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ABSTRACT

Watermarking has recently emerged as an effective strategy for detecting the
outputs of large language models (LLMs). Most existing schemes require white-
box access to the model’s next-token probability distribution, which is typically
not accessible to downstream users of an LLM API. In this work, we propose a
principled watermarking scheme that requires only the ability to sample sequences
from the LLM (i.e. black-box access), boasts a distortion-free property, and can be
chained or nested using multiple secret keys. We provide performance guarantees,
demonstrate how it can be leveraged when white-box access is available, and
show when it can outperform existing white-box schemes via comprehensive
experiments.

1 INTRODUCTION

It can be critical to understand whether a piece of text is generated by a large language model (LLM).
For instance, one often wants to know how trustworthy a piece of text is, and those written by an
LLM may be deemed untrustworthy as these models can hallucinate. This problem comes in different
flavors – one may want to detect whether it was generated by a specific model or by any model.
Furthermore, the detecting party may or may not have white-box access (e.g. an ability to compute
log-probabilities) to the generator they wish to test against. Typically, parties that have white-box
access are the owners of the model so we refer to this case as first-party detection and the counterpart
as third-party detection.

The goal of watermarking is to cleverly bias the generator so that first-party detection becomes
easier. Most proposed techniques do not modify the underlying LLM’s model weights or its training
procedure but rather inject the watermark during autoregressive decoding at inference time. They
require access to the next-token logits and inject the watermark every step of the sampling loop.
This required access prevents third-party users of an LLM from applying their own watermark as
proprietary APIs currently do not support this option. Supporting this functionality presents a security
risk in addition to significant engineering considerations. Concretely, Carlini et al. (2024) showed
that parts of a production language model can be stolen from API access that exposes logits. In this
work, we propose a watermarking scheme that gives power back to the people — third-party users
can watermark a language model given nothing more than the ability to sample sequences from it.
Our scheme is faithful to the underlying language model and it can outperform existing white-box
schemes.

2 RELATED WORK

We cover related work more extensively in the Appendix; we give a brief overview here. Watermarking
in the context of generative language models is a relatively new field, building on prior work in
linguistic steganography, where specific words in text are altered to encode information. Early
schemes, such as Venugopal et al. (2011), focused on machine translation, but interest surged with
the works of Kirchenbauer et al. (2023a;b) and Aaronson (2023), which introduced watermarking
for LLMs. These schemes, while effective, can introduce some text distortion, though efforts like
Aaronson (2023) and Kuditipudi et al. (2023) seek to make watermarking distortion-free. Other
works, such as Lee et al. (2023) and Zhao et al. (2023), adapt these methods for specific tasks or
to improve resistance to adversarial attacks, while Fernandez et al. (2023) explores new detection
tests. Black-box watermarking methods like those by Yang et al. (2023) and Chang et al. (2024)
attempt synonym substitution or word insertion but face challenges with text distortion. Paraphrasing
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and word substitution attacks pose significant threats to watermarking, leading some to propose
semantic-based approaches (Liu et al., 2023b; Hou et al., 2023; Ren et al., 2023; Yoo et al., 2023).
However, vulnerabilities persist, as shown by works like Krishna et al. (2024), Zhang et al. (2023)
and Gu et al. (2023). Lastly, watermarking has also been studied through the lens of cryptography
and classical complexity theory (Christ et al., 2023; Christ & Gunn, 2024).

3 ALGORITHM

High-level sketch. At a high level, our scheme operates autoregressively; each step, we sample
multiple generations from the LLM, score each with our secret key, and output the highest scoring
one. We do this repeatedly until our stopping condition (e.g. reaching the stop-token or the max
length) is met. To determine whether a piece of text was watermarked, we score it using our key — if
it’s high, it’s likely watermarked. We now describe the algorithm more formally.

Preliminaries. We begin with some preliminaries. If F is a cumulative distribution function (CDF),
we let F [s] (square brackets) refer to a single draw from a pseudorandom number generator (PRNG)
for F seeded by integer seed s. Let Fk be the CDF for

∑k
i=1Xi, where Xi

iid∼ F . We sometimes
abuse notation and treat a distribution as its CDF (e.g. N(0, 1)(2) is the standard normal CDF
evaluated at 2) and when the context is clear we let −F be the distribution of −X where X ∼ F .
Now, we detail our proposed algorithm, for which pseudocode is provided in Algorithms 1 and 2
(presented in the Appendix).

Let F be a continuous CDF of our choosing, P the input prompt, K a secret integer key known only
to the watermark encoder and decoder, LM a conditional language model with vocabulary V of size
V , and h a cryptographic hash function (e.g. SHA-256) from Z∗ to Z. Let n be the number of tokens
(typically 4 or 5) that serves as input to our pseudo-random function. Our PRF g : V∗ → R is given
by g(w) = F [h (K|w)], where | denotes concatenation.

Watermark encoding. We sample m sequences {Q1, . . . , Qm}, each consisting of at most k tokens
from LM ( · | P ; k). Let {(X1, c1), . . . , (Xj , cj)} be the unique sequences along with their counts
from {Qi} — for example, the sequence Xt appears ct times in {Qi}. To score each distinct
sequence Xt, we first extract its n-grams as {(Xt,i−n−1, . . . , Xt,i)}|Xt|

i=1 , where we allow the left
endpoint to spill over only to earlier-generated tokens and not the original prompt tokens. l-grams
are taken instead for boundary indices with only l − 1 < n − 1 eligible tokens strictly left of it.
We compute an integer seed for each n-gram w, as h(K|w). Given a collection of seeds with their
associated sequences we deduplicate seeds across the collection. We do this by picking one instance
of the seed at random and remove all remaining instances from the collection. We ensure every
sequence has at least one seed by adding a random seed not already used, if necessary. For each
sequence Xt, we iterate through its new seeds St (order does not matter) and compute the quantity
ut = F|St|

(∑|St|
i=1 F [St,i]

)
. Finally we compute i∗ = argmaxji=1 u

m/ci
i and choose Xi∗ as our

watermarked sequence of length at most k. To generate longer texts, we run the the aforementioned
process iteratively, where we condition the language model on P and the tokens generated thus far.

One may notice that the LLM is expected to return at most k tokens. This choice is made to simplify
the analysis. In practice, the API may only return texts, not tokens, with no option to specify max
length. The watermarker can generate n-grams from the responses however they would like (with
custom tokenization or not). Furthermore, there is no constraint on k; k can be set adaptively to the
max length in each batch of returned responses. The main consideration though is smaller k begets a
stronger watermark, so if the adaptive k is too large, detectability will suffer.

Watermark detection. We treat detection as a hypothesis test, where the null H0 is that the query
text is not watermarked with our scheme and secret key and the alternative H1 is that it is. While
Bayesian hypothesis testing could be used, this would require choosing priors for both hypotheses,
which could be challenging and a poor choice could lead to terrible predictions. Let X be the query
text. Akin to the encoding process, we extract W , the set of unique n-grams from X , permitting
smaller one near the left boundary. For each n-gram wt we compute Rt = F [h (K|wt)]. Under
H0 (assuming that the test n-grams are independent), Rt

iid∼ F , so
∑|W |

t=1 Rt ∼ F|W | giving a
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p-value p = 1− F|W |

(∑|W |
t=1 Rt

)
. Our detection score s is 1− p (higher means more likely to be

watermarked).

Another way to compute a p-value is to compute token-level p-values and, assuming they are indepen-
dent, combine them using Fisher’s method. This way, p = 1− χ2

2|W |

(
−2
∑|W |

t=1 log (1− F (Rt))
)

.
Furthermore, tests that incorporate the alternative distribution can be used — the best example being
the likelihood ratio test: s =

∑|W |
t=1 (log f1(Rt)− log f0(Rt)), where f0 and f1 are the densities of

Rt under H0 and H1 respectively. For some choices of F and under some assumptions, f1 may be
written explicitly. In other cases, one can estimate f1 by logging values of Rt for the watermarked
sequence as the encoding is run live or via simulation and then building a kernel density estimator.
We consider these alternative detection strategies later for ablative purposes.

Recursive watermarking. Since our scheme requires only a black box that samples sequences, it
can be applied iteratively or recursively. Consider the following. User 1 uses User 2’s LLM service
who uses User 3’s LLM service, so on so forth until User t. Our scheme allows User i to watermark
its service with its secret key Ki. Each user can then run detection using its key oblivious to whether
other watermarks were embedded upstream or downstream. Furthermore, the users can cooperate in
joint detection by sharing only p-values without revealing their secret key. This property is valuable
in the service oriented architectures of today’s technology stack.

Consider the special case that all users are actually the same entity in possession of t distinct keys
{K1, . . . ,Kt}. Then the iterative watermarking becomes a recursive one, where Ki is used to
watermark the result of watermarking with keys {Ki+1, . . . ,Kt}. The entity can run DETECT to get
a p-value for each key and these t p-values can subsequently be combined using Fisher’s method. We
present this recursive scheme in Algorithm 2.

White-box watermarking. In the case of k = 1, our scheme can be efficiently run for users who
have white-box access — with the next-token distribution in hand, one can sample a large number of
candidate tokens without any inference calls to the model.

Extensions. We discuss extensions in the Appendix.

4 THEORY

Our goal here is to show that our scheme is faithful to the model’s next-token distribution and to give
detection performance guarantees. All proofs are in the Appendix.

Theorem 4.1 (Distortion-free property). Let X be any finite sequence and P any prompt. Let Xu ∼
LM ( · | P ) be the non-watermarked output of the conditional autoregressive language model. Let Xw

be the output of the watermarking procedure (WATERMARK in Algorithm 1, for both recursive and
non-recursive settings) for the same prompt and model and any choice of remaining input arguments
with the constraint that F is a continuous distribution. Furthermore, assume that the deduplicated
seeds (determined by hashing the secret key and n-grams) across sequences, are conditionally
independent given the counts of the sampled sequences. Then, P(Xu = X) = P(Xw = X).

Theorem 4.1 tells us that sampling tokens using our proposed scheme is, from a probabilistic
perspective, indistinguishable from sampling from the underlying model, with the caveat that the
unique seed values are conditionally independent given the counts of sequences. If we dismiss hash
collisions as very low probability events, then since the key is fixed, this reduces to the assumption
that unique n-grams across the sampled sequences are independent. How strong of an assumption
this is depends on many factors such as m, the underlying distribution, and the counts (c1, . . . , cj)
themselves. One can construct cases where the assumption is reasonable and others where it is
blatantly violated (e.g. if n-grams within a sequence are strongly correlated). One direction to making
the assumption more palatable is to draw a fresh keys i.i.d. for each hash call. This would obviously
destroy detectability. As a trade-off, one can leverage a set of secret keys (i.e. by drawing keys
uniformly at random from a key set), which may reduce distortion, but will hurt detection as each key
in the set needs to be tested against.

Theorem 4.2 (Lower bound on detection ROC-AUC). Consider the specific case of using flat (i.e.
non-recursive) watermarking with k = 1 and F = U(0, 1). Let s0 be the score under null that the T
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test tokens1,assumed to be independent, were generated without watermarking and s1 be the score if
they were. We have the following lower bound on the detector’s ROC-AUC.

P(s1 ≥ s0) ≥
1

1 + 1/(3Tλ2α2)
, where

λ =
1

log(m)

(
m

m+ 1
− 1

2

)
and α = Ec

[
−

V∑
i=1

1[ci > 0]
ci
m

log
( ci
m

)]
.

α represents the average Shannon entropy in the sampled next-token distribution.

Theorem 4.2 connects detection performance to the language model’s underlying distribution, num-
ber of sampled tokens m, and number of test samples T . More entropy and more test samples
guarantee higher performance. When the model is extremely confident, α → 0 and so does our
lower bound. Note that because α measures the entropy of the empirical distribution arising from
sampling tokens, it depends on both the underlying next-token probability distribution as well as
m. Concretely, when conditioned on the next-token probabilities p, c ∼ Multinomial (m, p). The
largest α is achieved when the ci’s are 1, which can occur when the underlying distribution is uniform
(maximal uncertainty) and/or m is not large. In this case, α → log(m) and our bound goes to

1/

(
1 + 1/

(
3T
(

m
m+1 − 1

2

)2))
. This quantity has very sharp diminishing returns with respect to

m, so there may be little value in increasing m beyond a certain point. When m → ∞, the bound
goes to 1/(1 + 4/(3T )), which increases very quickly with T . A mere 50 test tokens guarantees
at least 97% ROC-AUC. We study the interplay of the various factors on our lower bound more
carefully in the Appendix.

The intuitions here carry over to other choices of F and k > 1, though formal bounds can be tricky
to obtain because of difficulty quantifying the alternative distribution. The null distribution is easy
— p-values are U(0, 1) under H0, and as a result, we have a straightforward equality on the false
positive rate.
Theorem 4.3 (False positive rate). No matter the choice of watermarking settings, assuming that
the unique test n-grams are independent, we have the following equality on the false positive rate of
DETECT, using decision threshold t.

FPR = PH0
(s > t) = 1− t.

This also holds for DETECTRECURSIVE if we further assume the p-values across secret keys are
independent.

Selecting distinct independent secret keys {K1, . . . ,Kt} (and ignoring hash collisions that arise
across calls to DETECT within DETECTRECURSIVE), will help attain the necessary independence.

Although the alternative score distribution is generally intractable, with the strong assumption that
there are no duplicate n-grams across the candidate sequences, then for a special choice of F , we can
write the alternative in closed form and formulate the optimal detection test.
Theorem 4.4 (Optimal detection for Gamma). Assume that candidate sequences are unique with
length k and that the n-grams are independent and contain no duplicates. Suppose we choose
F = −Gamma (1/k, β) (flat scheme), for any rate parameter β. Let F0 = F with pdf f0, F1 =
−Gamma (1/k,mβ) with pdf f1, and R the PRF values of the T test tokens (unique n-grams),
assumed to be independent. Then, ∀i, Ri ∼ F0 under the null that the text was watermarked using
our procedure and Ri ∼ F1 otherwise. The uniformly most powerful test is the log-likelihood ratio
test (LRT) with score

s(R) =

T∑
i=1

log
f1(Ri)

f0(Ri)
.

Furthermore, for any decision threshold t on score s, we have that:
FPR (Type-I error) = PH0(s > t) = Gamma(T/k, β) (Q(t)) , and

FNR (Type-II error) = PH1
(s ≤ t) = 1− Gamma(T/k,mβ) (Q(t)) , where

Q(t) =
T log(m)/k − t

(m− 1)β
.

1more precisely, T unique n-grams
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In the Appendix, we use Theorem 4.4 to study the impact of k, m, and T on TPR at fixed FPR. For
example, with T = 100, k = 50, m = 64, β = 1, we can achieve 99.9% TPR at 1% FPR.

For other choices of F , we can estimate f1 via simulation. If we assume candidate sequences have
the same length k with no duplicate n-grams, then we can fill an m × k matrix with i.i.d. draws
from F and pick the first element of the row with the largest row-sum (among the m). We do this
until we have sufficiently large (e.g. 10,000) samples from f1. We apply a Gaussian kernel-density
estimator where the bandwidth is chosen using Scott’s rule (Scott, 2015) to estimate f1(r) for test
value r. Despite having f0 in closed-form, for consistency, we can also estimate it non-parametrically
by drawing from F .

5 EXPERIMENTS

In this section, we compare the performance of our scheme with that of prior work.

5.1 MODELS, DATASETS, AND HYPER-PARAMETERS

Models and Datasets. Our main model and dataset is the MISTRAL-7B-INSTRUCT (Jiang et al.,
2023) hosted on Huggingface2 with bfloat16 quantization, and databricks-dolly-15k3 (Conover et al.,
2023), an open source dataset of instruction-following examples for brainstorming, classification,
closed QA, generation, information extraction, open QA, and summarization. We use prompts from
the brainstorming, generation, open QA (i.e. general QA), and summarization categories, whose
human responses are at least 50 tokens long (save one example, which was removed because the
prompt was extremely long). For each of the 5233 total prompts, we generate two non-watermarked
responses — a stochastic one using temperature 1, and the greedy / argmax decoding — along with a
watermarked one for each scheme. We always force a minimum (maximum) of 250 (300) new tokens
by disabling the stop token for the first 250 tokens, re-enabling it, and stopping the generation at 300,
regardless of whether the stop token was encountered. To simulate real-world use, we de-tokenize
the outputs to obtain plain text, and re-tokenize them during scoring. We study performance as a
function of token length T ≤ 250 by truncating to the first T tokens.

For completeness, we also present the key results when GEMMA-7B-INSTRUCT4 with bfloat16
quantization is applied to the test split of eli5-category5. Prompts are formed by concatenating the
the title and selftitle fields. Only examples with non-empty title and whose prompt contains a ? are
kept — for a total of 4885 examples.

Hyper-parameters. We consider the following choices of CDFs F / Fk. (1) F = U(0, 1) and Fk =
IrwinHall(k). (2) F = N(0, 1) and Fk = N(0, k). (3) F = −Gamma(1/k, 1) and Fk = −Exp(1).
(4) F = χ2

2 and Fk = χ2
2k.

5.2 EVALUATION METRICS

We evaluate performance using three criteria.

Detectability. How well can we discriminate between non-watermarked and watermarked text? We
choose non-watermarked text to be text generated by the same model, just without watermarking
applied during decoding. There are three reasons for choosing the negative class in this way. Firstly, it
makes controlling for text length easier as we can generate as many tokens as we do for watermarked
samples — in contrast, human responses are of varying lengths. Secondly, watermarked text has
far more token / n-gram overlap with its non-watermarked counterpart than the human reference,
which makes detection more challenging. Lastly, since one intended use case of our scheme is for
third-party users of a shared LLM service, users may want to distinguish between their watermarked
text and non-watermarked text generated by the same LLM service.

Our primary one-number metric is ROC-AUC for this balanced binary classification task. Since
performance at low FPR is often more useful in practice, we report the partial ROC-AUC (pAUC)

2https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.1
3https://huggingface.co/datasets/databricks/databricks-dolly-15k
4https://huggingface.co/google/gemma-7b-it
5https://huggingface.co/datasets/rexarski/eli5_category
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for FPR ≤ a target FPR (taken to be 1%), which we find to be more meaningful than TPR at the
target FPR. We look at performance as a function of length by truncating the positive and negatives
samples to lengths {25, 50, 75, 100, 150, 200, 250}. To understand aggregate performance, we pool
all different length samples together and compute one ROC-AUC. Here, it is paramount that the
detection score be length-aware to ensure that a single decision threshold can be used across lengths.

Distortion. Our scheme, along with most of the baselines, boasts a distortion-free property. This
property comes with assumptions that are often violated in practice, for example by reuse of the
secret key across watermarking calls. We quantify how faithful the watermarking procedure is to the
underlying generative model by computing both the perplexity and likelihood of watermarked text
under the generator (without watermarking). We include likelihood as the log-probabilities used in
calculating perplexity can over-emphasize outliers.

Quality. Watermarking may distort the text per the model, but does the distortion tangibly affect
the quality of the text? Quality can be challenging to define and measure — one proxy is likelihood
under a much larger model than the generator. Alternatively, one can run standard benchmark NLP
tasks and use classic metrics like exact match, etc. We instead opt for using Gemini-1.5-Pro as an
LLM judge and compute pairwise win rates for each watermark strategy against no watermarking
(greedy decoding). We do this in two ways for each scheme — (1) we compute win rates using a
single response for each prompt and (2) we first ask the LLM judge to pick the best of 3 responses for
each prompt and compute win rates using the best response. (2) represents the common practice of
sampling a few generations from the LLM and selecting the best one using some criterion. It captures
diversity, as methods that can express an answer in a few different good ways will have an advantage.
A caveat with win rates is that they may not reflect the degree by which one method is better or worse.
For instance, if one strategy’s output was always marginally worse than no watermarking, the win
rate would be 0% — the same as if it were much worse.

5.3 ADVERSARIAL ATTACKS

An adversary in possession of watermarked text (but who lacks knowledge of the secret key) may
try to evade detection. We study how detectability degrades under two attack strategies —- random
token replacement and paraphrasing.

Random token replacement. Here, we take the watermarked tokens and a random p-percent them
are corrupted by replacing their token with a random different one. p is taken to be [10, 20, 30, 40, 50].
This attack strategy is cheap for the adversary to carry out but will significantly degrade the quality of
the text.

Paraphrasing. In this attack, the adversary attempts to evade detection by paraphrasing the water-
marked text using the model. We use Gemini-1.5-Pro to paraphrase each non-truncated watermarked
generation. Details are deferred to the Appendix.

5.4 BASELINES

The watermark schemes we consider here operate token-by-token in the autoregressive decoding loop.
Let p be the next-token probability distribution. Higher detection scores indicate higher confidence
that the query text is watermarked.

Aaronson (A). Aaronson (2023) computes a PRN for each token i in the vocabulary as ui =
U(0, 1)[h(i|w|K)], where w is preceding (n− 1)-gram, K is the secret key and h is a cryptographic
hash. Token i∗ is selected, where i∗ = argmaxi u

1/pi

i . At test time, n-grams {wi}Ti=1 are extracted
from the query test and the detection score s is −

∑T
i=1 log (1−Ri), whereRi = U(0, 1) [h(wi|K)].

n is set to 4. This choice strikes a good balance between generation quality / diversity and robustness
to attacks. The scheme boasts a distortion-free property, but the generated text is a deterministic
function of the prompt — i.e. only one generation is possible conditioned on a particular prompt.

Remark. If k = 1 and F = U(0, 1), then our watermark encoding can be viewed as a stochastic
version of Aaronson (2023)’s. As m → ∞, ct/m

a.s.→ pt, where pt and ct are the probability and
observed occurrences of token t.

6
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PPL WR WR (3) AUC pAUC C. AUC C. pAUC P. AUC P. pAUC

Max Std. Error 0.03 - - 0.1 0.3 0.2 0.3 - -

Greedy Decoding 1.37 - - - - - - - -
Random Sampling 3.50 49.6 65.3 - - - -

Aaronson 2.81 45.3 45.3 71.7 65.5 65.6 60.3 53.9 50.5
Aaronson Cor. 2.81 - - 97.9 83.6 94.8 73.2 58.8 50.7

Kuditipudi 3.55 50.3 67.3 87.8 76.6 87.2 74.4 75.9 53.2

Kirchenbauer

0.5 3.39 49.6 66.6 73.2 52.0 71.0 51.4 49.0 49.8
1 3.37 50.1 67.0 86.9 60.6 83.7 57.1 52.9 49.9
2 3.69 47.9 64.1 97.0 83.3 95.4 77.4 58.4 50.3
3 4.67 41.5 58.4 99.3 94.4 98.6 90.9 63.4 51.5
4 5.81 26.0 41.2 99.8 98.4 99.6 96.8 66.4 52.7

Flat (k = 1)

2 3.46 50.0 66.4 90.2 68.8 82.0 58.7 50.5 50.3
4 3.36 50.8 67.0 95.8 82.9 90.3 70.5 51.3 50.6

16 3.20 47.7 64.5 97.7 89.7 93.9 79.1 52.7 51.1
32 3.06 48.4 65.3 97.8 90.2 94.2 80.0 53.0 50.8

512 2.63 47.7 62.5 97.7 90.0 94.1 79.7 54.6 51.3
1024 2.61 47.7 62.2 97.7 90.0 94.0 79.7 52.8 51.1

Flat (k = 10)

2 4.10 46.1 62.2 83.4 55.8 73.6 52.0 49.0 50.0
4 4.06 45.2 61.5 93.8 72.7 85.7 59.4 51.3 50.3

16 3.86 44.6 60.6 97.8 87.0 93.1 73.5 54.3 50.7
32 3.80 43.0 60.8 98.2 89.0 94.0 76.7 55.0 50.8

Flat (k = 50)

2 3.79 48.5 64.2 69.6 50.7 62.2 50.3 47.0 50.0
4 3.76 47.7 63.9 82.9 53.5 71.9 51.3 49.4 50.0

16 3.72 48.3 64.2 92.7 66.7 83.1 55.6 50.5 50.1
32 3.67 47.3 63.9 94.2 71.6 85.5 58.1 51.1 50.5

Rec. (k = 1)

4 3.41 49.0 65.0 93.4 75.5 86.3 63.2 48.4 50.4
16 3.33 49.2 66.2 95.4 82.9 90.6 71.8 53.4 50.8
32 3.29 48.4 64.3 96.3 85.0 91.6 73.5 49.4 50.8

512 3.05 48.3 64.5 97.2 87.9 92.6 76.5 50.4 51.2

Rec. (k = 10)
4 4.13 45.7 61.3 88.6 61.7 78.8 53.8 48.0 50.0

16 4.13 43.7 59.7 93.4 74.0 86.8 61.6 52.9 50.4
32 4.06 42.9 59.5 94.8 76.9 88.1 63.2 50.6 50.3

Rec. (k = 50)
4 3.79 48.2 63.8 74.2 51.2 65.1 50.5 46.5 49.9

16 3.77 47.0 64.0 81.2 54.5 73.3 51.9 51.4 50.2
32 3.79 47.2 63.3 83.3 55.7 74.4 52.2 49.4 50.0

Table 1: Main table of results, showing our black-box scheme and its recursive variant for various
k’s and m’s, along with baselines. PPL, WR and WR (3) refer to perplexity, win rate of a single
response, and win rate of the best-of-3 responses respectively. pAUC is ROC-AUC up to max FPR
of 1%. C and P stand for 10% corruption and paraphrasing attack. For paraphrasing, target lengths
of [150, 200, 250] are used in the AUC / pAUC computation here and elsewhere as performance is
essentially random on shorter lengths. The standard errors are quite small and the maximum across
rows is shown for each column. AUCs and pAUCS and their standard errors are scaled by 100.

Aaronson Corrected (AC). Aaronson (2023)’s detection score sA is not length-aware and conse-
quently a single decision threshold across scores involving various lengths results in poor performance,
as we later show. Observing that sA is a sum of log p-values, sA ∼ Gamma(T, 1), or equivalently,
2sA ∼ χ2

2T under the null that all test tokens are non-watermarked. We propose the new corrected de-
tection score, s = 1−Gamma(T, 1)(sA) = 1−χ2

2T (2sA). For completeness we also experiment with

a p-value computed in the way we do for our method — concretely as, 1− IrwinHall(T )
(∑T

i=1Ri

)
.

Note that both transformations are monotonic so they have no effect on ROC-AUC when T is fixed.

Kirchenbauer (KB). Kirchenbauer et al. (2023a) uses the current n previous tokens to pseudoran-
domly partition the vocabulary for the next token into two lists: a green list of size γV and a red list

7
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Figure 1: Top: Detection AUC and pAUC with 1% max FPR for a range of target text lengths when
there is no corruption. Bottom Left: AUC (mixed T ’s) as a function of the average non-watermarked
response entropy of the examples used in the calculation. x-coordinate x corresponds to the bucket of
examples whose entropy is between [x− 0.25, x] nats. Bottom Right: Effect of amount of random
token corruption on AUC (mixed T ’s).

consisting of the remainder. A positive bias of δ is added to the logits of the green list tokens while
those of the red list are left unchanged. This has the effect of modifying p so that green list tokens are
more probable. The score for a text consisting of T tokens, Tg of which were found to be green is,
s = (Tg − γT )/

√
Tγ(1− γ). We incorporate the latest updates to the algorithm6, such as including

the current token in the n-gram and skipping duplicate n-grams at test time. We set n = 4, γ = 0.25,
and δ ∈ {0.5, 1, 2, 3, 4}.

Kuditipudi (K). A drawback of using the last n tokens as a basis for the PRF is that changing just
one of them changes the output and hurts detection. Kuditipudi et al. (2023) addresses this limitation
as follows. Consider a secret, finite ordered list of seeds of length k. Start watermarking by selecting
a position in the seed list uniformly at random and apply the selection rule of Aaronson (2023) with
the PRNG seeded to the current value. Advance to the next seed in the list (wrap-around if you are at
the end) and repeat. Scoring is done by conducting a permutation test evaluating how compatible
the query text is with the specific list of seeds used during encoding as opposed to any other random
list of seeds of the same length. As the random starting position is not known during scoring, an
alignment score based on the Levenshtein distance is given that considers alignments of various
subsequences of the text and seeds. The proposed method is quite similar to Aaronson (2023) with
the difference of using a fixed list of seeds (instead of context tokens to determine the seed) and using
a permutation test for scoring. The upside is robustness to token substitution attacks; the downside
is significantly higher computational cost for scoring. Larger k offers more diversity and quality in
generation but comes with costlier and weaker detection. The scheme is distortion-free. Following

6https://github.com/jwkirchenbauer/lm-watermarking
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their work, we let k = 256 and accelerate the permutation test by pre-computing 5000 reference
values for the secret list using snippets from the train set of C4-realnewslike (Raffel et al., 2019) at
the various target lengths we evaluate on.

5.5 EXPERIMENTAL RESULTS

Table 1 shows results for baselines and our scheme using F = U(0, 1) and p-values for scoring,
as detailed in Algorithms 1 and 2. For the recursive scheme, depth is lg(m) (i.e. m = 2 for each
imaginary watermarker). Here, the negative class is non-watermarked argmax/greedy generations.
Results for using stochastic (temperature 1) generations as the negative as well as the average
likelihood scores are presented in Table 5 (Appendix); the trends remain the same. We summarize
our observations on MISTRAL-7B-INSTRUCT on databricks-dolly-15k, which also hold for GEMMA-
7B-INSTRUCT on eli5-category (presented in the Appendix).

5.5.1 OVERALL PERFORMANCE OF OUR FLAT AND RECURSIVE SCHEMES

Our scheme is a competitive option for white-box watermarking. Is it better to use our method
or alternatives in the white-box setting? When k = 1,m = 1024, we are able to achieve better
perplexity (2.61 vs. 2.81), better diversity (62.2% vs. 45.3% on best-of-3 win rates) and comparable
detection performance than Aaronson (2023). Furthermore, it has better perplexity (2.61 vs. 3.55)
and detection performance (97.7% vs. 87.8% AUC) than Kuditipudi et al. (2023). By cranking up
δ, Kirchenbauer et al. (2023a) can achieve strong detection but at the expense of perplexity. When
matched on perplexity, we achieve better detection. For example, δ = 0.5 achieves 3.39 PPL and
73.2% AUC compared to our 2.61 PPL and 97.7% AUC. GEMMA-7B-INSTRUCT on eli5-category
with k = 1,m = 1024 outperforms Kuditipudi et al. (2023) and is on-par with Aaronson (2023) (see
Appendix). Kirchenbauer et al. (2023a) with δ = 0.5 gives 1.649 PPL and 61.6% AUC whereas
k = 1,m = 1024 gets us 1.610 PPL with 93.2% AUC and even 1.645 PPL with 89.7% AUC when
k = 50,m = 16 (black-box).

Flat watermarking outperforms recursive. Across metrics and settings we see that the flat scheme
outperforms its recursive counterpart, suggesting it is more effective when a strong signal is embedded
using a single key rather than when multiple weak signals are embedded with different keys. For
example, when k = 1,m = 32 flat (recursive) PPL and AUC are 3.06 (3.29) and 97.8% (96.3%)
respectively.

5.5.2 EFFECTS OF HYPERPARAMETERS

Increasing m improves perplexity but hurts diversity. Across k’s, we observe that perplexity
decreases as m increases, but that win rates, especially when best-of-3 generations are used, decrease.
For example, when k = 1, increasing m from 2 to 1024 decreases perplexity from 3.46 to 2.61 but
also drops the best-of-3 win rate from 66.4% to 62.2%. As remarked earlier, as m→ ∞, ct/m→ pt
and our scheme becomes less diverse — deterministic conditioned on the prompt, like Aaronson’s.
On the flip side, large m reduces sampling noise which drives down perplexity.

Increasing m improves detection but has diminishing returns. Across the board we see that
detection improves as m increases, but there are diminishing returns. For example, when k = 1,
our AUC increases from 90.2% to 95.8% as m goes from 2 to 4, but flattens out when m hits 16.
This corroborates our theoretical intuition from Theorem 4.2 which is further explored in Figure 4
(Appendix).

For fixed m, increasing k hurts detection performance. For fixed m and target generation length
T , increasing k gives us fewer opportunities (fewer calls to WATERMARKSINGLE) to inject the
watermark signal, and detection consequently suffers. For example, when m = 32, AUC drops from
97.8% to 94.2% when k increases from 1 to 50.

U(0, 1) slightly outperforms alternative distributions. Flat distributions may offer better
robustness to attacks. In Table 4 (Appendix), we see that U(0, 1) fares comparably to N(0, 1)
and slightly outperforms χ2

2 both on detection and perplexity. For example, when k = 50,m = 2,
U(0, 1) and χ2

2 have AUCs of 69.6% and 68.1% respectively. Furthermore, we find evidence that
U(0, 1) offers better protection to attacks. For example, when k = 50,m = 32, the AUC for
U(0, 1) (χ2

2) degrades from 94.2% (94.5%) to 85.5% (84.5%) in the presence of 10% random token
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corruption. We provide some intuition for why flat distributions like U(0, 1) may be more robust
than those with quickly decaying tails. Consider shaping the continuous F so it approaches Bern(p)
(i.e. f(x) ≈ (1 − p)δ(x) + pδ(x − 1)), where p is very small. Suppose k is large and m is small.
Then, the winning sequence Xi∗ will have extremely few (if any) of its Rj’s equal to 1. If the text
is unmodified and these few n-grams are kept intact, we are fine, but if they are corrupted in an
attack, then the watermarking signal is effectively lost. In other words, flat distributions smear the
watermarking signal over more tokens than do sharper distributions, which localize the signal to
few lucky token positions. However, whereas scoring with FT = IrwinHall(T ) when F = U(0, 1)
involves computing T -fold convolutions or cardinal B-splines, when F = N(0, 1), FT is easier to
compute for very large T ; specifically, FT (x) = F

(
x/

√
T
)

.

5.5.3 OBSERVATIONS ON DETECTION

Length correction of Aaronson (2023) is crucial. Recall that the ROC-AUCs presented in Table 1
are computed over a pool of different lengths. Our p-value-based score for Aaronson (2023) improves
detection significantly; for example, AUC goes from 71.7% to 97.9%. Table 7 (Appendix) shows
that the sum-based p-value correction fares a bit worse, which was a little surprisingly given that this
worked the best for our scheme, even for the k = 1 case.

Sum-based p-values outperform Fisher ones. In Table 2 (Appendix), we observe that replacing our
sum-based p-value (where H0 is that

∑T
i ri ∼ FT ) by a Fisher combination of token-level p-values,

hurts detection performance. For example, when k = 1,m = 2, AUC degrades from 90.2% to 86.3%.
Note that when k = 1, this setting corresponds exactly to a stochastic version of Aaronson (2023).

Likelihood-ratio scoring does well for large k and small m, when its assumptions are more
realistic. In Table 3 (Appendix), we observe that likelihood-based scoring — both when the
distribution is Gamma and the exact likelihood ratio test (LRT) is used and under KDE with alternative
distributions — performs the best when the assumptions of no duplicate sequences or n-grams hold
better. This happens when the sequences are long (large k) and when fewer sequences are sampled
(small m). For example, when k = 1, AUC degrades monotonically from 78.1% to 55.4% as m
increases from 2 to 1024. In contrast, AUC under the p-value-based scoring increases monotonically
with m, from 90.2% to 97.7%. Larger m increases the number of duplicate sequences sampled,
increasing the importance of the latent exponent m/ci used in the scoring and deviating us further
from the LRT assumptions. However, LRT has the potential to be an effective alternative when k
is large. For example, when k = 50 and m = 32, Uniform KDE-based LRT gives AUC of 95.5%
compared to p-value’s 94.2%.

Detection performance improves sharply with test samples T . Figure 1 shows the effect of T on
AUC. We see sharp improvements w.r.t. to T , even when k is large and m is small, highlighting the
power of more test samples to counteract a weaker watermark signal.

Entropy improves detection performance. In Figure 1 we bucket prompts based on the entropy
of their non-watermarked response and then look at detection AUC on samples in each bucket. As
we expect, detection improves when the prompts confer more entropy in the response. This trend is
more stark for our method.

Paraphrasing can be extremely effective at destroying watermarks. We observe that paraphrasing
can effectively erase the watermark as detection performance for most methods is near random.
Kuditipudi et al. (2023) and Kirchenbauer et al. (2023a) with large δ do better on AUC (but not so
much on pAUC). Furthermore, in Figures 1 and 2 (Appendix) we observe that large amounts of
random token corruption hurts our scheme and Aaronson (2023)’s more than it that of Kirchenbauer
et al. (2023a) or Kuditipudi et al. (2023).

6 CONCLUSION

In this work, we present a framework for watermarking language models that requires nothing more
than a way to sample from them. Our framework is general and extensible, supporting various
real world use-cases, including the setting where the next-token probabilities are in fact available.
We study its various components and the trade-offs that arise, provide formal guarantees for the
theoretically-inclined as well as concrete recommendations for the practitioner.
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A APPENDIX

A.1 ALGORITHM

Algorithm 1 Black-Box Watermarking
1: function WATERMARK(cdf F , key K, # cand m, ctx len n, prompt P , seq len k, LM)
2: O ← ϕ
3: while ¬ STOPCOND(O) do ▷ Continue until stop token is encountered or max length reached.
4: O ← O | WATERMARKSINGLE(F,K,m, n, P |O, k,LM)
5: return O

6: function WATERMARKSINGLE(cdf F , key K, # cands m, ctx len n, prompt P , seq len k, LM)
7: Q1, . . . , Qm ∼ LM ( · | P ; k) ▷ Draw m sequences from LM, each with at most k tokens.
8: (X1, c1), . . . , (Xj , cj)← UNIQUESEQSWITHCOUNTS((Q1, . . . , Qm))
9: u1, . . . , uj ← SCORESEQS(F, (X1, . . . , Xj),K, n, P )

10: i∗ ← argmaxj
i=1 u

m/ci
i

11: return Xi∗

12: function SCORESEQS(cdf F , candidates C, key K, ctx len n, prefix P )
13: Z ← ϕ
14: for Xi in C do
15: for w in NGRAMS (Xi, n, P ) do ▷ Don’t compute n-grams over original prompt.
16: Z ← Z | (i, INTHASH(K|w)) ▷ Apply cryptographically secure integer hash.
17: Z ← REMOVEDUPLICATES(Z)
18: for i, S in SORTEDGROUPBY(Z) do ▷ Iterate through each candidate’s set of unique seeds.
19: R← (F [s] for s in S)

20: ui ← F|R|

(∑
j Rj

)
21: return u1, . . . , u|C|

22: function DETECT(cdf F , tokens X , key K) ▷ p-value-based detection.
23: S← ϕ
24: for w in NGRAMS (X,n, ϕ) do
25: S ← S | INTHASH(K|w)
26: S ← REMOVEDUPLICATES(S)
27: R← (F [s] for s in S)

28: return F|R|

(∑
j Rj

)
▷ Higher score means higher likelihood of being watermarked.

Algorithm 2 Recursive Black-Box Watermarking
1: function WATERMARKRECURSIVE(F , (K1, . . . ,Kt), mt, n, P , k, LM) ▷ Sub. for WATERMARKSINGLE.
2: if t = 1 then
3: M = LM ( · | · ; · )
4: else
5: M = WATERMARKRECURSIVE(F, (K2, . . . ,Kt) ,m

t−1, n, · , · ,LM)
6: return WATERMARKSINGLE(F,K1,m, n, P, k,M)

7: function DETECTRECURSIVE(cdf F , tokens X , keys (K1, . . . ,Kt))
8: P ← ϕ
9: for Ki in (K1, . . . ,Kt) do

10: P ← P | (1− DETECT(F,X,Ki))
11: y ← −2

∑
i logPi ▷ Combine p-values using Fisher’s method.

12: return χ2
2t (y)

A.2 EXTENSIONS

We now discuss extensions of our method. At its crux, the scheme samples sequences of text from a
service, divides each unique sequence into a bag of units (namely n-grams) where each unit is scored
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using a PRF and the scores are combined in an order-agnostic way. The strength of the watermark
depends on the number of distinct units across the candidate sequences and the robustness depends
on how many of the units are kept intact after the attack. Although any symmetric monotone function
can be used instead of the simple summation of the PRNs for each unit, we do not see any compelling
reason to make our algorithm more general in this way. However, we briefly highlight some other
possible extensions.

Beam search. Rather than drawing i.i.d. samples from the model, one can apply our watermark
selection to the sequences that arise from beam search, with the caveat that this would violate our
distortion-free property.

Semantic watermarking. Rather than use n-grams, the watermarker can extract a set of meaningful
semantic units for each sampled text. Robustness may be improved as these units will largely remain
intact under an attack like paraphrasing. On the other hand, many of the sampled sequences will have
the same meaning, so there may be a lot of duplicate units across the candidate sequences, which
would degrade the watermark strength.

Paraphrasing. Thus far, we assumed the service provides m draws from the LLM. If m is large, this
can be prohibitively expensive. The resource-constrained may consider the following alternative:
draw one sample from the LLM and feed it to a much cheaper paraphrasing model to generate m
paraphrases. The downside is that there may be a lot of duplicate n-grams across the candidate set.

A.3 FULL RELATED WORK

Watermarking outside of the context of generative LLMs, which is sometimes referred to as lin-
guistic steganography, has a long history and typically involves editing specific words from an
non-watermarked text. Watermarking in the modern era of generative models is nascent — Venugopal
et al. (2011) devised a scheme for machine translation, but interest in the topic grew substantially
after the more recent seminal works of Kirchenbauer et al. (2023a;b) and Aaronson (2023). Many
effective strategies employ some form of pseudorandom functions (PRFs) and cryptographic hashes
on token n-grams in the input text. Kirchenbauer et al. (2023a) proposes modifying the next-token
probabilities every step of decoding such that a particular subset of the vocabulary, referred to as
green list tokens, known only to those privy to the secret key, are made more probable. Watermarked
text then is expected to have more green tokens than non-watermarked text and can be reliably
detected with a statistical test. The scheme distorts the text, but with the right hyper-parameters a
strong watermark may be embedded with minimal degradation in text quality.

Meanwhile, Aaronson (2023) proposes a clever distortion-free strategy which selects the token that is
both highly probable and that achieves a high PRF value. Kuditipudi et al. (2023) applies a scheme
similar in spirit to Aaronson (2023) but to improve robustness to attacks, pseudorandom numbers
(PRNs) are determined by cycling through a fixed, pre-determined sequence of values called the key,
rather than by n-grams. They compute a p-value using a permutation test to determine if the text was
watermarked with that specific key.

Lee et al. (2023) adapts Kirchenbauer et al. (2023a)’s scheme for code-generation by applying the
watermark only at decoding steps that have sufficient entropy. Zhao et al. (2023) investigates a special
case of Kirchenbauer et al. (2023a) where n = 0 for improved robustness to adversarial corruption.
Fernandez et al. (2023) tests various watermarking schemes on classical NLP benchmarks and also
introduces new statistical tests for detection — most notably, they suggest skipping duplicate n-grams
during testing.

Yang et al. (2023) introduces a scheme that relies on black-box access to the LLM. Their method
samples from the LLM and injects the watermark by replacing specific words with synonyms.
Although their approach shares the assumption of black-box LLM access, as in our work, it has
limitations not present in ours: the watermarking process is restricted to words that can easily be
substituted with multiple synonyms, synonym generation is powered by a BERT model (Devlin,
2018), making it computationally expensive, and the scheme is not distortion-free. Chang et al.
(2024) presents POSTMARK, a black-box watermarking method that uses semantic embeddings to
identify an input-dependent set of words. These words are then inserted into the text by an LLM after
decoding. However, this approach is also not distortion-free, as the insertion of words by the LLM
often results in significantly longer watermarked text.
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Given the weakness of many schemes to paraphrasing or word substitution attacks, some have
proposed watermarking based on semantics and other features that would remain intact for common
attack strategies (Liu et al., 2023b; Hou et al., 2023; Ren et al., 2023; Yoo et al., 2023). Mean-
while, others have viewed the problem through the lens of cryptography and classical complexity
theory (Christ et al., 2023; Christ & Gunn, 2024). Lastly, Liu et al. (2023a) proposes an un-forgeable
publicly verifiable watermark algorithm that uses two different neural networks for watermark gener-
ation and detection. Huang et al. (2023) improves the statistical tests used for detection, providing
faster rates than prior work.

As the deployment of watermarks to LLMs is still early and also presumably secretive, the correct
threat model is still undetermined. Krishna et al. (2024) shows that paraphrasing can evade both
third-party and watermarking detectors alike. Some may posit that attacks like paraphrasing or
round-trip translation are unrealistic since either they are too expensive to conduct at scale or parties
in possession of a capable paraphrasing model have adequate resources to serve their own LLM.
Zhang et al. (2023) show that attackers with weaker computational capabilities can successfully
evade watermarks given access to a quality oracle that can evaluate whether a candidate output is
a high-quality response to a prompt, and a perturbation oracle which can modify an output with
a non-trivial probability of maintaining quality. Alarmingly, Gu et al. (2023) demonstrates that
watermarks can be learned — an adversary can use a teacher model that employs decoder-based
watermarking to train a student model to emulate the watermark. Thibaud et al. (2024) formulates
tests to determine whether a black-box language model is employing watermarking, and they do not
find strong evidence of watermarking among currently popular LLMs.

A.4 ADDITIONAL EXPERIMENTAL DETAILS

Prompting strategies for Gemini. We use Gemini for paraphrasing and as an LLM judge. Occasion-
ally, Gemini will refuse to return a response due to safety filters that cannot be bypassed. We use the
following prompt to compute win rates:

“Is (A) or (B) a better response to PROMPT? Answer with either (A) or (B). (A): GREEDY RESPONSE.
(B): WATERMARKED RESPONSE.”

For determining the best response, we use:

“Is (A), (B), or (C) the best responses to PROMPT? Answer with either (A), (B), (C). (A): RESPONSE
1. (B): RESPONSE 2. (C): RESPONSE 3.”

In both cases, we search for the first identifier (i.e. “(A)”, “(B)”, “(C)”). If one is not found or if
Gemini does not return a response, the example is not used in the win rate calculation or the first
response is chosen.

For paraphrasing, we use the following:

“Paraphrase the following: RESPONSE”.

We skip examples for which Gemini does not return a response.

A.5 OMITTED EXPERIMENTAL RESULTS

Figure 2 shows the effect of varying the amount of random token corruption on detection pAUC.
We observe the same trend as for AUC. Figure 3 plots a histogram of the entropy of the underlying
next-token probability distribution under temperature 1 random sampling without watermarking
across our dataset. We see the entropy is concentrated between 0.5 and 3 nats. We plot the AUC
lower bound predicted by Theorem 4.2 (k = 1,m = 1024) sweeping our entropy term α across
this range, with the understanding that for sufficiently large m, our α is a good estimator of the true
underlying entropy. In Figure 4 we look at the impact of m and T on our AUC bound when the
optimal α = log(m) is plugged in. We see sharp diminishing returns w.r.t. m (performance saturates
after around m = 10 for all T ’s). We empirically observe this saturation in Table 1, where AUC
saturated at 97.7% at m = 16 — that is, increasing m beyond 16 had negligible impact. Furthermore,
we observe that the bound increases sharply with T , corroborating the trend we see empirically in
Figure 1.
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Figure 2: Effect of the amount of (random token replacement) corruption on detection pAUC (mixed
T ’s) with 1% max FPR.

Figure 3: Left: Histogram of the average entropy (nats) in the LLM’s underlying next-token
distribution across non-watermarked response tokens. Right: A lower bound for ROC-AUC predicted
by Theorem 4.2 as a function of the entropy term α for the range of values we observe empirically.
When m is large, α becomes a reasonable estimator of the LLM’s entropy.

Given a next-token distribution over the vocabulary, we can estimate α via simulation. In Figure 5
we plot the effect of m on α̂, our simulated entropy, for two distributions p — uniform and Zipf —
over a 32k token vocabulary. Neither may be realistic in practice, but the exercise is still informative
as we observe that α̂ follows log(m) pretty well for even large m’s when p is uniform. As expected,
α̂ is smaller when p is Zipf (lower entropy) and deviates from log(m) for large m.

Figure 7 plots the performance that Theorem 4.4 predicts when using the optimal likelihood ratio test
with the Gamma distribution.

Table 6 shows perplexity and detection performance for GEMMA-7B-INSTRUCT on the eli5-category
dataset. The trends here are as before. Figure 6 shows the impact of number of test samples on
detection.
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Figure 4: Left: A lower bound for ROC-AUC predicted by Theorem 4.2 as a function of m (using
optimal α = log(m)). Right: Same plot, but as a function of T (again, using optimal α).

Figure 5: Given a distribution over the vocabulary (taken to be of size 32k), we can estimate α for
finite m via simulation (1000 trials). We observe that when the underlying next-token distribution is
uniform, α ≈ log(m) in a practical range for m. However, when the underlying distribution is Zipf
(less entropy), α quickly deviates from log(m) as m grows and the probability of sampling duplicate
tokens increases.

Figure 6: Impact of number of test samples T on detection performance for GEMMA-7B-INSTRUCT
on eli5-category
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PPL LH AUC pAUC C. AUC C. pAUC
Max Std. Error 0.03 0.002 0.1 0.1 0.2 0.1

Unif. Fisher p-value

Flat (k = 1)

2 3.46 0.597 86.3 62.3 75.8 54.7
4 3.36 0.604 94.8 79.0 87.6 66.4

16 3.20 0.618 97.9 90.0 94.0 80.2
32 3.06 0.629 98.2 91.7 94.9 82.7
512 2.63 0.668 98.5 93.0 95.7 85.5
1024 2.61 0.670 98.5 93.2 95.7 85.8

Flat (k = 10)

2 4.10 0.568 78.9 53.1 67.4 51.0
4 4.06 0.572 91.2 65.3 80.5 55.0

16 3.86 0.583 97.1 82.8 90.9 68.1
32 3.80 0.587 97.9 86.3 92.7 72.7

Flat (k = 50)

2 3.79 0.581 65.5 50.5 57.1 50.2
4 3.76 0.584 78.4 52.0 66.1 50.7

16 3.72 0.586 89.8 60.2 77.9 53.1
32 3.67 0.589 92.0 64.7 80.7 54.5

Table 2: Results (10% corruption, 1% max FPR) for U(0, 1) when a meta p-value is used for scoring,
wherein the T n-gram-level p-values are combined using Fisher’s method. The k = 1 setting is
precisely a stochastic version of Aaronson Corrected. AUCs, pAUCS and their standard errors are
scaled by 100.

Figure 7: Detection performance (TPR at 1% FPR) of the likelihood ratio test (LRT) predicted by
Theorem 4.4. Left: Effect of m, the number of sampled sequences, for various sequence lengths k,
when the number of test samples T = 100. Right: Effect of T for various m’s when k = 50. We see
that degradation due to large k can be offset by using a larger m and that the hit from small m can be
compensated by large T .
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PPL LH AUC pAUC C. AUC C. pAUC
Max Std. Error 0.03 0.002 0.1 0.3 0.2 0.1

Unif. KDE LRT

Flat (k = 1)

2 3.46 0.597 78.1 57.7 64.4 51.5
4 3.36 0.604 73.9 56.0 60.7 51.2

16 3.20 0.618 66.6 53.9 56.7 51.3
32 3.06 0.629 64.0 53.6 55.2 51.3
512 2.63 0.668 56.2 51.3 50.4 50.3
1024 2.61 0.670 55.4 51.1 49.9 50.2

Flat (k = 10)

2 4.10 0.568 84.1 58.0 72.8 53.1
4 4.06 0.572 94.8 72.9 83.9 58.7

16 3.86 0.583 97.8 85.1 88.3 64.2
32 3.80 0.587 97.3 85.6 86.9 64.0

Flat (k = 50)

2 3.79 0.581 69.0 51.6 60.9 50.9
4 3.76 0.584 83.1 55.6 71.0 52.4

16 3.72 0.586 94.0 68.2 81.8 56.2
32 3.67 0.589 95.5 72.5 84.0 57.9

Gamma Exact LRT

Flat (k = 1)

2 3.45 0.598 76.6 57.0 63.8 51.6
4 3.44 0.600 74.4 55.2 61.5 51.2

16 3.17 0.623 68.3 53.6 57.8 51.3
32 3.04 0.634 65.5 53.5 56.2 51.5

Flat (k = 10)

2 4.07 0.570 82.9 58.4 70.3 52.8
4 4.01 0.573 89.4 67.5 73.4 54.1

16 3.96 0.577 85.1 61.4 68.0 51.7
32 3.93 0.580 82.1 57.7 65.7 51.2

Table 3: Results when the likelihood-ratio test is used for scoring in place of p-values. When
F = U(0, 1), the null and alternative likelihoods are estimated non-parametrically using kernel
density estimation (KDE). When F = −Gamma(1/k, 1), the densities given in Theorem 4.4 are
used. AUCs, pAUCs, and their standard errors are scaled by 100.
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PPL LH AUC pAUC C. AUC C. pAUC
Max Std. Error 0.04 0.002 0.1 0.2 0.1 0.2

F = N(0, 1)

Flat (k = 1)

2 3.47 0.597 90.4 68.7 81.7 58.5
4 3.36 0.605 95.9 83.0 90.2 70.7

16 3.15 0.622 98.0 90.6 94.2 80.4
32 3.05 0.631 98.2 91.8 94.9 82.2
512 2.72 0.661 98.5 92.9 95.4 83.8
1024 2.70 0.663 98.5 93.0 95.4 84.1

Flat (k = 10)

2 4.13 0.567 84.1 56.3 73.3 52.1
4 4.02 0.573 94.2 73.3 85.8 59.8

16 3.93 0.579 98.0 87.9 93.2 74.5
32 3.84 0.584 98.4 90.0 94.1 77.7

Flat (k = 50)

2 3.82 0.580 71.0 50.9 62.5 50.4
4 3.73 0.585 83.8 53.9 72.4 51.5

16 3.69 0.588 93.0 67.5 83.1 55.9
32 3.67 0.589 94.5 72.7 85.6 58.6

F = χ2
2

Flat (k = 1)

2 3.45 0.597 86.2 62.1 75.5 54.5
4 3.39 0.602 94.8 79.1 87.8 66.8

16 3.20 0.617 97.9 90.1 93.9 80.1
32 3.08 0.627 98.2 91.7 94.9 82.9
512 2.98 0.644 98.7 95.2 96.7 89.6
1024 3.03 0.641 98.8 95.7 97.0 90.5

Flat (k = 10)

2 4.12 0.567 81.6 54.4 69.8 51.4
4 4.04 0.573 93.5 70.3 84.0 57.7

16 3.84 0.585 98.1 87.5 93.1 74.1
32 3.65 0.596 98.7 90.6 94.7 78.6

Flat (k = 50)

2 3.77 0.583 68.1 50.6 58.7 50.2
4 3.74 0.585 82.0 52.9 69.4 51.0

16 3.68 0.588 92.9 65.6 81.9 55.0
32 3.65 0.591 94.5 71.5 84.5 57.7

Table 4: Results (10% corruption, 1% max FPR) when F is N(0, 1) or χ2
2 and p-values are used for

scoring. AUCs, pAUCS, and their standard errors are scaled by 100.
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LH AUC pAUC C. AUC C. pAUC P. AUC P. pAUC
Greedy Decoding 0.814 - - - - - -

Random Sampling 0.593 - - - - - -

Aaronson 0.654 71.8 67.7 65.7 62.6 52.4 50.9
Aaronson Cor. 0.654 98.3 92.9 95.4 84.7 57.6 51.7

Kirchenbauer

0.5 0.596 70.7 51.7 68.3 51.2 47.3 49.9
1 0.594 85.4 59.9 81.9 56.5 50.9 50.0
2 0.569 96.6 82.5 94.8 76.5 55.7 50.4
3 0.522 99.1 94.0 98.4 90.4 60.5 51.3
4 0.493 99.8 98.2 99.6 96.6 63.9 52.4

Kuditipudi 0.592 85.8 76.5 85.1 74.3 67.5 52.2

Flat (k = 1)

2 0.597 90.5 69.7 82.6 59.4 50.6 50.1
4 0.604 96.0 83.7 90.6 71.4 51.6 50.5

16 0.618 97.7 90.2 94.1 79.9 53.0 50.8
32 0.629 97.9 90.7 94.4 80.8 52.8 50.7
512 0.668 97.8 90.5 94.3 80.5 53.2 50.9
1024 0.670 97.8 90.5 94.2 80.5 52.4 50.7

Flat (k = 10)

2 0.568 84.0 56.5 74.3 52.3 49.2 50.0
4 0.572 94.1 73.8 86.2 60.2 51.0 50.1

16 0.583 97.9 87.7 93.2 74.2 53.5 50.4
32 0.587 98.3 89.7 94.2 77.7 54.1 50.5

Flat (k = 50)

2 0.581 70.5 50.9 63.1 50.5 47.6 50.0
4 0.584 83.5 54.1 72.7 51.6 49.5 50.0

16 0.586 93.0 67.9 83.7 56.3 50.2 50.1
32 0.589 94.5 72.9 86.0 59.0 51.4 50.2

Rec. (k = 1)

4 0.601 93.9 78.2 87.3 65.8 50.0 50.3
16 0.607 95.4 83.5 90.8 72.5 53.5 50.7
32 0.612 96.5 85.8 92.0 74.5 50.4 50.6
512 0.632 97.4 88.6 92.9 77.5 51.0 51.1

Rec. (k = 10)
4 0.567 89.6 64.9 80.3 55.6 49.1 50.0

16 0.568 93.6 74.8 87.0 62.4 53.0 50.2
32 0.573 95.1 78.0 88.6 64.4 51.2 50.2

Rec. (k = 50)
4 0.582 75.9 52.2 67.0 51.0 48.1 50.0

16 0.583 81.5 55.0 73.7 52.2 52.1 50.2
32 0.582 84.0 56.6 75.3 52.6 49.7 50.0

Table 5: Average per-token likelihoods and detection performance when the negative class is taken to
be non-watermarked generations sampled with temperature 1. The trends here are consistent with
those discussed in the main text, where the negative class consists of non-watermarked argmax /
greedy generations and perplexity is used to measure distortion. AUCs and pAUCS are scaled by 100.
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PPL LH AUC pAUC
Greedy Decoding 1.313 0.872 - -

Random Sampling 1.627 0.811 - -

Aaronson 1.619 0.814 61.0 57.8
Aaronson Cor. 1.619 0.814 93.0 70.9

Kirchenbauer

0.5 1.649 0.808 61.6 50.7
1 1.673 0.803 72.1 52.3
2 1.836 0.782 87.8 63.0
3 2.159 0.743 95.3 78.5
4 2.847 0.683 98.3 90.0

Kuditipudi 1.615 0.814 58.4 51.0

Flat (k = 1)

2 1.631 0.810 77.1 53.6
4 1.623 0.811 87.0 61.7
16 1.621 0.812 92.4 70.3
32 1.615 0.812 92.8 71.9

512 1.610 0.814 93.2 73.1
1024 1.610 0.814 93.2 72.9

Flat (k = 10)
4 1.657 0.807 89.4 61.7
16 1.653 0.808 94.7 75.0

Flat (k = 50)
4 1.652 0.808 80.5 52.6
16 1.645 0.810 89.7 60.4

Rec. (k = 1)

4 1.623 0.813 82.1 57.0
16 1.621 0.812 87.5 63.0
32 1.630 0.810 88.1 63.9

512 1.615 0.815 90.0 66.7

Rec. (k = 10)
4 1.665 0.805 84.0 56.2
16 1.662 0.806 89.6 64.4

Rec. (k = 50)
4 1.664 0.806 73.2 51.2
16 1.653 0.808 79.4 53.5

Table 6: Main results (mixed T ’s for AUC and pAUC where max FPR is 1%) for GEMMA-7B-
INSTRUCT on the eli5-category test split. AUC and pAUC are scaled by 100. We observe the same
trends here as with MISTRAL-7B-INSTRUCT on databricks-dolly-15k. When k = 1 and m = 1024
(white-box setting) we are slightly better in perplexity and detection (sans corruption) than Kuditipudi
et al. (2023) and on-par with Aaronson (2023). Kirchenbauer et al. (2023a) can always outperform
on detection by cranking up δ, but when matched on perplexity, we achieve better detection. For
example, δ = 0.5 gives perplexity of 1.649 and AUC of 61.6% whereas we achieve perplexities /
AUC’s of 1.610 and 93.2% when k = 1,m = 1024 and even 1.645 / 89.7% when k = 50,m = 16
(black-box).

AUC pAUC C. AUC C. pAUC P. AUC P. pAUC
Aaronson Cor. (sum p-value) 97.1 75.2 92.5 62.9 54.6 50.0

Table 7: Detection performance (mixed T ’s) when a sum-based p-value is used in the length correction
of Aaronson (2023). We observe slightly worse performance than using Fisher’s method to combine
the p-values of individual tests. AUCs and pAUCs are scaled by 100.

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

A.6 OMITTED PROOFS

Lemma A.1. Assume all draws from LM ( · | P ; k) are i.i.d. with distribution µ and that the unique
seeds across n-grams and sequences, {Si,l}i,l are conditionally independent given the counts of the
sampled sequences. Then the output of any number of calls to WATERMARKSINGLE with LM using
key K are also i.i.d. with distribution µ.

Proof. For concreteness, let m̃ be the number of calls to WATERMARKSINGLE, where the v-th
call draws m samples Qv =

{
Q(v,1), . . . , Q(v,m)

}
from LM ( · | P ; k). First we show (mutual)

independence. We note that because F , m, K, P are all fixed, non-random quantities, the watermark
selection process embodied in Algorithm 1 can be seen as a deterministic function ψF,m,K,P that
takes m input sequences Qv and outputs one of them. The randomness in the deduplication of
n-grams is a non-issue since it is independent across calls. Since functions of independent random
variables are independent and {Qv}m̃v=1 is independent, so is {ψF,m,K,P (Qv)}m̃v=1. This proves
independence.

Now, we prove that the outputs are identically distributed with the same distribution as their inputs.
To do this, consider the v-th call in isolation and for ease of notation, let {Q1, . . . , Qm} = Qv and
Xw = ψF,n,K,P (Qv). Let {(X1, c1), . . . , (Xj , cj)} be the unique sequences and corresponding
counts. Note that the {(Xi, ci)}i need not be independent (it is easy to come up with a counter-
example). Let Si be the integer seeds forXi after deduplication. Conditioned on (c1, . . . , cj), {Si,l}i,l
is independent and so {Ri,l}i,l consists of i.i.d. draws from F by virtue of pseudorandomness. As F

is also continuous, we have that when conditioned on (c1, . . . , cj), ui
iid∼ U(0, 1) for i = 1, . . . , j, by

the inverse-sampling theorem.

Let x be any sequence. We wish to show that P(Xw = x) = µ(x). Let c =
∑

i 1[Qi = x].
The independence of the 1[Qi = x]’s follows from the independence of the Qi’s, and thus c ∼
Binomial(m,µ(x)). Clearly, P({x selected} | c = 0) = 0. If c > 0 then obviously one of the Xi’s
is x, and we can, without loss of generality, label X1 = x and c1 = c, so that P({x selected} | c =
i) = P({X1 selected} | c1 = i). Now,

P({X1 selected} | c1, . . . , cj) = P
({

1 = argmaxt u
m/ct
t

} ∣∣∣ c1, . . . , cj)
= P

({
1 = argmaxt

log(ut)

ct/m

} ∣∣∣∣ c1, . . . , cj)
= P ({1 = argmint log(− log(ut))− log(ct/m)} | c1, . . . , cj)
= P ({1 = argmaxt − log(− log(ut)) + log(ct/m)} | c1, . . . , cj) .

Let gt = − log(− log(ut)). It is a known fact that if ut
iid∼ U(0, 1), then gt

iid∼ Gumbel(0, 1). Now
we can apply what is often referred to the "Gumbel-Max trick" in machine learning. Conditioned on
(c1, . . . , cj),

argmaxt gt + log(ct/m) ∼ Categorial
(

ct/m∑
t ct/m

)
t

= Categorial (ct/m)t .

Thus,

P({X1 selected} | c1 = i) =
∑

c2,...,cj

P({X1 selected} | c1 = i, c2, . . . , cj)P(c1 = i, c2, . . . , cj)

P(c1 = i)

=
i/m P(c1 = i)

P(c1 = i)
= i/m.

Putting it all together, we have that

P(Xw = x) =

m∑
i=0

P({x selected} | c = i)P(c = i)

=

m∑
i=0

i

m

(
m

i

)
µ(x)i(1− µ(x))m−i

=
1

m
mµ(x) = µ(x).
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We have shown that the outputs of WATERMARKSINGLE are mutually independent and carry the
same distribution µ as their inputs.

Remark. The proof of Lemma A.1 treats the secret key K as fixed (possibly unknown); treating it as
random changes the story, as we illustrate with the following toy example.

Suppose that regardless of the conditioning prompt, the LM outputs one of two sequences — x1 or
x2 with equal probability. Let ui = SCORESEQS(F, (xi),K, n, P ) for i ∈ {1, 2}. If m is very large,
then it becomes very likely that X1 = x1, X2 = x2 (modulo the labeling) and c1 ≈ c2 ≈ m/2 and
so argmax2i=1 u

m/ci
i ≈ argmaxi ui. The outputs to two sequential calls to WATERMARKSINGLE

should not be independent, because the output and key are dependent and the key is shared across
calls. Concretely, if the output to the first call is x1 we learn that our scheme with key K prefers x1
over x2, and so we will likely output x1 in the second call. In contrast, if we had not observed the
first call (and our prior on the key had not been updated), we may have returned each sequence with
equal probability.

Proof of Theorem 4.1. We first show that WATERMARKSINGLE and WATERMARKRECURSIVE are
distortion-free and then that autoregressive calls to them as done by WATERMARK preserves this
property.

To show WATERMARKSINGLE is distortion-free, we observe that the LM argument supplied is the
true underlying language model µ and that our stochastic samples from the model are i.i.d., so we
can apply Lemma A.1 directly.

Distortion-free for WATERMARKRECURSIVE follows easily from induction on t, the number of keys
(and hence the number of recursive calls). When t = 1, the LM is the true underlying language model,
so the outputs are i.i.d. from µ. We get t = v + 1 by combining Lemma A.1 with the inductive step
— that the outputs of WATERMARKRECURSIVE with keys (K2, . . . ,Kv+1) are i.i.d. from µ.

Finally, we show that autoregressive decoding where sequences no longer than k tokens are generated
one at a time via watermarking continues to be distortion-free.

To do this, we introduce two sets of random variables: {X(i)
u }∞i=1 represents k-sized chunks of the

model’s response when watermarking is not employed — that is, X(i)
u represents non-watermarked

response tokens for indices (i− 1)k + 1 to ik. Unused chunks can be set to a sentinel value like ϕ.
{X(i)

w }i represents the same collection but when WATERMARK is employed. Let x be a sequence of
any length. Partition x into contiguous k-sized chunks (x1, . . . , xt). Note that xt may have length
less than k if the stop-token was reached in that chunk, but all other chunks have exactly k tokens.
With P as the original prompt, we need to show P(Xw = x | P ) = P(Xu = x | P ), where Xw and
Xu are the watermarked and non-watermarked responses of any length.

P(Xw = x | P ) = P(X(t)
w = xt | X(t−1)

w = xt−1, . . . , X
(1)
w = x1, P ) · · ·P(X(1)

w = x1 | P )
= P(X(1)

w = xt | (P, x1, . . . , xt−1)) · · ·P(X(1)
w = x1 | P )

Because WATERMARKSINGLE and WATERMARKRECURSIVE are distortion-free:

= P(X(1)
u = xt | (P, x1, . . . , xt−1)) · · ·P(X(1)

u = x1 | P )
= P(Xu = x).

Proof of Theorem 4.3. First consider the flat scheme. Under the null, given our assumption of
independence, Rj

iid∼ F , so F|R|

(∑
j Rj

)
∼ U(0, 1) and the result follows. For the recursive

scheme, we know from the flat scheme and from assumed independence that Pj
iid∼ U(0, 1), where

Pj is the p-value associated with the j-th key. Thus, y ∼ χ2
2|P | so that χ2

2|P |(y) ∼ U(0, 1).

Lemma A.2. Assume the conditions of Theorem 4.2. Conditioned on the counts c of each token in
the vocabulary, and which token id i∗ was selected (i.e. is the argmax), ui∗ ∼ Beta(m/ci∗ , 1).
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Proof of Lemma A.2. Let zi = −m log(ui)/ci, where ui
iid∼ U(0, 1). Then, zi ∼ Exp(ci/m) and

i∗ = argmaxji=1 u
m/ci
i = argmini −m log(ui)/ci = argmini zi.

By nice properties of the Exponential, we have that

zi∗ ∼ Exp

(∑
i

ci
m

)
= Exp(1).

ui∗ = exp(−ci∗zi∗/m), so

P(ui∗ ≤ t) = P(zi∗ ≥ −m log(t)/ci∗) = exp(m log(t)/ci∗) = tm/ci∗ .

Differentiating this w.r.t to t, we recover the pdf of Beta(m/ci∗ , 1).

Proof of Theorem 4.2. F is U(0, 1). The detection score is FT

(∑
j Rj

)
with Rj

iid∼ F under H0

and when conditioned on the counts C and the argmax token ids I∗, Rj ∼ Beta
(
m/Cj,I∗

j
, 1
)

under
H1. Redefine s0 and s1 to be

∑
j Rj under H0 and H1 respectively.

P(FT (s1) ≥ FT (s0)) = P(s1 ≥ s0) = Et(s1 ≥ t),

where t ∼ IrwinHall(T ) since s0 is the sum of T i.i.d. U(0, 1)’s. Our task now is to find a lower-
bound for s1. Noting independence across tokens and that Rj ∈ [0, 1], we can use Popoviciu’s bound
on variance to obtain,

V(s1) =
∑
j

V(Rj) ≤
T

4
(1− 0)2 = T/4.

Plugging in the expectation of a Beta and recalling that when conditioned on C, the probability that
token i in the vocabulary is the argmax token at step j is Cj,i/m, we have

E(s1) =
T∑

j=1

EC

(
V∑
i=1

Cj,i/m

1 + Cj,i/m

)
.

With tedious calculation, it can be shown that
x

1 + x
≥ x

2
− λx log(x), for x =

j

m
, j ∈ [1, . . . ,m], where

λ =
1

log(m)

(
m

m+ 1
− 1

2

)
.

Thus,

E(s1) ≥
T∑

j=1

(
1

2
− λEC

V∑
i=1

1 [Cj,i > 0]
Cj,i

m
log

(
Cj,i

m

))
.

=
∑
j

1/2 + λα = T/2 + λTα.

With bounds on expectation and variance, we proceed to upper-bound the error. Firstly, we have that,

E(s1 − s0) ≥ T/2 + λTα− T/2 = λTα ≥ 0,

V(s1 − s0) ≤ T/4 + T/12 = T/3.

P(s1 ≤ s0) = P(s1 − s0 − E(s1 − s0) ≤ −E(s1 − s0))

≤ P(s1 − s0 − E(s1 − s0) ≤ −λTα)

≤ V(s1 − s0)

V(s1 − s0) + (λTα)2

≤ 1

1 + 3Tλ2α2
,
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where the penultimate line follows from Cantelli’s inequality. Thus, we have that

P(s1 ≥ s0) = 1− P(s1 ≤ s0) ≥
1

1 + 1/(3Tλ2α2)
.

Proof of Theorem 4.4. Let r be the PRF value for some n-gram from the text we wish to text. Let
F0 = −Gamma(1/k, β) with pdf f0 and F1 = −Gamma(1/k,mβ) with pdf f1. By definition,
r ∼ F0 under H0. By our assumptions, ci = 1 and |Ri| = k, ∀i. So, argmaxmi=1 u

m/ci
i =

argmaxmi=1 ui = argmaxi Fk

(∑
j Ri,j

)
= argmaxi

∑
j Ri,j = argmini −

∑
j Ri,j , where the

second-to-last equality follows from the monotonicity of Fk. −
∑

j Ri,j ∼ Gamma(k/k, β) =

Exp(1, β).
∑

j Ri∗,j ∼ −Exp(1,mβ), because the minimum of Exponentials is Exponential. Thus,
∀j, Ri∗,j ∼ −Gamma(1/k,mβ) = F1 and r ∼ F1 under H1. Now let R refer to the T test-
time PRF values. From the independence of test n-grams, the log-likelihood ratio test has score
s(R) =

∑T
i=1 (log f1(Ri)− log f0(Ri)) and the fact that it is the uniformly most powerful test

follows directly from the Neyman–Pearson lemma. We now have that,

f0(r) =
β1/k

Γ(1/k)
(−r)1/k−1 exp(βr),

f1(r) =
m1/kβ1/k

Γ(1/k)
(−r)1/k−1 exp(mβr),

s(R) =
T

k
log(m) + (m− 1)β

T∑
i=1

Ri, so that

PH0(s > t) = PH0

(
(m− 1)β

∑
i

Ri > t− T

k
log(m)

)
= Gamma(T/k, β) (Q(t)) , and

PH1
(s ≤ t) = PH1

(
(m− 1)β

∑
i

Ri ≤ t− T

k
log(m)

)
= 1− Gamma(T/k,mβ) (Q(t)) , where

Q(t) =
T log(m)/k − t

(m− 1)β
.
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