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Abstract

Ensemble methods are a very diverse family of
algorithms with a wide range of applications. One
of the most commonly used is boosting, with the
prominent Adaboost. Adaboost relies on greed-
ily learning base classifiers that rectify the error
from previous iterations. Then, it combines them
through a weighted majority vote, based on their
quality on the entire learning set. In this paper, we
propose a supervised binary classification frame-
work that propagates the local knowledge acquired
during the boosting iterations to the prediction
function. Based on this general framework, we
introduce SamBA, an interpretable greedy ensem-
ble method designed for fat datasets, with a large
number of dimensions and a small number of sam-
ples. SamBA learns local classifiers and combines
them, using a similarity function, to optimize its ef-
ficiency in data extraction. We provide a theoretical
analysis of SamBA, yielding convergence and gen-
eralization guarantees. In addition, we highlight
SamBA’s empirical behavior in an extensive exper-
imental analysis on both real biological and gen-
erated datasets, comparing it to state-of-the-art en-
semble methods and similarity-based approaches.

1 INTRODUCTION

In machine learning, ensemble methods combine base es-
timators into a more robust model relying on several com-
bination methods such as logical or linear combinations,
stacking [Wolpert, 1992] or cascading [Gama and Brazdil,
2000] estimators. Notably, the best performing deep models
are obtained by combining the outputs of several neural
networks [He et al., 2016]. In this work, we consider as an
ensemble method, any approach aggregating multiple base
estimators [Dietterich, 2000]. Those methods lead to numer-

ous learning algorithms, from the decision tree [Breiman
et al., 1984], that is an ensemble method aggregating stumps
with logical combinations, to more complex setups such as
multi-view learning [Koço and Capponi, 2011], not to men-
tion the celebrated Random Forest [Breiman, 2001] and
Adaboost [Schapire and Freund, 2012] majority vote learn-
ers.

This work focuses on the application of supervised classifi-
cation on fat datasets, that have the particularity to present a
large number of dimensions for a small number of samples
[Romero et al., 2016], in opposition with big data. Numer-
ous fat datasets are derived from biological tasks, in which
algorithm interpretability—the ability for a non-expert to
understand the decision function of a model [Rudin et al.,
2021]—is central for the results to be endorsed by the users.

This type of dataset raises multiple challenges. Indeed, the
curse of dimensionality associated with the small number
of samples implies that standard methods, such as deep
neural networks [Nielsen, 2018], are frequently unstable
and prone to overfitting. To overcome such challenges, a
commonly used state-of-the-art approach is to first apply
a dimension reduction method, such as principal compo-
nent analysis [Pearson, 1901] or t-distributed Stochastic
Neighbor Embedding [van der Maaten and Hinton, 2008]
to map the fat data into a lower-dimensional space. Then, a
similarity-based method such as Support Vector Machines
[Cortes and Vapnik, 1995] with a Radial Basis Function
kernel (SVM-RBF) or k-Nearest Neighbors (KNN) [Fix and
Hodges, 1989] is used on the new feature space. However, a
drawback of these approaches is the lack of interpretability
of their decision function.

To overcome this issue, ensemble methods such as Decision
Trees [Breiman et al., 1984], Boosting [Freund and Schapire,
1997, Bauvin et al., 2020] or Random Forests [Breiman,
2001] are currently the gold standard. Indeed, they innately
allow reducing the dimension of the datasets, while provid-
ing at least partially interpretable1 models [Drouin et al.,

1We discuss the concept of interpretability in Supplementary
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2016]. This advantage is central in biomedical applications,
such as biomarker discovery [Kothari et al., 2020], in which
interpretable models are used as a means to extract new
causes of the studied problem [Osseni et al., 2021].

However, those ensemble methods present the drawback
of discarding a large majority of the similarity-based in-
formation and some are frequently unstable in very large
dimension [Li and Belford, 2002]. Indeed, they combine
their base classifiers with either logical combinations or
majority votes on the entire dataset. For example, boosting
relies on the hypothesis that the relevance of the opinion of
a base classifier is uniform on the whole decision space, and
does not consider local relevance for its voters. This behav-
ior leads to diverse base classifiers sets, but implies a loss
in model sparsity. In addition algorithms such as decision
trees with linear models in the leaves [Quinlan et al., 1992]
or locally weighted linear regression [Atkeson et al., 1997]
do consider local knowledge while maintaining sparsity.
However, they do not scale on high-dimensional data.

In this work, we propose a general framework for super-
vised binary classification that enables greedily learning and
combining voters by taking into account the local properties
of the input space. Elaborating on this framework, we intro-
duce SamBA, a greedy learning algorithm derived from Ad-
aboost that outputs a classifier leveraging local knowledge
to express sparse decision functions. SamBA’s behavior is
analyzed, providing insights on its inner mechanisms, and
proving both convergence and generalization guarantees.
We present extensive experiments that highlight several as-
sets of the algorithm, including its resource efficiency. We
also compare it to state-of-the-art implementations of sev-
eral ensemble methods and similarity-based classifiers. We
study their accuracy and sparsity on synthetic and real life
datasets. Finally, the interpretability of SamBA is discussed
along with its weighting scheme.

2 GENERALIZING ADABOOST WITH
LOCAL EXPERTISE

This paper proposes a generalization of Adaboost’s archi-
tecture, in which the local expertise of the base classifiers
is stored during the learning process, and transferred to the
prediction function through a weight estimation function.
While going through the basic framework and notations, the
current section reinterprets established ensemble methods
as local experts aggregations.

2.1 LOCAL EXPERTISE IN ENSEMBLES

Let us first illustrate that well-known ensemble methods
rely on local expertise. For example, the standard Decision
Tree [Breiman et al., 1984] builds stumps on increasingly

Material G

Algorithm 1: A reminder of Adaboost learning process.

1 Iterations : T ; Data : L = {(xi, yi)}mi=1 ; Voters :H.
2 D1(i)← 1

m .
3 for t = 1..T do

4 ht ← arg min
h∈H

[
P

i∼Dt

[h(xi) 6= yi]

]
,

5 εt ← P
i∼Dt

[ht(xi) 6= yi] ,

6 αt ← 1
2 ln

(
1−εt
εt

)
,

7 Dt+1(i)← Dt(i)× exp(−αtht(xi)yi)
Zt

.

8 end

9 Zt a normalization factor such that
m∑
i=1

Dt+1(i) = 1.

Result:
T∑
t=1

αtht(.).

smaller subsets of the original sample set. Indeed, once the
root has divided the dataset in two subspaces based on the
first decision stump, all the following stumps only focus on
improving the precision on their respective subspaces. Fur-
thermore state-of-the-art ensemble methods that are learning
base classifiers on subsets of the dataset, such as Random
Forest [Breiman, 2001], may be interpreted as local experts’
combinations. Indeed, even if they are built on random local-
ities, Random Forest still learns local experts, and combines
them with a uniform majority vote.

Similarly, as shown in Algorithm 1, Adaboost maintains at
each iteration a distribution Dt. This distribution encapsu-
lates, for each sample of the learning set, the difficulty of
classifying it. Then the algorithm learns a weak classifier
that specializes in the difficult samples based on the dis-
tribution Dt. Therefore, Adaboost learns specialized weak
classifiers at each iteration. However, the relevance of those
specialized classifiers is stored as a simple scalar value, αt.
In doing so, Adaboost loses precious information about the
local expertise of its weak classifiers. Indeed, the diagram
presented in Figure 1a highlights the fact that Adaboost
compresses the relevance of its base classifiers in a unique
scalar value at each iteration.

2.2 GENERALIZED ADABOOST SCHEME

Let us consider a supervised binary classification task where
X the input space is, of dimension l, and Y = {−1, 1} the
target space. We denote by L = {(xi, yi)}mi=1 the empirical
dataset drawn according to a distribution D over X × Y .
The learning task aims to predict tests samples (x, y) ∼ D
accurately. As this work focuses on ensemble methods, we
consider that all the base classifiers are chosen in a voter
spaceH, a subset of the space of functions X → [−1, 1].

We study iterative learning algorithms that maintains a



Algorithm 2: A general skeleton for boosting with local
expertise.

1 Iterations : T ; Train data : L = {(xi, yi)}mi=1 ; Voter
space :H ; F0 = ∅ ; Prior distribution : P

2 π1 ← P # Prior distribution

3 for t = 1..T do
4 ht ← argmax

h∈H

[
µ(L)(h,πt)

]
# Learn the best voter on them

5 ωt[i]← ω (ht, (xi, yi)) # Compute its relevance on each sample

6 Ft ← Ft−1

⋃
{(ht,ωt)} # Store the voter and relevance

7 πt+1(i)← πt(i)π(ht,(xi,yi))
m∑

i=1
π(ht,(xi,yi))

# Find the difficult samples

8 end

Result: PFT (·) =
T∑
t=1

ht(·)ω̂FT
L (ht, ·)

weight distribution π over the samples belonging to L. In
this context, we define the empirical margin of h ∈ H
as µ(L)(h,π) =

∑m
i=1 π(i) [yih(xi)] . It represents the

weighted correctness of the classifier given π. Let us de-
fine two abstract functions generalizing Adaboost ideas of
current sample distribution and classifier confidence.

• The difficulty function π quantifies the difficulty of
a sample (xi, yi) for a classifier h as π(h, (xi, yi)) ∈
]0,+∞[. As an example, in Adaboost, the difficulty of
a sample (xi, yi) for the voter selected at iteration t is
computed as exp (−αtht(xi)yi). Note that this func-
tion depends on the opposite of the margin −ht(xi)yi
and on a proxy of the error of the classifier αt.

• The relevance function ω of a classifier h on a sample
(xi, yi) contrasts with the difficulty function, and is
denoted as ω(h, (xi, yi)) ∈ ]0,+∞[ . The relevance
and difficulty variations are opposite: the more relevant
a classifier h is w.r.t. a sample (xi, yi), the less diffi-
culty h has to process that sample. In Adaboost, it is
computed for ht as αt for the whole dataset.

The Adaboost generalized framework is then defined
through Algorithm 2, where lines 5 and 7 respectively re-
place Adaboost’s confidence and sample distribution update.

The main difference with the learning process of Adaboost is
that instead of computing the relevance of each classifier ht
as a scalar value αt, the generalization framework considers
it as a vector ωt = (ωt[i])

m
i=1, of dimension the size of

the learning sample, in order to keep the local relevance
information, as shown on Figure 1b.

Relying on the fitted base classifiers and their associated
weight vectors, the challenge of our algorithm framework is
to design a prediction function able to estimate the relevance
of each base classifier for an unseen test sample (x, y). In-
deed, Adaboost relies on the hypothesis that the relevance of
each classifier is uniform over the samples. Discarding this
hypothesis is the base of our work. Therefore, the prediction

(a) Adaboost (b) Generalization

Figure 1: One iteration of greedy learning for Adaboost and
Algorithm 2. The red and blue squares respectively represent
failure and success on the training samples. The green and
purple squares represent the relevance of the base classifier
ht. Note that Algorithm 2 stores the relevance as a vector.

function of the generalization framework becomes

ŷ = PFT (x) =

T∑
t=1

ht(x)ω̂FT

L (ht, x), (1)

where ω̂FT

L : H × X → [0, 1] is a function that approxi-
mates the relevance of ht on an unseen sample (x, y). ω̂FT

L
depends on the information available in the training set L
and the learned weights vector ωt for each classifier ht of
the ensemble. As a consequence, the weight of each classi-
fier in the majority vote actually depends on the test sample
classified by the ensemble.

This framework raises a number of questions, in particular
about relevant definitions of the three central functions ω, π
and ω̂FT

L according to the task at hand. Adaboost is equiv-
alent to one instantiation of this framework, as explained
in Supplementary Material A. The following section stud-
ies another instantiation of that framework, which leads to
SamBA, an algorithm intended to exploit proximity among
samples in order to solve some difficulties raised by fat data
specificities.

3 INTRODUCING SAMBA

SamBA has been designed as an instantiation of the gener-
alization framework of Adaboost presented in the previous
section, in order to deal with a specific family of datasets
where m� l. These datasets are frequent in the biological
applications of machine learning, and are called fat datasets
[Romero et al., 2016], in contrast with big data. In such
datasets, the description space where the best classifier is
looked upon is huge w.r.t. the number of available samples,
which could lead to overfitting and/or irrelevant dimension
reductions. In this section, abstract concepts ω, π, h and
ω̂ht,L are embodied and defined in order to overcome the
challenges of fat data.



3.1 AN INSTANCE USING LOCAL KNOWLEDGE

Drawing from the efficiency of Adaboost, the relevance of a
base classifier in SamBA is also computed as the exponen-
tial of the margin, example-wise. This relevance function
replaces the abstract function of line 5 in Algorithm 2.

ωt[i] := exp (ht(xi)yi) . (2)

Similarly, the difficulty π is defined as the inverse of the
relevance, replacing the abstract function of line 7 in Algo-
rithm 2.

πt(i) := exp (−ht(xi)yi) . (3)

In addition, we considerH to be a set of decision stumps on
the features of X . This allows for the final decision function
to rely on a small subset of the features of X and implies
some sparsity and interpretability of the decision process. In
addition, we introduce the notion of support of a classifier.

Definition 1 (Support of a classifier). Considering any clas-
sifier h relying on a set of features of X , its support X̃h is
the space projected on those features.

Next, we define the relevance of classifier ht over the en-
tire input space X to be an estimation function based on
the vote of each sample of the learning set, weighted by
the Euclidean distance computed on the support of the pre-
diction function. This shift in perspective is explained in
Section 3.2. We note d(xi, x) := ||x|X̃FT

− (xi)|X̃FT
||2 the

Euclidean distance on the support of SamBA, with x|X̃ the
projection of x on the support of SamBA after T iterations,
X̃FT

. Therefore, the weight estimation function of SamBA
is defined as

ω̂ht

L (x) = ω̂a,bt (x) :=

ωt[i] if x = xi and a = 0,
m∑
i=1

ωt[i]m
ab+d(xi,x)b

otherwise,

(4)
where a, b are two hyper-parameters that control the impor-
tance of the Euclidean distance in the weight approximation
process. The predicting function PFT

a,b for a vote of T voters
on a sample x such that x 6= xi, ∀xi ∈ L, can be written as

ŷ = PFT

a,b (x) =

T∑
t=1

ht(x)

(
m∑
i=1

ωt[i]m

ab + d(xi, x)b

)
. (5)

As SamBA is an instance of Algorithm 2, for brevity’s sake,
we provide its pseudo-code in Supplementary Material B.

3.2 BEHAVIORAL INSIGHTS OF SAMBA

In this section, we provide insights on the inner mechanisms
of SamBA, highlighting differences with Adaboost.

On the transfer of local knowledge to the prediction
SamBA has been presented as a variation of Adaboost that

allows to capitalize on the local knowledge acquired dur-
ing the training phase through a weight estimation function.
Hence, the weight estimation function is a central piece of
the algorithm and highly impacts its prediction.

In SamBA, the weight of a classifier ht on a test sample
(x, y) is computed as

∑m
i=1 ωt[i]

m
ab+d(xi,x)b

. This function
can be considered as a majority vote between the relevances
ωt[i] of the classifier ht on the training samples (xi, yi),
weighted by their similarity with the test sample m

ab+d(xi,x)b
.

In SamBA the weight of a base classifier is thus mainly
derived from the opinion of the nearest training sample,
depending on the values of hyper-parameters a and b. In
doing so, it can be considered at the crossroads of Adaboost
and similarity-based methods such as KNN and SVM-RBF.

On the sparsity One of the claims of SamBA is to learn
sparse decision functions. The main process that leads to
the sparse decision function is that SamBA extracts much
more information from each selected feature than classical
boosting algorithms. Indeed, not only does SamBA learn
decision stumps during the boosting process, it also builds
a similarity-based decision function on the projected space.
As a consequence, it requires a smaller number of iterations
to build a decision function that fits the data, as seen in
Section 5.2.2. The main drawback of such a method is its
potential sensitivity to noise. This is why we introduced
hyper-parameter a, which controls the smoothness of the
decision border and is discussed in the following paragraphs.

On the restriction to the support As seen in the previous
section, the vote of the samples is weighted by the simi-
larity function; in our case, we base that similarity on the
Euclidean distance between two samples, computed on the
support of the decision function. This particular point is
mandatory when learning on fat data. Indeed, greedy en-
semble methods relying on decision stumps output supports
with manageable dimensions. Coupling the dimension re-
duction and model learning processes in a single algorithm
is a major advantage. With SamBA, we aim at outputting
a decision function relying on a support of significantly
smaller dimension than X . Hence, computing the distance
on the sole support is crucial to avoid the noise introduced
by all the non-selected features.

On the role of a and b as hyper-parameters The hyper-
parameters a and b are central in SamBA as they control the
importance assigned to the distance. When setting b = 0, the
weight is approximated by simply averaging the relevance
of the classifiers on the entire training set: SamBA becomes
a standard boosting algorithm, with no local expertise in the
decision function. However, when b > 1, the similarity func-
tion plays a central role in the decision process, awarding
more credit to the opinion of samples closer to (x, y).

The role of a is to ensure that the similarity function is
bounded. Indeed, with a = 0, if a test sample is drawn



too close to a training sample, the opinion of the training
sample might be too strongly weighted. Therefore, it might
overpower any other one, leading to overfitting, which is
common with fat data. In Supplementary Material C, we
show that a = 0 can be highly crippling in the presence of
mislabeled data or outliers, and we provide more insight on
the effect of a and b on the similarity function.

4 THEORETICAL ANALYSIS OF SAMBA

4.1 ALGORITHMIC COMPLEXITY

SamBA is slightly more complex than the usual boosting
algorithms as its prediction function requires computing
the distance vector between (x, y) and the m training sam-
ples. This distance is computed on X̃FT

, the support of
SamBA, of dimension l′ ≤ T . Therefore, computing the
similarity function takes O(m×l′). Thus, to compute the
weight of each voter during the prediction process, SamBA
takes O(m×l′), and computing the whole decision func-
tion takesO(m×(l′+T )). Moreover, we denoteC(l,m) the
complexity of learning one base classifier. As a consequence,
the learning process takes O (T×(m+C(l,m))) and the
entire learning and predicting processes take O(T×[m +
C(l,m)]+m×l′) for one sample. For comparison, the entire
learning and predicting process of a usual boosting algo-
rithm with the same hypotheses takes O(T×[m+C(l,m)]).

Thus, in the fat data setting, where m� l, the learning and
predicting process of SamBA is as costly as the one of a
usual boosting algorithm if SamBA uses a small support l′ ≤
T � l. As a consequence, SamBA is better used on datasets
with a manageable number of training samplesm and a large
number of features l. This fits our initial goal of extracting as
much information as possible from a small subset of features
of a fat dataset. This theoretical reasoning is validated in
Section 5.1, in which we analyze the computational time of
learning and predicting with SamBA.

4.2 TRAINING AND GENERALIZATION
BOUNDS

In this section, we provide essential guarantees for SamBA,
that bounds its capabilities for both training and generalizing.
First, we prove that SamBA converges during training.

Theorem 1 (Error exponential decrease). If a = 0, let εt
be the error of voter ht on the training set, weighted by
πt, γt = 1

2 − εt and π1 an arbitrary distribution over
the training set. Then, the weighted training error of the
combined classifier outputted by SamBA, with respect to π1

is bounded by

Pr
i∼π1

[(
PFT

0,b (xi)
)
6= yi

]
≤

T∏
t=1

1− γt ≤ exp(−
T∑
t=1

γt).

Proof. The proof resembles that for Adaboost, and is pro-
vided in Supplementary Material D. Note that, there are key
modifications in order to fit our algorithm.

This result is not surprising, as SamBA stores more infor-
mation than Adaboost during training. The main theoretical
contribution about SamBA is the following generalization
bound. Of note, as the decision function of the algorithm
computes different voter weights for each new test sam-
ple, classical boosting results based on VC-dimension or
Rademacher complexity are hardly achievable.

As a consequence, we cannot derive a generalization bound
from existing results on sample compression bounds for
Adaboost[Schapire and Freund, 2012], as they rely on VC-
dimension in addition to sample compress. Therefore, our
bound relies on a different sample compress theory, the PAC-
Bayesian sample compression framework [Laviolette and
Marchand, 2007], which relates the majority vote classifier
risk (coined as the Bayes risk in the PAC-Bayes literature) to
the risk of the stochastic Gibbs classifier, taking into account
the voter data dependency thanks to the sample compress
(SC) framework [Floyd and Warmuth, 1995]. The term SC-
classifier refers to a classifier that is defined from a small
subset of the training set.

In the PAC-Bayesian framework, the Gibbs risk amounts
to be the expected risk of the individual voters, while the
Bayes risk2 is simply the prevailing voters’ output.

Definition 2 (Empirical Gibbs Risk). Given a distribu-
tion Q on a set of voters, the Gibbs risk on dataset L is

RL(GQ,L) =
1

2

(
1− 1

m

m∑
i=1

[
E
h∼Q

yih(xi)

])
.

Definition 3 (Theoretical Bayes Risk). Given a distribu-
tion Q on a set of voters, the Bayes risk relatively to D of
the majority vote classifier BQ is

RD(BQ,L) = E
(x,y)∼D

[
I

(
E
h∼Q

[y sg (h(x)) < 0]

)]
,

with I(p) = 1 if predicate p is true, and 0 otherwise and sg
returning the sign.

Based on these definitions, we present below a PAC-Bayes
sample-compress bound derived from Germain et al. [2015].

2Not to be confused with the usual optimal Bayes predictor.
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Figure 2: Learning and predicting duration comparison on two datasets : one with 500 samples, the other with 2000. Each
sample being described by an increasing number of features, ranging from 10 to 50k. The ensemble methods are limited to
the number of base estimators outputted in Section 5.2.2, and the KNN to 5 neighbors.

Theorem 2 (SamBA’s sample compress bound). For any
distribution D, any set of SC-classifiers of form hs(·)m

ab+d(xs,·)b ,
any prior P , and any δ ∈ (0, 1], we have, for Q the distri-
bution found by the SC-version of SamBA, with probability
at least 1− δ over the choice of the training set,

RD(BQ,L) ≤ 2 (RL(GQ,L) + Ψ) ,

where Ψ =

√
1

2(m−3)

[
KL(Q||P ) + 12 + ln

(
2
√
m−3
δ

)]
.

Proof. The full proof is provided in Supplementary Ma-
terial D.2. As an outline, we needed to extend the proof
technique of Germain et al. [2015] to embrace our specific
prediction function of Equation 5. We considered that the
vote outputted by SamBA is not the vote of T classifiers
ht(x), weighted by ω̂a,bt (x), but the vote of T ×m voters
ht(x)m

d(xi,x)b+ab
representing the opinion of a sample, weighted

byωt[i]. In Supplementary Material D.3, we also provide an
additional bound that displays a smaller KL-divergence.

5 EXPERIMENTS

In this section3, we empirically compared SamBA to
sklearn [Pedregosa et al., 2011] versions of Adaboost,
Decision Tree (DT), Random Forest (RF), Gradien Bosst-
ing (GB), similarity-based methods such as SVM-RBF and
KNN, Lasso’s linear model [Tibshirani, 1996] and XG-
Boost’s [Chen and Guestrin, 2016] implementation, regard-
ing resource consumption, decision quality and sparsity. We
then provide an interpretation of SamBA’s decision. In this
section, we only use decision stumps as base classifiers for

3All the code and data used in this section are available on
GitHub https://github.com/babau1/samba and the detailed experi-
mental protocols are provided in Supplementary Material E.

SamBA. Indeed, in this work we aim at producing sparse
decision functions. However, if focusing solely on perfor-
mance, SamBA can be used with any base classifier.

5.1 TIME CONSUMPTION

First, we measure the time consumption of SamBA, com-
pared to our pool of classifiers on increasingly bigger
datasets. For each ensemble method, we set the number
of iterations to the mean value outputted for the go dataset
in Table 2. In Figure 2, we plot the duration on one thread to
fit and predict on different sizes of synthetic datasets, with
500 and 2000 samples and with dimensions ranging from
10 to 50k.

These experiment results do not highlight any issue with
SamBA’s time consumption. Indeed, all the algorithms show
similar training duration evolution, except for KNN that
is faster. However, during the prediction process, all the
methods are similar, while SVM-RBF is much longer. We
also note that Adaboost uses more time than SamBA. This is
due to the fact that in Section 5.2.2, Adaboost outputs a very
dense decision function, and therefore need a larger number
of base classifiers. In addition, we confirm that Linear Trees
are not scalable on fat data, as their training duration is not
manageable. This result highlights the fact that SamBA’s
sparsity is relevant on fat datasets4.

5.2 CLASSIFICATION QUALITY AND SPARSITY

In this section, we first provide a visual cue on the differ-
ences between the algorithms on usual generated datasets.
Second, we benchmark those algorithms on a real life bio-

4In Supplementary Material F, we provide a similar experiment
with the same number of base classifiers for each ensemble method,
verifying that SamBA is still relevant in this case.



Dataset SamBA Adaboost XGBoost Grad. Boost. SVM-RBF KNN Rand. For. Dec. Tree Lasso
Moons 0.99 ±0.01 0.99 ±0.01 1.0 ±0.0 0.99 ±0.01 0.99 ±0.01 1.0 ±0.0 0.99 ±0.0 0.99 ±0.01 0.86 ±0.02
Spirals 0.99 ±0.01 0.83 ±0.02 0.98 ±0.01 0.94 ±0.01 0.9 ±0.05 1.0 ±0.0 0.99 ±0.01 0.98 ±0.01 0.6 ±0.02
Moons Noisy 0.99 ±0.01 0.99 ±0.0 0.99 ±0.01 1.0 ±0.01 0.58 ±0.04 0.65 ±0.04 0.92 ±0.03 0.98 ±0.01 0.88 ±0.03
Spirals Noisy 0.99 ±0.01 0.71 ±0.03 0.95 ±0.01 0.83 ±0.02 0.5 ±0.0 0.5 ±0.03 0.68 ±0.04 0.91 ±0.03 0.61 ±0.03

Table 1: Accuracy of greedy ensemble methods and similarity-based methods on generated datasets in two versions, one
pure, and one with 50 noisy dimensions added.

(a) SamBA- Moons (b) SVM-RBF - Moons (c) Adaboost - Moons (d) KNN - Moons (e) RF - Moons (f) DT - Moons

(g) SamBA- Spirals (h) SVM-RBF - Spirals (i) Adaboost - Spirals (j) KNN - Spirals (k) RF - Spirals (l) DT - Spirals

Figure 3: Decision functions contour plots for the six considered algorithms, on the two pure generated datasets. The small
dots are training samples, the big ones test samples. The color represents the predicted class and its intensity represents the
certainty of the decision function on the 2D space. We provide full-size versions in Supplementary Material F, alongside the
figures for Lasso, XGBoost and Gradient Boosting.

logical dataset, providing both fat and non-fat descriptions
of its samples.

5.2.1 On Generated Datasets

In this experiment, we focus on analyzing the fact that
SamBA is able to separate generated datasets that have com-
plex decision borders. To assess SamBA’s relevance, we
compare it to the same pool of algorithms as in the previous
experiment, removing Linear Trees based on their resource
consumption. Instead of focusing on outputting the best per-
formance, we rather explore the behavior of each of these
algorithms and their differences. The goal of this experiment
is to show that SamBA has the capability to separate even
complex datasets, while keeping the advantages of ensemble
methods in the presence of noisy dimensions. The synthetic
datasets of this experiment are generated in two versions.
The first one considers only the relevant features, in 2D,
facilitating visualization. The second one concatenates 50
additional features containing white noise, to assess the ca-
pability of each algorithm to deal with the presence of noisy
features.

The results are presented in two media. First, Table 1
presents the test accuracies5 of the algorithms on the four
datasets: it shows that SamBA has a behavior comparable to

5We compute the accuracy here, as the datasets are balanced;
contrasting with the real-life experiments.

similarity-based algorithms such as SVM-RBF on the pure
datasets, outputting near-perfect performance. Moreover,
we see that the added noisy dimensions highly impact the
performance of SVM-RBF and KNN, but are not an issue
for the greedy methods. We nuance these results, remarking
that SamBA is more stable than its ensemble counterparts
on the noisy Spirals dataset.

Second, Figure 36 shows the contour plots of the decision
function of each algorithm on the non-noisy datasets. We
plot the samples as dots, colored according to their predicted
class, associated to a color map highlighting the certitude
of each classifier on the 2D space. Figure 3 illustrates that
SamBA’s decision contour relies both on the stumps and the
similarity between the samples: it seems to be at the cross-
roads between standard ensemble methods and similarity-
based approaches. Figures 3a and 3g illustrate that SamBA
is able to output very complex decision functions, which is
an advantage on generated datasets with no outliers nor label
noise. To complement these results, the following experi-
ment highlights the fact that on real-life datasets, SamBA is
competitive and outputs sparse decision functions.

5.2.2 On a Real-Life Dataset

Our initial goal is to apply SamBA on fat datasets aiming
at outputting a decision function both sparse and relevant.

6In Supplementary Material F, we provide full-size versions.



Dataset SamBA Adaboost XGBoost Grad. Boost. SVM-RBF KNN Rand. For. Dec. Tree Lasso
cog (24) .83 (10.7) .77 (9.4) .78 (9.3) .76 (17.4) .75 (all) .77 (all) .83 (21.3) .72 (17.4) .58 (12.75)

ec (2736) .84 (22.2) .70 (58.6) .70 (145.1) .65 (963.8) .74 (all) .72 (all) .84 (137.3) .70 (19.0) .65 (265.6)

go (11946) .85 (21.5) .73 (168.1) .76 (62.7) .71 (1394.4) .62 (all) .75 (all) .86 (191.3) .73 (11.3) .67 (574.1)

kegg.module (682) .85 (20.1) .70 (44.9) .68 (94.4) .69 (333.0) .71 (all) .70 (all) .83 (113.4) .72 (16.2) .62 (185.1)

kegg.pathway (414) .82 (22.9) .67 (87.6) .69 (82.1) .67 (208.0) .73 (all) .73 (all) .84 (186.3) .69 (28.3) .61 (73.2)

taxa.family (101) .82 (11.9) .68 (48.3) .66 (48.1) .68 (79.4) .65 (all) .65 (all) .82 (85.9) .65 (27.5) .61 (57.4)

taxa.phylum (37) .84 (7.7) .70 (22.4) .67 (27.9) .66 (35.7) .57 (all) .63 (all) .84 (32.4) .74 (21.3) .55 (18.9)

taxa.genus (72) .80 (14.8) .63 (49.5) .70 (42.4) .70 (63.1) .68 (all) .68 (all) .80 (69.1) .73 (19.1) .64 (47.6)

Table 2: Numerical results for all datasets. Each result is the mean over the 10 bootstrapped train/test splits. Best balanced
accuracy is highlighted, when equivalent, we highlighted the sparsest approach. The mean size of the support of each
algorithm is shown in parentheses. We provide standard deviations in Supplementary Material F.
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Figure 4: Visualization of the balanced accuracy and size of the support for each ensemble methods learned on the go dataset,
of dimension 11946, ranked by support size.

Biological applications are an endless provider of fat data
Drouin et al. [2019]. Indeed, in this domain, acquiring data
on a single sample is costly, but each analysis yields a very
large amount of information, denoted -omics data. There-
fore, in a large majority of -omics applications of machine
learning, the approaches have to deal with high-dimensional
data. In this experiment, we apply our algorithms to a meta-
genomics imbalanced dataset [Deraspe et al., 2020] describ-
ing 640 patients, either obese (12%) or not (88%), with 8
types of data, ranging from 24 to 11946 features7.

Protocol The relevance of SamBA on real-life datasets is
compared to the pool of classifiers. The benchmark was real-
ized with SuMMIT [Bauvin et al., 2022], with a 10-iteration
bootstrap holdout. The splitting is done by respecting the
ratio between the classes, with 80% for learning and 20%
for testing. All the classifiers were allowed 50 iterations of
randomized search, to avoid the bias of grid search that pro-
motes classifiers with a high number of hyper-parameters,
such as SamBA. The hyper-parameters are validated through
a 5-folds cross-validation process, and their performance is
evaluated by the balanced accuracy to fit the imbalance.

Results Table 2 presents the mean balanced accuracies
of all the approaches cited above alongside the number of
features they base their model on. In Table 2, the best ap-
proaches in pure balanced accuracy are SamBA and the
Random Forest. Although SamBA is consistently sparser

7We provide a more complete description of the dataset in
Supplementary Material F.

than Random Forest, that outputs a very dense decision func-
tion. Note that SamBA outperforms boosting-based meth-
ods on all data types. In addition, SamBA is sparser than
most boosted models, except on the cog dataset, which di-
mension is out of our scope of fat datasets. Similarity-based
methods such as KNN and SVM-RBF are also outperformed
by SamBA on all the datasets, suggesting that it inherits the
best from both boosting and similarity based classifiers.
However, we mention that SamBA, even if it is sparser than
most of the approaches, outputs a generally denser decision
than the Decision Tree, but is persistently more accurate.

Interestingly, SamBA is consistently sparser than all the
other boosting methods: the 11946 dimensions go dataset is
drastically reduced to 21 dimensions for SamBA’s decision
function, compared to Adaboost that uses 168. Figure 4
pictures both the balanced accuracy and the number of fea-
tures used for go: SamBA displays the best ratio between
balanced accuracy and sparsity. Indeed, if we overlook the
very dense Random Forest, SamBA is the most relevant al-
gorithm of the pool. This experiment illustrates that SamBA
can be competitive with state-of-the-art algorithms concern-
ing feature efficiency. Similar figures for each type of data
are provided in Supplementary Material F.

5.3 INTERPRETING SAMBA’S DECISION

Interpretability is more and more important for machine
learning models [Rudin et al., 2021]. Indeed, even if non-
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Figure 5: Heatmap of the importance of each support feature
for a subset of test samples. A dark rectangle in row i,
column j, means that feature i has been important in the
classification of sample j.

interpretable methods can rely on post-hoc explainability
approaches [Molnar, 2022] to decipher their decisions, the
gold standard is to be able to understand the decision without
external tools. Therefore, the design of SamBA also focused
on protecting the interpretability of Adaboost.

This section analyzes SamBA’s prediction function on the
previously introduced Spirals dataset. This task is not com-
plex: Section 5.2.1 shows that SamBA solves it easily. In this
experiment, we analyzed the decision function of SamBA
on the samples of this dataset. To be able to analyze the
behavior of SamBA, we trained it on a single train/test split
with fixed hyper-parameters, and we outputted the weights
it associates with each selected feature for a subset of the
test set.

Figure 5 illustrates the individual feature importance for
several test samples. We specifically chose the ones with
the most variability to highlight the limit cases of SamBA.
Firstly, some samples heavily rely on Feature 1. Indeed
in the Spirals dataset, a sample on the outer edge of the
spiral does not require a combination of the features to be
well classified. Therefore, SamBA’s weight approximation
function allows prioritizing specific features for specific
samples during the prediction process. For example, Sample
2 heavily relies on Support Feature 1, while Sample 3 relies
on a more uniform distribution over the support features.

This experiment illustrates that SamBA is able to find a
custom combination of weak classifiers for each sample,
outputting a complex decision function from a sparser fea-
ture space than Adaboost. We also showed that interpreting
this decision function can lead to better understanding of
the mechanisms that lead to the classification of the test
samples.

6 CONCLUSION AND FUTURE WORKS

This paper focuses on generalizing Adaboost’s framework
to enable learning with local knowledge. We first provided
a new point of view of several ensemble methods as combi-
nations of local experts. We then proposed a general frame-
work for boosting algorithms to combine local experts. Re-

lying on this abstract framework, we presented SamBA, an
instance of the framework specifically designed to tackle
the problem of fat data. We analyzed SamBA’s behavior
and proved theoretical properties leading to a generalization
bound. We then presented four experiments highlighting the
empirical properties of SamBA. Firstly, we validated the
fact that SamBA does not consume critically more resources
than state-of-the-art methods, specifically on fat datasets.
Through a synthetic and a real-life fat dataset, we compared
the performance of SamBA and state-of-the art algorithms.
To conclude, we showed that, even if its decision is more
complex than that of Adaboost, SamBA is still interpretable.

SamBA offers an original point of view on greedy ensemble
methods. We showed in this work that SamBA is relevant
on fat datasets, using a similarity function relying on the
Euclidean distance. It would be interesting to further investi-
gate the fully general framework, deriving algorithms fitted
for different tasks. For example, the multi-environment prob-
lem would be a relevant application, with an adapted simi-
larity function. Lastly, tighter generalization bounds could
be investigated for other instances of the general framework.
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