

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 DELTA-TRIPLANE TRANSFORMERS AS OCCUPANCY WORLD MODELS

Anonymous authors

Paper under double-blind review

ABSTRACT

Occupancy World Models (OWMs) aim to predict future scenes via 3D voxelized representations of the environment to support intelligent motion planning. Existing approaches typically generate full future occupancy states from VAE-style latent encodings. In contrast, we propose *Delta-Triplane Transformers* (DTT), a novel 4D OWM for autonomous driving. DTT adopts *temporal triplane* as the occupancy representation, and focuses on modeling *changes* in occupancy rather than dealing with full states. The core insight is that changes in the compact 3D latent space are naturally sparser and easier to model, enabling higher accuracy with a lighter-weight architecture. We first pretrain a triplane representation model that encodes 3D occupancy compactly, and then extract multi-scale motion features from historical data and iteratively predict future triplane deltas. These deltas are combined with past states to decode future occupancy and ego-motion trajectories. Extensive experiments show that DTT achieves a state-of-the-art mean IoU of 30.85, reduces mean absolute planning error to 1.0 meter, and runs in real time at 26 FPS on an RTX 4090. Demo videos and code are provided in the supplementary material.

1 INTRODUCTION

World models (Ha & Schmidhuber, 2018b;a) aim to represent the environment, predict future scenes and enable agents to perform advanced motion planning. Recently, 3D occupancy technique (Tong et al., 2023; Tian et al., 2023) has emerged as a structured and spatially rich representation of the environment, enabling constructing finer correlations between occupied voxels and planning decisions. In this paper, we focus on the design of Occupancy World Models (OWMs) for autonomous driving.

In designing OWMs, there are two tasks need to be solved: (i) learning a compact latent representation of raw occupancy data, and (ii) using this representation for scene forecasting and motion planning.

For the first task, most existing OWMs (Wei et al., 2024; Xu et al., 2025b; Zheng et al., 2024a; Yan et al., 2025) mainly use VQ-VAE based BEV representations (Van Den Oord et al., 2017). While VAE has shown success in several generative tasks (Jiang et al., 2023b; Zhang et al., 2024a), its use for occupancy compression requires the latent space of 3D structures to be converted into a 2D BEV plane, which we denote by xy . In such a way, objects that appear similar in BEV but differ vertically may become indistinguishable, forcing the BEV-based methods to rely on fine-grained semantic cues. This usually means using more feature channels and thus increased model size. Recent advances have shown that the triplane representation provides an effective alternative for 3D occupancy prediction and scene generation (Khatib

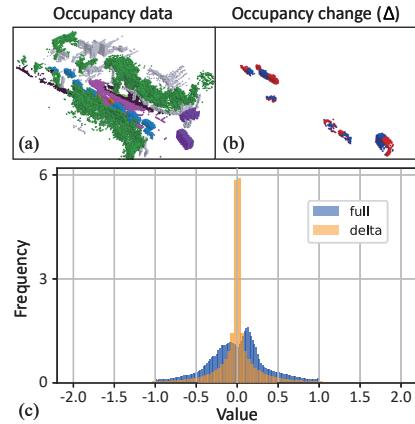


Figure 1: (a-b) Comparison between the full occupancy and occupancy changes (Δ) of a scene. In the change map, red indicates newly appeared voxels, while blue denotes disappeared voxels. (c) Distribution of latent-space feature values for full occupancy versus occupancy changes.

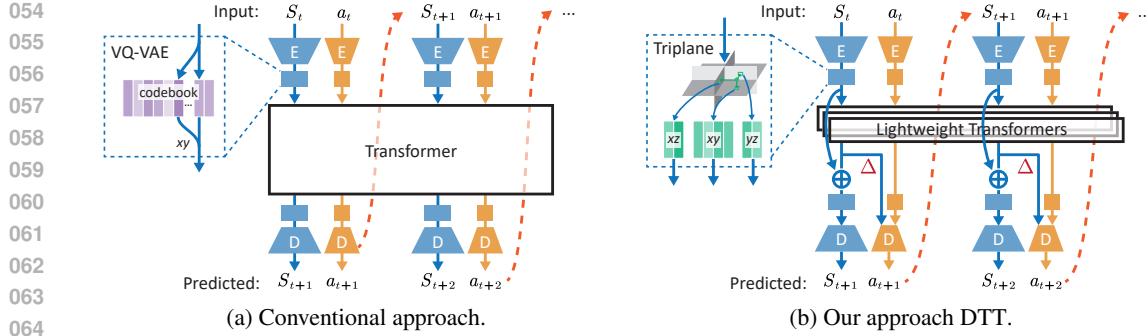


Figure 2: Comparison of occupancy world model architectures: (a) Conventional approaches use a pre-trained VAE to compress occupancy state S into a compact BEV representation, which is then combined with previous actions a to predict future BEVs and actions via a large Transformer. (b) Our method, DTT, adopts more compact and precise triplane representations and uses lightweight Transformers to separately predict the triplane changes of each plane. These deltas are then used to for occupancy forecasting and motion planning.

& Giryes, 2024; Hu et al., 2023a; Lee et al., 2024). By incorporating additional xz and yz planes, triplane preserves vertical information. Motivated by this benefit, we propose to adopt the triplane representation for 4D OWMs.

For the second task, the key is how to fully exploit triplanes for 4D occupancy prediction and motion planning. Existing OWMs typically use a large Transformer to model the full occupancy state (Xu et al., 2025b; Wei et al., 2024). In particular, its multi-head attention mechanism is expected to capture the diverse motion patterns of multi-scale objects – for example, the abrupt movements of pedestrians versus the more inertial dynamics of large vehicles. This increases model complexity and parameter count, and makes long-horizon predictions more susceptible to error accumulation (as confirmed in our experiments). In contrast, we observe that occupancy changes are inherently sparse and thus easier to model. Figure 1a depicts this by comparing the full occupancy of a scene with the corresponding occupancy changes across two adjacent frames, showing how key elements of interest are more distinct in the change map. Figure 1b further contrasts their distributions in the latent space, where the x axis is a scalar feature value. While full occupancy states exhibit a scattered distribution, occupancy changes states are much more tightly concentrated around zero, which reduces variance and simplifies learning.

Building on this insight, we propose *Delta-Triplane Transformers* (DTT), a novel 4D OWM model that predicts future states incrementally rather than in full. This leads to a much lighter-weight architecture that runs faster and achieves higher predictive accuracy. Figure 2 compares the conventional model architecture with our approach. In particular, we extend the triplane representation into the temporal domain and use separate Transformers to predict changes on each plane auto-regressively. These deltas are then used as sparse queries to attentively produce planning outputs. DTT achieves state-of-the-art (SOTA) performance. For example, compared with DOME (Gu et al., 2024), it reduces cumulative errors in long-term occupancy prediction, improving mIoU from 27.10 to 30.85 and IoU from 36.36 to 74.58. For motion planning, it attains the lowest average error of 1.0 meter and the lowest collision rate of 30%. In addition, DTT is efficient, running at 26 FPS on an RTX 4090. In summary, our contributions are three-fold:

- We introduce DTT, a novel 4D autoregressive OWM that forecasts future scenes through incremental changes instead of full occupancy states.
- DTT leverages compact triplane representations and lightweight multi-scale Transformers to predict sparse deltas on each plane, which are fused for occupancy forecasting and motion planning.
- Extensive experiments on the nuScenes (Caesar et al., 2020) and Occ3D (Tian et al., 2023) datasets validate our SOTA performance in terms of occupancy forecasting, motion planning, and real-time execution.

108

2 RELATED WORKS

110 **3D occupancy reconstruction.** 3D occupancy reconstruction methods (Tong et al., 2023; Tian et al.,
 111 2023; Wei et al., 2023; Liu et al., 2024; Marinello et al., 2025) aim to represent the environment as
 112 a 3D voxel grid where each voxel encodes both geometric and semantic information. The field was
 113 pioneered by SSCNet (Song et al., 2017) for indoor scenes using depth sensors, and later extended
 114 to outdoor camera-based settings by MonoScene (Cao & De Charette, 2022). These approaches
 115 primarily utilize multi-camera RGB images (Li et al., 2023a; Huang et al., 2023) or LiDAR point
 116 clouds (Cao et al., 2024; Xia et al., 2023) to infer voxel-wise occupancy and semantics in an agent-
 117 centric coordinate system. A core challenge lies in building accurate correlations between raw sensor
 118 data and 3D voxel space. Once an accurate occupancy reconstruction is achieved, further learning
 119 of the temporal dynamics of scene changes becomes necessary (Li et al., 2024a).

120 **4D occupancy prediction.** To anticipate future scene changes, various 4D occupancy prediction
 121 methods have been proposed to capture the temporal dynamics of scene evolution. Some (Lu et al.,
 122 2021; Mersch et al., 2022; Khurana et al., 2023) predict future sensor-level data, which is subse-
 123 quently voxelized into occupancy results, while others (Ma et al., 2024; Chen et al., 2025; Xu et al.,
 124 2024; 2025a) directly forecast occupancy outcomes from historical observations. These methods
 125 mainly focus on reducing spatio-temporal biases on future occupancy predictions. However, they
 126 overlook the use of predicted scenes for effective and comprehensive motion planning.

127 **End-to-end autonomous driving.** Conventional end-to-end autonomous driving systems (Hu et al.,
 128 2022; 2023b) follow a pipeline of perception, prediction, and planning, which are typically decou-
 129 pled and optimized separately. The perception module produces structured representations – such
 130 as 2D bounding boxes, BEV features, and occupancy grids – that provide accurate ego localization
 131 and rich scene semantics. The prediction module infers the intentions of nearby traffic participants
 132 and forecasts future scene evolution. The planning module (Li et al., 2024b) then generates safe and
 133 feasible trajectories based on this information. Many recent approaches achieve remarkable perfor-
 134 mance by leveraging more supervisions (Zheng et al., 2024b), high-definition maps (Zheng et al.,
 135 2024b; Wen et al., 2024), or richer intention reasoning (Chen et al., 2024; Zheng et al., 2025; Wen
 136 et al., 2024). In contrast, our work relies solely on 3D latent triplane changes as a compact con-
 137 ditioning signal for both scene forecasting and motion planning, within the domain of occupancy
 138 world models introduced later.

139 **World models for autonomous driving.** World models (Ha & Schmidhuber, 2018b;a) aim to com-
 140 press high-dimensional scene representations to capture the temporal dynamics of scene transitions,
 141 facilitating both future scene predictions and motion planning for the agent. In autonomous driving,
 142 existing models (Jiang et al., 2023a; Zhang et al., 2024b) typically map surrounding traffic partici-
 143 pants to the BEV perspective to predict instance-level tracklets or directly use diffusion models (Wu
 144 et al., 2024; Wang et al., 2024b;a; Gao et al., 2025; Jia et al., 2023) to generate pixel-level future
 145 driving views. These methods derive control signals for the agent from current observations and
 146 predicted surroundings, but they rely solely on 2D BEV or image space, which limits the ability to
 147 establish fine-grained, efficient correlations between scene changes and motion planning. Recent
 148 world models (Wei et al., 2024; Xu et al., 2025b; Zheng et al., 2024a; Yan et al., 2025; Gu et al.,
 149 2024) have leveraged 3D occupancy data to address this issue. However, they typically use VAE-
 150 series (Van Den Oord et al., 2017; Kingma et al., 2013) models for environment compression, which
 151 often neglect original 3D geometric information and compromises reconstruction accuracy. Addi-
 152 tionally, they rely on Transformers (Vaswani et al., 2017) to forecast the entire future scene instead
 153 of incremental changes, leading to significant error accumulation.

154

3 METHODOLOGY

155

3.1 FORMULATION

156 Next, we provide the formulation of Occupancy World Model (OWM) (Zheng et al., 2024a). OWM
 157 primarily receives a sequence of scene representations and motion actions from past τ_p frames up to
 158 the current timestep t , such that $S^t \in \mathbb{R}^{H \times W \times L}$ represents the occupancy data of the agent-centric
 159 surrounding environment, with H , W , and L denoting the height, width, and length, respectively,
 160 and $a^t \in \mathbb{R}^2$ denotes a transition-related motion command. The goal of OWM is to establish a

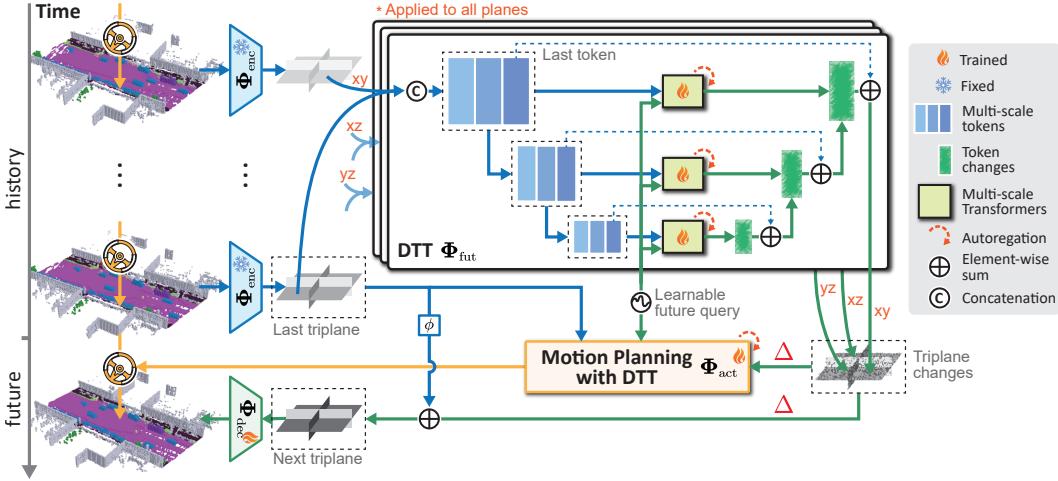


Figure 3: Workflow of DTT. DTT first pre-trains compact triplane representations of occupancy data. It then applies multi-scale Transformers to model temporal dynamics within each plane and predict future triplane changes (Δ). Finally, these changes, combined with the previous triplane, are used to generate future occupancy results and motion proposals.

stochastic mapping, Φ , that associates past occupancy data and actions with future τ_f frames of occupancy data and action proposals. Formally:

$$\hat{s}^{t+1:t+\tau_f}, \hat{a}^{t+1:t+\tau_f} = \Phi(S^{t-\tau_p:t}, a^{t-\tau_p:t}). \quad (1)$$

To achieve this, we first pretrain a compact triplane representation of the raw occupancy data with an auto-encoder. The encoder and decoder, parameterized by Φ_{enc} and Φ_{dec} , are defined as:

$$\hat{s}^t = \Phi_{\text{enc}}(S^t), \quad \hat{S}^t = \Phi_{\text{dec}}(\hat{s}^t), \quad (2)$$

where $s^t = [s_{xy}^t, s_{xz}^t, s_{yz}^t]$ contains three orthogonal feature planes. Specifically, $s_{xy}^t \in \mathbb{R}^{c \times w \times l}$, $s_{xz}^t \in \mathbb{R}^{c \times h \times w}$, and $s_{yz}^t \in \mathbb{R}^{c \times h \times l}$, with c the channel dimension and (h, w, l) the spatial resolutions along the three axes. \hat{S}^t is the reconstructed occupancy data.

Once we obtain the latent scene representations s^t , we can predict future latent states with incremental changes $\Delta\hat{s}^{t+1}$ produced by the scene forecasting model Φ_{fut} . These are combined with the previous latent state s^t and decoded back to future occupancy outcome \hat{S}^{t+1} using Φ_{dec} . Since $\Delta\hat{s}^{t+1}$ encodes changes between consecutive latent states, it can serve as sparse queries for the planning model Φ_{act} to generate future actions \hat{a}^{t+1} .

Note that our OWM, $\Phi = \{\Phi_{\text{enc}}, \Phi_{\text{dec}}, \Phi_{\text{fut}}, \Phi_{\text{act}}\}$, operates in an autoregressive fashion, iteratively using previously predicted outcomes as part of the historical data to forecast future scenes and provide motion proposals. Figure 3 illustrates our design, detailed below.

3.2 DTT AS OWM

3.2.1 PRE-TRAINING TRIPANE REPRESENTATIONS FOR OWM

To enable faster and more accurate predictions of future scenes $S^{t+1:t+\tau_f}$, OWM requires a compact yet accurate representation of the high-dimensional voxelized occupancy scene. To achieve this, we employ the triplane technique (Lee et al., 2024), which is widely used in volume rendering (Shue et al., 2023; Hu et al., 2023a; Song et al., 2024; Huang et al., 2023), to compress raw occupancy data in an orthogonal decomposition fashion.

Specifically, as shown in Figure 4, the occupancy data S^t is first encoded by Φ_{enc} into s^t . Then, an axis-wise average pooling operation is applied to obtain three orthogonal feature planes, $s^t =$

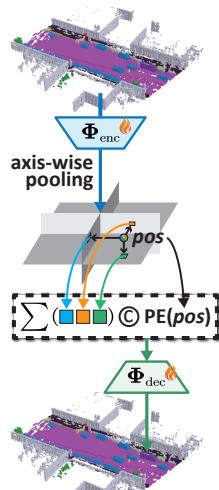


Figure 4: Pretrained triplane for OWM.

[216] $[s_{xy}^t, s_{xz}^t, s_{yz}^t]$, where $s_{xy}^t \in \mathbb{R}^{c \times w \times l}$, $s_{xz}^t \in \mathbb{R}^{c \times h \times w}$, and $s_{yz}^t \in \mathbb{R}^{c \times h \times l}$. To decode the occupancy [217] data, each 3D point $pos = (x, y, z)$ queries its corresponding features from the three planes. These [218] features are summed, concatenated with the positional encoding $PE(pos)$, and passed through Φ_{dec} to [219] predict the semantic label. This process is formalized in Eq. 2, and detailed network structures [220] are provided in the supplementary material.

[221] We pretrain Φ_{enc} and Φ_{dec} to obtain compact yet high-fidelity latent triplane representations using:

$$J_{enc, dec} = \mathbb{E}_{t \sim \mathcal{T}, pos \sim S^t} [\mathcal{L}_{occ}(\Phi_{dec}(\Phi_{enc}(S^t)), S^t)], \quad (3)$$

[224] where \mathcal{T} represents the collection of all timesteps in the occupancy dataset, and $\mathcal{L}_{occ} = \mathcal{L}_{ce} + \lambda \mathcal{L}_{lz}$. [225] Here, \mathcal{L}_{ce} and \mathcal{L}_{lz} denote the cross-entropy and Lovasz-softmax losses (Berman et al., 2018; Lee [226] et al., 2024), respectively, and λ is the trade-off factor.

[227] The triplane representation, compared to the tokens generated by the VQ-VAE in OccWorld (Zheng [228] et al., 2024a) and the MS-VAE in OccLLM (Xu et al., 2025b), retains 3D structural information [229] while achieving a more compact latent space (see Table 3 for evaluation). This not only makes our [230] OWM more lightweight but also reduces the cumulative prediction error over time, as detailed later.

3.2.2 DELTA-TRIPLANE TRANSFORMERS (DTT)

[232] DTT follows the autoregressive prediction paradigm similar to GPT-like models but differs by [233] leveraging historical triplanes to predict future triplane changes rather than full state predictions. [234] These changes are then decoded into future scenes and motion trajectories. At the timestep [235] $k \in \{1, \dots, \tau_f\}$ for autoregressive forecasting, given τ_p historical triplane frames $s^{k-\tau_p:k}$, the [236] objective of DTT is to capture the complete temporal dynamics of the scene, particularly adapting to [237] object motions at different scales. To this end, DTT performs two steps: (i) predicting plane-specific [238] future changes $\{\Delta \hat{s}_i^k \mid i \in \{xy, xz, yz\}\}$ with multi-scale Transformers, and (ii) aggregating these [239] changes with the previous state and aligning the three planes through a fine-tuned decoder Φ_{dec} .

[242] In particular, we design the future prediction module as three plane-specific models: $\Phi_{fut} = \{\Phi_{fut_{xy}}, \Phi_{fut_{xz}}, \Phi_{fut_{yz}}\}$. Each predictor Φ_{fut_i} is implemented with Transformers (Vaswani et al., [243] 2017) operating at multiple scales. The predictors share the same architecture but use separate [244] learnable parameters and different input sizes, depending on the plane and scale, as illustrated in [245] Figure 3. We denote by $k \in \{1, \dots, \tau_f\}$ the timestep for autoregressive forecasting. Take the [246] xy -plane predictor as an example: the input s_{xy}^k is first downsampled using a UNet (Ronneberger [247] et al., 2015)-style encoder, producing V scales of features. At scale $v \in V$, the feature is denoted [248] as $s_{xy}^{k,v} \in \mathbb{R}^{c_{xy}^v \times w_{xy}^v \times h_{xy}^v}$, which is flattened into $w_{xy}^v \times h_{xy}^v$ tokens and passed to a Transformer [249] encoder to build spatio-temporal memory. A learnable future query Q_{xy}^k , with the same dimension [250] as $s_{xy}^{k,v}$, is then used in the Transformer decoder for cross-attention, generating token changes from [251] the current step to the next. Finally, token changes across all scales are fused by UNet-style upsampling [252] to produce the plane's feature change $\Delta \hat{s}_{xy}^{k+1}$, which is combined with the previous state \hat{s}_{xy}^k [253] via a 1×1 convolution ϕ . The same procedure applies to the other planes. Detailed architecture and [254] hyperparameters are provided in the supplementary material.

[255] The overall forecasting process at autoregressive timestep k is defined as:

$$\Delta \hat{s}_i^k = \Phi_{fut_i}(\hat{s}_i^{k-\tau_p:k}, Q_{s_i}^k), \quad (4)$$

$$\hat{s}_i^k = \Delta \hat{s}_i^k + \phi(\hat{s}_i^{k-1}), \quad (5)$$

$$\hat{S}^k = \Phi_{dec}(\hat{s}^k := \{\hat{s}_i^k\}), \quad (6)$$

[261] where $i \in \{xy, xz, yz\}$ and Q_i^k is the learnable query at timestep k in the i -th plane.

[263] Since the triplane occupancy representations are pretrained, the ground-truth (GT) future triplanes [264] can be directly used to supervise DTT. In this setting, we freeze the encoder and fine-tune only the [265] decoder Φ_{dec} . This ensures a stable and geometry-consistent triplane initialization, while allowing [266] the decoder to adapt specifically to future dynamics. Such decoupling also mitigates representation [267] drift and reduces misalignment across independently predicted planes, leading to more coherent [268] multi-plane aggregation.

[269] Since the triplane occupancy representations are pretrained, the ground-truth (GT) future triplanes [270] can be directly used to supervise DTT. In this setup, we freeze the encoder and fine-tune only the

decoder Φ_{dec} . This provides a stable and geometry-consistent triplane initialization, while allowing the decoder to adapt specifically to future dynamics. Such decoupling also mitigates representation drift and reduces misalignment across independently predicted planes, leading to more coherent multi-plane aggregation. The training objective is defined as:

$$J_{\text{fut}} = \mathbb{E}_{k,i}[\mathcal{L}_{\text{fut}}(\hat{s}_i^k, s_i^k) + \xi \mathcal{L}_{\text{occ}}(\hat{S}^k, S^k)], \quad (7)$$

where $\mathcal{L}_{\text{fut}} = \mathcal{L}_1 + \mathcal{L}_2$ is the weighted sum of L1 and L2 losses, with ξ as a trade-off weight.

3.3 MOTION PLANNING WITH DTT

Given the predicted triplane changes $\Delta\hat{s}^k = \{\Delta\hat{s}_i^k \mid i \in \{xy, xz, yz\}\}$, which encode both global context and local motion dynamics, we directly use them as sparse queries to attentively generate planning outputs across past and future frames, as illustrated in Figure 5.

Specifically, the previous triplane \hat{s}^{k-1} , the change $\Delta\hat{s}^k$, and the next triplane \hat{s}^k are first mapped into a shared latent space by three ResNet-18 networks (He et al., 2016), θ_p , θ_Δ , and θ_f , yielding z^{k-1} , Δz^k , and z^k . The change feature Δz^k is then processed by two parallel fully connected (FC) layers with Sigmoid activations, denoted ζ_p and ζ_f , to produce query vectors f^{k-1} and f^k . These queries are multiplied with z^{k-1} and z^k to extract motion-related features relative to the previous and current triplanes. The resulting features are averaged element-wise with Δz^k , passed through another FC layer ζ_q , and combined with the learnable future query to form the motion-planning query $Q_a^k \in \mathbb{R}^{d_{\text{act}}}$.

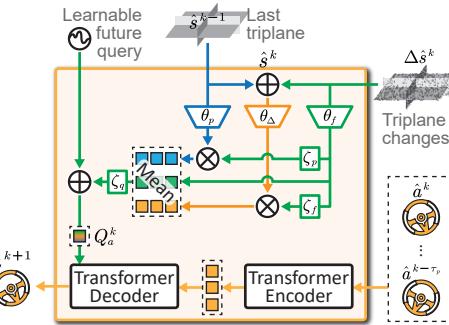


Figure 5: Motion planning with DTT.

Next, we project the actions from the past τ_p frames into the same dimension as Q_a^k , and employ a Transformer encoder to capture motion dependencies. The query Q_a^k is then fed into a Transformer decoder via cross-attention to predict the next action \hat{a}^{k+1} :

$$\hat{a}^{k+1} = \Phi_{\text{act}}(\hat{a}^{k-\tau_p:k}, \hat{s}^{k-1}, \Delta\hat{s}^k, Q_a^k). \quad (8)$$

Unlike OccWorld (Zheng et al., 2024a), which introduces an additional ego token to track the agent’s trajectory, our approach learns future motion directly from scene changes and historical motion. This design simplifies the planning module while still delivering safer and more precise motion decisions. The optimization objective is defined as follows:

$$J_{\text{act}} = \mathbb{E}_k[\mathcal{L}_{\text{act}}(\hat{a}^k, a^k)], \quad (9)$$

where \mathcal{L}_{act} measures the L2 discrepancy between the predicted and GT trajectories.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTINGS

Targets and evaluation metrics. OWMs aim to jointly modeling occupancy forecasting and motion planning. Following (Zheng et al., 2024a; Wei et al., 2024), we use the past four frames (2 seconds) to predict the outcomes of the next six frames (3 seconds). We conduct two sets of experiments: (i) To evaluate 4D occupancy forecasting, we report intersection over union (IoU) for occupied and unoccupied voxels and mean IoU (mIoU) across 18 semantic classes, based on the occupancy annotations in the Occ3D dataset (Tian et al., 2023). (ii) To assess planning precision and safety, we measure the L2 distance between predicted and GT trajectories (in meters) and the collision rate with traffic participants’ bounding boxes, using nuScenes annotations (Caesar et al., 2020).

Implementation details. The dataset consists of 1,000 scenes, of which 700 are used for training and 100 for testing. Each scene contains up to 40 timesteps, with a sampling frequency of 2Hz. The occupancy data S^t at each timestep has dimensions of $16 \times 200 \times 200$, while the pre-trained triplane

324
 325 Table 1: Testing performance comparison with SOTA methods on the 4D occupancy forecasting
 326 task. Best values in each metric are **bolded**. 0s refers to reconstruction accuracy, while 1s, 2s, and
 327 3s denote future prediction accuracy. Avg. is the average of 1s, 2s, and 3s.

328 Models	329 Input	330 mIoU (%) ↑					331 IoU (%) ↑				
		332 0s	333 1s	334 2s	335 3s	336 Avg.	337 0s	338 1s	339 2s	340 3s	341 Avg.
OccWorld-O	3D-Occ	66.38	25.78	15.14	10.51	17.14	62.29	34.63	25.07	20.18	26.63
OccLLaMA-O	3D-Occ	75.20	25.05	19.49	15.26	19.93	63.76	34.56	28.53	24.41	29.17
RenderWorld-O	3D-Occ	-	28.69	18.89	14.83	20.80	-	37.74	28.41	24.08	30.08
OccLLM-O	3D-Occ	-	24.02	21.65	17.29	20.99	-	36.65	32.14	28.77	32.52
DOME-O	3D-Occ	83.08	35.11	25.89	20.29	27.10	77.25	43.99	35.36	29.74	36.36
DTT-O (ours)	3D-Occ	85.50	37.69	29.77	25.10	30.85	92.07	76.60	74.44	72.71	74.58
OccWorld-F	Camera	20.09	8.03	6.91	3.54	6.16	35.61	23.62	18.13	15.22	18.99
OccLLaMA-F	Camera	37.38	10.34	8.66	6.98	8.66	38.92	25.81	23.19	19.97	22.99
RenderWorld-F	Camera	-	2.83	2.55	2.37	2.58	-	14.61	13.61	12.98	13.73
OccLLM-F	Camera	-	11.28	10.21	9.13	10.21	-	27.11	24.07	20.19	23.79
DOME-F	Camera	75.00	24.12	17.41	13.24	18.25	74.31	35.18	27.90	23.44	28.84
DTT-F (ours)	Camera	43.52	24.87	18.30	15.63	19.60	54.31	38.98	37.45	31.89	36.11

341 shape is $16 \times 100 \times 100$ with 8 channels. In Φ_{fut} , predictions for each plane use features from
 342 $V = 5$ scales, and the token dimension in Φ_{act} is $d_{\text{act}} = 50$. The objectives, $J_{\text{enc,dec}}$, J_{fut} , and
 343 J_{mot} , are optimized using AdamW, with a weight regularization factor of 0.01, an initial learning
 344 rate of 0.001, and cosine decay with a minimum learning rate of 10^{-6} . We first pre-train Φ_{enc} and
 345 Φ_{dec} with a batch size of 10, using random flip augmentation to obtain the triplane representations.
 346 Then, we train Φ_{fut} and Φ_{act} with a batch size of 1, while fine-tuning Φ_{dec} . All training and testing
 347 are performed on 4 RTX 4090 GPUs. More details are given in the supplementary material.

348 4.2 COMPARISONS WITH THE STATE-OF-THE-ART

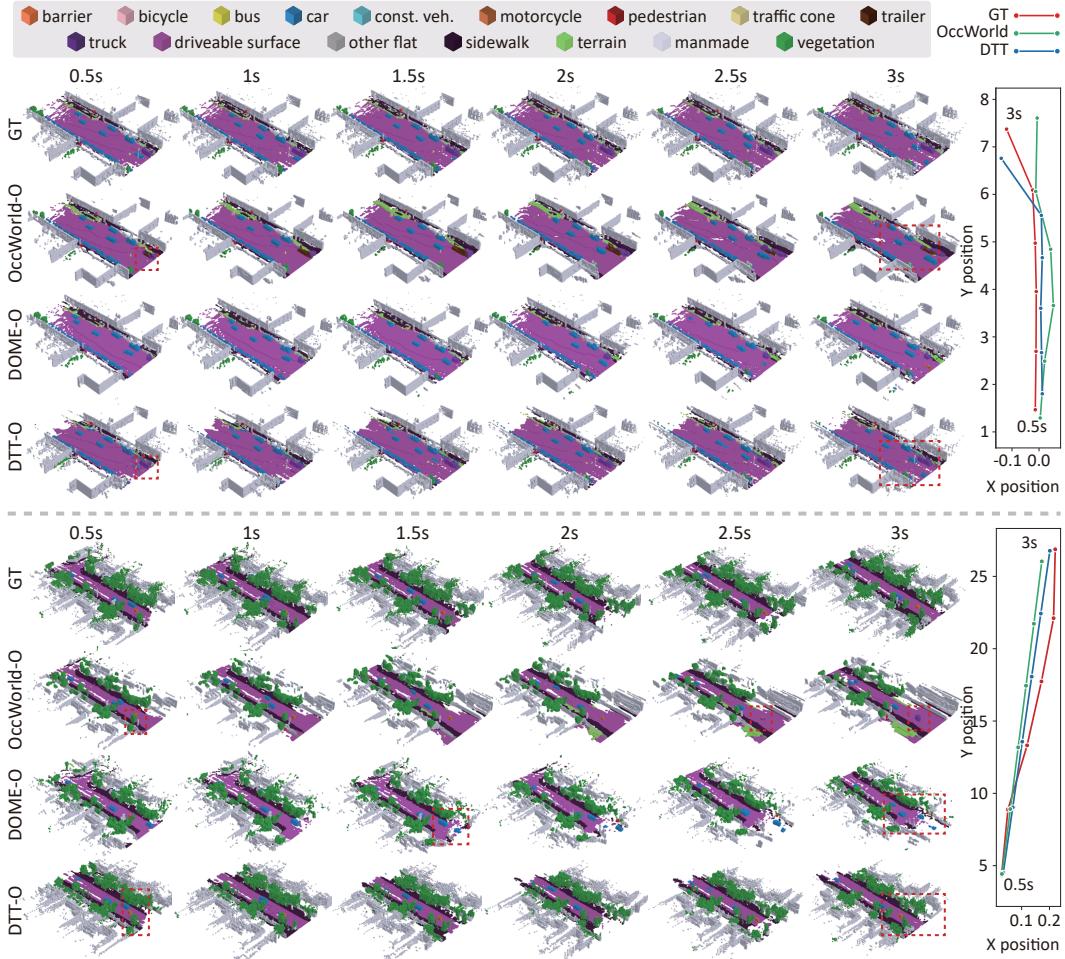
351 **4D occupancy forecasting.** Table 1 reports the testing performance of various methods, under two
 352 settings: (i) using 3D occupancy GTs as historical input, marked with “-O”; (ii) using predicted 3D
 353 occupancy data from FB-Occ (Li et al., 2023b) as historical input, marked with “-F”.

354 At 0s, baseline methods clearly fall short of ours, mainly because our triplane representation achieves
 355 higher-fidelity compression. **The only exception is DOME-F, which performs better than DTT-F at**
 356 **this initial step. This is mainly due to the additional noise introduced by the FB-Occ outputs used**
 357 **in our pipeline, while DOME’s VAE-style encoder offers better generalization than our triplane**
 358 **encoder.** Beyond 0s, both DTT-O and DTT-F leverage triplane-delta predictions instead of full-state
 359 predictions, yielding the best mIoU and IoU accuracy with reduced error accumulation. The IoU
 360 improvement is particularly significant, as occupancy changes are inherently sparse and predicting
 361 binary occupancy (occupied vs. empty) is simpler than multi-class predictions measured by mIoU.
 362 Additionally, DTT’s strategy of predicting triplane changes significantly aids Φ_{fut} in forecasting the
 363 next 3 seconds, effectively reducing error accumulation.

364 **Motion planning.** We compare DTT extensively with SOTA methods for autonomous driving,
 365 including LiDAR-based (IL (Ratliff et al., 2006), NMP (Zeng et al., 2019), FF (Hu et al., 2021),
 366 and EO (Khurana et al., 2022)), camera-based (ST-P3 (Hu et al., 2022), UniAD (Hu et al., 2023b),
 367 VAD (Jiang et al., 2023a)), and occupancy-based methods (OccWorld (Zheng et al., 2024a), Ren-
 368 derWorld (Yan et al., 2025), and OccLLaMA (Wei et al., 2024)). The results on the testing dataset
 369 are shown in Table 2. Specifically, (i) LiDAR- and camera-based methods often require additional
 370 auxiliary supervisions (e.g., 3D bounding boxes, drivable free space, HD maps) to improve planning
 371 quality. (ii) When using camera input only, DTT-F operates as a purely vision-based 4D occupancy
 372 forecasting method, with performance dependent on the accuracy of vision-based predictions. In this
 373 setting, DTT-F achieves competitive results compared to UniAD. (iii) Occupancy-based methods
 374 rely solely on dense 3D occupancy annotations, suggesting that improving the quality of occupancy
 375 GT could further enhance planning performance. Compared to SOTA occupancy-based methods,
 376 DTT-O delivers superior results, mainly due to its ability to establish precise, task-relevant correlations
 377 between scene changes and motion trajectories in a deep latent space, effectively filtering out
 378 noise from irrelevant traffic elements. **However, for short-term prediction (1–2 seconds), DTT-O**
 379 **underperforms OccLLaMA-O. This is primarily because even slight inaccuracies in the predicted**

378
 379 Table 2: Testing performance of motion planning compared with SOTA method. Best and second-
 380 best values in each metric are **bolded** and underlined, respectively. Auxiliary supervision refers to
 381 additional supervision signals beyond the GT trajectories.

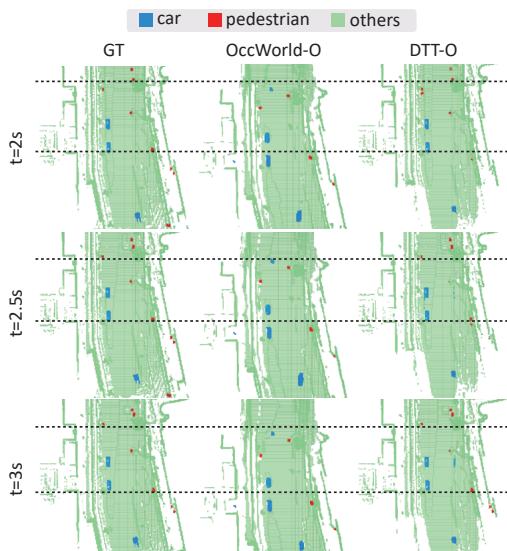
382 Models	383 Input	384 Auxiliary supervision	385 L2 (m) ↓				386 Collision rate (%) ↓			
			387 1s	388 2s	389 3s	390 Avg.	391 1s	392 2s	393 3s	394 Avg.
IL	LiDAR	None	0.44	1.15	2.47	1.35	0.08	0.27	1.95	0.77
NMP	LiDAR	Box+Motion	0.53	1.25	2.67	1.48	0.04	<u>0.12</u>	0.87	0.34
FF	LiDAR	Freespace	0.55	1.20	2.54	1.43	0.06	0.17	1.07	0.43
EO	LiDAR	Freespace	0.67	1.36	2.78	1.60	0.04	0.09	0.88	0.33
ST-P3	Camera	Map+Box+Depth	1.33	2.11	2.90	2.11	0.23	0.62	1.27	0.71
UniAD	Camera	Map+Box+Motion+Track+Occ	0.48	<u>0.96</u>	1.65	1.03	0.05	0.17	<u>0.71</u>	<u>0.31</u>
VAD	Camera	Map+Box+Motion	0.54	1.15	1.98	1.22	0.04	0.39	1.17	0.53
OccWorld-F	Camera	None	0.67	1.69	3.13	1.83	0.19	1.28	4.59	2.02
RenderWorld-F	Camera	None	0.48	1.30	2.67	1.48	0.14	0.55	2.23	0.97
OccLLaMA-F	Camera	None	0.38	1.07	2.15	1.20	0.06	0.39	1.65	0.70
DTT-F (ours)	Camera	None	0.35	1.01	1.89	1.08	0.08	0.33	0.91	0.44
OccWorld-O	3D-Occ	None	0.43	1.08	1.99	1.17	0.07	0.38	1.35	0.60
RenderWorld-O	3D-Occ	None	<u>0.35</u>	0.91	1.84	1.03	0.05	0.40	1.39	0.61
OccLLaMA-O	3D-Occ	None	0.37	1.02	2.03	1.14	0.04	0.24	1.20	0.49
DTT-O (ours)	3D-Occ	None	0.32	0.91	<u>1.76</u>	1.00	0.08	0.32	0.51	0.30



427 Figure 6: **Visualization of 4D occupancy forecasting and motion planning for the next 3 seconds on**
 428 **the Occ3D test dataset (zoom in for a clearer view).**

429
 430
 431 **deltas can have a larger impact on near-future action decisions. For instance, a small prediction bias**
 432 **may delay an obstacle-avoidance maneuver, leading to an increased collision rate.**

432 **Visual comparisons with SOTA.** Figure 6 shows the scene evolution over the next 3 seconds with
 433 motion predictions for two representative scenarios. Since DOME only performs conditional scene
 434 generation, we show its occupancy predictions only. (i) In the first case, OccWorld-O incorrectly
 435 labels part of the truck as a trailer, and this error accumulates over time. DOME-O avoids this mis-
 436 classification through its iterative diffusion-based refinement, but it tends to predict more aggressive
 437 motion for the middle vehicles, causing them to leave the frame prematurely. In contrast, DTT-O
 438 tracks all objects accurately and preserves clear boundaries throughout the sequence. Nonetheless,
 439 our method exhibits some residual artifacts in the 2.0–2.5 s frames for the middle cars. This oc-
 440 curs because the triplane changes preserve fine-grained 3D details, and adding these residuals to the
 441 previous triplane can introduce slight decoding noise. By comparison, DOME-O and OccWorld-O
 442 rely on VAE-style encoders that produce smoother representations but are less effective at captur-
 443 ing precise object motion. (ii) In the second case, OccWorld-O gradually loses the road boundary
 444 and misidentifies the motorcycle as a truck at 2.5 s and 3 s, due to the limited 3D detail preserved
 445 by its VAE-based encoder. DOME-O alleviates these issues and better preserves global geometry.
 446 However, because it conditions future scene generation primarily on the ego vehicle’s trajectory, it
 447 may be less sensitive to the detailed motion patterns of other agents, occasionally resulting in drifts
 448 or hallucinated objects. In contrast, our method preserves road geometry, roadside structures, and
 449 small-object semantics. These precise scene forecasts arise from accurately predicted latent triplane
 450 changes, enabling more accurate motion planning.



460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 Figure 7: Predicted locations of dynamic objects for the three last frames.

Table 3: Latent representation comparison.

Type	Latent space \downarrow h, w, l, c	Total shape \downarrow	mIoU (%) \uparrow	IoU (%) \uparrow
BEV	-, 50, 50, 128	320,000	60.50	59.07
BEV	-, 50, 50, 16	40,000	37.81	46.53
BEV	-, 50, 50, 8	20,000	35.26	42.91
Triplane	16, 50, 50, 8	32,800	72.45	80.83
BEV	-, 100, 100, 128	1,280,000	78.12	71.63
BEV	-, 100, 100, 16	160,000	57.34	48.19
BEV	-, 100, 100, 8	80,000	54.13	46.78
Triplane	16, 100, 100, 8	105,600	85.50	92.07

Table 4: Ablation study of DTT.

Idx.	Models	Avg. mIoU \uparrow	Avg. L2 \downarrow	FPS \uparrow
M0	DTT-O	30.85	1.00	26
M1	w/o pretraining	28.45	1.12	26
M2	w/o triplane	26.71	1.13	21
M3	w/o triplane changes	27.97	1.10	27
M4	w/o multi-scale mot.	29.05	1.08	36
M5	w/o autoregression	29.41	1.11	34

471 Figure 7 compares occupancy predictions for the three furthest frames, focusing on dynamic objects
 472 of varying sizes (cars and pedestrians) from a BEV perspective. Two reference lines are displayed
 473 to reflect the errors between the predictions and GT. The results of our method match the GT signif-
 474 icantly better than OccWorld-O, which exhibits substantial drift. For instance, the predictions for
 475 the pedestrians at the top and the vehicle on the left clearly demonstrate this improvement.

476 Figure 8 shows two failure cases over three consecutive frames, where fragmented or incom-
 477 plete road boundaries lead to some deviations in motion planning compared with GT. This mainly stems
 478 from the occupancy labels: LiDAR points near road edges are radial and sparse, producing thin, dis-
 479 continuous boundary surfaces. As the triplane encoder must model both dense interior regions and
 480 these sparse edge structures, it tends to prioritize dense areas and underfit boundaries. This limitation
 481 could be alleviated by boundary densification or edge-focused regularization during training.

4.3 ABLATION STUDY

482 **Latent representation comparison.** Table 3 empirically finds that adding the two extra planes (xy
 483 and yz) in BEV allows for fewer channels per plane while still achieving high-quality reconstruction

486 at 0s. For BEV, the latent size is $w \times l \times c$; for triplane, it is the sum across three orthogonal planes:
 487 $(h \times w + h \times l + w \times l) \times c$. These results show that BEV requires significantly more channels to
 488 maintain reconstruction quality, while triplane achieves strong performance with fewer channels.
 489

490 **Effect of DTT components.** Table 4 evaluates the
 491 effectiveness of key designs in DTT. **M0** denotes
 492 the full model, while ablations are obtained by
 493 replacing its components as follows: **M1** removes
 494 pre-training and learns triplane changes in an end-
 495 to-end manner, causing downstream task gradients
 496 to bias the encoder toward task-specific cues while
 497 losing 3D scene information, which degrades both
 498 encoder quality and overall performance. **M2** uses
 499 latent BEV features from OccWorld as input, leading
 500 to geometric information loss. **M3** predicts full future triplanes instead of Δ changes, showing
 501 that change prediction is more efficient. **M4** applies a single-scale Transformer, failing to capture
 502 multi-scale motion and accumulating errors.
 503 **M5** removes the autoregressive mechanism, where
 504 each previous prediction is fed into the next step.
 505 Instead, it predicts all future outcomes simultaneously
 506 from four historical occupancy frames. This
 507 prevents step-wise adjustments based on previous
 508 predictions, which can degrade performance.

509 **Effect of long-duration predictions.** In Table 5,
 510 we retrain OccWorld, DOME, and DTT for a 10-
 511 second prediction task, which is particularly chal-
 512 lenging due to the substantial changes that occur
 513 in the scene over long horizons. New objects may
 514 appear, existing objects can move or leave the field
 515 of view, and the overall geometry evolves over
 516 time. As a result, the mIoU and L2 metrics of all
 517 methods gradually decline with increasing predic-
 518 tion length. In contrast, our approach accumulates
 519 errors more slowly, primarily because its multi-
 520 scale modeling of triplane deltas allows it to cap-
 521 ture fine-grained changes in the scene more effec-
 522 tively across extended durations.

523 **Effect of different hyperparameters.** Table 6
 524 shows the impact of different hyperparameters,
 525 with **▀** indicating our final trade-off. The **H1**
 526 series varies the latent triplane shape, defined by
 527 channel number and spatial size (h, w, l); increasing spatial size improves predictions, while more
 528 channels offer little benefit and can hurt performance due to feature redundancy in self-attention.
 529 The **H2** series adjusts the number of scales (V) and the depth and width of the Transformer, i.e., the
 530 number of layers and attention heads. The results show that even a lightweight Transformer captures
 531 essential patterns, whereas larger models add cost without notable gains. Our final design uses only
 532 903 M memory (vs. 13,000 M / 13,500 M for OccWorld / RenderWorld) and runs at 26 FPS on an
 533 RTX 4090, outperforming OccWorld’s 18 FPS.

5 CONCLUSION

537 This paper introduces DTT, a new 4D OWM that leverages pre-trained triplane latent representa-
 538 tions and predicts plane-wise future changes with multi-scale Transformers. These predictions are
 539 recovered into future occupancy outcomes and used as sparse queries for motion planning. DTT
 achieve SOTA performance in both scene forecasting and motion planning with real-time efficiency.

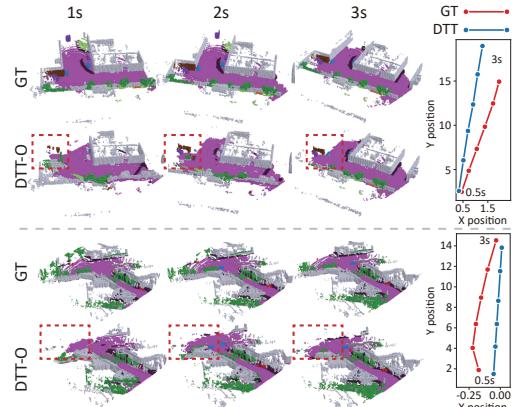


Figure 8: Some failure cases.

Table 5: Effect of long-duration predictions.

	OccWorld-O	DOME-O	DTT-O
mIoU (%) ↑	1s	19.95	25.37
	3s	10.65	14.13
	5s	6.44	9.52
	10s	5.26	8.99
(m) ↓	1s	0.88	0.64
	3s	4.41	3.26
	5s	5.53	4.43
	10s	5.61	4.59

Table 6: Effect of different hyperparameters.

Idx.	Setting	Avg. mIoU ↑	Avg. L2 ↓	FPS ↑
H1.1	8, (8, 50, 50)	23.18	1.33	37
H1.2	8, (16, 50, 50)	24.56	1.23	33
H1.3	8, (8, 100, 100)	27.71	1.17	30
H1.4	8, (16, 100, 100)	30.85	1.00	26
H1.5	16, (16, 100, 100)	31.02	1.09	23
H1.6	32, (16, 100, 100)	29.89	1.11	18
H2.1	$V = 3, 4, 16$	29.01	1.08	28
H2.2	$V = 5, 4, 16$	30.85	1.00	26
H2.3	$V = 5, 4, 32$	31.59	1.04	21
H2.4	$V = 5, 8, 16$	32.04	1.02	23
H2.5	$V = 7, 4, 16$	28.75	0.98	20

540 REFERENCES
541

542 Maxim Berman, Amal Rannen Triki, and Matthew B Blaschko. The lovász-softmax loss: A tractable
543 surrogate for the optimization of the intersection-over-union measure in neural networks. In *Pro-
544 ceedings of the IEEE conference on computer vision and pattern recognition*, pp. 4413–4421,
545 2018.

546 Holger Caesar, Varun Bankiti, Alex H Lang, Sourabh Vora, Venice Erin Liang, Qiang Xu, Anush
547 Krishnan, Yu Pan, Giancarlo Baldan, and Oscar Beijbom. nuscenes: A multimodal dataset for
548 autonomous driving. In *Proceedings of the IEEE/CVF conference on computer vision and pattern
549 recognition*, pp. 11621–11631, 2020.

550 Anh-Quan Cao and Raoul De Charette. Monoscene: Monocular 3d semantic scene completion.
551 In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp.
552 3991–4001, 2022.

553 Anh-Quan Cao, Angela Dai, and Raoul De Charette. Pasco: Urban 3d panoptic scene completion
554 with uncertainty awareness. In *Proceedings of the IEEE/CVF Conference on Computer Vision
555 and Pattern Recognition*, pp. 14554–14564, 2024.

557 Junliang Chen, Huaiyuan Xu, Yi Wang, and Lap-Pui Chau. Occprophet: Pushing efficiency frontier
558 of camera-only 4d occupancy forecasting with observer-forecaster-refiner framework. In *ICLR*,
559 2025.

560 Zhili Chen, Maosheng Ye, Shuangjie Xu, Tongyi Cao, and Qifeng Chen. Ppad: Iterative interac-
561 tions of prediction and planning for end-to-end autonomous driving. In *European Conference on
562 Computer Vision*, pp. 239–256. Springer, 2024.

564 Shenyuan Gao, Jiazhi Yang, Li Chen, Kashyap Chitta, Yihang Qiu, Andreas Geiger, Jun Zhang,
565 and Hongyang Li. Vista: A generalizable driving world model with high fidelity and versatile
566 controllability. *Advances in Neural Information Processing Systems*, 37:91560–91596, 2025.

567 Songen Gu, Wei Yin, Bu Jin, Xiaoyang Guo, Junming Wang, Haodong Li, Qian Zhang, and Xiaox-
568 iao Long. Dome: Taming diffusion model into high-fidelity controllable occupancy world model.
569 *arXiv preprint arXiv:2410.10429*, 2024.

571 David Ha and Jürgen Schmidhuber. Recurrent world models facilitate policy evolution. *Advances
572 in neural information processing systems*, 31, 2018a.

573 David Ha and Jürgen Schmidhuber. World models. *arXiv preprint arXiv:1803.10122*, 2018b.

575 Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
576 nition. In *Proceedings of the IEEE conference on computer vision and pattern recognition*, pp.
577 770–778, 2016.

578 Peiyun Hu, Aaron Huang, John Dolan, David Held, and Deva Ramanan. Safe local motion plan-
579 ning with self-supervised freespace forecasting. In *Proceedings of the IEEE/CVF Conference on
580 Computer Vision and Pattern Recognition*, pp. 12732–12741, 2021.

582 Shengchao Hu, Li Chen, Penghao Wu, Hongyang Li, Junchi Yan, and Dacheng Tao. St-p3: End-to-
583 end vision-based autonomous driving via spatial-temporal feature learning. In *European Confer-
584 ence on Computer Vision*, pp. 533–549. Springer, 2022.

585 Tao Hu, Xiaogang Xu, Ruihang Chu, and Jiaya Jia. Trivol: Point cloud rendering via triple volumes.
586 In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp.
587 20732–20741, 2023a.

588 Yihan Hu, Jiazhi Yang, Li Chen, Keyu Li, Chonghao Sima, Xizhou Zhu, Siqi Chai, Senyao Du,
589 Tianwei Lin, Wenhui Wang, et al. Planning-oriented autonomous driving. In *Proceedings of the
590 IEEE/CVF conference on computer vision and pattern recognition*, pp. 17853–17862, 2023b.

592 Yuanhui Huang, Wenzhao Zheng, Yunpeng Zhang, Jie Zhou, and Jiwen Lu. Tri-perspective view
593 for vision-based 3d semantic occupancy prediction. In *Proceedings of the IEEE/CVF conference
on computer vision and pattern recognition*, pp. 9223–9232, 2023.

594 Fan Jia, Weixin Mao, Yingfei Liu, Yucheng Zhao, Yuqing Wen, Chi Zhang, Xiangyu Zhang,
 595 and Tiancai Wang. Adriver-i: A general world model for autonomous driving. *arXiv preprint*
 596 *arXiv:2311.13549*, 2023.

597 Bo Jiang, Shaoyu Chen, Qing Xu, Bencheng Liao, Jiajie Chen, Helong Zhou, Qian Zhang, Wenyu
 598 Liu, Chang Huang, and Xinggang Wang. Vad: Vectorized scene representation for efficient au-
 599 tonomous driving. In *Proceedings of the IEEE/CVF International Conference on Computer Vi-
 600 sion*, pp. 8340–8350, 2023a.

601 Yuming Jiang, Shuai Yang, Tong Liang Koh, Wayne Wu, Chen Change Loy, and Ziwei Liu.
 602 Text2performer: Text-driven human video generation. In *Proceedings of the IEEE/CVF Inter-
 603 national Conference on Computer Vision*, pp. 22747–22757, 2023b.

604 Rajaei Khatib and Raja Giryes. Trinerflet: A wavelet based triplane nerf representation. In *European
 605 Conference on Computer Vision*, pp. 358–374. Springer, 2024.

606 Tarasha Khurana, Peiyun Hu, Achal Dave, Jason Ziglar, David Held, and Deva Ramanan. Dif-
 607 ferentiable raycasting for self-supervised occupancy forecasting. In *European Conference on
 608 Computer Vision*, pp. 353–369. Springer, 2022.

609 Tarasha Khurana, Peiyun Hu, David Held, and Deva Ramanan. Point cloud forecasting as a proxy
 610 for 4d occupancy forecasting. In *Proceedings of the IEEE/CVF Conference on Computer Vision
 611 and Pattern Recognition*, pp. 1116–1124, 2023.

612 Diederik P Kingma, Max Welling, et al. Auto-encoding variational bayes, 2013.

613 Jumin Lee, Sebin Lee, Changho Jo, Woobin Im, Juhyeong Seon, and Sung-Eui Yoon. Semicity:
 614 Semantic scene generation with triplane diffusion. In *Proceedings of the IEEE/CVF conference
 615 on computer vision and pattern recognition*, pp. 28337–28347, 2024.

616 Jinke Li, Xiao He, Chonghua Zhou, Xiaoqiang Cheng, Yang Wen, and Dan Zhang. Viewformer: Ex-
 617 ploring spatiotemporal modeling for multi-view 3d occupancy perception via view-guided trans-
 618 formers. In *European Conference on Computer Vision*, pp. 90–106. Springer, 2024a.

619 Yiming Li, Zhiding Yu, Christopher Choy, Chaowei Xiao, Jose M Alvarez, Sanja Fidler, Chen Feng,
 620 and Anima Anandkumar. Voxformer: Sparse voxel transformer for camera-based 3d semantic
 621 scene completion. In *Proceedings of the IEEE/CVF conference on computer vision and pattern
 622 recognition*, pp. 9087–9098, 2023a.

623 Zhiqi Li, Zhiding Yu, David Austin, Mingsheng Fang, Shiyi Lan, Jan Kautz, and Jose M Al-
 624 varez. FB-OCC: 3D occupancy prediction based on forward-backward view transformation.
 625 *arXiv:2307.01492*, 2023b.

626 Zhiqi Li, Zhiding Yu, Shiyi Lan, Jiahua Li, Jan Kautz, Tong Lu, and Jose M Alvarez. Is ego status
 627 all you need for open-loop end-to-end autonomous driving? In *Proceedings of the IEEE/CVF
 628 Conference on Computer Vision and Pattern Recognition*, pp. 14864–14873, 2024b.

629 Rui Liu, Wenguan Wang, and Yi Yang. Volumetric environment representation for vision-language
 630 navigation. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recog-
 631 nition*, pp. 16317–16328, 2024.

632 Fan Lu, Guang Chen, Zhijun Li, Lijun Zhang, Yinlong Liu, Sanqing Qu, and Alois Knoll. Monet:
 633 Motion-based point cloud prediction network. *IEEE Transactions on Intelligent Transportation
 634 Systems*, 23(8):13794–13804, 2021.

635 Junyi Ma, Xieyuanli Chen, Jiawei Huang, Jingyi Xu, Zhen Luo, Jintao Xu, Weihao Gu, Rui Ai,
 636 and Hesheng Wang. Cam4docc: Benchmark for camera-only 4d occupancy forecasting in au-
 637 tonomous driving applications. In *Proceedings of the IEEE/CVF Conference on Computer Vision
 638 and Pattern Recognition*, pp. 21486–21495, 2024.

639 Nicola Marinello, Simen Cassiman, Jonas Heylen, Marc Proesmans, and Luc Van Gool. Camera-
 640 only 3d panoptic scene completion for autonomous driving through differentiable object shapes.
 641 In *Proceedings of the Computer Vision and Pattern Recognition Conference*, pp. 2520–2529,
 642 2025.

648 Benedikt Mersch, Xieyanli Chen, Jens Behley, and Cyrill Stachniss. Self-supervised point cloud
 649 prediction using 3d spatio-temporal convolutional networks. In *Conference on Robot Learning*,
 650 pp. 1444–1454. PMLR, 2022.

651

652 Nathan D Ratliff, J Andrew Bagnell, and Martin A Zinkevich. Maximum margin planning. In
 653 *Proceedings of the 23rd international conference on Machine learning*, pp. 729–736, 2006.

654

655 Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for biomedical
 656 image segmentation. In *Medical image computing and computer-assisted intervention-MICCAI 2015: 18th international conference, Munich, Germany, October 5-9, 2015, proceedings, part III 18*, pp. 234–241. Springer, 2015.

657

658 J Ryan Shue, Eric Ryan Chan, Ryan Po, Zachary Ankner, Jiajun Wu, and Gordon Wetzstein. 3d
 659 neural field generation using triplane diffusion. In *Proceedings of the IEEE/CVF Conference on*
 660 *Computer Vision and Pattern Recognition*, pp. 20875–20886, 2023.

661

662 Luchuan Song, Pinxin Liu, Lele Chen, Guojun Yin, and Chenliang Xu. Tri 2-plane: Thinking head
 663 avatar via feature pyramid. In *European Conference on Computer Vision*, pp. 1–20. Springer,
 664 2024.

665

666 Shuran Song, Fisher Yu, Andy Zeng, Angel X Chang, Manolis Savva, and Thomas Funkhouser.
 667 Semantic scene completion from a single depth image. In *Proceedings of the IEEE conference on*
 668 *computer vision and pattern recognition*, pp. 1746–1754, 2017.

669

670 Xiaoyu Tian, Tao Jiang, Longfei Yun, Yucheng Mao, Huitong Yang, Yue Wang, Yilun Wang, and
 671 Hang Zhao. Occ3d: A large-scale 3d occupancy prediction benchmark for autonomous driving.
 672 *Advances in Neural Information Processing Systems*, 36:64318–64330, 2023.

673

674 Wenwen Tong, Chonghao Sima, Tai Wang, Li Chen, Silei Wu, Hanming Deng, Yi Gu, Lewei Lu,
 675 Ping Luo, Dahua Lin, et al. Scene as occupancy. In *Proceedings of the IEEE/CVF International*
 676 *Conference on Computer Vision*, pp. 8406–8415, 2023.

677

678 Aaron Van Den Oord, Oriol Vinyals, et al. Neural discrete representation learning. *Advances in*
 679 *neural information processing systems*, 30, 2017.

680

681 Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
 682 Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. *Advances in neural information*
 683 *processing systems*, 30, 2017.

684

685 Xiaofeng Wang, Zheng Zhu, Guan Huang, Xinze Chen, Jiagang Zhu, and Jiwen Lu. Drivedreamer:
 686 Towards real-world-drive world models for autonomous driving. In *European Conference on*
 687 *Computer Vision*, pp. 55–72. Springer, 2024a.

688

689 Yuqi Wang, Jiawei He, Lue Fan, Hongxin Li, Yuntao Chen, and Zhaoxiang Zhang. Driving into
 690 the future: Multiview visual forecasting and planning with world model for autonomous driving.
 691 In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp.
 692 14749–14759, 2024b.

693

694 Julong Wei, Shanshuai Yuan, Pengfei Li, Qingda Hu, Zhongxue Gan, and Wenchao Ding. Occlama:
 695 An occupancy-language-action generative world model for autonomous driving. *arXiv preprint*
 696 *arXiv:2409.03272*, 2024.

697

698 Yi Wei, Linqing Zhao, Wenzhao Zheng, Zheng Zhu, Jie Zhou, and Jiwen Lu. Surroundocc: Multi-
 699 camera 3d occupancy prediction for autonomous driving. In *Proceedings of the IEEE/CVF Inter-*
 700 *national Conference on Computer Vision*, pp. 21729–21740, 2023.

701

702 Di Wen, Haoran Xu, Zhaocheng He, Zhe Wu, Guang Tan, and Peixi Peng. Density-adaptive model
 703 based on motif matrix for multi-agent trajectory prediction. In *Proceedings of the IEEE/CVF*
 704 *Conference on Computer Vision and Pattern Recognition*, pp. 14822–14832, 2024.

705

706 Zehuan Wu, Jingcheng Ni, Xiaodong Wang, Yuxin Guo, Rui Chen, Lewei Lu, Jifeng Dai, and
 707 Yuwen Xiong. Holodrive: Holistic 2d-3d multi-modal street scene generation for autonomous
 708 driving. *arXiv preprint arXiv:2412.01407*, 2024.

702 Zhaoyang Xia, Youquan Liu, Xin Li, Xinge Zhu, Yuexin Ma, Yikang Li, Yuenan Hou, and Yu Qiao.
 703 Scpnet: Semantic scene completion on point cloud. In *Proceedings of the IEEE/CVF conference*
 704 *on computer vision and pattern recognition*, pp. 17642–17651, 2023.

705 Haoran Xu, Peixi Peng, Xinyi Zhang, Guang Tan, Yaokun Li, Shuaixian Wang, and Luntong Li.
 706 Exploiting continuous motion clues for vision-based occupancy prediction. In *AAAI*, 2025a.

708 Jingyi Xu, Xieyuanli Chen, Junyi Ma, Jiawei Huang, Jintao Xu, Yue Wang, and Ling Pei.
 709 Spatiotemporal decoupling for efficient vision-based occupancy forecasting. *arXiv preprint*
 710 *arXiv:2411.14169*, 2024.

711 Tianshuo Xu, Hao Lu, Xu Yan, Yingjie Cai, Bingbing Liu, and Yingcong Chen. Occ-llm: Enhancing
 712 autonomous driving with occupancy-based large language models. In *International Conference*
 713 *on Robotics and Automation*, 2025b.

714 Ziyang Yan, Wenzhen Dong, Yihua Shao, Yuhang Lu, Liu Haiyang, Jingwen Liu, Haozhe Wang,
 715 Zhe Wang, Yan Wang, Fabio Remondino, et al. Renderworld: World model with self-supervised
 716 3d label. In *International Conference on Robotics and Automation*, 2025.

718 Wenyuan Zeng, Wenjie Luo, Simon Suo, Abbas Sadat, Bin Yang, Sergio Casas, and Raquel Urtasun.
 719 End-to-end interpretable neural motion planner. In *Proceedings of the IEEE/CVF conference on*
 720 *computer vision and pattern recognition*, pp. 8660–8669, 2019.

722 Hang Zhang, Anton Savov, and Benjamin Dillenburger. Maskplan: Masked generative layout plan-
 723 ning from partial input. In *Proceedings of the IEEE/CVF Conference on Computer Vision and*
 724 *Pattern Recognition*, pp. 8964–8973, 2024a.

725 Yumeng Zhang, Shi Gong, Kaixin Xiong, Xiaoqing Ye, Xiao Tan, Fan Wang, Jizhou Huang, Hua
 726 Wu, and Haifeng Wang. Bevworld: A multimodal world model for autonomous driving via
 727 unified bev latent space. *arXiv preprint arXiv:2407.05679*, 2024b.

729 Wenzhao Zheng, Weiliang Chen, Yuanhui Huang, Borui Zhang, Yueqi Duan, and Jiwen Lu. Occ-
 730 world: Learning a 3d occupancy world model for autonomous driving. In *European conference*
 731 *on computer vision*, pp. 55–72. Springer, 2024a.

732 Wenzhao Zheng, Ruiqi Song, Xianda Guo, Chenming Zhang, and Long Chen. Genad: Genera-
 733 tive end-to-end autonomous driving. In *European Conference on Computer Vision*, pp. 87–104.
 734 Springer, 2024b.

735 Yupeng Zheng, Pengxuan Yang, Zebin Xing, Qichao Zhang, Yuhang Zheng, Yinfeng Gao, Pengfei
 736 Li, Teng Zhang, Zhongpu Xia, Peng Jia, et al. World4drive: End-to-end autonomous driving
 737 via intention-aware physical latent world model. In *Proceedings of the IEEE/CVF International*
 738 *Conference on Computer Vision*, pp. 28632–28642, 2025.

740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755