner et al.,
2014, Zhang et al., 2021, Bachoc et al., 2020] learn the
constraints passively and calibrate the acquisition with fea-
sibility. The augmented lagrangian (AL) methods [Gramacy
et al., 2016, Picheny et al., 2016, Ariafar et al., 2019] convert
constrained optimization into unconstrained optimization
with additional hyperparameters. The entropy-based meth-
ods [Takeno et al., 2022] optimize the lower bound of the
mutual information concerning the underlying optimum
within the feasible region.

In general, the existing methods extend the unconstrained
BO methods to learn the constraints and optimize the objec-
tive simultaneously with heuristics, approximation, or relax-
ation of the objective. Nevertheless, these treatments often
hinder the rigorous theoretical analysis, particularly regard-
ing regret, which is well-established for unconstrained BO
tasks Srinivas et al. [2009], Chowdhury and Gopalan [2017].
The key challenge lies in the fact that an optimum outside the
feasible region or insufficient exploration within the feasible
region can lead to unbounded regret. Therefore, it is crucial
for CBO algorithms to rigorously guarantee the accurate
and efficient identification of the entire feasible region. This
ensures that the algorithm remains within the feasible region
and selects near-optimal candidates with high probability
after sufficient iterations. Unfortunately, this guarantee is
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Approach Feasible Region
Identification Regret Guarantees Constraint Learning

and Trade-off

Extension of
Unconstrained Methods Not explicitly guaranteed No established convergence

rate with respect to con-
straints

No adaptive trade-off be-
tween objective and con-
straints

Violation-Tolerant
Objectives May select infeasible points

despite decreasing violations
Provides upper bounds on re-
gret, but only when infeasi-
ble points yield meaningful
rewards

Penalizes constraint viola-
tions separately from the ob-
jective

Active Learning
of Constraints Typically limited to one con-

straint at a time
Guarantees available only
for level-set estimation

Splits constraint learning and
objective optimization into
separate phases

COBAR
(Proposed) Guaranteed identification

of the feasible region
Non-asymptotic regret con-
vergence rate

Integrated, adaptive trade-
off between objective op-
timization and constraint
learning

Table 1: Comparison of existing CBO approaches and COBAR (Proposed). The first three rows serve as a high-level
summary of the respective approaches discussed in the preceding paragraphs of Section 2, where detailed discussion and
citations are provided.

absent in existing methods, which motivates our approach
to incorporate active learning of unknown constraints in
designing a CBO algorithm with a regret guarantee.

In this paper, we propose a novel framework that integrates
active learning for level-set estimation (AL-LSE) [Gotovos
et al., 2013, Nguyen et al., 2021] with Bayesian optimiza-
tion for constrained problems. Our approach leverages the
theoretical strengths of both paradigms, enabling a rigor-
ous performance analysis of the proposed CBO method
in finding the interior optimum. A brief illustration of the
framework design is shown in figure 1. The remainder of
this paper is organized as follows. We first provide a detailed
overview of recent advancements in various facets of CBO.
Next, we formally state the CBO problem and introduce
the definition of probabilistic regret as a performance met-
ric that facilitates rigorous analysis. Following the problem
statement, we present our novel CBO framework, offer the
corresponding performance analysis, and provide empirical
evidence for its efficacy. Finally, we summarize the key con-
tributions of our work and discuss potential directions for
future research.

2 RELATED WORK

Extension of unconstrained methods While the major-
ity of BO research focuses on unconstrained problems
[Bernardo et al., 2011, Frazier, 2018, Gramacy, 2020, Binois
and Wycoff, 2022, Garnett, 2023], several works also ad-
dress black-box constraints. The pioneering work by Schon-
lau et al. [1998] first extended Expected Improvement (EI)
to the constrained setting, and subsequent developments
[Gelbart et al., 2014, Gardner et al., 2014, Feliot et al.,
2017, Letham et al., 2019, Wang et al., 2024] refined this

approach by defining the acquisition function at a given
point as the product of the expected improvement and the
probability that the point is feasible. In addition, the poste-
rior sampling method (Thompson sampling) was extended
to scalable CBO (SCBO) by Eriksson and Poloczek [2021],
generalizing the unconstrained TuRBO approach [Eriksson
et al., 2019] by incorporating additional samples from the
constraint posteriors to weight the objective samples. Meth-
ods based on information criteria [Hernández-Lobato et al.,
2014, Wang and Jegelka, 2017] have also been extended
to the constrained setting [Hernández-Lobato et al., 2015,
Perrone et al., 2019, Takeno et al., 2022], although these
approaches rely heavily on sampling-based approximations.
Another line of work transforms the CBO task into an uncon-
strained problem via the augmented Lagrangian framework
[Gramacy et al., 2016, Picheny et al., 2016, Ariafar et al.,
2019], allowing vanilla BO to be applied as a subroutine,
particularly in decoupled settings. In general, these methods
do not guarantee the identification of the feasible region dur-
ing optimization, and consequently, they lack a convergence
rate for regret that accounts for feasibility.

Violation-tolerant objectives In addition to the afore-
mentioned empirical approaches, recent works [Zhou and
Ji, 2022, Lu and Paulson, 2022, Guo et al., 2023, Xu et al.,
2023] have considered a relaxed CBO objective to facili-
tate theoretical analysis of convergence rates. These works
assume that queries outside the feasible region still incur
a reward and incorporate constraint violations either as a
weighted penalty within the regret or analyze them sepa-
rately from the objective’s regret. Although they provide
upper bounds on both the constraint violations and the regret,
these methods do not adequately address the issue of po-
tentially infinite regret arising from evaluations outside the



feasible region. Since diminishing constraint violations do
not guarantee the eventual selection of a feasible point, the
analysis in these works diverges from our objective without
nontrivial modifications.

Active learning of constraints The concept of data se-
lection in active learning dates back to MacKay’s work
[MacKay, 1992], and stepwise uncertainty reduction (SUR)
has been used to estimate failure probabilities in industrial
settings [Bect et al., 2012]. The principled approach of active
learning for level-set estimation (AL-LSE) was introduced
by Gotovos et al. [2013] to perform classification over the
sample space, offering theoretical guarantees on conver-
gence rates. Since both AL-LSE and BO employ Gaussian
processes to model underlying functions, Bogunovic et al.
[2016] unified these problems using truncated variance re-
duction and by selecting a kernel that ensures submodular-
ity of the variance reduction. However, a direct application
of level-set estimation methods is limited by their focus
on a single unknown function and the lack of a straight-
forward extension to balance the learning of multiple un-
known functions. While Malkomes et al. [2021], Komiyama
et al. [2022] proposed novel acquisition functions that pri-
oritize diversity in the active search, these approaches do
not provide a mechanism for adaptively trading off between
constraint learning and objective optimization. A similar
challenge is encountered in Antonio [2021], where the al-
gorithm decouples the learning of the feasible region from
the optimization of the objective by addressing them in two
separate phases. These decoupled, two-phase approaches
are fundamentally different from our goal of an integrated
algorithm that adaptively balances learning and optimization
in every step.

3 PROBLEM STATEMENT

In this section, we introduce a few useful notations and for-
malize the problem. Consider a compact search space X ⊆
Rd. We aim to find a maximizer x∗ ∈ argmaxx∈X f(x)
of a black-box function f : X → R, subject to M black-
box constraints Cm(x) (m ∈ M = {1, 2, 3, ...,M}) such
that each constraint is satisfied by staying above its corre-
sponding threshold hm. For simplicity and without loss of
generality, we let all hm = 0. Thus, formally, our goal can
be formulated as finding the interior optimum:

max
x∈X

f(x) s.t. Cm(x) > 0,∀m ∈M

We maintain a Gaussian process (GP) as the surrogate
model for each black-box function, pick a point xt ∈
X at iteration t by maximizing the acquisition function
α : X → R, and observe the function values per-
turbed by additive noise: yf,t = f(xt) + ϵ and yCm,t =
Cm(xt) + ϵ, with ϵ ∼ N (0, σ2) being i.i.d. Gaussian
noise. Each GP(µ(x), k(x,x′)) is fully specified by its

prior mean µ and kernel k. With the historical observations
St−1 = {(xi, yf,i, {yCm,i}m∈M)}i=1,2,...t−1, the posterior
also takes the form of a GP , with mean

µt(x) = kt(x)
⊤(Kt + σ2I)−1yt (1)

and covariance

kt(x,x
′) = k(x,x′)− kt(x)

⊤(Kt + σ2I)−1kt(x
′) (2)

where kt(x) ≜ [k(x1,x), . . . , k(xt,x)]
⊤ and Kt ≜

[k(x,x′)]x,x′∈St−1
is a positive definite kernel matrix [Ras-

mussen and Williams, 2006].

The definition of reward plays an important role in analyz-
ing online learning algorithms. Throughout the rest of the
paper, we define the reward of CBO as the following and
defer the detailed discussion of alternative reward choices
to Appendix F.

r(xt) =

{
yf,t if I(yCm(xt) ≥ 0) ∀m ∈M

− inf o.w.
(3)

We want to locate the global maximizer efficiently

x∗ = argmax
x∈X,∀m∈M,Cm(x)>0

f(x)

More specifically, we seek to establish an upper bound on
the performance in terms of expected regret at a certain time
t, with respect to the distribution over f at time t given
historical observation St−1,

Rt(x) ≜ Ef [r(x
∗) | St−1]− Ef [r(x) | St−1]

Formally, given a certain confidence level δ and constant ϵf ,
we want to guarantee that after using up certain budget T
dependent on δ and ϵf , we could achieve a high probability
upper bound of the regret on the identified area X̂ which is
the subset of X:

P

(
max
x∈X̂

RT (x) ≥ ϵf

)
≤ δ.

Remark 1. As discussed in the literature [Antonio, 2021,
Donskoi, 1993, Rudenko, 1994, Sergeyev et al., 2007,
Sacher et al., 2018, Bachoc et al., 2020], the reward
of CBO is not defined outside the feasible region. This
reward definition in equation 3, along with both the
aleatoric and epistemic uncertainties of the underlying
black-box functions, necessitates excluding boundary can-
didates from the formulation to ensure the soundness
of the CBO objective. For example, consider a scenario
where x∗ = argmaxx∈X,∀m∈M,Cm(x)≥0 f(x) and ∃m ∈
M, Cm(x∗) = 0. In this case, the observation yCm,t =
Cm(xt) + ϵ at xt = x∗ will be purely noise (ϵ), with
P [yCm,t < 0] = 0.5. According to equation 3, this results
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Figure 1: The pipeline of our proposed algorithm, COBAR.
In the left box, we maintain Gaussian process surrogates
for the unknown objective and each constraint. The dot-
ted curve shows the actual function, the red curve is the
predicted mean, and the shaded area is the confidence inter-
val. In the right box, we derive acquisition functions from
each Gaussian process. The general acquisition function
combines these, but only over specific Regions of Interest
(ROIs). The grey area in the acquisition plot represents a
region excluded by our ROI identification, a process detailed
in Section 4. For a step-by-step visual breakdown of this
filtering, please see figure 2.

in P [r(xt) = − inf] ≥ 0.5, making it impossible to achieve
a high-probability regret bound, as previously discussed.
Therefore, we aim to find the interior optimum of the black-
box constrained objective.

4 THE COBAR ALGORITHM

We start by introducing necessary notions from active learn-
ing for level-set estimation, followed by a detailed descrip-
tion of our proposed algorithm.

4.1 ACTIVE LEARNING FOR LEVEL-SET
ESTIMATION

We follow the common practice and assume the objective
and each unknown constraint is sampled from a correspond-
ing independent Gaussian process (GP) [Hernández-Lobato
et al., 2015, Gelbart et al., 2014, Gotovos et al., 2013] to
treat the epistemic uncertainty.

f ∼ GPf

Cm ∼ GPCm
∀m ∈M

We could derive pointwise confidence interval estimation
with the GP for each black-box function. We define the up-
per confidence bound UCBt(x) ≜ µt−1(x) + β

1/2
t σt−1(x)

and lower confidence bound LCBt(x) ≜ µt−1(x) −
β
1/2
t σt−1(x), where σt−1(x) = kt−1(x,x)

1/2 and βt acts
as a scaling factor corresponding to certain confidence.

For each unknown constraint Cm, we follow the notations
from Gotovos et al. [2013] and define the superlevel-set to be

the areas that meet the constraint Cm with high confidence

SCm,t ≜ {x ∈ X | LCBCm,t(x) > 0}

We define the sublevel-set to be the areas that do not meet
the constraint Cm with high confidence

LCm,t ≜ {x ∈ X | UCBCm,t(x) < 0}

and the undecided set is defined as

UCm,t ≜ {x ∈ X | UCBCm,t(x) ≥ 0,LCBCm,t(x) ≤ 0}

where the points remain to be classified.

4.2 REGION OF INTEREST IDENTIFICATION
FOR EFFICIENT CBO

In the CBO setting, we only care about the superlevel-set
SCm,t and undecided-set UCm,t, where the global optimum
is likely to lie in. Hence, we define the region of interest for
each constraint function Cm as

X̂Cm,t ≜ SCm,t ∪ UCm,t = {x ∈ X | UCBCm,t(x) ≥ 0}

Similarly, for the objective function, though there is no pre-
specified threshold, we could use the maximum of LCBf (x)

on the intersection of superlevel-set SC,t ≜
⋂M

m SCm,t

LCBf,t,max ≜

{
maxx∈SC,t

LCBf,t(x), if SC,t ̸= ∅
−∞, otherwise

as the high confidence threshold for the UCBf,t(x) to iden-
tify a region of interest for the optimization of the objective.
Given that UCBf,t(x

∗) ≥ f∗ ≥ f(x) ≥ LCBf,t(x) with
the probability specified by the choice of βt, we define the
ROI for the objective optimization as

X̂f,t ≜ {x ∈ X | UCBf,t(x) ≥ LCBf,t,max}

By taking the intersection of the ROI of each constraint, we
could identify the ROI for identifying the feasible region

X̂C,t ≜
M⋂
m

X̂Cm,t

The combined ROI for CBO is determined by intersecting
the ROIs of constraints and the objective:

X̂t ≜ X̂f,t ∩ X̂C,t (4)



4.3 COMBINING ACQUISITION FUNCTIONS FOR
CBO

Acquisition function for optimizing the objective To
optimize the unknown objective f when X̂t is established,
we can employ the following acquisition function 1

αf,t(x) ≜

{
UCBf,t(x)− LCBf,t,max SC,t ̸= ∅
UCBf,t(x)− LCBf,t(x) otherwise

(5)

At given t, to efficiently optimize the black-box f we evalu-
ate the point xt = argmaxx∈X̂t

αf,t(x). Since at a given
t, when LCBf,t,max is constant, the acquisition function is
equivalent to UCBf,t(x).

Acquisition function for learning the constraints When
we merely focus on identifying the feasible region defined
by a certain unknown constraint Ck, we could apply the
following active learning acquisition function.

αCm,t(x) ≜ UCBCm,t(x)− LCBCm,t(x) (6)

At given t, we evaluate the point xt =
argmaxx∈UCm,t∩X̂t

αCm,t(x) to efficiently identify
the feasible region defined by Cm. Note that the acquisition
function αCm,t(x) is not maximized on the full X̂Cm,t,
but only on UCm,t ∩ X̂t. The active learning on the
superlevel-set SCm,t ∩ X̂t doesn’t contribute to identifying
the corresponding feasible region.

Adaptive Selection Strategy With the acquisitions and
ROIs established, we propose the algorithm COnstrained
BO through Adaptive Region of Interest Acquisition
(COBAR)2, with its full procedure detailed in Algorithm 1.
To clarify its selection logic, we elaborate on the core mech-
anism here. At each iteration t, the algorithm first compiles a
set G of candidate functions. This set includes the objective
function f and any constraint Cm that still has an associ-
ated region of uncertainty (i.e., its undecided set UCm,t is
non-empty). For each function g ∈ G, the algorithm then
finds the best candidate point by maximizing its own ac-
quisition function: xf,t for the objective (line 9) and xCm,t

for each uncertain constraint (line 7). The adaptive trade-off
occurs in line 11, which implements a "winner-takes-all"
strategy. The algorithm compares the acquisition values of
all candidates (e.g., αf,t(xf,t) vs. all relevant αCm,t(xCm,t))
and selects the function gt that offers the maximum value.
The next point to query, xt, is simply the candidate asso-
ciated with this winning function (line 12). This process

1Same criterion has been studied under the unconstrained set-
ting [Zhang et al., 2023].

2We briefly discuss the possible extension to decoupled setting,
where the objective and constraints may be evaluated indepen-
dently, of COBAR in Appendix D.

allows COBAR to pivot dynamically between optimizing
the objective and reducing constraint uncertainty. For a more
detailed walkthrough, please see Appendix I.1 and the illus-
tration in figure 2.

Implementation Details Algorithm 1 is presented for a
general search space X. For practical implementation, as in
our experiments, we operate on a large, finite discretization
of the space, denoted by D̃ ⊂ X. Consequently, all identifi-
cation steps (line 4) and maximization steps (lines 7 and 9)
are performed over the relevant discrete subset of candidate
points. For instance, the search domain X̂t is replaced by its
discrete counterpart, D̃X̂t

≜ X̂t ∩ D̃. The membership of
each point in D̃ to the various ROIs and undecided sets can
be checked in a pointwise fashion, making the identification
steps (line 4) computationally straightforward. While this
work focuses on a discrete search space for theoretical clar-
ity, we discuss the extension to continuous domains, where
acquisition functions could be optimized using standard
gradient-based methods, in Appendix C.

We also illustrate the detailed procedure on a 1D toy exam-
ple in figure 2. We construct the example to demonstrate that
the explicit, active learning of the constraint doesn’t neces-
sarily hurt the optimization but could contribute directly to
the simple regret improvement.

Algorithm 1 COnstrained BO through Adaptive Region of
Interest Acquisition (COBAR).

1: Input:Search space X, initial observation S0, horizon
T , confidence factor δ, confidence coefficient β;

2: for t = 1 to T do
3: Update the posteriors of GPf,t and GPCm,t accord-

ing to equation 1 and 2
4: Identify ROIs X̂t, and undecided sets UCm,t

5: for m ∈M do
6: if UCm,t ̸= ∅ then
7: Candidate for learning of each constraint:

xCm,t ← argmaxx∈D̃X̂t
∩UCm,t

αCm,t(x) (6)
8: G ← G ∪ Cm,t

9: Candidate for optimizing the objective:
xf,t ← argmaxx∈D̃X̂t

αf,t(x) as in equation 5
10: G ← G ∪ f
11: Maximize the acquisition from different aspects:

gt ← argmaxg∈G αg,t(xg,t)
12: Pick the candidate to evaluate: xt ← xgt,t

13: Update the observation set
St ← St−1 ∪ {(xt, yf,t, {yCm,t}m∈M)}

Exploration and Multiple Feasible Regions A key chal-
lenge in CBO is ensuring adequate exploration, particularly
when the feasible space is non-convex or consists of multiple
disjoint regions. COBAR addresses this through its acquisi-
tion functions (equation 5 and equation 6). By design, the



acquisition drives the exploration: regions with high model
uncertainty (i.e., large confidence intervals) yield high ac-
quisition values, which naturally encourages the algorithm
to sample in less-explored areas. This mechanism is crucial
for discovering initially unknown feasible regions. While
our Region of Interest (X̂t) focuses the search on promising
areas for efficiency, it is dynamic and evolves as the GP
models are updated, allowing the search to expand into new
areas as uncertainty dictates. We acknowledge that guar-
anteeing the discovery of all disconnected feasible regions
while maintaining rapid convergence is a difficult trade-off,
a known challenge in global optimization. Nevertheless, we
provide empirical evidence of COBAR’s robustness in such
a scenario in our Rastrigin-1D-1C experiment (see figure 3),
where our method successfully navigates a search space
with multiple feasible regions to find the global optimum.

5 THEORETICAL ANALYSIS

We first state a few assumptions that provide insights into the
convergence properties of COBAR. The first one follows
Srinivas et al. [2009] as a standard assumption for BO.

Assumption 1. The objective and constraints are sampled
from independent Gaussian processes. Formally, for all t <
T and x ∈ X, f(x) is a sample from GPf,t, and Cm(x) is
a sample from GPCm,t, for all m ∈M.

The second one assumes that the global optimum lies inside
the feasible region due to the reason discussed in Remark 1.

Assumption 2. A global optimum exists within the feasible
region. The distance between this global optimum and the
boundaries of the feasible regions is uniformly bounded
below by ϵC . More specifically, for all m ∈ M, ∃ϵm > 0
such that Cm(x∗) > ϵm, then it holds that Cm(x∗) > ϵC =
minm∈M ϵm.

We will also show that without Assumption 2, it is pos-
sible to bound both the constraint violations and the re-
gret—defined independently of feasibility—with minor ad-
justments as discussed in Remark 2.

Assumption 3. Given a proper choice of βt that is non-
increasing, the confidence intervals are consistent. Con-
cretely, ∀t1 < t2 < T and x ∈ X, if βt1 ≥ βt2 , then
UCBt1(x) ≥ UCBt2(x) and LCBt1(x) ≤ LCBt2(x).

This is a mild assumption as long as βt is non-increasing,
given recent work by Koepernik and Pfaff [2021] showing
that if the kernel is continuous and the sequence of sampling
points lies sufficiently dense, the variance of the posterior
GP converges to zero almost surely monotonically if the
function is in metric space. If the assumption is violated, the
technique of taking the intersection of all historical confi-
dence intervals introduced by Gotovos et al. [2013] could

similarly guarantee a monotonically shrinking confidence
interval. That is, when ∃t1 < t2 < T,x ∈ X, if we have
UCBt1(x) < UCBt2(x) or LCBt1(x) > LCBt2(x), we
let UCBt2(x) = UCBt1(x) or LCBt2(x) = LCBt1(x) to
guarantee the monotonocity. To allow for a plug-in of the in-
tersection technique, and without loss of accuracy, we keep
using the notation UCB and LCB without further parsing
the value in the following discussion of algorithm design
and theoretical analysis. The cost of violating the Assump-
tion 3 has been studied in corollary 3 by Zhang et al. [2023].
We refrain from repeating the analysis here.

The following lemma justifies the definition of the re-
gions(s) of interest X̂t defined in equation 4. For clar-
ity, we denote D̃X̂t

= D̃ ∩ X̂t, and CIf∗,t =
[maxx∈D̃X̂t

LCBt(x),maxx∈D̃X̂t

UCBt(x)].

Lemma 1. Under the assumptions above, the regions of
interest X̂t, as defined in equation 4, contain the global opti-
mum with high probability. Formally, for all δ ∈ (0, 1), T ≥
t ≥ 1, and any finite discretization D̃ of X that contains
the optimum x∗ = argmaxx∈X f(x) where Cm(x∗) > ϵC
for all m ∈ M and βt = 2 log(2(M + 1)|D̃|πt/δ) with∑

T≥t≥1 π
−1
t = 1, we have P

[
x∗ ∈ D̃X̂t

]
≥ 1− δ.

To guarantee βt to be non-increasing, we could let πt = T

and therefore β = 2 log( 2(M+1)|D̃|T
δ ) is a constant. The

lemma shows that with proper choice of prior and β, the
X̂f,t remains nonempty during optimization.

Subsequently, let’s define the maximum information
gain about function f after T rounds: γf,T =
maxA⊂D̃:|A|=T I (yA; fA) and

γ̂T =
∑

g∈{f}∪{Cm}m∈M

γg,T (7)

In the following, we show that we could bound the simple
regret of COBAR after sufficient rounds. Concretely, in
Theorem 1, we provide an upper bound on the width of the
confidence interval for the global optimum f∗ = f(x∗).

Theorem 1. Under the aforementioned assumptions, with
a constant β = 2 log( 2(M+1)|D̃|T

δ ) and the acquisition
function from Algorithm 1, there exists an ϵf ≤ ϵC ,
such that after at most T ≥ βγ̂TC1

ϵ2f
iterations, we have

P [|CIf∗,T | ≤ ϵf , f
∗ ∈ CIf∗,T ] ≥ 1 − δ Here, C1 =

8/ log(1 + σ−2).

Note βγ̂TC1 is sublinear with respect to T . One direct result
of Theorem 1 is that if any point belongs to D̃ that lies in
the feasible set defined by the unknown constraints bears a
suboptimal gap on the reward except for the global optimum,
then after sufficient query, the algorithm will identify x∗ as
the only point in the ROI. In that case, COBAR will only
query x∗ and achieve zero regret afterward.
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Figure 2: Illustration of COBAR on a synthetic noise-free 1D example. The first two rows show the GP for the C, the
superlevel-set SC , the region of interest X̂C and the corresponding acquisition function αCm,t(x) as defined in equation 6.
The following two rows show the GP for f , the region of interest X̂f , and the corresponding acquisition function αf,t(x)
defined in equation 5. We show that after identifying SC , we could define the threshold for ROI identification of f accordingly.
The bottom row demonstrates that the general ROI X̂ as defined in equation 4 is identified by taking the intersection ROI for
f and C. The general acquisition function is defined as the maximum of the acquisition for f and C and is maximized on the
X̂. The scaling and length scale of the GPs are learned via maximum likelihood estimation.

Corollary 1. We assume the aforementioned conditions
hold, and ∀x ∈ D̃, when ∀m ∈M, Cm(x) > 0, x ̸= x∗, it
holds that ∃ϵC ≥ 2ϵf > 0, f∗ − f(x) > 2ϵf . In addition,

we use β = 2 log( 2(M+1)|D̃|T
δ ) and the acquisition function

from Algorithm 1. After at most t ≥ βγ̂tC1

ϵ2f
iterations, we

have P [Rt = 0] ≥ 1− δ. Here, C1 = 8/ log(1+σ−2) and
t ≤ T .

Similarly, if a group of suboptimal candidates lies in the fea-
sible area and is sufficiently close to x∗, then Assumption 2
also holds for those suboptimal points. In this condition,
the algorithm achieves a sublinear cumulative regret after
identifying this near-optimal region.

Corollary 2. We assume the aforementioned conditions
hold, and ∀x ∈ D̃, when ∀m ∈ M, Cm(x) > 0,
x ̸= x∗, ∃ϵC ≥ ϵf > 0, f∗ − f(x) ≤ 2ϵf , it
holds that ∀m ∈ M, Cm(x) ≥ ϵC . In addition, we use
β = 2 log(2(M+1)|D̃|T

δ ) and the acquisition function from
Algorithm 1. After at most t′ ≥ βγ̂t′C1

ϵ2f
iterations, we have,

P
[∑T

t=t′ r(x
∗)− r(xt) ≤

√
(T − t′)βγTC1

]
≥ 1 − δ.

Here, C1 = 8/ log(1 + σ−2) and t′ ≤ T .

Following the path of proof for Theorem 1, with Lemma 1,
we can show that the algorithm can identify infeasibility
when all points in the search space violate at least one of
the constraints at least ϵ′C . Concretely, ∀x ∈ X, if it holds
that ∃m ∈ M, Cm(x) < −ϵ′C , with high probability the
identified D̃X̂T

= ∅.
Corollary 3. When the assumptions except for Assump-
tion 2 hold, ∀x ∈ X, if ∃m ∈ M, Cm(x) < −ϵ′C , then

with a constant β = 2 log( 2(M+1)|D̃|T
δ ) and the acquisi-

tion function from Algorithm 1, after at most T ≥ βγ̂TC1

ϵ′2C

iterations, we have P
[
D̃X̂T

= ∅
]
≥ 1 − δ. Here, C1 =

8/ log(1 + σ−2).

The above algorithm and theoretical results assume that a
discretization D̃ is given but is compatible with any den-
sity of the discretization. This means that with additional
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Figure 3: We use black dots and purple dots to show the infeasible region and feasible region in the first row correspondingly.
Each column corresponds to a certain threshold choice for the single constraint c(x) = |x+ 0.7|1/2 in the Rastrigin-1D-1C
task. The search space contains a certain portion of the feasible region, denoted on each figure and title. The first row
shows the distribution of 1000 samples from the noise-free distribution objective function, and the figures are differentiated
with different feasible regions. The second row shows corresponding simple regret curves. We test each method with 15
independent trails and impose observation noises sampled from N (0, 0.1) not shown in the first row. The scaling and length
scale of the GPs are learned via maximum likelihood estimation.

assumptions on the underlying functions, we could adapt
the algorithm to a continuous setting by taking a sufficiently
dense discretization on a proper embedding space. 3.

Remark 2. If the goal is to find the boundary optimum
despite the feasibility concerns highlighted in Remark 1, a
practical approach is to uniformly shift the constraints by a
small amount ϵC to satisfy Assumption 2 with the modified
constraints. Formally, ∀m ∈ M, C′m(x) = Cm(x) + ϵC .
Then, running COBAR with these adjusted constraints, C′m,
instead of the original Cm, yields similar guarantees as
those in Theorem 1 and Corollary 2, with a high probability
that any instantaneous violations of the original constraints
are uniformly bounded by ϵC . Further details are discussed
in Appendix E.

6 EXPERIMENTS

In this section, we empirically study the performance of
COBAR against three baselines, including (1) cEI, the
extension of EI into CBO from Gelbart et al. [2014], (2)
cMES-IBO, a state-of-the-art information-based approach
by Takeno et al. [2022], and (3) SCBO, a recent Thomp-
son Sampling (TS) method tailored for scalable CBO from
Eriksson and Poloczek [2021]. We abstain from compari-
son against Augmented-Lagrangian methods, following the
practice of Takeno et al. [2022], as past studies have illus-
trated its inferior performance against sampling methods
[Eriksson and Poloczek, 2021] or information-based meth-
ods [Takeno et al., 2022, Hernández-Lobato et al., 2014]. We
defer the comparison against CONFIG Xu et al. [2023] to

3With additional assumptions on the regularization of the un-
derlying function, we derive the analogous analysis on continuous
search space in Appendix C.

Appendix H.3, due to the difference in objective and a result-
ing instability on our benchmarks. We begin by describing
the optimization tasks, and then discuss the performances.
To guarantee a fair comparison across all methods, results
are averaged over multiple independent trials. For each trial,
the random seed is set universally based only on the trial
number, ensuring that every algorithm is evaluated under
identical stochastic conditions.

6.1 CBO TASKS

We compare COBAR against the aforementioned base-
lines across six CBO tasks. The first two synthetic CBO
tasks are constructed from conventional BO benchmark
tasks [Balandat et al., 2020]. Among the other four real-
world CBO tasks, the first three are extracted from Tanabe
and Ishibuchi [2020], offering a broad selection of multi-
objective multi-constraints optimization tasks. The fourth
one is a 32-dimensional optimization task extracted from
the UCI Machine Learning repository [mis, 2019]. Further
details about the datasets are available in Appendix G.

• The Rastrigin function is a non-convex function used as a
performance test problem for optimization algorithms. It
was first proposed by Rastrigin [1974] and used as a pop-
ular benchmark dataset [Pohlheim, 2006]. The feasible
region takes up approximately 60% of the search space,
which we construct by sampling |D̃| = 20000 and reuse
for all 15 trials. We also vary the threshold to control the
portion of the feasible region to study the robustness of
COBAR. Figure 3 shows the distribution of the objective
function and feasible regions.

• The Ackley function is another commonly used optimiza-
tion benchmark. We construct two constraints to enforce
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Figure 4: The input dimensionality, the number of constraints, and the approximate portion of the feasible region in the
whole search space for each task are denoted on the titles. We run the algorithms on each task for at least 15 independent
trials. The curves show the average simple regret after standardization, while the shaded area denotes the 95% confidence
interval through the optimization.

a feasible area of 14% of the search space, which we con-
struct by sampling |D̃| = 20000 and reuse for all 15 trials.
We also include another experiment on continuous search
space of Ackley-10D-2C from Eriksson and Poloczek
[2021] in Appendix E addressing boundary optimum.

• The pressure vessel design problem aims at optimizing
the total cost of a cylindrical pressure vessel. The feasible
regions take up around 78% of the whole search space.

• The coil compression spring design problem aims to op-
timize the volume of spring steel wire, which is used to
manufacture the spring [Lampinen and Zelinka, 1999]
under static loading. The feasible regions take up approxi-
mately 0.38% of the whole search space.

• The car cab design problem includes seven input vari-
ables and eight constraints. The feasible region takes up
approximately 13% of the whole search space.

• This UCI water converter problem consists of positions
and absorbed power outputs of wave energy converters
(WECs) from the southern coast of Sydney[mis, 2019].
The feasible region takes up approximately 27% of the
whole search space.

6.2 RESULTS

We study the robustness of the algorithms with varying
feasible region sizes on the Rastrigin-1D-1C task. Results
are demonstrated in figure 3. Note that the discrete search
space consists of the 1000 points shown in the first row of
figure 3, and with the observation noises, only COBAR con-
sistently reaches the global optimum within 2000 iterations.
The convergence highlights the essential role of the active
learning of the constraint in achieving robust optimization
when unknown constraints are present.

We further study COBAR on the aforementioned optimiza-
tion tasks, with simple regret curves shown in figure 4. On
the Rastrigin-1D-1C and Car-Cabin-7D-8C tasks, COBAR
initially lags behind the baselines. This is likely because
the computational demands of actively learning the con-
straints temporarily hinder optimization progress. However,
the steady improvement of COBAR leads to consistently
superior performance after sufficient iterations, whereas the
baselines become trapped in local optima. These results
demonstrate that COBAR is efficient and effective across
various input dimensionalities, constraint numbers, and con-
straint correlations. For further details, Appendix H includes
Table 4, which presents the mean simple regret at specific
budget points, and Table 5, which summarizes performance
ranks within 100 iterations. A comparison of wall-clock
times is provided in table 3.

7 CONCLUSION

Bayesian optimization with unknown constraints poses chal-
lenges in the adaptive tradeoff between optimizing the un-
known objective and learning the constraints. We introduce
COBAR, which is backed by rigorous theoretical guaran-
tees, to efficiently address constrained Bayesian optimiza-
tion. Our key insights include: (1) the ROIs determined
through adaptive level-set estimation can congregate and
contribute to the overall Bayesian optimization task; (2) ac-
quisition functions based on independent GPs can be unified
in a principled way. Through extensive experiments, we
validate the efficacy and robustness of our proposed method
across various tasks finding the interior optimum.
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A IMPACT STATEMENTS

Bayesian optimization with unknown constraints has emerged as a powerful tool in diverse fields, including scientific
experimental design and engineering optimization tasks. This new algorithm provides a principled solution for this
challenging problem, offering several potential benefits, including improved efficiency and enhanced robustness. No major
ethical concerns are anticipated, given the algorithm’s generality and focus on solving practical problems.

B PROOFS

B.1 PROOF OF LEMMA 1

Lemma 1. Under the assumptions above, the regions of interest X̂t, as defined in equation 4, contain the global optimum
with high probability. Formally, for all δ ∈ (0, 1), T ≥ t ≥ 1, and any finite discretization D̃ of X that contains the optimum
x∗ = argmaxx∈X f(x) where Cm(x∗) > ϵC for all m ∈M and βt = 2 log(2(M + 1)|D̃|πt/δ) with

∑T
t≥1 π

−1
t = 1, we

have P
[
x∗ ∈ D̃X̂t

]
≥ 1− δ.

Proof. With probability at least 1− 1/2δ, ∀x ∈ D̃,∀T ≥ t ≥ 1,∀g ∈ {f} ∪ {Cm}m∈M,

|g(x)− µg,t−1(x)| ≤ β
1/2
t σg,t−1(x)

Note that we also take the union bound on g ∈ {f} ∪ {Cm}m∈M.

This is similarly derived as lemma 5.1 of Srinivas et al. [2009] or lemma 1 of Zhang et al. [2023]. Different from previous
proofs, we do not require the lemma to hold for ∀t ≥ 1. Instead, we require it to hold for ∀T ≥ t ≥ 1. This alleviates the
need of the convergence of the series

∑
t≥1 π

−1
t = 1 to

∑T
t≥1 π

−1
t = 1 when taking the union bound. Specifically, we could

set πt = T , which essentially makes βt = 2 log( 2(M+1)|D̃|T
δ ) a constant. Hence, we use the β in the following instead of βt

as traditionally used to highlight this difference.

First, by definition SC,t ≜
⋂M

m SCm,t, we have ∀t ≤ T,x ∈ D̃ ∩ SC,t,∀m ∈M

P [Cm(x) ≥ LCBCm,t(x) > 0] ≥ 1− 1/2δ

meaning with probability at 1 − δ, x lies in the feasible region. At the same time, we have, ∀t ≤ T , ∀m ∈ M, given
Cm(x) > 0

P [UCBf,t(x
∗) ≥ f(x∗) ≥ f(x) ≥ LCBf,t(x) ] ≥ 1− 1/2δ

Given the mutual independency between the objective f and the constraints Cm, and by the definition of the threshold
LCBf,t,max, we have ∀t ≤ T , when ∃x ∈ D̃ ∩ SC,t,

P [UCBf,t(x
∗) > LCBf,t,max] ≥ 1− δ

Note when D̃ ∩ SC,t = ∅, LCBf,t,max = −∞, we have P [UCBf,t(x
∗) > LCBf,t,max] = 1.

In summary, we’ve shown that with probability at least 1− δ, x∗ ∈ D̃ ∩ X̂f,t.

Next, by the definition of x∗ = argmaxx∈X f(x) s.t. Cm(x∗) > ϵC we have ∀t ≤ T, ∀m ∈M

P [UCBCm,t(x
∗) ≥ Cm(x∗) > 0] ≥ 1− 1/2δ

meaning with probability at least 1− 1/2δ, x∗ ∈ D̃ ∩ X̂Cm,t. And in general, we have ∀t ≤ T, ∀m ∈M

P
[
x∗ ∈ D̃ ∩ X̂t

]
≥ 1− δ



B.2 PROOF OF THEOREM 1

The following lemmas show that the maximum of the acquisition functions equation 5 and 6 are both bounded after sufficient
evaluations.

Lemma 1. Under the conditions assumed in Theorem 1 except for Assumption 2, let αt = maxg∈G αg,t(xg,t) as in

Algorithm 1, with β = 2 log( 2(M+1)|D̃|T
δ ) that is a constant, after at most T ≥ βγ̂TC1

ϵ2f
iterations, αT ≤ ϵf Here

C1 = 8/ log(1 + σ−2).

The inequation T ≥ βγ̂TC1

ϵ2f
has T on both side, which follows the convention in Gotovos et al. [2013].

Proof. We first unify the notation in the acquisition functions.
∀T ≥ t ≥ 1,∀g ∈ {Cm}m∈M, when D̃X̂t

∩ Ug,t ̸= ∅,

max
x∈D̃X̂t

∩Ug,t

UCBg,t(x)− LCBg,t(x) ≤ αt (8)

∀T ≥ t ≥ 1,∀g ∈ {Cm}m∈M, when D̃X̂t
∩ UCm,t = ∅, let

max
x∈D̃X̂t

∩Ug,t

UCBg,t(x)− LCBg,t(x) = 0 ≤ αt (9)

∀T ≥ t ≥ 1, g = f , when SC,t = ∅, we have

max
x∈D̃X̂t

UCBf,t(x)− LCBf,t(x) ≤ αt (10)

∀T ≥ t ≥ 1, g = f , when SC,t ̸= ∅, we have

max
x∈D̃X̂t

UCBf,t(x)− LCBf,t.max ≤ αt (11)

By lemma 5.1, 5.2 and 5.4 of Srinivas et al. [2009], with β = 2 log( 2(M+1)|D̃|T
δ ), ∀g ∈ {f} ∪ {Cm}m∈M and ∀xt ∈

D̃X̂t
⊆ D̃, we have

∑T
t=1(2β

1/2σg,t−1, (xt))
2 ≤ C1βγg,T . By definition of αt , we have the following

T∑
t=1

α2
t ≤

T∑
t=1

max
g∈{f}∪{Cm}m∈M

(2β1/2σg,t−1(xg,t))
2

≤
T∑

t=1

∑
g∈{f}∪{Cm}m∈M

(2β1/2σg,t−1(xt))
2

≤
∑

g∈{f}∪{Cm}m∈M

C1βγg,T

= C1βγ̂T

The last line holds due to the definition in equation 7. By Cauchy-Schwarz, we have

1

T
(

T∑
t=1

αt)
2 ≤ C1βγ̂T

With Assumption 3, ∀g ∈ {Cm}m∈M, ∀1 ≤ t1 < t2 ≤ T , ∀g ∈ {Cm}m∈M, we have Ug,t2 ⊆ Ug,t1 and X̂t2 ⊆ X̂t1 , and
most importantly, αt2 ≤ αt1 . Therefore

αT ≤
1

T

T∑
t=1

αt ≤
√

C1βγ̂T
T

As a result, after at most T ≥ βγ̂TC1

ϵ2f
iterations, we have αT ≤ ϵf .



With Lemma 1, we could first prove that after adequately T rounds of evaluations such that ϵf ≤ minm∈M ϵm
is sufficiently small, with certain probability, x∗ ∈ SC,T . Then LCBf,t,max ̸= −∞, and therefore the width of
[maxx∈D̃X̂t

LCBf,T (x),maxx∈D̃X̂t

UCBf,T (x)], which is a the high confidence interval of f∗, is bounded by ϵf .

Proof. We first prove that after at most T ≥ βγ̂TC1

ϵ2f
iterations, P

[
x∗ ∈ D̃X̂t

∩ SC,T

]
≥ 1− 1/2δ. Given equation 8 and 9

and Lemma 1, we have ∀g ∈ {Cm}m∈M,

max
x∈D̃X̂T

∩Ug,T

UCBg,T (x)− LCBg,T (x) ≤ ϵf ≤ min
m∈M

ϵm

According to the definition of Ug,T , ∀x ∈ D̃X̂T
∩ Ug,T ,∀g ∈ {Cm}m∈M

UCBg,T (x) ≤ ϵf + LCBg,T (x) ≤ ϵf ≤ min
m∈M

ϵm

According to Assumption 2, and Lemma 1, ∀m ∈M, we have

P

[
UCBCm,T (x

∗) > max
x∈D̃X̂t

∩UCm,t

UCBCm,T (x)

]
≥ 1− 1/2δ

Given = D̃X̂T
∩ SC,T = D̃X̂t

∩ X̂C,T \ ∪m∈M UCm,T , when t = T , we have

P
[
x∗ ∈ D̃X̂T

∩ SC,T

]
≥ 1− 1/2δ (12)

As a result
P [LCBf,T,max ̸= −∞] ≥ 1− 1/2δ

Next, we prove the upper bound for the width of the high-confidence interval of f∗. Given that LCBf,T,max ̸= −∞, we have

max
x∈D̃X̂T

UCBf,T (x)− max
x∈D̃X̂T

LCBf,T (x) ≤ max
x∈D̃X̂T

UCBf,T (x)− LCBf,T,max ≤ αT ≤ ϵf

Combining it with the observation that with probability 1− 1/2δ,

max
x∈D̃X̂T

LCBf,T (x) < f(x∗) ≤ max
x∈D̃X̂T

UCBf,T (x)

we attain the final result that after T ≥ βγ̂TC1

ϵ2 iterations,

P [|CIf∗,T | ≤ ϵ, f∗ ∈ CIf∗,T ] ≥ 1− δ

B.3 PROOF OF COROLLARY 1

Proof. We simply need to show that after t ≥ βγ̂tC1

ϵ2f
iterations, with probability at least 1− δ, x∗ is the only member in

D̃X̂t
.

Similar to Theorem 1, we have P [|CIf∗,t| ≤ ϵf , f
∗ ∈ CIf∗,t] ≥ 1− δ. At the same time, given the proof of Lemma 1, we

have ∀x ∈ D̃X̂t
, 2β1/2σf,t−1(x) ≤ ϵf .

Then if ∃x ̸= x∗ and x ∈ D̃X̂t
, we have f∗ − f(x) > 2ϵf , while

P
[
f∗ − f(x) ≤ |CIf∗,t|+ UCBf,t(x)− LCBf,t(x) ≤ 2β1/2σf,t−1(x) + ϵf ≤ 2ϵf

]
≥ 1− δ

This contradiction means with probability at least 1 − δ, x∗ is the only member in D̃X̂t
, and xt = x∗. As a result,

P [Rt = 0] ≥ 1− δ, when T ≥ t ≥ βγ̂tC1

ϵ2f
.



B.4 PROOF OF COROLLARY 2

Proof. We follow the same path as the proof of Corollary 1.

Similar to Theorem 1, we have P [|CIf∗,t| ≤ αt ≤ ϵf , f
∗ ∈ CIf∗,t] ≥ 1− δ. At the same time, given the proof of Lemma 1,

we have ∀x ∈ D̃X̂t
, 2β1/2σf,t−1(x) ≤ αt ≤ ϵf .

Then ∀x ̸= x∗ and x ∈ D̃X̂t
, we have

P [f∗ − f(x) ≤ |CIf∗,t|+ UCBf,t(x)− LCBf,t(x) ≤ 2αt ≤ 2ϵf ] ≥ 1− δ

Then by assumption, ∀x ∈ D̃X̂t
, ∀m ∈M, we have probability at least 1−δ, Cm(x) ≥ ϵC , and hence x /∈ UCm,t. According

to the algorithm, it regresses to GP-UCB by Srinivas et al. [2009] between t′ and T .

T∑
t=t′

(r(x∗)− r(xt))
2 ≤ βC1(γT − γt′)

≤ βC1γT (1− t′/T )

By Cauchy-Schwarz, we have

T∑
t=t′

(r(x∗)− r(xt)) ≤

√√√√(T − t′)

T∑
t=t′

(r(x∗)− r(xt))2

≤
√

(T − t′)2

T
βC1γT

≤
√
(T − t′)βC1γT

B.5 PROOF OF COROLLARY 3

Proof. We assume D̃X̂T
̸= ∅ and prove by contradiction. Given equation 8 and 9 and Lemma 1, we have ∀g ∈ {Cm}m∈M,

max
x∈D̃X̂T

∩Ug,T

UCBg,T (x)− LCBg,T (x) ≤ ϵ′C

According to the definition of Ug,T , ∀x ∈ D̃X̂T
∩ Ug,T ,∀g ∈ {Cm}m∈M, with probability at least 1− 1/2δ, we have

Cm(x) ≤ UCBCm,T (x) ≤ ϵ′C + LCBg,T (x) ≤ ϵ′C + Cm(x)

Then we have ∀x ∈ D̃X̂T
∩ Ug,T , ∃m ∈M

P [Cm(x) ≤ ϵ′C + Cm(x) < 0] ≥ 1− 1/2δ

This contradiction means ∀g ∈ {Cm}m∈M, D̃X̂T
∩ Ug,T = ∅ with probability as least 1− 1/2δ.

According to the definition of Sg,T , ∀x ∈ D̃X̂T
∩ Sg,T ,∀g ∈ {Cm}m∈M

LCBg,T (x) ≥ ϵ′C

Then we have ∀x ∈ D̃X̂T
∩ Sg,T , ∃g ∈ {Cm}m∈M

P [−ϵ′C ≥ Cm(x) ≥ LCBg,T (x) ≥ ϵ′C ] ≥ 1− 1/2δ

This contradiction means ∀g ∈ {Cm}m∈M, D̃X̂t
∩ Sg,T = ∅ with probability as least 1− 1/2δ.

Combining the above contradictions, we have at least when t = T ,

P
[
D̃X̂T

= ∅
]
≥ 1− δ



C CONTINUOUS SEARCH SPACE

C.1 THEORETICAL RESULTS

In the following, we introduce the additional assumption that bounds the unknown functions’ complexity when they are
members of an RKHS space and enables the performance analysis when applying COBAR on continuous search space X
instead of D̃.

Assumption 4. The objective and constraints all lie in the RKHS Hk corresponding to the kernel k(x,x′), and the
corresponding norm is bounded by B. Formally, f : X→ R is a member of the RKHS of real-valued functions on X with
kernel k, with RKHS norm ∥f∥k ≤ B. Similarly, Cm : X→ R is a member of the RKHS of real-valued functions on X with
kernel k, with RKHS norm ∥Cm∥k ≤ B, for all m ∈M.

Then, we could derive similar results mapping from Lemma 1.

Lemma 2. Under the assumptions above, the regions of interest X̂t, as defined in equation 4, contain the global optimum
with high probability. Formally, for all δ ∈ (0, 1), T ≥ t ≥ 1, and the search space X that contains the optimum
x∗ = argmaxx∈X f(x) where Cm(x∗) > ϵC for all m ∈M and β

1/2
t = B + σ

√
2(γ̂T + 1 + ln(2(M + 1)/δ)), we have

P
[
x∗ ∈ X̂t

]
≥ 1− δ.

Proof. Similar to theorem 2 of Chowdhury and Gopalan [2017], with probability at least 1 − 1/2δ, ∀x ∈ D̃,∀T ≥ t ≥
1,∀g ∈ {f} ∪ {Cm}m∈M,

|g(x)− µg,t−1(x)| ≤ β
1/2
t σg,t−1(x)

Note that we also take the union bound on g ∈ {f} ∪ {Cm}m∈M.

First, by definition SC,t ≜
⋂M

m SCm,t, we have ∀t ≤ T,x ∈ SC,t,∀m ∈M

P [Cm(x) ≥ LCBCm,t(x) > 0] ≥ 1− 1/2δ

meaning with probability at 1 − δ, x lies in the feasible region. At the same time, we have, ∀t ≤ T , ∀m ∈ M, given
Cm(x) > 0

P [UCBf,t(x
∗) ≥ f(x∗) ≥ f(x) ≥ LCBf,t(x) ] ≥ 1− 1/2δ

Given the mutual independency between the objective f and the constraints Cm, and by the definition of the threshold
LCBf,t,max, we have ∀t ≤ T , when ∃x ∈ SC,t,

P [UCBf,t(x
∗) > LCBf,t,max] ≥ 1− δ

Note when SC,t = ∅, LCBf,t,max = −∞, we have P [UCBf,t(x
∗) > LCBf,t,max] = 1.

In summary, we’ve shown that with probability at least 1− δ, x∗ ∈ X̂f,t.

Next, by the definition of x∗ = argmaxx∈X f(x) s.t. Cm(x∗) > ϵC we have ∀t ≤ T, ∀m ∈M

P [UCBCm,t(x
∗) ≥ Cm(x∗) > 0] ≥ 1− 1/2δ

meaning with probability at least 1− 1/2δ, x∗ ∈ X̂Cm,t. And in general, we have ∀t ≤ T, ∀m ∈M

P
[
x∗ ∈ X̂t

]
≥ 1− δ

Remark 2. The proof of Lemma 2 substitutes the β in the proof of Lemma 1 and alleviates the need for a discretization
D̃ with the additional assumption on the complexity of the unknown functions in Assumption 4. Note the β

1/2
t =

B + σ
√
2(γ̂T + 1 + ln(2(M + 1)/δ)), we have P

[
x∗ ∈ X̂t

]
≥ 1 − δ is larger than the original value in the theorem 2

of Chowdhury and Gopalan [2017] to make sure βt is the same for all ∀T ≥ t ≥ 1 and to guarantee a union bound on
g ∈ {f} ∪ {Cm}m∈M. In the following, since βt is constant, we substitute it with β.



Then, we could trivially map the Theorem 1 when maximizing the acquisition functions on X̂t instead of D̃X̂t
as in line 9

of Algorithm 1 and on X̂t ∩ UCm,t instead of D̃X̂t
∩ UCm,t as in line 8 of Algorithm 1. The proof would be identical to

Appendix B except for the different β and search space.

Algorithm 2 COnstrained BO through Adaptive Region of Interest Acquisition on Continuous Space(COBAR-CS)

1: Input:Search space X, initial observation S0, horizon T , confidence factor δ, confidence coefficient β;
2: for t = 1 to T do
3: Update the posteriors of GPf,t and GPCm,t according to equation 1 and 2
4: Identify ROIs X̂t, and undecided sets UCm,t

5: for m ∈M do
6: if UCm,t ̸= ∅ then
7: Candidate for learning of each constraint:

xCm,t ← argmaxx∈X̂t∩UCm,t
αCm,t(x) (6)

8: G ← G ∪ Cm,t

9: Candidate for optimizing the objective:
xf,t ← argmaxx∈X̂t

αf,t(x) as in equation 5
10: G ← G ∪ f
11: Maximize the acquisition from different aspects:

gt ← argmaxg∈G αg,t(xg,t)
12: Pick the candidate to evaluate: xt ← xgt,t

13: Update the observation set
St ← St−1 ∪ {(xt, yf,t, {yCm,t}m∈M)}

Theorem 3. Under the aforementioned assumptions, with a constant β1/2
t ≜ β1/2 = B+σ

√
2(γ̂T + 1 + ln(2(M + 1)/δ))

and the acquisition function from Algorithm 2, there exists an ϵf ≤ ϵC , such that after at most T ≥ βγ̂TC1

ϵ2f
iterations, we

have P [|CIf∗,T | ≤ ϵf , f
∗ ∈ CIf∗,T ] ≥ 1− δ Here, C1 = 8/ log(1 + σ−2).

C.2 EFFICIENT DISCRETIZATION

Aiming at a continuous search space demands additional consideration when implementing a practical ROI identification on
the continuous search space or requires a better coverage by the discretization of the dense search space for COBAR in
practice. This problem is more outstanding in high-dimensional tasks. Here, we briefly discuss potential remedies if we
still resort to an efficient discretization. The random linear projection has been used for discretizing the search space to
mitigate the dependency on the dimensionality while, with high probability, preserving the original geometry [Dasgupta,
1999, Nayebi et al., 2019]. To efficiently discretize the dense search space for COBAR (in high-dimensional applications),
one option is to apply the random projection and its reverse studied by Nayebi et al. [2019], which shows strong empirical
performance when combined with other BO algorithms and offers the following theoretical guarantee.

Definition 1. (ε-subspace embedding [Nayebi et al., 2019]) Given a matrix V ∈ RD×d with orthonormal columns, an
integer d ≤ D and an approximation parameter ε ∈ (0, 1), an ε-subspace embedding for V is a map H : Rd → RD such
that ∀x ∈ Rd:

(1− ε)∥V x∥22 ≤ ∥HV x∥22 ≤ (1 + ε)∥V x∥22
Theorem 4. (Theorem 2 of Nayebi et al. [2019]) Consider a Gaussian process that acts directly in the unknown active
subspace of dimension de with mean and variance functions µ(·), σ2(·). Let µ̂(·), σ̂2(·) be their approximations using an
ε-subspace embedding for the active subspace. Then we have for every x ∈ X

1. |µ(x)− µ̂(x)| ≤ 5ε∥x∥∥X − f̂∥

2. σ2(x)− σ̂2(x) ≤ 12ε∥x∥2

For a comprehensive survey on the treatments of high-dimensional search space for BO, we refer to the recent survey by
Binois and Wycoff [2022]. Besides the random projection [Nayebi et al., 2019, Wang et al., 2016, Letham et al., 2020],
variable selection Hellsten et al. [2023], tree-structure partition [Eriksson and Jankowiak, 2021], and Markov Chain Monte
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Figure 5: The figure illustrates the simple regret for Ackley-40D-2C. All the tested algorithms rely on the low-dimensional
embedding in HeSBO. The results are collected from 15 independent trials. The shaded area denotes the standard error.

Problem COBAR CMES-IBO SCBO cEI

Ackley-40D-2C 75.87 281.47 34.33 185.07

Table 2: Average wall time (sec) of different CBO Methods collected from 15 independent trials.

Carlo sampling [Yi et al., 2024] on the search space could all be applied as plugins to improve the discretization efficiency
for COBAR.

C.3 CASE STUDY

We illustrate the effectiveness of integrating Hashing-enhanced Subspace BO (HeSBO) [Nayebi et al., 2019] into CBO
algorithms. We construct the following 40-dimensional CBO task that makes any grid discretization containing a feasible
candidate on the original embedding intractable.

Ackley-40D-2C This Ackley-40D-2C function is a variant for the task we study in section 6. f(x) =

20 exp (−0.2
√
1/d

∑d
i x

2
i ) + exp (1/d

∑d
i cos(2πxi)) + 20 + exp(1), d = 5 where x ∈ [−5, 10]40. We construct

two constraints to enforce a feasible area taking up less than 0.6% of the search space. The first constraint C1 = 1− (
∑5

i xi).
The second constraint C2 = 6− (

∑5
i x

2
i ).

We find that COBAR fails in the original search space [−5, 10]40 due to the intractability of any discretization containing
sufficient feasible candidates. We integrate HeSBO into all the tested CBO algorithms to allow the algorithms to process
on a 5-dimensional embedding space [−1, 1]5. COBAR relies on a random sampling containing 200000 candidates. The
simple regret curves are shown in figure 5. Though the point-wise comparison of COBAR is not tractable in the original
40-dimensional search space, integrating HeSBO allows COBAR to optimize the high-dimensional CBO toy problem
efficiently. Table 2 shows that COBAR could efficiently optimize the embedding space, benefited from the reduced
dimensionality and the ROI identification that further reduces computation need dynamically.



D DECOUPLED SETTING

In the main paper, we assume both objective f and the constraints {Cm}m∈M are revealed upon querying an input point.
The setting is regarded as a coupling of the objective and constraints to differentiate from the decoupled setting, where
the objective and constraints may be evaluated independently. In the decoupled setting, acquisition functions need to
explicitly tradeoff the evaluation of the different aspects and, in addition to helping to pick the candidate xt ∈ X, suggest
gt ∈ {f} ∪ {Cm}m∈M for evaluation each time. This typically requires different acquisition from coupled setting [Gelbart
et al., 2014]. However, we will show that our acquisition function and COBAR require minimum adaptation to the decoupled
setting while bearing a similar performance guarantee.

D.1 ALGORITHM FOR DECOUPLED SETTING

When taking the gt ← argmaxg∈G αg,t(xg,t) in Algorithm 1, we explicitly choose the aspect that matters most at a
certain iteration. Naturally, we could adapt COBAR to the decoupled setting by querying xg,t on this unknown function
gt ∈ G ⊆ {f} ∪ {Cm}m∈M at iteration t. The modified algorithm is shown below.

Algorithm 3 Decoupled COnstrained BO through Adaptive Region of interest Acquisition (COBAR-Decoupled)

1: Input:Search space X, initial observation S0, horizon T , confidence factor δ, estimated ϵC ;
2: for t = 1 to T do
3: Update the posteriors of GPf,t and GPCm,t according to equation 1 and 2
4: Identify ROIs X̂t, and undecided sets UCm,t

5: for m ∈M do
6: if UCm,t ̸= ∅ then
7: Candidate for active Learning of each constraint:

xCm,t ← argmaxx∈D̃X̂t
∩UCm,t

αCm,t(x) as in equation 6
8: G ← G ∪ Ck,t
9: Candidate for optimizing the objective:

xf,t ← argmaxx∈D̃X̂t

αf,t(x) as in equation 5
10: G ← G ∪ f
11: Maximize the acquisition values from different aspects:

gt ← argmaxg∈G αg,t(xgt,t)
12: Pick the candidate to evaluate: xt ← xgt,t

13: Update the observation set with the candidate and corresponding new observations on gt
St ← St−1 ∪ {(xt, ygt,t)}

D.2 THEORETICAL GUARANTEE AND PROOF

We first denote the maximum mutual information gain after T rounds of evaluations as

γ̃T =
∑

g∈{f}∪{Cm}m∈M

γg,Tg
(13)

Where Tg denotes the number of evaluations for g ∈ {f} ∪ {Cm}m∈M before T . Therefore we have

T =
∑

g∈{f}∪{Cm}m∈M

Tg

Then, we have the following guarantee for the performance of COBAR-Decoupled.

Theorem 5. The width of the resulting confidence interval of the global optimum f∗ = f(x∗) has an upper bound. That is,
under the same assumptions in Theorem 1, with β = 2 log(2(M + 1)|D̃X̂t

|πt/δ) that is constant, and acquisition function
in Algorithm 3, ∃ϵf ≤ ϵC , after at most T ≥ βγ̃TC1

ϵ2f
iterations, we have P [|CIf∗,T | ≤ ϵf , f

∗ ∈ CIf∗,T ] ≥ 1 − δ Here

C1 = 8/ log(1 + σ−2).



Lemma 2. Under the conditions assumed in Theorem 5 except for Assumption 2, let αt = maxg∈G αg,t(xg,t) as in

Algorithm 3, with β = 2 log( 2(M+1)|D̃|T
δ ) that is a constant, after at most T ≥ βγ̃TC1

ϵ2f
iterations, αT ≤ ϵf Here

C1 = 8/ log(1 + σ−2).

Here is the critical difference to the proof of Theorem 1.

Proof. We first unify the notation in the acquisition functions.
∀T ≥ t ≥ 1,∀g ∈ {Cm}m∈M, when D̃X̂t

∩ Ug,t ̸= ∅,

max
x∈D̃X̂t

∩Ug,t

UCBg,t(x)− LCBg,t(x) ≤ αt (14)

∀T ≥ t ≥ 1,∀g ∈ {Cm}m∈M, when D̃X̂t
∩ UCm,t = ∅, let

max
x∈D̃X̂t

∩Ug,t

UCBg,t(x)− LCBg,t(x) = 0 ≤ αt (15)

∀T ≥ t ≥ 1, g = f , when SC,t = ∅, we have

max
x∈D̃X̂t

UCBf,t(x)− LCBf,t(x) ≤ αt (16)

∀T ≥ t ≥ 1, g = f , when SC,t ̸= ∅, we have

max
x∈D̃X̂t

UCBf,t(x)− LCBf,t.max ≤ αt (17)

By lemma 5.1, 5.2 and 5.4 of Srinivas et al. [2009], with β = 2 log( 2(M+1)|D̃|T
δ ), ∀g ∈ {f} ∪ {Cm}m∈M and ∀xt ∈

D̃X̂t
⊆ D̃, we have

∑T
t=1(2β

1/2σg,t−1, (xt))
21(gt = g) ≤ C1βγg,Tg

. By definition of αt , we have the following

T∑
t=1

α2
t =

T∑
t=1

max
g∈{f}∪{Cm}m∈M

α2
gt,t(xgt,t)

≤
T∑

t=1

max
g∈{f}∪{Cm}m∈M

(2β1/2σgt,t−1(xgt,t))
2

≤
∑

g∈{f}∪{Cm}m∈M

C1βγg,Tg

= C1βγ̃T

By Cauchy-Schwarz, we have
1

T
(

T∑
t=1

αt)
2 ≤ C1βγ̃T

By the monotonocity assumed in Assumption 3, ∀g ∈ {Cm}m∈M, ∀1 ≤ t1 < t2 ≤ T , ∀g ∈ {Cm}m∈M, we have
Ug,t2 ⊆ Ug,t1 and X̂t2 ⊆ X̂t1 , and most importantly, αt2 ≤ αt1 . Therefore

αT ≤
1

T

T∑
t=1

αt ≤
√

C1βγ̃T
T

As a result, after at most T ≥ βγ̃TC1

ϵ2f
iterations, we have αT ≤ ϵf .

The rest of the proof for Theorem 5 is essentially the same as proof for Theorem 1 except for substituting Lemma 1 with
Lemma 2.



E DEALING WITH BOUNDARY OPTIMUM

Here, we discuss the treatment and theoretical behavior when dealing with the boundary optimum as mentioned in Remark 2.
First, we extend the results in Theorem 1, when not assuming the Assumption 2 hold. We uniformly shift the constraints by
a small amount ϵC to satisfy Assumption 2 with the modified constraints. Formally, ∀m ∈M, C′m(x) = Cm(x) + ϵC . Then,
running COBAR with these adjusted constraints, C′m, instead of the original Cm, we have the following guarantee, which is
a direct extension of Theorem 1. We denote the f̃∗ = f(x̃∗), Here x̃∗ = argmaxx∈X,∀m∈M,C′

m(x)>0 f(x).

Corollary 4. Under the aforementioned assumptions and modifications, with a constant β = 2 log( 2(M+1)|D̃|T
δ ) and the

acquisition function from Algorithm 1, there exists an ϵf ≤ ϵC , such that after at most T ≥ βγ̂TC1

ϵ2f
iterations, we have

P
[
|CIf̃∗,T | ≤ ϵf , f̃

∗ ∈ CIf̃∗,T

]
≥ 1− δ. Here, C1 = 8/ log(1 + σ−2).

This Corollary 4 allows us to depict the width of the global optimum defined in the enlarged feasible region similarly. Since
the optimum is defined in the enlarged area, it could be an upper bound of the global optimum defined in the original feasible
region, including the feasible region boundaries. That is

f̃∗ ≥ argmax
x∈X,∀m∈M,Cm(x)≥0

f(x)

This allows us to extend further the Corollary 2 that depicts the partial cumulative regret after sufficient iterations and the
upper bound of the violations.

Corollary 5. Under the aforementioned assumptions and modifications, when ∀m ∈ M, C′m(x) > 0, x ̸=
x∗, ∃ϵC > ϵ′C ≥ ϵf > 0, f∗ − f(x) ≤ 2ϵf , it holds that ∀m ∈ M, C′m(x) ≥ ϵ′C . We use β =

2 log(2(M+1)|D̃|T
δ ) and the acquisition function from Algorithm 1. After at most t′ ≥ βγ̂t′C1

ϵ′2f
iterations, we have,

P
[∑T

t=t′ r(x
∗)− r(xt) ≤

√
(T − t′)βγTC1,∀x ∈ D̃, Cm(xt) ≥ −ϵC

]
> 1−δ. Here, C1 = 8/ log(1+σ−2) and t′ ≤ T .

Proof. First, we have ∀x ∈ D̃X̂t
, 2β1/2σf,t−1(x) ≤ αt ≤ ϵf .

Then ∀x ̸= x̃∗ and x ∈ D̃X̂t
, we have

P
[
f̃∗ − f(x) ≤ |CIf̃∗,t|+ UCBf,t(x)− LCBf,t(x) ≤ 2αt ≤ 2ϵf

]
≥ 1− δ

Then by assumption, ∀x ∈ D̃X̂t
, ∀m ∈ M, we have probability at least 1 − δ, C′m(x) ≥ ϵ′C . Hence we have both

Cm(x) ≥ ϵC − ϵ′C and x /∈ UC′
m,t. According to the algorithm, it regresses to GP-UCB by Srinivas et al. [2009] between t′

and T .

T∑
t=t′

(r(x∗)− r(xt)) ≤
T∑

t=t′

(r(x̃∗)− r(xt))
2

≤ βC1(γT − γt′)

≤ βC1γT (1− t′/T )

By Cauchy-Schwarz, we have

T∑
t=t′

(r(x∗)− r(xt)) ≤

√√√√(T − t′)

T∑
t=t′

(r(x∗)− r(xt))2

≤
√

(T − t′)2

T
βC1γT

≤
√
(T − t′)βC1γT



Figure 6: The figure illustrates the simple regret for Ackley-10D-2C. The results are collected from 15 independent
trials. The shaded area denotes the 98% confidence interval. We reproduce the reported performance of SCBO using the
corresponding Botorch tutorial. Then, we fix the kernel choices and other hyperparameters to make a fair comparison. For
COBAR-EPSILON, we set ϵC = 1.2.

Note that by enlarging the feasible region with ϵC , we don’t risk losing the feasible region to enable COBAR to identify
both interior and boundary optimum. We don’t change the definition of f∗. Instead, we only leverage the modified running
constraints and verify the feasibility with the original constraints. For the algorithms aiming at violation tolerant objectives
like CONFIG [Xu et al., 2023], there is no similar guarantee with straightforward modification, e.g., adding small ϵC to the
threshold while not risking losing the feasible region. We denote the modified COBAR as COBAR-EPSILON. We include
the corresponding comparison on the noise-free Ackley-10D-2C as exactly defined in Eriksson and Poloczek [2021], where
the feasible region is less than 2.2 ∗ 10−3% of the whole search space, and the optimum lies on the boundary of feasible
region by construction.

As is shown in figure 6, COBAR is initially outperformed by SCBO while converging to the near-optimal area after the
sufficient budget as SCBO. COBAR-EPSILON archives the best convergence throughout the optimization with the proposed
minor tweak. In contrast, CONFIG fails to converge to the global optimum, possibly due to its tolerance of the constraints
violation, and by definition, no reward is incurred for a point outside the feasible region.

F REWARD FUNCTION

F.1 REWARD CHOICE 1: PRODUCT OF REWARD AND FEASIBILITY

The definition of reward plays an important role in online machine learning performance analysis. In the CBO setting, one
possible definition of constrained reward derived from the constraint nature is r(x) = f(x)

∏
m ICm(x)≥hm

when assuming
the f(x) > 0. Considering both the aleatoric and epistemic uncertainty on the constraints, we could transform the problem
into finding the maximizer

argmax
x∈X

r(x) = argmax
x∈X

f(x)
∏
m

P [YCm(x) ≥ hm]

Here YCm
(x) denotes the observation of the constraint Cm at x.

The problem with this product reward, on the one hand, is that it is likely to incur a Pareto front if we regard the problem as a
multi-objective optimization where the objectives are composed of f(x) and P [YCm

(x) ≥ hm]. The multi-objective nature
and resulting Pareto front indicate that the optimization could be more challenging to converge than the single-objective
unconstrained BO problem, though the unique global optimum is not always expected there either. More critically, when the
feasibility of reaching a certain threshold, we prefer to focus on optimizing the objective value rather than the product for
the following reasons.



Firstly, the marginal gain on improving feasibility by increasing the value of the constraint function drops after the feasibility
reaches 0.5 assuming it follows a Gaussian. Especially in the tail region, improving the feasibility and then the product of
feasibility and objective value by optimizing the constraint function is prohibitively difficult.

Secondly, in most real-world scenarios except for certain applications that focus on feasibility (where the feasibility should
be treated as another objective and make it in nature a multi-objective optimization), the actual marginal gain, in general,
increases the feasibility decay faster than the increase of objective value. (e.g., when choosing between doubling the
feasibility from 0.25 to 0.5 or doubling the objective value drop from 25 to 50, we probably favor the former as 0.25,
meaning it is unlikely to happen. However, when choosing between increasing feasibility from .8 to .9 or increasing the
objective drop from 80 to 90, there would be no such clear preference.) Then, the user would possibly favor the gain on the
objective function after the feasibility reaches a certain level. Therefore, we propose the following reward for constrained
optimization tasks according to this insight.

F.2 REWARD CHOICE 2: OBJECTIVE FUNCTION AFTER THE FEASIBILITY REACHING CERTAIN
THRESHOLD

Instead of defining the reward as the product of the objective value and feasibility, we have to look into the probabilistic
constraints and distinguish the epistemic uncertainty and aleatoric uncertainty. First, when assuming the observation on the
constraints are noise-free, namely YCm

(x) = Cm(x), we could simply use the indicator function µm for each constraint to
turn the feasibility function into an indicator function. This definition accommodates the scenarios where the infeasible
region does not incur credible reward as discussed by Sacher et al. [2018], Bachoc et al. [2020] due to simulation failures

r(x) =

{
f(x) if I(Cm(x) ≥ hm) ∀m ∈M

−inf o.w
(18)

Next, if the observation on the constraints is perturbed with a known Gaussian noise, namely YCm(x) ∼ N (Cm(x), σ), we
could deal with the aleatoric uncertainty with a user-specific confidence level for each constraint χm ∈ (0, 1), ∀m ∈M.
Then we could turn I(YCm

(x) ≥ hm) into probabilistic constraints following the definiation proposed by Gelbart et al.
[2014] and

P [YCm
(x) ≥ hm] ≥ χm

to explicitly deal with the aleatoric uncertainty. With the percentage point function (PPF), we could transform the probabilistic
constraints into a deterministic constraint I(Cm(x) ≥ ĥm) with ĥm = PPF(hm, σ, µm), meaning ĥ is the χm percent point
of a Gaussian distribution with hm and σ as its mean and standard deviation. Hence, we could unify the form of rewards of
noise-free and noisy observation on the constraints with the user-specified confidence levels. For simplicity and without loss
of generalization, we stick to the definition in equation 3 and let all ĥm = 0.

G ADDITIONAL EXPERIMENT DETAILS

In the benchmarks, we applied the deep Gaussian process [Wilson et al., 2016]. Here, we offer a more detailed discussion of
the construction of the six CBO tasks studied in section 6.

G.1 SYNTHETIC TASKS

We study two synthetic CBO tasks constructed from conventional BO benchmark tasks. Here, we rely on the implementation
contained in BoTorch’s [Balandat et al., 2020] test function module.

Rastrigin-1D-1C The Rastrigin function is a non-convex function used as a performance test problem for optimization
algorithms. It was first proposed by Rastrigin [1974] and used as a popular benchmark dataset [Pohlheim, 2006]. It is
constructed to be highly multimodal, with local optima being regularly distributed to trap optimization algorithms. Concretely,
we negate the 1D Rastrigin function and try to find its maximum: f(x) = −10d−

∑d
i=1 (x

2
i − 10 cos(2πxi)), d = 1. The

range of x is [−5, 5], and we construct the constraint to be c(x) = |x + 0.7|1/2. When setting the threshold as
√
2, we

essentially exclude the global optimum from the feasible area. The constraint enforces the optimization algorithm to explore



feasibility rather than allowing algorithms to improve the reward by merely optimizing the objective. Then, the feasible
region takes up approximately 60% of the search space. This one-dimensional task is designed to illustrate the necessity of
adaptively trade-off learning of constraints and optimization of the objective.

We also vary the threshold to control the portion of the feasible region to study the robustness of COBAR. Figure 3 shows
the distribution of the objective function and feasible regions on the samples.

Ackley-5D-2C The Ackley function is also a popular benchmark for optimization algorithms. Compared with the Rastrigin
function, it is similarly highly multimodal, while the region near the center is growingly steep. Same as what is done

for Rastrigin, we negate the 5D Ackley function and try to find its maximum: f(x) = 20 exp (−0.2
√
1/d

∑d
i x

2
i ) +

exp (1/d
∑d

i cos(2πxi)) + 20 + exp(1), d = 5. The search space is restricted to [−5, 3]5. We construct two constraints
to enforce a feasible area approximately taking up 14% of the search space. The first constraint (∥x − 1∥2 − 5.5)2 − 1
constructs two feasible regions. One of them lies in the center, and the other is close to the boundary of the search space.
The second constraint −∥x∥2∞ + 9 allows one hypercube feasible region in the center.

G.2 REAL-WORLD TASKS

We study four real-world CBO tasks. The first three are extracted from Tanabe and Ishibuchi [2020], which offers a broad
selection of real-world multi-objective multi-constraints optimization tasks. The fourth one is a 32-dimensional optimization
task extracted from the UCI Machine Learning repository [mis, 2019].

Vessel-4D-3C The pressure vessel design problem aims to optimize the total cost of a cylindrical pressure vessel. The
four variables represent the thicknesses of the shell, the head of a pressure vessel, the inner radius, and the length of the
cylindrical section. The problem is originally studied in Kannan and Kramer [1994], and we follow the formulation in
RE2-4-3 in Tanabe and Ishibuchi [2020]. The feasible regions take up approximately 78% of the whole search space.

Spring-3D-6C The coil compression spring design problem aims to optimize the volume of spring steel wire, which
is used to manufacture the spring [Lampinen and Zelinka, 1999] under static loading. The three input variables denote
the number of spring coils, the outside diameter of the spring, and the spring wire diameter, respectively. The constraints
incorporate the mechanical characteristics of the spring in real-world applications. We follow the formulation in RE2-3-5 in
Tanabe and Ishibuchi [2020]. The feasible regions take up approximately 0.38% of the whole search space.

Car-7D-8C The car cab design problem includes seven input variables and eight constraints. The problem is originally
studied in Deb and Jain [2013]. We follow the problem formulation in RE9-7-1 in Tanabe and Ishibuchi [2020] and focus on
the objective of minimizing the weight of the car while meeting the European enhanced Vehicle-Safety Committee (EEVC)
safety performance constraints. The seven variables indicate the thickness of different parts of the car. The feasible region
takes up approximately 13% of the whole search space.

Converter-32D-3C This UCI dataset we use consists of positions and absorbed power outputs of wave energy converters
(WECs) from the southern coast of Sydney. The applied converter model is a fully submerged three-tether converter called
CETO. 16 WECs 2D-coordinates are placed and optimized in a size-constrained environment [mis, 2019]. The input is,
therefore, 32 dimensional. We place three constraints on the tasks, including the absorbed power of the first two converters
being above a certain threshold of 96000 and the general position being not too distant with the two-norm below 2000. The
feasible region takes up approximately 27% of the whole search space.

H ADDITIONAL EXPERIMENTS

Here, we provide additional experiment results on COBAR.

H.1 ROBUSTNESS TO CHOICES OF β

As is shown in figure 7, the algorithm is robust to moderate values of β. Except from the Ackley β = 0.1 where the filtering
of ROI is over-aggressive and traps the model on a certain locality when a very small number of candidates remain in ROI.
We observe that certain β choices could be slightly better but don’t impact the convergence and lack statistical significance.
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Figure 7: The figure illustrates the simple regret for a different choice of constant β for COBAR. Here the theoretical β
are 6.51 for Rastrigin-1D-1C, 6.47 for Ackley-5D-2C, and 6.51 for Converter-36D-3C. The results are collected from 15
independent trials.

Problem COBAR CMES-IBO SCBO cEI

Rastrigin-1D-1C 144.29 545.83 32.39 231.12
Ackley-5D-2C 96.19 565.10 25.43 180.39
Converter-36D-3C 190.05 660.27 31.73 267.36

Table 3: Average wall time (sec) of different CBO Methods collected from 15 independent trials.

We believe the acquisitions in Eq. (6) and Eq. (5), together with the X̂ identification when the models are well-fitted,
contribute to this robustness. Different from conventional GP-UCB [Srinivas et al., 2009], the acquisition functions are
standardized with the (maximum) lower confidence bound. The search domains are filtered when historical observations
suggest poor performance in nearby areas.

H.2 WALL TIME

We show the wall time of COBAR compared with the baselines in table 3. The results demonstrate the efficiency of COBAR
due to the ROI filtering reducing the search space, though the ROI identification incurs additional cost for membership
check.

H.3 ADDITIONAL COMPARISON WITH CONFIG

Though the objective is defined differently, we add additional baseline CONFIG from Xu et al. [2023]. The results are shown
in figure 8 and figure 9. We observe that COBAR outperforms or at least matches CONFIG in all the problems in our setting.
Specifically, in the early stage of the Rastrigin-1D-1C task and through the Ackley-5D-2C, where the underlying objective is
highly fluctuating, as is shown in figure 8 for Rastrigin-1D-1C, CONFIG fails to enter the feasible region consistently even
after exhausting sufficient budget and gets stuck in learning the constraints passively.

At the same time, we observe that on Converter-32D-3C, Vessel-4D-3C, and Spring-3D-6C, CONFIG generally matches
the performance of COBAR. We hypothesize that in these applications, the constraint learning part of COBAR is not as
beneficial as directly optimizing the underlying function is possibly feasible regions, as the unknown feasibility coincides
with the optimality of the underlying objectives. Still, COBAR bears higher consistency in all the benchmarks, highlighting
the efficiency and necessity of the adaptive trade-off of active learning and optimization in COBAR when assuming no
reward is incurred outside the feasible region. This difference also highlights the necessity of actively learning the complex
underlying constraints to guarantee a stable convergence to a feasible optimum.
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Figure 8: We use black dots and purple dots to show the infeasible region and feasible region in the first row correspondingly.
Each column corresponds to a certain threshold choice for the single constraint c(x) = |x+ 0.7|1/2 in the Rastrigin-1D-1C
task. The search space contains a certain portion of the feasible region, denoted on each figure and title. The first row
shows the distribution of 1000 samples from the noise-free distribution objective function, and the figures are differentiated
with different feasible regions. The second row shows corresponding simple regret curves. We test each method with 15
independent trails and impose observation noises sampled from N (0, 0.1) not shown in the first row. The scaling and length
scale of the GPs are learned via maximum likelihood estimation.
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Figure 9: The input dimensionality, the number of constraints, and the approximate portion of the feasible region in the
whole search space for each task are denoted on the titles. The curves show the average simple regret after standardization,
while the shaded area denotes the 95% confidence interval through the optimization.



H.4 ADDITIONAL COMPARISON WITH SVM-CBO

SVM-CBO [Antonio, 2021] offers a practicality-oriented solution. It uses the SVM to learn the feasibility bound to estimate
the decision boundary efficiently. The challenge of analyzing the learning of SVM combined with the coverage-oriented first-
phase acquisition function poses a challenge to regret analysis. In addition, SVM-CBO requires a specific split of feasibility
identification and optimization within the feasible region and demands different performance metrics for evaluation. This
split makes direct comparisons with COBAR, which is somewhat challenging and does not explicitly split the two processes.
Nonetheless, we follow the practice in the paper that uses a 10:60:30 split for the random sampling, phase 1 and phase 2 of
SVM-CBO, and report the simple regret.

Experiment COBAR-70 CMES-IBO-70 cEI-70 SCBO-70 SVM-CBO-70
Rastrigin-1D-1C-60% 3.80e+00 (1.85e+00) 3.00e+00 (1.84e+00) 1.08e+01 (3.02e+00) 4.83e+00 (2.12e+00) 4.83e+00 (1.43e+00)
Ackley-5D-2C-14% 3.71e-02 (7.19e-04) 4.41e-02 (6.67e-03) 7.94e-02 (1.46e-02) 1.43e-01 (0.00e+00) 1.11e-01 (2.45e-02)

Converter-36D-3C-27% 9.50e-01 (1.77e-01) 1.32e+00 (2.31e-01) 2.23e+00 (0.00e+00) 2.23e+00 (0.00e+00) 1.09e+00 (1.52e-01)
Vessel-4D-3C-78% 2.06e-02 (1.39e-02) 1.20e+00 (3.90e-01) 2.44e-01 (2.48e-01) 3.79e+00 (1.25e+00) 2.59e-02 (3.36e-02)

Car_Cabin-7D-8C-13% 8.62e+00 (3.30e+00) 1.40e+01 (2.14e+00) 6.15e+00 (2.28e+00) 5.75e+00 (2.03e+00) 6.84e+00 (3.24e+00)
Spring-3D-6C-0.38% 6.40e+01 (2.83e+01) 1.11e+02 (1.50e+01) 1.11e+02 (1.50e+01) 1.11e+02 (1.50e+01) 8.35e+01 (2.76e+01)

Experiment COBAR-100 CMES-IBO-100 cEI-100 SCBO-100 SVM-CBO-100
Rastrigin-1D-1C-60% 2.21e+00 (1.41e+00) 2.84e+00 (1.62e+00) 1.07e+01 (3.07e+00) 4.83e+00 (2.12e+00) 2.67e+00 (8.14e-01)
Ackley-5D-2C-14% 3.69e-02 (3.08e-03) 3.56e-02 (5.93e-03) 5.88e-02 (7.24e-03) 1.43e-01 (0.00e+00) 1.09e-01 (2.64e-02)

Converter-36D-3C-27% 9.29e-01 (1.27e-01) 1.22e+00 (2.02e-01) 2.14e+00 (1.75e-01) 2.23e+00 (0.00e+00) 9.73e-01 (1.45e-01)
Vessel-4D-3C-78% 1.94e-02 (1.43e-02) 6.48e-01 (3.60e-01) 1.51e-01 (1.25e-01) 3.79e+00 (1.25e+00) 2.23e-02 (8.96e-04)

Car_Cabin-7D-8C-13% 6.40e+00 (2.72e+00) 1.12e+01 (2.71e+00) 5.92e+00 (2.34e+00) 5.75e+00 (2.03e+00) 6.03e+00 (2.40e+00)
Spring-3D-6C-0.38% 5.60e+01 (2.99e+01) 1.11e+02 (1.50e+01) 1.11e+02 (1.50e+01) 1.11e+02 (1.50e+01) 8.35e+01 (2.76e+01)

Table 4: Comparison of different methods’ simple regrets across experiments. The table shows the updated experiment
results after incorporating the SVM-CBO as an additional baseline. The upper block shows the simple regret at 70 iterations,
while the lower shows the simple regret at 100 iterations. The standard error is shown in parentheses.

Table 4 shows the simple regret of the end of both phases of SVM-CBO. We emphasize the best simple regret achieved. The
results demonstrate that COBAR ultimately outperforms or matches the best baseline in the end.

To provide a clearer, high-level quantitative summary, we aggregate the final performance of the core methods from Table 4.
Table 5 shows the average rank of each method based on its mean simple regret at the final iteration (T=100) across all six
problems. As the summary shows, COBAR (COBAR) achieves the best overall rank, confirming its strong and consistent
performance.

Table 5: Average method ranking (lower is better) at the final iteration (T=100). Ranks are calculated for each of the 6
problems based on the mean simple regret data in Table 4 and then averaged. SVM-CBO is excluded from the ranking to
ensure a fair comparison with the core baselines from the main paper.

Method Average Rank Overall Rank

COBAR ∼ 1.17 1st
CMES-IBO ∼ 2.33 2nd
cEI ∼ 3.17 3rd
SCBO ∼ 3.33 4th

I DISCUSSIONS

Here, we offer additional explanation and discussion over COBAR.

I.1 ADDITIONAL EXPLANATION OF COBAR

For algorithm 1, {xgt,t} in line 11 are acquired in line 7 as xCm,t or line 9 as xf,t, since G is composed of Cm and f .
Roughly speaking, we are taking argmaxg,x, yet we avoid using such notation for two reasons. (1) the domain where
equation 5 and equation 6 are maximized are different; (2) the domain for equation 6 could even be empty. Therefore, we



are currently taking the argmax of equation 5 and equation 6 over different domains (if not empty) separately and then
taking the argmax of the corresponding acquisition function values as in line 11.

I.2 ON THE COMPARABILITY OF ACQUISITION FUNCTIONS OVER DIFFERENT UNDERLYING
FUNCTIONS

Both the acquisition functions for optimizing the objective and active learning are confidence interval-based, which reflects
the uncertainty and is intrinsically comparable. With Assumption 1 that the black-box underlying functions are samples
from the corresponding GPs specified by the kernels, we use the kernels to capture the scaling of the different unknowns.
Our analysis does not assume that the kernels are the same, meaning that the theoretical results hold when the objective
and constraints are of different scales. This analysis converts the algorithm’s sensitivity to scale to the sensitivity to
hyper-parameter misspecification. In our experiments, we report the results when following the standard practice of kernel
learning [Rasmussen and Williams, 2006] for both the proposed algorithm and baselines, as is stated at the end of the
caption of figure 3. In summary, the compatibility is guaranteed by the properly specified kernel. Recent advancements in
self-correcting BO [Hvarfner et al., 2024] or BO with unknown hyperparameters[Berkenkamp et al., 2019] propose various
methods to address the challenge.

With regard to the practical concern over why the analysis does not require normalizing the different acquisition functions,
the answer is threefold. First, since the correlation between the constraints and the objective is unknown, it is possible that
the objective, in general, is of a smaller scale but bears the highest gradient near the boundary, meaning that the general scale
of functions does not offer a guarantee to normalize the near-boundary uncertainties. Second, using the ROI to constrain the
acquisition helps exclude the useless uncertainty reduction as the ROI considers both the objective and the constraints. If
constraints dominate the COBAR acquisition, it suggests that the selected points remain likely to contain the global optimum
as its objective does not have a high probability of being suboptimal. Such a query won’t be wasted. A concrete example is
illustrated in figure 2. Third, since we are assuming a universal upper bound for each constraint, the scale difference could
make certain constraints dominant in the ϵm. This could be addressed through the normalization of observations given prior
knowledge.

I.3 DIFFERENCE FROM OTHER EXISTING CBO METHODS WITH NO-REGRET GUARANTEE

We briefly discuss the differences between COBAR and the previous theoretical results in CBO. Lu and Paulson [2022]
addresses equality constraints for instantaneous penalty-based regret. However, the reward formulation is different. Lu and
Paulson [2023] offers theoretical results on cumulative regret and violations. Yet, they assume querying points out of the
feasible region still yields rewards and consider the violation separately.

In general, we are unaware that the existing CBO analysis results lead to a similar guarantee as in our work when assuming
querying infeasible points does not yield a reward. One key difference is that with the active learning component and
feasibility assumption, we could guarantee to query a feasible point that bears a reward converging to optimal value with
the desired confidence. In our specific reward formulation, we regard such a guarantee and, therefore, the contribution in
algorithm design and analysis as sufficiently different from the previous work, even when only focusing on the coupled
setting.

I.4 EMPTY SUBSETS OF SEARCH SPACE

It is possible that certain subsets discussed in section 4 could be empty at a certain t as a result of intersections. However,
according to the assumptions in section 5 and Lemma 1, the properly chosen β does not result in over-aggressive filtering
with high probability. From this perspective, ROI X̂ is soundly defined. COBAR is also robust to empty UCm,t. As shown
in algorithm 1, the domain where the acquisition functions defined in equation 6 and equation 5 are maximized allow empty
UCm,t for COBAR to proceed.

I.5 LIMITATIONS AND FUTURE WORK

The limitation of COBAR includes (1) the inefficiency of identifying the ROIs due to the pointwise comparison in current
implementation relying on discretization; (2) the lack of discussion over correlated unknowns, which are common in
practice (e.g., two constraints are actually lower bound and upper bound of the same value). Though we briefly discuss



and study corresponding scenarios, we expect the following work could improve the algorithm’s effectiveness and the
comprehensiveness of corresponding analysis accordingly.
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