
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

SEQUENTIAL ENUMERATION IN LARGE LANGUAGE
MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

Reliably counting and generating sequences of items remain a significant challenge
for neural networks, including Large Language Models (LLMs). Indeed, although
this capability is readily handled by rule-based symbolic systems based on serial
computation, learning to systematically deploy counting procedures is difficult
for neural models, which should acquire these skills through learning. Previous
research has demonstrated that recurrent architectures can only approximately track
and enumerate sequences of events, and it remains unclear whether modern deep
learning systems, including LLMs, can deploy systematic counting procedures
over sequences of discrete symbols. This paper aims to fill this gap by investigat-
ing the sequential enumeration abilities of five state-of-the-art LLMs, including
proprietary, open-source, and reasoning models. We probe LLMs in sequential
naming and production tasks involving lists of letters and words, adopting a variety
of prompting instructions to explore the role of chain-of-thought in the spontaneous
emerging of counting strategies. We also evaluate open-source models with the
same architecture but increasing size to see whether the mastering of counting
principles follows scaling laws, and we analyze the embedding dynamics during
sequential enumeration to investigate the emergent encoding of numerosity. We
find that some LLMs are indeed capable of deploying counting procedures when
explicitly prompted to do so, but none of them spontaneously engage in count-
ing when simply asked to enumerate the number of items in a sequence. Our
results suggest that, despite their impressive emergent abilities, LLMs cannot yet
robustly and systematically deploy counting procedures, highlighting a persistent
gap between neural and symbolic approaches to compositional generalization.

1 INTRODUCTION

Many animal species possess an approximate sense of quantity, which allows to coarsely estimate the
number of items in a set (Dehaene, 2011). This "number sense" can support the rapid and parallel
estimation of the number of objects in visual scenes (Burr & Ross, 2008; Kaufman et al., 1949), but
it also allows to estimate the number of events in sequences of flashes and sounds (Dolfi et al., 2024;
Philippi et al., 2008) or motor actions (Platt & Johnson, 1971; Cicchini et al., 2016) through serial
accumulation mechanisms (Whalen et al., 1999; Gallistel & Gelman, 2000).

In addition to these approximate enumeration abilities, humans also have the unique capacity for
exact enumeration, which requires systematically deploying counting procedures (Feigenson et al.,
2004). Sequential counting involves a bi-directional mapping between discrete quantities and number
symbols that must conform to specific rules: i) one-to-one correspondence between items and
symbols, ii) stable order, and iii) cardinality principle (Gallistel & Gelman, 1992). Bi-directionality
of the mapping is implied by the deployment of counting both to determine the number of items in
a set (how-many task) and to create a set of N items (give-N task). Crucially, learning to count is
considered a key milestone in the development of numeracy, because it implies the understanding of
an abstract “successor function” (Sarnecka & Carey, 2008), and it is consistently linked to arithmetic
performance and math skills (Koponen et al., 2019). Not surprisingly, it takes several years for
children to fully master sequential enumeration, especially in give-N tasks (Sarnecka & Carey, 2008).

Interestingly, despite the remarkable achievements in disparate math domains such as automated
theorem proving (Polu & Sutskever, 2020) and discovery of new mathematical conjectures (Davies

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

et al., 2021), it is still unclear whether modern AI systems possess a true understanding of quantities
and numbers (Testolin, 2024). Indeed, it has been repeatedly shown that even the most advanced
deep learning models still make striking errors when it comes to basic tasks that require enumerating
the number of items in a visual scene (Kajić et al., 2024; Testolin et al., 2025) or the number of letters
and words in a sentence (Fu et al., 2024; Xu & Ma, 2024).

In this work, we therefore systematically study the sequential enumeration abilities of state-of-the-art
Large Language Models (LLMs), by probing them with both naming (how-many) tasks and production
(give-N) tasks involving sequences of discrete elements. We explore different prompting strategies
to investigate whether more advanced models can spontaneously deploy counting procedures and
whether the responses are still approximately close to the target when explicit counting is forbidden.
We also analyze how model size relates to task accuracy to see whether the emergence of more
accurate counting skills is directly related to the number of tunable parameters. Finally, in order
to gain insights into the inner encoding of counting-related numerical information, we inspect the
temporal dynamics of the latent space by analyzing the state space trajectory of embeddings during
enumeration, and we also study neuronal tuning functions by measuring how the activation of
individual hidden neurons is modulated by changes in the properties of the sequence being counted.

The key contributions of our work are the following: i) We conduct a systematic study of the
sequential enumeration capabilities of state-of-the-art LLMs, including both proprietary and open-
source models; ii) Besides the most commonly used naming task, which requires to establish the
number of items in a given input string, we also probe the models using an original production
task, which requires to generate a sequence containing a target number of items; this distinction is
particularly relevant considering that naming and production tasks provide different insights into
enumeration capabilities (Connor et al., 2024); iii) We implement a variety of prompting strategies
to establish whether LLMs can spontaneously deploy counting procedures, and whether explicitly
asking to count could result in performance gains compared to the use of more generic instructions;
iv) We study whether performance depends on the nature of the items being enumerated, using
both uniform and heterogeneous sequences of letters or words; v) For open-source Llama models,
we analyze the dynamics of hidden neurons during the generation of item sequences to study the
emergence of serial accumulation mechanisms.

2 RELATED WORK

Serial counting has long been considered a key benchmark for investigating the computational
capabilities of recurrent neural networks. Seminal work in the 1990s showed that recurrent networks
trained in token prediction tasks can learn to process simple deterministic context-free languages that
require to count the number of elements in a string (Rodriguez et al., 1999), while long-short-term
memory (LSTM) networks can exhibit even more robust accuracy and generate sequences of precisely
timed spikes (Gers & Schmidhuber, 2000). However, although LSTMs in some cases can generalize
to higher numbers than those seen in the training set (Weiss et al., 2018), recent work still suggests
that recurrent architectures struggle to learn counting algorithms (El-Naggar et al., 2023). Others have
shown that memory-augmented neural networks trained using reinforcement learning can partially
extrapolate on give-N tasks, but only up to small numbers (n=15) (Dulberg et al., 2021).

Computational modeling studies have mostly focused on studying parallel visual estimation of
numerosity (Chen et al., 2018; Testolin et al., 2020; Creatore et al., 2021), also considering the
acquisition of explicit counting skills (Sabathiel et al., 2020) or the role of sequential eye movements
(Thompson et al., 2024). Other recent work has shown that multi-modal AI systems have poor parallel
visual enumeration capabilities (Rane et al., 2024; Testolin et al., 2025): this phenomenon might be
analyzed through the lenses of the binding problem, which arises when processing multiple objects
simultaneously using a shared set of representational resources (Campbell et al., 2024).

However, only a few studies investigated sequential enumeration in LLMs. Although it is well known
that LLMs often exhibit nontrivial emergent abilities, including mathematical reasoning (Frieder
et al., 2023), they appear to have poor counting skills (Delétang et al., 2022), which could partially
explain their limitations in tasks that require length generalization (Anil et al., 2022). For example, it
has been recently shown that LLMs cannot reliably count the number of letters in a word (Fu et al.,
2024) or the number of words in a sentence (Xu & Ma, 2024). Some authors have proposed that
these issues could be due to the non-recurrent nature of transformers (Chang & Bisk, 2024), while

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

others argue that layer normalization and scaling of the attention weights are the two main operations
that make it impossible for standard transformers to learn counting in a generalizable way (Ouellette
et al., 2023). It has also been proposed that counting in transformers is influenced by vocabulary size
or number of unique tokens in the sequence (Yehudai et al., 2024), though the latter was confounded
with sequence length in the simulations. Another recent work has shown that counting in LLMs is
more challenging when the correct output is a low-probability piece of text (e.g., rarely used numbers)
(McCoy et al., 2023). A concurrent line of research has focused on the computational advantages
provided by chain-of-thought (CoT) prompting methods (Wei et al., 2022b). Indeed, although LLMs
are based on the transformer architecture and therefore inherit its computational limitations (Liu
et al., 2022), CoT dramatically improves their accuracy in tasks that are hard for parallel computation
thanks to the iterative processing of intermediate reasoning steps (Li et al., 2024).

3 EXPERIMENTAL SETUP

3.1 MODELS TESTED

We consider several LLMs spanning different sizes and architectures. For proprietary models,
we include the newest GPT5 reasoning model [gpt-5-2025-08-07] and the GPT4 model [gpt-4.1-
2025-04-14] developed by OpenAI (OpenAI, 2024), and the most recent Gemini family model
[gemini-2.5-pro-preview-03-25] developed by Google (Team et al., 2023). For open-source models,
we include three variants of increasing size from the Llama3 family released by Meta (Dubey et al.,
2024): [Llama-3.2-3B-Instruct], [Llama-3.1-8B-Instruct] and [Llama-3.3-70B-Instruct], as well as
the recent Qwen reasoning model [QwQ-32B] developed by Alibaba (Yang et al., 2024). Information
about the computing hardware used in the experiments is provided in Supplementary Section B.

3.2 SEQUENTIAL ENUMERATION TASKS

We examine two distinct types of sequential enumeration tasks that cognitive scientists have proposed
to probe basic numerical skills: numerosity naming (Revkin et al., 2008) and numerosity production
(Whalen et al., 1999; Sella et al., 2016). These tasks allow for assessing the representation and
manipulation of numerical quantities, and are adapted here to evaluate the extent to which AI models
can operate over numerical sequences of discrete elements. In the naming task, the model is presented
with a string representing a sequence of elements and is required to output the number of elements
contained in the sequence. The numerosity production task reverses this process: the model is given
a target numerical value and is asked to generate a sequence containing the specified number of
elements. This tests the model’s ability to translate abstract numerical representations into concrete,
countable outputs. Previous work (Dulberg et al., 2021) studied a production task using small
numbers; here we test models on target numbers ranging from 10 to 100 in increments of 10 to ensure
systematic coverage across enumeration ranges.

We explore enumeration skills on two types of discrete elements: letters and words. For letters,
stimuli are randomly sampled from the standard English alphabet characters. For words, stimuli
are randomly selected from a curated list of five-letter English words to ensure that all elements
have the same length and avoid confounds due to variability in non-numerical magnitudes (Testolin
et al., 2020). Importantly, all words were chosen to ensure a one-token-per-word correspondence to
guarantee that the model’s task emphasizes sequential enumeration rather than language modeling or
token segmentation (Zhang et al., 2024). In both conditions, we explored sequences containing both
homogeneous and heterogeneous elements. Further details about the creation of testing sequences
can be found in the Supplementary Section C.

3.3 PROMPTING STRATEGIES

We designed a structured set of system prompts made up of four key sections: 1) contextual back-
ground, 2) task goal, 3) counting strategy, and 4) response formatting.

Contextual Background. Each prompt begins by placing the model in the role of a participant in a
psychometric experiment through the sentence “You are the subject of a psychometric experiment
designed to investigate enumeration capabilities. Do your best to be accurate.”. This narrative framing

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

is intended to engage the model in a cooperative, goal-directed task where accuracy and compliance
are expected.

Task Goal. This section defines the enumeration objective. For the naming task, the model
is asked to count the number of repetitions in a given sequence (”I will ask you how
many letters/words are there in a string.”) An example of the user message
paired with this condition: “How many ‘table’ are there in ‘table table table table
table table table table table’?”. For the production task, the model is prompted to
generate a target number of repeated letters or words (”I will ask you to write some
letters/words a given number of times.”). An example of the user message paired
with this condition: “Write the letter A 10 times”. This setup allows us to examine both forward
(sequence-to-number) and reverse (number-to-sequence) mappings. Additional prompt examples are
provided in Section D.2. As a control condition, we also tested whether the most powerful LLMs
could count via coding (details can be found in Supplementary Section G.5).

Counting Strategy. The key manipulation across prompt types lies in the strategy the model is
instructed—or allowed—to use for enumeration. We distinguish four conditions:

• Explicit Counting: The model is obligated to count carefully and to use any supportive
strategy (e.g., markers or numerical annotations). Instructional cue: “You should generate
markers, numbers or any other symbols that may help you keep track.” This tests the model’s
capacity for deliberate and systematic enumeration.

• Spontaneous Counting: The model receives no guidance regarding counting and must
decide autonomously whether and how to count. Instructional cue: None (no explicit
instruction about counting is provided). This condition assesses whether systematic counting
behavior can emerge in the absence of explicit instruction.

• Mental Counting: The model is allowed to count, but only "mentally", without producing
any visible symbols to support counting. Instructional cue: “You are allowed to count in
your mind but please do not count explicitly: you cannot generate markers, numbers or any
other symbols that may help you keep track.” This probes the model’s capacity for covert
enumeration and internal working memory usage.

• Forbid Counting: The model is explicitly instructed not to count or use any form of
structure that aids counting. Instructional cue: “You are not allowed to count and you
cannot generate markers, numbers or any other symbols that may help you keep track.” This
probes the approximate enumeration abilities of the model, in analogy with the articulatory
suppression paradigms used in cognitive science to study temporal estimation when counting
is precluded (Rattat & Droit-Volet, 2012).

Response Formatting. At the end of each system prompt, we ask the models to mark their responses
within the special tags "<my_answer" and "</my_answer>" to facilitate the post-processing of the
output. For the smaller Llama models (Llama3 3B and Llama3 8B), response formatting is tailored to
each model so that the model can perform the best alignment with the instructions. More details can
be found in Supplementary Section D.1.

3.4 PERFORMANCE EVALUATION

Model responses were parsed semi-automatically using Python scripts (details in Supplementary
Section F). Two metrics then quantified task performance. Accuracy was defined as the proportion of
trials where the parsed output exactly matched the target numerosity; invalid trials were counted as
incorrect. Mean Absolute Error (MAE) was instead computed as: MAE = 1

n

∑n
i=1 |Ci − Ĉi| where

c is the target numerosity and ĉ is the model’s reported count. To prevent bias toward low-count
performance, errors exceeding 512 were capped at 512. Further details, including per-condition token
limits and invalid trial counts, are provided in Supplementary Section E.

3.5 LATENT SPACE DYNAMICS AND NEURONAL TUNING PROFILES DURING ENUMERATION

To investigate how the Llama70B model internally tracks the counted items we analyzed the dynamics
of its hidden states during token generation across the four prompting strategies (inference details in

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Supplementary Section E). Specifically, we aimed to identify whether an internal counter mechanism
emerges in the model, and to determine under which conditions such a structure is most apparent.
We therefore applied principal component analysis (PCA) to the last-layer embeddings extracted
during the stepwise generation process. By reducing the high-dimensional activation space to a
lower-dimensional trajectory, PCA enables us to examine structured temporal dynamics and assess
whether consistent patterns, such as linear progression or cyclic structure, are present across counting
steps. This approach is widely used in neuroscience to analyze neuronal population activity, and
it has proven effective in uncovering latent dynamical structures underlying behaviorally relevant
computations (Cunningham & Yu, 2014). Separate PCA models were fit for each condition to
preserve potential condition-specific representational structure. To analyze temporal dynamics, we
extracted PC’s time series for each target numerosity (for trials with sequence length exceeding the
target numerostiy, we clipped the time series at the target number). While the first two PCs are
presented for clear 2D visualization and often capture the majority of variance related to behaviorally
relevant computations, we also inspected higher-order components (see Supplementary Section G.6).

4 RESULTS

4.1 TASK PERFORMANCE

Figure 1 shows the enumeration accuracy across all prompting conditions for naming and production
tasks involving homogeneous sequences of elements1 Proprietary models consistently achieve the
highest accuracy, though open-source models also excel in production tasks when explicitly asked to
count. However, accuracies significantly drop in naming tasks even when the models are explicitly
asked to count, suggesting that it is more challenging to enumerate a given list of items rather than
producing one from scratch. Accuracy also generally declines under all other prompting conditions,
showing that none of the models can reliably enumerate the elements of a sequence when not explicitly
instructed to count. However, the MAE plots show that when proprietary models make errors, they
still get reasonably close to the target number.

Notably, in the spontaneous counting condition, none of the models exhibits systematic counting
behavior (see Supplementary Section G.6). When the models do not systematically count, the gap
between the naming and production tasks is reduced, suggesting that in such conditions the LLMs
rely on similar approximate estimation mechanisms. Nevertheless, it is interesting to note that GPT
and Gemini can still provide answers that are close to the target, as indexed by their relatively low
MAE. It is also interesting to note that overall the performance for the mental counting condition
is slightly higher than that observed in the spontaneous and forbid counting conditions, suggesting
that the models can somehow improve their internal encoding of numerosity when prompted to
do so. To better investigate how different strategies impact behavioral performance, we computed
a scale-invariant accuracy measure (Normalized Absolute Error) for each counting condition and
conducted a Friedman non-parametric test, followed by Bonferroni-corrected pairwise comparisons
(details can be found in Supplementary Section G.3). In general, we can also see that LLMs are more
accurate in naming and production tasks involving words rather than letters. This result is aligned
with recent findings that highlight the importance of tokenization in counting precision (Zhang et al.,
2024). Indeed, our selected set of words has a one-to-one correspondence with the tokens provided
as input to the models, while sequences of letters can be tokenized differently (e.g., grouping a set of
letters together) depending on the model specifications.

For the Llama family we also studied the relationship between model size and counting performance,
to investigate whether counting skills can be characterized as an emerging ability (Wei et al., 2022a).
As model size increased from 3 to 70 billion, accuracy improved substantially, increasing from
approximately 0.10 to 0.24, and MAE similarly decreased from over 200 in the smallest model to
around 70 in the largest (see Supplementary Section G.2). However, this pattern shows that counting
is not strictly emergent in the classic sense of a sharp threshold or phase transition, but rather gradually
develops as model capacity increases (Schaeffer et al., 2023). Finally, one should note that the Qwen
performance is still remarkable compared to that of other models, considering that it has a much
smaller number of parameters.

1Results on heterogeneous sequences are reported in Supplementary Section G.4. Performance is qualitatively
similar, though homogeneous sequences seem slightly more challenging to enumerate (especially for the naming
task), probably because in uniform sets individual items are less distinguishable.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

GPT-5 GPT-4.1
Gemini2.5

Llama70B
Qwen32B0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

Explicit Counting

GPT-5 GPT-4.1
Gemini2.5

Llama70B
Qwen32B

Spontaneous Counting

GPT-5 GPT-4.1
Gemini2.5

Llama70B
Qwen32B

Mental Counting

GPT-5 GPT-4.1
Gemini2.5

Llama70B
Qwen32B

Forbid Counting
NamingLetter
NamingWord
ProductionLetter
ProductionWord

140
160
180
200
220

GPT-5 GPT-4.1
Gemini2.5

Llama70B
Qwen32B0

20
40
60
80

M
AE 140

160
180
200
220

GPT-5 GPT-4.1
Gemini2.5

Llama70B
Qwen32B0

20
40
60
80

140
160
180
200
220

GPT-5 GPT-4.1
Gemini2.5

Llama70B
Qwen32B0

20
40
60
80

140
160
180
200
220

GPT-5 GPT-4.1
Gemini2.5

Llama70B
Qwen32B0

20
40
60
80

Figure 1: Comparison of accuracy and mean absolute error (MAE) across different models and
prompting conditions. Bars represent accuracy or MAE for each model (x-axis) across the four tasks:
naming/production × letter/word. Error bars indicate the variability of the estimates: for accuracy,
binomial standard errors are shown; for MAE, standard errors of the mean are shown.

4.2 ANALYSIS OF ENUMERATION ERRORS

For all models, the variance of the responses shows a consistent trend that aligns with accuracy across
different prompting conditions, with errors increasing as the target numerosity increases (see Figure 2).
Response errors for GPT and Gemini models are similar and generally close to the target number,
even though in the forbid counting condition Gemini tends to overestimate the number of letters
generated in the production task, while GPT4.1 tends to underestimate (see Supplementary Figure 5).
Llama systematically underestimates in the naming task and overestimates in the production task,
while Qwen does not exhibit specific biases. A Friedman test was carried out on the absolute errors
as a function of condition, followed by Bonferroni-corrected pairwise comparisons, showing that
counting strategies indeed significantly affect the amount of errors (see Supplementary Section G.3).

4.3 NEURAL DYNAMICS DURING SEQUENTIAL ENUMERATION

The PCA analysis revealed that a small number of components can account for a substantial proportion
of the variance in model activations across all counting conditions: PC1 alone explained 17% (explicit)
and 47% (mental) of the total variance. Figure 3 shows how the first and second Principal Components
(PC1 and PC2) change across counting steps for the explicit and mental counting conditions (the
other conditions are shown in Supplementary Fig. 8). In the mental counting condition, PC1 and
PC2 show a strong correlation with the generated steps (computed for trials with the same target
number and then averaged across targets), with Spearman correlations exceeding 0.83 and - 0.88,
respectively (both p < 0.001), consistent with a step-tracking signal that may reflect an emergent
internal counter. Interestingly, the explicit condition strongly diverges from mental counting even
along the first component: the PC1 does not show (piece-wise) monotonicity as a function of step
number but is characterized by a periodic trend with large dips at steps that are multiples of ten.
The latter finding might be linked to the observation that LLMs use Fourier features to compute
basic arithmetic operations (Zhou et al., 2024) and/or to the presence of biases for decade numbers
in training corpora (Testolin et al., 2025). To explore this phenomenon we conducted a control
experiment where the model was prompted to count in base-16 with different target numerosities
(either multiples of 10, or multiples of 16; see details in Supplementary Section G.6.1). The results

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

-100
-80
-60
-40
-20

0
20
40
60
80

100

GP
T5

Di
ff

to
 Ta

rg
et

Explicit Counting Spontaneous Counting
NamingLetter
NamingWord
ProductionLetter
ProductionWord

Mental Counting Forbid Counting

-100
-80
-60
-40
-20

0
20
40
60
80

100

Lla
m

a7
0B

Di
ff

to
 Ta

rg
et

10 20 30 40 50 60 70 80 90 100
Target Numerosity

-100
-80
-60
-40
-20

0
20
40
60
80

100

Qw
en

32
B

Di
ff

to
 Ta

rg
et

10 20 30 40 50 60 70 80 90 100
Target Numerosity

10 20 30 40 50 60 70 80 90 100
Target Numerosity

10 20 30 40 50 60 70 80 90 100
Target Numerosity

Figure 2: Scatter plots of enumeration errors (response – target value) across different prompting
conditions for a selected subset of models. Each panel shows the response differences plotted
against the target values, with distinct markers of different colors representing different task-stimulus
combinations: blue for the naming task and green for the production task; triangles for letters and
filled circles for words.

suggest that the observed periodicity is partially due to the decimal-counting instruction at inference
time, but also reflects a statistical bias in the training corpora, where base-10 number words (e.g.
"twenty," "thirty") are far more frequent than other numerical constructions.

Despite high behavioral accuracy in the explicit condition, PCA revealed little systematic accu-
mulation structure in the leading components. PC1 explained less variance, and PC1 seems to
mainly account for tracking the decade number changes during generation. The internal dynamics
underlying the mental counting condition instead appear more structured, especially when looking at
the geometry of the state-space defined by the first two PCs (panel B in Figure 3): we can observe
a distinctive non-linear trajectory (horseshoe pattern), suggesting that the internal representation
of counting evolves through several distinct phases. Nevertheless, the smooth overall trajectory
suggests a consistent underlying computational mechanism driving the enumeration, and the clear
structure visible in just two dimensions indicates that these principal components capture meaningful
aspects of the internal counting dynamics. Moreover, the representational geometry has a striking
resemblance to the ordering of numerosities along a curved manifold recently observed in human
neuroimaging (Karami et al., 2025). Note also that the more compact range of PC values in mental
counting suggests a more efficient (i.e., lower-dimensional) representation of quantity compared to
explicit counting, suggesting that the model employs fundamentally different computational strategies
for explicit versus mental counting. Overall, these findings suggest that structured, low-dimensional
neural trajectories resembling internal counters emerge most clearly in the mental counting condition,
despite the absence of explicit instructions, while explicit prompting leads to high performance via
less interpretable, potentially token-based mechanisms.

To identify neurons sensitive to sequence progression, we further analyzed hidden neuron activations
across the four experimental conditions. For each trial, we selected responses with at least 100

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

A B

Figure 3: Panel A: Trajectories of the first two principal components computed over hidden states,
separately for explicit counting and mental counting conditions. Each subplot shows the trajectories
along PC1 and PC2 as a function of generation step, with colors indicating the target numerosity.
Panel B: 2D presentation of the PCA results. The marker’s color gradient reflects generation order
across generation steps.

0 20 40 60 80 100
Step

0.0

0.25

0.5

0.75

1.0

No
rm

al
ize

d
Ac

tiv
at

io
n

Explicit Counting
Positive Correlation Neurons
Negative Correlation Neurons

0 20 40 60 80 100
Step

Mental Counting

Figure 4: Population dynamics of unit activations across stepwise counting. For each condition, we
plotted the average activation of selected neurons within steps made from 1 to 100. The activation
was normalized and shaded with standard error for better visualization.

generated steps and truncated them to the first 100 steps. Each neuron’s activation over generations
was extracted and reshaped across trials to compute Pearson correlations with step indices. We
identified the 500 neurons with the highest positive and 500 with the most negative correlations.

As shown in Figure 4, we found that the activations change with the steps in two opposite directions,
as expected in the mental counting condition. In the explicit condition this trend is less marked, with
both groups of neurons’ activation level oscillating around the mean level. This suggests that in
the explicit counting condition, there is not a population of neurons encoding the number of steps
generated via activation. On the other hand, mental counting engages specialized populations of
neurons with opposite activation trajectories. The variance for explicit counting is almost zero, while
for mental counting, the variance increases after generation step 40.

5 DISCUSSION AND CONCLUSIONS

Overall, the variation in task performance across different prompting strategies highlights the extent
to which LLMs rely on explicit cues and structured prompting to succeed in numerosity-related
tasks. Under the explicit counting condition, all models performed considerably better, with top-tier
proprietary models achieving near-ceiling accuracy and minimal MAE, but only in the production
task. This suggests that providing clear and structured prompts allows the models to exhibit a more
consistent enumeration behavior, but also shows that even the most advanced models still struggle
with counting the number of elements in a given list.

The significant drop in performance observed in the spontaneous counting condition further shows
that while some models may possess an emergent capacity to self-initiate counting, such behavior
is extremely rare and inconsistent across tasks, revealing a key limitation of LLMs in the ability

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

to spontaneously enumerate sequences of elements. Finally, the slightly higher performance in
the mental counting condition compared to the spontaneous and forbid counting conditions further
highlights the importance of prompt framing: in line with previous findings, most models appear to
be sensitive not just to the operational structure of the task but also to the cognitive stance implied by
the prompt (Battle & Gollapudi, 2024).

Our state space analysis provides empirical support for this assertion, revealing fundamentally
different computational strategies: only the mental counting condition showed a smooth, continuous
trajectory resembling an accumulation process, suggesting a more analog representation of quantity
similar to serial accumulation mechanisms implemented in biological circuits (Gallistel & Gelman,
2000; Nieder et al., 2006). Notably, this gradual accumulation disappears during explicit counting,
suggesting that in such condition the LLM rather exploits an associative chaining mechanism that
allows it to keep track of the items by only relying on the previously generated symbolic number,
thereby exploiting a surface-level token prediction strategy rather than maintaining an internal counter.
Given the suboptimal performance of Llama models, it is also evident that these LLMs lack a
mechanism to compare the accumulation signal to the target symbolic number that is memorized
during prompting instruction: this issue can be put in relation to the acquisition of counting skills
during human development, where children often simply recall the counting sequence by rote
memory, without having grasped the number semantics, and thus often cannot properly terminate the
counting procedure because they lack a bi-directional mapping between numerosity representations
and symbolic numbers (Sarnecka & Carey, 2008).

Nevertheless, we acknowledge that our analysis of the neural dynamics represents only a first step
to get a mechanistic explanation of sequential counting processes: while we identified behaviorally-
relevant neural activity patterns, future work should employ more sophisticated circuit-level analyses,
such as those based on causal abstraction (Geiger et al., 2024). In this respect, we should also note
that the use of proprietary models in scientific research poses challenges Palmer et al. (2024), since
we do not have full access to the internal functioning of these systems (e.g., models like GPT or
Gemini could in principle exploit external tools based on symbolic counting algorithms to carry out
enumeration tasks).

Our study also offers a nuanced perspective on the recent theoretical work by Yehudai et al. (2024).
Indeed, their analysis proposes that transformers can reliably count only if the embedding dimension
d is larger than the vocabulary size m. Our scenario presents a key difference: while their study
confounds vocabulary size with sequence length, our sequences use a single repeated token, isolating
sequence length as the primary factor in counting errors. This supports and clarifies their broader
theoretical point about the challenges of long-range dependencies. Interestingly, our results also
indicate that model size is a less critical factor than architectural or training differences, as smaller
models sometimes outperformed larger ones. This finding challenges the specific confound in
the empirical demonstration proposed by Yehudai et al. (2024), at the same time extending their
theoretical framework by highlighting sequence length as a dominant variable in real-world LLMs.

In conclusion, our work shows that while in some circumstances LLMs develop internal activation
dynamics resembling serial accumulation mechanisms, these signals are not precise enough to
guarantee accurate enumeration performance. Alternatively, when the LLMs rely on explicit counting,
they might in fact deploy surface-level token prediction capabilities that might prevent a deeper
understanding of the task semantics. It is conceivable that proficient mastery of counting and a deeper
understanding of the properties of the number system will require grounding of number concepts into
sensorimotor experience, as claimed by mainstream theories in cognitive science (Lakoff & Núñez,
2000).

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

6 ETHICS STATEMENT

The authors are well aware of the code of ethics and have complied with it.

7 REPRODUCIBILITY STATEMENT

The authors ensured the statistical power and reproducibility of the study by running the experiments
and analyses under various task conditions, on a sufficiently high number of trials. The code for
reproducing the results is provided in the supplementary information. The authors will publicize the
code and data in the supplementary information upon acceptance.

8 THE USE OF LARGE LANGUAGE MODELS

The authors acknowledge the use of LLMs in polishing writing.

REFERENCES

Aider. Aider llm leaderboards. https://aider.chat/docs/leaderboards/, 2025. Ac-
cessed: 2025-09-19.

Cem Anil, Yuhuai Wu, Anders Andreassen, Aitor Lewkowycz, Vedant Misra, Vinay Ramasesh,
Ambrose Slone, Guy Gur-Ari, Ethan Dyer, and Behnam Neyshabur. Exploring length generalization
in large language models. Advances in Neural Information Processing Systems, 35:38546–38556,
2022.

Rick Battle and Teja Gollapudi. The unreasonable effectiveness of eccentric automatic prompts.
arXiv preprint arXiv:2402.10949, 2024.

David Burr and John Ross. A visual sense of number. Current biology, 18(6):425–428, 2008.

David Campbell, Sunayana Rane, Tyler Giallanza, Carlo Nicolò De Sabbata, Kimia Ghods, Aditya
Joshi, et al. Understanding the limits of vision language models through the lens of the binding
problem. Advances in Neural Information Processing Systems, 37:113436–113460, 2024.

Yingshan Chang and Yonatan Bisk. Language models need inductive biases to count inductively.
arXiv preprint arXiv:2405.20131, 2024.

Siyuan Chen, Zhuoyi Zhou, Mowei Fang, and James L McClelland. Can generic neural networks
estimate numerosity like humans? In Proceedings of the 40th Annual Conference of the Cognitive
Science Society, pp. 202–207, Austin, TX, 2018. Cognitive Science Society.

Guido Marco Cicchini, Giovanni Anobile, and David C Burr. Spontaneous perception of numerosity
in humans. Nature communications, 7(1):12536, 2016.

DO Connor, Patrick K Kirkland, and David J Purpura. The how many and give-n tasks: Conceptually
distinct measures of the cardinality principle. Early Childhood Research Quarterly, 66:61–74,
2024.

Celestino Creatore, Silvester Sabathiel, and Trygve Solstad. Learning exact enumeration and
approximate estimation in deep neural network models. Cognition, 215:104815, 2021.

John P Cunningham and Byron M Yu. Dimensionality reduction for large-scale neural recordings.
Nature neuroscience, 17(11):1500–1509, 2014.

Alex Davies, Petar Veličković, Lars Buesing, Sam Blackwell, Daniel Zheng, Nenad Tomašev,
Richard Tanburn, Peter Battaglia, Charles Blundell, András Juhász, et al. Advancing mathematics
by guiding human intuition with ai. Nature, 600(7887):70–74, 2021.

Stanislas Dehaene. The number sense: How the mind creates mathematics. OUP USA, 2011.

10

https://aider.chat/docs/leaderboards/

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Grégoire Delétang, Anian Ruoss, Jordi Grau-Moya, Tim Genewein, Li Kevin Wenliang, Elliot Catt,
Chris Cundy, Marcus Hutter, Shane Legg, Joel Veness, et al. Neural networks and the chomsky
hierarchy. arXiv preprint arXiv:2207.02098, 2022.

Serena Dolfi, Alberto Testolin, Simone Cutini, and Marco Zorzi. Measuring temporal bias in
sequential numerosity comparison. Behavior Research Methods, 56(7):7561–7573, 2024.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
arXiv preprint arXiv:2407.21783, 2024.

Zack Dulberg, Taylor Webb, and Jonathan Cohen. Modelling the development of counting with
memory-augmented neural networks. arXiv preprint arXiv:2105.10577, 2021.

Nadine El-Naggar, Andrew Ryzhikov, Laure Daviaud, Pranava Madhyastha, and Tillman Weyde.
Formal and empirical studies of counting behaviour in relu rnns. In Proceedings of Machine
Learning Research, pp. 199–222. PMLR, 2023.

Lisa Feigenson, Stanislas Dehaene, and Elizabeth Spelke. Core systems of number. Trends in
cognitive sciences, 8(7):307–314, 2004.

Simon Frieder, Luca Pinchetti, Ryan-Rhys Griffiths, Tommaso Salvatori, Thomas Lukasiewicz,
Philipp Petersen, and Julius Berner. Mathematical capabilities of chatgpt. Advances in neural
information processing systems, 36:27699–27744, 2023.

Tairan Fu, Raquel Ferrando, Javier Conde, Carlos Arriaga, and Pedro Reviriego. Why do large
language models (llms) struggle to count letters? arXiv preprint arXiv:2412.18626, 2024.

Charles R Gallistel and Rochel Gelman. Preverbal and verbal counting and computation. Cognition,
44(1-2):43–74, 1992.

Charles R Gallistel and Rochel Gelman. Non-verbal numerical cognition: From reals to integers.
Trends in cognitive sciences, 4(2):59–65, 2000.

Atticus Geiger, Zhengxuan Wu, Christopher Potts, Thomas Icard, and Noah Goodman. Finding
alignments between interpretable causal variables and distributed neural representations. In Causal
Learning and Reasoning, pp. 160–187. PMLR, 2024.

Felix A Gers and Jürgen Schmidhuber. Recurrent nets that time and count. In Proceedings of
the IEEE-INNS-ENNS International Joint Conference on Neural Networks. IJCNN 2000. Neural
Computing: New Challenges and Perspectives for the New Millennium, volume 3, pp. 189–194.
IEEE, 2000.

Ivana Kajić, Olivia Wiles, Isabela Albuquerque, Matthias Bauer, Su Wang, Jordi Pont-Tuset, and
Aida Nematzadeh. Evaluating numerical reasoning in text-to-image models. Advances in Neural
Information Processing Systems, 37:42211–42224, 2024.

Alireza Karami, Elisa Castaldi, Evelyn Eger, and Manuela Piazza. Distinct neural representational
geometries of numerosity in early visual and association regions across visual streams. Communi-
cations Biology, 8(1):1029, 2025.

Edna L Kaufman, Miles W Lord, Thomas Whelan Reese, and John Volkmann. The discrimination of
visual number. The American journal of psychology, 62(4):498–525, 1949.

Tuire Koponen, Kaisa Aunola, and Jari-Erik Nurmi. Verbal counting skill predicts later math
performance and difficulties in middle school. Contemporary Educational Psychology, 59:101803,
2019.

George Lakoff and Rafael Núñez. Where mathematics comes from, volume 6. New York: Basic
Books, 2000.

Zhiyuan Li, Hong Liu, Denny Zhou, and Tengyu Ma. Chain of thought empowers transformers to
solve inherently serial problems. arXiv preprint arXiv:2402.12875, 1, 2024.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Bingbin Liu, Jordan T Ash, Surbhi Goel, Akshay Krishnamurthy, and Cyril Zhang. Transformers
learn shortcuts to automata. arXiv preprint arXiv:2210.10749, 2022.

R Thomas McCoy, Shunyu Yao, Dan Friedman, Matthew Hardy, and Thomas L Griffiths. Embers
of autoregression: Understanding large language models through the problem they are trained to
solve. arXiv preprint arXiv:2309.13638, 2023.

Andreas Nieder, Ilka Diester, and Oana Tudusciuc. Temporal and spatial enumeration processes in
the primate parietal cortex. Science, 313(5792):1431–1435, 2006.

OpenAI. Gpt-4o system card, 2024. URL https://arxiv.org/abs/2410.21276.

Simon Ouellette, Rolf Pfister, and Hansueli Jud. Counting and algorithmic generalization with
transformers. arXiv preprint arXiv:2310.08661, 2023.

Alexis Palmer, Noah A Smith, and Arthur Spirling. Using proprietary language models in academic
research requires explicit justification. Nature Computational Science, 4(1):2–3, 2024.

Tom G Philippi, Jan BF van Erp, and Peter J Werkhoven. Multisensory temporal numerosity judgment.
Brain research, 1242:116–125, 2008.

John R Platt and David M Johnson. Localization of position within a homogeneous behavior chain:
Effects of error contingencies. Learning and Motivation, 2(4):386–414, 1971.

Stanislas Polu and Ilya Sutskever. Generative language modeling for automated theorem proving.
arXiv preprint arXiv:2009.03393, 2020.

Sunayana Rane, Alexander Ku, Jason Baldridge, Ian Tenney, Tom Griffiths, and Been Kim. Can
generative multimodal models count to ten? In Proceedings of the 46th Annual Meeting of the
Cognitive Science Society, volume 46, 2024.

Anne-Claire Rattat and Sylvie Droit-Volet. What is the best and easiest method of preventing counting
in different temporal tasks? Behavior Research Methods, 44(1):67–80, 2012.

Susannah K Revkin, Manuela Piazza, Véronique Izard, Laurent Cohen, and Stanislas Dehaene. Does
subitizing reflect numerical estimation? Psychological science, 19(6):607–614, 2008.

Paul Rodriguez, Janet Wiles, and Jeffrey L Elman. A recurrent neural network that learns to count.
Connection Science, 11(1):5–40, 1999.

Silvester Sabathiel, James L McClelland, and Trygve Solstad. A computational model of learning
to count in a multimodal, interactive environment. In Proceedings of the Annual Meeting of the
Cognitive Science Society, volume 42, 2020.

Barbara W Sarnecka and Susan Carey. How counting represents number: What children must learn
and when they learn it. Cognition, 108(3):662–674, 2008.

Rylan Schaeffer, Brando Miranda, and Sanmi Koyejo. Are emergent abilities of large language
models a mirage? Advances in Neural Information Processing Systems, 36:55565–55581, 2023.

Francesco Sella, Ilaria Berteletti, Daniela Lucangeli, and Marco Zorzi. Spontaneous non-verbal
counting in toddlers. Developmental science, 19(2):329–337, 2016.

Gemini Team, Rohan Anil, Sebastian Borgeaud, Jean-Baptiste Alayrac, Jiahui Yu, Radu Soricut,
Johan Schalkwyk, Andrew M Dai, Anja Hauth, Katie Millican, et al. Gemini: a family of highly
capable multimodal models. arXiv preprint arXiv:2312.11805, 2023.

Alberto Testolin. Can neural networks do arithmetic? a survey on the elementary numerical skills of
state-of-the-art deep learning models. Applied Sciences, 14(2):744, 2024.

Alberto Testolin, Serena Dolfi, Mathijs Rochus, and Marco Zorzi. Visual sense of number vs. sense
of magnitude in humans and machines. Scientific reports, 10(1):10045, 2020.

Alberto Testolin, Kuinan Hou, and Marco Zorzi. Visual enumeration remains challenging for
multimodal generative ai. PloS one, 20(9):e0331566, 2025.

12

https://arxiv.org/abs/2410.21276

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Jessica AF Thompson, Hannah Sheahan, Tsvetomira Dumbalska, Julian D Sandbrink, Manuela
Piazza, and Christopher Summerfield. Zero-shot counting with a dual-stream neural network
model. Neuron, 112(24):4147–4158, 2024.

Jason Wei, Yi Tay, Rishi Bommasani, Colin Raffel, Barret Zoph, Sebastian Borgeaud, Dani Yogatama,
Maarten Bosma, Denny Zhou, Donald Metzler, et al. Emergent abilities of large language models.
arXiv preprint arXiv:2206.07682, 2022a.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
neural information processing systems, 35:24824–24837, 2022b.

Gail Weiss, Yoav Goldberg, and Eran Yahav. On the practical computational power of finite precision
rnns for language recognition. arXiv preprint arXiv:1805.04908, 2018.

John Whalen, Charles R Gallistel, and Rochel Gelman. Nonverbal counting in humans: The
psychophysics of number representation. Psychological science, 10(2):130–137, 1999.

Nan Xu and Xuezhe Ma. Llm the genius paradox: A linguistic and math expert’s struggle with simple
word-based counting problems. arXiv preprint arXiv:2410.14166, 2024.

An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li,
Dayiheng Liu, Fei Huang, Haoran Wei, et al. Qwen2. 5 technical report. arXiv preprint
arXiv:2412.15115, 2024.

Gilad Yehudai, Haim Kaplan, Asma Ghandeharioun, Mor Geva, and Amir Globerson. When can
transformers count to n? arXiv preprint arXiv:2407.15160, 2024.

Xiang Zhang, Juntai Cao, and Chenyu You. Counting ability of large language models and impact of
tokenization. arXiv preprint arXiv:2410.19730, 2024.

Tianyi Zhou et al. Pre-trained large language models use fourier features to compute addition. In
Advances in Neural Information Processing Systems (NeurIPS), 2024.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

A MATERIALS AND SOURCE CODE

Models’ responses are stored in the pickle file of each model, and embedding trajectories can be
found in our anonymized drive due to size limit. Scripts for collecting the results can also be found
there.

B COMPUTATIONAL HARDWARE AND CLOUD APIS

Data collection for open-source models was conducted using a computing cluster equipped with
seven NVIDIA L40s GPUs, as well as Google Cloud instances featuring A100 GPUs. For proprietary
models, responses were obtained through official APIs provided by OpenAI, while Gemini model
outputs were collected using the Vertex AI platform.

C CREATION OF TESTING SEQUENCES

C.1 WORD SELECTION

We first selected a set of words that are 5 letters long, and we created both homogeneous and
heterogeneous sequences of words by randomly sampling from this list. A critical prerequisite for a
valid analysis of counting behavior and its underlying neural dynamics is to ensure that the linguistic
units of counting are represented as single tokens within the model’s vocabulary. To this end, we
verified the tokenizer for each model in our study to confirm that all target words (e.g. ’table’ in
the previous example) were encoded as single tokens. This control ensures that the observed neural
dynamics reflect the cognitive process of counting and are not artifacts of sub-word tokenization or
compositional encoding.

C.2 HOMOGENEOUS STIMULI

The homogeneous stimuli were created by randomly sampling a word from the curated list or a
random letter, then repeating it the target number of times for the naming task. In the production task,
the model was asked to write the sampled word or letter the target number of times.

C.3 HETEROGENEOUS STIMULI

The non-uniform target string in this case was formed by different letters or words. For the naming
task, both sequences of letters and words are tested, while for the production task, only heterogeneous
letters were asked 2. Rather than sampling one word and repeating it the target number of times, we
sampled the target number of different words and formed a string. While for the letters, repetition of
the same letter is allowed. Results with heterogeneous stimuli can be found in Section G.4.

D PROMPTING DETAILS

D.1 RESPONSE FORMATTING

As discussed in Section 3.3, our system message consists of four components: (1) contextual
background, (2) task goal, (3) counting strategy, and (4) response formatting. To maximize the
performance of each LLM and ensure that responses adhere to the desired format, we specifically
investigated the design of the response formatting component for models that exhibited lower
proportions of valid outputs. These models include Llama-3B and Llama-8B, which underperformed
compared to others in terms of valid trial rates. For reference, the proportions of valid trials achieved
by the higher-performing models are as follows: Gemini 2.5 Pro achieved 98.3%, GPT-5 and GPT-4.1
achieved 100.0%, Llama-70B achieved 93.3% and Qwen-32B achieved 87.5%.

2Heterogeneous word generation poses a significant challenge to our automatic response parsing pipeline.
Even with human inspection, tricky cases still exist. For instance, ”OK, I will start generating 20 random words:
apple, banana, cat, ice cream....”. On the other hand, for letters, we explicitly asked the model to generate a
space before each letter, which can be parsed easily with our pipeline.

14

https://www.dropbox.com/scl/fo/iwb2950c05qwlwtenhtbs/APKk665IPNOFXfdojXJdSlM?rlkey=k5pw42zcb09d3esa1yc1atyr3&st=xob9lwb9&dl=0

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

To optimize the response formatting instructions, we explored several strategies: (1) varying the
position of the response formatting (either preceding or following the task goal); (2) experimenting
with alternative phrasings of the instruction; and (3) providing an explicit example of a correctly
formatted response. We conducted a controlled experiment to evaluate the effect of each variation.
For both the naming and production tasks, we executed 10 trials per numerosity. Each set of 10 trials
consisted of 5 trials using words and 5 using letters, both sampled randomly. The response formatting
instruction that yielded the highest proportion of valid outputs was selected.

The alternative phrasings we explored are:

1. Format/write/give your response between an opening tag <my_answer> and a close tag
</my_answer>.

2. Please format all your answers by wrapping them in a <my_answer> opening tag and a
</my_answer> closing tag.

3. Begin/start answering with <my_answer> and finish/stop with </my_answer>.

For Llama-3B, the best response formatting was ”Format your response between an opening tag
<my_answer> and a close tag </my_answer>” without changing position and giving explicit examples.
For Llama-8B, ”Please format all your answers by wrapping them in a <my_answer> opening tag
and a </my_answer> closing tag. For example, if the answer is ’76’, your response should be
<my_answer>76</my_answer>.” resulted in giving more valid trials. After applying those response
formatting, Llama-3B has 75.8% of valid trials and Llama-8B has 83.5% of valid trials.

D.2 PROMPT EXAMPLES

We provide a more complete set of per-trial prompts in the shared drive.

E INFERENCE DETAILS

E.1 TOKEN LIMITS

To accelerate the data collection process and minimize computational overhead, we imposed upper
limits on the number of tokens generated by the models. Specifically, for the naming task, the
maximum number of tokens allowed was set to 512 for the word condition and 256 for the letter
condition. For the production task, the corresponding limits were 1024 tokens for the word condition
and 512 tokens for the letter condition. Those limits are further adjusted during generation (details in
Section F). For Qwen-32B, those token limits apply to the tokens after the ’</think>’ token, and we
set a 2048 token limit for the reasoning process to prevent a non-stopping think loop.

E.2 TOKENIZATION CONTROL

To examine internal model representations, we extracted the hidden states from the final layer of
the Llama-70B model, which consists of 8192 neurons per token. These activations provide a
high-dimensional embedding of the model’s internal processing during generation.

To isolate representational patterns independent of behavioral outcomes, we conducted a separate
experiment from the main analyses presented in Section 4.1 and 4.2. In this auxiliary run, we
selected a single concrete word, “apple,” and focused exclusively on the production task. For each
numerosity level, we generated at least 10 valid trials. This approach allowed for controlled analysis
by eliminating the variability introduced by the tokenization of letter sequences. Unlike words, letter
sequences (e.g., “M,” “MM,” and “MMMM” are all represented by a single token) are subject to
inconsistent tokenization. By using a single, concrete word, we ensured stable token boundaries and
reliable extraction of hidden states.

F AUTOMATIC RESPONSE PARSING PIPELINE

Each trial was checked for the presence of the special tags <my_answer> and </my_answer>.
If missing, the trial was marked invalid, and the model was allowed up to nine additional attempts

15

https://www.dropbox.com/scl/fo/iwb2950c05qwlwtenhtbs/APKk665IPNOFXfdojXJdSlM?rlkey=k5pw42zcb09d3esa1yc1atyr3&st=xob9lwb9&dl=0

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

-100
-80
-60
-40
-20

0
20
40
60
80

100

GP
T4

.1
Di

ff
to

 Ta
rg

et

Explicit Counting
NamingLetter
NamingWord
ProductionLetter
ProductionWord

Spontaneous Counting Mental Counting Forbid Counting

10 20 30 40 50 60 70 80 90 100
Target Numerosity

-100
-80
-60
-40
-20

0
20
40
60
80

100

Ge
m

in
i2

.5
Di

ff
to

 Ta
rg

et

10 20 30 40 50 60 70 80 90 100
Target Numerosity

10 20 30 40 50 60 70 80 90 100
Target Numerosity

10 20 30 40 50 60 70 80 90 100
Target Numerosity

Figure 5: Scatter plots of enumeration errors (response – target value) across different prompting
conditions for a selected subset of models. Each panel shows the response differences plotted
against the target values, with distinct markers of different colors representing different task-stimulus
combinations: blue for the naming task and green for the production task; triangles for letters and
filled circles for words.

(ten total) to produce a valid response. In the production task, to prevent non-terminating output
(e.g., repetition), we enforced task-specific token limits. If the model reached this limit, the token
budget was halved and retried until it dropped to 512 tokens. Hitting the 512-token ceiling on three
consecutive attempts rendered the trial invalid; otherwise, up to ten retries were allowed.

Post-generation, valid responses were parsed based on task type. For the naming task, we extracted
content between the answer tags and checked if it contained a single integer. Non-integer outputs
were flagged for manual review. In the production task, we used regular expressions to extract and
count only target tokens (letters or words) within the tags; extraneous text also triggered manual
inspection. We made sure that spelling errors in the generated words were not regarded as wrong
responses by implementing a post-processing pipeline measuring edit (Levenshtein) distance to find
cases where the output word is only moderately different from the target word, and making sure that
these were counted as correct trials. The results showed that all words generated have 0 distance from
the target word, showcasing no spelling errors at all.

G RESULTS

G.1 BEHAVIOR PATTERNS

G.1.1 SYSTEMATIC COUNTING

We investigated whether the models engaged in systematic counting when required (explicit counting)
and when contextually beneficial (spontaneous counting). This analysis focused on the production
task. The naming task was excluded, as the models frequently returned errors, potentially due to
either repeating the target string incorrectly or failing to count. The current study design does not
allow us to disentangle these factors.

In the explicit counting condition, all models systematically counted on every valid trial. GPT-5
and Gemini 2.5 produced error-free responses in all valid cases. GPT-4.1 made 3 errors, Llama70B
made 1 error, and Qwen-32B made 57 errors. Of GPT-4.1’s errors, two were due to grouping instead
of systematic counting. Both GPT-4.1 and Llama-70B made an error on the word under, despite
counting systematically; in both cases, they under-enumerated, suggesting that semantic information
may interfere with counting accuracy. Qwen-32B’s errors arose not from a failure to count but from
mistakes during the copying of letters and words from the think loop to our special tags without

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

systematic counting again inside the special answer tags. In the spontaneous counting condition,
among all the results, only Gemini 2.5 Pro deployed systematic counting in the production task for
one trial (ID. 5385).

G.1.2 EXAMPLES OF COUNTING BEHAVIOR

We provide some representative examples of models’ counting behaviors. Full responses can be
found in the pickle files we provide.

1. Grouping — Gemini 2.5 Pro Production ID:197
"Okay, I will write the letter J exactly 70 times, using numbered groups to keep track.
1 J J J J J J J J J J (10)
2 J J J J J J J J J J (20)
3 J J J J J J J J J J (30)
4 J J J J J J J J J J (40)
5 J J J J J J J J J J (50)
6 J J J J J J J J J J (60)
7 J J J J J J J J J J (70)
I have written the letter J exactly 70 times."

2. Systematic Counting — Gemini 2.5 Pro Production ID:5
"1. Q
2. Q
3. Q
4. Q
5. Q
6. Q
7. Q
8. Q
9. Q
10. Q"

3. Grouping and Systematic Counting — Gemini 2.5 Pro Production ID:581
"Okay, I will write the letter U exactly 90 times. I will use numbering in groups of 10 to
keep track.
1 2 3 4 5 6 7 8 9 10
U U U U U U U U U U (10)
11 12 13 14 15 16 17 18 19 20
U U U U U U U U U U (20)
21 22 23 24 25 26 27 28 29 30
U U U U U U U U U U (30)
31 32 33 34 35 36 37 38 39 40
U U U U U U U U U U (40)
41 42 43 44 45 46 47 48 49 50
U U U U U U U U U U (50)
51 52 53 54 55 56 57 58 59 60
U U U U U U U U U U (60)
61 62 63 64 65 66 67 68 69 70
U U U U U U U U U U (70)
71 72 73 74 75 76 77 78 79 80
U U U U U U U U U U (80)
81 82 83 84 85 86 87 88 89 90
U U U U U U U U U U (90)
I have written the letter U exactly 90 times."

4. Wrong Repeating and Correct Counting — GPT-4.1 Naming ID:405
"Let me repeat the string and use markers to count:
u u
Now, let’s count by grouping into 5s for clarity:

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
Final count: 32"

5. Correct Repeating but Wrong Counting — GPT-4.1 Naming ID:500
"Let’s repeat the string:
storm storm storm storm storm storm storm storm storm storm
storm storm storm storm storm storm storm storm storm storm
storm storm storm storm storm storm storm storm storm storm
storm storm storm storm storm storm storm storm storm storm
storm storm storm storm storm storm storm storm storm storm
storm storm storm storm storm storm storm storm storm storm
storm storm storm storm storm storm storm storm storm storm

Now, let’s count the words using markers (I’ll use ’|’ for every 10 counts):
storm storm storm storm storm storm storm storm storm storm | (10)
storm storm storm storm storm storm storm storm storm storm | (20)
storm storm storm storm storm storm storm storm storm storm | (30)
storm storm storm storm storm storm storm storm storm storm | (40)
storm storm storm storm storm storm storm storm storm storm | (50)
storm storm storm storm storm storm storm storm storm storm | (60)
Each line is 10, and there are 7 lines. Let’s check: 1st line: 10 2nd line: 10 3rd line: 10 4th
line: 10 5th line: 10 6th line: 10 7th line: 10
10 + 10 + 10 + 10 + 10 + 10 + 10 = 70
Final count: 70"

G.2 ACCURACY AND MAE WITH MODEL SIZES

We investigated the effect of model scaling on sequential enumeration tasks using models from the
Llama family, specifically Llama-3B, Llama-8B, and Llama-70B. We selected the Llama family for
this comparison because these models share the same architecture and training objective, differing
only in model size, that is, primarily through the number of layers and hidden units.

We evaluated performance using two metrics: accuracy and mean absolute error (MAE). As shown in
Figure 6, both accuracy and MAE improve progressively with model size. This indicates that the
ability to perform sequential enumeration does not exhibit a sharp emergence but rather improves
gradually as model capacity increases within the tested size range. These findings suggest that
sequential enumeration is not an emergent ability in the strict sense, but instead scales smoothly with
model size in this family.

G.3 FRIEDMAN TEST

We conducted a comprehensive statistical analysis to compare the performance of four different
counting conditions (explicit, spontaneous, mental, and forbid) across five models using Normalized
Absolute Error (NAE) as the primary metric. NAE is calculated as the absolute difference between
the target count and the model’s predicted count, normalized by the target count: NAE = |target -
predicted| / target. This metric provides a scale-invariant measure of counting accuracy, where values
closer to 0 indicate better performance. We employed the non-parametric Friedman test since the
data did not meet normality assumptions. Effect sizes were quantified using Kendall’s W for the
overall test and rank-biserial correlation for pairwise comparisons. When significant differences were
detected, post-hoc pairwise Mann-Whitney U tests with Bonferroni correction (α = 0.0083) were
conducted to identify specific method differences.

The statistical analysis revealed significant differences in counting performance across methods for
all five models, though with varying effect sizes and patterns. Table 1 shows the NAE across different
models and counting methods. GPT-5 showed the best performance by being error-free in the explicit
word production task. The overall effect size is small (W = 0.02), and Post-hoc pairwise comparisons
with a Bonferroni correction revealed that the source of this significance stemmed specifically from
the ’explicit’ method. GPT-4.1 demonstrated the second-best overall performance with consistently
low NAE values (ranging from 0.02 to 0.08) and showed a medium effect size (W = 0.14), with
explicit counting significantly outperforming all other methods. Gemini 2.5 Pro exhibited similarly

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

3 8 70
Model Size (Billion)

0.00

0.05

0.10

0.15

0.20

0.25

Ac
cu

ra
cy

0

50

100

150

200

M
AE

Accuracy and MAE vs. Model Size

Figure 6: Comparison of model performance across different Llama model sizes. Accuracy is shown
as a blue line plot (left y-axis), and Mean Absolute Error (MAE) is represented by red bars (right
y-axis). As model size increases from 3B to 70B, accuracy generally improves while MAE decreases,
indicating better overall performance with larger models.

Table 1: NAE summary statistics by model and counting method

Model Explicit Spontaneous Mental Forbid

GPT5 0.05 ± 0.10 0.05 ± 0.08 0.05 ± 0.09 0.06 ± 0.10
GPT4.1 0.02 ± 0.06 0.03 ± 0.04 0.04 ± 0.07 0.08 ± 0.11
Gemini2.5pro 0.07 ± 0.66 0.08 ± 0.53 0.09 ± 0.58 0.17 ± 0.90
Llama70b 0.21 ± 0.71 0.69 ± 1.24 1.03 ± 1.58 1.32 ± 1.91
Qwen32b 1.38 ± 3.33 1.71 ± 3.31 0.90 ± 2.31 0.79 ± 2.07

strong performance (NAE values 0.07-0.17) but with a smaller effect size (W = 0.05), showing that
explicit counting was significantly better than spontaneous, mental, and forbid methods. In contrast,
Llama 70B displayed the most pronounced method differences with a large effect size (W = 0.37) and
substantially higher NAE values, where explicit counting (NAE = 0.21) significantly outperformed
all other methods, with performance deteriorating progressively through spontaneous (0.69), mental
(1.03), to forbid (1.32). Qwen 32B showed an interesting pattern where mental (0.90) and forbid
(0.79) methods performed better than explicit (1.38) and spontaneous (1.71) methods, though the
overall effect size remained small (W = 0.03).

In summary, our findings demonstrate that the counting method significantly affects performance
across all tested language models, with GPT-4.1 and Gemini 2.5 Pro showing superior accuracy
and consistent preference for explicit counting, while Llama 70B exhibited the strongest method
sensitivity, and Qwen 32B uniquely benefited from implicit counting approaches.

G.4 HETEROGENEOUS STIMULI

We also tested how models perform when the stimuli are heterogeneous (i.e., a string of random words
or letters). For the production task, only random letters are tested, as it is challenging to find a reliable
way to automate the answer validation process. As shown in Fig. 7, similar trends can be observed as
when the models were tested with homogeneous stimuli. Notably, GPT-5 delivered perfect responses
in the explicit and spontaneous conditions. Qwen was flagged as having an insufficient number of
valid trials.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

GPT-5GPT4.1
Gemini2.5

Llama70B
Qwen32B0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

Explicit Counting

GPT-5GPT4.1
Gemini2.5

Llama70B
Qwen32B

Spontaneous Counting

GPT-5GPT4.1
Gemini2.5

Llama70B
Qwen32B

Mental Counting

GPT-5GPT4.1
Gemini2.5

Llama70B
Qwen32B

Forbid Counting

140
160
180
200
220

GPT-5 GPT4.1
Gemini2.5

Llama70B
Qwen32B0

20
40
60
80

M
AE 140

160
180
200
220

GPT-5 GPT4.1
Gemini2.5

Llama70B
Qwen32B0

20
40
60
80

140
160
180
200
220

GPT-5 GPT4.1
Gemini2.5

Llama70B
Qwen32B0

20
40
60
80

140
160
180
200
220

GPT-5 GPT4.1
Gemini2.5

Llama70B
Qwen32B0

20
40
60
80

NamingLetter
NamingWord
ProductionLetter

Figure 7: Comparison of accuracy and mean absolute error (MAE) across different models and
prompting conditions on heterogeneous stimuli. Bars represent accuracy or MAE for each model
(x-axis) across the tasks. Error bars indicate the variability of the estimates: for accuracy, binomial
standard errors are shown; for MAE, standard errors of the mean are shown. We flagged Qwen’s
results as it has a large number of invalid trials.

G.5 COUNTING VIA CODING

To investigate whether LLMs’ coding ability could support perfect sequential enumeration, we
select the SOTA coding LLM, GPT-5 as the testing model (Aider, 2025). As generating letters or
words, either uniformly or non-uniformly, is too easy, we focus only on the non-uniform naming
task. We gave 30 trials for GPT-5 to generate a code snippet that can count the number of letters
or words in a given string. The prompt is: ”You need to write a code snippet to
count how many letters or words in a given string. The input is a
string and the output of the snippet should be an integer number.
Try your best to consider all possible conditions and return the
final Python code.” with the instruction (work as system message in other LLMs): ”You
are a code expert!”.

After human inspection and testing the code snippets, our results revealed that only 11 trials (36%)
are suitable for a string that could be either words or strings. Other code snippets require specification
of whether the goal is to count words or letters. Among those valid trials, 10 trials returned perfect
accuracy, and one code snippet achieved 50% of accuracy. We provide the generated code snippet in
the drive folder.

G.6 ANALYSIS OF EMBEDDINGS

Figure 8 illustrates the evolution of the first five PCs over the course of generation steps across the
four counting conditions. Notably, the mental and forbid counting conditions exhibit highly similar
dynamics across all five PCs, suggesting shared underlying representational structures but differences
in the precision of those representations. In contrast, the explicit counting condition reveals distinct
spikes at multiples of five and decade numbers, indicating a more discretized and externally guided
numerosity representation. Although the spontaneous counting condition is behaviorally similar to
the mental and forbid conditions, its latent dynamics display a hybrid pattern. Specifically, for some
target numerosities, spontaneous counting exhibits internal accumulator-like patterns similar to the

20

https://www.dropbox.com/scl/fo/iwb2950c05qwlwtenhtbs/APKk665IPNOFXfdojXJdSlM?rlkey=k5pw42zcb09d3esa1yc1atyr3&st=xob9lwb9&dl=0

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

mental and forbid conditions, while for others, it shows spike patterns aligned with those observed in
the explicit condition. This suggests that spontaneous counting may engage a mixture of internal and
externally anchored mechanisms in its representational trajectory.

0 10 20 30 40 50 60 70 80 90100
-100

-75
-50
-25

0
25
50
75

PC
1

Explicit Counting

0 10 20 30 40 50 60 70 80 90100

Spontaneous Counting

0 10 20 30 40 50 60 70 80 90100

Mental Counting

0 10 20 30 40 50 60 70 80 90100

Forbid Counting

0 10 20 30 40 50 60 70 80 90100
-100

-75
-50
-25

0
25
50
75

PC
2

0 10 20 30 40 50 60 70 80 90100 0 10 20 30 40 50 60 70 80 90100 0 10 20 30 40 50 60 70 80 90100

0 10 20 30 40 50 60 70 80 90100
-80
-60
-40
-20

0
20
40
60

PC
3

0 10 20 30 40 50 60 70 80 90100 0 10 20 30 40 50 60 70 80 90100 0 10 20 30 40 50 60 70 80 90100

0 10 20 30 40 50 60 70 80 90100-80
-60
-40
-20

0
20
40
60

PC
4

0 10 20 30 40 50 60 70 80 90100 0 10 20 30 40 50 60 70 80 90100 0 10 20 30 40 50 60 70 80 90100

0 10 20 30 40 50 60 70 80 90100
Step

-80
-60
-40
-20

0
20
40
60

PC
5

0 10 20 30 40 50 60 70 80 90100
Step

0 10 20 30 40 50 60 70 80 90100
Step

0 10 20 30 40 50 60 70 80 90100
Step

0

20

40

60

80

100

Ta
rg

et
 N

um
er

os
ity

Figure 8: Trajectories of the first five principal components computed over hidden states for explicit
condition only. Each subplot shows the trajectories along the principal components as a function of
generation step, with colors indicating the target numerosity.

A

B

Figure 9: Trajectories of the first principal components computed over hidden states for explicit
condition only. Panel (A) showed the hidden dynamics for counting in base-10 with target numbers
being multiples of 16. Panel (B) showed the hidden dynamics for counting in base-16 with target
numbers being multiples of 10.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

G.6.1 BASE-16 COUNTING

To better understand what drives the dips or spikes at the decade numbers in the explicit condition, a
control experiment was conducted by asking the model to count explicitly in base-16 (0x00, 0x01,
0x02,...) with target numbers being multiples of 10 (i.e., "decades" as 10,20,30...100), and to count
explicitly in base-10 (1,2,3,...) with target numbers being multiples of 16 (16,32,48...112). The
results show that the model is drawn by the multiples of 16 (see Fig 9 panel B for "spikes" of hidden
dynamics on those steps), but finally the model spikes at the target number. Panel A further shows
that the dips are present for both the target numbers and the multiples of 10.

G.6.2 CORRELATION ANALYSIS OF POPULATION ENCODING

To quantify the relationship between individual neuron activations and sequence position, we com-
puted Pearson correlation coefficients between each neuron’s activation trajectory and the corre-
sponding step indices across all trials in Section 4.3. Among the 8192 neurons, the top 500 with
the strongest positive correlations exhibited a mean correlation coefficient of 0.523 ± 0.003 (SEM),
while the top 500 with the strongest negative correlations had a mean of –0.527 ± 0.003 (SEM). In
both cases, the average p-value across neurons was < .001, indicating a highly significant association
between neural activity and sequential position.

22

	Introduction
	Related Work
	Experimental Setup
	Models tested
	Sequential enumeration tasks
	Prompting strategies
	Performance Evaluation
	Latent Space Dynamics and Neuronal Tuning Profiles During Enumeration

	Results
	Task Performance
	Analysis of Enumeration Errors
	Neural Dynamics during Sequential Enumeration

	Discussion and Conclusions
	Ethics statement
	Reproducibility statement
	The Use of Large Language Models
	Materials and Source Code
	Computational Hardware and Cloud APIs
	Creation of Testing Sequences
	Word selection
	Homogeneous stimuli
	Heterogeneous stimuli

	Prompting Details
	Response Formatting
	Prompt Examples

	Inference Details
	Token Limits
	Tokenization Control

	Automatic Response Parsing Pipeline
	Results
	Behavior Patterns
	Systematic Counting
	Examples of Counting Behavior

	Accuracy and MAE with Model Sizes
	Friedman Test
	Heterogeneous Stimuli
	Counting via coding
	Analysis of Embeddings
	Base-16 counting
	Correlation Analysis of Population Encoding

