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Abstract

Therapeutic failure in cancer often arises from Darwinian selection for drug resis-
tance. We introduce a hierarchical ecological control framework that reshapes the
evolutionary fitness landscape on a slow timescale (microbiome modulation) to
render the fast tumor–immune–drug dynamics curative. We prove existence and
uniqueness of a Markov-perfect Nash equilibrium for the LQ fast game and formal-
ize a conservative robust immune-influx threshold srobcrit,max≤ d

na. All nonlinear
results are stated relative to srobcrit,max. Maintaining s(M)≥srobcrit,max + δ renders
the tumor-free state globally exponentially stable with rate λ = min{nδ

2d ,
d−gmax

2 }
and explicit gain bounds. Robustness is established via: (i) spatial sufficiency
using domain eigenvalues precluding sanctuaries, (ii) global asymptotic stability
in probability under stochastic perturbations when Lz <

√
λ/K (and almost-sure

convergence under additional recurrence conditions), (iii) quantitative tolerance to
clonal heterogeneity when ∆a +∆κud,max < n

d δ, (iv) delay and observer robust-
ness under precise small-gain and observability conditions, and (v) an ϵ-accurate
Fenichel decomposition of the two-timescale game.
Using TCGA-derived priors, AI-synthesized policies enforce the stability margin
along trajectories and achieve high efficacy with lower cytotoxic exposure. In
Skin Cutaneous Melanoma (SKCM) the controller achieves 89% eradication (95%
CI ±6), maintains time-above-threshold at 92% (±5), and reduces peak tumor
burden by 57%; first response occurs in 28–35 days with a lower dose index. In
colorectal cancer (CRC) the controller achieves 76% eradication (±7) with 88%
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time-above-threshold (±6). Across structured perturbations (5-clone heterogeneity,
14-day delay, stochastic noise, partial observability), individual eradication rates
exceed 80% and remain 73% under combined stressors, aligning with the theory.
These results establish ecological landscape engineering as a principled, general
strategy for mitigating resistance in oncology.

1 Introduction

Therapeutic failure in cancer is driven by Darwinian selection for drug resistance: clinical and
molecular studies document rapid emergence of resistant clones under treatment across indications
and modalities [1–6]. Approaches that model tumor–drug interactions in isolation neglect the
ecological constraints and frequency-dependent payoffs that shape evolutionary trajectories [7–10].
Moreover, a standard optimal-control framing that treats evolution as an exogenous disturbance
cannot capture the adversarial, goal-directed nature of selection; a game-theoretic formulation is
essential [11–13].

Concurrently, the host microbiome substantially modulates anti-tumor immunity and immunotherapy
efficacy: gut composition stratifies response to PD-1 blockade and fecal microbiota transplantation
can overcome resistance [14–18]. Ecological mechanisms—network structure, competition, and
keystone species—govern these functional effects [19–21]. Critically, microbiome adaptation occurs
over weeks, whereas tumor–immune–drug dynamics evolve over days, yielding a singularly perturbed,
multi-timescale structure amenable to hierarchical control [22–26].

We therefore cast treatment as a hierarchical Stackelberg differential game [27, 11]: slow microbiome
modulation reshapes the evolutionary fitness landscape that governs fast tumor–immune–drug dynam-
ics. The central theoretical insight is that the slow controller need not track fast states; it must maintain
an ecological stability margin beyond a bifurcation threshold so that the tumor-free equilibrium is
the unique, globally stable state. This is established by analyzing the nonlinear fast subsystem via
bifurcation theory [28–30] and applying geometric singular perturbation theory [31] to decompose the
two-timescale game into nested optimal-control subproblems solvable via Hamilton–Jacobi–Bellman
methods [32, 33]. Since states represent populations, positivity and monotonicity structure further
constrain dynamics [34, 35].

Our LQ core proves: (i) existence and uniqueness of a Markov-perfect Nash equilibrium with lin-
ear strategies for the fast game (Theorem 2); (ii) global Lyapunov/ISS stability of the tumor-free
equilibrium above a conservative, Nash-consistent immune-influx threshold (Theorem 6); (iii) an
asymptotic Fenichel decomposition under explicit hypotheses (Theorem 7); and (iv) robustness propo-
sitions, including absence of subcritical behavior and quantitative tolerance to clonal heterogeneity
(Theorems 12 and 8).

Computationally, controllers synthesized from simplified models eradicate tumors despite structural
uncertainty, stochastic perturbations, and partial observability, providing a rigorous foundation for
ecological landscape engineering in oncology (see also [26]).

The remainder of this paper is organized as follows. Section II presents the multi-scale can-
cer–microbiome model. Section III develops the hierarchical decomposition and main theorems on
stability and control. Section IV validates the framework on SKCM and CRC cohorts. Section V
concludes with perspectives on future work.

2 Hierarchical eco-evolutionary game formulation

We formulate the therapeutic problem as a hierarchical system characterized by two distinct timescales,
as motivated by the underlying biological processes. The fast timescale (hours to days) governs the
interactions among tumor cells, immune cells, and cytotoxic agents. The slow timescale (weeks to
months) characterizes the dynamics of the host microbiome composition in response to therapeutic
interventions [17]. Throughout this paper, we work under the standing assumptions detailed in
Appendix C.
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2.1 Preliminary definitions

We briefly define key game-theoretic and control-theoretic concepts used throughout; full mathemati-
cal details are in Appendix E.

Differential game. A differential game models strategic interaction among multiple decision-makers
(players) whose actions jointly influence a continuous-time dynamical system. Each player selects a
control strategy to optimize their own objective function, while the system state evolves according to
coupled ordinary differential equations [11].

Nash equilibrium. A strategy profile (u∗
1, . . . , u

∗
N ) is a Nash equilibrium if no player can reduce

their cost by unilaterally deviating: for each player i, Ji(u∗
i , u

∗
−i) ≤ Ji(ui, u

∗
−i) for all admissible

ui, where u∗
−i denotes the equilibrium strategies of all players except i. In cancer treatment, the

“players” are the clinician (choosing drug dosage to minimize tumor burden and toxicity) and the
tumor population (evolving resistance phenotypes through Darwinian selection, modeled as cost
minimization).

Markov-perfect equilibrium. A Nash equilibrium is Markov-perfect if each player’s strategy
depends only on the current state (not on history), yielding time-consistent, state-feedback policies.
This is the natural solution concept for feedback control [11, 36].

Linear-Quadratic (LQ) game. An LQ differential game is one where the dynamics are linear
in states and controls, and each player’s cost functional is quadratic. For such games, equilibrium
strategies are linear functions of the state, and are characterized by coupled algebraic Riccati equations
[11, 36]. Our “LQ fast game” refers to a local linearization of the tumor–immune dynamics around a
reference point, enabling tractable equilibrium computation while the nonlinear analysis uses this as
a conservative surrogate (see Appendix F.6).

Stackelberg (hierarchical) game. In a Stackelberg game, a “leader” commits to a strategy first,
and “followers” respond optimally. Here, the slow microbiome controller acts as leader, shaping the
fitness landscape; the fast tumor–drug game then reaches equilibrium given this landscape [27, 11].

2.2 Standing assumptions (summary)

For convenience, we summarize the key assumptions used throughout and proved/justified in the
Appendix:

• Regularity and positivity: Vector fields are locally Lipschitz with linear growth, controls
are bounded, and the state remains in the positive orthant (Appendix 1–2). Verification of
these conditions is provided in Appendix I.1.

• Timescale separation: 0 < ϵ ≪ 1 within an explicit admissible range (Appendix 3).
• Fast-game solvability: Surrogate LQ linearization around (C̄T > 0, s(M)/d) with stabi-

lizing Riccati solutions; input channels vanish at zfree and are interpreted conservatively
(Theorem 2; see Appendix F.6).

• Invariance and bounds: Explicit invariant bounds for (CT , CI) and a uniform condition
d > gmax (Lemma 7; see Appendix H for supporting lemmas and proofs).

• Diffusion regularity (stochastic case): Local Lipschitz and growth conditions, with mul-
tiplicative noise vanishing at zfree (Assumption 6). Full stochastic system details are in
Appendix F.14.

First, the existence and uniqueness of a Nash equilibrium for the fast-timescale game is established
(Theorem 2). Then, we prove the local exponential stability of this equilibrium, a key prerequisite
for singular perturbation analysis (Theorem 3). With these foundational results in place, we apply
Fenichel theory to formally decompose the full system into its slow and fast components, providing
an explicit characterization of the slow manifold (Theorem 7). Finally, we perform a comprehensive
bifurcation and stability analysis of the complete system, and identify the critical thresholds that
govern therapeutic success or failure (Theorems 5 and 6).

The tumor’s resistance level, p(t), is modeled as a continuous variable representing the population-
averaged resistance. This powerful abstraction, which is standard in evolutionary game theory,
enables a tractable optimal control formulation. A detailed justification for this modeling choice is
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provided in Appendix 5. We will later demonstrate (Theorems 8 and 9) that controllers synthesized
using this continuous model are robustly effective for more realistic, discrete clonal systems.

2.3 Fast-timescale dynamics: tumor-immune interactions

The fast subsystem state vector is defined as z = [CT , CI ]
T , where CT and CI denote the population

densities of tumor cells and tumor-infiltrating effector immune cells, respectively. The dynamics are
governed by a modified Kuznetsov model [30], extended to incorporate therapeutic interventions and
resistance mechanisms:

ĊT = aCT (1− bCT )︸ ︷︷ ︸
logistic growth

− nCTCI︸ ︷︷ ︸
immune predation

− κ(p)udCT︸ ︷︷ ︸
drug-induced death

ĊI = s(M)︸ ︷︷ ︸
immune recruitment

− dCI︸︷︷︸
natural death

+
rCTCI

h+ CT︸ ︷︷ ︸
stimulation

−mCTCI︸ ︷︷ ︸
inactivation

(1)

The parameters a, b, n, d, r, h,m represent fixed biological constants (see Appendix J.2 for values
and sources). The system dynamics are influenced by two control inputs: the drug dosage ud(t)
administered by the clinician, and the resistance phenotype p(t) expressed by the tumor population.

For controller synthesis, we model resistance as a continuous variable p(t) representing the mean
phenotypic state of the tumor population. This abstraction reflects the non-genetic adaptation
mechanisms (including epigenetic and metabolic plasticity), and enables tractable formulation of
the optimal control problem. We later validate the validity of this approach through comparison
with a discrete clonal selection model (Section V-B). The efficacy function κ(p) characterizes the
drug’s effectiveness as a decreasing function of resistance. The microbiome state M influences the
fast dynamics through modulation of immune cell recruitment, quantified by s(M). The specific
functional forms for κ(p) and s(M) are justified in Appendix I.3.

2.4 Slow-timescale dynamics: microbiome modulation

The slow subsystem state is represented by the microbiome composition vector M. The dynamics
follow a controlled generalized Lotka-Volterra model, which is the standard framework for microbial
population dynamics [19]:

Ṁ = diag(M)(g +AM) + ϵBmum (2)

where g denotes the vector of intrinsic growth rates, A represents the microbial interaction matrix,
Bm is a constant input matrix determining which species are affected by the control um, and um is
the microbiome-based control input.

The standing stability/controllability assumption for the microbiome is stated in Appendix 4.
Theorem 1 (Local reachability and viability of microbiome states). Let Assumption 4 hold and let
Msafe ⊂ Rk

+ be a compact, positively invariant set for (2). Then:

1. (Local reachability) For any equilibrium M∗ ∈ int(Msafe) with M∗ > 0, there exists a
neighborhood N (M∗) such that for all M0,Mf ∈ N (M∗) ∩ Rk

+ there exists a finite time
Tm and a measurable, bounded control um with M(Tm) = Mf .

2. (Viability) For any M0 ∈ Msafe there exists a measurable, bounded control um such that
the corresponding solution satisfies M(t) ∈ Msafe for all t ≥ 0.

See Appendix F.1 for a rigorous proof based on local controllability of the linearization and viability
theory for positive systems.

2.5 Practical identifiability and dimensionality reduction

A key practical challenge is identifying the high-dimensional microbiome interaction matrix A.
We summarize an effective low-dimensional reduction that preserves controllability of s(M), with
full statement and proof in Appendix F.3; structural assumptions and justification are discussed in
Appendix I.
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2.6 The Stackelberg game structure

We formalize drug-tumor interactions as a Stackelberg game with two-layer hierarchy. For fixed
microbiome state M, the clinician (controlling ud) and tumor population (controlling resistance p)
engage in a non-cooperative Nash game. The clinician minimizes tumor burden and treatment cost:

Jd(ud, p;M) =

∫ ∞

0

e−ρτ
[
qcC

2
T (τ) + rdu

2
d(τ)

]
dτ (3)

where qcC
2
T penalizes tumor burden quadratically (reflecting clinical urgency), and rdu

2
d models

toxicity cost. The tumor maximizes fitness while minimizing metabolic cost of resistance:

Jp(ud, p;M) =

∫ ∞

0

e−ρτ
[
−qtCT (τ) + rpp

2(τ)
]
dτ (4)

This formulation captures the fundamental evolutionary trade-off: resistance provides survival
advantage but incurs fitness cost. Detailed convexity/coercivity assumptions ensuring well-posedness
are in Appendix 5.
Theorem 2 (Unique State-Feedback Nash Equilibrium (Infinite-Horizon LQ fast game; surrogate
local model)). Assume the fast subsystem is locally linearized about a nominal operating point
zref (M) = (C̄T , C̄I) with C̄T > 0 arbitrarily small and C̄I = s(M)/d, for each fixed M. Suppose
this linearization is affine in the controls and the players’ stage costs are quadratic (definitions in
Appendix). If the standard stabilizability/detectability conditions for general-sum LQ differential
games hold and the associated coupled algebraic Riccati equations admit a stabilizing solution, then
there exists a unique Markov-perfect Nash equilibrium in linear state-feedback strategies

(u⋆
d, p

⋆)(z) = (−Kd z, Kp z),

with feedback gains (Kd,Kp) determined by the Riccati solution. The equilibrium is locally exponen-
tially stabilizing for the surrogate linearized fast dynamics uniformly over M ∈ Msafe. Moreover,
as C̄T → 0, these feedback strategies remain continuous and satisfy u⋆

d(z) → 0, p⋆(z) → 0 as
z → zfree.

See Appendix F.4 for precise conditions and references.

Details on vanishing input channels at zfree and the surrogate interpretation of the LQ game are
provided in Appendix F.6.
Theorem 3 (Stability of the Fast-Subsystem Equilibrium). Let (u⋆

d, p
⋆) be the unique Nash

equilibrium strategies from Theorem 2. The closed-loop fast subsystem, given by ż =
ff (z, u

⋆
d(z;M), p⋆(z;M);M), admits a unique equilibrium point zeq(M) for each M ∈ Msafe.

This equilibrium is locally exponentially stable, uniformly in M.

See Appendix F.5 for the proof.
Theorem 4 (Robustness to Control Constraints). The hierarchical decomposition (Theorem 7)
remains valid under arbitrary compact control constraints um ∈ Um provided:

1. The set Um contains the origin in its interior

2. The reachable set from any M0 under constraints intersects Msafe

Moreover, if Um is convex, the slow optimal control problem remains convex.

See Appendix F.7 for the proof.

3 Hierarchical decomposition and control

The primary theoretical challenge involves the decomposition of the two-timescale differential game.
This requires a rigorous stability analysis of the fast subsystem, which builds the mathematical
foundation for our hierarchical control framework.

We establish uniform boundedness of the fast states in Appendix I.2, and provide global upper bounds
that depend solely on biological parameters.
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3.1 Stability engineering via slow control

The validity of singular perturbation theory hinges on the fast subsystem converging to a unique,
stable equilibrium for a given slow state M. The nonlinear dynamics of Eq. (1) can, in general, admit
multiple equilibria. Our key insight is that the slow control um can be used to modulate the parameter
s(M) and induce bifurcations in the fast subsystem, effectively reshaping its stability landscape.

For any fixed Nash policy pair (u∗
d, p

∗), the closed-loop fast dynamics are ż = f̄f (z;M). The
equilibria are the solutions to f̄f (z;M) = 0.
Theorem 5 (Bifurcation of Fast Subsystem Equilibria). Consider the closed-loop fast subsystem with
Nash equilibrium strategies from Theorem 2. Define the critical immune influx threshold function:

scrit(z) =
d

n

(
a− κ(p∗(z))u∗

d(z)
)

(5)

To obtain a threshold valid for the nonlinear game, maximize over all admissible equilibrium
selections (Appendix I.4). Define the robust global threshold

srobcrit,max := sup
z∈D

sup
(ud,p)∈E(z)

d

n

(
a− κ(p)ud

)
(6)

≤ d

n
a =: scrit,max. (7)

Under the LQ surrogate, Lemma 4 yields u∗
d, p

∗ → 0 as z → zfree, so srobcrit,max ≤ scrit,max; we
employ srobcrit,max in all nonlinear theorems. Then:

• If s(M) < srobcrit,max, multiple equilibria (including tumor-present states) may exist

• If s(M) > srobcrit,max, the tumor-free state zfree = [0, s(M)/d]T is the unique equilibrium
in D (Appendix Theorem 10)

• At s(M) = srobcrit,max, a transcritical bifurcation occurs

See Appendix F.8 for the proof.

This transcritical bifurcation provides the primary control mechanism for our hierarchical strategy.
By driving s(M) above the threshold scrit,max, the slow controller can eliminate all stable tumor-
present equilibria. The following theorem makes this rigorous by proving that for any value of s(M)
maintained uniformly above this threshold, the tumor-free state is not just stable, but the unique
and globally exponentially stable equilibrium of the fast subsystem. Small nonlinear perturbations
preserve the threshold ordering; robust thresholds are formalized in Appendix I.4 (Proposition 8,
Eq. (48)).
Theorem 6 (Global Exponential Stability of the Tumor-Free Equilibrium). Suppose the microbiome
state satisfies the uniform margin condition

s(M) ≥ srobcrit,max + δ, for some δ > 0. (8)

Assume further that d > gmax as defined in Lemma 7. Then for every fixed Nash pair (u⋆
d, p

⋆) the
equilibrium zfree = (0, C⋆

I ) with C⋆
I = s(M)/d is globally exponentially stable in D. Specifically,

every trajectory satisfies:

∥z(t)− zfree∥ ≤ K e−λt ∥z(0)− zfree∥, ∀t ≥ 0

with explicit constants:

λ = min

{
n δ

2d
,
d− gmax

2

}
, K =

√
max{1, β}
min{ 1

2 ,
β
2 }

(9)

for any choice of β ≥ βmin where

βmin :=
(r +mh)2

2(d− gmax)

1

min{1, h−2}
+ 1.

See Appendix F.9 for the complete proof with explicit bounds.
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3.2 Asymptotic decomposition via Fenichel Theory

Theorem 7 (Hierarchical Decomposition via Fenichel Theory). Under Assumptions 1–3 there exists
ϵ0 > 0 such that for all ϵ ∈ (0, ϵ0) the full system admits an ϵ-invariant slow manifold Mϵ with
dist(Mϵ, {(zeq(M),M)}) ≤ Cϵ, trajectories track the reduced slow dynamics up to O(ϵ) on finite
horizons, and the slow-stage objective satisfies Jϵ

s = J̄s + Cϵ+O(ϵ2). Full constants and proof are
in Appendix F.11.

4 Robustness analysis and structural uncertainty

A critical concern is the robustness of this framework to structural model uncertainty, not merely
parametric variations. We address this comprehensively.

4.1 Robustness to discrete clonal evolution

The controller design assumes continuous phenotypic adaptation, yet real tumors exhibit discrete
clonal heterogeneity. We establish robustness by analyzing performance on the structurally different
model:

Ċi = aiCi

1− b

N∑
j=1

Cj

− nCiCI − κiudCi, i = 1, . . . , N (10)

ĊI = s(M)− dCI +
rCI

∑
j Cj

h+
∑

j Cj
−mCI

∑
j

Cj (11)

where resistant clones have growth cost (ar < as) but reduced drug sensitivity (κr < κs). Remark-
ably, the ecological priming phase enables immune-mediated suppression of all clones, containing
resistance while eliminating sensitive populations. This demonstrates fundamental robustness tran-
scending model specifics.
Theorem 8 (Quantitative Robustness to Clonal Heterogeneity). If clonal parameter variations satisfy
∆a+∆κud,max < n

d δ where ∆a := maxi |ai−a| and ∆κ := maxi |κi−κ0|, then all clones decay
exponentially with rate λ ≥ n(δ−δcrit)

2d .

Robustness to actuation delay. A small-gain condition ensures stability under an immune influx
delay τ provided the precise ISS gain satisfies γfLs < 1 and λ τ < π/2, with an initial priming
phase maintaining M ∈ Msafe; see Proposition 7 and Appendix H.4. Spatial sufficiency conditions
precluding sanctuaries are given by Appendix F.18 (Proposition 1). Stochastic robustness holds
in probability (Theorem 9); almost-sure convergence requires additional recurrence conditions
(Appendix).

5 Stochastic robustness and long-term validity

5.1 Stochastic perturbations

Real biological systems exhibit intrinsic noise. We extend to stochastic differential equations:

dzt = ff (zt, u
∗
d(zt), p

∗(zt);Mt)dt+ σz(zt,Mt)dWz(t) (12)
ϵdMt = fs(Mt,um(t))dt+ ϵσM (Mt)dWM (t) (13)

where Wz,WM are independent Brownian motions. Crucially, we require σz(zfree,M) = 0 (noise
vanishes at tumor-free state). This ensures:
Theorem 9 (Stochastic stability in probability; a.s. under added conditions). If the noise intensity sat-
isfies Lz < Lcrit :=

√
λ/K where K bounds the Lyapunov function’s Hessian, then the tumor-free

equilibrium is globally asymptotically stable in probability. Under additional non-explosion, positive
recurrence (Foster–Lyapunov) and vanishing diffusion at equilibrium, almost-sure convergence holds
(Appendix Theorem 14 and Corollary 1).
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5.2 Clinical time horizons

Validity over multi-month horizons requires M(t) to remain in Msafe. The sufficient condition
Tclinical < dsafe/(∥M(0)−M∗∥ϵλmax(A)) bounds therapeutic duration by initial conditions and
slow drift rate.

6 AI-enabled synthesis

We summarize the AI-enabled policy discovery and empirical low-rank control structure; full details
are in Appendix F.19. In high-dimensional microbiome models, PINN-synthesized policies exhibit a
three-tier structure (guild-level orchestration, keystone-species modulation, diversity maintenance)
that achieves near-optimal objectives with a drastically reduced effective dimension.

7 Computational solution for validation

We solve the coupled HJB-Isaacs equations using Physics-Informed Neural Networks with loss
function:

L(θ) = LHJB + LBC + Lreg + λmarginLmargin (14)
where LHJB penalizes the HJB residual, LBC enforces boundary conditions, and crucially:

Lmargin = EM

[
max{0, srobcrit,max + δtgt − s(M)}2

]
(15)

explicitly enforces the theoretical constraint. This synthesis achieves residuals ≲ 10−3 while
guaranteeing s(M) ≥ srobcrit,max + δtgt along trajectories. Complete error bounds and complexity
analysis in Appendix J.1.

8 Computational validation

Model setup, parameters, and robustness scenarios are detailed in the Appendix (Table 4). We
instrument margin tracking s(M)−srobcrit,max and compare against baselines; stress tests include clonal
heterogeneity, actuation delays, stochasticity, and partial observation with EKF (see Supplemental
Figures in Appendix O). Code and data availability information is provided in Appendix M.

8.1 Empirical results: SKCM and CRC

We validate the framework across Skin Cutaneous Melanoma (SKCM) and colorectal cancer (CRC;
COAD/READ) cohorts using TCGA-derived parameter priors with microbiome-driven s(M) modu-
lation. We report eradication rate at 365 days; minimum realized margin mint

(
s(M(t))−srobcrit,max

)
;

time fraction above threshold; eradication time; adverse dose-load index
∫ 365

0
u2
d dt; peak tumor

burden; and time to first response.

Table 1: Comprehensive outcomes on SKCM and CRC under hierarchical control vs. baselines.
Mean± 95% CI over 100 runs.

Cohort Strategy Erad.% Margin Margin Time> Terad Peak Tresp Dose
min std scrit% (days) burden (days) index

SKCM Hierarchical 89 ± 6 0.12 ± 0.03 0.018 92 ± 5 142 ± 18 1.24 ± 0.15 28 ± 5 0.41 ± 0.05
SKCM Adaptive-only 32 ± 9 −0.04 ± 0.02 0.041 41 ± 10 > 365 2.87 ± 0.32 45 ± 8 0.57 ± 0.06
SKCM MTD 3 ± 3 −0.08 ± 0.02 0.053 19 ± 7 > 365 3.41 ± 0.28 18 ± 3 0.98 ± 0.04
CRC Hierarchical 76 ± 7 0.09 ± 0.02 0.021 88 ± 6 169 ± 21 1.46 ± 0.18 35 ± 6 0.49 ± 0.06
CRC Adaptive-only 27 ± 8 −0.03 ± 0.01 0.038 38 ± 9 > 365 3.12 ± 0.35 52 ± 9 0.62 ± 0.07
CRC MTD 5 ± 4 −0.07 ± 0.02 0.049 22 ± 6 > 365 3.68 ± 0.31 21 ± 4 1.04 ± 0.05

8.2 Robustness validation across structural perturbations

To establish clinical relevance, we systematically test robustness under four critical scenarios: clonal
heterogeneity with five discrete clones (structural model mismatch); a 14-day actuation delay in
immune influx (a lag in applying microbiome-induced changes to s(M)); stochastic perturbations in
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the fast subsystem dynamics (σ = 0.1); and partial observability with an Extended Kalman Filter
(EKF) observer. These stressors probe structural mismatch, temporal lag, noise resilience, and sensing
limitations, respectively.

Table 2: Robustness of hierarchical control under structural perturbations (100 Monte Carlo runs per
scenario).

Perturbation Hierarchical Adaptive MTD Theory
Erad.% Erad.% Erad.% Prediction

Baseline (no perturbation) 89 ± 6 32 ± 9 3 ± 3 –
5-clone heterogeneity 84 ± 7 18 ± 7 0 ± 0 λ ≥ 0.08
14-day actuation delay 81 ± 8 23 ± 8 2 ± 2 λτ < π/2
Stochastic noise (σ = 0.1) 86 ± 6 28 ± 9 4 ± 3 Lz < 0.45
Partial observability (EKF) 87 ± 7 25 ± 8 3 ± 3 Sep. principle
Combined perturbations 73 ± 9 12 ± 6 0 ± 0 Composite bounds

The hierarchical controller achieves a strictly positive ecological margin and significantly higher
eradication rates while reducing toxicity proxy, consistent with Theorem 6 and the robust threshold
ordering.

We make the following key conclusions: Maintaining s(M)>srobcrit,max (Theorem 6) is sufficient
for eradication; positive ecological margins (std. 0.018–0.021) align with high eradication (76–89%),
whereas negative margins (Adaptive-only, MTD) fail despite higher drug use—establishing ecological
feasibility, not dose, as the primary determinant. Hierarchical control reduces dose index by 21–28%
while increasing the stability margin; once primed above threshold, drug acts as an accelerator
(Fenichel decomposition). Time-above-threshold (92% SKCM, 88% CRC) is a sufficient statistic
and is enforced in our learning objective (Section 8). Priming is necessary: SKCM benefits from
higher median a and slightly larger n; ablations removing priming collapse the margin and reproduce
Adaptive-only outcomes, confirming bifurcation-engineering.

Structural robustness matches theory quantitatively: efficacy > 80% under single perturbations (5-
clone 84%, 14-day delay 81%, stochastic noise 86%, partial observability 87%) and 73% combined;
bounds hold (λ≥ 0.08, λτ =1.12<π/2, Lz =0.1< 0.45). Larger realized margins imply higher
stochastic tolerance via Lcrit=

√
λ/K (Theorem 14), explaining superior performance under noise.

Clinically, we see earlier response (28–35 vs. 45–52 days), a 57% reduction in peak burden (1.24 vs.
2.87, SKCM), and transferability to CRC (76% eradication) despite tighter priors (smaller n, larger
effective d; Appendix Table 4).

9 Conclusion and future work

We presented a hierarchical framework with explicit guarantees: a unique Markov-perfect Nash
equilibrium for the LQ fast game; global exponential stability of the tumor-free state whenever
s(M) ≥ srobcrit,max+ δ (with explicit rate and gain bounds); spatial sufficiency that precludes sanctuar-
ies (Proposition 1); stochastic stability in probability for Lz <

√
λ/K with almost-sure convergence

under recurrence; quantitative clonal robustness for ∆a +∆κud,max < n
d δ; delay/observer robust-

ness under precise small-gain and observability conditions; an ϵ-accurate Fenichel decomposition;
and clinical-time validity. PINNs discover three-tier low-rank policies that preserve ≈ 95% of the
objective while enforcing s(M) ≥ srobcrit,max + δtgt. Future work: incorporate adaptive immunity
and full 3D spatial/angiogenesis; strengthen non-LQ robustness via monotone/viscosity methods;
personalize priors to tighten srobcrit,max; and optimize time-above-threshold protocols.
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A Supplementary introduction material

Additional background, related work context, and extended motivation for the hierarchical eco-
evolutionary game formulation.

B Supplementary conclusions

Extended discussion of implications, limitations, and future directions.

C Standing Assumptions

Throughout this work, we impose the following simplifying assumptions:
Assumption 1 (Regularity). All vector fields defining the dynamics are locally Lipschitz continuous
with linear growth rate. Control inputs are measurable and bounded: ud ∈ [0, ud,max], p ∈ [0, pmax],
and um ∈ Um ⊂ Rk where Um is compact.
Assumption 2 (Biological Constraints). All state variables remain in the biologically relevant
domain D = {(CT , CI ,M) : CT ≥ 0, CI ≥ 0,M ≥ 0}. The drug efficacy function satisfies
κ(p) = κ0/(1+p) with κ0 > 0. The immune recruitment function is affine: s(M) = s0+

∑k
i=1 siMi

with s0 > 0.

See Section I.3 for a justification of the functional forms used.
Assumption 3 (Timescale Separation). The timescale separation parameter satisfies 0 < ϵ ≪ 1. The
asymptotic regime where ϵ < ϵ0 for some threshold ϵ0 to be determined is specifically considered.

The verification of regularity conditions for the specific dynamics is provided in Section I.1.
Assumption 4 (Microbiome Stability and Controllability). The microbiome system satisfies:

1. The interaction matrix A is Hurwitz stable at the desired equilibrium M∗

2. The pair (A,Bm) is controllable in the sense of Kalman

3. The control authority satisfies rank(Bm) ≥ 1 with Bm chosen such that beneficial species
can be promoted

Assumption 5 (LQ fast game and solvability). For every fixed microbiome state M ∈ M the
following hold:

1. The admissible control sets Ud := [0, ud,max] and P := [0, pmax] are compact and convex.

2. The fast dynamics are locally linearizable at the tumor-free equilibrium with a model affine
in the controls, and the stage costs are quadratic (definitions in the main text/appendix).

3. The standard stabilizability/detectability conditions for general-sum LQ differential games
hold; the coupled algebraic Riccati equations admit a stabilizing solution defining linear
feedback gains (Kd,Kp).

D Notation

A function α : R+ → R+ is of class K if it is continuous, strictly increasing, and α(0) = 0. It is of
class K∞ if it is of class K and also α(r) → ∞ as r → ∞.
We use the following domains and norms throughout:

• State domain for fast variables: D := {(CT , CI) ∈ R2
+}; full domain includes M ∈ Rk

+.

• Safe slow set: Msafe ⊂ Rk
+ compact, positively invariant (Def. in Assumptions).

• Norms: ∥ · ∥ denotes the Euclidean norm; matrix/operator norms are induced 2-norms unless
stated; ∥ · ∥F denotes Frobenius norm; ∥u∥2 also denotes L2(Ω) norm for spatial functions
by context.

• Thresholds: srobcrit,max := supz,(ud,p)∈E(z)
d
n (a − κ(p)ud) ≤ scrit,max := d

na; margin
condition uses s(M) ≥ srobcrit,max + δ.
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E Game-Theoretic and Control-Theoretic Background

This section provides mathematical foundations for readers less familiar with differential game theory
and optimal control. For comprehensive treatments, see [11, 36, 33].

E.1 Differential Games: Formal Definition

A continuous-time differential game consists of:

1. A state space X ⊆ Rn with state x(t)

2. A set of N players, each with control ui(t) ∈ Ui

3. Dynamics: ẋ = f(x, u1, . . . , uN )

4. Cost functionals: Ji(u1, . . . , uN ) =
∫ T

0
gi(x, u1, . . . , uN ) dt+ hi(x(T ))

Nash Equilibrium (formal). A strategy profile (u∗
1, . . . , u

∗
N ) is a Nash equilibrium if for each player

i ∈ {1, . . . , N}:

Ji(u
∗
1, . . . , u

∗
i−1, u

∗
i , u

∗
i+1, . . . , u

∗
N ) ≤ Ji(u

∗
1, . . . , u

∗
i−1, ui, u

∗
i+1, . . . , u

∗
N ) ∀ui ∈ Ui

That is, no player can reduce their cost by unilaterally deviating from their equilibrium strategy while
others maintain theirs.

Markov-Perfect Equilibrium. A Nash equilibrium is Markov-perfect if strategies are state-feedback:
u∗
i (t) = µi(x(t)) for some function µi : X → Ui. This excludes history-dependent or open-loop

strategies. For infinite-horizon problems, Markov-perfect equilibria satisfy time-consistency and are
characterized by coupled Hamilton–Jacobi–Bellman equations [11].

E.2 Linear-Quadratic (LQ) Differential Games

An LQ game has:

• Linear dynamics: ẋ = Ax+B1u1 +B2u2

• Quadratic costs: Ji =
∫∞
0

(
x⊤Qix+ u⊤

1 R1iu1 + u⊤
2 R2iu2

)
dt

For two-player LQ games with Rii > 0, the unique Markov-perfect Nash equilibrium (when it exists)
takes the form of linear state feedback:

u∗
i (x) = −Kix, Ki = R−1

ii B⊤
i Pi

where the symmetric matrices Pi ≥ 0 solve a system of coupled algebraic Riccati equations
(CAREs). For general-sum games, these equations involve cross-coupling terms between players’
value functions; the precise form depends on the information structure (open-loop vs. feedback) and
is given in [36], Ch. 7–8, and [11], Ch. 6.

Key existence result. Under standard stabilizability and detectability conditions, a stabilizing solution
(P1, P2) to the CAREs exists and is unique, yielding a unique Markov-perfect Nash equilibrium [36].
The closed-loop system ẋ = (A−B1K1 −B2K2)x is then asymptotically stable.

E.3 Application to Cancer Treatment

In our formulation:

• Player 1 (Clinician): Controls drug dosage ud ∈ [0, ud,max] to minimize tumor burden and
treatment toxicity.

• Player 2 (Tumor): “Controls” resistance phenotype p through evolutionary selection
pressure. This is not conscious choice but emergent population-level adaptation that can be
modeled as payoff maximization [9, 10].

• State: Fast variables (CT , CI) representing tumor and immune cell densities.
• Nash equilibrium interpretation: The equilibrium drug policy u∗

d is optimal given the
tumor’s best evolutionary response, and vice versa. This captures the adversarial nature of
resistance evolution.
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The LQ approximation linearizes the nonlinear tumor–immune dynamics around a reference point
and uses quadratic cost surrogates. This yields tractable equilibrium computation while providing
conservative bounds for the full nonlinear system (see Appendix F.6).

E.4 Stackelberg (Leader-Follower) Games

In a Stackelberg game, players move sequentially: a leader commits to a strategy first, and followers
respond optimally. The leader anticipates follower responses when choosing their strategy.

Formally, if the leader chooses uL and the follower’s best response is u∗
F (uL), the leader solves:

min
uL

JL(uL, u
∗
F (uL))

In our hierarchical framework:

• Leader: Slow microbiome controller choosing um to modulate immune recruitment s(M)

• Followers: Fast tumor–drug Nash game reaching equilibrium (u∗
d, p

∗) for each fixed M

The timescale separation (ϵ ≪ 1) ensures that the fast game reaches equilibrium before the slow state
changes appreciably, validating the hierarchical decomposition via Fenichel theory (Theorem 7).

F Proofs of Main Theoretical Results

This appendix provides complete proofs for all theorems, establishing the mathematical rigor under-
lying our hierarchical control framework.

F.1 Proof of Theorem 1: Local reachability and viability of microbiome states

Proof. We replace the global reachability claim with a rigorous local reachability and viability
statement.

(1) Local reachability near M∗ ∈ int(Msafe). Consider (2) at an equilibrium M∗ > 0. The
linearization is ˙δM = AlinδM + Bm um with Alin = diag(g + AM∗) + diag(M∗)A. Under
Assumption 4(2) and M∗ > 0, Kalman controllability of (Alin, Bm) holds for almost all M∗; hence
the nonlinear system is small-time locally controllable on a neighborhood N (M∗) by standard results
(e.g., [35], Thm. 3.4), yielding item (1).

(2) Viability on Msafe. Let Msafe ⊂ Rk
+ be compact and positively invariant for some feedback.

Since the vector field is locally Lipschitz and points inward on ∂Msafe (Nagumo condition for
positive systems; cf. [34]), viability theory ensures the existence of a measurable bounded control
keeping trajectories in Msafe for all t ≥ 0. This establishes item (2).

Corollary 1 (Almost-sure eradication under recurrence). Under the hypotheses of Theorem 14
including non-explosion, Foster–Lyapunov positive recurrence of neighborhoods of zfree, and
vanishing diffusion at equilibrium σz(zfree,M) = 0, one has P[limt→∞ z(t) = zfree] = 1.

F.2 Global uniqueness of the tumor-free equilibrium above threshold

Theorem 10 (Global uniqueness of the tumor-free equilibrium). Let s(M) ≥ srobcrit,max + δ for some
δ > 0 and let d > gmax (Lemma 7). Then the closed-loop fast subsystem with any admissible Nash
selection (u∗

d, p
∗) ∈ E(z) admits a unique equilibrium in D, namely zfree = (0, s(M)/d).

Proof. Consider any equilibrium (CT , CI) with CT ≥ 0, CI ≥ 0. If CT = 0, the CI -equation yields
0 = s − dCI so CI = s/d and we recover zfree. Suppose for contradiction that there exists an
equilibrium with CT > 0. The CT -equation at equilibrium is

0 = a(1− bCT )− nCI − κ(p∗)u∗
d ≤ a− nCI ,

whence nCI ≤ a and thus CI ≤ a/n. On the other hand, the CI -equation at equilibrium is

0 = s− dCI + CI CT

(
r

h+CT
−m

)
.
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Since r
h+CT

−m ≤ gmax for CT ∈ [0, 1/b], we obtain

s = CI

(
d− CT

(
r

h+CT
−m

))
≤ CI d.

Hence CI ≥ s/d. Combining the two bounds gives s/d ≤ CI ≤ a/n. By the robust margin
assumption, s/d > a/n, a contradiction. Therefore no equilibrium with CT > 0 exists, and the
unique equilibrium is zfree.

F.3 Effective Low-Dimensional Microbiome Control

Theorem 11 (Effective Low-Dimensional Microbiome Control). Let the full microbiome state be
Mfull ∈ RN with N ≫ 1. Suppose (i) the immune modulation has low-rank structure s(Mfull) =
s0 +wT

fullMfull with sparse wfull, and (ii) the microbiome dynamics exhibit k ≪ N functional guilds.
Then there exists a reduced model with state M ∈ Rk that preserves controllability of s(M) and
requires identifying only O(k2) parameters.

Proof of Theorem 11.

Proof. Let the full microbiome state be Mfull ∈ RN and the reduced guild state be M ∈ Rk where
k ≪ N . State Aggregation: Define a linear aggregation matrix P ∈ Rk×N where Pij = 1 if
microbial species j belongs to functional guild i, and Pij = 0 otherwise. The reduced state is defined
as M = PMfull.

Immune Modulation Function: By Condition 1, the immune modulation function s(Mfull) =
s0 + wT

fullMfull has a sparse weight vector wfull. The community structure (Condition 2) implies
that species within the same guild have similar effects on the host. This means that non-zero entries
of wfull correspond to species within a few key guilds. An effective guild weight vector w ∈ Rk

can therefore be defined such that wfull ≈ PTw. The immune modulation function is then well-
approximated by s(Mfull) ≈ s0 + (PTw)TMfull = s0 +wT (PMfull) = s0 +wTM. Thus, control
of s only requires control of the reduced state M.

Reduced Dynamics and Controllability: The community structure assumption implies that the full
interaction matrix Afull has a block-like structure that can be approximated as Afull ≈ PTAP for
some reduced interaction matrix A ∈ Rk×k. Applying the aggregation to the full dynamics yields the
reduced model Ṁ ≈ diag(M)(g +AM) + (PBm)um. Controllability of the pair (A,PBm) in
the reduced model is preserved under standard assumptions on the community structure. Identifying
the k2 parameters of A and k parameters of w is an O(k2) problem, a significant reduction from the
O(N2) complexity of the full system.

F.4 Proof of Theorem 2: Unique State-Feedback Nash Equilibrium (LQ)

Proof. Under Assumption 5, the fast game is LQ in a neighborhood of the tumor-free equilibrium.
Existence and uniqueness of a Markov-perfect Nash equilibrium in linear state feedback follow from
general-sum LQ differential game theory ([11], Ch. 6): the coupled algebraic Riccati equations admit
a stabilizing solution under the stated stabilizability/detectability conditions. The resulting feed-
back gains (Kd,Kp) yield unique strategies (u∗

d, p
∗)(z) = (−Kdz,Kpz) that locally exponentially

stabilize the linearized fast dynamics uniformly over M ∈ Msafe.

F.5 Proof of Theorem 3: Stability of the Fast-Subsystem Equilibrium

Proof. To prove local exponential stability of the equilibrium zeq(M) for a fixed M ∈
Msafe, the Jacobian of the closed-loop fast dynamics is analyzed ż = f̄f (z;M) :=
ff (z, u

⋆
d(z;M), p⋆(z;M);M). The Jacobian matrix evaluated at the equilibrium zeq is given by the

chain rule:
J(M) =

∂ff
∂z

+
∂ff
∂ud

∂u⋆
d

∂z
+

∂ff
∂p

∂p⋆

∂z

where all derivatives are evaluated at (zeq, u⋆
d(zeq), p

⋆(zeq)). The stability of the equilibrium is
determined by the eigenvalues of J(M).
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The full analysis involves applying the implicit function theorem to the coupled HJBI equations to
characterize the gradient terms ∂u⋆

d/∂z and ∂p⋆/∂z. This analysis, standard in LQ game theory
[11], confirms that for any M in the safe set Msafe (where the tumor-free equilibrium is the unique
solution), the resulting closed-loop Jacobian J(M) is Hurwitz stable. That is, all its eigenvalues have
strictly negative real parts.

The uniformity in M is crucial for singular perturbation theory. Since Msafe is a compact set (by
construction) and all functions defining the dynamics and controls are continuous, the eigenvalues of
J(M) are continuous functions of M. Therefore, the maximum real part of the eigenvalues is also
a continuous function on the compact set Msafe, which implies it attains its maximum. Since this
maximum must be negative for every M ∈ Msafe, there exists a uniform upper bound −λmin < 0
for the real parts of all eigenvalues, for all M ∈ Msafe. This establishes local exponential stability,
uniformly in M.

F.6 Linearization matrices, vanishing input channels, and equilibrium map regularity

For the fast subsystem (1), linearized at zfree(M) = (0, s(M)/d) with fixed M, the Jacobian and
input matrices are

Af (M) =

[
a− nC∗

I −nC∗
T

rhC∗
I

(h+C∗
T )2 −mC∗

I −d+
rC∗

T

h+C∗
T
−mC∗

T

] ∣∣∣∣∣
C∗

T=0, C∗
I =s(M)/d

=

[
a− ns(M)/d 0
−ms(M)/d −d

]
and the control influence (affine in (ud, p)) satisfies

Bd(M) =
∂ff
∂ud

∣∣∣
zfree

=

[
−κ(p)C∗

T
0

]
= 0, Bp(M) =

∂ff
∂p

∣∣∣
zfree

=

[
−κ′(p)udC

∗
T

0

]
= 0.

Thus the linearization w.r.t. state is governed by Af (M) and the control channels vanish at first
order at zfree. We therefore interpret the LQ game as a surrogate linearization around C̄T > 0 (see
discussion in Appendix F.6); all threshold and stability conclusions hinge on drift dominance and
continuity of (u∗

d, p
∗) as C̄T → 0. Under Assumption 5, the coupled algebraic Riccati equations

admit a stabilizing solution with gains (Kd(M),Kp(M)) that depend smoothly on M over the
compact Msafe; consequently the equilibrium feedback maps (u∗

d, p
∗)(z;M) are locally Lipschitz

in z uniformly in M.

F.7 Proof of Theorem 5: Robustness to Control Constraints

Proof. The proof rests on separating the problem of reachability from the problem of stability.
Stability Preservation: The stability properties of the fast subsystem, as determined by the bifurcation
analysis (Theorem 5) and global stability analysis (Theorem 6), depend on the value of the immune
influx parameter s(M). These properties are independent of the constraints on the slow control um,
as long as the set Msafe is reachable.

Reachability: Condition (1) states that um = 0 is an admissible control. Since the unforced
microbiome dynamics are stable around the desired equilibrium M∗ (by Assumption 4), if control is
stopped once M(t) is in Msafe, the state will remain in Msafe. Condition (2) ensures that for any
initial state M0, there exists at least one control trajectory um(t) with um(t) ∈ Um that can steer the
state into Msafe. The existence of such a trajectory is guaranteed by standard nonlinear reachability
results [35], given the controllability assumption.

Convexity of Slow Problem: If the control set Um is convex, and the dynamics are affine in the
control (as in the Lotka-Volterra model), and the cost functional for the slow game is convex (which
is typical), then the resulting optimal control problem for the slow leader remains a standard convex
optimization problem [37], which is computationally tractable.

F.8 Proof of Theorem 5: Bifurcation of Fast Subsystem Equilibria

Proof. The bifurcation analysis is formalized using center manifold reduction [29].

Step 1: Setup and Jacobian. The tumor-free equilibrium is identified as zfree = (0, s(M)/d). The
Jacobian of the closed-loop fast dynamics at zfree has eigenvalues λ1 = a− n(s(M)/d)− κ(p∗)u∗

d
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and λ2 = −d. A bifurcation occurs when the real part of an eigenvalue crosses zero. Here, this
happens when λ1 = 0, which defines the critical threshold scrit.

Step 2: Center Manifold Reduction. At the bifurcation point s = scrit, the system has a one-
dimensional center eigenspace associated with λ1 = 0. A coordinate transformation is performed
to place the equilibrium at the origin and align the basis with the eigenvectors of the Jacobian.
This allows isolation of the dynamics on the one-dimensional center manifold, which governs the
qualitative behavior near the bifurcation.

Step 3: Derivation of the Normal Form and Nondegeneracy. The dynamics restricted to the
center manifold [29] can be written as ẋ = µx+ bx2 +O(x3), where µ parameterizes s(M)− scrit.
The nondegeneracy conditions for a transcritical bifurcation are: (i) a simple zero eigenvalue with
nonzero transversality dλ1

dµ |µ=0 ̸= 0, (ii) the quadratic coefficient b ̸= 0. Direct differentiation of

λ1 = a− nC∗
I (µ)− κ(p∗)u∗

d with respect to µ gives dλ1

dµ = −n
dC∗

I

dµ = −n/d ̸= 0. Calculation of b
via standard center-manifold formulas yields b = −n

d (mh+r/(h+C∗
T ))+higher-order corrections

evaluated at C∗
T = 0, which is strictly negative for admissible parameters. Hence the nondegeneracy

and transversality conditions hold, implying a transcritical bifurcation with exchange of stability.

Step 4: Conclusion. A negative quadratic coefficient (b < 0) in the normal form is the defining
condition for a supercritical (or forward) transcritical bifurcation [28]. This result, derived by
construction, rigorously proves that no subcritical behavior or associated hysteresis can occur at this
bifurcation point.

F.9 Complete Proof with Explicit Bounds

Proof. We construct a strict Lyapunov function and derive all bounds explicitly, matching the
constants in the theorem statement.

Step 1: Lyapunov function. Define
V (z) = 1

2C
2
T + β(CI − C∗

I )
2,

where C∗
I = s(M)/d and β > 0 is to be chosen.

Step 2: Derivative along trajectories. Along (1) with fixed Nash pair (u∗
d, p

∗),

V̇ = CT ĊT + 2β(CI − C∗
I ) ĊI

= CT

[
aCT (1− bCT )− nCTCI − κ(p∗)u∗

dCT

]
+ 2β(CI − C∗

I )
[
s(M)− dCI +

rCTCI

h+CT
−mCTCI

]
.

Step 3: Margin use and basic bounds. From s(M) ≥ scrit,max + δ = d
na+ δ and C∗

I = s(M)/d

we get a− nC∗
I ≤ −n

d δ. Also aC2
T (1− bCT ) ≤ aC2

T for CT ≤ 1/b, and −κ(p∗)u∗
dC

2
T ≤ 0.

Step 4: Cross terms via Young. The terms 2β(CI − C∗
I )

rCTCI

h+CT
and −2βm(CI − C∗

I )CTCI are
bounded by Young’s inequality: for any ε1, ε2 > 0,

2β(CI − C∗
I )

rCTCI

h+CT
≤ ε1C

2
T + c1(CI − C∗

I )
2,

2βm(CI − C∗
I )CTCI ≤ ε2C

2
T + c2(CI − C∗

I )
2,

on the positively invariant set where CT ≤ 1/b and CI ≤ CI,max (Appendix Lemma 7).

Step 5: Parameter choices and decay rate. Choose ε1, ε2 small so that
−(nδ/d)C2

T + (ε1 + ε2)C
2
T ≤ −nδ

2d C2
T .

Then choose β large enough so that −dβ + (c1 + c2) ≤ −d
2 β. Consequently,

V̇ ≤ −min
{

nδ
2d ,

d
2

}(
C2

T + (CI − C∗
I )

2
)

≤ −λV,

with λ = min{nδ
2d ,

d
2}.

Step 6: Exponential estimate and norm equivalence. Gronwall yields V (z(t)) ≤ V (z(0))e−λt.
Using norm equivalence between V and ∥z− zfree∥2 on the invariant set and the explicit choice of
β ≥ βmin from the theorem, one obtains

∥z(t)− zfree∥ ≤ K e−λt ∥z(0)− zfree∥,
with K as in the theorem statement. This completes the proof.
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F.10 Uniform normal hyperbolicity: regularity and spectral gap

Lemma 1 (Uniform C1 regularity and Hurwitz bounds along M0). Under Assumptions 1–5 and
the margin condition of Theorem 6, the equilibrium map M 7→ zfree(M) is C1 on Msafe; the
equilibrium feedbacks (u∗

d, p
∗) are locally Lipschitz in z and C1 in (z,M) on neighborhoods

of M0, and the closed-loop Jacobian Jf (M) evaluated at zfree(M) is Hurwitz with a uniform
spectral gap Re λi ≤ −λmin < 0 on Msafe. Moreover, there exist constants Lu, Lp, LJ such that
∥Dz(u

∗
d, p

∗)∥ ≤ Lu, ∥DM(u∗
d, p

∗)∥ ≤ Lp, and ∥ d
dMJf (M)∥ ≤ LJ on Msafe.

Proof. The map M 7→ zfree(M) = (0, s(M)/d) is C1 by Assumption 2. Under Assumption 5, the
coupled algebraic Riccati equations admit stabilizing solutions that depend smoothly on the linearized
data [11]; by the implicit function theorem the feedbacks (u∗

d, p
∗) inherit C1 dependence on (z,M)

in neighborhoods where stabilizability/detectability hold. Theorem 6 provides an explicit Lyapunov
function with rate λ > 0 uniform on Msafe; standard Lyapunov arguments imply a uniform Hurwitz
bound on Jf (M) and thus normal hyperbolicity. The derivative bounds follow from compactness of
Msafe and continuity.

F.11 Proof of Theorem 7: Hierarchical Decomposition via Fenichel Theory

Proof. The proof formalizes the application of geometric singular perturbation theory and derives
the first-order correction to the cost functional. Steps 1-3, which establish the existence of a normally
hyperbolic slow manifold, are identical to the proof provided in the previous revision and are
summarized here for completeness. The main addition is the explicit derivation of the cost functional
correction.

Steps 1-3: Existence of a Normally Hyperbolic Slow Manifold (Summary). The system is cast
into standard singular perturbation form [22]. The critical manifold M0 is identified as the graph of
the fast-subsystem equilibrium, z = zfree(M). The stability results from Theorem 6 and Proposition
6 confirm that this manifold is normally hyperbolic. Fenichel’s theorems [31] then guarantee the
existence of an invariant slow manifold Mϵ, which is O(ϵ)-close to M0. The state on this manifold
can be written as z = hϵ(M) = zfree(M) + ϵh1(M) +O(ϵ2).

Step 4: Derivation of the First-Order Manifold Correction h1(M). To find the O(ϵ) correction
term, h1(M), the manifold invariance condition is used. The full dynamics are ż = ff (z,M)

and Ṁ = ϵfs(M). If a trajectory lies on the manifold Mϵ, it must satisfy ż = DMhϵ(M)Ṁ.
Substituting the dynamics and the expansion for hϵ:

ff (zfree + ϵh1,M) =
[
DMzfree(M) + ϵDMh1(M) +O(ϵ2)

]
· ϵfs(M)

A Taylor expansion in ϵ around ϵ = 0 is now performed. The O(1) terms cancel out because
ff (zfree,M) = 0. The O(ϵ) terms are of interest:

∂ff
∂z

∣∣∣∣
zfree

h1(M) = DMzfree(M)fs(M)

This is the "invariance equation". Let Jf (M) be the Jacobian of the fast dynamics evaluated on the
critical manifold. Since the manifold is normally hyperbolic, Jf (M) is invertible. Therefore, the
first-order correction term can be solved:

h1(M) = Jf (M)−1 [DMzfree(M)fs(M)]

This provides an explicit expression for the first-order deviation of the slow manifold from the critical
manifold.

Step 5: Derivation of the Cost Functional Correction. The leader’s objective is Js =∫ T

0
ℓs(z(t),M(t),um(t))dt. On the slow manifold, the state is given by the expansion z(t) =

hϵ(M(t)) = zeq(M(t)) + ϵh1(M(t)) +O(ϵ2). A Taylor expansion of the integrand ℓs around the
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reduced solution (zeq(M̄), M̄) can therefore be performed:

ℓs(z
ϵ,Mϵ) ≈ℓs(zeq(M̄), M̄)

+
∂ℓs
∂z

∣∣∣∣
0

(zϵ − zeq(M̄)) + . . .

=ℓs(zeq(M̄), M̄)

+ ϵ

(
∂ℓs
∂z

∣∣∣∣T
0

h1(M̄)

)
+O(ϵ2)

Integrating this expansion gives the cost functional expansion. The O(1) term yields the reduced cost
J̄s =

∫ T

0
ℓs(zeq(M̄), M̄)dt. The O(ϵ) term provides the first-order correction, defining the constant

C4 from the theorem statement as:

C4 =

∫ T

0

(
∂ℓs
∂z

∣∣∣∣T
0

h1(M̄(t))

)
dt

with h1(M) given uniquely by the invariance equation in Step 4:

h1(M) = Jf (M)−1
[
DMzfree(M) fs(M)

]
.

This provides a quantitative, constructive formula for the impact of the fast dynamics on the leader’s
cost. This completes the proof.

Theorem 12 (Absence of Subcritical Behavior). Under the biological constraints of Assumption 2, the
bifurcation at s = scrit is supercritical (transcritical), not subcritical. No hysteresis or catastrophic
transitions occur.

Proof. The nature of a one-dimensional bifurcation is determined by the sign of the first non-zero
nonlinear coefficient in the normal form of the dynamics on the center manifold [28]. As rigorously
derived in the proof of Theorem 5 (Appendix F.8), the reduced dynamic is ẋ = bx2 + O(x3),
with the coefficient b being strictly negative for all biologically relevant parameters. A negative
quadratic coefficient proves the bifurcation is supercritical, thus rigorously excluding the possibility
of subcritical bifurcations and associated phenomena like hysteresis or catastrophic jumps in the
system’s state.

F.12 Proof of Theorem 13: Quantitative Robustness to Clonal Heterogeneity

Theorem 13 (Quantitative Robustness to Clonal Heterogeneity). Consider a controller designed for
the continuous phenotypic model (1) but applied to an N -clone heterogeneous system. Define the
clonal parameter variations

∆a := max
i

|ai − a|, ∆κ := max
i

|κi − κ0|.

If the microbiome margin satisfies

δ > δcrit :=
d

n

(
∆a +∆κ ud,max

)
,

then all clones are exponentially eradicated with rate λ ≥ n(δ−δcrit)
2d .

Proof. Robustness to N distinct tumor clones is proven by extending the Lyapunov argument from
Theorem 6 to the N-clone system.

Step 1: N-Clone Lyapunov Function. Define the Lyapunov function candidate V =
∑N

i=1 Ci +
β
2 (CI − C∗

I )
2, where C∗

I = s(M)/d. This function is positive definite and radially unbounded.

Step 2: Time Derivative V̇ . The derivative along the N-clone dynamics given in the main text is
computed: V̇ =

∑N
i=1 Ċi + β(CI − C∗

I )ĊI .
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Step 3: Exploit the Margin δ. The growth term for each clone i is Ci[ai − nCI − . . . ]. The margin
condition from Theorem 13 ensures that the immune influx s(M) is maintained such that for every
clone i, the term ai − nC∗

I is uniformly negative, bounded above by a negative constant related to the
margin δ. This margin δ is chosen to be large enough to absorb the clonal parameter variations ∆a

and ∆κ.

Step 4: Bound Cross-Terms and Conclude. As in the proof of Theorem 6, the derivative V̇ contains
negative-definite primary terms and cross-terms. Young’s inequality is used to show that for a
sufficiently large choice of the parameter β, all cross-terms can be absorbed into the negative-definite
terms. This renders V̇ negative definite for all non-zero tumor populations. By Lyapunov’s direct
method, this proves that all clone populations Ci must converge to zero, ensuring global asymptotic
stability of the tumor-free state.

F.13 Proof of Theorem F.13: Universal Bifurcation Control Principle

Proof. We establish the universality of the bifurcation control principle for general nonlinear games
through a complete constructive proof.

Part 1: Existence of Nash Equilibrium via Fixed-Point Theory. Consider general cost functionals:

JNL
d (ud, p;M) =

∫ Tf

0

ℓd(CT (τ), CI(τ), ud(τ))dτ (16)

JNL
p (ud, p;M) =

∫ Tf

0

ℓp(CT (τ), p(τ))dτ (17)

where ℓd : R3 → R and ℓp : R2 → R satisfy:

1. Smoothness: ℓd, ℓp ∈ C2 with locally Lipschitz gradients

2. Coercivity: ℓd(CT , CI , ud) ≥ αd(C
2
T + u2

d)− βd

3. Growth: |ℓp(CT , p)| ≤ γp(1 + Cq
T + pr) for some q, r > 0

Define the best-response correspondences:

BRd(p) = arg min
ud∈Ud

JNL
d (ud, p;M) (18)

BRp(ud) = argmin
p∈P

JNL
p (ud, p;M) (19)

By coercivity, these sets are non-empty. By the growth condition and compactness of Ud × P , they
are upper hemicontinuous with convex values. The Kakutani-Fan-Glicksberg theorem guarantees
existence of a fixed point (u∗

d, p
∗) ∈ BRd(p

∗)×BRp(u
∗
d).

Part 2: Critical Threshold Construction. The linearization of the closed-loop dynamics around
equilibrium zeq yields:

J(zeq) = Dzff |zeq
+Dzu

∗
d|zeq

Dud
ff |zeq

+Dzp
∗|zeq

Dpff |zeq
(20)

The critical threshold occurs at det(J) = 0. Using implicit differentiation on the first-order optimality
conditions:

∇ud
Hd = ∇ud

ℓd + λT
d ∇ud

ff = 0 (21)

∇pHp = ∇pℓp + λT
p ∇pff = 0 (22)

Solving for the feedback gains and substituting into the Jacobian determinant condition yields:

sNL
crit(z) =

d

n

(
a− κ0

1 + p∗(z)
u∗
d(z)

)
(23)

The global threshold is sNL
crit,max = supz∈D sNL

crit(z).
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Part 3: Quantitative Bound on Deviation from LQ Case. Let ℓLQ
d (CT , CI , ud) = qcC

2
T + rdu

2
d

be the quadratic approximation. The difference in critical thresholds arises from the difference in
optimal feedback laws. Using Taylor expansion:

uNL
d − uLQ

d = −
(
∂2ℓd
∂u2

d

)−1(
∂3ℓd
∂u3

d

)
(uLQ

d )2 +O((uLQ
d )3) (24)

This leads to:

|sNL
crit,max − sLQ

crit,max| ≤
dκ0

n
sup
z

|uNL
d − uLQ

d | ≤ K∥∇2(ℓd − ℓLQ
d )∥∞ (25)

where K =
dκ0ud,max

nrd
.

Part 4: Global Stability via Lyapunov Theory. For s(M) > sNL
crit,max + δ, construct the Lyapunov

function:

V NL(z) =

∫ CT

0

ℓd(ξ, CI , u
∗
d(ξ, CI))dξ + β(CI − C∗

I )
2 (26)

The time derivative:

V̇ NL = ℓd(CT , CI , u
∗
d)ĊT + 2β(CI − C∗

I )ĊI (27)
= ℓd(CT , CI , u

∗
d)[fCT

− κ(p∗)u∗
dCT ] + 2β(CI − C∗

I )fCI
(28)

Using the coercivity of ℓd and the margin condition:

V̇ NL ≤ −αdC
2
T − βnδC2

I + bounded cross terms (29)

Choosing β > ∥∇ℓd∥2

4αdnδ
ensures the negative definite terms dominate, yielding V̇ NL < −γ(C2

T +

(CI − C∗
I )

2) for some γ > 0. This establishes global asymptotic stability.

F.14 Stochastic system definitions and assumptions

Assumption 6 (Diffusion regularity). The diffusion coefficients are locally Lipschitz with polynomial
growth, and the multiplicative noise vanishes at the tumor-free equilibrium on the safe set:

• σz(z,M) locally Lipschitz in z uniformly on compact M; ∥σz(z,M)∥2F ≤L2
z(1 + ∥z∥2)

• σM (M) locally Lipschitz with polynomial growth

• σz(zfree,M) = 0 for all M ∈ Msafe

Theorem 14 (Stability in probability; almost-sure under recurrence). Under Assumption 6 and
standing regularity, there exists a constant K > 0 (depending on ∇2V on a compact invariant set)
and a convergence rate λ > 0 from the deterministic Lyapunov analysis such that if Lz <

√
λ/K,

then zfree is globally asymptotically stable in probability. If in addition the process is non-explosive,
admits a Foster–Lyapunov function ensuring positive recurrence of neighborhoods of zfree, and
satisfies σz(zfree,M) = 0, then z(t) → zfree almost surely.

F.15 Proof of Theorem 14: Almost-Sure Eradication Under Stochastic Perturbations

Proof. The proof extends the Lyapunov argument to the stochastic case using Itō’s formula [38].

Step 1: Lyapunov Function and Itō’s Formula. The same Lyapunov function V (z) = 1
2C

2
T +

1
2β(CI − C∗

I )
2 from the deterministic analysis is used. The stochastic dynamics are given by the Itō

SDE dzt = ff (zt)dt+ σz(zt)dWt. Applying Itō’s formula [38] to V (zt) yields:

dV = LV dt+ (∇V )TσzdWt

where LV is the infinitesimal generator.
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Step 2: Explicitly Writing the Infinitesimal Generator. The infinitesimal generator is given by:

LV (z) = (∇V )T ff (z)︸ ︷︷ ︸
Drift Term

+
1

2
Tr
(
σT
z (∇2V )σz

)
︸ ︷︷ ︸

Diffusion Term

Step 3: Bounding the Drift Term. From the rigorous analysis in the proof of Theorem 6, the drift
term is known to be the time derivative of V in the deterministic system, V̇det. It was proven to be
negative definite:

(∇V )T ff (z) = V̇det ≤ −γ1C
2
T − γ2(CI − C∗

I )
2

This can be expressed in terms of the Lyapunov function itself. Since V is quadratic, there exists a
constant λ > 0 such that V̇det ≤ −λV (z).

Step 4: Bounding the Diffusion Term. The Hessian of V is ∇2V = diag(1, β). The diffusion term
is therefore:

1

2
Tr(σT

z ∇2V σz) =
1

2
Tr(σT

z

[
1 0
0 β

]
σz)

The noise intensity bound ∥σz(z)∥2F ≤ L2
z(1 + ∥z∥2) is used, where ∥ · ∥F is the Frobenius norm.

1

2
Tr(σT

z ∇2V σz) ≤
1

2
∥∇2V ∥F ∥σzσ

T
z ∥F

≤ 1

2
max(1, β)L2

z(1 + ∥z∥2)

Since ∥z∥2 is quadratically related to V (z), this can be written as ≤ KL2
z(1 + V (z)) for some

constant K.

Step 5: Combining Terms and Invoking Stability Theorem. Combining the bounds for the drift
and diffusion terms yields:

LV ≤ −λV +KL2
z(1 + V ) = KL2

z − (λ−KL2
z)V

For almost-sure stability, the coefficient of V must be positive. This requires λ−KL2
z > 0, which

leads to the condition on the noise intensity:

Lz <
√
λ/K := Lcrit

If this condition holds, let λ′ = λ−KL2
z > 0. Then LV ≤ KL2

z − λ′V . This shows that for any
V > KL2

z/λ
′, LV is negative. By the stochastic Lyapunov stability theorem [39], this guarantees

that the trajectories are bounded in probability and will enter the set {z : V (z) ≤ KL2
z/λ

′} almost
surely. Since the noise vanishes at the equilibrium (σz(zfree) = 0), a stronger result based on
LaSalle’s principle for SDEs [39] guarantees that the trajectories will converge to the tumor-free
equilibrium zfree almost surely.

Additional remarks on stochastic robustness
Remark 1 (Physical interpretation of noise vulnerability). The critical noise threshold Lcrit is
inversely proportional to the maximum curvature (∥∇2V (z)∥) of the Lyapunov function V . Regions
of high curvature are more sensitive to noise; engineering a wide basin around zfree improves
robustness.
Remark 2 (Large deviations and margin design). The bound Lz < Lcrit guarantees local stochastic
stability near the slow manifold. Rare large deviations can be mitigated by enlarging the ecological
margin: for target risk α ∈ (0, 1) over horizon T , take δ = δ0 + c

√
log(1/α), with c set by effective

noise and Lyapunov curvature.
Remark 3 (Practical noise levels). Biological noise is typically small relative to deterministic drift
near zfree; numerically, the unified bound Lz <

√
λ/K holds with margin.

F.16 Validity on clinical timescales

Proof. The proof formalizes the argument that the hierarchical decomposition remains valid over a
clinically relevant time horizon. The validity depends on the slow state, M(t), remaining within the
safe set Msafe.
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Step 1: Slow System Dynamics and Stability. The slow dynamics are given by Ṁ = ϵfs(M,um).
Let the slow controller be designed to maintain an equilibrium M∗ inside Msafe. The stability of
these dynamics is governed by the Jacobian of fs at M∗, denoted Js(M

∗). The eigenvalues of the
underlying microbiome interaction matrix A are the dominant factor in determining the eigenvalues
of Js. Let λmax(A) be the largest real part of the eigenvalues of A. This value characterizes the
intrinsic timescale of the microbiome’s drift.

Step 2: Bounding the Drift of the Slow State. Let M(0) be the initial state in Msafe. The solution
to the slow dynamics can be bounded using a Grönwall-type inequality. For a given control um(t),
the distance of the trajectory from a reference point Mref ∈ Msafe evolves as:

∥M(t)−Mref∥ ≤ ∥M(0)−Mref∥eϵLst

where Ls is the Lipschitz constant of fs, which is directly related to the norm of A. A more refined
analysis using the spectral properties of A gives the bound:

∥M(t)−M∗∥ ≤ ∥M(0)−M∗∥eϵλmax(A)t

This bound holds in a neighborhood of the equilibrium M∗.

Step 3: Deriving the Condition on Tclinical. The hierarchical control strategy is guaranteed to
be effective as long as M(t) remains in the safe set Msafe. Let dsafe be the minimum distance
from the starting point M(0) to the boundary of Msafe. The time T must be found such that for all
t ∈ [0, T ], ∥M(t)−M(0)∥ < dsafe. From the bound above, the state will have drifted a distance of
approximately ∥M(0)−M∗∥(eϵλmax(A)T − 1). This drift is required to be less than dsafe.

∥M(0)−M∗∥(eϵλmax(A)T − 1) < dsafe

For small exponents, ex − 1 ≈ x, so this is approximately:
∥M(0)−M∗∥ϵλmax(A)T < dsafe

Solving for T gives:

T <
dsafe

∥M(0)−M∗∥ϵλmax(A)

This shows that the time of validity T is inversely proportional to ϵλmax(A). The term Tclinical in
the theorem statement represents this characteristic time. If λmax(A) ≤ 0 (i.e., the microbiome is
intrinsically stable), the validity horizon is, in principle, infinite. If λmax(A) > 0, this provides a
concrete upper bound on the time for which the therapy can be trusted without needing feedback and
adjustment of the slow control strategy. This formalizes the intuition that the therapy is valid as long
as the clinical timescale is shorter than the timescale of the microbiome’s natural drift.

F.17 Proposition and proof: No Stable Spatial Sanctuaries

Proposition 1 (Sufficient condition preventing stable spatial sanctuaries). Consider the reac-
tion–diffusion extension on a smooth bounded domain Ω with Neumann boundary conditions and
immune diffusion DI(x) ≥ DI,min > 0. Let λ1(Ω) be the first nonzero Neumann eigenvalue of −∆.
If the spatial average satisfies

s̄ :=
1

|Ω|

∫
Ω

s(M(x)) dx ≥ scrit,max +
γ

λ1(Ω)

Var[s(M(·))]
DI,min

,

for an explicit constant γ > 0 depending only on model parameters, then the tumor-free state is
globally asymptotically stable and no stable spatial refugia persist.

F.18 Proof of Proposition 1: No Stable Spatial Sanctuaries

Proof. We establish the absence of spatial sanctuaries through energy methods and flux balance
arguments.

Part 1: Reaction-Diffusion Formulation. Consider the spatially extended system on domain
Ω ⊂ R3:

∂CT

∂t
= DT∇2CT + aCT (1− bCT )− nCTCI − κ(p)ud(x)CT (30)

∂CI

∂t
= DI∇2CI + s(M(x))− dCI +

rCTCI

h+ CT
−mCTCI (31)
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with Neumann boundary conditions ∇CT · n = ∇CI · n = 0 on ∂Ω.

Part 2: Spatial Energy Functional and constants. Define the energy with gradient coercivity on
both fields:

E [CT , CI ] =

∫
Ω

[
C2

T + β(CI − C∗
I (x))

2 + γ|∇CT |2 + η|∇CI |2
]
dx (32)

where C∗
I (x) = s(M(x))/d is the local immune equilibrium, and γ, η > 0 are fixed constants.

Part 3: Energy Dissipation. Computing the time derivative and integrating by parts using Neumann
boundary conditions gives the diffusion dissipation terms:

dE
dt

≤ 2

∫
Ω

[
CT

∂CT

∂t
+ β(CI − C∗

I )
∂CI

∂t

]
dx− 2γDT

∫
Ω

|∇CT |2dx− 2ηDI

∫
Ω

|∇CI |2dx.

(33)

Substituting the reaction terms and using C∗
I = s(M)/d together with the margin condition yields

dE
dt

≤ −
∫
Ω

[
(nCI − a)C2

T + βd(CI − C∗
I )

2
]
dx (34)

− 2γDT

∫
Ω

|∇CT |2dx− 2ηDI

∫
Ω

|∇CI |2dx (35)

+

∫
Ω

2β(CI − C∗
I )
(

rCTCI

h+CT
−mCTCI

)
dx. (36)

Bounding the last integral by Young’s inequality on the invariant set, for any ε1, ε2 > 0,

2β(CI −C∗
I )

rCTCI

h+CT
≤ ε1C

2
T + c1(CI −C∗

I )
2, 2βm(CI −C∗

I )CTCI ≤ ε2C
2
T + c2(CI −C∗

I )
2,

with explicit c1, c2 depending on (β, r, h,m) and invariant bounds. Choosing ε1+ε2 ≤ (nC̄I −a)/2
yields
dE
dt

≤ −
∫
Ω

[
1
2 (nCI − a)C2

T + (βd− c1 − c2)(CI −C∗
I )

2
]
dx− 2γDT ∥∇CT ∥22 − 2ηDI∥∇CI∥22.

Using C̄I = 1
|Ω|
∫
CI and Poincaré’s inequality for CI − C∗

I combined with Jensen for CI , one
obtains a differential inequality

dE
dt

≤ −α1∥CT ∥22 − α2∥CI − C∗
I ∥22 − α3∥∇CI∥22,

with αi > 0 provided the spatial mean satisfies

s̄ ≥ scrit,max +
γexp
λ1(Ω)

Var[s(M(·))]
DI,min

, γexp :=
(c1 + c2)

β

d

n
.

This yields exponential decay of E and proves the claim with an explicit constant γ = γexp depending
only on model parameters. Dependence is via λ1(Ω) and DI,min only.

Part 4: Spatial Average Condition. The key insight is that the spatial average s̄ =
1
|Ω|
∫
Ω
s(M(x))dx > scrit,max + δspatial ensures:∫

Ω

nCIdx >

∫
Ω

adx (37)

This global excess of immune pressure prevents tumor persistence anywhere in the domain. Using
Poincaré’s inequality

∫
Ω
|u− ū|2 ≤ λ1(Ω)

−1
∫
Ω
|∇u|2 and bounding Var[s(M(·))], one obtains an

explicit constant γ = γ(a, n, d, r, h,m) such that the condition in Proposition 1 suffices. Dependence
is via λ1(Ω) and DI,min only.

Part 5: Analysis of Low-s Regions. For a region Ωlow ⊂ Ω where s(M(x)) < scrit,max, the flux
balance equation:

d

dt

∫
Ωlow

CIdx =

∫
Ωlow

s(M)dx︸ ︷︷ ︸
local source

+DI

∫
∂Ωlow

∇CI · ndS︸ ︷︷ ︸
influx

−losses (38)

25



The influx term from high-s regions maintains CI above the critical level even in Ωlow, provided:

|Ωlow|
|Ω|

< 1− scrit,max

s̄
(39)

Part 6: Asymptotic Extinction. Using comparison principles and the maximum principle, we
establish:

lim
t→∞

sup
x∈Ω

CT (x, t) = 0 (40)

This proves that no stable spatial sanctuaries can form under hierarchical control.

Proposition 2 (Empirical low-rank control structure and effective hierarchy). In numerical exper-
iments on a 100-dimensional microbiome model, the learned optimal control policy exhibits an
empirical low-rank decomposition that can be organized into a three-tier control architecture: (i)
guild-level orchestration; (ii) keystone species modulation; (iii) diversity maintenance. This reduces
the effective implementation dimension while preserving near-optimal performance.

F.19 Analysis supporting Proposition 2: Empirical Multi-Scale Control Decomposition

Empirical analysis. We analyze the structure of the PINN-learned optimal control policy to reveal
emergent hierarchical organization; the following statements are empirical and contingent on training.

Part 1: High-Dimensional HJB Solution. The 100-dimensional HJB equation:

∂V

∂t
+min

um

{
100∑
i=1

∂V

∂Mi
fi(M,um) + ℓ(M,um)

}
= 0 (41)

is solved using a PINN with architecture: 101 input neurons, 10 hidden layers (512 neurons each),
residual connections, and adaptive activation functions.

Part 2: Singular Value Decomposition of Control Policy. The learned control policy u∗
m(M) is

analyzed via SVD:

u∗
m(M) =

10∑
i=1

σiviϕi(M) (42)

where σ1 ≥ σ2 ≥ · · · ≥ σ10 are singular values.

Part 3: Emergent Guild Structure. The first 3 singular vectors capture 85% of the control energy:∑3
i=1 σ

2
i∑10

i=1 σ
2
i

= 0.85 (43)

Analyzing v1,v2,v3 reveals they correspond to functional guilds:

• v1: Butyrate producers (anti-inflammatory)

• v2: Bacteroides group (immune modulators)

• v3: Firmicutes/Bacteroidetes ratio (metabolic regulation)

Part 4: Keystone Species Identification. The Hessian of the immune modulation function:

Hij =
∂2s(M)

∂Mi∂Mj
(44)

has 5 eigenvalues exceeding 10× the median, identifying keystone species.

Part 5: Diversity Constraint. The learned policy maintains Shannon diversity:

H(M) = −
100∑
i=1

Mi∑
j Mj

log

(
Mi∑
j Mj

)
> Hcrit = 3.2 (45)
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Part 6: Dimensionality Reduction. Defining the reduced control ũ ∈ R3 as projections onto the
dominant singular vectors:

ũi = vT
i u

∗
m, i = 1, 2, 3 (46)

The performance loss is quantified:

J(u∗
m)− J(ũ) < 0.05J(u∗

m) (47)

This quantifies an effective dimensionality reduction from 100 to 3 with near-optimal performance in
our experiments.

F.20 Proof of Theorem 13: Observer-Based Control

Assumption 7 (Uniform Observability over the Safe Set). For all trajectories with M(t) ∈ Msafe,
the pair obtained by linearizing the fast subsystem along M0 is uniformly completely observable
with respect to the output map used by the EKF (here, measurements of CT ). The process and
measurement noise covariances are bounded and positive definite.

Proof. Under Assumption 7, the EKF error dynamics are exponentially stable in a neighborhood of
the slow manifold; the separation follows via an input-to-state stability (ISS) argument. 1. Error
Dynamics: Let the observer error be e(t) = z(t)− ẑ(t). The dynamics of a well-designed Extended
Kalman Filter (EKF) ensure that the error dynamics ė(t) = Aee(t) + h.o.t. are asymptotically stable,
meaning e(t) → 0 as t → ∞. The stability of the EKF is independent of the control input. 2. Plant
Dynamics as a Perturbed System: The plant dynamics, controlled by u⋆

d(ẑ), can be written as
ż = ff (z, u

⋆
d(z− e)). Since the control law u⋆

d is Lipschitz continuous, the error term can be treated
as a vanishing perturbation:

ż = ff (z, u
⋆
d(z)) +w(t)

where the perturbation term ∥w(t)∥ ≤ Lu∥e(t)∥ for some Lipschitz constant Lu. 3. Cascaded ISS
Systems: The closed-loop system for z is ISS with respect to the perturbation w(t). The overall
system is a cascade of the stable error dynamics subsystem driving the ISS plant dynamics subsystem.
A standard result in nonlinear control theory [23] states that a cascade of an asymptotically stable
system (ė) and an ISS system (ż) is itself asymptotically stable. Since e(t) → 0, the perturbation
w(t) → 0, and thus the state z(t) converges to the desired equilibrium zfree.

Proposition 3 (Quantitative separation bound). Assume: (i) the EKF error satisfies ∥e(t)∥ ≤
Cee

−αt∥e(0)∥ for some Ce ≥ 1, α > 0; (ii) the nominal fast closed-loop is ISS with respect to an
additive disturbance w, i.e., ∥z(t) − zfree∥ ≤ Cze

−λt∥z(0) − zfree∥ + γ sup0≤s≤t ∥w(s)∥ for
some Cz ≥ 1, λ > 0, and gain γ > 0; (iii) ∥w(t)∥ ≤ Lu∥e(t)∥ with the Lipschitz constant Lu of u∗

d.
Then for all t ≥ 0,

∥z(t)− zfree∥ ≤ Cze
−λt∥z(0)− zfree∥ + γLuCe ∥e(0)∥ sup

0≤s≤t
e−αs.

In particular, if α > 0, the second term decays monotonically to γLuCe ∥e(0)∥ and if α > λ one has
exponential convergence at rate λ with a reduced overshoot. When the EKF is initialized consistently
so that e(0) = 0, the nominal rate λ is recovered.

F.21 Uniform detectability with CT-only measurements

Proposition 4 (Uniform detectability of the linearization along M0). Consider the linearization
of the fast subsystem along M0 with output y = CT . The pair (Af (M), C) with C = [1 0] is
uniformly detectable on Msafe provided d > 0, n > 0, and s(M) ≥ srobcrit,max + δ. In particular,
the unobservable mode (when present) corresponds to eigenvalue −d < 0, hence is uniformly stable.
Consequently, the EKF enjoys uniform exponential error decay under standard boundedness and
linearization validity conditions.

Lemma 2 (Lipschitz bound for the control law). On compact invariant sets, the Nash feedback
u∗
d(z;M) is Lipschitz with respect to z uniformly in M ∈ Msafe, i.e., ∥u∗

d(z1) − u∗
d(z2)∥ ≤

Lu ∥z1 − z2∥ for some Lu > 0.
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F.22 Sharpened microbiome reachability and viability

Proposition 5 (STLC and viability under positivity). Suppose (Alin, Bm) at M∗ > 0 satisfies
Kalman rank, and Msafe is defined by linear inequalities GM ≤ h with M ≥ 0. Then: (i) the
controlled gLV system is small-time locally controllable on a neighborhood of M∗ within Rk

+; (ii)
there exists a feedback um(M) that renders Msafe positively invariant by constructing inward-
pointing vectors on each active face using the sign structure of diag(M)(g +AM) and available
columns of Bm.

F.23 Dimension reduction with structural conditions and error bounds

Theorem 15 (Guild-structured reduction with controllability preservation). Assume: (i) block-
diagonal dominance of Afull up to ϵblk with inter-guild couplings bounded by ϵoff ; (ii) sparse
immune weights with ∥wfull − PTw∥ ≤ ϵw; (iii) ∥(I − PTP)Mfull∥ ≤ ϵP along trajectories.
Then for matched initial conditions, over horizons T where both models remain bounded,

|s(Mfull)− s(PTM)| ≤ ϵw ∥Mfull∥+ ∥w∥ ϵP ,

and the state deviation satisfies ∥PMfull(t)−M(t)∥ ≤ C(ϵblk+ϵoff +ϵP ) (e
Lt−1) with constants

depending on bounds of the vector fields. Controllability of (A,PBm) is preserved if each controlled
guild has at least one actuated species.

F.24 Coupled HJBs for general-sum MPE and PINN training

For fixed M, the general-sum Markov-perfect equilibrium satisfies coupled stationary HJBs

ρVd(z) = min
ud∈Ud

{
ℓd(z, ud) +∇Vd · ff (z, ud, p

∗(z))
}
,

ρVp(z) = min
p∈P

{
ℓp(z, p) +∇Vp · ff (z, u∗

d(z), p)
}
,

with first-order optimality 0 = ∂ud
(ℓd +∇Vd · ff ) and 0 = ∂p(ℓp +∇Vp · ff ). The MPE fixed point

requires u∗
d and p∗ used in the dynamics to coincide with argmin solutions. The PINN loss augments

the HJB residuals with best-response and consistency penalties:

L = Ld
HJB + Lp

HJB

+ λBR

(
∥∂ud

Hd∥2 + ∥∂pHp∥2
)

+ λfix ∥(unet
d − uBR

d , pnet − pBR)∥2

+ λmargin Lmargin.

F.25 Positivity invariance of the fast subsystem

Lemma 3 (Positivity invariance). For the fast subsystem (1) with ud ∈ [0, ud,max], p ∈ [0, pmax],
solutions starting in R2

+ remain in R2
+. At CT = 0, ĊT = 0; at CI = 0, ĊI = s(M) ≥ 0. Hence

the positive orthant is forward invariant by Nagumo’s theorem.

G Benchmark dataset and release plan

We propose an open benchmark to standardize eco-evolutionary control studies:

• Deterministic ODE/PDE suites: Parameterized fast subsystems (ODE) and reac-
tion–diffusion PDEs with reference parameter sets for SKCM and CRC; scripts generating
trajectories under specified controllers.

• Stochastic variants: SDE simulators with configurable σz , seeds, and evaluation protocols
for stability in probability vs. almost-sure regimes.

• Microbiome models: High- and low-dimensional gLV instances with documented
A,g,Bm, safe sets Msafe, and reachability tasks.
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• HJ BVPs: Collocation domains, boundary conditions, and ground-truth LQ solutions for
validating PINN solvers; residual calculators for coupled HJBs.

• Observer tasks: EKF/UKF benchmarks with measurement models (only CT ) and noise
models; detectability certificates.

• Files and schema: JSON/YAML configs, CSV parameter tables, and standardized logs; CI
to reproduce Tables 1–5.

All assets will be versioned with DOIs, include code for figure regeneration, and provide precise
licenses for data/code.

H Supporting Lemmas and Ancillary Proofs

Lemma 4 (Continuity of LQ Nash feedback and small-state behavior). Under Assumption 5, the
unique LQ Markov-perfect Nash equilibrium (u∗

d, p
∗)(z;M) is affine in z in a neighborhood of z = 0

with gains depending smoothly on M ∈ Msafe. Consequently, u∗
d(z) → 0 and p∗(z) → 0 as z → 0,

uniformly over M ∈ Msafe. Hence scrit,max = d
na.

Proof. The coupled algebraic Riccati equations depend smoothly on the linearized data; by the
implicit function theorem the stabilizing solution varies smoothly on compact sets where stabilizabil-
ity/detectability hold [11]. The resulting feedback is linear in z near the origin, implying continuity
and the stated limit. Substituting into scrit(z) yields the supremum at z = 0 with value d

na.

This appendix contains proofs for lemmas and propositions that support the main theoretical results.
Lemma 5 (Lipschitz Continuity of the Fast Dynamics). The Lipschitz constant of a vector function
can be bounded by the induced matrix norm of its Jacobian. The Jacobian of ff (z, ud, p;M) with
respect to z = (CT , CI) is computed:

Jzff =

[
a(1−2bCT )−nCI−κ(p)ud −nCT

rhCI
(h+CT )2

−mCI −d+
rCT

h+CT
−mCT

]
An upper bound on the elements of this matrix over the domain D is sought. Using the bounds
0 ≤ CT ≤ CT,max = 1/b, 0 ≤ CI ≤ CI,max, and 0 ≤ κ(p) ≤ κ0, the absolute value of each
entry can be bounded. For instance, | ∂f1

∂CT
| ≤ a(1 + 2bCT,max) + nCI,max + κ0ud,max. The global

Lipschitz constant Lf can then be bounded by any matrix norm, for instance, the maximum absolute
column sum norm (∥ · ∥1), which yields the expression in the lemma statement after substituting the
explicit value for CI,max.

H.1 Proof of Lemma 6: Lipschitz Continuity of the Slow Dynamics

Lemma 6 (Lipschitz Continuity of the Slow Dynamics). The difference ∥fs(M1,um) −
fs(M2,um)∥ is analyzed:

fs(M1)− fs(M2)

= diag(M1)(g +AM1)− diag(M2)(g +AM2)

= diag(M1 −M2)g

+ diag(M1)AM1 − diag(M2)AM2

Using the identity diag(u)Au− diag(v)Av = diag(u− v)Au+ diag(v)A(u− v) yields:

fs(M1)− fs(M2) = diag(M1 −M2)(g +AM1)

+ diag(M2)A(M1 −M2)

Taking norms and using ∥diag(v)∥op = ∥v∥∞ ≤ ∥v∥:

∥fs(M1)− fs(M2)∥ ≤ ∥M1 −M2∥(∥g∥+ ∥A∥op∥M1∥)
+ ∥M2∥∥A∥op∥M1 −M2∥

For ∥M1∥, ∥M2∥ ≤ R, it follows that ∥fs(M1)− fs(M2)∥ ≤ (∥g∥+2R∥A∥op)∥M1−M2∥. The
constant provided in the lemma statement is a slightly looser but correct bound.
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H.2 Proof of Lemma 7: Global L∞ Bounds for Fast States

Lemma 7 (Global L∞ Bounds for Fast States). Tumor Population (CT ): The dynamics of CT are
given by ĊT = aCT (1− bCT )− nCTCI − κ(p)udCT . Since nCTCI ≥ 0 and κ(p)udCT ≥ 0, the
inequality ĊT ≤ aCT (1− bCT ) holds. By the Comparison Lemma [23], CT (t) is bounded by the
solution to the logistic equation ẋ = ax(1− bx), which has a globally stable equilibrium at x = 1/b.
Therefore, for any initial condition, CT (t) → [0, 1/b], which implies CT (t) is uniformly bounded by
CT,max = max{CT (0), 1/b}. For analysis over D, the invariant set bound 1/b is used.

Immune Population (CI ): The dynamics are ĊI = s(M) − dCI + CI

(
rCT

h+CT
−mCT

)
. Let

g(CT ) = rCT

h+CT
− mCT . For CT ∈ [0, 1/b], g attains its maximum at the unique stationary

point in (0, 1/b] or at an endpoint. Compute g′(CT ) =
rh

(h+CT )2 − m. Setting g′(CT ) = 0 gives
C⋆

T = h
(√

r
mh − 1

)
when r

mh > 1; otherwise g is decreasing and the maximizer is CT = 0.
Enforcing the domain constraint yields Cmax

T = min{max{0, C⋆
T }, 1/b}. Thus

gmax = max
{
0,

rCmax
T

h+ Cmax
T

−mCmax
T

}
.

A closed form when Cmax
T = C⋆

T is gmax = r
(
1 −

√
mh
r

)2
−mh

(√
r

mh − 1
)

, which simplifies

to gmax =
(√

r −
√
mh

)2 −mh
( √

r√
mh

− 1
)
=

√
rmh

(√
r

mh − 1
)2

; if this point lies beyond 1/b,

use the endpoint CT = 1/b instead. Consequently, the dynamics satisfy ĊI ≤ smax − (d− gmax)CI ,
where smax = sup s(M). Provided d > gmax, this scalar linear inequality yields the uniform bound
CI(t) ≤ CI,max := smax/(d− gmax).

Proposition 6 (Prerequisites for System Decomposition). Let the conditions of Theorem 6 hold.
Then the Jacobian of the closed-loop fast subsystem, Jf (M) = ∂ff/∂z evaluated at the equilibrium
zeq(M) = zfree(M), has eigenvalues λi(M) satisfying Re(λi(M)) ≤ −λmin < 0 for all M ∈
Msafe, where λmin > 0 is a uniform constant. Consequently, the slow manifold M0 = {(z,M)|z =
zeq(M),M ∈ Msafe} is normally hyperbolic.

Proof of Proposition 6. This proposition is a direct consequence of Theorem 3 and Theorem 6.
Theorem 3 established that for any M ∈ Msafe, the Jacobian J(M) of the closed-loop fast
subsystem is Hurwitz. Theorem 6, through a specific Lyapunov function, provides a quantitative
lower bound on the rate of convergence, which translates to an upper bound on the real parts of the
eigenvalues of J(M). The calculation shows Re(λi) ≤ −λmin < 0, where λmin depends on the
stability margin δ.

The uniformity of the spectral gap follows from the uniformity of the stability margin δ over the
compact set Msafe. Since λmin is a continuous function of δ and other parameters, it is bounded
away from zero on Msafe.

The eigenvectors of a matrix are continuous functions of its entries, provided there are no repeated
eigenvalues. While we do not exclude repeated eigenvalues, the eigenspaces vary continuously.
This is a standard result from matrix perturbation theory [40] and is sufficient for the application of
Fenichel’s theorems.

H.3 Proposition and proof: Robustness to actuation delay

Proposition 7 (Robustness to Delay). Consider the system with a delay τ > 0 in immune recruitment
so that the fast dynamics depend on s(M(t− τ)). If a priming phase of duration Tp > τ maintains
M(t) ∈ Msafe and small-gain conditions Ls/λ < 1, λ τ < π/2 hold (with Ls the Lipschitz
constant of s and λ from Theorem 6), then the tumor-free equilibrium remains asymptotically stable.

H.4 Proof of Proposition 7: Robustness to Delay

Proof. The proof relies on a small-gain argument for delay systems. 1. System Decomposition: The
system can be viewed as an interconnection of a stable linear system (the delay operator) and a stable
nonlinear system (the fast dynamics). The fast dynamics, with input st = s(M(t− τ)), are proven
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to be globally exponentially stable (GES) in Theorem 6. The mapping from the input signal s(·) to
the state z(·) is input-to-state stable (ISS). 2. Small-Gain Theorem: A variant of the small-gain
theorem for time-delay systems [23] is used. Using the Lyapunov function from Theorem 6, one
derives an ISS estimate ∥z(t)−zfree∥ ≤ c1e

−λt∥z(0)−zfree∥+γf sup0≤s≤t |s(M(s))−s(M∗)|,
where γf =

√
max{1,β}

min{1/2,β/2}
1

min{nδ/(2d), d/2} is an explicit ISS gain. The gain of the delay operator
is 1, and the gain of s(M) is its Lipschitz constant, Ls. Stability is guaranteed if γfLs < 1 and the
delay satisfies a standard phase margin bound λ τ < π/2. 3. Priming Phase: The conditions above
are dimensionally consistent. The ’priming phase’ ensures the system starts within the domain of
attraction. By maintaining M(t) in the safe set for t ∈ [0, Tp] with Tp > τ , for t > Tp the input
s(M(t − τ)) to the fast dynamics corresponds to a safe microbiome state. This guarantees that
the system state remains within the basin of attraction of the tumor-free equilibrium, even with the
delay.

I Model Formulation and Auxiliary Results

I.1 Verification of Regularity Conditions

The specific dynamics in this model satisfy the regularity assumptions outlined in this appendix.
To capture the hierarchical and adversarial nature of these interactions, the system is modeled as a
two-timescale differential game. The fast timescale represents the immediate, competitive interaction
between the clinician’s drug administration and the tumor’s evolutionary response. The slow timescale
captures the clinician’s strategic manipulation of the tumor microenvironment via microbiome-based
therapies. This structure allows decomposition of the complex, multi-scale problem into a tractable
hierarchy of control problems, providing a rigorous foundation for designing robust and effective
cancer therapies.

The formal verification of Assumptions 1–3 follows from the specific structure of the dynamics
in Eqs. (1) and (2), combined with the compactness of the control sets and the smoothness of the
functional forms κ(p) and s(M).

I.2 Uniform Boundedness of Fast States

Prior to ecological intervention, boundedness of tumor and immune populations must be established.
The following lemma provides global upper bounds on the fast-timescale states, which depend solely
on biological parameters and are independent of the safe set condition. The proof of this result is
provided in Lemma 7 below.

I.3 Justification of Functional Forms

Remark 4 (Justification of Functional Forms). The affine structure of s(M) = s0 +
∑

i siMi

represents a first-order Taylor approximation of a more complex, nonlinear biological response.
Similarly, the affine structure of s(M) = s0 +

∑
siMi represents a first-order Taylor approximation

of a more complex, nonlinear immune response to microbiome composition. This is justified for
therapeutic interventions that cause small to moderate perturbations of the microbiome around a
baseline state. This simplification is justified for small to moderate perturbations of the microbiome
composition around a baseline, a common scenario in therapies like probiotic administration. The
form of the drug efficacy function κ(p) = κ0/(1 + p) models a saturating cost-benefit relationship
for resistance. Initial investments in resistance (small p) provide a significant reduction in drug
efficacy, but as resistance becomes very high, further investments yield diminishing returns. These
functional forms are standard in theoretical ecology and mathematical oncology [26], chosen to strike
a balance between biological realism and the analytical tractability required to expose the core control
principles of the system.

I.4 Nonlinear perturbations and robust thresholds

The following local result clarifies when the LQ threshold and stability conclusions persist under
small nonlinear perturbations of costs/dynamics.
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Proposition 8 (Local perturbation of the LQ threshold). Suppose the coupled HJBI system for a
general-sum nonlinear fast game admits locally unique, Lipschitz viscosity solutions with a com-
parison principle in a neighborhood of the tumor-free equilibrium, and the feedback equilibrium
strategies are Fréchet differentiable in a neighborhood of the LQ baseline. Then there exists a radius
ρ > 0 such that, for perturbations of the LQ costs/dynamics of size ≤ ρ, a critical threshold sNL

crit,max
is well-defined and satisfies

|sNL
crit,max − sLQ

crit,max| ≤ C ∥(ℓd, ℓp, ff )− (ℓLQ
d , ℓLQ

p , fLQ
f )∥,

for an explicit constant C depending on the linearized HJBI operator. If s(M) > sNL
crit,max + δ, the

tumor-free equilibrium remains locally asymptotically stable.

Equilibrium multiplicity and robust threshold. Define the robust critical threshold by the
supremum over the equilibrium correspondence E(z):

srobcrit,max := sup
z∈D

sup
(ud,p)∈E(z)

d

n

(
a− κ(p)ud

)
≤ d

n
a =: scrit,max. (48)

Consequently, if the slow controller maintains s(M) ≥ scrit,max + δ, the conclusions of Theorem 6
hold for any equilibrium selection. Moreover, for any nonlinear variant satisfying Proposition 8, one
has sNL

crit,max ≤ srobcrit,max ≤ scrit,max.
Remark 5 (Justification of the Continuous Resistance Model). The tumor’s drug resistance level,
p(t), is modeled as a continuous control variable. This continuous variable p(t) is formally interpreted
as the population-averaged resistance, a common and powerful abstraction in adaptive dynamics and
evolutionary game theory. It represents a mean-field approximation of the underlying discrete clonal
distribution. This choice is motivated by the need for analytical tractability; it allows the formulation
of the tumor’s adaptation as an optimal control problem, for which the powerful machinery of
Hamilton-Jacobi-Bellman (HJB) theory can be leveraged. While a simplification, it will be rigorously
demonstrated in Section V (Theorems 9 and 10) that controllers synthesized based on this continuous
model are robustly effective when applied to a more realistic, structurally different system of discrete
competing clones.
Remark 6 (Justification of LQ Game Structure). It is acknowledged that Assumption 5, which
imposes a Linear-Quadratic (LQ) structure on the fast game, is a significant simplification of the
complex, nonlinear biological reality. This assumption is a cornerstone of the paper’s analytical
tractability, as it guarantees the existence of a unique, well-behaved Markovian Nash equilibrium
that can be characterized by the solution to coupled HJB-Isaacs equations (a set of coupled Riccati
equations in the linear-quadratic case). It is adopted here to establish a foundational, baseline
theoretical result in the most well-behaved setting. This provides a clear and rigorous understanding
of the system’s core strategic dynamics. The demonstrated robustness of the resulting controller to
significant structural uncertainties (Section V) suggests that the principles derived from this tractable
model are more general. Relaxing this assumption to general nonlinear, non-quadratic games, which
necessitates advanced numerical methods for state-dependent, non-unique equilibria, is a principal
direction for future research.

I.5 Justification of Game Structure

Remark 7 (Justification of Game Structure). The assumption of affine dynamics in controls and
quadratic costs (a Linear-Quadratic or LQ game structure) is a cornerstone of this paper’s analytical
tractability. It guarantees the existence of a unique, well-behaved Nash equilibrium that can be
characterized by the solution to a set of coupled Riccati-like equations (or, in this state-feedback
context, the HJBI equations). While biological reality is inherently nonlinear, the LQ structure
can be viewed as a local approximation of the true game around a nominal therapeutic trajectory.
The uniform strong convexity/concavity, guaranteed by the quadratic control costs (rd, rp > 0), is
a crucial technical condition that ensures the best-response maps are contractions, leading to the
uniqueness of the equilibrium. Although restrictive, these assumptions allow the establishment of
a rigorous, analytical baseline framework. Relaxing these conditions is a principal direction for
future work, which will likely involve numerical solutions and analysis of games with multiple,
state-dependent equilibria.
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I.6 Justification of Timescale Separation

Remark 8 (Choice of ϵ and Timescale Separation Validity). The singular perturbation approach
hinges on a clear separation of timescales, quantified by the parameter ϵ ≪ 1. This is justified by
comparing the characteristic times of the biological processes involved:

• Fast Dynamics (Tumor-Immune): T-cell activation and tumor cell killing occur on a
timescale of days (1-7 days).

• Slow Dynamics (Microbiome Modulation): Therapeutic modulation of the gut microbiome
composition through interventions like fecal microbiota transplantation (FMT) or long-term
probiotic courses leads to stable changes over weeks to months (14-60 days).

The ratio of these timescales gives ϵ ≈ (days)/(weeks) ≈ 1/7 to 1/30, yielding a plausible range
of ϵ ∈ [0.03, 0.15]. The theoretical results require ϵ < ϵ0 = λmin/∥DMfs∥, where ϵ0 depends on
the stability properties of the fast system and the sensitivity of the slow system. For the parameters
used in this study (Table 3), ϵ0 ≈ 0.15 − 0.2 is computed, which provides a valid margin for the
biologically estimated range of ϵ. While rapid microbiome shifts can occur (for instance, due to
antibiotics), this framework models the slower, controlled modulation used for therapeutic benefit.

J Computational Framework: Methods and Validation

Our computational pipeline leverages recent advances in high-performance in-storage computing for
genomic and metagenomic data processing [41–46]. These architectures enable efficient preprocess-
ing of large-scale biological datasets required for patient-specific parameter estimation.

To evaluate robustness, we test the control strategy against multiple structural model perturbations:

1. Clonal Evolution: 5-clone model with heterogeneous resistance, analyzed using methods
adapted from genomic sequence comparison [47, 48]

2. Immune Dysfunction: Reduced T-cell infiltration and impaired activation
3. Microbiome Complexity: 10-species ecosystem with complex interactions, characterized

using metagenomic profiling techniques [49–51]
4. Combined Perturbations: All above simultaneously

J.1 Solution Method via Physics-Informed Neural Networks (PINNs)

The coupled HJBI equations from Theorem 3 are nonlinear partial differential equations that do not
admit closed-form solutions in general. They are solved numerically using Physics-Informed Neural
Networks (PINNs).

• Network Architecture: For each value function (Vd, Vp) and the associated control strate-
gies (u⋆

d, p
⋆), a fully connected neural network (4 hidden layers, 64 neurons/layer, tanh

activation) is used to approximate the solution, e.g., Vd(z) ≈ V̂d(z;θd).
• Loss Function: The network parameters θ are trained by minimizing a loss function that

includes the residual of the HJBI equations, boundary conditions, and regularization terms.
The primary component is the mean squared HJBI residual, evaluated at a large number of
collocation points {zi} sampled from the state space D:

LHJB(θ) =
1

Ncoll

Ncoll∑
i=1

∣∣∣∣∇V̂d(zi;θd) · ff (zi, û⋆
d, p̂

⋆)

+ ℓd(zi, û
⋆
d)

∣∣∣∣2
where the controls û⋆

d, p̂
⋆ are also derived from the network outputs via the first-order

optimality conditions.
• Training and Validation: The ADAM optimizer is used with a learning rate of 10−3 on
104 collocation points generated via Latin hypercube sampling. Convergence is validated by
monitoring the decay of the loss function and by comparing the PINN solution to solutions
from finite-difference methods on coarse grids.
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Proposition 9 (Trajectory Sensitivity to Control Approximation). Suppose the approximate control
strategies û∗

d, p̂
∗ from the PINN solution satisfy ∥û∗

d − u∗
d∥∞ ≤ ϵu and ∥p̂∗ − p∗∥∞ ≤ ϵp for known

bounds ϵu, ϵp. Then the error between the true optimal trajectory z(t) and the trajectory under the
approximate controls ẑ(t) is bounded by:

∥z(t)− ẑ(t)∥ ≤ (Lf,uϵu + Lf,pϵp)

Lf
(eLf t − 1) (49)

where Lf , Lf,u, Lf,p are the Lipschitz constants of the fast dynamics with respect to the state and
control inputs.

Proof. Let z(t) be the trajectory under exact optimal controls (u∗
d, p

∗) and ẑ(t) be the trajectory under
approximate PINN controls (û∗

d, p̂
∗). The error dynamics are ė(t) = ż(t)− ˙̂z(t) = ff (z, u

∗
d, p

∗)−
ff (ẑ, û

∗
d, p̂

∗). Adding and subtracting terms:

ė = [ff (z, u
∗
d, p

∗)− ff (ẑ, u
∗
d, p

∗)]

+ [ff (ẑ, u
∗
d, p

∗)− ff (ẑ, û
∗
d, p̂

∗)]

Taking norms and using the Lipschitz continuity of ff in its state and control arguments (with
constants Lf , Lf,u, Lf,p):

∥ė∥ ≤ Lf∥e∥+ Lf,u∥u∗
d − û∗

d∥∞ + Lf,p∥p∗ − p̂∗∥∞
The control approximation errors are given as ∥u∗

d − û∗
d∥∞ ≤ ϵu and ∥p∗ − p̂∗∥∞ ≤ ϵp. This yields

the differential inequality:
∥ė∥ ≤ Lf∥e∥+ (Lf,uϵu + Lf,pϵp)

Applying the Grönwall-Bellman inequality with e(0) = 0 gives the desired bound:

∥e(t)∥ ≤ Lf,uϵu + Lf,pϵp
Lf

(eLf t − 1)

Proposition 10 (Computational Complexity of PINN Solution). Consider the coupled HJB equations
for the fast game with state dimension nz = 2. Let εtol be the desired L2 approximation error.
Assuming the value functions Vd, Vp belong to a Sobolev space W s,2(D) with sufficient regularity
s > nz/2 and the PINN is trained with a first-order optimizer, the computational complexity to
achieve this error is:

O (Nparams ·Ncolloc ·Niter) (50)
where the number of network parameters (Nparams), collocation points (Ncolloc), and optimization
iterations (Niter) scale polynomially with 1/εtol and the state dimension nz .

Proof. The computational complexity is the product of three factors: the number of network
parameters (Nparams), the number of collocation points (Ncolloc), and the number of optimiza-
tion iterations (Niter). 1. Nparams: For a fully connected network with depth L and width W ,
Nparams = O(LW 2). 2. Ncolloc: Theoretical bounds for PINN approximation error relate the L2

error ϵtol to the number of collocation points. For functions in the Sobolev space W s,2(D), Sobolev
embedding theorems state that to achieve an error of ϵtol, Ncolloc = O(ϵ

−nz/s
tol ) is needed, where

nz is the state dimension. 3. Niter: For first-order optimization methods like stochastic gradient
descent, the number of iterations required to reach an ϵtol-optimal solution is typically polynomial in
1/ϵtol, often cited as O(ϵ−2

tol ) for non-convex problems. Combining these gives the stated complexity.
While the Sobolev regularity s is generally unknown, these bounds provide a theoretical basis for
how complexity scales with desired accuracy and problem dimension.

J.2 Model Parameterization

Code and full reproducibility details are consolidated in Appendix M.

We make the following key conclusions. SKCM priors yield higher effective n and favorable a
relative to CRC (Table 4), enabling more time above threshold with the same microbiome actuation
budget. This places more SKCM trajectories in the supercritical regime s(M)> scrit,max where
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Table 3: Model Parameters; conservative threshold used uniformly: scrit,max = d
na

Parameter Value Description ∂scrit,max/∂(·)
a 0.5 Tumor growth rate d

n
b 0.1 Tumor carrying capacity 0
n 0.1 Immune predation rate −d a

n2

d 0.2 Immune cell death rate a
n

r 0.5 Immune stimulation rate 0
h 1.0 Michaelis-Menten constant 0
m 0.1 Immune inactivation rate 0
κ0 1.0 Drug efficacy 0

the fast drift guarantees convergence (Theorem 6). CRC remains responsive but requires longer or
stronger priming to achieve comparable margins.

The model parameters in Table 3 are selected to be representative of melanoma immunology, informed
by values and ranges reported in the literature [30, 14, 17]. The analytic sensitivities quantify how
the global threshold shifts with key parameters; numerical sensitivity analysis under ±50% variations
confirmed qualitative robustness of the bifurcation margin.

K Comprehensive empirical results

We provide detailed cohort descriptions, parameter prior summaries, ablations, and statistical tests
supporting Section 8.1.

Table 4: Cohorts and parameter priors used in simulations.

Cohort N Source a prior n prior d prior κ0 prior

SKCM 100 TCGA SKCM N (0.5, 0.12) N (0.1, 0.022) N (0.2, 0.042) N (1.0, 0.22)
CRC (COAD/READ) 100 TCGA COAD/READ N (0.45, 0.12) N (0.09, 0.022) N (0.22, 0.052) N (0.9, 0.22)

We make the following key conclusions from comprehensive outcomes and ablations.

• Priming is causally necessary: Removing the priming phase sharply reduces margin
and eradication, showing that crossing the bifurcation threshold—not merely drug dos-
ing—drives cures.

• Safety and robustness: Hierarchical control exhibits the fewest safety events while achiev-
ing the highest eradication rates, consistent with lower dose indices and the theoretical
margin buffer δ.

• Predictive surrogate: Time-above-threshold is a strong predictor of eradication and aligns
with the singular perturbation picture: once on the slow manifold with s(M)>scrit,max,
the fast subsystem converges with rate λ.

• Transfer across indications: The same controller design principle generalizes from SKCM
to CRC with altered priors; absolute performance differences match expectations from
cohort-specific (a, n, d) distributions.

• Statistical significance: Wilcoxon tests (Holm-corrected) confirm all hierarchical vs. base-
line differences at p < 0.01 across key endpoints, supporting the theoretical mechanism
with strong empirical evidence.

Statistical testing. Pairwise comparisons use two-sided Wilcoxon tests with Holm correction across
strategies per cohort. All hierarchical vs. baseline differences in eradication rates, margin min, and
time-above-threshold are significant at p < 0.01.
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Table 5: Outcomes and ablations. Mean± 95% CI over 100 runs.

Cohort Strategy Eradication% Margin min Time>scrit% Terad Dose index Safety events

SKCM Hierarchical 89 ± 6 0.12 ± 0.03 92 ± 5 142 ± 18 0.41 ± 0.05 0.3 ± 0.6
SKCM + no priming 51 ± 8 0.01 ± 0.02 61 ± 9 > 365 0.48 ± 0.05 1.1 ± 0.9
SKCM Adaptive-only 32 ± 9 −0.04 ± 0.02 41 ± 10 > 365 0.57 ± 0.06 1.4 ± 1.0
SKCM MTD 3 ± 3 −0.08 ± 0.02 19 ± 7 > 365 0.98 ± 0.04 2.3 ± 1.2
CRC Hierarchical 76 ± 7 0.09 ± 0.02 88 ± 6 169 ± 21 0.49 ± 0.06 0.6 ± 0.7
CRC + no priming 43 ± 8 0.00 ± 0.02 58 ± 8 > 365 0.55 ± 0.06 1.5 ± 1.1
CRC Adaptive-only 27 ± 8 −0.03 ± 0.01 38 ± 9 > 365 0.62 ± 0.07 1.8 ± 1.2
CRC MTD 5 ± 4 −0.07 ± 0.02 22 ± 6 > 365 1.04 ± 0.05 2.7 ± 1.4

L Extended Discussion and Future Work

L.1 Limitations

While this paper establishes a rigorous framework, several limitations must be acknowledged.

1. Microbiome Actuation Lag: The model assumes the immune influx s(M) responds
instantaneously to changes in M, whereas a biological lag τm exists. If this lag is too large
(for instance, τm > π/(2λmin)), it can destabilize the fast-timescale dynamics. Future work
should incorporate this delay explicitly, for instance by using Smith-predictor structures in
the controller design.

2. Positivity of Control: The microbiome control um (such as probiotic administration) is
strictly non-negative. This constrains the reachable set of microbiome states. While the
reachability analysis accounts for this, controllability under positivity constraints is weaker
than unconstrained controllability and may require longer therapeutic horizons.

3. Model Simplifications: The ODE model assumes well-mixed populations, neglecting
spatial heterogeneity within the tumor. Extending the stability analysis to reaction-diffusion
PDE models is a significant but important challenge, requiring the use of coercive Sobolev
estimates and functional analysis techniques.

L.2 Future Research Directions

This work opens several avenues for future research.

• Nonlinear Game Theory: Extending the framework to general nonlinear, non-quadratic
differential games is a primary theoretical goal. This will require advanced numerical
methods for solving fully nonlinear HJBI equations and developing control strategies that
can handle multiple, state-dependent Nash equilibria.

• Data-Driven and Patient-Specific Modeling: A critical step towards clinical translation is
the development of methods to learn the function s(M) and other patient-specific parameters
from clinical data. This will involve integrating techniques from system identification,
machine learning on high-dimensional microbiome data (e.g., metagenomic sequences), and
causal inference to create personalized therapeutic models.

• Multi-Objective Control: The current framework combines tumor burden and treatment
cost into a single objective. A multi-objective optimization approach could provide clinicians
with a Pareto front of optimal strategies, allowing for a more nuanced trade-off between
efficacy, toxicity, and cost.

M Data availability

All data are publicly accessible. Tumor and immune-related priors for Skin Cutaneous Melanoma
(SKCM) are derived from TCGA SKCM via the GDC Portal (https://portal.gdc.cancer.
gov/). Microbiome-related parameters are derived from raw sequencing data in Gopalakrishnan et
al., SRA accession SRP115993 (https://www.ncbi.nlm.nih.gov/sra/SRP115993). Colorectal
cancer (CRC) priors are derived from TCGA COAD/READ cohorts via GDC; cohort construction
and prior generation match the SKCM pipeline (Appendix Table 4). No patient-identified data are
used.

36

https://portal.gdc.cancer.gov/
https://portal.gdc.cancer.gov/
https://www.ncbi.nlm.nih.gov/sra/SRP115993


N Code availability

All source code, configuration files, scripts to retrieve all used datasets, and a fully reproducible
evaluation will be made publicly available on Github. Additionally, we will provide: (i) a Docker-
file and environment.yml for reproducible environments; (ii) exact config files to regenerate all
tables/figures; and (iii) continuous-integration checks for schema and seed determinism.
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O Supplemental Figures

Figure S1: Therapeutic Landscape Topography. The stability of the tumor-free equilibrium is
governed by the immune influx parameter s(M). The critical threshold scrit separates the parameter
space into two regimes. For s(M) < scrit, the system is bistable, with both a tumor-free state (local
minimum) and a stable tumor-present state (global minimum) coexisting. The hierarchical controller’s
objective is to steer the slow state M such that s(M) crosses into the s(M) > scrit regime, where
a transcritical bifurcation eliminates the tumor-present equilibrium, rendering the tumor-free state
globally stable. The landscape illustrates how the slow controller reshapes the stability landscape to
guarantee therapeutic success.
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Figure S2: Hierarchical Control Paradigm Establishes Curative Trajectories. (A) Maximum
Tolerated Dose (MTD) induces strong selective pressure, leading to rapid failure. (B) Standard
adaptive therapy, lacking ecological control, contains the tumor transiently but fails due to an
unsupportive microenvironment. (C) The proposed hierarchical strategy achieves robust, in silico
cure. (D) A 50-day "ecological priming" phase steers the microbiome towards a pro-immunogenic
state. (E) This landscape engineering drives the immune influx parameter s(M) across the critical
bifurcation threshold scrit, a mathematically guaranteed condition for stability (Theorem 5). (F)
Deployed onto this engineered landscape, the fast-acting drug therapy drives the tumor to extinction
with high efficacy.
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Figure S3: Inherent Robustness to Unmodeled Actuation Delays. The hierarchical controller is
tested against a significant, unmodeled delay of τ = 14 days between microbiome state changes
and their systemic immunological effects. (A) The controller navigates the evolutionary state space
to successfully eradicate the tumor (green trajectory), avoiding the resistance trap that plagues
conventional adaptive therapy (red trajectory). (B) The controller’s intended immune influx (purple)
versus the delayed systemic response (yellow), highlighting the significant information deficit the
controller must overcome. (C) The resulting cytotoxic T-lymphocyte (CTL) population, showing a
damped but effective response. (D) The applied drug dose, demonstrating the controller’s corrective
actions in response to the delayed dynamics.
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Figure S4: Superior Therapeutic Resilience in Stochastic Environments. Controller performance
was evaluated over 100 Monte Carlo simulations incorporating demographic noise. (A) Kaplan-
Meier analysis reveals the profound superiority of the hierarchical strategy (89% cure rate) over
adaptive therapy (32%) and MTD (3%). (B) A representative MTD trajectory demonstrates failure via
explosive growth of resistant clones. (C) A representative adaptive therapy trajectory shows failure
due to immune exhaustion. (D) A representative hierarchical control trajectory illustrates robust
and sustained tumor eradication despite significant stochastic perturbations, validating the strategy’s
resilience.
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Figure S5: Robust Efficacy Under Sparse and Noisy Partial Observations. The hierarchical
controller is implemented using an Extended Kalman Filter (EKF) to estimate the full system state
from sparse (measurements every 3 days) and noisy (15% Gaussian noise) observations of only
the total tumor burden. (A) The controller, guided solely by the EKF state estimate, successfully
eradicates the tumor, demonstrating robust performance under realistic information constraints. (B)
The EKF’s estimate of the total tumor burden CT rapidly converges to the true, unobserved state.
(C) The EKF provides accurate real-time estimates of the unobserved immune cell population CI ,
confirming the observer’s ability to infer latent dynamical states critical for control.
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