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NoTeNet: Normalized Mutual Information-Driven Tuning-free
Dynamic Dependence Network Inference Method for Multimodal

Data
Anonymous Author(s)

Abstract

Dynamic Dependence Network (DDN) inference is crucial for un-

derstanding evolving relationships in multimodal time series web

data, with broad applications in fields like medical and financial net-

work analysis. The inherent dynamic nature, temporal continuity,

and heterogeneous data sources in multimodal time series data pose

three fundamental challenges: computational efficiency, prediction

stability and robustness, and modality quality disparity. Previous

methods, generally lacking utilization of multiple modalities, either

struggle with computational efficiency due to the time-intensive

manual hyperparameter tuning, or compromise prediction stability

and robustness by neglecting temporal coherence. To address these

challenges, we propose a Normalized mutual information-driven

Tuning-free Dynamic Dependence Network inference method for

multimodal data, namely NoTeNet. NoTeNet provides a promising

paradigm that can integrate two different datamodalities to enhance

prediction accuracy. It uses normalized mutual information trans-

forms noisy auxiliary data into relationship matrices and employs

a kernel function for smooth temporal estimation. Additionally,

NoTeNet significantly reduces the need for manual hyperparameter

adjustments, offering a tuning-free approach with theoretical guar-

antees. On various synthetic datasets and real-world data, NoTeNet

demonstrates superior prediction accuracy and efficiency without

the need for hyperparameter tuning, making it potential for a wide

range of web data applications.

CCS Concepts

• Computing methodologies → Learning in probabilistic

graphical models; • Networks→ Network structure.

Keywords

Dynamic Dependence Network, Multimodal Fusion, Web Time

Series Data
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1 Introduction

Dynamic Dependence Network (DDN) inference is a pivotal task in

web data analysis, emphasizing the study of evolving relationships

between entities over time. By analyzing temporal dependencies,

DNN offers insights into evolving interactions, which are vital

for the analysis and monitoring of diverse web systems, includ-

ing finance, medical networks, and social platforms. For instance,

DDN inference is applied to functional Magnetic Resonance Imag-

ing (fMRI) data to predict functional connectivity networks in the

brain for neurological and psychiatric disorder diagnosiss [43]. Pre-

dominantly dependent on (fMRI), the prediction cannot accurately

capture the brain’s rapid dynamic shifts because of fMRI’s slow

sampling rate [15]. With technological advancements, incorporat-

ing brain data from modalities like Electroencephalography (EEG)

has become a promising strategy to enhance prediction. However,

Electroencephalography (EEG), despite its high temporal resolution,

has been notably underutilized, a situation largely attributable to

the difficulties in integrating data from different modalities [35]. A

similar situation occurs in stock-news data analysis for financial

network, where stock data alone cannot capture external events or

market sentiment [19, 27]. Despite the difficulty, their multimodal

integration presents a highly potential avenue for advancing DDN

research [22, 46].

There is a range of methodologies [5, 21, 23] that employ preci-

sion matrix estimation to predict dynamic dependence networks.

These methods utilize the inverse of the covariance matrix to high-

light the conditional independence among different entities, thereby

offering a more precise understanding of the interaction network.

However, these methods still encounter three challenges in the

process of multimodal web data fusion and inference:

Firstly, Computational efficiency. In dynamic network predic-

tion, frequent estimation of networks across multiple time points

generates a large computational burden, especially when real-time

data is continuously updated. Relying on manual parameter ad-

justments for each time point, such as selecting regularization pa-

rameters, becomes impractical under these conditions. Most of the

previous works [2, 24] in precision matrix estimation typically rely

on the selection of an appropriate regularization parameter value

to achieve optimal performance. However, setting the level of regu-

larization requires computationally intensive methods like cross-

validation, thereby compounding the challenge. Consequently, it is

essential to develop an estimator that can achieve optimal perfor-

mance without any manual parameter adjustments.

Secondly, Prediction stability and robustness. In web time

series data, network structures across adjacent timestamps often

exhibit strong similarity and continuity in a period. For instance,

during continuous music listening, brain functional connectivity

in auditory regions between adjacent timestamps remains highly

similar, reflecting the uninterrupted nature of the stimulus [17].
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Previous methods [11, 16], which assume temporal independence,

typically estimate precision matrices separately for each timestamp.

This practice can overlook temporal coherence, where similar pat-

terns across adjacent time points may exist, and accounting for

these could improve prediction stability and robustness.

Finally, Modality quality disparity. In real-world settings, the

quality of different modalities usually varies due to unexpected en-

vironmental factors or sensor issues. fMRI, classified as the targeted

modality, serves as the primary variable of interest. These datasets

typically follow a direct temporal sequence and are the core focus

for prediction or analysis. They tend to have higher accuracy, lower

noise levels, and greater reliability and are generally assumed to

follow a sub-Gaussian distribution. EEG, as the auxiliary modality,

provides supplementary information that enriches the analysis,

albeit with higher noise and no clearly defined distribution [1]. The

lower data quality of the auxiliary modality compared to the tar-

geted modality can lead to unreliable multimodal fusion outcomes.

Therefore, it is desirable to develop a method capable of effectively

processing and integrating information from both modalities, de-

spite their substantial differences in their noise characteristics, data

distributions, and other inherent properties [37].

To address the above challenges, we proposeNoTeNet, a Normalized

mutual information-driven Tuning-free DynamicDependenceNetwork

inference method for multimodal data. In the first stage, we intro-

duce the normalized mutual information to transform the auxiliary

dataset into the relationship matrices, aligning it temporally with

the samples from the targeted dataset. As mentioned, auxiliary data

are noisy and follow unknown distributions, in which traditional

measures like Pearson correlation fail to capture non-linear depen-

dencies. As a robust alternative, normalized mutual information

does not assume a specific data distribution. By the normalizing

step, it makes the measure less sensitive to large entropy differences

and ensures interpretability between 0 and 1, which enhances its

robustness to noise.

In the second stage, Instead of the temporal independency as-

sumption, we take full advantage of the data from adjacent times-

tamps by using a kernel function to ensure the temporal coherence.

To lower the huge tuning computational cost, our method greatly

simplifies the tuning procedure, verifying the tuning-free property

with a theoretical guarantee.

Overall, our contribution can be summarized as follows:

• Novel DDN paradigm for multimodal data: We introduce

an innovative DDN inference designed to exploit the under-

lying time-varying graph structure with multimodal data

fusion.

• Tuning-free method: The penalty level of NoTeNet is auto-

matically set to achieve the optimal convergence rate for

the estimation of each column of the precision matrices.

• Theoretical guarantee: We detailedly study the theoretical

properties of the proposed estimator. We guarantee the

estimation consistency and convergence rate of our method

and verify its tuning-free properties.

• Experimental evaluation: On multiple synthetic datasets,

NoTeNet outperforms the other baselines in prediction ac-

curacy without the need for hyperparameter tuning. We

also implement our method on the real-world datasets and

demonstrate the efficiency of NoTeNet.

2 Related Work

2.1 Dynamic Dependence Network

Dynamic Dependence Network (DDN) [4, 48] is a model used to

capture and analyze time-varying relationships among multiple

entities within a network. Unlike static networks, which assume

fixed connections over time, DDNs allow for the dynamic adapta-

tion of connections, reflecting how dependencies between entities

evolve. This makes DDNs particularly suitable for analyzing web

data, where interactions and relationships between entities can

change rapidly over time.

Statistical learning methods [12, 40, 47] for DDN estimation

provide several advantages, including interpretability, theoretical

guarantees, and a lightweight nature. They are computationally

efficient, requiring fewer parameters and less training data, making

them suitable for real-time or resource-constrained environments.

Such approaches can be categories into time series models [32] and

graphical models [42].

Time series models. Traditional time series models, such as vector

autoregression (VAR) and state-space models, are often used to cap-

ture time-dependent interactions. These models excel in identifying

linear relationships between entities over time and are particularly

useful in simpler dynamic networks. However, they tend to be less

effective when dealing with high-dimensional datasets [33] and

complex interaction structures, which are typical in many web data

applications [48].

Graphical Models. Precision matrix estimation-based graphical

models, typically assuming Gaussian or sub-Gaussian distributions,

have become a central focus for DDN estimation within statistical

learning. These include methods such as time-varying graphical

lasso, dynamic Gaussian graphical models (DGGM) [34], and regu-

larized precision matrix estimation techniques like time-varying

CLIME [3, 44]. These approaches are particularly well-suited for

high-dimensional data, as they allow for learning sparse depen-

dency structures that evolve over time.

2.2 Normalized Mutual Information

Mutual information. Mutual Information (MI) is a fundamental

concept in information theory, used to measure the dependency

between two random variables. Unlike metrics such as Pearson

correlation, Spearman’s rank correlation, or cosine similarity, which

often assume specific types of relationships (e.g., linear for Pearson)

or data distributions, MI is non-parametric and does not require any

assumptions about the underlying data distribution. This makes MI

ideal for capturing both linear and non-linear dependencies across

diverse variables [10, 25]. For two random discrete variables 𝑋 and

𝑌 , the MI is defined as:

MI(𝑋 ;𝑌 ) =
∑︁
𝑥∈𝑋

∑︁
𝑦∈𝑌

𝑃 (𝑥,𝑦) log
(
𝑃 (𝑥,𝑦)
𝑃 (𝑥)𝑃 (𝑦)

)
(1)

where 𝑃 (𝑥) is the probability of the variable 𝑋 taking a specific

value 𝑥 . In practice, 𝑃 (𝑥) is estimated based on the frequency of

occurrences of 𝑥 when 𝑋 is a discrete variable. When 𝑋 and 𝑌 are
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Figure 1: The pipeline of the proposed method. Using fMRI-EEG data as an example, the process begins with the data collection

phase, where EEG and fMRI data are gathered from the Internet of Things. In the first stage of NoTeNet, time series data from

the targeted modality for each ROI are extracted and the EEG data are discretized for denoising. Then we introduce normalized

mutual information to obtain the relationship matrices. The second stage contains two key operations: a) We utilize the smooth

kernel function to ensure the temporal coherence of the estimation. b) We leverage the relationship matrices to enhance the

precision matrix estimation with a tuning-free technique.

independent, MI equals zero; when there is any form of dependency,

MI becomes positive.

Normalized mutual information. Although MI is useful, it is sen-

sitive to noise and lacks a clear upper bound, which makes it harder

to interpret and compare. Nomarlized MI restricts the MI value to

[0, 1] range, mitigating the impact of extreme noise and providing

more interpretability through normalization [29].The formula for

discrete variables is:

NMI(𝑋 ;𝑌 ) = MI(𝑋 ;𝑌 )
1

2
(𝐻 (𝑋 ) + 𝐻 (𝑌 ))

(2)

𝐻 (𝑋 ) = −∑
𝑥 𝑃 (𝑥) log 𝑃 (𝑥) and 𝐻 (𝑌 ) represent the entropy of the

variables 𝑋 and 𝑌 , respectively.

In this paper, while many auxiliary modalities–such as EEG data–

are continuous in nature, we discretize them to reduce the effect

of noise. By segmenting continuous data into bins, we smooth out

random fluctuations and make the data more robust against noise

interference.

2.3 Neighborhood Approach for Precision

Matrix Estimation

The task of precision matrix estimation involves deducing the in-

verse covariance matrix for a multivariate entity. This matrix is

pivotal in uncovering the conditional independence among vari-

ables, serving an array of applications from learning graphical

models as noted [31, 41]. A well-known approach for estimating

the precision matrix is the graphical lasso [9], a penalized maximum

likelihood estimator:

Ω̂ = argmin

Ω≻0
− log det(Ω)+ < Ω, Σ > +𝜆∥Ω∥1, (3)

where Ω must be symmetric positive definite and the penalty pa-

rameter 𝜆 ≥ 0 and the covariance matrix is Σ̂ = 1

𝑛

∑𝑛
𝑖=1 X𝑖X⊤𝑖 .

Based on (3), [26] proposed the neighborhood selection estimate

with Lasso:

ˆ𝜷 𝑗 = argmin

𝜷 𝑗 :𝛽 𝑗 𝑗=0

(
∥X:𝑗 − X𝜷 𝑗 ∥22 + 𝜆∥𝜷 𝑗 ∥1

)
, (4)

where X:𝑗 denotes the 𝑗-th column, e.g, the 𝑗-th feature, of X, 𝛽𝑘 𝑗
denotes the 𝑘-th element of 𝜷 𝑗 . The elements of 𝜷 𝑗 are actually

determined by the precision matrix that 𝛽𝑘 𝑗 = −Ω𝑘 𝑗/Ω 𝑗 𝑗 . Neigh-

borhood selection estimates the conditional independence of each

feature separately in order to effectively estimate the structural

zeros of the precision matrix.

3 The Proposed Method

3.1 Overview

As depicted in Figure. 1, after data collection, our pipeline for

DDN prediction task can be divided into two main stages: 1) The

first stage focuses on the processing of data across two disparate

datasets from different modalities. In scenarios with two datasets,

we designate one as the auxiliary dataset and the other as the

targeted dataset. This stage involves the transformation of the aux-

iliary dataset into a relationship matrix using normalized mutual

information, followed by temporal alignment with the targeted

dataset’s samples. This alignment step ensures that the data from

both sources are synchronized over time for improved integration

in subsequent analysis. 2) The second stage (Section 3.2) is dedicated

to using precision matrix estimation to predict the time-varying

dependence network. Leveraging the relationship matrix derived

from the auxiliary dataset, we integrate this information into the

estimation of the precision matrix alongside the targeted time se-

ries data. This step includes the use of a kernel function to account

for temporal continuity, ensuring smooth estimation over time.

To simplify the process, we employ a tuning-free approach using

scaled lasso, which eliminates the need for manual hyperparameter

adjustments.

3
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3.2 NoTeNet

Notations. We represent the time series data from the targeted

dataset by X ∈ R𝑇×𝑝 , where 𝑇 is the number of time points and

𝑝 is the number of features. Referring to the two examples pro-

vided above, we denote the data from the auxiliary dataset as

A = {A(1) ,A(2) , . . . ,A(𝑇 ) }, with each A(𝑡 ) ∈ R𝑛×𝑝
representing

the data at time 𝑡 . For the targeted time series, X𝑡,∗ ∈ R𝑝
denotes

the 𝑡-th sample, which we abbreviate as X𝑡 for simplicity. The nota-

tionA(𝑡 )∗,𝑖 ∈ R
𝑛
specifies the 𝑖-th feature at the 𝑡-th timestamp in the

auxiliary data. Our goal is to estimate a series of precision matrices

{Ω̂ (1) , Ω̂ (2) , . . . , Ω̂ (𝑇 ) } from the combination of two modalities.

Assumption. Consider independent variables X𝑡 distributed as

N(0, Σ(𝑡 ) ). Each X𝑡 is linked to a corresponding undirected graph

𝐺 (𝑡), defined by the zero entries in the precision matrix Ω (𝑡 ) . We

operate under the assumption that the probability distribution, or

the law, of X𝑡 undergoes smooth variations.

To capture the complex relationships between entities from the

auxiliary dataset, we utilize the normalized mutual information to

estimate the relationship matrices:

𝜃
(𝑡 )
𝑖 𝑗

= NMI

(
𝐴
(𝑡 )
∗,𝑖 , 𝐴

(𝑡 )
∗, 𝑗

)
=

MI

(
𝐴
(𝑡 )
∗,𝑖 ;𝐴

(𝑡 )
∗, 𝑗

)
1

2

(
𝐻

(
𝐴
(𝑡 )
∗,𝑖

)
+ 𝐻

(
𝐴
(𝑡 )
∗, 𝑗

) (𝑡 ) (5)

where

𝐻

(
𝐴
(𝑡 )
∗,𝑖

)
= −

∑︁
𝑎∈𝐴(𝑡 )∗,𝑖

𝑃 (𝑎) log 𝑃 (𝑎) (6)

and

MI

(
A(𝑡 )∗,𝑖 ,A

(𝑡 )
∗, 𝑗

)
=

∑︁
𝑎∈A(𝑡 )∗,𝑖

∑︁
𝑎′∈A(𝑡 )∗,𝑖

𝑃 (𝑎, 𝑎′) log
(

𝑃 (𝑎, 𝑎′)
𝑃 (𝑎) · 𝑃 (𝑎′)

)
(7)

After obtaining the relationship matrices extracted from EEG,

our next step is to integrate it with fMRI time series data X to

estimate the precision matrices.

To estimate the precision matrix of the 𝑡-the time point, we first

define the weighted matrix:

X(𝑡 ) = W(𝑡 )X, W(𝑡 ) = diag

(√︃
𝜔
(𝑡 )
1
,

√︃
𝜔
(𝑡 )
2
, . . . ,

√︃
𝜔
(𝑡 )
𝑇

)
(8)

where 𝑡 = 1, 2, . . . ,𝑇 and

𝜔
(𝑡 )
𝑠 =

𝐾ℎ (
|𝑠−𝑡 |
𝑇
)∑

𝑠
𝐾ℎ (

|𝑠−𝑡 |
𝑇
)

(9)

and 𝐾 (·) : R ↦→ R is symmetric nonnegative kernel function and

𝐾ℎ (·) = 𝐾 (·/ℎ). The selection of 𝐾 (·) will be discussed later. It is

noticed that this kernel function is closely related to the distance

between two timestamps. The kernel function assigns samples

closer to the current moment in sampling time greater weights to

guarantee a stronger similarity between adjacent timestamps.

According to X𝑖 ∼ N(0, Σ(𝑖 ) ), we have X(𝑡 )
𝑖
∼ N(0, Σ̃(𝑖 ) =

𝜔
(𝑡 )
𝑖

Σ(𝑖 ) ), represented byX(𝑡 )
𝑖

= (𝑋 (𝑡 )
𝑖,1
, 𝑋
(𝑡 )
𝑖,2
, . . . , 𝑋

(𝑡 )
𝑖,𝑝
), 𝑖 = 1, 2, . . . ,𝑇 .

Then we have the following distribution 𝑋
(𝑡 )
𝑖, 𝑗
|𝑋 (𝑡 )

𝑖,− 𝑗 ∼ N𝑝−1
(
Σ̃
(𝑡 )
𝑗,− 𝑗

[Σ̃(𝑡 )− 𝑗,− 𝑗 ]
−1𝑋 (𝑡 )

𝑖,− 𝑗 , Σ̃
(𝑡 )
𝑗, 𝑗
− Σ̃
(𝑡 )
𝑗,− 𝑗 [Σ̃

(𝑡 )
− 𝑗,− 𝑗 ]

−1Σ̃(𝑡 )− 𝑗, 𝑗
)
, which is equiva-

lent to the linear model:

𝑋
(𝑡 )
𝑖, 𝑗

=
∑︁
𝑘≠𝑗

𝛽
(𝑡 )
𝑘 𝑗
𝑋
(𝑡 )
𝑖,𝑘
+ 𝜖 (𝑡 )

𝑖 𝑗
, (10)

where 𝜖
(𝑡 )
𝑖 𝑗
∼ 𝜎2

𝑗
(𝑡) = Σ̃

(𝑡 )
𝑗, 𝑗
− Σ̃(𝑡 )

𝑗,− 𝑗 [Σ̃
(𝑡 )
− 𝑗,− 𝑗 ]

−1Σ̃(𝑡 )− 𝑗, 𝑗 is the error stan-

dard deviation, 𝛽
(𝑡 )
𝑘 𝑗

is the regression coefficient, and 𝑘 = 1, 2, . . . , 𝑝 .

In the regression approach to estimating sparse precision matri-

ces, the elements of the precision matrix are mapped to regression

coefficients and error variances through the following relationships:

Ω
(𝑡 )
𝑘 𝑗

= −
𝛽
(𝑡 )
𝑘 𝑗

𝜎2
𝑗
(𝑡)
, Ω
(𝑡 )
𝑗 𝑗

=
1

𝜎2
𝑗
(𝑡)
, for 1 ≤ 𝑘 ≠ 𝑗 ≤ 𝑝. (11)

Therefore, we can estimate the precision matrices

{
Ω̂ (1) , . . . , Ω̂ (𝑇 )

}
by solving a series of corresponding regression problems (10). To

end it, we utilize the Scaled Lasso to estimate the regression coeffi-

cients 𝛽
(𝑡 )
𝑘 𝑗

and the error variances 𝜖
(𝑡 )
𝑖 𝑗

.

Inspired by [3], we can solve the scaled lasso problem column by

column. To be specific, we use B(𝑡 ) = (𝛽 (𝑡 )
𝑘 𝑗
)
1≤𝑘,𝑗≤𝑝 to represent

the matrix of the regression coefficients such that 𝛽
(𝑡 )
𝑗 𝑗

= −1 for

𝑗 = 1, . . . , 𝑝 . Let Λ(𝑡 ) = diag

(
𝜎−2
1
(𝑡), . . . , 𝜎−2𝑝 (𝑡)

)
, the estimated

precision matrix can be written as:

Ω (𝑡 ) = −B(𝑡 )Λ(𝑡 ) = (−𝜎−2
1
(𝑡)𝜷 (𝑡 )

1
, . . . ,−𝜎−2𝑝 (𝑡)𝜷

(𝑡 )
𝑝 ) (12)

where 𝜷 (𝑡 )
𝑗

= B(𝑡 )∗, 𝑗 is the 𝑗-th column of the matrix B(𝑡 ) .

To estimate the targeted precision matrices {Ω̂ (𝑡 ) }1≤𝑡≤𝑇 , we
propose the following estimator:

( ˆ𝜷 (𝑡 )𝑗 , �̂� 𝑗 (𝑡)) =

argmin

𝜎 𝑗 (𝑡 )>0, 𝜷 (𝑡 )𝑗

𝜷 (𝑡 )⊤
𝑗

Σ̂(𝑡 )𝜷 (𝑡 )
𝑗

2𝜎 𝑗 (𝑡)
+
𝜎 𝑗 (𝑡)
2

+ 𝜆
∑︁
𝑘≠𝑗

√︃
Σ̂
(𝑡 )
𝑘𝑘
|𝑆 (𝜃 (𝑡 )

𝑘 𝑗
) · 𝛽 (𝑡 )

𝑘 𝑗
|

(13)

where 𝜷 (𝑡 )⊤
𝑗

Σ̂(𝑡 )𝜷 (𝑡 )
𝑗

= ∥X(𝑡 )
𝑗
− ∑

𝑘≠𝑗

𝛽
(𝑡 )
𝑘 𝑗

X(𝑡 )
𝑘
∥2
2
/𝑇 and Σ̂(𝑡 ) =

(X(𝑡 ) )⊤X(𝑡 )/𝑇 , 𝑆 (𝑧) = 1 − 𝑧. Note that the relationship matrix

is used in the regularization term to enhance the estimation.

Then we can get the estimated precision matrices according to

(12):

Ω̂
(𝑡 )
0

= −B̂(𝑡 ) Λ̂(𝑡 ) , 𝑡 = 1, 2, . . . ,𝑇 . (14)

The precision matrix is required to be symmetric as it represents the

conditional dependency relationships between random variables

within an undirected graph. However, (13) cannot guarantee the

symmetry of the estimated precision matrices Ω̂ (𝑡 ) . Therefore, we
consider an additional symmetrization step:

Ω̂ (𝑡 ) = argmin

M:M⊤=M
∥M − Ω̂0∥1 . (15)

This optimization problem can solved by linear programming.

4
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Optimization Algorithm. In this paper, we employ an iterative

algorithm to address the solution of (13). To simplify the represen-

tation, we omitted the superscript of the symbols, e.g., B̂(𝑡 ) → B̂.
All the following operations are specific to the time point 𝑡 . Here,

B̂(𝜆0) represents the estimated B̂ with the hyperparameter 𝜆. We

can obtain the Lasso path by the estimation B̂− 𝑗, 𝑗 (𝜆) satisfying the
Karush-Kuhn-Tucker conditions:
|𝑆 (𝜃 (𝑡 )

𝑘 𝑗
) |−1Σ̂−1/2

𝑘𝑘
Σ̂𝑘,∗B̂∗, 𝑗 (𝜆) = −𝜆 sgn

(
B̂𝑘,𝑗 (𝜆)

)
, B̂𝑘,𝑗 ≠ 0,

|𝑆 (𝜃 (𝑡 )
𝑘 𝑗
) |−1Σ̂−1/2

𝑘𝑘
Σ̂𝑘,∗B̂∗, 𝑗 (𝜆) ∈ 𝜆[−1, 1], B̂𝑘,𝑗 = 0,

(16)

for𝑘 ≠ 𝑗 , where sgn(·) represents the sign functional. Here B̂𝑗 𝑗 (𝜆) =
−1. After getting the Lasso path B̂∗, 𝑗 (𝜆), the estimator (13) can be

computed iteratively by

�̂�2𝑗 ← B̂𝑇∗, 𝑗 Σ̂∗, 𝑗 B̂∗, 𝑗 , 𝜆 ← �̂� 𝑗𝜆0, B̂∗, 𝑗 ← B̂∗, 𝑗 (𝜆). (17)

It is apparent from the above steps that the penalty hyperparameter

𝜆 is updated in the iterations.

Hyper-parameter Selection. We provide two choices of the initial

penalty hyperparameter 𝜆0:

• Satisfy union bound (Theorem A.2) when:

𝜆0 = 𝜏

√︃
4𝑇 −1 log𝑝 for 𝜏 > 1. (18)

• Satisfy probabilistic error bound (Theorem A.3) when:

𝜆0 = 𝜏𝐿𝑇 (𝑘/𝑝) for 1 < 𝜏 ≤
√
2, (19)

where𝑘 is a real solution of𝑘 = 𝐿4
1
(𝑘/𝑝)+2𝐿2

1
(𝑘/𝑝), 𝐿𝑎 (𝑠) =

𝑎−1/2Φ−1 (1−𝑠), andΦ−1 (𝑠) is the standard normal quantile

function.

4 Theoretical Analysis

In this section, we study the theoretical properties of the proposed

estimator. Our theoretical analysis can be divided into three parts.

Firstly, we present several theorems to validate the selection of

the initial penalty hyperparameter 𝜆0. Secondly, we provide the

selection criteria for the kernel function and discuss the estimation

bias after weighting the sample matrix X. Due to the space limit,

the other relevant theorems, proofs, and mathematical details are

moved to the appendix.

4.1 Tuning-free Property

We denote the true covariance matrix and precision matrix as Σ∗

and Ω∗. Note that we omit the superscript to simplify the represen-

tation. First, we consider the capped ℓ1 sparsity and the invertibility

conditions as follows:

(i) Capped ℓ1 sparsity condition: For a certain 𝜖0, 𝜆
∗
0
not depend-

ing on 𝑗 and an index set P𝑗 ⊂ {1, 2, . . . , 𝑝}\{ 𝑗}, the capped ℓ1
sparsity of the 𝑗 th column is defined as

��P𝑗 �� + ∑︁
𝑘≠𝑗,𝑘∉P𝑗

���Ω∗
𝑘 𝑗

���(
Ω∗
𝑗 𝑗

)
1/2

𝜆∗
0

≤ 𝑎 𝑗 .

In the ℓ0 sparsity case where P𝑗 = {𝑘 : 𝑘 ≠ 𝑗,Ω∗
𝑘 𝑗

≠ 0}, we may

define 𝑎 𝑗 = |P𝑗 | + 1 as the degree of the 𝑗-th node in the graph

induced by the matrix Ω∗. In this scenario, the maximum degree 𝑑

is given by 𝑑 = max𝑗 (1 + |𝑆 𝑗 |).
(ii) Invertibility condition: Let S be the diagonal elements of Σ∗

and R∗ = S−1/2Σ∗S−1/2. Further, let P𝑗 ⊆ Q 𝑗 ⊆ {1, 2, . . . , 𝑝}\{ 𝑗}.
The invertibility condition is defined as

inf

𝑗


u𝑇R− 𝑗,− 𝑗uuQ 𝑗

2
2

: u ∈ R𝑝 , uQ 𝑗
≠ 0, 1 ≤ 𝑗 ≤ 𝑝

 ≥ 𝑐∗
with a fixed constant 𝑐∗ > 0. Note that the invertibility condition

holds if the spectral norm of (R∗)−1 = S1/2Ω∗S1/2 is bounded (i.e.,R−1
2
≤ 𝑐−1∗ ).

Theorem 4.1. Let Ω̂ be the scaled Lasso estimators defined in (15)

below with penalty level 𝜆0 = 𝐴
√︁
4(log𝑝)/𝑛,𝐴 > 1, based on 𝑇 iid

observations from 𝑁 (0, Σ∗). Suppose 𝑑2 (log 𝑝)/𝑛 → 0. Then,Ω̂ − Ω∗

2
= 𝑂𝑃 (1)𝑑

√︁
(log 𝑝)/𝑛 = 𝑜 (1) . (20)

where ∥ · ∥2 is the spectrum norm (the ℓ2 matrix operator norm).

Theorem 4.2. Suppose Σ̂ is the sample covariance matrix of 𝑛
iid 𝑁 (0, Σ∗) vectors. Let Ω∗ = (Σ∗)−1 and Ω∗ be the inverses of
the population covariance and correlation matrices. Let Ω̂ be their
scaled Lasso estimators defined in (15) with a penalty level 𝜆0 =

𝐴
√︁
4(log𝑝)/𝑇 , 𝐴 > 1. Suppose the capped ℓ1 sparsity condition and

invertibility condition hold with 𝜀0 = 0 and max𝑗≤𝑝
(
1 + 𝑎 𝑗

)
𝜆0 ≤ 𝑐0

for a certain constant 𝑐0 > 0 depending on 𝑐∗ only. Then, the spectrum
norm of the errors is bounded byΩ̂ − Ω∗


2
≤

Ω̂ − Ω∗

1

≤ 𝐶
(
max

𝑗≤𝑝

(𝑆−1− 𝑗 ∞ Ω∗𝑗 𝑗
)
1/2

𝑎 𝑗𝜆0 +
Ω∗

1
𝜆0

)
,

(21)

with large probability, where𝐶 is a constant depending on {𝑐0, 𝑐∗, 𝐴}
only. Moreover, the term ∥Ω∗∥

1
𝜆0 can be replaced by

max

𝑗≤𝑝

Ω∗∗, 𝑗 
1

𝑎 𝑗𝜆
2

0
+ 𝜏𝑇

(
Ω∗

)
,

where𝜏𝑇 (𝑀) = inf

{
𝜏 :

∑
𝑗 exp

(
−𝑇𝜏2/

𝑀∗, 𝑗 2
1

)
≤ 1/𝑒

}
for amatrix

𝑀 .

Theorem 4.3. Let 𝑘 > 0. Suppose 𝜀 ∼ 𝑁
(
0, 𝜎2𝐼𝑇

)
. (i) 𝜆∗ =

𝜎𝐿𝑇 (𝑘/𝑝), and

𝐴 − 1 > 𝐴1 ≥
(

4𝑘/𝑚
𝐿4
1
(𝑘/𝑝) + 2𝐿2

1
(𝑘/𝑝)

)
1/2

+ 𝐿1 (𝜀/𝑝)
𝐿1 (𝑘/𝑝)

(
𝜅+ (𝑚)
𝑚

)
1/2

.

with at least probability 1−𝜀/𝑝−2 |𝐵𝑐 | 𝑘/𝑝 . (ii) Let 𝜆∗
0
= 𝐿𝑇−3/2 (𝑘/𝑝), 𝜀𝑛 =

𝑒1/(4𝑇−6)
2 − 1, and

𝐴 − 1 > 𝐴1 ≥
(
(1 + 𝜀𝑛) 4𝑘/𝑚

𝐿4
1
(𝑘/𝑝) + 2𝐿2

1
(𝑘/𝑝)

)
1/2

+
(
𝐿1 (𝜀/𝑝)
𝐿1 (𝑘/𝑝)

+ 1 + 𝜀𝑇
𝐿1 (𝑘/𝑝)

√
2𝜋

) (
𝜅+ (𝑚)
𝑚

)
1/2

.

(22)

Then Ω̂ achieves a consistent estimation with at least probability
1 − 2𝜀/𝑝 − 2 |𝐵𝑐 | 𝑘/𝑝(See Appendix for more details).
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4.2 Selection of the Kernel Function

We assume that the kernel function 𝐾 (·) has compact support

[−1, 1]. It is known that the precision matrix is the inverse of the

covariance matrix. The estimation bias of the covariance estimation,

Σ̂(𝑡 ) −Σ(𝑡 ) ,will directly impact the estimated precision matrix. Here

Σ̂(𝑡 ) = cov(X(𝑡 ) ), 𝑡 = 1, 2, . . . ,𝑇 . For the 𝑡−th time point and (𝑖, 𝑗)-
th entry, we have

∥Σ̂(𝑡 )
𝑖 𝑗
− Σ(𝑡 )

𝑖 𝑗
∥ ≤ ∥Σ̂(𝑡 )

𝑖 𝑗
− EΣ̂(𝑡 )

𝑖 𝑗
∥ + ∥Σ(𝑡 )

𝑖 𝑗
− EΣ̂(𝑡 )

𝑖 𝑗
∥ (23)

Lemma 4.4. Suppose there exists 𝐶 > 0 such that

max

𝑖, 𝑗
sup

𝑡

���Σ(𝑡 )𝑖 𝑗

��� ≤ 𝐶.
where Σ(𝑡 )

𝑖 𝑗
is the (𝑖, 𝑗)-th entry of the true covariance matrix Σ(𝑡 ) .

Then for 𝐾 (·) that satisfies

sup

𝑡 ∈{0,1,...,𝑇 }
𝐾

( 𝑡
ℎ𝑇

)
= 𝑂

(
1

ℎ4

)
, (24)

we have

sup

𝑡 ∈{0,1,...,𝑇 }
max

𝑖, 𝑗

���EΣ̂(𝑡 )𝑖 𝑗
− Σ(𝑡 )

𝑖 𝑗

��� = 𝑂 (ℎ) +𝑂 (
1

𝑇 2ℎ5

)
.

Lemma 4.5. For 𝜖 < 𝐶0, we have

𝑃 (∥Σ̂(𝑡 )
𝑖 𝑗
− EΣ̂(𝑡 )

𝑖 𝑗
∥ > 𝜖) ≤ exp{−𝐶1𝑇ℎ𝜖2}.

where 𝑐0, 𝑐1 are constants (See more details in Appendix).

Therefore, we can bound the covariance estimationwith LemmaA.4

and Lemma A.5. This conclusion confirms the validity of (8). It is

noticed that most smooth kernel functions including the Gaussian

kernel satisfy (33).

5 Experiment

5.1 Experimental Setting

Implementation Environment. All experiments are performed on

a machine with an Intel Core i9-10910 ten-core 3.6 GHz CPU and

64 GB RAM.

Metric. We use the averaged Frobenius norm ∥Ω̂ (𝑡 ′ ) − Ω∗(𝑡
′ ) ∥𝐹 ,

Spectrum norm ∥Ω̂ (𝑡 ′ ) − Ω∗(𝑡
′ ) ∥2, and Matrix ℓ1 norm

∥Ω̂ (𝑡 ′ ) −Ω∗(𝑡 ′ ) ∥1, where Ω∗ is the true precision matrix and 𝑡 ′ ∈ T .
Here T ⊂ {1, 2, . . . ,𝑇 } is a randomly selectd subset and |T | = 10.

MCC is widely used in machine learning as a measure of binary

classifiers, defined as follows:

MCC =
TP × TN − FP × FN√︁

(TP + FP) (TP + FN) (TN + FP) (TN + FN)
where the true positive (TP), true negative (TN), false positive

(FP), and false negative (FN) values indicate the number of true

nonzero entries, true-zero entries, false nonzero entries, and false

zero entries, respectively. It produces a high score if the classifier

generates desirable estimations.

Baseline. We compare our method NoTeNet with the following

baselines: 1) NoTeNet-unweighted, NoTeNet without the utilization

of the weight matrix, to affirm the weight matrix’s vital contribu-

tion to the estimation; 2) QUIC-Dependency, a SOTA method [13]

assuming temporal dependency (Using (8)), which requires manual

hyperparameter tuning; 3) QUIC-Independency, a SOTA method

based on temporal independency assumptions that also necessitates

hyperparameter tuning.

Furthermore, to assess the effect of the relationship matrix in

𝑆 (𝜃 ) on NoTeNet, we introduce a newmetric 𝑟𝑒𝑐𝑎𝑙𝑙 = TP/(TP+FN)
and implement our method on the synthetic datasets with two

different conditions: 1) NoTeNet(𝑟𝑒𝑐𝑎𝑙𝑙 = 40%), our method with

only 40% correct connections in the relationship matrix 𝑆 (𝜃 ); 2)
NoTeNet(𝑟𝑒𝑐𝑎𝑙𝑙 = 80%).

Explanations about baseline choice. We choose QUIC as the main

baseline since it continues to be widely utilized in current research

and serves as a critical benchmark for new methodologies within

the realm of state-of-the-art works. [18] utilizes the QUICmethod to

detect structural changes in high-dimensional Gaussian graphical

models. QUIC’s ability to perform fast and accurate estimation

underpins the methodology for identifying change-points in the

graphical model structure over time. Similarly, studies like those in

recent works like [20, 28] also employ QUIC for various analytical

tasks downstream. Additionally, both [45] and [30] utilize QUIC as

a main baseline for comparison.

Relationship Matrix Simulation. Specifically, the relationship ma-

trices are created as follows. 𝑆 (𝜃 (𝑡 ) ) are constructed by setting its

entries to one where Ω∗(𝑡 ) has zero entries and drawing from a

uniform distributionU(0, 1) for a proportion of nonzero entries of

Ω∗(𝑡 ) . The proportion depends on the metric 𝑟𝑒𝑐𝑎𝑙𝑙 . For the rest

nonzero entries, we also set the corresponding entries of 𝑆 (𝜃 (𝑡 ) ) to
one.

Simulated Datasets. We illustrate the efficiency of our approach

through a simulated scenario. This graph changes over time, guided

by the Erdős-Rényi random graph model principles. We start with

Ω = 0.25I𝑝×𝑝 , where 𝑝 = 50, 100, 200, 300, 400. Subsequently, we

choose 𝑝/10 edges at random and adjust Ω in the following manner:

for each newly added edge (𝑖, 𝑗), we select a positive weight 𝑤

uniformly from the range [0.1, 0.3]. We then decrease Ω𝑖 𝑗 and Ω 𝑗𝑖

by𝑤 , whileΩ𝑖𝑖 andΩ 𝑗 𝑗 are increased by the same amount, ensuring

that Σ remains positive definite.

As the simulation progresses, when an edge is removed, we

implement the reverse of the initial procedure based on the edge’s

weight. The first 50 edges are allocated weights, after which we

systematically alter the graph’s structure in a cyclic manner: Every

100 discrete time interval, we eliminate five edges and introduce

five new ones. For every one of these new edges, a specific target

weight is determined. Over the next 100 time intervals, the weight

of each new edge is adjusted incrementally to achieve a smooth

transition. In a similar vein, the weight of each edge set to be

removed gradually reduces to zero over the same period. As a

result, the graph consistently maintains around 1.1𝑝 edges, with

0.1𝑝 of those edges undergoing smooth weight adjustments.

5.2 Performance Evaluation

In this section, we mainly evaluate the accuracy performance of

our method and compare its performance with the other baselines.

We fix the number of time points 𝑇 = 200 and vary the dimension

in {50, 100, 200, 300, 400}.
As illustrated in Table 1 and Table 2, we compare NoTeNet

(𝑟𝑒𝑐𝑎𝑙𝑙 = 0.8) and NoTeNet (𝑟𝑒𝑐𝑎𝑙𝑙 = 0.4) against other baselines
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Table 1: Comparison of estimation error in terms of Frobenius Norm and Spectrum Norm. Bold and underline represent the

first and second rankings respectively.

Frobenius norm Specturm norm

p Quic-i Quic-d NoTeNet-

u

NoTeNet

(recall=0.4)

NoTeNet

(recall=0.8)

Quic-i Quic-d NoTeNet-

u

NoTeNet

(recall=0.4)

NoTeNet

(recall=0.8)

50 4.01 2.15 1.43 1.77 1.74 2.06 0.70 70.28 0.67 0.70

100 8.73 3.10 2.16 2.56 0.83 5.81 0.78 93.76 0.64 0.63

200 11.48 4.40 8.50 3.95 3.80 6.56 0.84 91.18 0.78 0.77

300 15.59 5.16 32.52 4.52 3.23 10.84 0.73 56.28 0.85 0.82

400 14.20 5.91 96.48 5.99 4.56 8.98 0.79 120.24 1.02 0.94

Table 2: Comparison of estimation error in terms of 𝐿1 Norm and MCC.Bold and underline represent the first and second

rankings respectively.

𝐿1 norm MCC

p Quic-i Quic-d NoTeNet-

u

NoTeNet

(recall=0.4)

NoTeNet

(recall=0.8)

Quic-i Quic-d NoTeNet-

u

NoTeNet

(recall=0.4)

NoTeNet

(recall=0.8)

50 2.32 0.93 70.91 1.21 0.82 0.0418 0.36 0.69 0.55 0.70

100 10.94 1.73 114.88 1.05 1.48 0.0243 0.18 0.39 0.45 0.63

200 10.70 1.79 102.35 2.11 1.60 0.0067 0.17 0.19 0.42 0.46

300 20.19 1.35 88.51 2.81 1.15 0.0082 0.17 0.12 0.35 0.35

400 26.18 1.92 122.30 3.85 2.00 0.0057 0.15 0.10 0.25 0.28

MuTeD 
(recall=0.8)

QUIC-
Dependency

MuTeD-
Unweighted

t=25 t=50 t=75 t=100

Figure 2: Visualization of the dynamic networks predicted

by NoTeNet (𝑟𝑒𝑐𝑎𝑙𝑙 = 0.8), NoTeNet-Unweighted and QUIC-

Dependency. To highlight the prediction of the time-varying

edges, we artificially amplify the weights of the added edges

(red) and deleted edges (blue).

across threemetrics. The penalty parameters for QUIC-Independency

(QUIC-I) and QUIC-Dependency (QUIC-D) are manually tuned

to optimize performance. Our method outperforms all baselines

in most cases. A comparison between QUIC-I and QUIC-D re-

veals that QUIC-D, which fully leverages data from adjacent times-

tamps, demonstrates superior performance, thus validating our

time-varying weighting techniques (8). When comparing NoTeNet-

Unweighted (NoTeNet-U) with QUIC-D, both of which utilize a time-

varying weighted matrix, QUIC-D excels in norm metrics, while

NoTeNet-U shows better performance in the MCC value. This indi-

cates that NoTeNet-U is more effective in distinguishing between

zero and non-zero entries, although it does not predict precise edge

values as well. Between NoTeNet-U and our NoTeNet(𝑟𝑒𝑐𝑎𝑙𝑙 = 0.8),

both of which do not require tuning, our method exhibits supe-

rior performance across all metrics, thanks to the use of the re-

lationship matrix derived from EEG time series data. To evaluate

the impact of the relationship matrix, we vary the value of 𝑟𝑒𝑐𝑎𝑙𝑙 .

NoTeNet(𝑟𝑒𝑐𝑎𝑙𝑙 = 0.4) performs worse than NoTeNet(𝑟𝑒𝑐𝑎𝑙𝑙 = 0.8)

at most time, but still performs better than the other baselines in

MCC value.

Figure 2 shows that our method MuTeD performs better than

the other baselines. QUIC-Dependency is unable to capture all new

edges with increasing weights and all deleted edges with decreasing

weights. In the case of MuTeD-Unweighted, it is able to capture all

new edges but fails to capture vanishing edges. As the values of the

deleted edges decrease over time, our method detects fewer edges,

which is consistent with our expectation.

5.3 Application to Simultaneous Medical Sensor

dataset

Dataset Description. Asmentioned above, whole-brain functional

connectomes offer significant potential for understanding human

brain activity across a range of cognitive, developmental, and patho-

logical states. Resting-state (rs) functional Magnetic Resonance

Imaging (fMRI) studies have led to the brain being considered at

a macroscopic scale as a set of interacting regions. Due to the low

temporal and spatial resolution of fMRI data, it is common to adopt

a multimodal approach that integrates fMRI data with other modal-

ities.
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(a) Dynamic Functional Connectivity prediction with multi-modal neurological input.

(b) Dynamic Functional Connectivity prediction with single-modal neurological input.

Figure 3: Dynamic Functional Connectivity prediction on the

EEG, fMRI, and NODDI at rest dataset [6]. The color gradient

from blue to red signifies an increasing edge weight. Figure

(a) shown above represents the outcome of the proposed

NoTeNet with a multi-modal input of both fMRI and EEG

data. Conversely, Figure (b) depicted below illustrates the

result of QUICwith only single-modal fMRI input. The result

of NoTeNet reveals the changes as time progresses, indicating

a successful capturing of the dynamic state of the neural

connectivity. In comparison, the prediction of QUIC remains

basically unchanged, revealing poor temporal dependency.

To evaluate the performance of our method in such real-world

neuroscience research involving multi-modal data, we utilize the

EEG, fMRI, and NODDI at rest dataset [6] developed by F. Deli-

gianni et.al., which is a comprehensive collection of neuroimaging

data that encompasses EEG, fMRI, and NODDI (neurite orientation

dispersion and density imaging) measurements.

We select the fMRI and EEG modalities for the experiment. The

fMRI data for each subject contains 300 volumes,𝑇𝑅/𝑇𝐸 = 2160/30
ms, with voxel size being 3.3 × 3.3 × 4.0 mm. EEG data is recorded

with a 64-channel MR-compatible electrode cap at a native fre-

quency of 1000 Hz. We adhere to the preprocessing procedures

suggested in [6], which contain common fMRI motion correction

and EEG artifact removal using the FSL [36] and EEGLAB [7] kit

respectively. ROIs are delineated as the cerebral cortex areas corre-

sponding to the electrodes of EEG (excluding the ECG channel). In

short, the preprocessed and aligned fMRI and EEG signals exhibit a

shape of (300, 63) and (300, 540, 63) respectively.

Result Visualization. In this study, we performed a Dynamic

Functional Connectivity prediction on the EEG, fMRI, and NODDI

at rest dataset. Figure 2 visualized the connectivity of the ROIs,

i.e. the connectivity of the cerebral cortex beneath where the EEG

electrodes are located. We filter out the weak connections to demon-

strate the main predicted functional connectivity in each time step.

The edges between ROIs are visualized with a color gradient rang-

ing from blue to red, with the intensity of the color signifying the

increasing edge weight.

Subfigure (a) in Figure 2 represents the outcome of our proposed

method, denoted as NoTeNet, which utilizes a multi-modal input of

both fMRI and EEG data. The visualization of results from NoTeNet

reveals an interesting pattern of changes as time progresses. The

color gradient shifts, indicating a dynamic alteration in the edge

weights. This successful capturing of the dynamic state of neu-

ral connectivity suggests that NoTeNet is capable of tracking the

(a) Differential of multi-modal results between time steps.

t = 20 ~ t = 70 t = 120 ~ t = 170 t = 70 ~ t = 120 t = 170 ~ t = 220 t = 220 ~ t = 270 

(b) Differential of single-modal results between time steps.

t = 20 ~ t = 70 t = 120 ~ t = 170 t = 70 ~ t = 120 t = 170 ~ t = 220 t = 220 ~ t = 270 

Figure 4: The corresponding differential of multi-modal and

single-modal results. The results of NoTeNet in (a) demon-

strate more significant temporal variability when compared

to that of QUIC in (b). This underscores the higher capabil-

ity of NoTeNet in the temporal dependency prediction of

dynamic functional connectivity as compared to the single-

modal method.

temporal evolution of brain connectivity, providing a more com-

prehensive and nuanced understanding of brain function.

On the contrary, subfigure (b) in Figure 2 illustrates the result of

the QUIC method, which employs only single-modal fMRI input. In

stark contrast to the dynamic changes observed with NoTeNet, the

prediction outcomes of QUIC remain essentially unchanged over

time. The absence of significant color gradient shifts in the QUIC

results reveals a poor temporal dependency. This suggests that the

QUIC method may not be as effective in capturing the dynamic

changes in neural connectivity over time.

As presented in Figure 4, the corresponding differential of multi-

modal results have significantly higher absolute values, which fur-

ther emphasizes the higher capability of NoTeNet in temporal de-

pendency prediction of dynamic functional connectivity than the

single-modal method.

Overall, the comparison of these two methods highlights the

potential advantages of our proposed NoTeNet method in capturing

the dynamic state of neural connectivity, underscoring the impor-

tance of incorporating multi-modal data inputs and the ability to

track changes over time when studying brain connectivity.

6 Conclusion

In this paper, we introduce NoTeNet, a tuning-free dynamic de-

pendence network inference method. the challenges of temporal

independency assumptions, manual hyperparameter tuning, and

the underutilization of multimodal data in dynamic network predic-

tion. By leveraging mutual information and a kernel-based weight-

ing strategy, NoTeNet effectively integrates data across modalities,

significantly enhancing prediction accuracy and reducing manual

intervention. Experiments on synthetic and real-world datasets,

including EEG-fMRI data, demonstrated NoTeNet’s superior per-

formance in capturing time-varying dependencies compared to

existing methods. Our framework’s generality and efficiency make

it suitable for a wide range of web data applications, such as neuro-

science analysis, offering a promising solution for dynamic network

analysis. Future work could explore extending the framework to

other domains and investigating potential improvements in com-

putational efficiency.
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A Theoretical Analysis

In this section, we study the theoretical properties of the proposed

estimator. Our theoretical analysis can be divided into three parts.

Firstly, we present several theorems to validate the selection of

the initial penalty hyperparameter 𝜆0. Secondly, we provide the

selection criteria for the kernel function and discuss the estimation

bias after weighting the sample matrix X.

A.1 Tuning-free Property

We denote the true covariance matrix and precision matrix as Σ∗

and Ω∗. Note that we omit the superscript to simplify the represen-

tation. First, we consider the capped ℓ1 sparsity and the invertibility

conditions as follows:

(i) Capped ℓ1 sparsity condition: For a certain 𝜖0, 𝜆
∗
0
not depend-

ing on 𝑗 and an index set P𝑗 ⊂ {1, 2, . . . , 𝑝}\{ 𝑗}, the capped ℓ1
sparsity of the 𝑗 th column is defined as

��P𝑗 �� + ∑︁
𝑘≠𝑗,𝑘∉P𝑗

���Ω∗
𝑘 𝑗

���(
Ω∗
𝑗 𝑗

)
1/2

𝜆∗
0

≤ 𝑎 𝑗 .

In the ℓ0 sparsity case where P𝑗 = {𝑘 : 𝑘 ≠ 𝑗,Ω∗
𝑘 𝑗

≠ 0}, we may

define 𝑎 𝑗 = |P𝑗 | + 1 as the degree of the 𝑗-th node in the graph

induced by the matrix Ω∗. In this scenario, the maximum degree 𝑑

is given by 𝑑 = max𝑗 (1 + |𝑆 𝑗 |).
(ii) Invertibility condition: Let S be the diagonal elements of Σ∗

and R∗ = S−1/2Σ∗S−1/2. Further, let P𝑗 ⊆ Q 𝑗 ⊆ {1, 2, . . . , 𝑝}\{ 𝑗}.
The invertibility condition is defined as

inf

𝑗


u𝑇R− 𝑗,− 𝑗uuQ 𝑗

2
2

: u ∈ R𝑝 , uQ 𝑗
≠ 0, 1 ≤ 𝑗 ≤ 𝑝

 ≥ 𝑐∗
with a fixed constant 𝑐∗ > 0. Note that the invertibility condition

holds if the spectral norm of (R∗)−1 = S1/2Ω∗S1/2 is bounded (i.e.,R−1
2
≤ 𝑐−1∗ ).

Theorem A.1. Let Ω̂ be the scaled Lasso estimators defined in (11)
below with penalty level 𝜆0 = 𝐴

√︁
4(log𝑝)/𝑇,𝐴 > 1, based on 𝑇 iid

observations from 𝑁 (0, Σ∗). Suppose 𝑑2 (log 𝑝)/𝑇 → 0. Then,Ω̂ − Ω∗

2
= 𝑂𝑃 (1)𝑑

√︁
(log 𝑝)/𝑇 = 𝑜 (1) . (25)

where ∥ · ∥2 is the spectrum norm (the ℓ2 matrix operator norm).

Theorem 1 establishes that for the convergence of Ω̂ in the spec-

tral norm, there is a straightforward boundedness requirement on

the spectral norm of Ω∗. This condition is satisfied when the sample

size 𝑇 significantly exceeds 𝑑2 log𝑝 .

Theorem A.2. Suppose Σ̂ is the sample covariance matrix of 𝑛
iid 𝑁 (0, Σ∗) vectors. Let Ω∗ = (Σ∗)−1 and Ω∗ be the inverses of
the population covariance and correlation matrices. Let Ω̂ be their
scaled Lasso estimators defined in (12) with a penalty level 𝜆0 =

𝐴
√︁
4(log𝑝)/𝑇 , 𝐴 > 1. Suppose the capped ℓ1 sparsity condition and

invertibility condition hold with 𝜀0 = 0 and max𝑗≤𝑝
(
1 + 𝑎 𝑗

)
𝜆0 ≤ 𝑐0

for a certain constant 𝑐0 > 0 depending on 𝑐∗ only. Then, the spectrum
norm of the errors is bounded by

Ω̂ − Ω∗

2
≤

Ω̂ − Ω∗

1

≤ 𝐶
(
max

𝑗≤𝑝

(𝑆−1− 𝑗 ∞ Ω∗𝑗 𝑗
)
1/2

𝑎 𝑗𝜆0 +
Ω∗

1
𝜆0

)
,

(26)

with large probability, where𝐶 is a constant depending on {𝑐0, 𝑐∗, 𝐴}
only. Moreover, the term ∥Ω∗∥

1
𝜆0 can be replaced by

max

𝑗≤𝑝

Ω∗∗, 𝑗 
1

𝑎 𝑗𝜆
2

0
+ 𝜏𝑇

(
Ω∗

)
, (27)

where𝜏𝑇 (𝑀) = inf

{
𝜏 :

∑
𝑗 exp

(
−𝑇𝜏2/

𝑀∗, 𝑗 2
1

)
≤ 1/𝑒

}
for amatrix

𝑀 .

Proposition 1. Consider Ω∗, a nonnegative definite matrix, and
define Σ∗ = (Ω∗)−1 and 𝛽 = −Ω∗ (diagΩ∗)−1. Let Ω̂ be as defined
in equations (12), derived from certain 𝛽 and 𝜎 𝑗 that meet the criteria�����𝜎∗𝑗𝜎 𝑗 − 1

����� ≤ 𝐶1𝑎 𝑗𝜆20, ∑︁
𝑘≠𝑗

Σ̂
1/2
𝑘𝑘

���𝛽𝑘,𝑗 − 𝛽𝑘,𝑗 ��� √︃Ω∗
𝑗 𝑗
≤ 𝐶2𝑎 𝑗𝜆0 . (28)

Assume that the conditions����Ω∗𝑗 𝑗 (
𝜎∗𝑗

)
2

− 1
���� ≤ 𝐶0𝜆0, max

𝑗

����(Σ̂ 𝑗 𝑗/Σ∗𝑗 𝑗
)−1/2

− 1
���� ≤ 𝐶0𝜆0 (29)

are satisfied, and that max 4𝐶0𝜆0, 4𝜆0,𝐶1𝑠, 𝑗𝜆0 ≤ 1. Under these as-
sumptions, equations (26) are valid with a constant 𝐶 that depends
solely on 𝐶0,𝐶2. Furthermore, if 𝑇Ω∗

𝑗 𝑗
(𝜎∗

𝑗
)2 ∼ 𝜒2

𝑇
, then the term

𝜆0 |Ω∗ |1 in (26)) can be substituted by equation (27) with high proba-
bility.

Proof for Theorem A.2. To utilize Proposition 1, it’s crucial to con-

firm the validity of conditions (28) and (29). Given that Ω∗
𝑗 𝑗

(
𝜎∗
𝑗

)
2

and Σ̂ 𝑗 𝑗/Σ∗𝑗 𝑗 both approximate 𝜒2
𝑇
/𝑇 , condition (29) holds when 𝜆0

is proportional to

√︁
(log𝑝)/𝑇 . Additionally, the probability 𝑃{(1 − 𝜀0)2≤

𝜒2
𝑇
/𝑇 ≤ (1 + 𝜀0)2} being less than 𝜀/𝑝 is feasible with sufficiently

small values of 𝜀0 and 𝜀, considering the assumption that

√︁
(log𝑝)/𝑇 =

𝜆0/(2𝐴) is notably small. We choose 𝜀0 = 0 in the capped ℓ1 sparsity

since it does not affect the scaling of 𝑎 𝑗 .

Considering Σ̂
1/2
𝑘𝑘
𝛽𝑘 as the regression coefficient in (11) for the

normalized design vector Σ̂
−1/2
𝑘𝑘

𝑥𝑘 (for 𝑘 ≠ 𝑗 ), Theorem 8 in [38] ap-

plies with a probability of 1−3𝜀/𝑝 for each 𝑗 , that provides bounded
ratios of estimated to true noise levels and explicit upper bounds on

prediction and estimation errors under specific conditions. These

probabilities are determined assuming 𝜆0 = 𝐴
√︁
4(log𝑝)/𝑇,𝐴1 = 0

and 𝜀 ≈ 1/
√︁
log 𝑝 . Using the union bound, the results of Theorem 8

are collectively valid for all 𝑗 with a probability of 1 − 3𝜀. Condi-
tion (28) is included in Theorem 8’s results, asserting that𝑀∗𝜎 and

𝑀∗
1
remain uniformly bounded across the 𝑝 regression scenarios

with high probability.

The uniform boundedness of𝑀∗𝜎 and𝑀∗
1
is verified when 𝐴1 =

0, 𝐵 𝑗 = 𝑆 𝑗 ,𝑚 𝑗 = 0 are set, and the matrices

{
Σ̂, Σ∗

}
are substituted

by

{
𝑅− 𝑗,− 𝑗 , 𝑅∗− 𝑗,− 𝑗

}
. The Gram matrix for the regression setup in

(11) is the random and 𝑗-dependent 𝑅− 𝑗,− 𝑗 . Then we have

max

𝑘≠𝑗

𝑅𝑘,− 𝑗 − 𝑅∗𝑘,− 𝑗 ∞ ≤ max

𝑗,𝑘

��𝑅𝑘,𝑗 − 𝑅𝑘,𝑗 �� ≤ 𝐿𝑇 (
5𝜀/𝑝2

)
(30)
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with a likelihood of 1 − 𝜀. Setting 𝐿𝑇
(
5𝜀/𝑝2

)
= 2

√︁
(log𝑝)/𝑇 , with

𝜀 ≈ 1/
√︁
log𝑝 . The second stipulation that 𝑐∗ |𝑢𝑆 | 22 ≤ 𝑢𝑇𝑅∗− 𝑗,− 𝑗𝑢

follows from the invertibility condition, and the third condition

mandates that max 𝑗 ≤ 𝑝𝜆0𝑠∗, 𝑗 ≤ 𝑐0.
Theorem A.3. Let 𝑘 > 0. Suppose 𝜀 ∼ 𝑁

(
0, 𝜎2𝐼𝑇

)
. (i) 𝜆∗ =

𝜎𝐿𝑇 (𝑘/𝑝), and

𝐴 − 1 > 𝐴1 ≥
(

4𝑘/𝑚
𝐿4
1
(𝑘/𝑝) + 2𝐿2

1
(𝑘/𝑝)

)
1/2

+ 𝐿1 (𝜀/𝑝)
𝐿1 (𝑘/𝑝)

(
𝜅+ (𝑚)
𝑚

)
1/2

.

with at least probability 1−𝜀/𝑝−2 |𝐵𝑐 | 𝑘/𝑝 . (ii) Let 𝜆∗
0
= 𝐿𝑇−3/2 (𝑘/𝑝), 𝜀𝑛 =

𝑒1/(4𝑇−6)
2 − 1, and

𝐴 − 1 > 𝐴1 ≥
(
(1 + 𝜀𝑛) 4𝑘/𝑚

𝐿4
1
(𝑘/𝑝) + 2𝐿2

1
(𝑘/𝑝)

)
1/2

+
(
𝐿1 (𝜀/𝑝)
𝐿1 (𝑘/𝑝)

+ 1 + 𝜀𝑇
𝐿1 (𝑘/𝑝)

√
2𝜋

) (
𝜅+ (𝑚)
𝑚

)
1/2

.

(31)

Then Ω̂ achieves a consistent estimation with at least probability
1 − 2𝜀/𝑝 − 2 |𝐵𝑐 | 𝑘/𝑝 .

The proof of Theorem A.1 and Theorem A.3 is similar to [38],

thus we will not elaborate further.

A.2 Selection of the Kernel Function

We assume that the kernel function 𝐾 (·) has compact support

[−1, 1]. It is known that the precision matrix is the inverse of the

covariance matrix. The estimation bias of the covariance estimation,

Σ̂(𝑡 ) −Σ(𝑡 ) ,will directly impact the estimated precision matrix. Here

Σ̂(𝑡 ) = cov(X(𝑡 ) ), 𝑡 = 1, 2, . . . ,𝑇 . For the 𝑡−th time point and (𝑖, 𝑗)-
th entry, we have

∥Σ̂(𝑡 )
𝑖 𝑗
− Σ(𝑡 )

𝑖 𝑗
∥ ≤ ∥Σ̂(𝑡 )

𝑖 𝑗
− EΣ̂(𝑡 )

𝑖 𝑗
∥ + ∥Σ(𝑡 )

𝑖 𝑗
− EΣ̂(𝑡 )

𝑖 𝑗
∥ (32)

Lemma A.4. Suppose there exists 𝐶 > 0 such that

max

𝑖, 𝑗
sup

𝑡

���Σ(𝑡 )𝑖 𝑗

��� ≤ 𝐶.
where Σ(𝑡 )

𝑖 𝑗
is the (𝑖, 𝑗)-th entry of the true covariance matrix Σ(𝑡 ) .

Then for 𝐾 (·) that satisfies

sup

𝑡 ∈{0,1,...,𝑇 }
𝐾

( 𝑡
ℎ𝑇

)
= 𝑂

(
1

ℎ4

)
, (33)

we have

sup

𝑡 ∈{0,1,...,𝑇 }
max

𝑖, 𝑗

���EΣ̂(𝑡 )𝑖 𝑗
− Σ(𝑡 )

𝑖 𝑗

��� = 𝑂 (ℎ) +𝑂 (
1

𝑇 2ℎ5

)
.

Lemma A.5. For 𝜖 < 𝐶0, we have

𝑃 (∥Σ̂(𝑡 )
𝑖 𝑗
− EΣ̂(𝑡 )

𝑖 𝑗
∥ > 𝜖) ≤ exp{−𝐶1𝑇ℎ𝜖2}.

where 𝐶1 > 0 and 𝐶0 is a constant such that

𝐶0 =

𝐶1

(
(Σ(𝑡 )

𝑖
)2 (Σ(𝑡 )

𝑗
)2 + (Σ(𝑡 )

𝑖 𝑗
)2

)
max𝑘=1,...,𝑇

(
2𝐾

(
𝑘−𝑡
ℎ𝑇

)
Σ
(𝑘 )
𝑖

Σ
(𝑘 )
𝑗

)
Therefore, we can bound the covariance estimationwith LemmaA.4

and Lemma A.5. This conclusion confirms the validity of (6). It is

noticed that most smooth kernel functions including the Gaussian

kernel satisfy (33).

Proof for Theorem A.4. Without loss of generality, assume that

𝑡 = 𝑇 . To estimate the sum, we employ the Riemann integral ap-

proximation.

EΣ̂(𝑡 )
𝑖 𝑗

=
1

𝑇

𝑇∑︁
𝑘=1

2

ℎ
𝐾

(
𝑘 − 𝑡
ℎ𝑇

)
Σ
(𝑘 )
𝑖 𝑗

=

∫ 𝑡

𝑘

2

ℎ
𝐾

(𝑢 − 𝑡
ℎ𝑇

)
Σ
(𝑢 )
𝑖 𝑗
𝑑𝑢 +𝑂

©«
2

ℎ
sup

𝑢∈[𝑘,𝑇 ]

(
𝐾

(
𝑢−𝑡
ℎ𝑇

)
Σ
(𝑢 )
𝑖 𝑗

)
𝑇 2

ª®®¬
= 2

∫
0

−1/ℎ
𝐾 (𝑣)Σ(𝑡+ℎ𝑣)

𝑖 𝑗
𝑑𝑣 +𝑂

(
1

𝑇 2ℎ5

)
.

We now use Taylor’s formula to replace Σ
(𝑡+ℎ𝑣)
𝑖 𝑗

and obtain

2

∫
0

−1/ℎ
𝐾 (𝑣)Σ(𝑡+ℎ𝑣)

𝑖 𝑗
𝑑𝑣

= 2

∫
0

−1
𝐾 (𝑣)

©«Σ
(𝑡 )
𝑖 𝑗
+ ℎ𝑣Σ(𝑡 )

𝑖 𝑗
+
Σ
(𝑦 (𝑣) ) (ℎ𝑣)2
𝑖 𝑗

2

ª®®¬𝑑𝑣
= Σ
(𝑡 )
𝑖 𝑗
+ 2

∫
0

−1
𝐾 (𝑣)

(
ℎ𝑣Σ

(𝑡 )
𝑖 𝑗
+ 𝐶 (ℎ𝑣)

2

2

)
𝑑𝑣

where

2

∫
0

−1
𝐾 (𝑣)

(
ℎ𝑣Σ

(𝑡 )
𝑖 𝑗
+ 𝐶 (ℎ𝑣)

2

2

)
𝑑𝑣

= 2ℎΣ
(𝑡 )
𝑖 𝑗

∫
0

−1
𝑣𝐾 (𝑣)𝑑𝑣 + 𝐶ℎ

2

2

∫
0

−1
𝑣2𝐾 (𝑣)𝑑𝑣

≤ ℎΣ(𝑡 )
𝑖 𝑗
+ 𝐶ℎ

2

4

with 𝑦 (𝑣) − 𝑡 < ℎ𝑣 . Then EΣ̂(𝑡 )
𝑖 𝑗
− Σ(𝑡 )

𝑖 𝑗
= 𝑂 (ℎ) +𝑂

(
1

𝑇 2ℎ5

)
and the

lemma holds.

Proof for Theorem A.5. Let us define 𝐴𝑡 = X𝑡𝑖X𝑡 𝑗 − Σ(𝑡 )𝑖 𝑗
.

P
(���Σ̂(𝑡 )𝑖 𝑗

− EΣ̂(𝑡 )
𝑖 𝑗

��� > 𝜖)
= P

(
𝑇∑︁
𝑘=1

ℓ𝑘 (𝑡) X𝑘𝑖X𝑘 𝑗 −
𝑇∑︁
𝑘=1

ℓ𝑘 (𝑡) Σ
(𝑘 )
𝑖 𝑗

> 𝜖

)
.

where

ℓ𝑘 (𝑡) =
2

𝑇ℎ
𝐾

(
𝑘 − 𝑡
ℎ𝑇

)
≈

𝐾

(
𝑘−𝑡
ℎ𝑇

)
∑𝑇
𝑖=1 𝐾

(
𝑘−𝑡
ℎ𝑇

)
For every 𝑡 > 0, we have by Markov’s inequality

P

(
𝑇∑︁
𝑘=1

𝑇 ℓ𝑘 (𝑡)𝐴𝑘 > 𝑇𝜖

)
= P

(
exp

(
𝑡

𝑇∑︁
𝑘=1

2

ℎ
𝐾

(
𝑘 − 𝑡
ℎ𝑇

)
𝐴𝑘

)
> 𝑒𝑇𝑡𝜖

)

≤
E exp

(
𝑡
∑𝑛
𝑘=1

2

ℎ
𝐾

(
𝑘−𝑡
ℎ𝑇

)
𝐴𝑘

)
𝑒𝑇𝑡𝜖

.

The lemma holds.
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A.3 Explanation for 𝑆 (·)
In the main text, we let 𝑆 (𝑧) = 1−𝑧. Normalized mutual information

is a quantity that measures a relationship between two random vari-

ables that are sampled simultaneously. Higher normalized mutual

information indicates a greater degree of dependence between the

variables, implying a stronger relationship and better predictability

of one variable based on the other. Therefore, the position (𝑖, 𝑗) is
more likely to have an edge if 𝜃𝑖 𝑗 is higher. As we know, the larger

the penalty parameter, the stronger the penalty applied, compress-

ing the coefficient towards zero. Thus we inverse the 𝜃𝑖 𝑗 with the

operator 𝑆 (·), where 𝜃𝑖 𝑗 ranges in [0, 1].

B More Information about Real-world Dataset

B.1 Multimedia in Neuroscience

Functional Magnetic Resonance Imaging (fMRI) and Electroen-

cephalography (EEG) are two prominent neuroimaging techniques

used to explore and understand brain activity.

fMRI is a technique that measures brain activity by detecting

changes in blood flow. When an area of the brain is more active, it

consumes more oxygen, and to meet this increased demand, blood

flow to that region also increases. This phenomenon is known as

the Blood Oxygen Level Dependent (BOLD) contrast. It provides

high spatial resolution, offering detailed images of brain structures.

It can pinpoint the location of brain activity within millimeters.

EEG, on the other hand, directly measures electrical activity in

the brain using dozens of electrode channels placed on the scalp.

When neurons fire, they produce electrical signals that can be

detected and recorded by EEG. EEG has excellent temporal resolu-

tion, on the order of milliseconds. This allows researchers to track

changes in brain activity in real time, providing insights into the

dynamics of cognitive processes.

Both fMRI and EEG offer valuable insights into brain function,

with complementary strengths and weaknesses. Researchers are

exploring to obtain a more comprehensive understanding of brain

activity using them.

B.2 Functional Connectivity Network

Functional connectivity (FC) refers to the statistical dependencies or

correlations between different brain regions based on their neural

activity. It provides insights into how different brain areas commu-

nicate and work together during various cognitive tasks or even

at rest. Its prediction is often derived from data sources such as

functional magnetic resonance imaging (fMRI), electroencephalog-

raphy (EEG), or other neuroimaging modalities. FC prediction plays

a crucial role in neuroscience, clinical diagnosis, and personalized

medicine [8, 14, 39].
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