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Abstract001

One key characteristic of the Chinese spelling002
check (CSC) task is that incorrect characters003
are usually similar to the correct ones in either004
phonetics or glyph. To accommodate this, pre-005
vious works usually leverage confusion sets,006
which suffer from two problems, i.e., difficulty007
in determining which character pairs to include008
and lack of probabilities to distinguish items in009
the set. In this paper, we propose a light-weight010
plug-and-play DISC (i.e., decoding interven-011
tion with similarity of characters) module for012
CSC models. DISC measures phonetic and013
glyph similarities between characters and incor-014
porates this similarity information only during015
the inference phase. This method can be easily016
integrated into various existing CSC models,017
such as ReaLiSe, SCOPE, and ReLM, with-018
out additional training costs. Experiments on019
three CSC benchmarks demonstrate that our020
proposed method significantly improves model021
performance, approaching and even surpassing022
the current state-of-the-art models.023

1 Introduction024

Given an input sentence, Chinese spelling check025

(CSC) aims to detect incorrect characters and mod-026

ify each into an correct character (Yu and Li, 2014;027

Xu et al., 2021). Table 1 gives two examples.028

Spelling errors degrade reading efficiency, and029

sometimes even lead to misunderstanding. The030

authority or attitude of the writer may be doubted031

if their document contains simple spelling errors.032

Moreover, spelling errors substantially hurt the per-033

formance of subsequent NLP models.034

As is well known, spelling errors in Chinese texts035

have three major sources, i.e., 1) from keyboard036

typing with some input methods, 2) from image037

or document scanning with some optical character038

recognition (OCR) software, and 3) from speech-to-039

text translation with some automatic speech recog-040

nition (ASR) software. Nowadays, most Chinese041

记得戴眼睛(jı̄ng)。
Remember to wear eyes.

记得戴眼镜(jìng)。
Remember to wear glasses.

从商场的人(rén)口进去。
Enter through the mall’s population.

从商场的入(rù)口进去。
Enter through the mall’s entrance.

Input

Reference

Input

Reference

Table 1: Two CSC examples. “睛”(jı̄ng, eyes) and
“镜”(jìng, glasses) are a pair of characters that are simi-
lar in phonetics, and “人”(human) and “入”(enter) are
similar in glyph.

users employ Pinyin-based input methods. Consid- 042

ering the three sources, we can see that the incorrect 043

character in most cases is similar to the underlying 044

correct one in phonetics or glyph, sometimes in 045

both. This is a key characteristic of the CSC task. 046

Previous works employ confusion sets to lever- 047

age such similarities among characters (Yeh et al., 048

2013; Huang et al., 2014; Xie et al., 2015; Cheng 049

et al., 2020; Huang et al., 2023). Formally, a con- 050

fusion set is denoted as C “ tpc1i , c
2
i quMi“1, where 051

pc1i , c
2
i q represents a pair of characters and means 052

that c1i may be mistakenly replaced by c2i in real 053

texts. 054

As a representative work, Wang et al. (2018) con- 055

struct a confusion set via two channels. First, they 056

add noise into glyph images and apply OCR. Sec- 057

ond, they apply ASR to parallel speech/text data. 058

Their confusion set covers about 5K characters and 059

consists of 19K character pairs that are likely to be 060

confused with each other in written texts. 061

The most direct and popular use of confusion 062

sets is to constrain the search space during the in- 063

ference phase. The model can only consider char- 064

acter pairs in C. More specifically, if pc1, c2q R C, 065

the model can never change c2 into c1. The justi- 066
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fication for such constrained decoding is that the067

resulting sentence may deviate from the meaning068

of the input sentence (i.e., unfaithfulness), if the069

model replaces a character with a totally unrelated070

new one.071

Despite their popularity and usefulness, confu-072

sion sets have two problems. First, it is difficult to073

set criteria to decide the inclusion or exclusion of074

certain character pairs. This renders the construc-075

tion of confusion sets highly empirical, sometimes076

requiring manual intervention. Second, there is no077

probability to distinguish which character pairs are078

more likely to be confused than others in C.079

As a replacement for confusion sets, we pro-080

pose a lightweight plug-and-play DISC (decoding081

intervention with similarity of characters) module.082

DISC derives probability-based similarities among083

characters in both phonetics and glyph, and uses084

the probabilities to intervene in the decoding pro-085

cess. Similar to the confusion set, our DISC aims086

to enhance the model’s precision. However, for087

datasets that lack or have no in-domain training088

data, DISC may result in under-corrections due089

to the model’s conservative predictions, leading090

to unstable recall. To address this, we propose a091

copy-punishment solution to balance precision and092

recall.093

It is worth noting that DISC is featured in com-094

patibility. On the one hand, DISC is compatible095

with the ways to derive probabilities for represent-096

ing character similarity. On the other hand, DISC is097

compatible with almost all the current mainstream098

CSC models, such as SoftMasked-BERT (Zhang099

et al., 2020), ReaLiSe (Xu et al., 2021), SCOPE100

(Li et al., 2022), and ReLM (Liu et al., 2024).101

Experiments and analyses on popular benchmark102

datasets, i.e., SIGHANs, ECSpell, and LEMON,103

demonstrate that our DISC module can signifi-104

cantly enhance the error correction performance105

of CSC models. This improvement does not re-106

quire additional training costs and only slightly107

affects the decoding efficiency of the model. We108

release our code at https://anonymous.4o109

pen.science/r/simple-DISC.110

2 The Basic CSC Model111

Given an input sentence consisting of n characters,112

denoted as x “ x1x2 ¨ ¨ ¨xn, the goal of a CSC113

model is to output a corresponding correct sentence,114

denoted as y “ y1y2 ¨ ¨ ¨ yn, in which all erroneous115

characters in x are replaced with the correct ones.116

Presently, mainstream approaches treat CSC as a 117

character-wise classification problem (Zhang et al., 118

2020; Liu et al., 2021; Xu et al., 2021), i.e., deter- 119

mining whether a current character should be kept 120

the same or be replaced with a new character. 121

Encoding. Given x, the encoder of the CSC 122

model generates representations for each character: 123

h1 ¨ ¨ ¨hn “ Encoderpxq. (1) 124

To leverage the power of pre-trained language mod- 125

els, a BERT-like encoder is usually employed. 126

Classification. For each character position, for 127

instance hi, the CSC model employs MLP and 128

softmax layers to obtain a probability distribution 129

over the whole character vocabulary V: 130

ppy | x, iq “ softmaxp MLPphiq qrys. (2) 131

During the evaluation phase, the model selects the 132

character with the highest probability, i.e., y˚ “ 133

argmaxyPV ppy | x, iq. 134

Training. The typical training procedure consists 135

of 2–3 steps for the CSC task. First, automatically 136

synthesize large-scale CSC training data by replac- 137

ing some characters with others randomly, some- 138

times constrained by a given confusion set. Second, 139

train the CSC model on the synthesized training 140

data. Third, fine-tune the model on a small-scale 141

in-domain training data, if the data is available. 142

3 Our Approach 143

In this paper, we propose a simple plug-and-play 144

module to intervene in the classification (or predic- 145

tion) process of any off-the-shelf CSC model. The 146

basic idea is to adjust the probability distribution 147

according to the similarity between a candidate 148

character y and the original character xi: 149

Scorepx, i, yq “ ppy | x, iq ` α ˆ Simpxi, yq,
(3) 150

where Simp¨q gives the similarity between two 151

characters, and α is a hyperparameter and we set 152

α “ 1.1 for all datasets and basic models accord- 153

ing to a few preliminary experiments. We use 154

Scorep¨q to denote the replacement likelihood 155

since the value is no longer a probability. 156

Our experiments show that by encouraging the 157

model to prefer similar characters, our approach 158

achieves a consistent and substantial performance 159

boost on all CSC benchmark datasets. 160
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Candidate characters:

...
切实保障公民基本权力和自由

Effectively guarantee the citizen's basic power and freedom.

CSC Encoder

...... ......
Representations

CSC Decoder

DISC Module
+

Distribution
=

Wrong Sentence

Plug-and-Play Module

...

Similarity

...

0.08

0.78

0.43

1.0

0.36

切实保障公民基本权利和自由
Effectively guarantee the citizen's basic rights and freedom.

Similarity Decoding Intervention
利益 祉权力

利益 祉权力

利益 祉权力

利(lì): right
益(yì): equity
力(lì): power
祉(zhǐ):  happiness
权(quán): authority

Probability

(old)

Distribution
(new)

Probability

Figure 1: Overview of DISC. It intervenes in the CSC decoder with the similarity between the potential error
character and its candidate characters. The DISC module intervenes in the probability distribution results of the
CSC model based on specific similarity, favoring the selection of more similar confusing characters.

We measure character similarity from two per-161

spectives, i.e., phonetic and glyph:162

Simpc1, c2q “ β ˆ SimPpc1, c2q

`p1 ´ βq ˆ SimGpc1, c2q,
(4)163

where β is an interpolation hyperparameter, our ex-164

periments in Section 6 demonstrate that the model165

achieves good and stable performance when it is166

set to 0.7.167

3.1 Phonetic Similarity168

Given two characters, we employ the pypinyin li-169

brary to obtain the Pinyin sequences,1 e.g., “忠”170

(zhong) and “仲” (zhong),2 and then compute the171

phonetic similarity based on the edit distance over172

their Pinyin sequences:173

SimPpc1, c2q “ 1 ´
LDppypc1q,pypc2qq

lenppypc1q ` pypc2qq
,

(5)174

where LDp¨q gives the Levenshtein distance,3 and175

lenp¨q gives the total length of the two sequences.176

1https://pypi.org/project/pypinyin
2We do not use the tone information, e.g., “忠” (zhōng)

and “仲” (zhòng), which is not helpful for model performance
according to our preliminary experiments. We suspect the
reason is that Pinyin-based input methods do not require users
to input the tones. Therefore, tones are not directly related to
spelling errors.

3Levenshtein distance is a type of edit distance. We set the
weights of the three types of operations, i.e., deletion, insertion
and substitutions, as 1/1/2 respectively.

Handling polyphonic characters. Given two 177

characters, we enumerate all possible Pinyin se- 178

quences of each character, and adopt the combina- 179

tion that leads to the highest similarity. 180

We have also tried more sophisticated strategies. 181

For instance, we follow Yang et al. (2023b) and 182

give higher weights to certain phoneme (consonant 183

or vowel) pairs, since they are more likely to cause 184

spelling errors. However, our preliminary exper- 185

iments show that our simple strategy in Eq. (5) 186

works quite robustly. 187

3.2 Glyph Similarity 188

According to Liu et al. (2010), 83% of Chinese 189

spelling errors are related to pronunciation, while 190

48% are with glyphs, indicating that a consider- 191

able proportion is related to both. Therefore, it is 192

necessary to consider the glyph information when 193

computing character similarity. 194

Pinyin sequences can largely encode the phonet- 195

ics of Chinese characters. In contrast, it is much 196

more complex to represent character glyphs. In this 197

work, we compute and fuse glyph similarity from 198

four aspects: 199

SimGpc1, c2q “

ř4
i“1 Sim

G
i pc1, c2q

4
. (6) 200

Four-corner code. The four-corner method is 201

widely used in Chinese lexicography for indexing 202

characters. Given a character, it gives four digits 203

ranging from 0 to 9, corresponding to the shapes 204
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at the four corners of the character’s glyph, respec-205

tively. For instance, the four-corner code is 5033206

for “忠”, and 2520 for “仲”.207

Then, we use the digit-wise matching rate be-208

tween two codes as the similarity:209

SimG1pc1, c2q “

ř4
i“1 1pFCpc1qris “ FCpc2qrisq

4
,

(7)210

where FCp¨q gives the four-digit code, and 1 is the211

indicator function.212

Structure-aware four-corner code. One impor-213

tant feature of Chinese characters is that a complex214

character can usually be decomposed into simpler215

parts, and each part corresponds to a simpler char-216

acter or a radical. Most radicals are semantically217

equivalent to some character, e.g., “亻” to “人”.218

Such structural decomposition directly reveals219

how characters are visually similar to each other.220

Motivated by this observation, we design a221

structure-aware four-corner code for each character.222

For example,223

“忠”: C5000C3300 (“中”: 5000; “心”: 3300)224

“仲”: B8000B5000 (“人”: 8000; “中”: 5000)225

where “C” leading a four-coner code means up-226

down structure, and “B” means left-right structure.227

Then we compute the similarity based on the228

Levenshtein distance as follows:229

SimG2pc1, c2q “ 1 ´
LDpSFCpc1q,SFCpc2qq

lenpSFCpc1q ` SFCpc2qq
,

(8)230

where SFCp¨q gives the structure-aware code of a231

character.232

Stroke sequences. Four-corner codes focus on233

the shapes of the four corners. Some very similar234

characters may obtain quite different codes, e.g.,235

“木” (4090) vs. “本” (5023). To address this is-236

sue, we utilize stroke sequence information, which237

encodes how a character is handwritten stroke by238

stroke. For example,239

“木”: 一丨ノ、 (4 strokes)240

“本”: 一丨ノ、一 (5 strokes)241

Then we compute two similarity metrics from242

two complementary viewpoints. The first metric is243

based on Levenshtein distance:244

SimG3pc1, c2q “ 1 ´
LDpSSpc1q,SSpc2qq

lenpSSpc1q ` SSpc2qq
,

(9)245

where SSp¨q gives the stroke sequence of a charac-246

ter.247

The second metric considers the longest com- 248

mon subsequence, i.e., LCSp¨q: 249

SimG4pc1, c2q “
LCSpSSpc1q,SSpc2qq

maxplenpSSpc1qq,lenpSSpc2qqq
.

(10) 250

According to Eq. (4), and supposing β “ 0.7, 251

we get the similarity between “忠” and “仲” being: 252

0.7 ˆ 1 ` 0.3 ˆ
0 ` 0.56 ` 0.57 ` 0.5

4
“ 0.82. 253

4 Experimental Setup 254

4.1 Datasets 255

Following the conventions of previous work, we 256

employ the test sets of the SIGHAN 13/14/15 257

datasets (Wu et al., 2013; Yu et al., 2014; Tseng 258

et al., 2015) as our evaluation benchmarks. 259

However, many previous studies have pointed 260

out that the SIGHAN datasets may not represent 261

real-world CSC tasks, as they are derived from 262

Chinese learner texts. To address this limitation, 263

we also conduct experiments on the ECSpell (Lv 264

et al., 2023) and LEMON (Wu et al., 2023) datasets, 265

which are derived from Chinese native-speaker 266

(CNS) texts and encompass a wide range of do- 267

mains. It is worth noting that LEMON does not 268

have a dedicated training set, making it an excel- 269

lent test set for evaluating a model’s generalization 270

ability. 271

The details of these datasets are in Appendix B. 272

4.2 Baseline Models 273

We select three representative BERT-style models 274

as our baselines: ReaLiSe, SCOPE, and ReLM. 275

The ReaLiSe model (Xu et al., 2021) employs 276

multi-modal technology to capture semantic, pho- 277

netic, and glyph information. The SCOPE model 278

(Li et al., 2022) is one of the SOTA models for CSC, 279

which enhances model correction performance by 280

introducing a character pronunciation prediction 281

task. The ReLM model (Liu et al., 2024) treats 282

CSC as a non-autoregressive paraphrasing task, 283

standing out as a new SOTA model. 284

Additionally, we include some of the latest work 285

(Cheng et al., 2020; Huang et al., 2023) for perfor- 286

mance comparison. 287

In the era of LLMs, researchers have begun us- 288

ing LLMs to explore the CSC field. We present 289

the results of representative LLMs on certain 290

benchmarks for comparison, including the top- 291

performing GPT series in terms of overall capa- 292
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C-Pæ C-Ræ C-Fæ FPRç C-Pæ C-Ræ C-Fæ FPRç C-Pæ C-Ræ C-Fæ FPRç

72.1 77.7 75.9 – 63.1 67.2 65.3 – 78.3 72.7 75.4 –
75.9 79.9 77.8 12.0 66.3 70.0 68.1 14.9 87.2 81.2 84.1 10.3
78.7 83.5 81.0 11.3 67.1 71.2 69.5 14.8 86.5 82.1 84.2 17.2
80.3 82.3 81.3 – 69.3 72.3 70.7 – 87.7 83.0 85.3 –
76.8 83.9 80.2 12.7 63.7 72.3 67.7 17.5 85.0 82.3 83.7 10.8

32.7 38.4 35.3 33.8 39.7 22.1 28.4 14.6 57.1 27.1 36.7 13.8
36.5 49.2 41.9 40.8 32.8 45.0 38.0 43.5 47.3 45.7 46.5 44.8

77.0 79.9 78.4Ò 11.3Ó 68.2 70.2 69.2Ò 13.7Ó 87.6 81.1 84.2Ò 10.3
80.2 83.4 81.8Ò 10.0Ó 69.3 72.5 70.9Ò 13.7Ó 88.0 83.0 85.4Ò 17.2
79.8 83.1 81.4Ò 9.5Ó 68.6 73.7 71.0Ò 14.3Ó 88.4 83.3 85.8Ò 7.6Ó

Models SIGHAN15 SIGHAN14 SIGHAN13

Previous SOTAs
SpellGCN
ReaLiSe
SCOPE:

SCOPE + DR-CSC
ReLM:

LLMs Results
GPT3.5
GPT4

Ours
ReaLiSe + DISC
SCOPE + DISC
ReLM + DISC

Table 2: Sentence-level performance on the SIGHAN13, SIGHAN14 and SIGHAN15 test sets. Precision (P), recall
(R) and F1 for correction are reported (%). Results marked with “:” are obtained by reruning the official code
released by Li et al. (2022) and Liu et al. (2024). Other baseline results are directly taken from their literature. Apart
from SpellGCN, all models apply post-processing on SIGHAN13, which removes all detected and corrected “地”
and “得” from the model output before evaluation. “+ DISC” means adding DISC module in the decoder. α and β
are assigned the values 1.1 and 0.7, respectively.

bility: GPT3.5 and GPT4, as well as some re-293

sults on open-source LLMs in the Chinese NLP294

community from previous work, such as finetuned295

Baichuan2 (Yang et al., 2023a).296

4.3 Evaluation Metrics297

The CSC task comprises two subtasks: error detec-298

tion and error correction. Following the previous299

work (Zhang et al., 2020), we report the precision300

(P), recall (R), and F1 scores at the sentence level301

for both subtasks. Additionally, we also evalu-302

ate the models with the False Positive Rate (FPR)303

metric (Liu et al., 2024), which quantifies the CSC304

model’s frequency of over-correction, i.e., incor-305

rectly identifying correct sentences as erroneous.306

4.4 Hyperparameters307

Hyperparameters α and β denote the weights as-308

signed to overall similarity and phonetic similarity,309

respectively. As detailed in Section 6 on grid search310

results, we set α “ 1.1 in Eq. 3 and β “ 0.7 in Eq.311

4 for all experiments.312

5 Main Results313

Results on SIGHANs. Table 2 illustrates the314

main results across SIGHAN benchmarks, demon-315

strating that the addition of the DISC module in the316

decoding process leads to notable improvements317

across all the compared models, reaching state-318

of-the-art performance. Specifically, ReaLiSe +319

DISC has increases of 0.1/1.1/0.6, SCOPE + DISC 320

achieves lifts of 1.2/1.4/0.8, ReLM + DISC sees 321

enhancements of 2.1/3.3/1.2 in correction-level F1 322

(C-F) score on the SIGHAN13/14/15 test sets, re- 323

spectively. 324

It is worth noting that ReaLiSe and SCOPE have 325

incorporated phonetic or glyph information dur- 326

ing training. However, our DISC module can still 327

improve the performance of these models. 328

In addition to the consistent improvement in the 329

F1 metric, results demonstrate that the integration 330

of the DISC module into CSC models leads to 331

a significant reduction in FPR across almost all 332

datasets. This implies that DISC can avoid some 333

unnecessary corrections. 334

Results on Native Datasets. As ReLM has 335

shown outstanding performance on the SIGHAN 336

benchmarks, we continue to utilize it for exper- 337

iments on the multi-domain datasets of ECSpell 338

and LEMON to demonstrate the DISC module’s 339

domain adaptability. 340

Table 3 depicts that the incorporation of the 341

DISC module into ReLM leads to substantial im- 342

provements of 1.1/3.7/0.7 C-F score compared to 343

unenhanced ReLM in the LAW, MED and ODW 344

domains, respectively. Table 3 also presents the 345

performance of DISC on LEMON. After integrat- 346

ing the DISC module, the results of ReLM + DISC 347

achieve notable improvements across all domains, 348

and the average C-F has an increase of 3.2. This 349
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P R F1

GPT3.5 48.5 43.1 45.6 9.4
GPT4 62.0 62.0 62.0 7.3
Baichuan2-7B‹ 85.1 87.1 86.0 –
ReLM 93.7 98.8 96.2 6.5

+ DISC 96.5 98.0 97.3 2.9
GPT3.5 36.5 42.0 39.1 20.1
GPT4 45.1 57.5 50.6 24.8
Baichuan2-7B‹ 72.6 73.9 73.2 –
ReLM 85.1 95.8 90.2 9.8

+ DISC 91.6 96.3 93.9 4.6
GPT3.5 57.3 52.3 54.7 6.3
GPT4 71.7 67.6 69.5 1.7
Baichuan2-7B‹ 86.1 79.3 82.6 –
ReLM 89.4 91.5 90.4 5.8

+ DISC 91.1 91.1 91.1 3.3

ReLM 35.8 33.6 34.6 20.6
+ DISC 56.1 31.5 40.4 8.5

ReLM 59.2 48.9 53.6 12.0
+ DISC 72.3 45.9 56.2 4.6

ReLM 46.3 32.2 38.0 17.6
+ DISC 65.2 29.6 40.8 7.1

ReLM 55.8 41.6 47.7 12.7
+ DISC 72.2 39.3 50.9 5.1

ReLM 68.5 51.5 58.8 8.4
+ DISC 80.4 48.1 60.2 3.2

ReLM 73.5 62.8 67.7 4.9
+ DISC 87.4 58.3 69.9 1.1

ReLM 67.3 44.9 53.9 5.8
+ DISC 82.2 44.5 57.7 2.2

ReLM 59.4 57.8 58.6 16.3
+ DISC 69.9 56.3 62.4 8.9

Domain Model Correction
FPR

ECSpell

LAW

MED

ODW

LEMON

GAM

CAR

NOV

ENC

NEW

COT

MEC

SIG

Table 3: Sentence-level performance of LLMs, ReLM,
and ReLM + DISC on the test sets of ECSpell and
LEMON. Results marked with “‹” are from Liu et al.
(2024).

demonstrates that our DISC module yields stable350

and significant improvements in cross-domain CSC351

testing.352

5.1 Case Study353

We present two illustrative examples of DISC-354

augmented error correction in Figure 2. These355

examples explain why our DISC module can sig-356

nificantly improve model precision.357

Figure 2(a) exemplifies how the DISC module358

retrieves a more plausible alteration resembling359

the original character. In this example, the ReLM360

model corrects the erroneous word “读”(dú) to361

“少”(shǎo). This correction is grammatically cor-362

rect, but deviates from the original meaning of the363

sentence. From the perspective of phonetics, a364

Input: 肌肉酸痛是运动过读(dú)导致的。
Muscle soreness is caused by read and exercise.

Reference:读➔度 (dú ➔ dù, excessive)

ReLM: 读➔少 (dú ➔ shǎo, insufficient)

ReLM+DISC:读➔度 (dú ➔ dù, excessive)

(a) Select the more similar word

Input: 浓荫蔽空(kōng)，郁郁苍苍。
Thick foliage shades the sky, lush and verdant.

Reference:NONE
ReLM: 空➔日(kōng ➔ rì, sun)
ReLM+DISC:NONE

(b) Mitigate over-correction

Figure 2: Cases from the SIGHANs and LEMON.

0.1 0.3 0.5 0.7 0.9 1.1 1.3 1.5

55

60

65

70

75

80

α
0.0 0.2 0.4 0.6 0.8 1.0

55

60

65

70

75

80

β

F1

P

R

Figure 3: The average scores in ENC, MEC and
SIGHAN15 with different values of α and β. The solid
lines represent the results of ReLM + DISC, and the
dashed lines represent the results of the original ReLM.

more suitable correction should be “度”(dù), which 365

shares the same pronunciation as the erroneous 366

word. The DISC makes this correction by leverag- 367

ing semantic and phonetic information. 368

In Figure 2(b), the DISC alleviates over- 369

correction. The CSC model mistakenly alters 370

“空”(kōng) to “日”(rì), yet the similarity interven- 371

tion rectifies this error. Specifically, since the most 372

similar to a character is the character itself, when 373

a CSC model incorrectly tends to correct over pre- 374

serve on a correct sentence, the DISC module can 375

increase the score of the character itself compared 376

to other correction options based on similarity, 377

which sometimes avoids unnecessary corrections. 378

6 Discussion 379

We select the SIGHAN15 along with two domains 380

from the LEMON database, ENC and MEC, to 381

conduct further analysis. 382

Robustness of similarity hyperparameters. As 383

illustrated in Figure 3, the model’s precision 384

steadily improves as α increases. This is be- 385

cause increased similarity intervention reduces 386
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Domain Edit Pairs Seen Pairs Prop.
SIGHANs

SIGHAN15 703 698 99.29%
SIGHAN14 771 765 99.22%
SIGHAN13 1,224 1,206 98.53%

ECSpell
LAW 390 321 82.31%
MED 356 265 74.44%
ODW 404 341 84.41%

LEMON
GAM 164 100 60.98%
CAR 1,911 1,254 65.62%
NOV 3,415 2,045 59.88%
ENC 1,787 1,040 58.20%
NEW 3,260 2,293 70.34%
COT 486 309 63.58%
MEC 1,032 627 60.76%

Table 4: Proportion of seen edit pairs in the test sets of
SIGHANs, ECSpell, and LEMON.

over-correction (Figure 2(a)), boosting precision.387

However, at the same time, DISC may revert pre-388

dictions to the original character, as characters are389

most similar to themselves. This under-correction390

phenomenon caused by DISC sometimes leads to391

instability in recall.392

For β, it shows the effect of the proportion of393

phonetic similarity in the total similarity on the394

model’s correction performance. The F1 score395

curve shows a clear trend of rising first and then de-396

creasing, which indicates that phonetic and glyph397

similarities are complementary, with phonetic simi-398

larity being relatively more important than glyph399

similarity.400

The balance between precision and recall. The401

primary purpose of using a confusion set is to nar-402

row down the retrieval space, thereby improving403

precision. While a confusion set can enhance recall404

by enabling the model to make more reasonable405

edits, it may also reduce recall by discouraging the406

model from making edits, because the most similar407

character to the source character is itself.408

We observe that this decrease in recall primarily409

occurs in the LEMON test set. The key distinction410

between these datasets is that LEMON contains411

less seen edit pairs in training data. As shown in Ta-412

ble 4, we calculate the proportion of edit pairs from413

each test set that appear in the training set.4 Models414

are prone to copy the source character when the415

target edit pair is not available in the training data.416

4For LEMON and ECSpell, we conduct statistics using the
pairs in the confusion set which is used to generate 34 million
monolingual sentences.

Model ENC MEC SIG15 Avg
ReLM 47.7 53.9 80.2 60.6

+ DISC 50.9 57.7 81.4 63.3
+ Confusion set 47.1 56.0 78.0 60.4
+ Confusion set; 41.5 48.7 80.7 57.0
+ DISC (phonetic) 49.1 56.1 80.1 61.8
+ DISC (glyph) 49.4 53.3 80.3 61.0
+ DISC (phonetic &)
├SimG1 50.5 56.8 81.4 62.9
├SimG2 50.5 57.4 81.4 63.1
├SimG3 51.3 57.5 81.2 63.3
└SimG4 51.6 56.9 80.8 63.1

Table 5: Ablation results in two kinds of confusion sets
and different components of DISC. “;” represents the
confusion set from Wang et al. (2018). “SimGi ” means
using similarities of phonetics and the ith part of glyph.

For this type of test set, we can use a simple copy 417

punishment combined with DISC, which reduces 418

the probability of copying the original character 419

during inference, to mitigate the decrease in recall. 420

Detailed experimental results can be found in the 421

Appendix C. 422

Effectiveness of DISC module. We degrade the 423

DISC module to a simple confusion set constraint 424

decoding strategy. We investigate two confusion 425

sets: one derived from our similarity computation 426

strategy5 and another pre-existing one provided by 427

Wang et al. (2018). The results are shown in the 428

second part of Table 5. From the results, we can see 429

that both confusion sets fail to consistently improve 430

performance, indicating the strategy’s sensitivity 431

to confusion set quality. The confusion set from 432

Wang et al. (2018) improves SIGHAN15 by cov- 433

ering over 99% of its erroneous pairs but degrades 434

performance on other test sets, highlighting the 435

domain-specific limitations of such confusion sets. 436

Effectiveness of components of the DISC mod- 437

ule. We conduct an ablation study on the compo- 438

nents of the DISC module. The results are shown 439

in the third part of Table 5. Removing either pho- 440

netic or glyph knowledge from the DISC module 441

leads to performance declines across benchmarks. 442

Notably, the absence of phonetic similarity has 443

a lesser effect on SIGHAN15 but a stronger im- 444

pact on LEMON. The results also show that the 445

four components involved in calculating glyph sim- 446

ilarity are independently effective. However, ex- 447

5We treat a character pair as confused if their similarity
score exceeds 0.5.
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cluding any three typically causes a slight drop448

in performance, with exceptions like ENC. This449

phenomenon underscores the necessity of using450

multi-dimensional similarity measurements for a451

more comprehensive modeling of glyph similar-452

ity. Combining these often results in consistent453

improvements. Moreover, the fusion of phonetic454

and glyph similarities achieves the optimal error455

correction performance, affirming the necessity of456

integrating these two similarities.457

7 Related Work458

Model architecture shift. Most early works on459

CSC employed a three-step pipeline, i.e., 1) detect-460

ing potential erroneous characters, 2) constructing461

new sentences by replacing erroneous characters462

with new ones based on a confusion set; and 3)463

evaluating the probability of the constructed sen-464

tences based on an n-gram language model and465

choose the one with the highest probability (Yeh466

et al., 2013; Yu and Li, 2014; Huang et al., 2014;467

Xie et al., 2015).468

In the current deep-learning era, especially with469

the prevalence of PLMs, recent models directly per-470

form character-level replacement via classification,471

as introduced in Section 2. There also exist some472

works that employ a two-step pipeline architecture,473

which first detects potentially erroneous characters474

and then replaces them at the detected positions475

(Zhang et al., 2020; Huang et al., 2023).476

Utilizing confusion sets. These works fall into477

three categories. (1) At only the inference phase.478

Wang et al. (2019); Bao et al. (2020) use the confu-479

sion set as constraints upon the search space, i.e.,480

allowing the model to only consider characters in481

the confusion set.482

(2) For data synthesis. Liu et al. (2021) use a483

confusion set C to synthesize data for training CSC484

models. For a given correct sentence, they ran-485

domly select a character (e.g., ci), and replace it486

with an incorrect character (e.g., c1). Only char-487

acters in the confusion set, i.e., pci, c
1q P C, are488

considered.489

(3) At both training and inference phases. Cheng490

et al. (2020) construct two character graphs, one491

based on phonetic relatedness, and the other based492

on glyph relatedness, and employ GCN to ob-493

tain new character representations as extra inputs.494

Huang et al. (2023) use two confusion sets, one495

encoding phonetic relatedness, and the other encod-496

ing glyph relatedness. Given a potential spelling er-497

ror, they use a classification module to judge which 498

confusion set the error belongs to, with an extra 499

training loss. During the test phase, the model can 500

only consider characters from the corresponding 501

confusion set according to the classification result. 502

Utilizing phonetic and glyph information. Be- 503

sides the use of confusion sets, there exist some 504

works that directly utilize phonetic and glyph infor- 505

mation to enhance CSC models. Liu et al. (2021); 506

Li et al. (2022) add an extra task of predicting the 507

phonetic of each input character. Xu et al. (2021) 508

use GRU to encode Pinyin, and use CNN to encode 509

glyphs (font pictures) for each input character, as 510

extra character representations. 511

Decoding intervention. Gou and Chen (2021) 512

extract features such as probability and rank of the 513

original character and the top 1 candidate character, 514

and use SVM to determine whether the modifica- 515

tion should be retained. Yin et al. (2024) first re- 516

trieve similar segments from the training set. Then, 517

they intervene in the decoding process based on the 518

segment (n-gram) similarity between the retrieved 519

segments and the input. Lv et al. (2023) employ a 520

word dictionary in the target domain to assist the 521

decoding process. 522

8 Conclusions 523

We propose a plug-and-play decoding intervention 524

strategy that enhances CSC models by utilizing 525

phonetic and glyph similarities through a tailored 526

algorithm. Unlike methods that alter model train- 527

ing, our training-free strategy only modifies the 528

decoding process, making it adaptable to almost all 529

mainstream CSC models. Experiments on multiple 530

CSC benchmarks demonstrate that our method sig- 531

nificantly improves baselines, and even surpasses 532

the current SOTA models. Furthermore, experi- 533

mental analyses demonstrate that our DISC module 534

helps the model better identify similar candidate 535

characters, effectively reducing over-correction. 536

Our research has transcended the limitations of tra- 537

ditional confusion set decoding intervention, prov- 538

ing that specific measures and combinations of pho- 539

netic and glyph similarities are necessary. 540

Limitations 541

We believe that our work can be further improved 542

from two aspects. First, our experiments focus on 543

the CSC datasets, while our approach can apply 544

to other languages such as Japanese and Korean. 545
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Second, as a general-use technique, our proposed546

approach for determining character similarity may547

not be optimal for CSC in specific domains or sce-548

narios. In that case, we may need to consider more549

factors besides phonetic and glyph information to550

compute character similarity.551
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A Implementation Details675

We use the official implementation of ReaLiSe676

and directly utilize the checkpoint provided by677

its GitHub repository,6 which initializes the se-678

mantic encoder with the weights of chinese-679

roberta-wwm-ext.7 ReLM uses the offi-680

cial BERT weights bert-base-chinese,8 and681

only offered the checkpoint after pre-training in 34682

million monolingual sentences that are synthesized683

by confusion set. We fine-tune it on SIGHANs and684

ECSpell with a batch size of 128 and a learning685

rate of 3e-5, and the MFT strategy (Wu et al., 2023)686

is used during training. SCOPE utilizes the pre-687

trained weights from the ChineseBERT-base,9688

and we leverage their official implementation for689

fine-tuning.10 We did not attempt DR-CSC + DISC690

because they have not fully open-sourced their691

work. Due to our decoding intervention strategy be-692

ing deterministic, without any random factors, the693

experiments are conducted only once. All exper-694

iments are conducted on one Tesla V100S-PCIE-695

32GB GPU.696

B Details of datasets697

SIGHANs. Following the setup of previous work,698

we employ SIGHAN 13/14/15 datasets (Wu et al.,699

6https://github.com/DaDaMrX/ReaLiSe
7https://huggingface.co/hfl/chinese-r

oberta-wwm-ext
8https://huggingface.co/bert-base-chi

nese
9https://huggingface.co/ShannonAI/Chi

neseBERT-base
10https://github.com/jiahaozhenbang/SC

OPE

Training Set #Sent Avg. Length #Errors
SIGHAN15 2,339 31.3 2,549
SIGHAN14 3,437 49.6 3,799
SIGHAN13 700 41.8 343
Wang271K 271,329 42.6 381,962
ECSpell_LAW 1,960 30.7 1,681
ECSpell_MED 3,000 50.2 2,260
ECSpell_ODW 1,720 41.2 1,578

Test Set #Sent Avg. Length #Errors
SIGHAN15 1,100 30.6 703
SIGHAN14 1,062 50.0 771
SIGHAN13 1,000 74.3 1,224
ECSpell_LAW 500 29.7 390
ECSpell_MED 500 49.6 356
ECSpell_ODW 500 40.5 404
LEMON 22,252 35.4 12,055

Table 6: Statistics of the datasets, including the number
of sentences, the average length of sentences, and the
number of errors.

2013; Yu et al., 2014; Tseng et al., 2015) as 700

our training sets, in conjunction with Wang271K 701

(Wang et al., 2018), which consists of 271K syn- 702

thetically generated instances. We employ the test 703

sets of SIGHAN13/14/15 for evaluation. 704

ECSpell. ECSpell (Lv et al., 2023) encompasses 705

data from three domains: law, medical treatment, 706

and official document writing. Unlike SIGHANs 707

from Chinese learner texts, the sentences in EC- 708

Spell are derived from CNS texts. 709

LEMON. LEMON (Wu et al., 2023) also orig- 710

inates from CNS texts, containing over 22K in- 711

stances spanning 7 domains. Given its lack of a 712

dedicated training set, LEMON serves as a bench- 713

mark for evaluating the domain adaptation capabil- 714

ity of CSC models. 715

We conduct detailed statistics on the above 716

datasets, and the results are presented in Table 6. 717

C Copy Punishment 718

For datasets like LEMON that lack in-domain train- 719

ing data, we discover a simple recall-boosting so- 720

lution: reducing the probability of selecting the 721

original character during inference. Specifically, 722

after incorporating the DISC module, we addition- 723

ally lower the prediction probability of the original 724

character by 0.1 to reduce the model’s tendency 725

to select the original character during inference, 726

thereby improving the model’s recall rate. The 727

experimental results can be found in Table 7. 728
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P R F1

ReLM 35.8 33.6 34.6 20.6
+ DISC 56.1 31.5 40.4 8.5
+ DISC* 52.4 37.0 43.4 11.3

ReLM 59.2 48.9 53.6 12.0
+ DISC 72.3 45.9 56.2 4.6
+ DISC* 68.0 47.5 55.9 6.2

ReLM 46.3 32.2 38.0 17.6
+ DISC 65.2 29.6 40.8 7.1
+ DISC* 57.8 31.2 40.6 10.2

ReLM 55.8 41.6 47.7 12.7
+ DISC 72.2 39.3 50.9 5.1
+ DISC* 66.9 41.7 51.4 7.1

ReLM 68.5 51.5 58.8 8.4
+ DISC 80.4 48.1 60.2 3.2
+ DISC* 76.5 49.7 60.3 4.3

ReLM 73.5 62.8 67.7 4.9
+ DISC 87.4 58.3 69.9 1.1
+ DISC* 80.8 61.0 69.5 1.8

ReLM 67.3 44.9 53.9 5.8
+ DISC 82.2 44.5 57.7 2.2
+ DISC* 76.3 45.0 56.6 3.2

Domain Model Correction
FPR

LEMON

GAM

CAR

NOV

ENC

NEW

COT

MEC

Table 7: Sentence-level performance of LLMs, ReLM,
and ReLM + DISC on the test sets of ECSpell and
LEMON. Results marked with “*” indicate the use of
copy-punishment solution.

Model Speed (ms/sent) Slowdown
ReaLiSe 24.5 –

+ DISC 27.5 1.143ˆ

SCOPE 138.6 –
+ DISC 143.4 1.035ˆ

ReLM 12.7 –
+ DISC 12.8 1.010ˆ

Table 8: The decoding time per sentence with a batch
size of 1 on SIGHAN15. The results are the average
time of three runs.

D Impact on decoding efficiency729

We examine the influence of the DISC module730

on decoding speed, with the results shown in Ta-731

ble 8. Phonetic and glyph similarities can be pre-732

calculated and DISC only need to index them dur-733

ing decoding. Thus, the time taken to decode each734

sentence increased merely by 14.3%, 3.5%, and735

1.0% for ReaLiSe, SCOPE, and ReLM, respec-736

tively. The minor slowdown in decoding speed737

incurred by the DISC module is deemed acceptable738

considering the substantial enhancement it brings739

to the model’s performance. Notably, SCOPE ex-740

hibits significantly slower decoding speeds com-741

System and User Prompts for LLMs

System Prompt:
你是一个优秀的中文拼写纠错模型，中文拼写纠错模型即更正用户
输入句子中的拼写错误。
User Prompt:
你需要识别并纠正用户输入的句子中可能的错别字并输出正确的句
子，纠正时必须保证改动前后句子等长，在纠正错别字的同时尽可
能减少对原句子的改动(不添加额外标点符号，不添加额外的字，
不删除多余的字)。只输出没有错别字的句子，不要添加任何其他
解释或说明。如果句子没有错别字，就直接输出和输入相同的句
子。

Figure 4: Prompt templates used in GPT3.5 and GPT4.

pared to the other two models, which we speculate 742

may be attributed to its iterative decoding approach. 743

E Prompt Examples 744

In this work, we use the prompt-based method to 745

activate the CSC ability of the GPT3.5 and GPT4. 746

The prompt used for the baselines are shown in 747

Figure 4. 748

F More Results 749

In addition to the correction-level performance, 750

which is our primary focus, we also present the 751

detection-level experimental results of the CSC 752

models, as shown in Table 9. SCOPE + DR-CSC 753

performs well at the detection level, primarily be- 754

cause they incorporate an additional detection net- 755

work. 756

Since SIGHANs contains a lot of noise, we also 757

conduct experiments on their revised versions (re- 758

ferred to as SIGHANs (rev.)) released by Yang 759

et al. (2023b), which have undergone manual veri- 760

fication and error correction to ensure higher data 761

quality. As shown in Table 10 and Table 11, our 762

DISC module also achieves consistent performance 763

improvements on SIGHANs (rev.). 764
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D-Pæ D-Ræ D-Fæ D-Pæ D-Ræ D-Fæ D-Pæ D-Ræ D-Fæ

74.8 80.7 77.7 65.1 69.5 67.2 80.1 74.4 77.2
77.3 81.3 79.3 67.8 71.5 69.6 88.6 82.5 85.4
80.5 85.4 82.9 68.8 73.7 71.1 87.5 83.0 85.2
82.9 84.8 83.8 70.2 73.3 71.7 88.5 83.7 86.0
78.3 85.6 81.8 65.7 74.5 69.8 86.4 83.7 85.0

39.4 46.4 42.6 41.4 23.1 29.6 61.6 29.2 39.7
42.7 57.5 49.0 38.1 52.3 44.1 53.4 51.6 52.5

78.3 81.2 79.7Ò 69.2 71.2 70.1Ò 88.9 82.2 85.4
81.7 84.8 83.2Ò 70.2 73.5 71.8Ò 88.8 83.7 86.2Ò

80.8 84.3 82.5Ò 69.7 74.9 72.2Ò 89.7 84.5 87.0Ò

Models SIGHAN15 SIGHAN14 SIGHAN13

Previous SOTAs
SpellGCN
ReaLiSe
SCOPE:

SCOPE + DR-CSC
ReLM:

LLMs Results
GPT3.5
GPT4

Ours
ReaLiSe + DISC
SCOPE + DISC
ReLM + DISC

Table 9: Sentence-level performance on the SIGHAN13, SIGHAN14 and SIGHAN15 test sets. Precision (P), recall
(R) and F1 for detection are reported (%). Results marked with “:” are obtained by reruning the official code
released by Li et al. (2022) and Liu et al. (2024). Other baseline results are directly taken from their literature. Apart
from SpellGCN, all models apply post-processing on SIGHAN13, which removes all detected and corrected “地”
and “得” from the model output before evaluation. “+ DISC” means adding DISC module in the decoder. α and β
are assigned the values 1.1 and 0.7, respectively.

C-Pæ C-Ræ C-Fæ FPRç C-Pæ C-Ræ C-Fæ FPRç C-Pæ C-Ræ C-Fæ FPRç

73.2 67.5 70.2 – 62.6 57.5 59.9 – 71.1 67.4 69.2 –
74.4 69.6 71.9 – 63.6 59.0 61.2 – 71.9 68.0 69.9 –
77.0 67.6 72.0 – 66.0 57.1 61.3 – 73.2 67.1 70.0 –
76.4 73.5 74.9 8.5 65.5 62.9 64.2 11.3 74.0 70.9 72.4 10.7

79.0 73.0 75.9 6.4 69.3 63.4 66.2 8.9 75.4 71.3 73.3 9.4

Models SIGHAN15 (rev.) SIGHAN14 (rev.) SIGHAN13 (rev.)

Previous SOTAs
BERT‹

ReaLiSe‹

Yang et al. (2023b)
ReLM

Ours
ReLM + DISC

Table 10: Sentence-level performance on the revised SIGHAN13-15 test sets. Precision (P), recall (R) and F1 for
correction are reported (%). “*” means that the results of BERT and ReaLiSe in the table are directly copied from
Yang et al. (2023b).

D-Pæ D-Ræ D-Fæ D-Pæ D-Ræ D-Fæ D-Pæ D-Ræ D-Fæ

75.4 70.0 72.4 64.6 59.3 61.8 72.6 68.8 70.6
75.8 70.9 73.2 65.6 60.8 63.1 74.9 70.7 72.7
77.7 68.3 72.7 67.2 58.1 62.3 74.4 68.3 71.2
78.8 75.7 77.2 68.4 65.7 67.0 76.0 72.8 74.4

80.6 74.4 77.4 71.2 65.2 68.1 76.4 72.3 74.3

Models SIGHAN15 (rev.) SIGHAN14 (rev.) SIGHAN13 (rev.)

Previous SOTAs
BERT‹

ReaLiSe‹

Yang et al. (2023b)
ReLM

Ours
ReLM + DISC

Table 11: Sentence-level performance on the revised SIGHAN13-15 test sets. Precision (P), recall (R) and F1 for
detection are reported (%). “*” means that the results of BERT and ReaLiSe in the table are directly copied from
Yang et al. (2023b).

12


	Introduction
	The Basic CSC Model
	Our Approach
	Phonetic Similarity
	Glyph Similarity

	Experimental Setup
	Datasets
	Baseline Models
	Evaluation Metrics
	Hyperparameters

	Main Results
	Case Study

	Discussion
	Related Work
	Conclusions
	Implementation Details
	Details of datasets
	Copy Punishment
	Impact on decoding efficiency
	Prompt Examples
	More Results

