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ABSTRACT

Occupancy World Models (OWMs) aim to predict future scenes via 3D voxelized
representations of the environment to support intelligent motion planning. Ex-
isting approaches typically generate full future occupancy states from VAE-style
latent encodings. In contrast, we propose Delta-Triplane Transformers (DTT), a
novel 4D OWM for autonomous driving. DTT adopts temporal triplane as the
occupancy representation, and focuses on modeling changes in occupancy rather
than dealing with full states. The core insight is that changes in the compact 3D la-
tent space are naturally sparser and easier to model, enabling higher accuracy with
a lighter-weight architecture. We first pretrain a triplane representation model that
encodes 3D occupancy compactly, and then extract multi-scale motion features
from historical data and iteratively predict future triplane deltas. These deltas are
combined with past states to decode future occupancy and ego-motion trajecto-
ries. Extensive experiments show that DTT achieves a state-of-the-art mean IoU
of 30.85, reduces mean absolute planning error to 1.0 meter, and runs in real time
at 26 FPS on an RTX 4090. Demo videos and code are provided in the supple-
mentary material.

1 INTRODUCTION
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Figure 1: (a-b) Comparison between
the full occupancy and occupancy
changes (∆) of a scene. In the
change map, red indicates newly ap-
peared voxels, while blue denotes dis-
appeared voxels. (c) Distribution of
latent-space feature values for full oc-
cupancy versus occupancy changes.

World models (Ha & Schmidhuber, 2018b;a) aim to rep-
resent the environment, predict future scenes and enable
agents to perform advanced motion planning. Recently, 3D
occupancy technique (Tong et al., 2023; Tian et al., 2023)
has emerged as a structured and spatially rich representa-
tion of the environment, enabling constructing finer cor-
relations between occupied voxels and planning decisions.
In this paper, we focus on the design of Occupancy World
Models (OWMs) for autonomous driving.

In designing OWMs, there are two tasks need to be solved:
(i) learning a compact latent representation of raw occu-
pancy data, and (ii) using this representation for scene fore-
casting and motion planning.

For the first task, most existing OWMs (Wei et al., 2024;
Xu et al., 2025b; Zheng et al., 2024a; Yan et al., 2025)
mainly use VQ-VAE based BEV representations (Van
Den Oord et al., 2017). While VAE has shown success in
several generative tasks (Jiang et al., 2023b; Zhang et al.,
2024a), its use for occupancy compression requires the la-
tent space of 3D structures to be converted into a 2D BEV
plane, which we denote by xy. In such a way, objects that
appear similar in BEV but differ vertically may become in-
distinguishable, forcing the BEV-based methods to rely on
fine-grained semantic cues. This usually means using more
feature channels and thus increased model size. Recent advances have shown that the triplane repre-
sentation provides an effective alternative for 3D occupancy prediction and scene generation (Khatib
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Figure 2: Comparison of occupancy world model architectures: (a) Conventional approaches use a
pre-trained VAE to compress occupancy state S into a compact BEV representation, which is then
combined with previous actions a to predict future BEVs and actions via a large Transformer. (b)
Our method, DTT, adopts more compact and precise triplane representations and uses lightweight
Transformers to separately predict the triplane changes of each plane. These deltas are then used to
for occupancy forecasting and motion planning.

& Giryes, 2024; Hu et al., 2023a; Lee et al., 2024). By incorporating additional xz and yz planes,
triplane preserves vertical information. Motivated by this benefit, we propose to adopt the triplane
representation for 4D OWMs.

For the second task, the key is how to fully exploit triplanes for 4D occupancy prediction and motion
planning. Existing OWMs typically use a large Transformer to model the full occupancy state (Xu
et al., 2025b; Wei et al., 2024). In particular, its multi-head attention mechanism is expected to
capture the diverse motion patterns of multi-scale objects – for example, the abrupt movements of
pedestrians versus the more inertial dynamics of large vehicles. This increases model complexity
and parameter count, and makes long-horizon predictions more susceptible to error accumulation
(as confirmed in our experiments). In contrast, we observe that occupancy changes are inherently
sparse and thus easier to model. Figure 1a depicts this by comparing the full occupancy of a scene
with the corresponding occupancy changes across two adjacent frames, showing how key elements
of interest are more distinct in the change map. Figure 1b further contrasts their distributions in
the latent space, where the x axis is a scalar feature value. While full occupancy states exhibit a
scattered distribution, occupancy changes states are much more tightly concentrated around zero,
which reduces variance and simplifies learning.

Building on this insight, we propose Delta-Triplane Transformers (DTT), a novel 4D OWM model
that predicts future states incrementally rather than in full. This leads to a much lighter-weight archi-
tecture that runs faster and achieves higher predictive accuracy. Figure 2 compares the conventional
model architecture with our approach. In particular, we extend the triplane representation into the
temporal domain and use separate Transformers to predict changes on each plane auto-regressively.
These deltas are then used as sparse queries to attentively produce planning outputs. DTT achieves
state-of-the-art (SOTA) performance. For example, compared with DOME (Gu et al., 2024), it re-
duces cumulative errors in long-term occupancy prediction, improving mIoU from 27.10 to 30.85
and IoU from 36.36 to 74.58. For motion planning, it attains the lowest average error of 1.0 meter
and the lowest collision rate of 30%. In addition, DTT is efficient, running at 26 FPS on an RTX
4090. In summary, our contributions are three-fold:

• We introduce DTT, a novel 4D autoregressive OWM that forecasts future scenes through incre-
mental changes instead of full occupancy states.

• DTT leverages compact triplane representations and lightweight multi-scale Transformers to pre-
dict sparse deltas on each plane, which are fused for occupancy forecasting and motion planning.

• Extensive experiments on the nuScenes (Caesar et al., 2020) and Occ3D (Tian et al., 2023) datasets
validate our SOTA performance in terms of occupancy forecasting, motion planning, and real-time
execution.
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2 RELATED WORKS

3D occupancy reconstruction. 3D occupancy reconstruction methods (Tong et al., 2023; Tian et al.,
2023; Wei et al., 2023; Liu et al., 2024; Marinello et al., 2025) aim to represent the environment as
a 3D voxel grid where each voxel encodes both geometric and semantic information. The field was
pioneered by SSCNet (Song et al., 2017) for indoor scenes using depth sensors, and later extended
to outdoor camera-based settings by MonoScene (Cao & De Charette, 2022). These approaches
primarily utilize multi-camera RGB images (Li et al., 2023a; Huang et al., 2023) or LiDAR point
clouds (Cao et al., 2024; Xia et al., 2023) to infer voxel-wise occupancy and semantics in an agent-
centric coordinate system. A core challenge lies in building accurate correlations between raw sensor
data and 3D voxel space. Once an accurate occupancy reconstruction is achieved, further learning
of the temporal dynamics of scene changes becomes necessary (Li et al., 2024a).

4D occupancy prediction. To anticipate future scene changes, various 4D occupancy prediction
methods have been proposed to capture the temporal dynamics of scene evolution. Some (Lu et al.,
2021; Mersch et al., 2022; Khurana et al., 2023) predict future sensor-level data, which is subse-
quently voxelized into occupancy results, while others (Ma et al., 2024; Chen et al., 2025; Xu et al.,
2024; 2025a) directly forecast occupancy outcomes from historical observations. These methods
mainly focus on reducing spatio-temporal biases on future occupancy predictions. However, they
overlook the use of predicted scenes for effective and comprehensive motion planning.

End-to-end autonomous driving. Conventional end-to-end autonomous driving systems (Hu et al.,
2022; 2023b) follow a pipeline of perception, prediction, and planning, which are typically decou-
pled and optimized separately. The perception module produces structured representations – such
as 2D bounding boxes, BEV features, and occupancy grids – that provide accurate ego localization
and rich scene semantics. The prediction module infers the intentions of nearby traffic participants
and forecasts future scene evolution. The planning module (Li et al., 2024b) then generates safe and
feasible trajectories based on this information. Many recent approaches achieve remarkable perfor-
mance by leveraging more supervisions (Zheng et al., 2024b), high-definition maps (Zheng et al.,
2024b; Wen et al., 2024), or richer intention reasoning (Chen et al., 2024; Zheng et al., 2025; Wen
et al., 2024). In contrast, our work relies solely on 3D latent triplane changes as a compact con-
ditioning signal for both scene forecasting and motion planning, within the domain of occupancy
world models introduced later.

World models for autonomous driving. World models (Ha & Schmidhuber, 2018b;a) aim to com-
press high-dimensional scene representations to capture the temporal dynamics of scene transitions,
facilitating both future scene predictions and motion planning for the agent. In autonomous driving,
existing models (Jiang et al., 2023a; Zhang et al., 2024b) typically map surrounding traffic partici-
pants to the BEV perspective to predict instance-level tracklets or directly use diffusion models (Wu
et al., 2024; Wang et al., 2024b;a; Gao et al., 2025; Jia et al., 2023) to generate pixel-level future
driving views. These methods derive control signals for the agent from current observations and
predicted surroundings, but they rely solely on 2D BEV or image space, which limits the ability to
establish fine-grained, efficient correlations between scene changes and motion planning. Recent
world models (Wei et al., 2024; Xu et al., 2025b; Zheng et al., 2024a; Yan et al., 2025; Gu et al.,
2024) have leveraged 3D occupancy data to address this issue. However, they typically use VAE-
series (Van Den Oord et al., 2017; Kingma et al., 2013) models for environment compression, which
often neglect original 3D geometric information and compromises reconstruction accuracy. Addi-
tionally, they rely on Transformers (Vaswani et al., 2017) to forecast the entire future scene instead
of incremental changes, leading to significant error accumulation.

3 METHODOLOGY

3.1 FORMULATION

Next, we provide the formulation of Occupancy World Model (OWM) (Zheng et al., 2024a). OWM
primarily receives a sequence of scene representations and motion actions from past τp frames up to
the current timestep t, such that St ∈ RH×W×L represents the occupancy data of the agent-centric
surrounding environment, with H , W , and L denoting the height, width, and length, respectively,
and at ∈ R2 denotes a transition-related motion command. The goal of OWM is to establish a
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Figure 3: Workflow of DTT. DTT first pre-trains compact triplane representations of occupancy
data. It then applies multi-scale Transformers to model temporal dynamics within each plane and
predict future triplane changes (∆). Finally, these changes, combined with the previous triplane, are
used to generate future occupancy results and motion proposals.

stochastic mapping, Φ, that associates past occupancy data and actions with future τf frames of
occupancy data and action proposals. Formally:

Ŝt+1:t+τf , ât+1:t+τf = Φ(St−τp:t, at−τp:t). (1)

To achieve this, we first pretrain a compact triplane representation of the raw occupancy data with
an auto-encoder. The encoder and decoder, parameterized by Φenc and Φdec, are defined as:

ŝt = Φenc(S
t), Ŝt = Φdec(ŝ

t), (2)
where st = [stxy, s

t
xz, s

t
yz] contains three orthogonal feature planes. Specifically, stxy ∈ Rc×w×l,

stxz ∈ Rc×h×w, and styz ∈ Rc×h×l, with c the channel dimension and (h,w, l) the spatial resolutions
along the three axes. Ŝt is the reconstructed occupancy data.

PE(pos)c

pos

axis-wise
pooling

Figure 4: Pretrained
triplane for OWM.

Once we obtain the latent scene representations st, we can predict future la-
tent states with incremental changes ∆ŝt+1 produced by the scene forecasting
model Φfut. These are combined with the previous latent state st and decoded
back to future occupancy outcome Ŝt+1 using Φdec. Since ∆ŝt+1 encodes
changes between consecutive latent states, it can serve as sparse queries for
the planning model Φact to generate future actions ât+1.

Note that our OWM, Φ = {Φenc,Φdec,Φfut,Φact}, operates in an autore-
gressive fashion, iteratively using previously predicted outcomes as part of
the historical data to forecast future scenes and provide motion proposals.
Figure 3 illustrates our design, detailed below.

3.2 DTT AS OWM

3.2.1 PRE-TRAINING TRIPLANE REPRESENTATIONS FOR OWM

To enable faster and more accurate predictions of future scenes St+1:t+τf ,
OWM requires a compact yet accurate representation of the high-dimensional
voxelized occupancy scene. To achieve this, we employ the triplane tech-
nique (Lee et al., 2024), which is widely used in volume rendering (Shue
et al., 2023; Hu et al., 2023a; Song et al., 2024; Huang et al., 2023), to com-
press raw occupancy data in an orthogonal decomposition fashion.

Specifically, as shown in Figure 4, the occupancy data St is first encoded by Φenc into st. Then,
an axis-wise average pooling operation is applied to obtain three orthogonal feature planes, st =

4
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[stxy, s
t
xz, s

t
yz], where stxy ∈ Rc×w×l, stxz ∈ Rc×h×w, and styz ∈ Rc×h×l. To decode the occupancy

data, each 3D point pos = (x, y, z) queries its corresponding features from the three planes. These
features are summed, concatenated with the positional encoding PE(pos), and passed through Φdec

to predict the semantic label. This process is formalized in Eq. 2, and detailed network structures
are provided in the supplementary material.

We pretrain Φenc and Φdec to obtain compact yet high-fidelity latent triplane representations using:

Jenc,dec = Et∼T ,pos∼St [Locc(Φdec(Φenc(S
t)), St)], (3)

where T represents the collection of all timesteps in the occupancy dataset, and Locc = Lce+λLlz .
Here, Lce and Llz denote the cross-entropy and Lovasz-softmax losses (Berman et al., 2018; Lee
et al., 2024), receptively, and λ is the trade-off factor.

The triplane representation, compared to the tokens generated by the VQ-VAE in OccWorld (Zheng
et al., 2024a) and the MS-VAE in OccLLM (Xu et al., 2025b), retains 3D structural information
while achieving a more compact latent space (see Table 3 for evaluation). This not only makes our
OWM more lightweight but also reduces the cumulative prediction error over time, as detailed later.

3.2.2 DELTA-TRIPLANE TRANSFORMERS (DTT)

DTT follows the autoregressive prediction paradigm similar to GPT-like models but differs by
leveraging historical triplanes to predict future triplane changes rather than full state predictions.
These changes are then decoded into future scenes and motion trajectories. At the timestep
k ∈ {1, · · · , τf} for autoregressive forecasting, given τp historical triplane frames sk−τp:k, the
objective of DTT is to capture the complete temporal dynamics of the scene, particularly adapting to
object motions at different scales. To this end, DTT performs two steps: (i) predicting plane-specific
future changes {∆ŝki | i ∈ {xy, xz, yz}} with multi-scale Transformers, and (ii) aggregating these
changes with the previous state and aligning the three planes through a fine-tuned decoder Φdec.

In particular, we design the future prediction module as three plane-specific models: Φfut =
{Φfutxy

,Φfutxz
,Φfutyz

}. Each predictor Φfuti is implemented with Transformers (Vaswani et al.,
2017) operating at multiple scales. The predictors share the same architecture but use separate
learnable parameters and different input sizes, depending on the plane and scale, as illustrated in
Figure 3. We denote by k ∈ {1, · · · , τf} the timestep for autoregressive forecasting. Take the
xy-plane predictor as an example: the input skxy is first downsampled using a UNet (Ronneberger
et al., 2015)-style encoder, producing V scales of features. At scale v ∈ V , the feature is denoted
as sk,vxy ∈ Rcvxy×wv

xy×hv
xy , which is flattened into wv

xy × hv
xy tokens and passed to a Transformer

encoder to build spatio-temporal memory. A learnable future query Qk
xy , with the same dimension

as sk,vxy , is then used in the Transformer decoder for cross-attention, generating token changes from
the current step to the next. Finally, token changes across all scales are fused by UNet-style upsam-
pling to produce the plane’s feature change ∆ŝk+1

xy , which is combined with the previous state ŝkxy
via a 1×1 convolution ϕ. The same procedure applies to the other planes. Detailed architecture and
hyperparameters are provided in the supplementary material.

The overall forecasting process at autoregressive timestep k is defined as:

∆ŝki = Φfuti(ŝ
k−τp:k
i , Qk

si), (4)

ŝki = ∆ŝki + ϕ(ŝk−1
i ), (5)

Ŝk = Φdec(ŝ
k := {ŝki }), (6)

where i ∈ {xy, xz, yz} and Qk
i is the learnable query at timestep k in the i-th plane.

Since the triplane occupancy representations are pretrained, the ground-truth (GT) future triplanes
can be directly used to supervise DTT. In this setting, we freeze the encoder and fine-tune only the
decoder Φdec. This ensures a stable and geometry-consistent triplane initialization, while allowing
the decoder to adapt specifically to future dynamics. Such decoupling also mitigates representation
drift and reduces misalignment across independently predicted planes, leading to more coherent
multi-plane aggregation.

Since the triplane occupancy representations are pretrained, the ground-truth (GT) future triplanes
can be directly used to supervise DTT. In this setup, we freeze the encoder and fine-tune only the
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decoder Φdec. This provides a stable and geometry-consistent triplane initialization, while allowing
the decoder to adapt specifically to future dynamics. Such decoupling also mitigates representation
drift and reduces misalignment across independently predicted planes, leading to more coherent
multi-plane aggregation. The training objective is defined as:

Jfut = Ek,i[Lfut(ŝ
k
i , s

k
i ) + ξLocc(Ŝ

k, Sk)], (7)

where Lfut = L1 + L2 is the weighted sum of L1 and L2 losses, with ξ as a trade-off weight.

3.3 MOTION PLANNING WITH DTT

Given the predicted triplane changes ∆ŝk = {∆ŝki | i ∈ {xy, xz, yz}}, which encode both global
context and local motion dynamics, we directly use them as sparse queries to attentively generate
planning outputs across past and future frames, as illustrated in Figure 5.

Transformer
Decoder

Triplane
changes

Last
triplane

Learnable
future
query

Transformer
Encoder

Mean

...

Figure 5: Motion planning with DTT.

Specifically, the previous triplane ŝk−1, the change
∆ŝk, and the next triplane ŝk are first mapped into a
shared latent space by three ResNet-18 networks (He
et al., 2016), θp, θ∆, and θf , yielding zk−1, ∆zk,
and zk. The change feature ∆zk is then processed
by two parallel fully connected (FC) layers with
Sigmoid activations, denoted ζp and ζf , to produce
query vectors fk−1 and fk. These queries are multi-
plied with zk−1 and zk to extract motion-related fea-
tures relative to the previous and current triplanes.
The resulting features are averaged element-wise
with ∆zk, passed through another FC layer ζq , and
combined with the learnable future query to form the
motion-planning query Qk

a ∈ Rdact .

Next, we project the actions from the past τp frames into the same dimension as Qk
a, and employ a

Transformer encoder to capture motion dependencies. The query Qk
a is then fed into a Transformer

decoder via cross-attention to predict the next action âk+1:

âk+1 = Φact(â
k−τp:k, ŝk−1,∆ŝk, Qk

a). (8)

Unlike OccWorld (Zheng et al., 2024a), which introduces an additional ego token to track the agent’s
trajectory, our approach learns future motion directly from scene changes and historical motion. This
design simplifies the planning module while still delivering safer and more precise motion decisions.
The optimization objective is defined as follows:

Jact = Ek[Lact(â
k, ak)], (9)

where Lact measures the L2 discrepancy between the predicted and GT trajectories.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTINGS

Targets and evaluation metrics. OWMs aim to jointly modeling occupancy forecasting and motion
planning. Following (Zheng et al., 2024a; Wei et al., 2024), we use the past four frames (2 seconds)
to predict the outcomes of the next six frames (3 seconds). We conduct two sets of experiments:
(i) To evaluate 4D occupancy forecasting, we report intersection over union (IoU) for occupied
and unoccupied voxels and mean IoU (mIoU) across 18 semantic classes, based on the occupancy
annotations in the Occ3D dataset (Tian et al., 2023). (ii) To assess planning precision and safety,
we measure the L2 distance between predicted and GT trajectories (in meters) and the collision rate
with traffic participants’ bounding boxes, using nuScenes annotations (Caesar et al., 2020).

Implementation details. The dataset consists of 1,000 scenes, of which 700 are used for training
and 100 for testing. Each scene contains up to 40 timesteps, with a sampling frequency of 2Hz. The
occupancy data St at each timestep has dimensions of 16×200×200, while the pre-trained triplane

6
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Table 1: Testing performance comparison with SOTA methods on the 4D occupancy forecasting
task. Best values in each metric are bolded. 0s refers to reconstruction accuracy, while 1s, 2s, and
3s denote future prediction accuracy. Avg. is the average of 1s, 2s, and 3s.

Models Input mIoU (%) ↑ IoU (%) ↑
0s 1s 2s 3s Avg. 0s 1s 2s 3s Avg.

OccWorld-O 3D-Occ 66.38 25.78 15.14 10.51 17.14 62.29 34.63 25.07 20.18 26.63
OccLLaMA-O 3D-Occ 75.20 25.05 19.49 15.26 19.93 63.76 34.56 28.53 24.41 29.17

RenderWorld-O 3D-Occ - 28.69 18.89 14.83 20.80 - 37.74 28.41 24.08 30.08
OccLLM-O 3D-Occ - 24.02 21.65 17.29 20.99 - 36.65 32.14 28.77 32.52

DOME-O 3D-Occ 83.08 35.11 25.89 20.29 27.10 77.25 43.99 35.36 29.74 36.36
DTT-O (ours) 3D-Occ 85.50 37.69 29.77 25.10 30.85 92.07 76.60 74.44 72.71 74.58

OccWorld-F Camera 20.09 8.03 6.91 3.54 6.16 35.61 23.62 18.13 15.22 18.99
OccLLaMA-F Camera 37.38 10.34 8.66 6.98 8.66 38.92 25.81 23.19 19.97 22.99

RenderWorld-F Camera - 2.83 2.55 2.37 2.58 - 14.61 13.61 12.98 13.73
OccLLM-F Camera - 11.28 10.21 9.13 10.21 - 27.11 24.07 20.19 23.79

DOME-F Camera 75.00 24.12 17.41 13.24 18.25 74.31 35.18 27.90 23.44 28.84
DTT-F (ours) Camera 43.52 24.87 18.30 15.63 19.60 54.31 38.98 37.45 31.89 36.11

shape is 16 × 100 × 100 with 8 channels. In Φfut, predictions for each plane use features from
V = 5 scales, and the token dimension in Φact is dact = 50. The objectives, Jenc,dec, Jfut, and
Jmot, are optimized using AdamW, with a weight regularization factor of 0.01, an initial learning
rate of 0.001, and cosine decay with a minimum learning rate of 10−6. We first pre-train Φenc and
Φdec with a batch size of 10, using random flip augmentation to obtain the triplane representations.
Then, we train Φfut and Φact with a batch size of 1, while fine-tuning Φdec. All training and testing
are performed on 4 RTX 4090 GPUs. More details are given in the supplementary material.

4.2 COMPARISONS WITH THE STATE-OF-THE-ART

4D occupancy forecasting. Table 1 reports the testing performance of various methods, under two
settings: (i) using 3D occupancy GTs as historical input, marked with “-O”; (ii) using predicted 3D
occupancy data from FB-Occ (Li et al., 2023b) as historical input, marked with “-F”.

At 0s, baseline methods clearly fall short of ours, mainly because our triplane representation achieves
higher-fidelity compression. The only exception is DOME-F, which performs better than DTT-F at
this initial step. This is mainly due to the additional noise introduced by the FB-Occ outputs used
in our pipeline, while DOME’s VAE-style encoder offers better generalization than our triplane
encoder. Beyond 0s, both DTT-O and DTT-F leverage triplane-delta predictions instead of full-state
predictions, yielding the best mIoU and IoU accuracy with reduced error accumulation. The IoU
improvement is particularly significant, as occupancy changes are inherently sparse and predicting
binary occupancy (occupied vs. empty) is simpler than multi-class predictions measured by mIoU.
Additionally, DTT’ strategy of predicting triplane changes significantly aids Φfut in forecasting the
next 3 seconds, effectively reducing error accumulation.

Motion planning. We compare DTT extensively with SOTA methods for autonomous driving,
including LiDAR-based (IL (Ratliff et al., 2006), NMP (Zeng et al., 2019), FF (Hu et al., 2021),
and EO (Khurana et al., 2022)), camera-based (ST-P3 (Hu et al., 2022), UniAD (Hu et al., 2023b),
VAD (Jiang et al., 2023a)), and occupancy-based methods (OccWorld (Zheng et al., 2024a), Ren-
derWorld (Yan et al., 2025), and OccLLaMA (Wei et al., 2024)). The results on the testing dataset
are shown in Table 2. Specifically, (i) LiDAR- and camera-based methods often require additional
auxiliary supervisions (e.g., 3D bounding boxes, drivable free space, HD maps) to improve planning
quality. (ii) When using camera input only, DTT-F operates as a purely vision-based 4D occupancy
forecasting method, with performance dependent on the accuracy of vision-based predictions. In this
setting, DTT-F achieves competitive results compared to UniAD. (iii) Occupancy-based methods
rely solely on dense 3D occupancy annotations, suggesting that improving the quality of occupancy
GT could further enhance planning performance. Compared to SOTA occupancy-based methods,
DTT-O delivers superior results, mainly due to its ability to establish precise, task-relevant correla-
tions between scene changes and motion trajectories in a deep latent space, effectively filtering out
noise from irrelevant traffic elements. However, for short-term prediction (1–2 seconds), DTT-O
underperforms OccLLaMA-O. This is primarily because even slight inaccuracies in the predicted
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Table 2: Testing performance of motion planning compared with SOTA method. Best and second-
best values in each metric are bolded and underlined, respectively. Auxiliary supervision refers to
additional supervision signals beyond the GT trajectories.

Models Input Auxiliary supervision L2 (m) ↓ Collision rate (%) ↓
1s 2s 3s Avg. 1s 2s 3s Avg.

IL LiDAR None 0.44 1.15 2.47 1.35 0.08 0.27 1.95 0.77
NMP LiDAR Box+Motion 0.53 1.25 2.67 1.48 0.04 0.12 0.87 0.34

FF LiDAR Freespace 0.55 1.20 2.54 1.43 0.06 0.17 1.07 0.43
EO LiDAR Freespace 0.67 1.36 2.78 1.60 0.04 0.09 0.88 0.33

ST-P3 Camera Map+Box+Depth 1.33 2.11 2.90 2.11 0.23 0.62 1.27 0.71
UniAD Camera Map+Box+Motion+Track+Occ 0.48 0.96 1.65 1.03 0.05 0.17 0.71 0.31

VAD Camera Map+Box+Motion 0.54 1.15 1.98 1.22 0.04 0.39 1.17 0.53
OccWorld-F Camera None 0.67 1.69 3.13 1.83 0.19 1.28 4.59 2.02

RenderWorld-F Camera None 0.48 1.30 2.67 1.48 0.14 0.55 2.23 0.97
OccLLaMA-F Camera None 0.38 1.07 2.15 1.20 0.06 0.39 1.65 0.70
DTT-F (ours) Camera None 0.35 1.01 1.89 1.08 0.08 0.33 0.91 0.44

OccWorld-O 3D-Occ None 0.43 1.08 1.99 1.17 0.07 0.38 1.35 0.60
RenderWorld-O 3D-Occ None 0.35 0.91 1.84 1.03 0.05 0.40 1.39 0.61
OccLLaMA-O 3D-Occ None 0.37 1.02 2.03 1.14 0.04 0.24 1.20 0.49
DTT-O (ours) 3D-Occ None 0.32 0.91 1.76 1.00 0.08 0.32 0.51 0.30

DO
M

E-
O

GT
O

cc
W

or
ld

-O
DO

M
E-

O
DT

T-
O

0.5s

GT
O

cc
W

or
ld

-O
DT

T-
O

1s 1.5s 2s 2.5s 3s

0.5s 1s 1.5s 2s 2.5s 3s

truck driveable surface other flat sidewalk terrain manmade vegeta�on
car const. veh. motorcycle pedestrian traffic cone trailerbusbicyclebarrier

X posi�on

X posi�on
-0.1 0.0

0.20.1

5

10

15

20

25

0.5s

0.5s

3s

3s

1

2

3

4

5

6

7

8

Y 
po

si�
on

Y 
po

si�
on

GT
OccWorld

DTT

Figure 6: Visualization of 4D occupancy forecasting and motion planning for the next 3 seconds on
the Occ3D test dataset (zoom in for a clearer view).

deltas can have a larger impact on near-future action decisions. For instance, a small prediction bias
may delay an obstacle-avoidance maneuver, leading to an increased collision rate.
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Visual comparisons with SOTA. Figure 6 shows the scene evolution over the next 3 seconds with
motion predictions for two representative scenarios. Since DOME only performs conditional scene
generation, we show its occupancy predictions only. (i) In the first case, OccWorld-O incorrectly
labels part of the truck as a trailer, and this error accumulates over time. DOME-O avoids this mis-
classification through its iterative diffusion-based refinement, but it tends to predict more aggressive
motion for the middle vehicles, causing them to leave the frame prematurely. In contrast, DTT-O
tracks all objects accurately and preserves clear boundaries throughout the sequence. Nonetheless,
our method exhibits some residual artifacts in the 2.0–2.5 s frames for the middle cars. This oc-
curs because the triplane changes preserve fine-grained 3D details, and adding these residuals to the
previous triplane can introduce slight decoding noise. By comparison, DOME-O and OccWorld-O
rely on VAE-style encoders that produce smoother representations but are less effective at captur-
ing precise object motion. (ii) In the second case, OccWorld-O gradually loses the road boundary
and misidentifies the motorcycle as a truck at 2.5 s and 3 s, due to the limited 3D detail preserved
by its VAE-based encoder. DOME-O alleviates these issues and better preserves global geometry.
However, because it conditions future scene generation primarily on the ego vehicle’s trajectory, it
may be less sensitive to the detailed motion patterns of other agents, occasionally resulting in drifts
or hallucinated objects. In contrast, our method preserves road geometry, roadside structures, and
small-object semantics. These precise scene forecasts arise from accurately predicted latent triplane
changes, enabling more accurate motion planning.

car pedestrian others
OccWorld-O DTT-OGT

t=
2s

t=
2.

5s
t=

3s

Figure 7: Predicted locations of dynamic ob-
jects for the three last frames.

Table 3: Latent representation comparison.

Type Latent space ↓ Total
shape ↓

mIoU
(%) ↑

IoU
(%) ↑h,w, l, c

BEV -, 50, 50, 128 320,000 60.50 59.07
BEV -, 50, 50, 16 40,000 37.81 46.53
BEV -, 50, 50, 8 20,000 35.26 42.91

Triplane 16, 50, 50, 8 32,800 72.45 80.83

BEV -, 100, 100, 128 1,280,000 78.12 71.63
BEV -, 100, 100, 16 160,000 57.34 48.19
BEV -, 100, 100, 8 80,000 54.13 46.78

Triplane 16, 100, 100, 8 105,600 85.50 92.07

Table 4: Ablation study of DTT.

Idx. Models Avg.
mIoU ↑ Avg.

L2 ↓ FPS ↑

M0 DTT-O 30.85 1.00 26
M1 w/o pretraining 28.45 1.12 26
M2 w/o triplane 26.71 1.13 21
M3 w/o triplane changes 27.97 1.10 27
M4 w/o multi-scale mot. 29.05 1.08 36
M5 w/o autoregression 29.41 1.11 34

Figure 7 compares occupancy predictions for the three furthest frames, focusing on dynamic objects
of varying sizes (cars and pedestrians) from a BEV perspective. Two reference lines are displayed
to reflect the errors between the predictions and GT. The results of our method match the GT sig-
nificantly better than OccWorld-O, which exhibits substantial drift. For instance, the predictions for
the pedestrians at the top and the vehicle on the left clearly demonstrate this improvement.

Figure 8 shows two failure cases over three consecutive frames, where fragmented or incomplete
road boundaries lead to some deviations in motion planning compared with GT. This mainly stems
from the occupancy labels: LiDAR points near road edges are radial and sparse, producing thin, dis-
continuous boundary surfaces. As the triplane encoder must model both dense interior regions and
these sparse edge structures, it tends to prioritize dense areas and underfit boundaries. This limitation
could be alleviated by boundary densification or edge-focused regularization during training.

4.3 ABLATION STUDY

Latent representation comparison. Table 3 empirically finds that adding the two extra planes (xy
and yz) in BEV allows for fewer channels per plane while still achieving high-quality reconstruction
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at 0s. For BEV, the latent size is w× l× c; for triplane, it is the sum across three orthogonal planes:
(h× w + h× l + w × l)× c. These results show that BEV requires significantly more channels to
maintain reconstruction quality, while triplane achieves strong performance with fewer channels.
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Figure 8: Some failure cases.

Table 5: Effect of long-duration predictions.
OccWorld-O DOME-O DTT-O

mIoU
(%) ↑

1s 19.95 25.37 27.61
3s 10.65 14.13 16.22
5s 6.44 9.52 11.03

10s 5.26 8.99 9.17

L2
(m) ↓

1s 0.88

N/A

0.64
3s 4.41 3.26
5s 5.53 4.43

10s 5.61 4.59

Table 6: Effect of different hyperparameters.

Idx. Setting Avg.
mIoU ↑ Avg.

L2 ↓ FPS ↑

H1.1 8, (8, 50, 50) 23.18 1.33 37
H1.2 8, (16, 50, 50) 24.56 1.23 33
H1.3 8, (8, 100, 100) 27.71 1.17 30
H1.4 8, (16, 100, 100) 30.85 1.00 26
H1.5 16, (16, 100, 100) 31.02 1.09 23
H1.6 32, (16, 100, 100) 29.89 1.11 18

H2.1 V = 3, 4, 16 29.01 1.08 28
H2.2 V = 5, 4, 16 30.85 1.00 26
H2.3 V = 5, 4, 32 31.59 1.04 21
H2.4 V = 5, 8, 16 32.04 1.02 23
H2.5 V = 7, 4, 16 28.75 0.98 20

Effect of DTT components. Table 4 evaluates the
effectiveness of key designs in DTT. M0 denotes
the full model, while ablations are obtained by re-
placing its components as follows: M1 removes
pre-training and learns triplane changes in an end-
to-end manner, causing downstream task gradients
to bias the encoder toward task-specific cues while
losing 3D scene information, which degrades both
encoder quality and overall performance. M2 uses
latent BEV features from OccWorld as input, lead-
ing to geometric information loss. M3 predicts
full future triplanes instead of ∆ changes, show-
ing that change prediction is more efficient. M4
applies a single-scale Transformer, failing to cap-
ture multi-scale motion and accumulating errors.
M5 removes the autoregressive mechanism, where
each previous prediction is fed into the next step.
Instead, it predicts all future outcomes simultane-
ously from four historical occupancy frames. This
prevents step-wise adjustments based on previous
predictions, which can degrade performance.

Effect of long-duration predictions. In Table 5,
we retrain OccWorld, DOME, and DTT for a 10-
second prediction task, which is particularly chal-
lenging due to the substantial changes that occur
in the scene over long horizons. New objects may
appear, existing objects can move or leave the field
of view, and the overall geometry evolves over
time. As a result, the mIoU and L2 metrics of all
methods gradually decline with increasing predic-
tion length. In contrast, our approach accumulates
errors more slowly, primarily because its multi-
scale modeling of triplane deltas allows it to cap-
ture fine-grained changes in the scene more effec-
tively across extended durations.

Effect of different hyperparameters. Table 6
shows the impact of different hyperparameters,
with indicating our final trade-off. The H1
series varies the latent triplane shape, defined by
channel number and spatial size (h, w, l); increasing spatial size improves predictions, while more
channels offer little benefit and can hurt performance due to feature redundancy in self-attention.
The H2 series adjusts the number of scales (V ) and the depth and width of the Transformer, i.e., the
number of layers and attention heads. The results show that even a lightweight Transformer captures
essential patterns, whereas larger models add cost without notable gains. Our final design uses only
903 M memory (vs. 13,000 M / 13,500 M for OccWorld / RenderWorld) and runs at 26 FPS on an
RTX 4090, outperforming OccWorld’s 18 FPS.

5 CONCLUSION

This paper introduces DTT, a new 4D OWM that leverages pre-trained triplane latent representa-
tions and predicts plane-wise future changes with multi-scale Transformers. These predictions are
recovered into future occupancy outcomes and used as sparse queries for motion planning. DTT
achieve SOTA performance in both scene forecasting and motion planning with real-time efficiency.
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