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Abstract

Visual instruction tuning has become the pre-
dominant technology in eliciting the multi-
modal task-solving capabilities of large vision-
language models (LVLMs). Despite the suc-
cess, as visual instructions require images as
the input, it would leave the gap in inherit-
ing the task-solving capabilities from the back-
bone LLMs, and make it costly to collect a
large-scale high-quality dataset. To address
it, we propose ViFT, a visual instruction-free
fine-tuning framework for LVLMs. In ViFT,
we only require the text-only instructions and
image caption data during training, to sepa-
rately learn the task-solving and visual percep-
tion abilities. During inference, we extract and
combine the representations of the text and im-
age inputs, for fusing the two abilities to fulfill
multimodal tasks. Experimental results demon-
strate that ViFT can achieve state-of-the-art per-
formance on several downstream benchmarks,
with rather less training data. Our code and
data will be publicly released.

1 Introduction

Recently, large vision-language models (LVLMs),
built upon existing visual encoders (Dosovitskiy,
2020; Radford et al., 2021) and large language
models (LLMs) (Brown, 2020; Zhao et al., 2023b),
have gained widespread attention by demonstrating
superior performance across diverse multimodal
tasks (Du et al., 2022; Yin et al., 2023). To em-
power LVLMs with multimodal task-solving capa-
bilities, a fundamental problem is to inherit and
transfer the task-solving ability of LLMs into mul-
timodal tasks (with image inputs). Recently, visual
instruction tuning (Liu et al., 2024c,a) has emerged
as the predominant framework to achieve this goal.
Through fine-tuning on a variety of vision-language
instruction-following data from different sources,
LVLMs can directly learn the corresponding knowl-
edge and generalize into other related tasks.

Despite its success, it is still necessary to con-
tinue scaling up the number of visual instruction
data for fully learning multimodal advanced capa-
bilities (e.g., visual reasoning). However, there are
two bottlenecks that greatly limit the scaling of
visual instructions. First, due to the multimodal na-
ture, visual instructions' need to incorporate both
visual contents (e.g., images or videos) and related
language instructions, which makes the creation of
large-scale visual instructions much more challeng-
ing compared to unimodal language instructions.
Second, although existing work (Liu et al., 2024c;
Zhu et al., 2023) has adopted the data synthesis
strategy for visual instructions, the synthesized in-
structions might include unreliable information re-
garding the visual inputs, leading to the risks of
potential performance decline.

Considering the above challenges, we rethink
whether it is feasible to reduce the reliance on vi-
sual instruction data during training LVLMs. Ex-
isting LVLMs typically map visual inputs into the
LLM’s token space and then generate the text out-
put based on it. If the visual inputs have been well
perceived and aligned with text tokens, the LLM
can comprehend the visual contents and leverage
its inherent task-solving ability for tackling multi-
modal tasks. Therefore, LVLM’s multimodal task-
solving capability should be the combination of (1)
the visual perception ability (for alignment) and (2)
the task-solving ability from LLMs. Although it
is hard and costly to synthesize extensive amount
of high-quality visual instructions for learning the
multimodal capabilities, it is promising to suffi-
ciently learn the two individual abilities separately,
thanks to the rich resources of natural language
instructions (Wei et al., 2021; Teknium, 2023) and
image caption data (Schuhmann et al., 2021; Chen

1Following prior works (Liu et al., 2024c), we exclude
image captions from the scope of visual instructions, as they
are designed for basic vision-language alignment, instead of
learning advanced multimodal task-solving capabilities.
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Figure 1: A comparison of ViFT with other instruction-
tuned LVLM in terms of the training data size and aver-
age benchmark performance. ViFT is fine-tuned without
any visual instruction data.

et al., 2024). Therefore, our goal is to disentangle
and separately strengthen the two individual abil-
ities during training, then combine them during
inference to enhance LVLMs.

In this work, we propose a Visual Instruction-
Free fine-Tuning framework (ViFT) for training
LVLMs. Concretely, we ensure that the two key
abilities are separately optimized after extracting
from the LVLM, and then combined during infer-
ence. In this way, we can take advantage of using
available image caption and natural language in-
struction data, to better learn the two individual
abilities. During inference, we extract the hidden
states of the LVLM by using only the image and
text parts from the input visual instruction, which
are the disentangled representation vectors (Sub-
ramani et al., 2022; Turner et al., 2023) correspond-
ing to the two individual abilities. Through the ad-
dition of two vectors, the LVLLM can benefit from
the improvement on the individual abilities and
well fulfill multimodal tasks. Note that as ViFT
does not require any visual instruction data for fine-
tuning, it can better inherit the original abilities
from LLMs, and avoid the high costs for synthesiz-
ing high-quality visual instructions, especially in
new visual domains.

To study the effectiveness of our approach, we
conduct extensive experiments on a series of bench-
marks. Our approach outperforms the visual in-
struction tuning baseline across all seven evalua-
tion tasks, achieving an average performance gain
of 6.3% (47.5 vs. 41.2). When compared with
the state-of-the-art LVLM, LLaVA-OneVision, our
ViFT framework attains superior average perfor-

mance (47.5 vs. 45.5), while using less than 30%
amount of the training data, as shown in Figure 1.
The primary contributions of this work can be sum-
marized as followed:

* To the best of our knowledge, ViFT is the
first instruction-free fine-tuning method with
comparable performance to SOTA LVLMs.

* We specially designed the training and infer-
ence methods for disentangling and combin-
ing natural language task-solving and visual
perception abilities, to efficiently improve the
multimodal capabilities of LVLMs.

* Our ViFT is a low-cost approach for scaling
data to improve LVLMs. Experimental results
demonstrate the effectiveness of our approach
on several benchmarks.

2 Related Work

Large Vision-Language Models. Large vision-
language models (LVLMs) (Liu et al., 2024c,a)
are capable of processing visual and textual inputs
and tackling a variety of multimodal tasks. Cur-
rently, visual instruction tuning is the predominant
framework for training LVLMs. By training on a
large number of visual instructions, LVLMs can
directly learn the task-solving capabilities for the
corresponding multimodal tasks. Early studies (Liu
et al., 2024c; Zhu et al., 2023) leverage LLMs to
synthesize image-related GPT-style visual instruc-
tions. Subsequent studies leverage more advanced
LVLMs (e.g., GPT-4V) for higher-quality instruc-
tion synthesis (Du et al., 2023; Chen et al., 2024)
and quantity scaling (Zhao et al., 2023a; Chen et al.,
2025b). In addition to general instruction follow-
ing, another line of works focus on the LVLM’s
visual reasoning capability (Zhang et al., 2024c;
Shi et al., 2024; Gao et al., 2023) and the perfor-
mance in other visual domains (e.g., geometry (Shi
etal., 2024; Gao et al., 2023), scientific (Saikh et al.,
2022), and medical (Zhang et al., 2023a)). Despite
its success, it’s costly to synthesize high-quality
visual instructions, particularly when adapting to
diverse new visual domains and visual tasks.

Representation Engineering for LLMs. Our ap-
proach is closely related to studies of the repre-
sentation engineering for LLMs (Zou et al., 2023;
Turner et al., 2023), which aims to extract a com-
pact vector from the LLM’s intermediate represen-
tation (e.g., hidden states). The extracted represen-
tations can be leveraged to manipulate the LLM’s



behaviour. An application of representation vec-
tors is task arithmetic (Ilharco et al., 2022; Turner
et al., 2023). Through feature engineering (e.g., ad-
dition) of the representations, the LLM’s behaviour
on target tasks can be effectively controlled. Repre-
sentation engineering is successfully implemented
across various tasks, including style transfer (Sub-
ramani et al., 2022), knowledge editing (Hernandez
et al., 2023), and sentiment control (Turner et al.,
2023). Recent researches (Hendel et al., 2023; Liu
et al., 2023) extend their application to in-context
learning, where they are referred to as task vectors.
In our study, we leverage the representations ex-
tracted from the LVLM to combine the individual
abilities for solving multimodal tasks.

3 Preliminary

Existing LVLMs (Liu et al., 2024c; He et al.,
2024b) generally consist of a pretrained visual en-
coder f(-) to process visual inputs (e.g., images or
videos), a connection layer g(-) for feature projec-
tion, and an LLM p(-) for autoregressive genera-
tion. During inference, given a visual instruction
including an image input v and a text instruction
query g, the image is first processed through visual
encoder f(-) and connection layer g(-), producing
visual tokens X, = [y, , ..., Ty, ]. These tokens are
then prepended to the tokens of the text input X, to
compose the input of the LLM for autoregressively
generating the target text. To train the LVLM for
integrating the visual encoder and LLM, existing
methods mainly incorporate two training stages:
alignment pre-training and visual instruction tun-
ing. The first stage only requires caption data and
the second stage requires visual instructions.

In this work, we aim to skip the visual instruction
tuning stage, and only train the model with captions
and text instructions for disentangling and improv-
ing the task-solving and visual perception abilities.
For model architecture, we follow LLaVA’s design.
Concretely, we adopt SigLIP as the visual encoder
according to its suggestion (Liu et al., 2024b), and
select Qwen2.5-7B-instruct (Yang et al., 2024) as
our base LLM due to its remarkable performance.
For connection layer, we follow the widely-used
setting in current LVLMs (Liu et al., 2024c; Li
et al., 2024b) that implement a simple 2-layer MLP.

4 Approach

In this section, we introduce ViFT, a visual
instruction-free fine-tuning framework for LVLMs.

Our main motivation is that the multimodal task-
solving capability of LVLMs can be split into the
task-solving ability of LL.Ms and the visual per-
ception ability, which can be separately learned
through text-only instructions and image caption
data. In ViFT, we first collect the above data to
fine-tune the LVLM for learning the two individ-
ual abilities, and then extract their corresponding
representation to integrate the individual abilities
during inference to tackle multimodal tasks. We
show the overall framework in Figure 2.

4.1 Ability-Specific Fine-tuning

Previous LVLMs learn the multimodal task-solving
capabilities by fine-tuning on visual instructions.
In contrast, we propose to learn the task-solving
and visual perception abilities separately, using text
instructions and image caption data.

Text Instructions. We employ text instructions
to facilitate the learning of task-solving abil-
ity. Specifically, we first sample text instructions
from FLAN (Longpre et al., 2023) and OpenHer-
mes (Teknium, 2023). These datasets encompass
a broad range of natural language tasks, including
daily dialogue, knowledge utilization, multi-hop
reasoning, code synthesis, efc. We distill responses
to these queries from Qwen-2.5-72B-instruct due
to its remarkable performance in multiple real-
world tasks. Additionally, we include 100K text
instructions from Magpie-Qwen2.5-Pro (Xu et al.,
2024a). We denote the text instruction dataset as
Diext = {gi,7i};",, where ¢; and r; represent the
input query and response.

Image Caption Data. Image caption data has
been widely used to improve the cross-modal
alignment ability of LVLMs, enabling the mod-
els to understand and process visual inputs.
We first consider the large-scale caption dataset
LAION (Schuhmann et al., 2021), which contains
a variety of web images, and sample 1M image-
caption pairs from it. As these web-collected cap-
tions may contain low-quality noisy data, we also
collect high-quality captions from LLaVAR (Zhang
et al., 2023b), ShareGPT-4V (Chen et al., 2025b),
and ALLaVA (Chen et al., 2024) to improve data
quality. Besides, we collect images from specific
domains (e.g., tables, graphs, documents) and cap-
tion them based on Qwen2-VL-7B (Wang et al.,
2024b), to enhance the visual perception ability
on these domains. The details of the collected vi-
sual data are presented in Appendix A. We denote
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Figure 2: Compared to visual instruction tuning, ViFT first learns disentangled abilities through specific fine-tuning.
During inference, given a visual instruction, we extract the disentangled ability representations through different
modality inputs, and merge them into the fused representations for guiding the LVLM to generate the outputs.

the above caption data set as Deap = {v3, 7},
where v; and r; represent the image and caption
respectively. We follow existing work (Liu et al.,
2024c¢) to convert the caption data into instruction
format to align with text instructions. Specifically,
we randomly select a caption query ¢ from a fixed
query pool as its instruction. This results in a new
caption dataset D’ cap = {vs, gi, 7 101 -

Training objective. Following previous LVLMs,
we leverage an auto-regressive training objective
for optimizing the parameters within the LVLM,
denoted as:

N
L(0) = = logPr(rjlv,q,r<;;6), (1)

j=1

where [V is the target sequence length. For text in-
structions, the condition of input image v is given
as an empty set. In this way, we unify the learn-
ing objectives of the two kinds of data to support
joint training. In application, due to the significant
disparity in token length between captions and text
instructions (as the image is converted to a long
visual token sequence), we leverage a modality-
specific batching strategy to prevent long padding
sequences. By separately batching the text instruc-
tions and captions, this approach can accelerate the
training process while improving the disentangle-
ment of the two individual abilities.

4.2 Ability-Fused Inference via Disentangled
Representations

After training, the task-solving and visual percep-
tion abilities are well learned. However, they can-

not be combined via standard inference. Specif-
ically, the model will elicit each individual abil-
ity for different modality inputs, as illustrated in
Appendix E. We opt to address the problem via
representation engineering (Subramani et al., 2022;
Turner et al., 2023). The representations extracted
from the model’s hidden states are proven to be
effective for manipulating its behavior (Subramani
et al., 2022). More importantly, it enables the com-
bination of different abilities through arithmetic
operations, guiding the model to exhibit compos-
ite behavioral (Ilharco et al., 2022). Consequently,
we can activate diverse abilities through different
modality inputs, extract their corresponding repre-
sentations, and then combine them via addition.

Extracting Disentangled Representations. We
focus on the LLM part of the target LVLM as it
plays a crucial role in the LVLM’s behavior. The
LLM consists of a stack of transformer layers.
During inference, the input text will be first to-
kenized to a sequence of tokens « = [z1,. .., %),
where n denotes the sequence length. Then, the
sequence will be processed through multiple lay-
ers, creating intermediate hidden states h!(z) =
[h!(x1),...,h'(x,)] at layer [. Notice that each
input token will correspond to a hidden represen-
tation. For simplicity, we use h(x) to denote the
hidden representations at all target layers. These
representations will later be used to manipulate the
model’s behavior.

Task-Solving Ability Representations. Owing
to our design in specific fine-tuning, the task-
solving ability is mainly learned by text-only in-



structions. Thus, given a input visual instruction
I = {q,v}, where ¢ and v represent the text query
and the paired image respectively, we can utilize
the text part of the input visual instruction to elicit
the task-solving ability from the LVLM. Although
the text part is not sufficient for fulfilling the multi-
modal task, it can still prompt the model to exhibit
the task-solving behavior. Therefore, we aim to ex-
tract the representation for such ability. Concretely,
we simply use the text instruction ¢ as input, and
extract the hidden representations across all target
layers. Notably, for text-only inputs, the extracting
process is the same for LLMs and LVLMs. We
denote the extracted representations h(q) as the
task-solving ability representation.

Visual Perception Ability Representations. We
additionally utilize the image part v of the input
visual instruction, to extract the representations for
the visual perception ability. Here, we utilize the
LVLM to process both the input image v and text
q. The input image and text will be converted to
a sequence of tokens. Next, we extract the hid-
den representations h(v, q) of the text part from
all layers. In this way, as the text representations
can attend to all image tokens, they contain the in-
formation from the image part. Besides, they will
also have the same size as the task-solving ability
representations, which do not need further align-
ment and also supports simple fusing strategies like
addition operators.

Ability-Fused Inference. After extracting the
two ability representations, we aim to combine
them to activate the corresponding capabilities
for tackling multimodal tasks. According to the
studies of representation engineering (Subramani
et al., 2022; Turner et al., 2023), intervening in
the LLM’s representation space can manipulate its
behaviour. For instance, incorporating representa-
tions extracted from task-specific demonstrations
enables the model to address the target task with-
out training. In our case, we expect the model
to exhibit both visual perception and task-solving
abilities for tackling actual tasks. Therefore, we
devise a simple but effective ability fusion strategy
via weighted addition. In this way, we can easily
combine the two abilities and control the fusion
degree. Concretely, given a visual instruction with
image v and text instruction g, the ability-fused
representation is computed as:

h'(v,q) = ah(v,q) + Bh(q) 2)

Here, o and (8 are two tunable weights. Given an
image v and a text instruction g, we first extract the
ability representations h(v, ¢) and h(q), and then
compute the ability-fused representation h’(v, q).
Next, during inference, we replace the hidden rep-
resentation of the input text tokens with the fused
ability representation, and autoregressively gener-
ate the output tokens. The entire generation process
requires only one additional forward pass, and we
will discuss the associated computational overhead
in Section 6.

S Experiment

5.1 Evaluation Benchmarks

To evaluate the performance of ViFT, we conduct
experiments on seven public benchmark datasets:
(I) MME (Fu et al., 2024) and MMMU (Yue
et al., 2024) for evaluating visual perception
and visual commonsense; (2) MathVista (Lu
et al., 2023), Mathverse (Zhang et al., 2025a),
Math-Vision (Wang et al., 2024a) and Olympiad-
bench (He et al., 2024a) for evaluating visual rea-
soning; (3) LLaVA-Bench (Liu et al., 2024c¢) for
evaluating visual instruction following. We ensure
that the selected evaluation benchmarks have no
domain overlap with ViFT’s training data. Notably,
for models that are only capable of generating di-
rect answers, we employ chain-of-thought prompt-
ing to elicit its reasoning ability during evaluation.

5.2 Baselines

We compare ViFT with two types of baselines: (1)
Visual instruction tuning (VIT). To ensure fair com-
parison for ViFT and VIT, we collect 2.7M (same
amount as ViFT’s training data) visual instruc-
tions from commonly-used public visual instruc-
tion datasets (LLaVA-Instruct (Liu et al., 2024a),
ALLaVA-4V (Chen et al., 2024), SViT (Zhao
et al., 2023a), M3IT (Li et al., 2023), and Vision-
Flan (Xu et al., 2024b)). We then train a base-
line LVLM (denoted as ViT-7B) with the collected
VIT data under same settings for fair compari-
son. (2) Open-sourced LVLMs. We compare
our ViFT-7B with several public open-sourced
LVLMs with similar parameter size. These models
include LLaVA-1.5 (Liu et al., 2024a), LLaVA-
Next (Liu et al., 2024b), MiniCPM-V-2.5 (Yao
et al., 2024), LLaMA-3.2-Vision (Meta, 2024),
InternLM-XComposer (IXL-2.5) (Zhang et al.,
2024a), Qwen2-VL (Wang et al., 2024b), and
LLaVA-OneVision (Li et al., 2024a). Note that



Model MME MMMU MVista* MVerse* MVision OlyBench LBench | Average
LLaVA-1.5-7B 64.5 35.7 25.6 12.1 8.5 2.8 61.8 30.1
LLaVA-Next-8B 68.1 43.1 41.0 13.9 14.1 3.7 66.0 35.7

MiniCPM-V-2.5-8B 72.3 45.8 46.6 20.5 14.1 5.1 82.7 41.0
LLaMA-3.2-Vision-11B | 65.0 48.0 48.7 26.1 15.8 4.9 83.1 41.7
IXL-2.5-7B 79.7 429 54.4 27.2 14.8 59 70.2 42.2
Qwen2-VL-7B 79.1 52.0 58.3 30.5 17.7 8.4 70.1 45.2
LLaVA-OneVision-7B 76.1 46.6 58.9 31.0 18.1 6.7 81.0 45.5

VIT-7B 73.1 44.2 43.6 26.9 16.5 5.8 78.3 41.2
ViFT-7B (ours) 78.2 52.8 49.2 34.8 24.0 12.1 81.5 47.5

Table 1: A comparison between ViFT and other baseline models on seven benchmarks. VIT denotes our visual
instruction tuning baseline. M Vista, M Verse, M Vision, OlyBench and LBench are short for MathVista, MathVerse,
Math-Vision, OlympiadBench and LLaVABench, respectively. We use * to denote benchmarks that may have
domain overlap with the training data of the baseline model. We report the normalized performance for MME. Bold
and underline fonts indicate the best and second best performance, respectively.

Model | MVision  MME MMMU

VIT-Qwen2.5-7B-SigLIP 16.5 73.1 442
ViFT-Qwen2.5-7B-SigLIP 24.0 78.2 52.8
VIT-Qwen2.5-14B-SigLIP 19.6 77.8 485
ViFT-Qwen2.5-14B-SigLIP | 26.2 79.4 54.6
VIT-LLaMA3-8B-SigLIP 15.8 74.4 46.8
ViFT-LLaMA3-8B-SigLIP 20.2 78.6 51.4
VIT-Qwen2.5-7B-CLIP 16.8 71.4 44.0
ViFT-Qwen2.5-7B-CLIP 19.6 75.4 49.8

Table 2: The performance of ViFT across LVLMs with
different model architectures.

many of the open-sourced LVLMs include much
more training data compared to ViFT, and some
models may have used training data from the same
domain as the evaluation benchmarks, which may
lead to unfair comparison. We explicitly mark them
in our experimental results for clarity.

5.3 Implementation Detail

We adopt a two-stage training strategy: In the first
stage, we train on web captions. In the second
stage, we train on a mixture of high-quality cap-
tions and text instructions. This avoids the addi-
tional computational overhead caused by the sig-
nificant length disparity between low-quality web
captions and high-quality captions. We provide a
comparison of these two strategies in Appendix D.
We set the learning rate to 1e-5 for the LLM and
vision encoder, and 2e-6 for the connector layer.
The batch size is configured as 8 for each GPU. All
models are trained for one epoch.

During inference, we only conduct ability fusion
in the top 50% of layers. We set « = 1.0 and
B = 0.1 across all experiments. More detailed

studies of the optimal hyperparameters and fusion
layers are presented in Section 6.

5.4 Main Results

We present the results of ViFT and other baseline
models in Table 1. Firstly, we observe that ViFT-7B
outperforms the ViT-7B baseline across all bench-
marks, with the most significant gains on visual
commonsense and visual reasoning tasks. This
demonstrates that our ViFT effectively inherits the
LLM’s language reasoning capability for visual
reasoning tasks, substantially enhancing its per-
formance. In contrast, the ViT paradigm tends to
cause models to overfit to superficial generation
patterns and fail to develop genuine visual reason-
ing capability. Moreover, due to the challenges in
visual instruction synthesis, existing visual instruc-
tion datasets often contain low-quality samples that
further disrupt the model’s normal reasoning and
perceptual capabilities, leading to its performance
decline. The results prove that ViFT is more effec-
tive than VIT under fair comparison.

Secondly, compared to other open-sourced
LVLMs, ViFT achieves the best performance on
four out of all seven tasks. The only task where
ViFT shows a notable performance gap is Math-
Vista, which we attribute to the baseline LVLM’s
potential use of in-domain training data overlap-
ping with the benchmark, providing significant per-
formance advantages. Although similar issues may
also exist in MathVerse, a benchmark for evaluating
the models’ geometric reasoning capability. ViFT
can compensate for the lack of in-domain training
data by inheriting reasoning capability from the
backbone LLM, thereby achieving even stronger
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Figure 3: Efficiency test and scaling test for ViFT.

performance. Considering the overall average per-
formance, ViFT-7B outperforms the leading base-
line LVLM, LLaVA-OneVision-7B (47.5 vs 45.5),
despite being trained on a substantially smaller
dataset (2.7M vs 9.5M). This demonstrates the ef-
fectiveness of our proposed framework.

6 Further Analysis

Transferability Evaluation. We evaluate the
transferability of ViFT across different model ar-
chitectures. Specifically, we modify our base
ViFT-7B model by replacing the backbone LLM
(Qwen2.5-7B-Instruct) with LLaMA-3-8B-Instruct
and Qwen2.5-14B-Instruct, and the visual encoder
(SigLIP) with CLIP, while keeping all other exper-
imental configurations unchanged. For all variant
models, we train both VIT-based and ViFT-based
models based on the same training data used in our
main experiment. Then, under the same setting, we
evaluate the performance of ViFT and VIT for each
model variant. We present the results in Table 2.
We can observe that ViFT consistently outperforms
ViT across various downstream tasks, regardless of
the model architecture. The results prove that ViFT
is a general and robust approach, outperforming the
VIT baseline across diverse model architectures.

Computation Complexity. We examine the ad-
ditional time overhead of ability-fused inference
compared to standard inference. The results are
presented in Figure 3a. As we can observe, when
generating short responses (e.g., 25 tokens), utiliz-
ing ability-fused inference may introduce an 8% in-
crease in computational overhead. However, as the
generation length increases, the generation speeds
for standard inference and ability-fused inference
gradually converge. When generating more than
400 tokens, ability-fused inference almost doesn’t
introduce any additional computational overhead.
This aligns with our expectations. For ability-fused
inference, we merely introduce one additional for-

Model MathVista LLaVABench
ViFT 49.2 81.5
— Low-quality captions 48.5 80.9
— High-quality captions 42.1 66.1
— Text instructions 43.9 66.0
— AF inference 46.1 59.6

Table 3: The ablation of different training data com-
ponent and inference strategy. AF inference indicates
ability-fused inference.

ward pass during the entire generation process.
Thus, while there is some discrepancy when gen-
erating short responses, such differences become
negligible as generation length increases.

Data Scaling Test. We investigate the effect of
data scaling for visual instruction tuning (VIT) and
ViFT. Concretely, we randomly sample data subsets
at different sampling ratios from ViFT’s training
data and the baseline visual instruction data, re-
spectively. We then train LVLMs with these data
subsets and evaluate their average performance on
three benchmarks: MME, MMMU and MathVi-
sion. As shown in Figure 3b, we observe that data
scaling consistently yields performance improve-
ments for ViFT. This indicates that the enhance-
ments in two individual abilities effectively prop-
agate to improved fused multimodal task-solving
capability. As for visual instruction tuning, the
model achieves promising performance improve-
ment with minimal data, but cannot yield signifi-
cantly better results via scaling. This likely occurs
because existing visual instructions primarily help
models learn superficial styles, rather than improv-
ing actual multimodal task-solving capability. This
further validates that ViFT demonstrates greater po-
tential for performance improvement by leveraging
existing large-scale, cost-effective data, compared
to conventional approaches.

Ablation Study. We employ diverse training data
components and inference strategy in our training
framework. We present the ablation results in Ta-
ble 3. First, we examine the impact of each data
component for fine-tuning. We observe that re-
moving high-quality captions or text instructions
can result in severe performance decline. This
indicates that the high-quality captions is impor-
tant for enhancing the model’s visual perception
ability, which subsequently improves their multi-
modal task-solving capability. Text instructions are
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Figure 4: The impact of different hyperparameters.

equally important as they preserve the LLM’s inher-
ent task-solving ability from multimodal training.
In comparison, the impact of low-quality captions
is relatively limited. Second, we study the effect of
our proposed ability-fused inference. As we can ob-
serve, the model exhibits significant performance
decline without ability-fused inference. This indi-
cates that the individual abilities cannot be effec-
tively combined through standard inference, and
our proposed ability-fused inference successfully
addresses this limitation.

Hyperparameter Tuning. We study the effect
of different hyperparameter o and 5 on model per-
formance. The results are presented in Figure 4.
For «, we observe that as « increases, the model’s
performance initially increases and then decreases.
While the performance on MathVista exhibits a
sudden improvement at early stages, it remains rel-
atively stable as o changes. The results confirm
that o = 1.0 represents an optimal choice, while
small deviations do not significantly impact perfor-
mance. Similar to o, the model performance ex-
hibits an increase-then-decrease pattern as [ varies.
We observe a sudden decline when (3 reaches 0.4,
indicating that a large /3 can result in abnormal be-
havior. Furthermore, we discover that the optimal
B varies across different tasks. The optimal 3 for
MathVista and LLaVA-Bench are 0.1 and 0.15, re-
spectively. This demonstrates that different vision
tasks may require varying levels of individual abili-
ties, leading to task-specific optimal fusion ratios.
However, the optimal fusion ratios across different
tasks do not deviate significantly, and slight devi-
ations from these ratios do not cause substantial
performance degradation.

Fusion Layer Selection Analysis. We investi-
gate the impact of layer selection for ability fusion.
We examine two strategies: selecting layers from
the top downward, or from the bottom upward (we
refer the layers nearer to the LLM head as the top

Layers | MathVista MathVision LLaVABench
0-7 48.8 17.0 63.1
0-14 46.4 19.6 74.6
0-21 49.0 17.3 80.3
0-28 47.8 16.4 76.7
7-28 48.1 19.6 81.2
14-28 49.2 24.0 81.5

21-28 46.3 22.8 73.9

Table 4: The impact of fusion layer selection.

layers). The results are presented in Table 4. Our
findings indicate that the top-down strategy con-
sistently outperforms bottom-up selection. The
reason might be that the LLM’s top layers have
more influence on the model’s generation behav-
ior (Geva et al., 2020, 2022), which makes ability
fusion more effective at these layers. Also, recent
studies (Chen et al., 2025a; Zhang et al., 2025b)
demonstrate that visual information tends to ag-
gregate with text tokens within the LVLM’s early
layers, and ability fusion in these layers may dis-
rupt such a aggregation process, leading to declined
performance. Moreover, we discover that selecting
50% of the layers from the top of the model down-
ward yields the best performance, which makes it
an optimal choice.

7 Conclusion

In this paper, we proposed an instruction-free fine-
tuning framework ViFT, for enhancing the multi-
modal task-solving capabilities of LVLMs. Con-
cretely, instead of using visual instructions, we only
leveraged text instructions and image caption data,
to separately learn the individual task-solving and
visual perception abilities for the LVLM. After that,
we extracted the representation vectors by using
the model’s hidden space for the disentangled abil-
ities via different modality inputs, and combined
them to guide the inference of the LVLM in mul-
timodal tasks. With rather less training data, our
trained model, ViFT-7B, achieved state-of-the-art
performance among competitive LVLMs across
various downstream benchmarks. Furthermore,
based on our proposed framework, we can effi-
ciently scale the vision data and text data to en-
hance the model’s performance, which facilitates
further advancements in this field.



8 Limitations

In this paper, we propose ViFT, a visual instruction-
free fine-tuning framework for training LVLMs.
While our approach achieves promising perfor-
mance on downstream benchmarks, it still has
some potential limitations. First, we prove that
our approach can be enhanced by scaling the vision
data and text data for training. Since there already
exists well-established methods for efficiently syn-
thesizing such data in large quantities (Yu et al.,
2023; Zhou et al., 2024), there is still room for
further improvement. Second, we utilize captions
as the primary multimodal data to facilitate the
learning of visual perception ability. While this
approach represents the current mainstream prac-
tice, whether coarse-grained captions constitute the
optimal data choice for visual perception learning
across all vision domains remains an open research
question. Third, apart from the visual reasoning
and instruction following capabilities, ViFT has
the potential to efficiently transfer more advanced
capabilities to visual tasks (e.g., long-thought rea-
soning (OpenAl, 2024; Guo et al., 2025)), and we
will further explore this direction in subsequent
work.
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A Training Dataset

We utilize OpenHermes (Teknium, 2023) and
FLAN (Longpre et al., 2023) as sources for text
instruction queries. Open-Hermes comprises a di-
verse collection of text instructions from various
sources and FLAN contains a substantial set of
task-specific instructions. We anticipate these in-
struction sets will enhance the model’s language
capability in both general scenarios and complex
reasoning tasks. Following query acquisition, we
employ Qwen2-72B-instruct to distill specific in-
struction responses. This approach is adopted be-
cause the distilled responses demonstrate higher
quality compared to the original responses. Addi-
tionally, since Qwen2-72B-instruct shares the same
training data as our base LLM (though with differ-
ent parameter scales), we hypothesize this align-
ment would better preserve the original language
capabilities.

As for vision data, we collect extensive caption
datasets encompassing both general and domain-
specific vision domains. The details of the vision
data are presented in Table 5.

B Evaluation Datasets

‘We evaluate ViFT on four downstream benchmarks,
the details of the benchmarks are as followed:

* MathVista: (Lu et al., 2023) it evaluates the
LVLM’s mathematical reasoning capabilities
in multiple vision domains. It contains 6141
evaluation data samples, collected from 28
existing datasets and 3 newly created datasets.

* MathVerse: (Zhang et al., 2025a) it is an in-
depth benchmark for evaluating LVLM’s rea-
soning capability. It consists of 2612 math
problems, and each problem is transformed
into 6 distinct problem versions. We report
the full performance (ALL) and the perfor-
mance on vision-mini (V-mini) subset in our
experiments.

* MathVision: (Wang et al., 2024a) it devel-
ops a comprehensive and challenging bench-
mark for evaluating the LVLM’s advanced rea-
soning skill. It comprises 3040 high-quality
mathematical problems derived from authen-
tic mathematics competitions. These prob-
lems encompass several distinct mathematical
disciplines and are categorized across five dif-
ficulty levels.
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Image Source ~ Domains Numbers
ALLaVA General 564976
LLaVAR General 250000
ShareGPT General 200000

COCO General 82783
VG General 158557
Synthdog OCR 29765
GeoQA Math 6027
CLEVR Math 20000
FigureQA Figure 20000
DocVQA Document 10194
TabMWP Table 20000
ChartQA Chart 18317
DVQA Diagram 30000
MMarxiv Academic 54399
IconQA Icons 18946
AI2D Science 4903
ScienceQA Science 6757

Table 5: Details of caption training data.

e LLaVABench: (Liu et al., 2024c) it evaluates
the model’s instruction-following capabilities
across diverse visual scenarios, assessing its
conversation, detailed description, and com-
plex reasoning skills. Through carefully de-
signed prompts, it measures the model’s abil-
ity to generate accurate responses based on
complex instructions in visual contexts.

e MME: (Fu et al.,, 2024) it evaluates the
model’s visual perception and visual common-
sense reasoning abilities. Every instance in
MME consists of one image and two binary
questions. We evaluate all models on both
perception and cognition splits of MME and
report the normalized results.

* MMMU: (Yue et al., 2024) it is a comprehen-
sive benchmark for evaluating the model’s
capability on visual commonsense and rea-
soning on massive multi-discipline tasks. It
includes 11.5K meticulously collected ques-
tions spanning 30 subjects and 183 subfields.

* OlympiadBench: (He et al., 2024a) it consists
of 8,476 bilingual multimodal problems for
Olympic-level mathematics and physics com-
petitions, which is extremely challenging and
require high-level reasoning skills for LVLMs.



Model # Captions  # Others  # Total Strategy Time  MathVista MathV LBench
LLaVA-1.5 560K 665K 1.2M Two-Stage  ~ 36h 49.2 240 815
LLaVA-Next 560K 760K 1.3M One-Stage =~ 47h 49.8 23.2 82.0
MiniCPM-V-2.5 570M 8.3M 578M
IXL-2.5 > 400M >2M > 402M Table 7: Comparison of ViFT with different training
Qwen2-VL > 87.5M - > 87.5M strategy.
LLaVA-OV 5.5M 4.0M 9.5M
ViFT 2.5M 0.2M 2. M

Table 6: The statistics of training data for ViFT and
other baseline LVLMs. Given that Qwen2-VL and IXL
do not provide their specific training data volumes, we
estimate the minimum data size based on the training
data descriptions provided in their papers.

C Baselines

We compare ViFT with a number of existing open-
source LVLMs. Notably, Although IXL-2.5 and
Qwen2-VL achieve impressive performance, they
are trained on a extensive multimodal datasets (ex-
ceeding 80M samples). LLaVA-OneVision, on the
other hand, utilizes a relatively smaller but still
substantial dataset of 9.5M samples. Compared to
these models, our ViFT demonstrates superior data
efficiency by requiring only 2.7M training samples.
We present more detailed information of baseline
LVLMs in Appendix C. Apart from the baseline
LVLMs introduced above, we also include LLaVA-
Adapter (Zhang et al., 2024b) and Mini-Gemini (Li
et al., 2024b) in Figure 1. We report the training
data size of these models in Table 6. For models
without exact number of training data size in pa-
pers, we estimate the lower bound of the data size.
For IXL-2.5, we report the incomplete training data
size in their paper. For Qwen2-VL, we estimate
the training data size by dividing the total training
tokens with the max token length for each sample.

D Additional Experiments

D.1 One-stage training vs two-stage

During training, we adopt a two-stage training strat-
egy to reduce cost. We investigate whether a two-
stage training strategy produces significant differ-
ent results compared to a one-stage approach. The
results are presented in Table 7. As we can observe,
single-stage training exhibits almost the same per-
formance as two-stage training, yet is more effi-
cient.
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E Case Studies

This section presents ViFT’s generating behaviour
under various experimental settings, and a com-
parison of ViFT with other baseline LVLMs. The
detailed results are presented below.

Comparison of ViFT with Existing LVLMs.
We present the results of ViFT and other SoTA
LVLMs in Table 8, Table 9, and Table 10. As we
can observe, many state-of-the-art baseline LVLMs
fail to generate a high-quality reasoning path even
when chain-of-thought prompt is leveraged, such
as Qwen2-VL and LLaVA-OneVision. LLaMA-
3.2-Vision-11B is the only baseline LVLM that is
capable of generating relatively coherent chains of
thought, but it may occasionally produce minor er-
ror during the reasoning process (e.g., misinterprets
the sine function), which results in an erroneous
final result. InternLM-XComposer-2.5 sometimes
generates promising reasoning path, but at other
times produces shorter responses. For Qwen2-VL-
7B and LLaVA-OneVision-7B, their reasoning is
extremely short, leading to incorrect results. As
this is actually a simple geometric problem, which
should not pose a challenge for LLMs, the observed
erroneous behavior is likely due to a ability degra-
dation resulting from conflicts between knowledge
learned from visual instruction tuning and the in-
trinsic abilities of LLM itself. Compared to these
models, our ViFT is the only one that can almost
fully inherit the original reasoning capabilities from
its backbone LLM, generate high-quality reason-
ing paths, and ensure the accuracy and consistency
of intermediate steps, ultimately achieving more
correct results.

ViFT’s Behaviour With or Without Ability-
fused inference. We present the results of ViFT
with or without ability-fused inference in Table 11,
Table 12, and Table 13. First, we discover that
the fine-tuned model will elicit diverse individ-
ual ability with different modality inputs, instead
of a combined capability via standard inference.
Specifically, it mostly produces a image descrip-
tion for multimodal inputs, regardless of the actual



instruction. However, when we leverage the same
instruction part as text-only input, the model fol-
lows the instruction and exhibits expected behavior,
though it fails to provide a correct answer due to
the missing image. Second, after implementing our
ability-fused inference, ViFT maintains its visual
perception capability while successfully leveraging
the fused task-solving ability to generate correct re-
sponses, validating the effectiveness of our method.

ViFT’s Behaviour With Different o Setting.
We present the results of ViFT’s behaviour with
different o in Table 14. We observe that when «
is set to a low value (0.8 in our case), ViFT rejects
to answer the question for lack of visual informa-
tion. This may be attributed to diminished visual
perception ability caused by low value of .. As
a gradually increases, the model begins to exhibit
normal reasoning behaviour and generates accurate
results. Within a certain range of «, the model’s
behavior remains notably consistent, showing no
significant variations despite the changes of « val-
ues. We also notice that when « reaches 1.1, the
model starts to first generate a image description,
then answer the question. While the reasoning be-
havior remains largely consistent, this indicates
that a larger o may enhance the model’s focus on
visual information.

ViFT’s Behaviour With Different 5 Setting.
The results of ViFT’s behaviour with different 5
are presented in Table 15. We discover that when
B = 0, the model exhibits a caption-only behaviour,
similar to ViFT without ability fusion. As 3 in-
creases, the model progressively demonstrates con-
sistent reasoning behavior, aligning with the behav-
ioral patterns observed during « variation. How-
ever, when [ reaches 0.4, ViFT will output random
strings, which indicates that a large /3 can result in
unstable behaviour in the model. This also corre-
sponds to the previous findings where the model’s
performance experiences a sudden and drastic de-
cline once the beta value reaches a certain thresh-
old.
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Problem: Please first conduct reasoning, and then answer the question and provide the correct option
letter, e.g., A, B, C, D, E, at the end.

As shown in the figure, then the value of sinB is equal to () Choices:

A:4/3

B:3/4

C:4/5

D:3/5

Ground Truth: C

LLaMA-3.2-Vision-11B:

**Step 1: Understand the problem**

The problem asks for the value of sinB in the given figure. To find this, we need to use trigonometric
concepts, specifically the definition of sine in a right-angled triangle.

**Step 2: Identify the triangle and its sides**

From the figure, we can see that triangle ABC is a right-angled triangle with sides labeled as follows:
* Side AB =3 * Side BC =4 * Hypotenuse AC =5

**Step 3: Recall the definition of sine**

The sine of an angle in a right-angled triangle is defined as the ratio of the length of the side opposite
the angle to the length of the hypotenuse.

**Step 4: Apply the definition of sine to find sinB**

In this case, angle B is opposite side AB, and the hypotenuse is AC. Therefore, sinB = AB / AC.
**Step 5: Calculate sinB**

Using the values from step 2, we can calculate sinB as follows:

sinB=AB/AC=3/5

Answer: D

InternLM-XComposer-2.5-7B:

To find the value of sinB, we need to use the definition of sine in a right-angled triangle. The sine of an
angle in a right-angled triangle is the ratio of the length of the side opposite the angle to the length of
the hypotenuse. In this case, side AC is opposite angle B, and AB is the hypotenuse.

Given that AC = 3 and AB =4, we can calculate sinB as follows:

sinB = opposite/hypotenuse sinB = 3/4

Therefore, the correct answer is B: %.

Qwen2-VL-7B:
Solution: In right triangle triangle ABC, angle C=90°, AC=3, BC=4. According to the Pythagorean
theorem, we have AB=5. Therefore, sinB=AC/AB=3/5. So, the answer is D.

Table 8: A comparison of ViFT with other baseline LVLMs (partl).
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LLaVA-OneVision-7B:
Solution: Since angle C=90°, we have sinB=AC/AB=3/5. Therefore, the answer is D.

ViFT-7B:

To determine the value of sinB, we need to identify the sides of the triangle relative to angle B. The sine
of an angle in a right-angled triangle is defined as the ratio of the length of the side opposite the angle to
the length of the hypotenuse.

From the diagram: - Side AC (opposite to angle B) has a length of 4 units. - Side BC (adjacent to angle
B) has a length of 3 units. - Side AB (the hypotenuse) is not explicitly given but can be calculated using
the Pythagorean theorem if needed.

Using the Pythagorean theorem for triangle ABC:

AB? = AC? + BC?
AB% =424 3?
AB?*=16+9

AB% =25
AB=5

Now, we can calculate sinB:

sin B — opposite AC _ 4
hypotenuse ~ AB 5

Therefore, the correct answer is C: %.

Table 8: A comparison of ViFT with other baseline LVLMs (part 1).

16



I

Problem: Please first conduct reasoning, and then answer the question and provide the correct answer.
Find the surface area of the given cylinder. All measurements in the diagram are in mm.

Round your answer to two decimal places.

Ground Truth: 109603.88

LLaMA-3.2-Vision-11B:

**Step 1: Understand the problem**

The problem asks for the surface area of a cylinder with a height of 80 mm and a radius of 98 mm.
**Step 2: Identify the formula for the surface area of a cylinder**

The formula for the surface area of a cylinder is:

Surface Area = 2712 + 27rh
where r is the radius and A is the height.
**Step 3: Plug in the values given in the problem** Given that the radius » = 98 mm and the height

h = 80 mm, we can substitute these values into the formula.
**Step 4: Calculate the surface area™*

Surface Area = 27 (98)° + 27(98)(80)

Surface Area = 192087 + 156807 = 348887 ~ 34888 X 3.14159 ~ 109541.31 mm>

*#Step 5: Round the answer to two decimal places** Rounded to two decimal places, the surface area is
approximately 109541.31 mm?.

InternLM-XComposer-2.5-7B:
To find the surface area of a cylinder, we need to calculate the area of the two circular bases and the
lateral surface area. The formula for the area of a circle is A = 772, where A is the area and r is the
radius. First, let’s find the area of one base:

Apae = 7r® = m(98)? = 9624.6 mm*
Since there are two bases, we double the area of one base to get the total area of both bases:

Avotal bases = 2 X Abase = 2 X 9624.6 = 19249.2 mm”>

Next, we need to find the lateral surface area. The lateral surface area of a cylinder is given by the
formula A = 27rh, where h is the height of the cylinder.

Alaeras = 277h = 271'(98) (80) = 19200 I'I'lI'I'l2

Finally, we add the areas of the bases and the lateral surface area to get the total surface area of the
cylinder:
Avotal = Avotal bases + Aateral = 19249.2 + 19200 = 38449.2 mm*

Table 9: A comparison of ViFT with other baseline LVLMs (part 2).
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Qwen2-VL-7B:

The surface area of a cylinder is given by the formula 27trh + 2772, where 7 is the radius and A is the
height. Substituting the given values, we get 27 x 98 x 80 + 27 x 982, Calculating this, we find the
surface area to be approximately 23,567.44 mm?2. Therefore, the answer is 23567.44.

LLaVA-OneVision-7B:

The surface area of a cylinder is given by the formula: 277 (h+7), where r is the radius and h is the height.
Substituting the given values, we get: 2%3.1416%98 (98+80) = 2%3.1416%98x178 = 12210.4mm?
Therefore, the surface area of the cylinder is 12210.4mm?>.

ViFT-7B:

To solve this problem, we need to analyze the given geometric configuration and use properties of
circles and angles.

Given:

- There is a circle with center A.

- Points B, C, D, and F lie on the circumference of the circle.

- Angle BAC and angle EAD sum up to 180 degrees.

### Analysis:

1. **Circle Properties**: Since A is the center of the circle, any line segment from A to a point on the
circumference (e.g., B, C, D, or E) is a radius of the circle.

2. ** Angle Sum Property**: The sum of opposite angles in a cyclic quadrilateral is 180 degrees. This
means that if BAC and EAD are supplementary, they form a straight line when extended through the
circle.

#i## Steps to Solve:

To find the surface area of a cylinder, we use the formula:

A=2nr(h+r)
where: - A is the surface area, - 7 is the radius of the base, - h is the height of the cylinder.

Given: - Radius (r) = 98 mm, - Height (k) = 80 mm.
Substitute these values into the formula:

A = 27(98)(80 + 98)
A = 27(98)(178)
A =27 x 17444

A = 348887

Now, calculate the numerical value using ™ ~ 3.14159:

A ~ 34888 x 3.14159
A~ 109678.472

Rounding to two decimal places:

A ~109678.47

Therefore, the surface area of the cylinder is approximately 109678.47 square millimeters.

Table 9: A comparison of ViFT with other baseline LVLMs (part 2).
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Problem: Please first conduct reasoning, and then answer the question and provide the correct answer.
Three circles with centres A, B, C touch each other in pairs from the outside (see diagram). Their radii
are 3,2 and 1. How big is the area of the triangle ABC?

Ground Truth: 6

LLaMA-3.2-Vision-11B:

To find the area of triangle ABC, we can use the formula for the area of a triangle given its base and
height. The base of the triangle is the distance between points A and B, and the height is the distance
from point C' to line AB.

The distance between points A and B is equal to the sum of their radii, which is 3 + 2 = 5. This is
because the circles touch each other in pairs from the outside, so the distance between their centers is
equal to the sum of their radii.

The distance from point C' to line AB is equal to the radius of circle C, which is 1. This is because
point C' is on the circumference of circle C, and the radius of a circle is the distance from its center to
any point on its circumference.

Now, we can use the formula for the area of a triangle:

Area = (base x height) / 2

Substituting the values we found earlier, we get:

Area=(5x1)/2=5/2=25

Therefore, the area of triangle ABC'is 2.5 square units.

*Answer*: 2.5

InternLM-XComposer-2.5-7B:
To find the area of triangle ABC, we can use Heron’s formula, which states that for a triangle with
sides of length a, b, and c, the area (A) is given by:

A=+/s(s—a)(s—b)(s—c)

where s is the semi-perimeter of the triangle, defined as:

a+b+c
2

In this case, the sides of the triangle are the distances between the centers of the circles. The distance
between the centers of circles with radii 3 and 2 is the sum of their radii, so it is 3 + 2 = 5. The distance
between the centers of circles with radii 2 and 1 is 2 + 1 = 3, and the distance between the centers of
circles withradii 3 and 1 is 3 + 1 = 4.

The semi-perimeter s of triangle ABC' is therefore:

,_B5t3+4 12
e

Using Heron’s formula, the area A of triangle ABC' is:

A=/6(6-5)(6—-3)(6-4)=V6-1-3-2=V36=6

Therefore, the area of triangle ABC'is 6 square units.

Table 10: A comparison of ViFT with other baseline LVLMs (part 3).
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Qwen2-VL-7B:

The lengths of the sides of triangle ABC are equal to the sums of the radii of the circles that
touch at those points. Therefore, the lengths of the sides of triangle ABC are 3+2=5, 2+1=3, and
3+1=4. The semi-perimeter of triangle ABC is (54+3+4)/2=6. Therefore, the area of triangle ABC is

V/(6(6 —5)(6 — 3)(6 — 4)) = 3v/5. Therefore, the answer is 31/5.

LLaVA-OneVision-7B:
The answer is 4.

ViFT-7B:

To find the area of triangle ABC, we need to determine the lengths of its sides and then use Heron’s
formula or another suitable method.

Given: - Circle A has a radius of 3 units. - Circle B has a radius of 2 units. - Circle C' has a radius of 1
unit.

Since the circles touch each other externally, the distance between the centers of any two circles is equal
to the sum of their radii.

1. **Distance between centers A and B**:

AB =ra+7rp =342 =5 units
2. **Distance between centers A and C'**:
AC =714 +7rc =3+ 1 = 4 units
3. **Distance between centers B and C**:
BC =rgp+r1c =2+ 1= 3units
Now, we have the side lengths of triangle ABC": - AB = 5 units - AC' = 4 units - BC' = 3 units

We can use Heron’s formula to calculate the area of triangle ABC'. Heron’s formula states that the area
K of a triangle with sides of lengths a, b, and c is given by:

K =+/s(s—a)(s —b)(s—c)

where s is the semi-perimeter of the triangle:

_a+b+c
2
For our triangle:
Pl il RN C SN
= > = =

Substituting the values into Heron’s formula:

K = /6(6—5)(6—4)(6—3)=+v6-1-2-3=1+/36 = 6 square units

Therefore, the area of triangle ABC is:

[6]

Table 10: A comparison of ViFT with other baseline LVLMs (part 3).
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Problem: Subtract all small cyan cubes. Subtract all large yellow rubber cubes. How many objects are
left?
Ground Truth: 8

ViFT With Vision-Text Inputs

The image depicts a collection of various geometric shapes, including cylinders and cubes, arranged on
a flat surface. The objects vary in size, color, and material properties such as metallic or matte finishes.
Here is a detailed description of the objects present:

1. **Cylinders**: - There are five cylindrical objects in total.

- Two large metallic cylinders: one gray and one red.

- One medium-sized metallic cylinder: gold-colored.

- One small metallic cylinder: blue.

- One small matte cylinder: gray.

2. **Cubes**: - There are four cube-shaped objects.

- One large metallic cube: red.

- One large matte cube: gray.

- One small metallic cube: cyan.

- One small matte cube: cyan.

3. #*Arrangement**: - The objects are scattered across the surface without any specific pattern.

- The large metallic cylinders (gray and red) are positioned towards the back left side.

- The medium-sized metallic cylinder (gold) is located near the center-left.

- The small metallic cylinder (blue) is placed towards the right side.

- The small matte cylinder (gray) is situated close to the small metallic cylinder (blue).

- The large metallic cube (red) is positioned towards the front right.

- The large matte cube (gray) is located behind the large metallic cube (red).

- The two small metallic cubes (cyan) are placed in the foreground, with one slightly to the left and the
other more centered.

- The two small matte cubes (cyan) are also in the foreground, with one slightly to the left and the other
more centered.

ViFT With Text-only Inputs:

To solve this problem, we need to know the initial number of small cyan cubes and large yellow rubber
cubes before any subtraction takes place. Since these values are not provided in the question, I will
create a hypothetical scenario to illustrate how you would solve this problem.

Let’s assume: - There are initially 10 small cyan cubes. - There are initially 5 large yellow rubber cubes.
- No other types of objects are mentioned.

Step 1: Subtract all small cyan cubes. - Initial count: 10 small cyan cubes. - After subtraction: 10 - 10 =
0 small cyan cubes.

Step 2: Subtract all large yellow rubber cubes. - Initial count: 5 large yellow rubber cubes. - After
subtraction: 5 - 5 = 0 large yellow rubber cubes.

Step 3: Calculate the total number of objects left. - Small cyan cubes left: 0 - Large yellow rubber cubes
left: O - Total objects left: 0 + 0 =0

Therefore, the final value is 0.

Table 11: An example of ViFT with or without ability-fused inference (part 1).
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Problem: Is the number of big shiny cars in front of the red airliner greater than the number of big
purple road bikes? Think first, then answer.
Ground Truth: Yes

ViFT Without Ability-Fused Inference:

In the image, there is one big shiny car located to the right side of the red airliner. There are no big
purple road bikes present in the scene. Therefore, the number of big shiny cars (1) is not greater than
the number of big purple road bikes (0).

Answer: (B) No

ViFT With Ability-Fused Inference:

To solve this problem, let’s break it down step by step:

1. **Identify the objects**: We need to count the number of "big shiny cars" and "big purple road
bikes" in relation to the red airliner.

2. **Counting the big shiny cars**: - There is one big shiny car (a purple SUV) in front of the red
airliner.

3. **Counting the big purple road bikes**: - There are no big purple road bikes visible in the image.
4. **Comparison**: - The number of big shiny cars in front of the red airliner is 1. - The number of big
purple road bikes is 0.

5. **Conclusion**: - Since 1 is greater than 0, the statement "Is the number of big shiny cars in front of
the red airliner greater than the number of big purple road bikes?" is true.

Therefore, the correct answer is (A) Yes.

Table 12: An example of ViFT with or without ability-fused inference (part 2).
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Problem: What material appears to make up the creature? Think first, then answer.

ViFT Without Ability-Fused Inference:

The image presents a 3D rendering of a creature that is a fusion of a camel and a flame. The creature
stands on four legs, each ending in black hooves. Its body is predominantly red, with yellow flames
dancing across its surface, giving it an appearance reminiscent of a living fire.

The creature’s head is adorned with a pair of glasses, adding a touch of whimsy to its fiery form. The
background is a simple gray gradient, which serves to highlight the vibrant colors of the creature. The
creature is positioned centrally in the image, drawing the viewer’s attention immediately to its unique
blend of elements.

There are no discernible texts or other objects in the image. The relative position of the creature to the
background suggests it is standing still, with no indication of movement or action. The image does not
provide any additional context or narrative, leaving the interpretation open to the viewer.

ViFT With Ability-Fused Inference:

To determine what material appears to make up the creature in the image, let’s analyze its characteristics:
1. #*Color and Texture**: The creature has a vibrant red body with yellow and orange flames emanating
from it. This suggests that the material might be something that glows or emits light, possibly indicating
heat or energy.

2. **Shape and Structure**: The creature resembles an animal, specifically a camel, but with exagger-
ated features like large eyes and a flame-like appearance. Its legs are sturdy and end in black hooves.
3. **Material Properties**: - **Red Body**: The red color could indicate a material like clay, plastic,
or even a painted surface. - **Flames**: The presence of flames suggests that the material could be
designed to mimic fire or glow-in-the-dark properties. - **Sturdy Legs**: The legs appear solid and
robust, which might suggest a material like metal or hard plastic.

4. **Contextual Clues**: Given the fantastical nature of the creature (a flaming camel), it is likely a
representation rather than a real-life object. This implies that the material could be anything used for
artistic purposes, such as clay, plastic, or even digital rendering.

5. **Lighting and Shadows**: The way the light interacts with the creature suggests a smooth, possibly
glossy surface, which could be indicative of materials like plastic or polished stone.

Considering these points, the most plausible material would be a combination of clay or plastic for the
body, with additional elements like paint or lighting effects to create the flame effect. The sturdy legs
could be made of a different material, perhaps metal or hard plastic, to provide stability.

In conclusion, while the exact material cannot be definitively determined without further information,
the creature seems to be crafted from a combination of clay/plastic for the body and possibly metal or
hard plastic for the legs, with added visual effects to simulate flames.

Table 13: An example of ViFT with or without ability-fused inference (part 3).
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Problem: What is this function most likely be? Think first, then answer.
Ground Truth: B. a trigonometric function

a=0..8:

However, without the actual graph or additional context, I cannot provide a specific identification of the
function. The options given (polynomial, trigonometric, exponential, or logarithmic) suggest different
types of functions that could fit the description. If you have more details about the graph or the function
itself, please provide them so I can give a more accurate identification.

a=0.9:

To determine which type of function the given graph represents, let’s analyze its characteristics:

1. **Shape**: The graph shows a smooth, periodic wave-like pattern with peaks and troughs that repeat
at regular intervals.

2. ** Amplitude**: The peaks and troughs appear to reach up to 1 unit above and below the x-axis.

3. **Periodicity**: The pattern repeats every 5 units along the x-axis.

Given these observations, we can infer the following:

- **Polynomial Functions**: These typically have a more complex shape with multiple turning points
(peaks and troughs), but they do not exhibit the repetitive nature seen in the graph.

- **Trigonometric Functions**: These functions, such as sine or cosine, are known for their periodic
behavior, which matches the observed pattern in the graph.

- **Exponential Functions**: These functions grow or decay exponentially and do not form a repeating
pattern like the one shown.

- **Logarithmic Functions**: These functions also do not exhibit the periodicity seen in the graph.
Based on the analysis, the most likely function represented by the graph is a trigonometric function.
Therefore, the correct answer is (B) a trigonometric function.

a=1.0:

To determine what type of function the given graph represents, let’s analyze its characteristics:

1. **Shape**: The graph shows a smooth, periodic wave-like pattern with peaks and troughs that repeat
at regular intervals.

2. ** Amplitude**: The peaks and troughs appear to reach approximately +1 on the y-axis.

3. **Periodicity**: The pattern repeats every 5 units along the x-axis, indicating a period of 5.

Given these observations, we can infer that the function is likely a sine or cosine function, which are
fundamental trigonometric functions known for their wave-like behavior.

- **Polynomial Functions**: These typically have a smooth curve but do not exhibit the repetitive nature
seen in the graph.

- **Exponential Functions**: These usually show rapid growth or decay and do not form a repeating
pattern.

- **Logarithmic Functions**: These also do not exhibit the periodicity observed in the graph.
Therefore, based on the shape and periodic nature of the graph, the most likely function is a trigonometric
function.

Answer: (B) a trigonometric function

Table 14: An example of ViFT with different « for ability fusion.
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a=11:

The given graph depicts a periodic oscillation with a sinusoidal pattern. The function appears to be a
sine or cosine wave, which are fundamental trigonometric functions. These functions are characterized
by their smooth, repetitive curves that rise and fall in a regular manner.

To determine the specific type of trigonometric function, we can analyze the shape and properties of the
curve:

1. **Periodicity**: The graph shows a repeating pattern every 5 units along the x-axis. This indicates
that the period of the function is 5 units.

2. ** Amplitude**: The maximum value of the function is 1, and it reaches this peak twice within each
period (once at the top and once at the bottom).

3. **Shape**: The curve starts at zero, rises to its maximum positive value, then decreases back to zero,
continues to its minimum negative value, and finally returns to zero before starting another cycle.
Given these characteristics, the function is best described as a trigonometric function, specifically a sine
or cosine function. Since the graph starts at the origin and reaches its first peak at x = 5, it suggests
that the function could be a sine function shifted horizontally.

Therefore, the most likely function represented in the graph is a trigonometric function.

Answer: (B)

a=12:

The given graph depicts a periodic oscillation with a sinusoidal pattern. The function appears to be a
sine or cosine wave, which are fundamental trigonometric functions. These functions are characterized
by their smooth, repetitive curves that rise and fall in a regular manner.

To determine the specific type of trigonometric function, we can analyze the shape and properties of the
curve:

1. **Periodicity**: The graph shows a repeating pattern every 5 units along the x-axis. This indicates
that the period of the function is 5 units.

2. ** Amplitude**: The maximum value of the function is 1, and it reaches this peak twice within each
period (once at the top and once at the bottom).

3. **Shape**: The curve starts at zero, rises to its maximum positive value, then decreases back to zero,
continues to its minimum negative value, and finally returns to zero before starting another cycle.
Given these characteristics, the function is best described as a trigonometric function, specifically a sine
or cosine function. Since the graph starts at the origin and reaches its first peak at z = 5, it suggests
that the function could be a sine function shifted horizontally.

Therefore, the most likely function represented in the graph is a trigonometric function.

Answer: (B)

Table 14: An example of ViFT with different « for ability fusion.
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Problem: Move the ruler to measure the length of the line to the nearest centimeter. How long is the
line? Think first, then answer.
Ground Truth: 7

B8 =0:

The image shows a ruler with measurements in centimeters, ranging from 0 to 10 cm. There is a black
line above the ruler that spans from approximately 2 cm to just past the 6 cm mark. Therefore, the
length of the line is about 5 centimeters.

8 =0.1:

To determine the length of the line using the ruler provided, we need to follow these steps:

1. **Identify the Scale**: The ruler has markings from 0 cm to 10 cm.

2. **Align the Line with the Ruler**: Place one end of the line at the 0 cm mark on the ruler.

3. **Measure the Length**: Extend the line along the ruler until it reaches the other end.

From the image, the line starts at the 0 cm mark and extends to just past the 7 cm mark but not reaching
the 8 cm mark. Therefore, the line measures approximately 7 centimeters.

**Answer:** The line is about 7 centimeters long.

B8 =0.2:

To determine the length of the line using the ruler provided, we need to follow these steps:

1. **Identify the Scale**: The ruler has markings from 0 cm to 10 cm.

2. **Align the Line**: Place the ruler such that one end of the line aligns with the O cm mark on the
ruler.

3. **Measure the Length**: Extend the ruler along the line until it reaches the other end of the line.
Given the hint to provide an integer answer, let’s assume the line extends to just past the 7 cm mark but
not reaching 8 cm. Therefore, the length of the line would be approximately 7 centimeters.
**Answer:** 7

B8 =0.3:

To determine the length of the line using the ruler provided, we need to follow these steps:

1. **Identify the Scale**: The ruler has markings from 0 cm to 10 cm.

2. **Align the Line**: Place the ruler such that one end of the line aligns with the 0 cm mark on the
ruler.

3. **Measure the Length**: Extend the ruler along the line until it reaches the other end of the line.
Given the hint to provide an integer answer, let’s assume the line extends to just past the 7 cm mark but
not reaching 8 cm. Therefore, the length of the line would be approximately 7 centimeters.

** Answer:*¥* 7

B =04:
RS A TR A TR A A T AR A A AR A A A A AR AR AR AR AR A AR TR TR

Table 15: An example of ViFT with different g for ability fusion.
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