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Abstract

Visual instruction tuning has become the pre-001
dominant technology in eliciting the multi-002
modal task-solving capabilities of large vision-003
language models (LVLMs). Despite the suc-004
cess, as visual instructions require images as005
the input, it would leave the gap in inherit-006
ing the task-solving capabilities from the back-007
bone LLMs, and make it costly to collect a008
large-scale high-quality dataset. To address009
it, we propose ViFT, a visual instruction-free010
fine-tuning framework for LVLMs. In ViFT,011
we only require the text-only instructions and012
image caption data during training, to sepa-013
rately learn the task-solving and visual percep-014
tion abilities. During inference, we extract and015
combine the representations of the text and im-016
age inputs, for fusing the two abilities to fulfill017
multimodal tasks. Experimental results demon-018
strate that ViFT can achieve state-of-the-art per-019
formance on several downstream benchmarks,020
with rather less training data. Our code and021
data will be publicly released.022

1 Introduction023

Recently, large vision-language models (LVLMs),024

built upon existing visual encoders (Dosovitskiy,025

2020; Radford et al., 2021) and large language026

models (LLMs) (Brown, 2020; Zhao et al., 2023b),027

have gained widespread attention by demonstrating028

superior performance across diverse multimodal029

tasks (Du et al., 2022; Yin et al., 2023). To em-030

power LVLMs with multimodal task-solving capa-031

bilities, a fundamental problem is to inherit and032

transfer the task-solving ability of LLMs into mul-033

timodal tasks (with image inputs). Recently, visual034

instruction tuning (Liu et al., 2024c,a) has emerged035

as the predominant framework to achieve this goal.036

Through fine-tuning on a variety of vision-language037

instruction-following data from different sources,038

LVLMs can directly learn the corresponding knowl-039

edge and generalize into other related tasks.040

Despite its success, it is still necessary to con- 041

tinue scaling up the number of visual instruction 042

data for fully learning multimodal advanced capa- 043

bilities (e.g., visual reasoning). However, there are 044

two bottlenecks that greatly limit the scaling of 045

visual instructions. First, due to the multimodal na- 046

ture, visual instructions1 need to incorporate both 047

visual contents (e.g., images or videos) and related 048

language instructions, which makes the creation of 049

large-scale visual instructions much more challeng- 050

ing compared to unimodal language instructions. 051

Second, although existing work (Liu et al., 2024c; 052

Zhu et al., 2023) has adopted the data synthesis 053

strategy for visual instructions, the synthesized in- 054

structions might include unreliable information re- 055

garding the visual inputs, leading to the risks of 056

potential performance decline. 057

Considering the above challenges, we rethink 058

whether it is feasible to reduce the reliance on vi- 059

sual instruction data during training LVLMs. Ex- 060

isting LVLMs typically map visual inputs into the 061

LLM’s token space and then generate the text out- 062

put based on it. If the visual inputs have been well 063

perceived and aligned with text tokens, the LLM 064

can comprehend the visual contents and leverage 065

its inherent task-solving ability for tackling multi- 066

modal tasks. Therefore, LVLM’s multimodal task- 067

solving capability should be the combination of (1) 068

the visual perception ability (for alignment) and (2) 069

the task-solving ability from LLMs. Although it 070

is hard and costly to synthesize extensive amount 071

of high-quality visual instructions for learning the 072

multimodal capabilities, it is promising to suffi- 073

ciently learn the two individual abilities separately, 074

thanks to the rich resources of natural language 075

instructions (Wei et al., 2021; Teknium, 2023) and 076

image caption data (Schuhmann et al., 2021; Chen 077

1Following prior works (Liu et al., 2024c), we exclude
image captions from the scope of visual instructions, as they
are designed for basic vision-language alignment, instead of
learning advanced multimodal task-solving capabilities.
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Figure 1: A comparison of ViFT with other instruction-
tuned LVLM in terms of the training data size and aver-
age benchmark performance. ViFT is fine-tuned without
any visual instruction data.

et al., 2024). Therefore, our goal is to disentangle078

and separately strengthen the two individual abil-079

ities during training, then combine them during080

inference to enhance LVLMs.081

In this work, we propose a Visual Instruction-082

Free fine-Tuning framework (ViFT) for training083

LVLMs. Concretely, we ensure that the two key084

abilities are separately optimized after extracting085

from the LVLM, and then combined during infer-086

ence. In this way, we can take advantage of using087

available image caption and natural language in-088

struction data, to better learn the two individual089

abilities. During inference, we extract the hidden090

states of the LVLM by using only the image and091

text parts from the input visual instruction, which092

are the disentangled representation vectors (Sub-093

ramani et al., 2022; Turner et al., 2023) correspond-094

ing to the two individual abilities. Through the ad-095

dition of two vectors, the LVLM can benefit from096

the improvement on the individual abilities and097

well fulfill multimodal tasks. Note that as ViFT098

does not require any visual instruction data for fine-099

tuning, it can better inherit the original abilities100

from LLMs, and avoid the high costs for synthesiz-101

ing high-quality visual instructions, especially in102

new visual domains.103

To study the effectiveness of our approach, we104

conduct extensive experiments on a series of bench-105

marks. Our approach outperforms the visual in-106

struction tuning baseline across all seven evalua-107

tion tasks, achieving an average performance gain108

of 6.3% (47.5 vs. 41.2). When compared with109

the state-of-the-art LVLM, LLaVA-OneVision, our110

ViFT framework attains superior average perfor-111

mance (47.5 vs. 45.5), while using less than 30% 112

amount of the training data, as shown in Figure 1. 113

The primary contributions of this work can be sum- 114

marized as followed: 115

• To the best of our knowledge, ViFT is the 116

first instruction-free fine-tuning method with 117

comparable performance to SOTA LVLMs. 118

• We specially designed the training and infer- 119

ence methods for disentangling and combin- 120

ing natural language task-solving and visual 121

perception abilities, to efficiently improve the 122

multimodal capabilities of LVLMs. 123

• Our ViFT is a low-cost approach for scaling 124

data to improve LVLMs. Experimental results 125

demonstrate the effectiveness of our approach 126

on several benchmarks. 127

2 Related Work 128

Large Vision-Language Models. Large vision- 129

language models (LVLMs) (Liu et al., 2024c,a) 130

are capable of processing visual and textual inputs 131

and tackling a variety of multimodal tasks. Cur- 132

rently, visual instruction tuning is the predominant 133

framework for training LVLMs. By training on a 134

large number of visual instructions, LVLMs can 135

directly learn the task-solving capabilities for the 136

corresponding multimodal tasks. Early studies (Liu 137

et al., 2024c; Zhu et al., 2023) leverage LLMs to 138

synthesize image-related GPT-style visual instruc- 139

tions. Subsequent studies leverage more advanced 140

LVLMs (e.g., GPT-4V) for higher-quality instruc- 141

tion synthesis (Du et al., 2023; Chen et al., 2024) 142

and quantity scaling (Zhao et al., 2023a; Chen et al., 143

2025b). In addition to general instruction follow- 144

ing, another line of works focus on the LVLM’s 145

visual reasoning capability (Zhang et al., 2024c; 146

Shi et al., 2024; Gao et al., 2023) and the perfor- 147

mance in other visual domains (e.g., geometry (Shi 148

et al., 2024; Gao et al., 2023), scientific (Saikh et al., 149

2022), and medical (Zhang et al., 2023a)). Despite 150

its success, it’s costly to synthesize high-quality 151

visual instructions, particularly when adapting to 152

diverse new visual domains and visual tasks. 153

Representation Engineering for LLMs. Our ap- 154

proach is closely related to studies of the repre- 155

sentation engineering for LLMs (Zou et al., 2023; 156

Turner et al., 2023), which aims to extract a com- 157

pact vector from the LLM’s intermediate represen- 158

tation (e.g., hidden states). The extracted represen- 159

tations can be leveraged to manipulate the LLM’s 160
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behaviour. An application of representation vec-161

tors is task arithmetic (Ilharco et al., 2022; Turner162

et al., 2023). Through feature engineering (e.g., ad-163

dition) of the representations, the LLM’s behaviour164

on target tasks can be effectively controlled. Repre-165

sentation engineering is successfully implemented166

across various tasks, including style transfer (Sub-167

ramani et al., 2022), knowledge editing (Hernandez168

et al., 2023), and sentiment control (Turner et al.,169

2023). Recent researches (Hendel et al., 2023; Liu170

et al., 2023) extend their application to in-context171

learning, where they are referred to as task vectors.172

In our study, we leverage the representations ex-173

tracted from the LVLM to combine the individual174

abilities for solving multimodal tasks.175

3 Preliminary176

Existing LVLMs (Liu et al., 2024c; He et al.,177

2024b) generally consist of a pretrained visual en-178

coder f(·) to process visual inputs (e.g., images or179

videos), a connection layer g(·) for feature projec-180

tion, and an LLM p(·) for autoregressive genera-181

tion. During inference, given a visual instruction182

including an image input v and a text instruction183

query q, the image is first processed through visual184

encoder f(·) and connection layer g(·), producing185

visual tokens Xv = [xv1 , ..., xvn ]. These tokens are186

then prepended to the tokens of the text input Xq to187

compose the input of the LLM for autoregressively188

generating the target text. To train the LVLM for189

integrating the visual encoder and LLM, existing190

methods mainly incorporate two training stages:191

alignment pre-training and visual instruction tun-192

ing. The first stage only requires caption data and193

the second stage requires visual instructions.194

In this work, we aim to skip the visual instruction195

tuning stage, and only train the model with captions196

and text instructions for disentangling and improv-197

ing the task-solving and visual perception abilities.198

For model architecture, we follow LLaVA’s design.199

Concretely, we adopt SigLIP as the visual encoder200

according to its suggestion (Liu et al., 2024b), and201

select Qwen2.5-7B-instruct (Yang et al., 2024) as202

our base LLM due to its remarkable performance.203

For connection layer, we follow the widely-used204

setting in current LVLMs (Liu et al., 2024c; Li205

et al., 2024b) that implement a simple 2-layer MLP.206

4 Approach207

In this section, we introduce ViFT, a visual208

instruction-free fine-tuning framework for LVLMs.209

Our main motivation is that the multimodal task- 210

solving capability of LVLMs can be split into the 211

task-solving ability of LLMs and the visual per- 212

ception ability, which can be separately learned 213

through text-only instructions and image caption 214

data. In ViFT, we first collect the above data to 215

fine-tune the LVLM for learning the two individ- 216

ual abilities, and then extract their corresponding 217

representation to integrate the individual abilities 218

during inference to tackle multimodal tasks. We 219

show the overall framework in Figure 2. 220

4.1 Ability-Specific Fine-tuning 221

Previous LVLMs learn the multimodal task-solving 222

capabilities by fine-tuning on visual instructions. 223

In contrast, we propose to learn the task-solving 224

and visual perception abilities separately, using text 225

instructions and image caption data. 226

Text Instructions. We employ text instructions 227

to facilitate the learning of task-solving abil- 228

ity. Specifically, we first sample text instructions 229

from FLAN (Longpre et al., 2023) and OpenHer- 230

mes (Teknium, 2023). These datasets encompass 231

a broad range of natural language tasks, including 232

daily dialogue, knowledge utilization, multi-hop 233

reasoning, code synthesis, etc. We distill responses 234

to these queries from Qwen-2.5-72B-instruct due 235

to its remarkable performance in multiple real- 236

world tasks. Additionally, we include 100K text 237

instructions from Magpie-Qwen2.5-Pro (Xu et al., 238

2024a). We denote the text instruction dataset as 239

Dtext = {qi, ri}nt
i=1, where qi and ri represent the 240

input query and response. 241

Image Caption Data. Image caption data has 242

been widely used to improve the cross-modal 243

alignment ability of LVLMs, enabling the mod- 244

els to understand and process visual inputs. 245

We first consider the large-scale caption dataset 246

LAION (Schuhmann et al., 2021), which contains 247

a variety of web images, and sample 1M image- 248

caption pairs from it. As these web-collected cap- 249

tions may contain low-quality noisy data, we also 250

collect high-quality captions from LLaVAR (Zhang 251

et al., 2023b), ShareGPT-4V (Chen et al., 2025b), 252

and ALLaVA (Chen et al., 2024) to improve data 253

quality. Besides, we collect images from specific 254

domains (e.g., tables, graphs, documents) and cap- 255

tion them based on Qwen2-VL-7B (Wang et al., 256

2024b), to enhance the visual perception ability 257

on these domains. The details of the collected vi- 258

sual data are presented in Appendix A. We denote 259
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of this image is that a 
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back of a moving car. 
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Figure 2: Compared to visual instruction tuning, ViFT first learns disentangled abilities through specific fine-tuning.
During inference, given a visual instruction, we extract the disentangled ability representations through different
modality inputs, and merge them into the fused representations for guiding the LVLM to generate the outputs.

the above caption data set as Dcap = {vi, ri}nc
i=1,260

where vi and ri represent the image and caption261

respectively. We follow existing work (Liu et al.,262

2024c) to convert the caption data into instruction263

format to align with text instructions. Specifically,264

we randomly select a caption query q from a fixed265

query pool as its instruction. This results in a new266

caption dataset D′
cap = {vi, qi, ri}nc

i=1.267

Training objective. Following previous LVLMs,268

we leverage an auto-regressive training objective269

for optimizing the parameters within the LVLM,270

denoted as:271

L(θ) = −
N∑
j=1

log Pr(rj |v, q, r<j ; θ), (1)272

where N is the target sequence length. For text in-273

structions, the condition of input image v is given274

as an empty set. In this way, we unify the learn-275

ing objectives of the two kinds of data to support276

joint training. In application, due to the significant277

disparity in token length between captions and text278

instructions (as the image is converted to a long279

visual token sequence), we leverage a modality-280

specific batching strategy to prevent long padding281

sequences. By separately batching the text instruc-282

tions and captions, this approach can accelerate the283

training process while improving the disentangle-284

ment of the two individual abilities.285

4.2 Ability-Fused Inference via Disentangled286

Representations287

After training, the task-solving and visual percep-288

tion abilities are well learned. However, they can-289

not be combined via standard inference. Specif- 290

ically, the model will elicit each individual abil- 291

ity for different modality inputs, as illustrated in 292

Appendix E. We opt to address the problem via 293

representation engineering (Subramani et al., 2022; 294

Turner et al., 2023). The representations extracted 295

from the model’s hidden states are proven to be 296

effective for manipulating its behavior (Subramani 297

et al., 2022). More importantly, it enables the com- 298

bination of different abilities through arithmetic 299

operations, guiding the model to exhibit compos- 300

ite behavioral (Ilharco et al., 2022). Consequently, 301

we can activate diverse abilities through different 302

modality inputs, extract their corresponding repre- 303

sentations, and then combine them via addition. 304

Extracting Disentangled Representations. We 305

focus on the LLM part of the target LVLM as it 306

plays a crucial role in the LVLM’s behavior. The 307

LLM consists of a stack of transformer layers. 308

During inference, the input text will be first to- 309

kenized to a sequence of tokens x = [x1, . . . , xn], 310

where n denotes the sequence length. Then, the 311

sequence will be processed through multiple lay- 312

ers, creating intermediate hidden states hl(x) = 313

[hl(x1), . . . ,h
l(xn)] at layer l. Notice that each 314

input token will correspond to a hidden represen- 315

tation. For simplicity, we use h(x) to denote the 316

hidden representations at all target layers. These 317

representations will later be used to manipulate the 318

model’s behavior. 319

Task-Solving Ability Representations. Owing 320

to our design in specific fine-tuning, the task- 321

solving ability is mainly learned by text-only in- 322

4



structions. Thus, given a input visual instruction323

I = {q, v}, where q and v represent the text query324

and the paired image respectively, we can utilize325

the text part of the input visual instruction to elicit326

the task-solving ability from the LVLM. Although327

the text part is not sufficient for fulfilling the multi-328

modal task, it can still prompt the model to exhibit329

the task-solving behavior. Therefore, we aim to ex-330

tract the representation for such ability. Concretely,331

we simply use the text instruction q as input, and332

extract the hidden representations across all target333

layers. Notably, for text-only inputs, the extracting334

process is the same for LLMs and LVLMs. We335

denote the extracted representations h(q) as the336

task-solving ability representation.337

Visual Perception Ability Representations. We338

additionally utilize the image part v of the input339

visual instruction, to extract the representations for340

the visual perception ability. Here, we utilize the341

LVLM to process both the input image v and text342

q. The input image and text will be converted to343

a sequence of tokens. Next, we extract the hid-344

den representations h(v, q) of the text part from345

all layers. In this way, as the text representations346

can attend to all image tokens, they contain the in-347

formation from the image part. Besides, they will348

also have the same size as the task-solving ability349

representations, which do not need further align-350

ment and also supports simple fusing strategies like351

addition operators.352

Ability-Fused Inference. After extracting the353

two ability representations, we aim to combine354

them to activate the corresponding capabilities355

for tackling multimodal tasks. According to the356

studies of representation engineering (Subramani357

et al., 2022; Turner et al., 2023), intervening in358

the LLM’s representation space can manipulate its359

behaviour. For instance, incorporating representa-360

tions extracted from task-specific demonstrations361

enables the model to address the target task with-362

out training. In our case, we expect the model363

to exhibit both visual perception and task-solving364

abilities for tackling actual tasks. Therefore, we365

devise a simple but effective ability fusion strategy366

via weighted addition. In this way, we can easily367

combine the two abilities and control the fusion368

degree. Concretely, given a visual instruction with369

image v and text instruction q, the ability-fused370

representation is computed as:371

h′(v, q) = αh(v, q) + βh(q) (2)372

Here, α and β are two tunable weights. Given an 373

image v and a text instruction q, we first extract the 374

ability representations h(v, q) and h(q), and then 375

compute the ability-fused representation h′(v, q). 376

Next, during inference, we replace the hidden rep- 377

resentation of the input text tokens with the fused 378

ability representation, and autoregressively gener- 379

ate the output tokens. The entire generation process 380

requires only one additional forward pass, and we 381

will discuss the associated computational overhead 382

in Section 6. 383

5 Experiment 384

5.1 Evaluation Benchmarks 385

To evaluate the performance of ViFT, we conduct 386

experiments on seven public benchmark datasets: 387

(1) MME (Fu et al., 2024) and MMMU (Yue 388

et al., 2024) for evaluating visual perception 389

and visual commonsense; (2) MathVista (Lu 390

et al., 2023), Mathverse (Zhang et al., 2025a), 391

Math-Vision (Wang et al., 2024a) and Olympiad- 392

bench (He et al., 2024a) for evaluating visual rea- 393

soning; (3) LLaVA-Bench (Liu et al., 2024c) for 394

evaluating visual instruction following. We ensure 395

that the selected evaluation benchmarks have no 396

domain overlap with ViFT’s training data. Notably, 397

for models that are only capable of generating di- 398

rect answers, we employ chain-of-thought prompt- 399

ing to elicit its reasoning ability during evaluation. 400

5.2 Baselines 401

We compare ViFT with two types of baselines: (1) 402

Visual instruction tuning (VIT). To ensure fair com- 403

parison for ViFT and VIT, we collect 2.7M (same 404

amount as ViFT’s training data) visual instruc- 405

tions from commonly-used public visual instruc- 406

tion datasets (LLaVA-Instruct (Liu et al., 2024a), 407

ALLaVA-4V (Chen et al., 2024), SViT (Zhao 408

et al., 2023a), M3IT (Li et al., 2023), and Vision- 409

Flan (Xu et al., 2024b)). We then train a base- 410

line LVLM (denoted as ViT-7B) with the collected 411

VIT data under same settings for fair compari- 412

son. (2) Open-sourced LVLMs. We compare 413

our ViFT-7B with several public open-sourced 414

LVLMs with similar parameter size. These models 415

include LLaVA-1.5 (Liu et al., 2024a), LLaVA- 416

Next (Liu et al., 2024b), MiniCPM-V-2.5 (Yao 417

et al., 2024), LLaMA-3.2-Vision (Meta, 2024), 418

InternLM-XComposer (IXL-2.5) (Zhang et al., 419

2024a), Qwen2-VL (Wang et al., 2024b), and 420

LLaVA-OneVision (Li et al., 2024a). Note that 421
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Model MME MMMU MVista* MVerse* MVision OlyBench LBench Average

LLaVA-1.5-7B 64.5 35.7 25.6 12.1 8.5 2.8 61.8 30.1
LLaVA-Next-8B 68.1 43.1 41.0 13.9 14.1 3.7 66.0 35.7

MiniCPM-V-2.5-8B 72.3 45.8 46.6 20.5 14.1 5.1 82.7 41.0
LLaMA-3.2-Vision-11B 65.0 48.0 48.7 26.1 15.8 4.9 83.1 41.7

IXL-2.5-7B 79.7 42.9 54.4 27.2 14.8 5.9 70.2 42.2
Qwen2-VL-7B 79.1 52.0 58.3 30.5 17.7 8.4 70.1 45.2

LLaVA-OneVision-7B 76.1 46.6 58.9 31.0 18.1 6.7 81.0 45.5

VIT-7B 73.1 44.2 43.6 26.9 16.5 5.8 78.3 41.2
ViFT-7B (ours) 78.2 52.8 49.2 34.8 24.0 12.1 81.5 47.5

Table 1: A comparison between ViFT and other baseline models on seven benchmarks. VIT denotes our visual
instruction tuning baseline. MVista, MVerse, MVision, OlyBench and LBench are short for MathVista, MathVerse,
Math-Vision, OlympiadBench and LLaVABench, respectively. We use * to denote benchmarks that may have
domain overlap with the training data of the baseline model. We report the normalized performance for MME. Bold
and underline fonts indicate the best and second best performance, respectively.

Model MVision MME MMMU

VIT-Qwen2.5-7B-SigLIP 16.5 73.1 44.2
ViFT-Qwen2.5-7B-SigLIP 24.0 78.2 52.8

VIT-Qwen2.5-14B-SigLIP 19.6 77.8 48.5
ViFT-Qwen2.5-14B-SigLIP 26.2 79.4 54.6

VIT-LLaMA3-8B-SigLIP 15.8 74.4 46.8
ViFT-LLaMA3-8B-SigLIP 20.2 78.6 51.4

VIT-Qwen2.5-7B-CLIP 16.8 71.4 44.0
ViFT-Qwen2.5-7B-CLIP 19.6 75.4 49.8

Table 2: The performance of ViFT across LVLMs with
different model architectures.

many of the open-sourced LVLMs include much422

more training data compared to ViFT, and some423

models may have used training data from the same424

domain as the evaluation benchmarks, which may425

lead to unfair comparison. We explicitly mark them426

in our experimental results for clarity.427

5.3 Implementation Detail428

We adopt a two-stage training strategy: In the first429

stage, we train on web captions. In the second430

stage, we train on a mixture of high-quality cap-431

tions and text instructions. This avoids the addi-432

tional computational overhead caused by the sig-433

nificant length disparity between low-quality web434

captions and high-quality captions. We provide a435

comparison of these two strategies in Appendix D.436

We set the learning rate to 1e-5 for the LLM and437

vision encoder, and 2e-6 for the connector layer.438

The batch size is configured as 8 for each GPU. All439

models are trained for one epoch.440

During inference, we only conduct ability fusion441

in the top 50% of layers. We set α = 1.0 and442

β = 0.1 across all experiments. More detailed443

studies of the optimal hyperparameters and fusion 444

layers are presented in Section 6. 445

5.4 Main Results 446

We present the results of ViFT and other baseline 447

models in Table 1. Firstly, we observe that ViFT-7B 448

outperforms the ViT-7B baseline across all bench- 449

marks, with the most significant gains on visual 450

commonsense and visual reasoning tasks. This 451

demonstrates that our ViFT effectively inherits the 452

LLM’s language reasoning capability for visual 453

reasoning tasks, substantially enhancing its per- 454

formance. In contrast, the ViT paradigm tends to 455

cause models to overfit to superficial generation 456

patterns and fail to develop genuine visual reason- 457

ing capability. Moreover, due to the challenges in 458

visual instruction synthesis, existing visual instruc- 459

tion datasets often contain low-quality samples that 460

further disrupt the model’s normal reasoning and 461

perceptual capabilities, leading to its performance 462

decline. The results prove that ViFT is more effec- 463

tive than VIT under fair comparison. 464

Secondly, compared to other open-sourced 465

LVLMs, ViFT achieves the best performance on 466

four out of all seven tasks. The only task where 467

ViFT shows a notable performance gap is Math- 468

Vista, which we attribute to the baseline LVLM’s 469

potential use of in-domain training data overlap- 470

ping with the benchmark, providing significant per- 471

formance advantages. Although similar issues may 472

also exist in MathVerse, a benchmark for evaluating 473

the models’ geometric reasoning capability. ViFT 474

can compensate for the lack of in-domain training 475

data by inheriting reasoning capability from the 476

backbone LLM, thereby achieving even stronger 477
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Figure 3: Efficiency test and scaling test for ViFT.

performance. Considering the overall average per-478

formance, ViFT-7B outperforms the leading base-479

line LVLM, LLaVA-OneVision-7B (47.5 vs 45.5),480

despite being trained on a substantially smaller481

dataset (2.7M vs 9.5M). This demonstrates the ef-482

fectiveness of our proposed framework.483

6 Further Analysis484

Transferability Evaluation. We evaluate the485

transferability of ViFT across different model ar-486

chitectures. Specifically, we modify our base487

ViFT-7B model by replacing the backbone LLM488

(Qwen2.5-7B-Instruct) with LLaMA-3-8B-Instruct489

and Qwen2.5-14B-Instruct, and the visual encoder490

(SigLIP) with CLIP, while keeping all other exper-491

imental configurations unchanged. For all variant492

models, we train both VIT-based and ViFT-based493

models based on the same training data used in our494

main experiment. Then, under the same setting, we495

evaluate the performance of ViFT and VIT for each496

model variant. We present the results in Table 2.497

We can observe that ViFT consistently outperforms498

ViT across various downstream tasks, regardless of499

the model architecture. The results prove that ViFT500

is a general and robust approach, outperforming the501

VIT baseline across diverse model architectures.502

Computation Complexity. We examine the ad-503

ditional time overhead of ability-fused inference504

compared to standard inference. The results are505

presented in Figure 3a. As we can observe, when506

generating short responses (e.g., 25 tokens), utiliz-507

ing ability-fused inference may introduce an 8% in-508

crease in computational overhead. However, as the509

generation length increases, the generation speeds510

for standard inference and ability-fused inference511

gradually converge. When generating more than512

400 tokens, ability-fused inference almost doesn’t513

introduce any additional computational overhead.514

This aligns with our expectations. For ability-fused515

inference, we merely introduce one additional for-516

Model MathVista LLaVABench

ViFT 49.2 81.5
¬ Low-quality captions 48.5 80.9
¬ High-quality captions 42.1 66.1
¬ Text instructions 43.9 66.0
¬ AF inference 46.1 59.6

Table 3: The ablation of different training data com-
ponent and inference strategy. AF inference indicates
ability-fused inference.

ward pass during the entire generation process. 517

Thus, while there is some discrepancy when gen- 518

erating short responses, such differences become 519

negligible as generation length increases. 520

Data Scaling Test. We investigate the effect of 521

data scaling for visual instruction tuning (VIT) and 522

ViFT. Concretely, we randomly sample data subsets 523

at different sampling ratios from ViFT’s training 524

data and the baseline visual instruction data, re- 525

spectively. We then train LVLMs with these data 526

subsets and evaluate their average performance on 527

three benchmarks: MME, MMMU and MathVi- 528

sion. As shown in Figure 3b, we observe that data 529

scaling consistently yields performance improve- 530

ments for ViFT. This indicates that the enhance- 531

ments in two individual abilities effectively prop- 532

agate to improved fused multimodal task-solving 533

capability. As for visual instruction tuning, the 534

model achieves promising performance improve- 535

ment with minimal data, but cannot yield signifi- 536

cantly better results via scaling. This likely occurs 537

because existing visual instructions primarily help 538

models learn superficial styles, rather than improv- 539

ing actual multimodal task-solving capability. This 540

further validates that ViFT demonstrates greater po- 541

tential for performance improvement by leveraging 542

existing large-scale, cost-effective data, compared 543

to conventional approaches. 544

Ablation Study. We employ diverse training data 545

components and inference strategy in our training 546

framework. We present the ablation results in Ta- 547

ble 3. First, we examine the impact of each data 548

component for fine-tuning. We observe that re- 549

moving high-quality captions or text instructions 550

can result in severe performance decline. This 551

indicates that the high-quality captions is impor- 552

tant for enhancing the model’s visual perception 553

ability, which subsequently improves their multi- 554

modal task-solving capability. Text instructions are 555
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Figure 4: The impact of different hyperparameters.

equally important as they preserve the LLM’s inher-556

ent task-solving ability from multimodal training.557

In comparison, the impact of low-quality captions558

is relatively limited. Second, we study the effect of559

our proposed ability-fused inference. As we can ob-560

serve, the model exhibits significant performance561

decline without ability-fused inference. This indi-562

cates that the individual abilities cannot be effec-563

tively combined through standard inference, and564

our proposed ability-fused inference successfully565

addresses this limitation.566

Hyperparameter Tuning. We study the effect567

of different hyperparameter α and β on model per-568

formance. The results are presented in Figure 4.569

For α, we observe that as α increases, the model’s570

performance initially increases and then decreases.571

While the performance on MathVista exhibits a572

sudden improvement at early stages, it remains rel-573

atively stable as α changes. The results confirm574

that α = 1.0 represents an optimal choice, while575

small deviations do not significantly impact perfor-576

mance. Similar to α, the model performance ex-577

hibits an increase-then-decrease pattern as β varies.578

We observe a sudden decline when β reaches 0.4,579

indicating that a large β can result in abnormal be-580

havior. Furthermore, we discover that the optimal581

β varies across different tasks. The optimal β for582

MathVista and LLaVA-Bench are 0.1 and 0.15, re-583

spectively. This demonstrates that different vision584

tasks may require varying levels of individual abili-585

ties, leading to task-specific optimal fusion ratios.586

However, the optimal fusion ratios across different587

tasks do not deviate significantly, and slight devi-588

ations from these ratios do not cause substantial589

performance degradation.590

Fusion Layer Selection Analysis. We investi-591

gate the impact of layer selection for ability fusion.592

We examine two strategies: selecting layers from593

the top downward, or from the bottom upward (we594

refer the layers nearer to the LLM head as the top595

Layers MathVista MathVision LLaVABench

0-7 48.8 17.0 63.1
0-14 46.4 19.6 74.6
0-21 49.0 17.3 80.3
0-28 47.8 16.4 76.7
7-28 48.1 19.6 81.2
14-28 49.2 24.0 81.5
21-28 46.3 22.8 73.9

Table 4: The impact of fusion layer selection.

layers). The results are presented in Table 4. Our 596

findings indicate that the top-down strategy con- 597

sistently outperforms bottom-up selection. The 598

reason might be that the LLM’s top layers have 599

more influence on the model’s generation behav- 600

ior (Geva et al., 2020, 2022), which makes ability 601

fusion more effective at these layers. Also, recent 602

studies (Chen et al., 2025a; Zhang et al., 2025b) 603

demonstrate that visual information tends to ag- 604

gregate with text tokens within the LVLM’s early 605

layers, and ability fusion in these layers may dis- 606

rupt such a aggregation process, leading to declined 607

performance. Moreover, we discover that selecting 608

50% of the layers from the top of the model down- 609

ward yields the best performance, which makes it 610

an optimal choice. 611

7 Conclusion 612

In this paper, we proposed an instruction-free fine- 613

tuning framework ViFT, for enhancing the multi- 614

modal task-solving capabilities of LVLMs. Con- 615

cretely, instead of using visual instructions, we only 616

leveraged text instructions and image caption data, 617

to separately learn the individual task-solving and 618

visual perception abilities for the LVLM. After that, 619

we extracted the representation vectors by using 620

the model’s hidden space for the disentangled abil- 621

ities via different modality inputs, and combined 622

them to guide the inference of the LVLM in mul- 623

timodal tasks. With rather less training data, our 624

trained model, ViFT-7B, achieved state-of-the-art 625

performance among competitive LVLMs across 626

various downstream benchmarks. Furthermore, 627

based on our proposed framework, we can effi- 628

ciently scale the vision data and text data to en- 629

hance the model’s performance, which facilitates 630

further advancements in this field. 631
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8 Limitations632

In this paper, we propose ViFT, a visual instruction-633

free fine-tuning framework for training LVLMs.634

While our approach achieves promising perfor-635

mance on downstream benchmarks, it still has636

some potential limitations. First, we prove that637

our approach can be enhanced by scaling the vision638

data and text data for training. Since there already639

exists well-established methods for efficiently syn-640

thesizing such data in large quantities (Yu et al.,641

2023; Zhou et al., 2024), there is still room for642

further improvement. Second, we utilize captions643

as the primary multimodal data to facilitate the644

learning of visual perception ability. While this645

approach represents the current mainstream prac-646

tice, whether coarse-grained captions constitute the647

optimal data choice for visual perception learning648

across all vision domains remains an open research649

question. Third, apart from the visual reasoning650

and instruction following capabilities, ViFT has651

the potential to efficiently transfer more advanced652

capabilities to visual tasks (e.g., long-thought rea-653

soning (OpenAI, 2024; Guo et al., 2025)), and we654

will further explore this direction in subsequent655

work.656
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A Training Dataset923

We utilize OpenHermes (Teknium, 2023) and924

FLAN (Longpre et al., 2023) as sources for text925

instruction queries. Open-Hermes comprises a di-926

verse collection of text instructions from various927

sources and FLAN contains a substantial set of928

task-specific instructions. We anticipate these in-929

struction sets will enhance the model’s language930

capability in both general scenarios and complex931

reasoning tasks. Following query acquisition, we932

employ Qwen2-72B-instruct to distill specific in-933

struction responses. This approach is adopted be-934

cause the distilled responses demonstrate higher935

quality compared to the original responses. Addi-936

tionally, since Qwen2-72B-instruct shares the same937

training data as our base LLM (though with differ-938

ent parameter scales), we hypothesize this align-939

ment would better preserve the original language940

capabilities.941

As for vision data, we collect extensive caption942

datasets encompassing both general and domain-943

specific vision domains. The details of the vision944

data are presented in Table 5.945

B Evaluation Datasets946

We evaluate ViFT on four downstream benchmarks,947

the details of the benchmarks are as followed:948

• MathVista: (Lu et al., 2023) it evaluates the949

LVLM’s mathematical reasoning capabilities950

in multiple vision domains. It contains 6141951

evaluation data samples, collected from 28952

existing datasets and 3 newly created datasets.953

• MathVerse: (Zhang et al., 2025a) it is an in-954

depth benchmark for evaluating LVLM’s rea-955

soning capability. It consists of 2612 math956

problems, and each problem is transformed957

into 6 distinct problem versions. We report958

the full performance (ALL) and the perfor-959

mance on vision-mini (V-mini) subset in our960

experiments.961

• MathVision: (Wang et al., 2024a) it devel-962

ops a comprehensive and challenging bench-963

mark for evaluating the LVLM’s advanced rea-964

soning skill. It comprises 3040 high-quality965

mathematical problems derived from authen-966

tic mathematics competitions. These prob-967

lems encompass several distinct mathematical968

disciplines and are categorized across five dif-969

ficulty levels.970

Image Source Domains Numbers

ALLaVA General 564976
LLaVAR General 250000

ShareGPT General 200000
COCO General 82783

VG General 158557
Synthdog OCR 29765
GeoQA Math 6027
CLEVR Math 20000

FigureQA Figure 20000
DocVQA Document 10194
TabMWP Table 20000
ChartQA Chart 18317
DVQA Diagram 30000

MMarxiv Academic 54399
IconQA Icons 18946
AI2D Science 4903

ScienceQA Science 6757

Table 5: Details of caption training data.

• LLaVABench: (Liu et al., 2024c) it evaluates 971

the model’s instruction-following capabilities 972

across diverse visual scenarios, assessing its 973

conversation, detailed description, and com- 974

plex reasoning skills. Through carefully de- 975

signed prompts, it measures the model’s abil- 976

ity to generate accurate responses based on 977

complex instructions in visual contexts. 978

• MME: (Fu et al., 2024) it evaluates the 979

model’s visual perception and visual common- 980

sense reasoning abilities. Every instance in 981

MME consists of one image and two binary 982

questions. We evaluate all models on both 983

perception and cognition splits of MME and 984

report the normalized results. 985

• MMMU: (Yue et al., 2024) it is a comprehen- 986

sive benchmark for evaluating the model’s 987

capability on visual commonsense and rea- 988

soning on massive multi-discipline tasks. It 989

includes 11.5K meticulously collected ques- 990

tions spanning 30 subjects and 183 subfields. 991

• OlympiadBench: (He et al., 2024a) it consists 992

of 8,476 bilingual multimodal problems for 993

Olympic-level mathematics and physics com- 994

petitions, which is extremely challenging and 995

require high-level reasoning skills for LVLMs. 996
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Model # Captions # Others # Total

LLaVA-1.5 560K 665K 1.2M
LLaVA-Next 560K 760K 1.3M

MiniCPM-V-2.5 570M 8.3M 578M
IXL-2.5 > 400M > 2M > 402M

Qwen2-VL > 87.5M - > 87.5M
LLaVA-OV 5.5M 4.0M 9.5M

ViFT 2.5M 0.2M 2.7M

Table 6: The statistics of training data for ViFT and
other baseline LVLMs. Given that Qwen2-VL and IXL
do not provide their specific training data volumes, we
estimate the minimum data size based on the training
data descriptions provided in their papers.

C Baselines997

We compare ViFT with a number of existing open-998

source LVLMs. Notably, Although IXL-2.5 and999

Qwen2-VL achieve impressive performance, they1000

are trained on a extensive multimodal datasets (ex-1001

ceeding 80M samples). LLaVA-OneVision, on the1002

other hand, utilizes a relatively smaller but still1003

substantial dataset of 9.5M samples. Compared to1004

these models, our ViFT demonstrates superior data1005

efficiency by requiring only 2.7M training samples.1006

We present more detailed information of baseline1007

LVLMs in Appendix C. Apart from the baseline1008

LVLMs introduced above, we also include LLaVA-1009

Adapter (Zhang et al., 2024b) and Mini-Gemini (Li1010

et al., 2024b) in Figure 1. We report the training1011

data size of these models in Table 6. For models1012

without exact number of training data size in pa-1013

pers, we estimate the lower bound of the data size.1014

For IXL-2.5, we report the incomplete training data1015

size in their paper. For Qwen2-VL, we estimate1016

the training data size by dividing the total training1017

tokens with the max token length for each sample.1018

D Additional Experiments1019

D.1 One-stage training vs two-stage1020

During training, we adopt a two-stage training strat-1021

egy to reduce cost. We investigate whether a two-1022

stage training strategy produces significant differ-1023

ent results compared to a one-stage approach. The1024

results are presented in Table 7. As we can observe,1025

single-stage training exhibits almost the same per-1026

formance as two-stage training, yet is more effi-1027

cient.1028

Strategy Time MathVista MathV LBench

Two-Stage ≈ 36h 49.2 24.0 81.5
One-Stage ≈ 47h 49.8 23.2 82.0

Table 7: Comparison of ViFT with different training
strategy.

E Case Studies 1029

This section presents ViFT’s generating behaviour 1030

under various experimental settings, and a com- 1031

parison of ViFT with other baseline LVLMs. The 1032

detailed results are presented below. 1033

Comparison of ViFT with Existing LVLMs. 1034

We present the results of ViFT and other SoTA 1035

LVLMs in Table 8, Table 9, and Table 10. As we 1036

can observe, many state-of-the-art baseline LVLMs 1037

fail to generate a high-quality reasoning path even 1038

when chain-of-thought prompt is leveraged, such 1039

as Qwen2-VL and LLaVA-OneVision. LLaMA- 1040

3.2-Vision-11B is the only baseline LVLM that is 1041

capable of generating relatively coherent chains of 1042

thought, but it may occasionally produce minor er- 1043

ror during the reasoning process (e.g., misinterprets 1044

the sine function), which results in an erroneous 1045

final result. InternLM-XComposer-2.5 sometimes 1046

generates promising reasoning path, but at other 1047

times produces shorter responses. For Qwen2-VL- 1048

7B and LLaVA-OneVision-7B, their reasoning is 1049

extremely short, leading to incorrect results. As 1050

this is actually a simple geometric problem, which 1051

should not pose a challenge for LLMs, the observed 1052

erroneous behavior is likely due to a ability degra- 1053

dation resulting from conflicts between knowledge 1054

learned from visual instruction tuning and the in- 1055

trinsic abilities of LLM itself. Compared to these 1056

models, our ViFT is the only one that can almost 1057

fully inherit the original reasoning capabilities from 1058

its backbone LLM, generate high-quality reason- 1059

ing paths, and ensure the accuracy and consistency 1060

of intermediate steps, ultimately achieving more 1061

correct results. 1062

ViFT’s Behaviour With or Without Ability- 1063

fused inference. We present the results of ViFT 1064

with or without ability-fused inference in Table 11, 1065

Table 12, and Table 13. First, we discover that 1066

the fine-tuned model will elicit diverse individ- 1067

ual ability with different modality inputs, instead 1068

of a combined capability via standard inference. 1069

Specifically, it mostly produces a image descrip- 1070

tion for multimodal inputs, regardless of the actual 1071
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instruction. However, when we leverage the same1072

instruction part as text-only input, the model fol-1073

lows the instruction and exhibits expected behavior,1074

though it fails to provide a correct answer due to1075

the missing image. Second, after implementing our1076

ability-fused inference, ViFT maintains its visual1077

perception capability while successfully leveraging1078

the fused task-solving ability to generate correct re-1079

sponses, validating the effectiveness of our method.1080

ViFT’s Behaviour With Different α Setting.1081

We present the results of ViFT’s behaviour with1082

different α in Table 14. We observe that when α1083

is set to a low value (0.8 in our case), ViFT rejects1084

to answer the question for lack of visual informa-1085

tion. This may be attributed to diminished visual1086

perception ability caused by low value of α. As1087

α gradually increases, the model begins to exhibit1088

normal reasoning behaviour and generates accurate1089

results. Within a certain range of α, the model’s1090

behavior remains notably consistent, showing no1091

significant variations despite the changes of α val-1092

ues. We also notice that when α reaches 1.1, the1093

model starts to first generate a image description,1094

then answer the question. While the reasoning be-1095

havior remains largely consistent, this indicates1096

that a larger α may enhance the model’s focus on1097

visual information.1098

ViFT’s Behaviour With Different β Setting.1099

The results of ViFT’s behaviour with different β1100

are presented in Table 15. We discover that when1101

β = 0, the model exhibits a caption-only behaviour,1102

similar to ViFT without ability fusion. As β in-1103

creases, the model progressively demonstrates con-1104

sistent reasoning behavior, aligning with the behav-1105

ioral patterns observed during α variation. How-1106

ever, when β reaches 0.4, ViFT will output random1107

strings, which indicates that a large β can result in1108

unstable behaviour in the model. This also corre-1109

sponds to the previous findings where the model’s1110

performance experiences a sudden and drastic de-1111

cline once the beta value reaches a certain thresh-1112

old.1113
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Problem: Please first conduct reasoning, and then answer the question and provide the correct option
letter, e.g., A, B, C, D, E, at the end.
As shown in the figure, then the value of sinB is equal to () Choices:
A:4/3
B:3/4
C:4/5
D:3/5
Ground Truth: C

LLaMA-3.2-Vision-11B:
**Step 1: Understand the problem**
The problem asks for the value of sinB in the given figure. To find this, we need to use trigonometric
concepts, specifically the definition of sine in a right-angled triangle.
**Step 2: Identify the triangle and its sides**
From the figure, we can see that triangle ABC is a right-angled triangle with sides labeled as follows:
* Side AB = 3 * Side BC = 4 * Hypotenuse AC = 5
**Step 3: Recall the definition of sine**
The sine of an angle in a right-angled triangle is defined as the ratio of the length of the side opposite
the angle to the length of the hypotenuse.
**Step 4: Apply the definition of sine to find sinB**
In this case, angle B is opposite side AB, and the hypotenuse is AC. Therefore, sinB = AB / AC.
**Step 5: Calculate sinB**
Using the values from step 2, we can calculate sinB as follows:
sinB = AB / AC = 3 / 5
Answer: D

InternLM-XComposer-2.5-7B:
To find the value of sinB, we need to use the definition of sine in a right-angled triangle. The sine of an
angle in a right-angled triangle is the ratio of the length of the side opposite the angle to the length of
the hypotenuse. In this case, side AC is opposite angle B, and AB is the hypotenuse.
Given that AC = 3 and AB = 4, we can calculate sinB as follows:
sinB = opposite/hypotenuse sinB = 3/4
Therefore, the correct answer is B: 3

4
.

Qwen2-VL-7B:
Solution: In right triangle triangle ABC, angle C=90°, AC=3, BC=4. According to the Pythagorean
theorem, we have AB=5. Therefore, sinB=AC/AB=3/5. So, the answer is D.

Table 8: A comparison of ViFT with other baseline LVLMs (part1).
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LLaVA-OneVision-7B:
Solution: Since angle C=90°, we have sinB=AC/AB=3/5. Therefore, the answer is D.

ViFT-7B:
To determine the value of sinB, we need to identify the sides of the triangle relative to angle B. The sine
of an angle in a right-angled triangle is defined as the ratio of the length of the side opposite the angle to
the length of the hypotenuse.
From the diagram: - Side AC (opposite to angle B) has a length of 4 units. - Side BC (adjacent to angle
B) has a length of 3 units. - Side AB (the hypotenuse) is not explicitly given but can be calculated using
the Pythagorean theorem if needed.
Using the Pythagorean theorem for triangle ABC:

AB2 = AC2 +BC2

AB2 = 42 + 32

AB2 = 16 + 9

AB2 = 25

AB = 5

Now, we can calculate sinB:

sinB =
opposite

hypotenuse
=

AC

AB
=

4

5

Therefore, the correct answer is C: 4
5

.

Table 8: A comparison of ViFT with other baseline LVLMs (part 1).
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Problem: Please first conduct reasoning, and then answer the question and provide the correct answer.
Find the surface area of the given cylinder. All measurements in the diagram are in mm.
Round your answer to two decimal places.
Ground Truth: 109603.88

LLaMA-3.2-Vision-11B:
**Step 1: Understand the problem**
The problem asks for the surface area of a cylinder with a height of 80 mm and a radius of 98 mm.
**Step 2: Identify the formula for the surface area of a cylinder**
The formula for the surface area of a cylinder is:

Surface Area = 2πr2 + 2πrh

where r is the radius and h is the height.
**Step 3: Plug in the values given in the problem** Given that the radius r = 98 mm and the height
h = 80 mm, we can substitute these values into the formula.
**Step 4: Calculate the surface area**

Surface Area = 2π(98)2 + 2π(98)(80)

Surface Area = 19208π + 15680π = 34888π ≈ 34888× 3.14159 ≈ 109541.31mm2

**Step 5: Round the answer to two decimal places** Rounded to two decimal places, the surface area is
approximately 109541.31 mm2.

InternLM-XComposer-2.5-7B:
To find the surface area of a cylinder, we need to calculate the area of the two circular bases and the
lateral surface area. The formula for the area of a circle is A = πr2, where A is the area and r is the
radius. First, let’s find the area of one base:

Abase = πr2 = π(98)2 = 9624.6mm2

Since there are two bases, we double the area of one base to get the total area of both bases:

Atotal bases = 2×Abase = 2× 9624.6 = 19249.2mm2

Next, we need to find the lateral surface area. The lateral surface area of a cylinder is given by the
formula A = 2πrh, where h is the height of the cylinder.

Alateral = 2πrh = 2π(98)(80) = 19200mm2

Finally, we add the areas of the bases and the lateral surface area to get the total surface area of the
cylinder:

Atotal = Atotal bases +Alateral = 19249.2 + 19200 = 38449.2mm2

Table 9: A comparison of ViFT with other baseline LVLMs (part 2).
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Qwen2-VL-7B:
The surface area of a cylinder is given by the formula 2πrh+ 2πr2, where r is the radius and h is the
height. Substituting the given values, we get 2π × 98× 80 + 2π × 982. Calculating this, we find the
surface area to be approximately 23,567.44 mm². Therefore, the answer is 23567.44.

LLaVA-OneVision-7B:
The surface area of a cylinder is given by the formula: 2πr(h+r), where r is the radius and h is the height.
Substituting the given values, we get: 2∗3.1416∗98∗(98+80) = 2∗3.1416∗98∗178 = 12210.4mm2

Therefore, the surface area of the cylinder is 12210.4mm2.

ViFT-7B:
To solve this problem, we need to analyze the given geometric configuration and use properties of
circles and angles.
Given:
- There is a circle with center A.
- Points B, C, D, and E lie on the circumference of the circle.
- Angle BAC and angle EAD sum up to 180 degrees.
### Analysis:
1. **Circle Properties**: Since A is the center of the circle, any line segment from A to a point on the
circumference (e.g., B, C, D, or E) is a radius of the circle.
2. **Angle Sum Property**: The sum of opposite angles in a cyclic quadrilateral is 180 degrees. This
means that if BAC and EAD are supplementary, they form a straight line when extended through the
circle.
### Steps to Solve:
To find the surface area of a cylinder, we use the formula:

A = 2πr(h+ r)

where: - A is the surface area, - r is the radius of the base, - h is the height of the cylinder.
Given: - Radius (r) = 98 mm, - Height (h) = 80 mm.
Substitute these values into the formula:

A = 2π(98)(80 + 98)

A = 2π(98)(178)

A = 2π × 17444

A = 34888π

Now, calculate the numerical value using π ≈ 3.14159:

A ≈ 34888× 3.14159

A ≈ 109678.472

Rounding to two decimal places:

A ≈ 109678.47

Therefore, the surface area of the cylinder is approximately 109678.47 square millimeters.

Table 9: A comparison of ViFT with other baseline LVLMs (part 2).
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Problem: Please first conduct reasoning, and then answer the question and provide the correct answer.
Three circles with centres A,B,C touch each other in pairs from the outside (see diagram). Their radii
are 3,2 and 1. How big is the area of the triangle ABC?
Ground Truth: 6

LLaMA-3.2-Vision-11B:
To find the area of triangle ABC, we can use the formula for the area of a triangle given its base and
height. The base of the triangle is the distance between points A and B, and the height is the distance
from point C to line AB.
The distance between points A and B is equal to the sum of their radii, which is 3 + 2 = 5. This is
because the circles touch each other in pairs from the outside, so the distance between their centers is
equal to the sum of their radii.
The distance from point C to line AB is equal to the radius of circle C, which is 1. This is because
point C is on the circumference of circle C, and the radius of a circle is the distance from its center to
any point on its circumference.
Now, we can use the formula for the area of a triangle:
Area = (base × height) / 2
Substituting the values we found earlier, we get:
Area = (5 × 1) / 2 = 5/2 = 2.5
Therefore, the area of triangle ABC is 2.5 square units.
*Answer*: 2.5

InternLM-XComposer-2.5-7B:
To find the area of triangle ABC, we can use Heron’s formula, which states that for a triangle with
sides of length a, b, and c, the area (A) is given by:

A =
√

s(s− a)(s− b)(s− c)

where s is the semi-perimeter of the triangle, defined as:

s =
a+ b+ c

2

In this case, the sides of the triangle are the distances between the centers of the circles. The distance
between the centers of circles with radii 3 and 2 is the sum of their radii, so it is 3+2 = 5. The distance
between the centers of circles with radii 2 and 1 is 2 + 1 = 3, and the distance between the centers of
circles with radii 3 and 1 is 3 + 1 = 4.
The semi-perimeter s of triangle ABC is therefore:

s =
5 + 3 + 4

2
=

12

2
= 6

Using Heron’s formula, the area A of triangle ABC is:

A =
√

6(6− 5)(6− 3)(6− 4) =
√
6 · 1 · 3 · 2 =

√
36 = 6

Therefore, the area of triangle ABC is 6 square units.

Table 10: A comparison of ViFT with other baseline LVLMs (part 3).
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Qwen2-VL-7B:
The lengths of the sides of triangle ABC are equal to the sums of the radii of the circles that
touch at those points. Therefore, the lengths of the sides of triangle ABC are 3+2=5, 2+1=3, and
3+1=4. The semi-perimeter of triangle ABC is (5+3+4)/2=6. Therefore, the area of triangle ABC is√

(6(6− 5)(6− 3)(6− 4)) = 3
√
5. Therefore, the answer is 3

√
5.

LLaVA-OneVision-7B:
The answer is 4.

ViFT-7B:
To find the area of triangle ABC, we need to determine the lengths of its sides and then use Heron’s
formula or another suitable method.
Given: - Circle A has a radius of 3 units. - Circle B has a radius of 2 units. - Circle C has a radius of 1
unit.
Since the circles touch each other externally, the distance between the centers of any two circles is equal
to the sum of their radii.
1. **Distance between centers A and B**:

AB = rA + rB = 3 + 2 = 5 units

2. **Distance between centers A and C**:

AC = rA + rC = 3 + 1 = 4 units

3. **Distance between centers B and C**:

BC = rB + rC = 2 + 1 = 3 units

Now, we have the side lengths of triangle ABC: - AB = 5 units - AC = 4 units - BC = 3 units
We can use Heron’s formula to calculate the area of triangle ABC. Heron’s formula states that the area
K of a triangle with sides of lengths a, b, and c is given by:

K =
√

s(s− a)(s− b)(s− c)

where s is the semi-perimeter of the triangle:

s =
a+ b+ c

2

For our triangle:

s =
5 + 4 + 3

2
=

12

2
= 6 units

Substituting the values into Heron’s formula:

K =
√

6(6− 5)(6− 4)(6− 3) =
√
6 · 1 · 2 · 3 =

√
36 = 6 square units

Therefore, the area of triangle ABC is:
6

Table 10: A comparison of ViFT with other baseline LVLMs (part 3).
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Problem: Subtract all small cyan cubes. Subtract all large yellow rubber cubes. How many objects are
left?
Ground Truth: 8

ViFT With Vision-Text Inputs
The image depicts a collection of various geometric shapes, including cylinders and cubes, arranged on
a flat surface. The objects vary in size, color, and material properties such as metallic or matte finishes.
Here is a detailed description of the objects present:
1. **Cylinders**: - There are five cylindrical objects in total.
- Two large metallic cylinders: one gray and one red.
- One medium-sized metallic cylinder: gold-colored.
- One small metallic cylinder: blue.
- One small matte cylinder: gray.
2. **Cubes**: - There are four cube-shaped objects.
- One large metallic cube: red.
- One large matte cube: gray.
- One small metallic cube: cyan.
- One small matte cube: cyan.
3. **Arrangement**: - The objects are scattered across the surface without any specific pattern.
- The large metallic cylinders (gray and red) are positioned towards the back left side.
- The medium-sized metallic cylinder (gold) is located near the center-left.
- The small metallic cylinder (blue) is placed towards the right side.
- The small matte cylinder (gray) is situated close to the small metallic cylinder (blue).
- The large metallic cube (red) is positioned towards the front right.
- The large matte cube (gray) is located behind the large metallic cube (red).
- The two small metallic cubes (cyan) are placed in the foreground, with one slightly to the left and the
other more centered.
- The two small matte cubes (cyan) are also in the foreground, with one slightly to the left and the other
more centered.

ViFT With Text-only Inputs:
To solve this problem, we need to know the initial number of small cyan cubes and large yellow rubber
cubes before any subtraction takes place. Since these values are not provided in the question, I will
create a hypothetical scenario to illustrate how you would solve this problem.
Let’s assume: - There are initially 10 small cyan cubes. - There are initially 5 large yellow rubber cubes.
- No other types of objects are mentioned.
Step 1: Subtract all small cyan cubes. - Initial count: 10 small cyan cubes. - After subtraction: 10 - 10 =
0 small cyan cubes.
Step 2: Subtract all large yellow rubber cubes. - Initial count: 5 large yellow rubber cubes. - After
subtraction: 5 - 5 = 0 large yellow rubber cubes.
Step 3: Calculate the total number of objects left. - Small cyan cubes left: 0 - Large yellow rubber cubes
left: 0 - Total objects left: 0 + 0 = 0
Therefore, the final value is 0.

Table 11: An example of ViFT with or without ability-fused inference (part 1).
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Problem: Is the number of big shiny cars in front of the red airliner greater than the number of big
purple road bikes? Think first, then answer.
Ground Truth: Yes

ViFT Without Ability-Fused Inference:
In the image, there is one big shiny car located to the right side of the red airliner. There are no big
purple road bikes present in the scene. Therefore, the number of big shiny cars (1) is not greater than
the number of big purple road bikes (0).
Answer: (B) No

ViFT With Ability-Fused Inference:
To solve this problem, let’s break it down step by step:
1. **Identify the objects**: We need to count the number of "big shiny cars" and "big purple road
bikes" in relation to the red airliner.
2. **Counting the big shiny cars**: - There is one big shiny car (a purple SUV) in front of the red
airliner.
3. **Counting the big purple road bikes**: - There are no big purple road bikes visible in the image.
4. **Comparison**: - The number of big shiny cars in front of the red airliner is 1. - The number of big
purple road bikes is 0.
5. **Conclusion**: - Since 1 is greater than 0, the statement "Is the number of big shiny cars in front of
the red airliner greater than the number of big purple road bikes?" is true.
Therefore, the correct answer is (A) Yes.

Table 12: An example of ViFT with or without ability-fused inference (part 2).
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Problem: What material appears to make up the creature? Think first, then answer.

ViFT Without Ability-Fused Inference:
The image presents a 3D rendering of a creature that is a fusion of a camel and a flame. The creature
stands on four legs, each ending in black hooves. Its body is predominantly red, with yellow flames
dancing across its surface, giving it an appearance reminiscent of a living fire.
The creature’s head is adorned with a pair of glasses, adding a touch of whimsy to its fiery form. The
background is a simple gray gradient, which serves to highlight the vibrant colors of the creature. The
creature is positioned centrally in the image, drawing the viewer’s attention immediately to its unique
blend of elements.
There are no discernible texts or other objects in the image. The relative position of the creature to the
background suggests it is standing still, with no indication of movement or action. The image does not
provide any additional context or narrative, leaving the interpretation open to the viewer.

ViFT With Ability-Fused Inference:
To determine what material appears to make up the creature in the image, let’s analyze its characteristics:
1. **Color and Texture**: The creature has a vibrant red body with yellow and orange flames emanating
from it. This suggests that the material might be something that glows or emits light, possibly indicating
heat or energy.
2. **Shape and Structure**: The creature resembles an animal, specifically a camel, but with exagger-
ated features like large eyes and a flame-like appearance. Its legs are sturdy and end in black hooves.
3. **Material Properties**: - **Red Body**: The red color could indicate a material like clay, plastic,
or even a painted surface. - **Flames**: The presence of flames suggests that the material could be
designed to mimic fire or glow-in-the-dark properties. - **Sturdy Legs**: The legs appear solid and
robust, which might suggest a material like metal or hard plastic.
4. **Contextual Clues**: Given the fantastical nature of the creature (a flaming camel), it is likely a
representation rather than a real-life object. This implies that the material could be anything used for
artistic purposes, such as clay, plastic, or even digital rendering.
5. **Lighting and Shadows**: The way the light interacts with the creature suggests a smooth, possibly
glossy surface, which could be indicative of materials like plastic or polished stone.
Considering these points, the most plausible material would be a combination of clay or plastic for the
body, with additional elements like paint or lighting effects to create the flame effect. The sturdy legs
could be made of a different material, perhaps metal or hard plastic, to provide stability.
In conclusion, while the exact material cannot be definitively determined without further information,
the creature seems to be crafted from a combination of clay/plastic for the body and possibly metal or
hard plastic for the legs, with added visual effects to simulate flames.

Table 13: An example of ViFT with or without ability-fused inference (part 3).
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Problem: What is this function most likely be? Think first, then answer.
Ground Truth: B. a trigonometric function

α = 0.8:
However, without the actual graph or additional context, I cannot provide a specific identification of the
function. The options given (polynomial, trigonometric, exponential, or logarithmic) suggest different
types of functions that could fit the description. If you have more details about the graph or the function
itself, please provide them so I can give a more accurate identification.

α = 0.9:
To determine which type of function the given graph represents, let’s analyze its characteristics:
1. **Shape**: The graph shows a smooth, periodic wave-like pattern with peaks and troughs that repeat
at regular intervals.
2. **Amplitude**: The peaks and troughs appear to reach up to 1 unit above and below the x-axis.
3. **Periodicity**: The pattern repeats every 5 units along the x-axis.
Given these observations, we can infer the following:
- **Polynomial Functions**: These typically have a more complex shape with multiple turning points
(peaks and troughs), but they do not exhibit the repetitive nature seen in the graph.
- **Trigonometric Functions**: These functions, such as sine or cosine, are known for their periodic
behavior, which matches the observed pattern in the graph.
- **Exponential Functions**: These functions grow or decay exponentially and do not form a repeating
pattern like the one shown.
- **Logarithmic Functions**: These functions also do not exhibit the periodicity seen in the graph.
Based on the analysis, the most likely function represented by the graph is a trigonometric function.
Therefore, the correct answer is (B) a trigonometric function.

α = 1.0:
To determine what type of function the given graph represents, let’s analyze its characteristics:
1. **Shape**: The graph shows a smooth, periodic wave-like pattern with peaks and troughs that repeat
at regular intervals.
2. **Amplitude**: The peaks and troughs appear to reach approximately ±1 on the y-axis.
3. **Periodicity**: The pattern repeats every 5 units along the x-axis, indicating a period of 5.
Given these observations, we can infer that the function is likely a sine or cosine function, which are
fundamental trigonometric functions known for their wave-like behavior.
- **Polynomial Functions**: These typically have a smooth curve but do not exhibit the repetitive nature
seen in the graph.
- **Exponential Functions**: These usually show rapid growth or decay and do not form a repeating
pattern.
- **Logarithmic Functions**: These also do not exhibit the periodicity observed in the graph.
Therefore, based on the shape and periodic nature of the graph, the most likely function is a trigonometric
function.
Answer: (B) a trigonometric function

Table 14: An example of ViFT with different α for ability fusion.
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α = 1.1:
The given graph depicts a periodic oscillation with a sinusoidal pattern. The function appears to be a
sine or cosine wave, which are fundamental trigonometric functions. These functions are characterized
by their smooth, repetitive curves that rise and fall in a regular manner.
To determine the specific type of trigonometric function, we can analyze the shape and properties of the
curve:
1. **Periodicity**: The graph shows a repeating pattern every 5 units along the x-axis. This indicates
that the period of the function is 5 units.
2. **Amplitude**: The maximum value of the function is 1, and it reaches this peak twice within each
period (once at the top and once at the bottom).
3. **Shape**: The curve starts at zero, rises to its maximum positive value, then decreases back to zero,
continues to its minimum negative value, and finally returns to zero before starting another cycle.
Given these characteristics, the function is best described as a trigonometric function, specifically a sine
or cosine function. Since the graph starts at the origin and reaches its first peak at x = 5, it suggests
that the function could be a sine function shifted horizontally.
Therefore, the most likely function represented in the graph is a trigonometric function.
Answer: (B)

α = 1.2:
The given graph depicts a periodic oscillation with a sinusoidal pattern. The function appears to be a
sine or cosine wave, which are fundamental trigonometric functions. These functions are characterized
by their smooth, repetitive curves that rise and fall in a regular manner.
To determine the specific type of trigonometric function, we can analyze the shape and properties of the
curve:
1. **Periodicity**: The graph shows a repeating pattern every 5 units along the x-axis. This indicates
that the period of the function is 5 units.
2. **Amplitude**: The maximum value of the function is 1, and it reaches this peak twice within each
period (once at the top and once at the bottom).
3. **Shape**: The curve starts at zero, rises to its maximum positive value, then decreases back to zero,
continues to its minimum negative value, and finally returns to zero before starting another cycle.
Given these characteristics, the function is best described as a trigonometric function, specifically a sine
or cosine function. Since the graph starts at the origin and reaches its first peak at x = 5, it suggests
that the function could be a sine function shifted horizontally.
Therefore, the most likely function represented in the graph is a trigonometric function.
Answer: (B)

Table 14: An example of ViFT with different α for ability fusion.
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Problem: Move the ruler to measure the length of the line to the nearest centimeter. How long is the
line? Think first, then answer.
Ground Truth: 7

β = 0:
The image shows a ruler with measurements in centimeters, ranging from 0 to 10 cm. There is a black
line above the ruler that spans from approximately 2 cm to just past the 6 cm mark. Therefore, the
length of the line is about 5 centimeters.

β = 0.1:
To determine the length of the line using the ruler provided, we need to follow these steps:
1. **Identify the Scale**: The ruler has markings from 0 cm to 10 cm.
2. **Align the Line with the Ruler**: Place one end of the line at the 0 cm mark on the ruler.
3. **Measure the Length**: Extend the line along the ruler until it reaches the other end.
From the image, the line starts at the 0 cm mark and extends to just past the 7 cm mark but not reaching
the 8 cm mark. Therefore, the line measures approximately 7 centimeters.
**Answer:** The line is about 7 centimeters long.

β = 0.2:
To determine the length of the line using the ruler provided, we need to follow these steps:
1. **Identify the Scale**: The ruler has markings from 0 cm to 10 cm.
2. **Align the Line**: Place the ruler such that one end of the line aligns with the 0 cm mark on the
ruler.
3. **Measure the Length**: Extend the ruler along the line until it reaches the other end of the line.
Given the hint to provide an integer answer, let’s assume the line extends to just past the 7 cm mark but
not reaching 8 cm. Therefore, the length of the line would be approximately 7 centimeters.
**Answer:** 7

β = 0.3:
To determine the length of the line using the ruler provided, we need to follow these steps:
1. **Identify the Scale**: The ruler has markings from 0 cm to 10 cm.
2. **Align the Line**: Place the ruler such that one end of the line aligns with the 0 cm mark on the
ruler.
3. **Measure the Length**: Extend the ruler along the line until it reaches the other end of the line.
Given the hint to provide an integer answer, let’s assume the line extends to just past the 7 cm mark but
not reaching 8 cm. Therefore, the length of the line would be approximately 7 centimeters.
**Answer:** 7

β = 0.4:
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

Table 15: An example of ViFT with different β for ability fusion.
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