
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

A WATERMARK FOR BLACK-BOX LANGUAGE MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

Watermarking has recently emerged as an effective strategy for detecting the
outputs of large language models (LLMs). Most existing schemes require white-
box access to the model’s next-token probability distribution, which is typically
not accessible to downstream users of an LLM API. In this work, we propose a
principled watermarking scheme that requires only the ability to sample sequences
from the LLM (i.e. black-box access), boasts a distortion-free property, and can be
chained or nested using multiple secret keys. We provide performance guarantees,
demonstrate how it can be leveraged when white-box access is available, and
show when it can outperform existing white-box schemes via comprehensive
experiments.

1 INTRODUCTION

It can be critical to understand whether a piece of text is generated by a large language model (LLM).
For instance, one often wants to know how trustworthy a piece of text is, and those written by an
LLM may be deemed untrustworthy as these models can hallucinate. This problem comes in different
flavors – one may want to detect whether it was generated by a specific model or by any model.
Furthermore, the detecting party may or may not have white-box access (e.g. an ability to compute
log-probabilities) to the generator they wish to test against. Typically, parties that have white-box
access are the owners of the model so we refer to this case as first-party detection and the counterpart
as third-party detection.

The goal of watermarking is to cleverly bias the generator so that first-party detection becomes
easier. Most proposed techniques do not modify the underlying LLM’s model weights or its training
procedure but rather inject the watermark during autoregressive decoding at inference time. They
require access to the next-token logits and inject the watermark every step of the sampling loop.
This required access prevents third-party users of an LLM from applying their own watermark as
proprietary APIs currently do not support this option. Supporting this functionality presents a security
risk in addition to significant engineering considerations. Concretely, Carlini et al. (2024) showed
that parts of a production language model can be stolen from API access that exposes logits. In this
work, we propose a watermarking scheme that gives power back to the people — third-party users
can watermark a language model given nothing more than the ability to sample sequences from it.
Our scheme is faithful to the underlying language model and it can outperform existing white-box
schemes.

2 RELATED WORK

We cover related work more extensively in the Appendix; we give a brief overview here. Watermarking
in the context of generative language models is a relatively new field, building on prior work in
linguistic steganography, where specific words in text are altered to encode information. Early
schemes, such as Venugopal et al. (2011), focused on machine translation, but interest surged with
the works of Kirchenbauer et al. (2023a;b) and Aaronson (2023), which introduced watermarking
for LLMs. These schemes, while effective, can introduce some text distortion, though efforts like
Aaronson (2023) and Kuditipudi et al. (2023) seek to make watermarking distortion-free. Other
works, such as Lee et al. (2023) and Zhao et al. (2023), adapt these methods for specific tasks or
to improve resistance to adversarial attacks, while Fernandez et al. (2023) explores new detection
tests. Black-box watermarking methods like those by Yang et al. (2023) and Chang et al. (2024)
attempt synonym substitution or word insertion but face challenges with text distortion. Paraphrasing

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

and word substitution attacks pose significant threats to watermarking, leading some to propose
semantic-based approaches (Liu et al., 2023b; Hou et al., 2023; Ren et al., 2023; Yoo et al., 2023).
However, vulnerabilities persist, as shown by works like Krishna et al. (2024), Zhang et al. (2023)
and Gu et al. (2023). Lastly, watermarking has also been studied through the lens of cryptography
and classical complexity theory (Christ et al., 2023; Christ & Gunn, 2024).

3 ALGORITHM

High-level sketch. At a high level, our scheme operates autoregressively; each step, we sample
multiple generations from the LLM, score each with our secret key, and output the highest scoring
one. We do this repeatedly until our stopping condition (e.g. reaching the stop-token or the max
length) is met. To determine whether a piece of text was watermarked, we score it using our key — if
it’s high, it’s likely watermarked. We now describe the algorithm more formally.

Preliminaries. We begin with some preliminaries. If F is a cumulative distribution function (CDF),
we let F [s] (square brackets) refer to a single draw from a pseudorandom number generator (PRNG)
for F seeded by integer seed s. Let Fk be the CDF for

∑k
i=1Xi, where Xi

iid∼ F . We sometimes
abuse notation and treat a distribution as its CDF (e.g. N(0, 1)(2) is the standard normal CDF
evaluated at 2) and when the context is clear we let −F be the distribution of −X where X ∼ F .
Now, we detail our proposed algorithm, for which pseudocode is provided in Algorithms 1 and 2
(presented in the Appendix).

Let F be a continuous CDF of our choosing, P the input prompt, K a secret integer key known only
to the watermark encoder and decoder, LM a conditional language model with vocabulary V of size
V , and h a cryptographic hash function (e.g. SHA-256) from Z∗ to Z. Let n be the number of tokens
(typically 4 or 5) that serves as input to our pseudo-random function. Our PRF g : V∗ → R is given
by g(w) = F [h (K|w)], where | denotes concatenation.

Watermark encoding. We sample m sequences {Q1, . . . , Qm}, each consisting of at most k tokens
from LM (· | P ; k). Let {(X1, c1), . . . , (Xj , cj)} be the unique sequences along with their counts
from {Qi} — for example, the sequence Xt appears ct times in {Qi}. To score each distinct
sequence Xt, we first extract its n-grams as {(Xt,i−n−1, . . . , Xt,i)}|Xt|

i=1 , where we allow the left
endpoint to spill over only to earlier-generated tokens and not the original prompt tokens. l-grams
are taken instead for boundary indices with only l − 1 < n − 1 eligible tokens strictly left of it.
We compute an integer seed for each n-gram w, as h(K|w). Given a collection of seeds with their
associated sequences we deduplicate seeds across the collection. We do this by picking one instance
of the seed at random and remove all remaining instances from the collection. We ensure every
sequence has at least one seed by adding a random seed not already used, if necessary. For each
sequence Xt, we iterate through its new seeds St (order does not matter) and compute the quantity
ut = F|St|

(∑|St|
i=1 F [St,i]

)
. Finally we compute i∗ = argmaxji=1 u

m/ci
i and choose Xi∗ as our

watermarked sequence of length at most k. To generate longer texts, we run the the aforementioned
process iteratively, where we condition the language model on P and the tokens generated thus far.

One may notice that the LLM is expected to return at most k tokens. This choice is made to simplify
the analysis. In practice, the API may only return texts, not tokens, with no option to specify max
length. The watermarker can generate n-grams from the responses however they would like (with
custom tokenization or not). Furthermore, there is no constraint on k; k can be set adaptively to the
max length in each batch of returned responses. The main consideration though is smaller k begets a
stronger watermark, so if the adaptive k is too large, detectability will suffer.

Watermark detection. We treat detection as a hypothesis test, where the null H0 is that the query
text is not watermarked with our scheme and secret key and the alternative H1 is that it is. While
Bayesian hypothesis testing could be used, this would require choosing priors for both hypotheses,
which could be challenging and a poor choice could lead to terrible predictions. Let X be the query
text. Akin to the encoding process, we extract W , the set of unique n-grams from X , permitting
smaller one near the left boundary. For each n-gram wt we compute Rt = F [h (K|wt)]. Under
H0 (assuming that the test n-grams are independent), Rt

iid∼ F , so
∑|W |

t=1 Rt ∼ F|W | giving a

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

p-value p = 1− F|W |

(∑|W |
t=1 Rt

)
. Our detection score s is 1− p (higher means more likely to be

watermarked).

Another way to compute a p-value is to compute token-level p-values and, assuming they are indepen-
dent, combine them using Fisher’s method. This way, p = 1− χ2

2|W |

(
−2
∑|W |

t=1 log (1− F (Rt))
)

.
Furthermore, tests that incorporate the alternative distribution can be used — the best example being
the likelihood ratio test: s =

∑|W |
t=1 (log f1(Rt)− log f0(Rt)), where f0 and f1 are the densities of

Rt under H0 and H1 respectively. For some choices of F and under some assumptions, f1 may be
written explicitly. In other cases, one can estimate f1 by logging values of Rt for the watermarked
sequence as the encoding is run live or via simulation and then building a kernel density estimator.
We consider these alternative detection strategies later for ablative purposes.

Recursive watermarking. Since our scheme requires only a black box that samples sequences, it
can be applied iteratively or recursively. Consider the following. User 1 uses User 2’s LLM service
who uses User 3’s LLM service, so on so forth until User t. Our scheme allows User i to watermark
its service with its secret key Ki. Each user can then run detection using its key oblivious to whether
other watermarks were embedded upstream or downstream. Furthermore, the users can cooperate in
joint detection by sharing only p-values without revealing their secret key. This property is valuable
in the service oriented architectures of today’s technology stack.

Consider the special case that all users are actually the same entity in possession of t distinct keys
{K1, . . . ,Kt}. Then the iterative watermarking becomes a recursive one, where Ki is used to
watermark the result of watermarking with keys {Ki+1, . . . ,Kt}. The entity can run DETECT to get
a p-value for each key and these t p-values can subsequently be combined using Fisher’s method. We
present this recursive scheme in Algorithm 2.

White-box watermarking. In the case of k = 1, our scheme can be efficiently run for users who
have white-box access — with the next-token distribution in hand, one can sample a large number of
candidate tokens without any inference calls to the model.

Extensions. We discuss extensions in the Appendix.

4 THEORY

Our goal here is to show that our scheme is faithful to the model’s next-token distribution and to give
detection performance guarantees. All proofs are in the Appendix.

Theorem 4.1 (Distortion-free property). Let X be any finite sequence and P any prompt. Let Xu ∼
LM (· | P) be the non-watermarked output of the conditional autoregressive language model. Let Xw

be the output of the watermarking procedure (WATERMARK in Algorithm 1, for both recursive and
non-recursive settings) for the same prompt and model and any choice of remaining input arguments
with the constraint that F is a continuous distribution. Furthermore, assume that the deduplicated
seeds (determined by hashing the secret key and n-grams) across sequences, are conditionally
independent given the counts of the sampled sequences. Then, P(Xu = X) = P(Xw = X).

Theorem 4.1 tells us that sampling tokens using our proposed scheme is, from a probabilistic
perspective, indistinguishable from sampling from the underlying model, with the caveat that the
unique seed values are conditionally independent given the counts of sequences. If we dismiss hash
collisions as very low probability events, then since the key is fixed, this reduces to the assumption
that unique n-grams across the sampled sequences are independent. How strong of an assumption
this is depends on many factors such as m, the underlying distribution, and the counts (c1, . . . , cj)
themselves. One can construct cases where the assumption is reasonable and others where it is
blatantly violated (e.g. if n-grams within a sequence are strongly correlated). One direction to making
the assumption more palatable is to draw a fresh keys i.i.d. for each hash call. This would obviously
destroy detectability. As a trade-off, one can leverage a set of secret keys (i.e. by drawing keys
uniformly at random from a key set), which may reduce distortion, but will hurt detection as each key
in the set needs to be tested against.

Theorem 4.2 (Lower bound on detection ROC-AUC). Consider the specific case of using flat (i.e.
non-recursive) watermarking with k = 1 and F = U(0, 1). Let s0 be the score under null that the T

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

test tokens1,assumed to be independent, were generated without watermarking and s1 be the score if
they were. We have the following lower bound on the detector’s ROC-AUC.

P(s1 ≥ s0) ≥
1

1 + 1/(3Tλ2α2)
, where

λ =
1

log(m)

(
m

m+ 1
− 1

2

)
and α = Ec

[
−

V∑
i=1

1[ci > 0]
ci
m

log
(ci
m

)]
.

α represents the average Shannon entropy in the sampled next-token distribution.

Theorem 4.2 connects detection performance to the language model’s underlying distribution, num-
ber of sampled tokens m, and number of test samples T . More entropy and more test samples
guarantee higher performance. When the model is extremely confident, α → 0 and so does our
lower bound. Note that because α measures the entropy of the empirical distribution arising from
sampling tokens, it depends on both the underlying next-token probability distribution as well as
m. Concretely, when conditioned on the next-token probabilities p, c ∼ Multinomial (m, p). The
largest α is achieved when the ci’s are 1, which can occur when the underlying distribution is uniform
(maximal uncertainty) and/or m is not large. In this case, α → log(m) and our bound goes to

1/

(
1 + 1/

(
3T
(

m
m+1 − 1

2

)2))
. This quantity has very sharp diminishing returns with respect to

m, so there may be little value in increasing m beyond a certain point. When m → ∞, the bound
goes to 1/(1 + 4/(3T)), which increases very quickly with T . A mere 50 test tokens guarantees
at least 97% ROC-AUC. We study the interplay of the various factors on our lower bound more
carefully in the Appendix.

The intuitions here carry over to other choices of F and k > 1, though formal bounds can be tricky
to obtain because of difficulty quantifying the alternative distribution. The null distribution is easy
— p-values are U(0, 1) under H0, and as a result, we have a straightforward equality on the false
positive rate.
Theorem 4.3 (False positive rate). No matter the choice of watermarking settings, assuming that
the unique test n-grams are independent, we have the following equality on the false positive rate of
DETECT, using decision threshold t.

FPR = PH0
(s > t) = 1− t.

This also holds for DETECTRECURSIVE if we further assume the p-values across secret keys are
independent.

Selecting distinct independent secret keys {K1, . . . ,Kt} (and ignoring hash collisions that arise
across calls to DETECT within DETECTRECURSIVE), will help attain the necessary independence.

Although the alternative score distribution is generally intractable, with the strong assumption that
there are no duplicate n-grams across the candidate sequences, then for a special choice of F , we can
write the alternative in closed form and formulate the optimal detection test.
Theorem 4.4 (Optimal detection for Gamma). Assume that candidate sequences are unique with
length k and that the n-grams are independent and contain no duplicates. Suppose we choose
F = −Gamma (1/k, β) (flat scheme), for any rate parameter β. Let F0 = F with pdf f0, F1 =
−Gamma (1/k,mβ) with pdf f1, and R the PRF values of the T test tokens (unique n-grams),
assumed to be independent. Then, ∀i, Ri ∼ F0 under the null that the text was watermarked using
our procedure and Ri ∼ F1 otherwise. The uniformly most powerful test is the log-likelihood ratio
test (LRT) with score

s(R) =

T∑
i=1

log
f1(Ri)

f0(Ri)
.

Furthermore, for any decision threshold t on score s, we have that:
FPR (Type-I error) = PH0(s > t) = Gamma(T/k, β) (Q(t)) , and

FNR (Type-II error) = PH1
(s ≤ t) = 1− Gamma(T/k,mβ) (Q(t)) , where

Q(t) =
T log(m)/k − t

(m− 1)β
.

1more precisely, T unique n-grams

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

In the Appendix, we use Theorem 4.4 to study the impact of k, m, and T on TPR at fixed FPR. For
example, with T = 100, k = 50, m = 64, β = 1, we can achieve 99.9% TPR at 1% FPR.

For other choices of F , we can estimate f1 via simulation. If we assume candidate sequences have
the same length k with no duplicate n-grams, then we can fill an m × k matrix with i.i.d. draws
from F and pick the first element of the row with the largest row-sum (among the m). We do this
until we have sufficiently large (e.g. 10,000) samples from f1. We apply a Gaussian kernel-density
estimator where the bandwidth is chosen using Scott’s rule (Scott, 2015) to estimate f1(r) for test
value r. Despite having f0 in closed-form, for consistency, we can also estimate it non-parametrically
by drawing from F .

5 EXPERIMENTS

In this section, we compare the performance of our scheme with that of prior work.

5.1 MODELS, DATASETS, AND HYPER-PARAMETERS

Models and Datasets. Our main model and dataset is the MISTRAL-7B-INSTRUCT (Jiang et al.,
2023) hosted on Huggingface2 with bfloat16 quantization, and databricks-dolly-15k3 (Conover et al.,
2023), an open source dataset of instruction-following examples for brainstorming, classification,
closed QA, generation, information extraction, open QA, and summarization. We use prompts from
the brainstorming, generation, open QA (i.e. general QA), and summarization categories, whose
human responses are at least 50 tokens long (save one example, which was removed because the
prompt was extremely long). For each of the 5233 total prompts, we generate two non-watermarked
responses — a stochastic one using temperature 1, and the greedy / argmax decoding — along with a
watermarked one for each scheme. We always force a minimum (maximum) of 250 (300) new tokens
by disabling the stop token for the first 250 tokens, re-enabling it, and stopping the generation at 300,
regardless of whether the stop token was encountered. To simulate real-world use, we de-tokenize
the outputs to obtain plain text, and re-tokenize them during scoring. We study performance as a
function of token length T ≤ 250 by truncating to the first T tokens.

For completeness, we also present the key results when GEMMA-7B-INSTRUCT4 with bfloat16
quantization is applied to the test split of eli5-category5. Prompts are formed by concatenating the
the title and selftitle fields. Only examples with non-empty title and whose prompt contains a ? are
kept — for a total of 4885 examples.

Hyper-parameters. We consider the following choices of CDFs F / Fk. (1) F = U(0, 1) and Fk =
IrwinHall(k). (2) F = N(0, 1) and Fk = N(0, k). (3) F = −Gamma(1/k, 1) and Fk = −Exp(1).
(4) F = χ2

2 and Fk = χ2
2k.

5.2 EVALUATION METRICS

We evaluate performance using three criteria.

Detectability. How well can we discriminate between non-watermarked and watermarked text? We
choose non-watermarked text to be text generated by the same model, just without watermarking
applied during decoding. There are three reasons for choosing the negative class in this way. Firstly, it
makes controlling for text length easier as we can generate as many tokens as we do for watermarked
samples — in contrast, human responses are of varying lengths. Secondly, watermarked text has
far more token / n-gram overlap with its non-watermarked counterpart than the human reference,
which makes detection more challenging. Lastly, since one intended use case of our scheme is for
third-party users of a shared LLM service, users may want to distinguish between their watermarked
text and non-watermarked text generated by the same LLM service.

Our primary one-number metric is ROC-AUC for this balanced binary classification task. Since
performance at low FPR is often more useful in practice, we report the partial ROC-AUC (pAUC)

2https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.1
3https://huggingface.co/datasets/databricks/databricks-dolly-15k
4https://huggingface.co/google/gemma-7b-it
5https://huggingface.co/datasets/rexarski/eli5_category

5

https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.1
https://huggingface.co/datasets/databricks/databricks-dolly-15k
https://huggingface.co/google/gemma-7b-it
https://huggingface.co/datasets/rexarski/eli5_category

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

for FPR ≤ a target FPR (taken to be 1%), which we find to be more meaningful than TPR at the
target FPR. We look at performance as a function of length by truncating the positive and negatives
samples to lengths {25, 50, 75, 100, 150, 200, 250}. To understand aggregate performance, we pool
all different length samples together and compute one ROC-AUC. Here, it is paramount that the
detection score be length-aware to ensure that a single decision threshold can be used across lengths.

Distortion. Our scheme, along with most of the baselines, boasts a distortion-free property. This
property comes with assumptions that are often violated in practice, for example by reuse of the
secret key across watermarking calls. We quantify how faithful the watermarking procedure is to the
underlying generative model by computing both the perplexity and likelihood of watermarked text
under the generator (without watermarking). We include likelihood as the log-probabilities used in
calculating perplexity can over-emphasize outliers.

Quality. Watermarking may distort the text per the model, but does the distortion tangibly affect
the quality of the text? Quality can be challenging to define and measure — one proxy is likelihood
under a much larger model than the generator. Alternatively, one can run standard benchmark NLP
tasks and use classic metrics like exact match, etc. We instead opt for using Gemini-1.5-Pro as an
LLM judge and compute pairwise win rates for each watermark strategy against no watermarking
(greedy decoding). We do this in two ways for each scheme — (1) we compute win rates using a
single response for each prompt and (2) we first ask the LLM judge to pick the best of 3 responses for
each prompt and compute win rates using the best response. (2) represents the common practice of
sampling a few generations from the LLM and selecting the best one using some criterion. It captures
diversity, as methods that can express an answer in a few different good ways will have an advantage.
A caveat with win rates is that they may not reflect the degree by which one method is better or worse.
For instance, if one strategy’s output was always marginally worse than no watermarking, the win
rate would be 0% — the same as if it were much worse.

5.3 ADVERSARIAL ATTACKS

An adversary in possession of watermarked text (but who lacks knowledge of the secret key) may
try to evade detection. We study how detectability degrades under two attack strategies —- random
token replacement and paraphrasing.

Random token replacement. Here, we take the watermarked tokens and a random p-percent them
are corrupted by replacing their token with a random different one. p is taken to be [10, 20, 30, 40, 50].
This attack strategy is cheap for the adversary to carry out but will significantly degrade the quality of
the text.

Paraphrasing. In this attack, the adversary attempts to evade detection by paraphrasing the water-
marked text using the model. We use Gemini-1.5-Pro to paraphrase each non-truncated watermarked
generation. Details are deferred to the Appendix.

5.4 BASELINES

The watermark schemes we consider here operate token-by-token in the autoregressive decoding loop.
Let p be the next-token probability distribution. Higher detection scores indicate higher confidence
that the query text is watermarked.

Aaronson (A). Aaronson (2023) computes a PRN for each token i in the vocabulary as ui =
U(0, 1)[h(i|w|K)], where w is preceding (n− 1)-gram, K is the secret key and h is a cryptographic
hash. Token i∗ is selected, where i∗ = argmaxi u

1/pi

i . At test time, n-grams {wi}Ti=1 are extracted
from the query test and the detection score s is −

∑T
i=1 log (1−Ri), whereRi = U(0, 1) [h(wi|K)].

n is set to 4. This choice strikes a good balance between generation quality / diversity and robustness
to attacks. The scheme boasts a distortion-free property, but the generated text is a deterministic
function of the prompt — i.e. only one generation is possible conditioned on a particular prompt.

Remark. If k = 1 and F = U(0, 1), then our watermark encoding can be viewed as a stochastic
version of Aaronson (2023)’s. As m → ∞, ct/m

a.s.→ pt, where pt and ct are the probability and
observed occurrences of token t.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

PPL WR WR (3) AUC pAUC C. AUC C. pAUC P. AUC P. pAUC

Max Std. Error 0.03 - - 0.1 0.3 0.2 0.3 - -

Greedy Decoding 1.37 - - - - - - - -
Random Sampling 3.50 49.6 65.3 - - - -

Aaronson 2.81 45.3 45.3 71.7 65.5 65.6 60.3 53.9 50.5
Aaronson Cor. 2.81 - - 97.9 83.6 94.8 73.2 58.8 50.7

Kuditipudi 3.55 50.3 67.3 87.8 76.6 87.2 74.4 75.9 53.2

Kirchenbauer

0.5 3.39 49.6 66.6 73.2 52.0 71.0 51.4 49.0 49.8
1 3.37 50.1 67.0 86.9 60.6 83.7 57.1 52.9 49.9
2 3.69 47.9 64.1 97.0 83.3 95.4 77.4 58.4 50.3
3 4.67 41.5 58.4 99.3 94.4 98.6 90.9 63.4 51.5
4 5.81 26.0 41.2 99.8 98.4 99.6 96.8 66.4 52.7

Flat (k = 1)

2 3.46 50.0 66.4 90.2 68.8 82.0 58.7 50.5 50.3
4 3.36 50.8 67.0 95.8 82.9 90.3 70.5 51.3 50.6

16 3.20 47.7 64.5 97.7 89.7 93.9 79.1 52.7 51.1
32 3.06 48.4 65.3 97.8 90.2 94.2 80.0 53.0 50.8

512 2.63 47.7 62.5 97.7 90.0 94.1 79.7 54.6 51.3
1024 2.61 47.7 62.2 97.7 90.0 94.0 79.7 52.8 51.1

Flat (k = 10)

2 4.10 46.1 62.2 83.4 55.8 73.6 52.0 49.0 50.0
4 4.06 45.2 61.5 93.8 72.7 85.7 59.4 51.3 50.3

16 3.86 44.6 60.6 97.8 87.0 93.1 73.5 54.3 50.7
32 3.80 43.0 60.8 98.2 89.0 94.0 76.7 55.0 50.8

Flat (k = 50)

2 3.79 48.5 64.2 69.6 50.7 62.2 50.3 47.0 50.0
4 3.76 47.7 63.9 82.9 53.5 71.9 51.3 49.4 50.0

16 3.72 48.3 64.2 92.7 66.7 83.1 55.6 50.5 50.1
32 3.67 47.3 63.9 94.2 71.6 85.5 58.1 51.1 50.5

Rec. (k = 1)

4 3.41 49.0 65.0 93.4 75.5 86.3 63.2 48.4 50.4
16 3.33 49.2 66.2 95.4 82.9 90.6 71.8 53.4 50.8
32 3.29 48.4 64.3 96.3 85.0 91.6 73.5 49.4 50.8

512 3.05 48.3 64.5 97.2 87.9 92.6 76.5 50.4 51.2

Rec. (k = 10)
4 4.13 45.7 61.3 88.6 61.7 78.8 53.8 48.0 50.0

16 4.13 43.7 59.7 93.4 74.0 86.8 61.6 52.9 50.4
32 4.06 42.9 59.5 94.8 76.9 88.1 63.2 50.6 50.3

Rec. (k = 50)
4 3.79 48.2 63.8 74.2 51.2 65.1 50.5 46.5 49.9

16 3.77 47.0 64.0 81.2 54.5 73.3 51.9 51.4 50.2
32 3.79 47.2 63.3 83.3 55.7 74.4 52.2 49.4 50.0

Table 1: Main table of results, showing our black-box scheme and its recursive variant for various
k’s and m’s, along with baselines. PPL, WR and WR (3) refer to perplexity, win rate of a single
response, and win rate of the best-of-3 responses respectively. pAUC is ROC-AUC up to max FPR
of 1%. C and P stand for 10% corruption and paraphrasing attack. For paraphrasing, target lengths
of [150, 200, 250] are used in the AUC / pAUC computation here and elsewhere as performance is
essentially random on shorter lengths. The standard errors are quite small and the maximum across
rows is shown for each column. AUCs and pAUCS and their standard errors are scaled by 100.

Aaronson Corrected (AC). Aaronson (2023)’s detection score sA is not length-aware and conse-
quently a single decision threshold across scores involving various lengths results in poor performance,
as we later show. Observing that sA is a sum of log p-values, sA ∼ Gamma(T, 1), or equivalently,
2sA ∼ χ2

2T under the null that all test tokens are non-watermarked. We propose the new corrected de-
tection score, s = 1−Gamma(T, 1)(sA) = 1−χ2

2T (2sA). For completeness we also experiment with

a p-value computed in the way we do for our method — concretely as, 1− IrwinHall(T)
(∑T

i=1Ri

)
.

Note that both transformations are monotonic so they have no effect on ROC-AUC when T is fixed.

Kirchenbauer (KB). Kirchenbauer et al. (2023a) uses the current n previous tokens to pseudoran-
domly partition the vocabulary for the next token into two lists: a green list of size γV and a red list

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Figure 1: Top: Detection AUC and pAUC with 1% max FPR for a range of target text lengths when
there is no corruption. Bottom Left: AUC (mixed T ’s) as a function of the average non-watermarked
response entropy of the examples used in the calculation. x-coordinate x corresponds to the bucket of
examples whose entropy is between [x− 0.25, x] nats. Bottom Right: Effect of amount of random
token corruption on AUC (mixed T ’s).

consisting of the remainder. A positive bias of δ is added to the logits of the green list tokens while
those of the red list are left unchanged. This has the effect of modifying p so that green list tokens are
more probable. The score for a text consisting of T tokens, Tg of which were found to be green is,
s = (Tg − γT)/

√
Tγ(1− γ). We incorporate the latest updates to the algorithm6, such as including

the current token in the n-gram and skipping duplicate n-grams at test time. We set n = 4, γ = 0.25,
and δ ∈ {0.5, 1, 2, 3, 4}.

Kuditipudi (K). A drawback of using the last n tokens as a basis for the PRF is that changing just
one of them changes the output and hurts detection. Kuditipudi et al. (2023) addresses this limitation
as follows. Consider a secret, finite ordered list of seeds of length k. Start watermarking by selecting
a position in the seed list uniformly at random and apply the selection rule of Aaronson (2023) with
the PRNG seeded to the current value. Advance to the next seed in the list (wrap-around if you are at
the end) and repeat. Scoring is done by conducting a permutation test evaluating how compatible
the query text is with the specific list of seeds used during encoding as opposed to any other random
list of seeds of the same length. As the random starting position is not known during scoring, an
alignment score based on the Levenshtein distance is given that considers alignments of various
subsequences of the text and seeds. The proposed method is quite similar to Aaronson (2023) with
the difference of using a fixed list of seeds (instead of context tokens to determine the seed) and using
a permutation test for scoring. The upside is robustness to token substitution attacks; the downside
is significantly higher computational cost for scoring. Larger k offers more diversity and quality in
generation but comes with costlier and weaker detection. The scheme is distortion-free. Following

6https://github.com/jwkirchenbauer/lm-watermarking

8

https://github.com/jwkirchenbauer/lm-watermarking

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

their work, we let k = 256 and accelerate the permutation test by pre-computing 5000 reference
values for the secret list using snippets from the train set of C4-realnewslike (Raffel et al., 2019) at
the various target lengths we evaluate on.

5.5 EXPERIMENTAL RESULTS

Table 1 shows results for baselines and our scheme using F = U(0, 1) and p-values for scoring,
as detailed in Algorithms 1 and 2. For the recursive scheme, depth is lg(m) (i.e. m = 2 for each
imaginary watermarker). Here, the negative class is non-watermarked argmax/greedy generations.
Results for using stochastic (temperature 1) generations as the negative as well as the average
likelihood scores are presented in Table 5 (Appendix); the trends remain the same. We summarize
our observations on MISTRAL-7B-INSTRUCT on databricks-dolly-15k, which also hold for GEMMA-
7B-INSTRUCT on eli5-category (presented in the Appendix).

5.5.1 OVERALL PERFORMANCE OF OUR FLAT AND RECURSIVE SCHEMES

Our scheme is a competitive option for white-box watermarking. Is it better to use our method
or alternatives in the white-box setting? When k = 1,m = 1024, we are able to achieve better
perplexity (2.61 vs. 2.81), better diversity (62.2% vs. 45.3% on best-of-3 win rates) and comparable
detection performance than Aaronson (2023). Furthermore, it has better perplexity (2.61 vs. 3.55)
and detection performance (97.7% vs. 87.8% AUC) than Kuditipudi et al. (2023). By cranking up
δ, Kirchenbauer et al. (2023a) can achieve strong detection but at the expense of perplexity. When
matched on perplexity, we achieve better detection. For example, δ = 0.5 achieves 3.39 PPL and
73.2% AUC compared to our 2.61 PPL and 97.7% AUC. GEMMA-7B-INSTRUCT on eli5-category
with k = 1,m = 1024 outperforms Kuditipudi et al. (2023) and is on-par with Aaronson (2023) (see
Appendix). Kirchenbauer et al. (2023a) with δ = 0.5 gives 1.649 PPL and 61.6% AUC whereas
k = 1,m = 1024 gets us 1.610 PPL with 93.2% AUC and even 1.645 PPL with 89.7% AUC when
k = 50,m = 16 (black-box).

Flat watermarking outperforms recursive. Across metrics and settings we see that the flat scheme
outperforms its recursive counterpart, suggesting it is more effective when a strong signal is embedded
using a single key rather than when multiple weak signals are embedded with different keys. For
example, when k = 1,m = 32 flat (recursive) PPL and AUC are 3.06 (3.29) and 97.8% (96.3%)
respectively.

5.5.2 EFFECTS OF HYPERPARAMETERS

Increasing m improves perplexity but hurts diversity. Across k’s, we observe that perplexity
decreases as m increases, but that win rates, especially when best-of-3 generations are used, decrease.
For example, when k = 1, increasing m from 2 to 1024 decreases perplexity from 3.46 to 2.61 but
also drops the best-of-3 win rate from 66.4% to 62.2%. As remarked earlier, as m→ ∞, ct/m→ pt
and our scheme becomes less diverse — deterministic conditioned on the prompt, like Aaronson’s.
On the flip side, large m reduces sampling noise which drives down perplexity.

Increasing m improves detection but has diminishing returns. Across the board we see that
detection improves as m increases, but there are diminishing returns. For example, when k = 1,
our AUC increases from 90.2% to 95.8% as m goes from 2 to 4, but flattens out when m hits 16.
This corroborates our theoretical intuition from Theorem 4.2 which is further explored in Figure 4
(Appendix).

For fixed m, increasing k hurts detection performance. For fixed m and target generation length
T , increasing k gives us fewer opportunities (fewer calls to WATERMARKSINGLE) to inject the
watermark signal, and detection consequently suffers. For example, when m = 32, AUC drops from
97.8% to 94.2% when k increases from 1 to 50.

U(0, 1) slightly outperforms alternative distributions. Flat distributions may offer better
robustness to attacks. In Table 4 (Appendix), we see that U(0, 1) fares comparably to N(0, 1)
and slightly outperforms χ2

2 both on detection and perplexity. For example, when k = 50,m = 2,
U(0, 1) and χ2

2 have AUCs of 69.6% and 68.1% respectively. Furthermore, we find evidence that
U(0, 1) offers better protection to attacks. For example, when k = 50,m = 32, the AUC for
U(0, 1) (χ2

2) degrades from 94.2% (94.5%) to 85.5% (84.5%) in the presence of 10% random token

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

corruption. We provide some intuition for why flat distributions like U(0, 1) may be more robust
than those with quickly decaying tails. Consider shaping the continuous F so it approaches Bern(p)
(i.e. f(x) ≈ (1 − p)δ(x) + pδ(x − 1)), where p is very small. Suppose k is large and m is small.
Then, the winning sequence Xi∗ will have extremely few (if any) of its Rj’s equal to 1. If the text
is unmodified and these few n-grams are kept intact, we are fine, but if they are corrupted in an
attack, then the watermarking signal is effectively lost. In other words, flat distributions smear the
watermarking signal over more tokens than do sharper distributions, which localize the signal to
few lucky token positions. However, whereas scoring with FT = IrwinHall(T) when F = U(0, 1)
involves computing T -fold convolutions or cardinal B-splines, when F = N(0, 1), FT is easier to
compute for very large T ; specifically, FT (x) = F

(
x/

√
T
)

.

5.5.3 OBSERVATIONS ON DETECTION

Length correction of Aaronson (2023) is crucial. Recall that the ROC-AUCs presented in Table 1
are computed over a pool of different lengths. Our p-value-based score for Aaronson (2023) improves
detection significantly; for example, AUC goes from 71.7% to 97.9%. Table 7 (Appendix) shows
that the sum-based p-value correction fares a bit worse, which was a little surprisingly given that this
worked the best for our scheme, even for the k = 1 case.

Sum-based p-values outperform Fisher ones. In Table 2 (Appendix), we observe that replacing our
sum-based p-value (where H0 is that

∑T
i ri ∼ FT) by a Fisher combination of token-level p-values,

hurts detection performance. For example, when k = 1,m = 2, AUC degrades from 90.2% to 86.3%.
Note that when k = 1, this setting corresponds exactly to a stochastic version of Aaronson (2023).

Likelihood-ratio scoring does well for large k and small m, when its assumptions are more
realistic. In Table 3 (Appendix), we observe that likelihood-based scoring — both when the
distribution is Gamma and the exact likelihood ratio test (LRT) is used and under KDE with alternative
distributions — performs the best when the assumptions of no duplicate sequences or n-grams hold
better. This happens when the sequences are long (large k) and when fewer sequences are sampled
(small m). For example, when k = 1, AUC degrades monotonically from 78.1% to 55.4% as m
increases from 2 to 1024. In contrast, AUC under the p-value-based scoring increases monotonically
with m, from 90.2% to 97.7%. Larger m increases the number of duplicate sequences sampled,
increasing the importance of the latent exponent m/ci used in the scoring and deviating us further
from the LRT assumptions. However, LRT has the potential to be an effective alternative when k
is large. For example, when k = 50 and m = 32, Uniform KDE-based LRT gives AUC of 95.5%
compared to p-value’s 94.2%.

Detection performance improves sharply with test samples T . Figure 1 shows the effect of T on
AUC. We see sharp improvements w.r.t. to T , even when k is large and m is small, highlighting the
power of more test samples to counteract a weaker watermark signal.

Entropy improves detection performance. In Figure 1 we bucket prompts based on the entropy
of their non-watermarked response and then look at detection AUC on samples in each bucket. As
we expect, detection improves when the prompts confer more entropy in the response. This trend is
more stark for our method.

Paraphrasing can be extremely effective at destroying watermarks. We observe that paraphrasing
can effectively erase the watermark as detection performance for most methods is near random.
Kuditipudi et al. (2023) and Kirchenbauer et al. (2023a) with large δ do better on AUC (but not so
much on pAUC). Furthermore, in Figures 1 and 2 (Appendix) we observe that large amounts of
random token corruption hurts our scheme and Aaronson (2023)’s more than it that of Kirchenbauer
et al. (2023a) or Kuditipudi et al. (2023).

6 CONCLUSION

In this work, we present a framework for watermarking language models that requires nothing more
than a way to sample from them. Our framework is general and extensible, supporting various
real world use-cases, including the setting where the next-token probabilities are in fact available.
We study its various components and the trade-offs that arise, provide formal guarantees for the
theoretically-inclined as well as concrete recommendations for the practitioner.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Scott Aaronson. Watermarking of large language models. Large Language Models and Transformers
Workshop at Simons Institute for the Theory of Computing, 2023.

Nicholas Carlini, Daniel Paleka, Krishnamurthy Dj Dvijotham, Thomas Steinke, Jonathan Hayase,
A Feder Cooper, Katherine Lee, Matthew Jagielski, Milad Nasr, Arthur Conmy, et al. Stealing part
of a production language model. arXiv preprint arXiv:2403.06634, 2024.

Yapei Chang, Kalpesh Krishna, Amir Houmansadr, John Wieting, and Mohit Iyyer. Postmark: A
robust blackbox watermark for large language models. arXiv preprint arXiv:2406.14517, 2024.

Miranda Christ and Sam Gunn. Pseudorandom error-correcting codes. arXiv preprint
arXiv:2402.09370, 2024.

Miranda Christ, Sam Gunn, and Or Zamir. Undetectable watermarks for language models. arXiv
preprint arXiv:2306.09194, 2023.

Mike Conover, Matt Hayes, Ankit Mathur, Jianwei Xie, Jun Wan, Sam Shah, Ali Ghodsi, Patrick
Wendell, Matei Zaharia, and Reynold Xin. Free dolly: Introducing the world’s first truly open
instruction-tuned llm, 2023. URL https://www.databricks.com/blog/2023/04/
12/dolly-first-open-commercially-viable-instruction-tuned-llm.

Jacob Devlin. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv
preprint arXiv:1810.04805, 2018.

Pierre Fernandez, Antoine Chaffin, Karim Tit, Vivien Chappelier, and Teddy Furon. Three bricks
to consolidate watermarks for large language models. In 2023 IEEE International Workshop on
Information Forensics and Security (WIFS), pp. 1–6. IEEE, 2023.

Chenchen Gu, Xiang Lisa Li, Percy Liang, and Tatsunori Hashimoto. On the learnability of water-
marks for language models. arXiv preprint arXiv:2312.04469, 2023.

Abe Bohan Hou, Jingyu Zhang, Tianxing He, Yichen Wang, Yung-Sung Chuang, Hongwei Wang,
Lingfeng Shen, Benjamin Van Durme, Daniel Khashabi, and Yulia Tsvetkov. Semstamp: A seman-
tic watermark with paraphrastic robustness for text generation. arXiv preprint arXiv:2310.03991,
2023.

Baihe Huang, Banghua Zhu, Hanlin Zhu, Jason D Lee, Jiantao Jiao, and Michael I Jordan. Towards
optimal statistical watermarking. arXiv preprint arXiv:2312.07930, 2023.

Albert Q Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot,
Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier, et al.
Mistral 7b. arXiv preprint arXiv:2310.06825, 2023.

John Kirchenbauer, Jonas Geiping, Yuxin Wen, Jonathan Katz, Ian Miers, and Tom Goldstein. A
watermark for large language models. arXiv preprint arXiv:2301.10226, 2023a.

John Kirchenbauer, Jonas Geiping, Yuxin Wen, Manli Shu, Khalid Saifullah, Kezhi Kong, Kasun
Fernando, Aniruddha Saha, Micah Goldblum, and Tom Goldstein. On the reliability of watermarks
for large language models. arXiv preprint arXiv:2306.04634, 2023b.

Kalpesh Krishna, Yixiao Song, Marzena Karpinska, John Wieting, and Mohit Iyyer. Paraphrasing
evades detectors of ai-generated text, but retrieval is an effective defense. Advances in Neural
Information Processing Systems, 36, 2024.

Rohith Kuditipudi, John Thickstun, Tatsunori Hashimoto, and Percy Liang. Robust distortion-free
watermarks for language models. arXiv preprint arXiv:2307.15593, 2023.

Taehyun Lee, Seokhee Hong, Jaewoo Ahn, Ilgee Hong, Hwaran Lee, Sangdoo Yun, Jamin Shin,
and Gunhee Kim. Who wrote this code? watermarking for code generation. arXiv preprint
arXiv:2305.15060, 2023.

Aiwei Liu, Leyi Pan, Xuming Hu, Shu’ang Li, Lijie Wen, Irwin King, and Philip S Yu. An unforgeable
publicly verifiable watermark for large language models. arXiv preprint arXiv:2307.16230, 2023a.

11

https://www.databricks.com/blog/2023/04/12/dolly-first-open-commercially-viable-instruction-tuned-llm
https://www.databricks.com/blog/2023/04/12/dolly-first-open-commercially-viable-instruction-tuned-llm

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Aiwei Liu, Leyi Pan, Xuming Hu, Shiao Meng, and Lijie Wen. A semantic invariant robust watermark
for large language models. arXiv preprint arXiv:2310.06356, 2023b.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J. Liu. Exploring the limits of transfer learning with a unified text-to-text
transformer. arXiv e-prints, 2019.

Jie Ren, Han Xu, Yiding Liu, Yingqian Cui, Shuaiqiang Wang, Dawei Yin, and Jiliang Tang. A
robust semantics-based watermark for large language model against paraphrasing. arXiv preprint
arXiv:2311.08721, 2023.

David W Scott. Multivariate density estimation: theory, practice, and visualization. John Wiley &
Sons, 2015.

Gloaguen Thibaud, Jovanović Nikola, Staab Robin, and Vechev Martin. Black-box detection of
language model watermarks. arXiv preprint arXiv:2405.20777, 2024.

Ashish Venugopal, Jakob Uszkoreit, David Talbot, Franz Josef Och, and Juri Ganitkevitch. Water-
marking the outputs of structured prediction with an application in statistical machine translation.
In Proceedings of the 2011 Conference on Empirical Methods in Natural Language Processing,
pp. 1363–1372, 2011.

Xi Yang, Kejiang Chen, Weiming Zhang, Chang Liu, Yuang Qi, Jie Zhang, Han Fang, and Nenghai
Yu. Watermarking text generated by black-box language models. arXiv preprint arXiv:2305.08883,
2023.

KiYoon Yoo, Wonhyuk Ahn, Jiho Jang, and Nojun Kwak. Robust multi-bit natural language
watermarking through invariant features. In Proceedings of the 61st Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long Papers), pp. 2092–2115, 2023.

Hanlin Zhang, Benjamin L Edelman, Danilo Francati, Daniele Venturi, Giuseppe Ateniese, and Boaz
Barak. Watermarks in the sand: Impossibility of strong watermarking for generative models. arXiv
preprint arXiv:2311.04378, 2023.

Xuandong Zhao, Prabhanjan Ananth, Lei Li, and Yu-Xiang Wang. Provable robust watermarking for
ai-generated text. arXiv preprint arXiv:2306.17439, 2023.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

A APPENDIX

A.1 ALGORITHM

Algorithm 1 Black-Box Watermarking
1: function WATERMARK(cdf F , key K, # cand m, ctx len n, prompt P , seq len k, LM)
2: O ← ϕ
3: while ¬ STOPCOND(O) do ▷ Continue until stop token is encountered or max length reached.
4: O ← O | WATERMARKSINGLE(F,K,m, n, P |O, k,LM)
5: return O

6: function WATERMARKSINGLE(cdf F , key K, # cands m, ctx len n, prompt P , seq len k, LM)
7: Q1, . . . , Qm ∼ LM (· | P ; k) ▷ Draw m sequences from LM, each with at most k tokens.
8: (X1, c1), . . . , (Xj , cj)← UNIQUESEQSWITHCOUNTS((Q1, . . . , Qm))
9: u1, . . . , uj ← SCORESEQS(F, (X1, . . . , Xj),K, n, P)

10: i∗ ← argmaxj
i=1 u

m/ci
i

11: return Xi∗

12: function SCORESEQS(cdf F , candidates C, key K, ctx len n, prefix P)
13: Z ← ϕ
14: for Xi in C do
15: for w in NGRAMS (Xi, n, P) do ▷ Don’t compute n-grams over original prompt.
16: Z ← Z | (i, INTHASH(K|w)) ▷ Apply cryptographically secure integer hash.
17: Z ← REMOVEDUPLICATES(Z)
18: for i, S in SORTEDGROUPBY(Z) do ▷ Iterate through each candidate’s set of unique seeds.
19: R← (F [s] for s in S)

20: ui ← F|R|

(∑
j Rj

)
21: return u1, . . . , u|C|

22: function DETECT(cdf F , tokens X , key K) ▷ p-value-based detection.
23: S← ϕ
24: for w in NGRAMS (X,n, ϕ) do
25: S ← S | INTHASH(K|w)
26: S ← REMOVEDUPLICATES(S)
27: R← (F [s] for s in S)

28: return F|R|

(∑
j Rj

)
▷ Higher score means higher likelihood of being watermarked.

Algorithm 2 Recursive Black-Box Watermarking
1: function WATERMARKRECURSIVE(F , (K1, . . . ,Kt), mt, n, P , k, LM) ▷ Sub. for WATERMARKSINGLE.
2: if t = 1 then
3: M = LM (· | · ; ·)
4: else
5: M = WATERMARKRECURSIVE(F, (K2, . . . ,Kt) ,m

t−1, n, · , · ,LM)
6: return WATERMARKSINGLE(F,K1,m, n, P, k,M)

7: function DETECTRECURSIVE(cdf F , tokens X , keys (K1, . . . ,Kt))
8: P ← ϕ
9: for Ki in (K1, . . . ,Kt) do

10: P ← P | (1− DETECT(F,X,Ki))
11: y ← −2

∑
i logPi ▷ Combine p-values using Fisher’s method.

12: return χ2
2t (y)

A.2 EXTENSIONS

We now discuss extensions of our method. At its crux, the scheme samples sequences of text from a
service, divides each unique sequence into a bag of units (namely n-grams) where each unit is scored

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

using a PRF and the scores are combined in an order-agnostic way. The strength of the watermark
depends on the number of distinct units across the candidate sequences and the robustness depends
on how many of the units are kept intact after the attack. Although any symmetric monotone function
can be used instead of the simple summation of the PRNs for each unit, we do not see any compelling
reason to make our algorithm more general in this way. However, we briefly highlight some other
possible extensions.

Beam search. Rather than drawing i.i.d. samples from the model, one can apply our watermark
selection to the sequences that arise from beam search, with the caveat that this would violate our
distortion-free property.

Semantic watermarking. Rather than use n-grams, the watermarker can extract a set of meaningful
semantic units for each sampled text. Robustness may be improved as these units will largely remain
intact under an attack like paraphrasing. On the other hand, many of the sampled sequences will have
the same meaning, so there may be a lot of duplicate units across the candidate sequences, which
would degrade the watermark strength.

Paraphrasing. Thus far, we assumed the service provides m draws from the LLM. If m is large, this
can be prohibitively expensive. The resource-constrained may consider the following alternative:
draw one sample from the LLM and feed it to a much cheaper paraphrasing model to generate m
paraphrases. The downside is that there may be a lot of duplicate n-grams across the candidate set.

A.3 FULL RELATED WORK

Watermarking outside of the context of generative LLMs, which is sometimes referred to as lin-
guistic steganography, has a long history and typically involves editing specific words from an
non-watermarked text. Watermarking in the modern era of generative models is nascent — Venugopal
et al. (2011) devised a scheme for machine translation, but interest in the topic grew substantially
after the more recent seminal works of Kirchenbauer et al. (2023a;b) and Aaronson (2023). Many
effective strategies employ some form of pseudorandom functions (PRFs) and cryptographic hashes
on token n-grams in the input text. Kirchenbauer et al. (2023a) proposes modifying the next-token
probabilities every step of decoding such that a particular subset of the vocabulary, referred to as
green list tokens, known only to those privy to the secret key, are made more probable. Watermarked
text then is expected to have more green tokens than non-watermarked text and can be reliably
detected with a statistical test. The scheme distorts the text, but with the right hyper-parameters a
strong watermark may be embedded with minimal degradation in text quality.

Meanwhile, Aaronson (2023) proposes a clever distortion-free strategy which selects the token that is
both highly probable and that achieves a high PRF value. Kuditipudi et al. (2023) applies a scheme
similar in spirit to Aaronson (2023) but to improve robustness to attacks, pseudorandom numbers
(PRNs) are determined by cycling through a fixed, pre-determined sequence of values called the key,
rather than by n-grams. They compute a p-value using a permutation test to determine if the text was
watermarked with that specific key.

Lee et al. (2023) adapts Kirchenbauer et al. (2023a)’s scheme for code-generation by applying the
watermark only at decoding steps that have sufficient entropy. Zhao et al. (2023) investigates a special
case of Kirchenbauer et al. (2023a) where n = 0 for improved robustness to adversarial corruption.
Fernandez et al. (2023) tests various watermarking schemes on classical NLP benchmarks and also
introduces new statistical tests for detection — most notably, they suggest skipping duplicate n-grams
during testing.

Yang et al. (2023) introduces a scheme that relies on black-box access to the LLM. Their method
samples from the LLM and injects the watermark by replacing specific words with synonyms.
Although their approach shares the assumption of black-box LLM access, as in our work, it has
limitations not present in ours: the watermarking process is restricted to words that can easily be
substituted with multiple synonyms, synonym generation is powered by a BERT model (Devlin,
2018), making it computationally expensive, and the scheme is not distortion-free. Chang et al.
(2024) presents POSTMARK, a black-box watermarking method that uses semantic embeddings to
identify an input-dependent set of words. These words are then inserted into the text by an LLM after
decoding. However, this approach is also not distortion-free, as the insertion of words by the LLM
often results in significantly longer watermarked text.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Given the weakness of many schemes to paraphrasing or word substitution attacks, some have
proposed watermarking based on semantics and other features that would remain intact for common
attack strategies (Liu et al., 2023b; Hou et al., 2023; Ren et al., 2023; Yoo et al., 2023). Mean-
while, others have viewed the problem through the lens of cryptography and classical complexity
theory (Christ et al., 2023; Christ & Gunn, 2024). Lastly, Liu et al. (2023a) proposes an un-forgeable
publicly verifiable watermark algorithm that uses two different neural networks for watermark gener-
ation and detection. Huang et al. (2023) improves the statistical tests used for detection, providing
faster rates than prior work.

As the deployment of watermarks to LLMs is still early and also presumably secretive, the correct
threat model is still undetermined. Krishna et al. (2024) shows that paraphrasing can evade both
third-party and watermarking detectors alike. Some may posit that attacks like paraphrasing or
round-trip translation are unrealistic since either they are too expensive to conduct at scale or parties
in possession of a capable paraphrasing model have adequate resources to serve their own LLM.
Zhang et al. (2023) show that attackers with weaker computational capabilities can successfully
evade watermarks given access to a quality oracle that can evaluate whether a candidate output is
a high-quality response to a prompt, and a perturbation oracle which can modify an output with
a non-trivial probability of maintaining quality. Alarmingly, Gu et al. (2023) demonstrates that
watermarks can be learned — an adversary can use a teacher model that employs decoder-based
watermarking to train a student model to emulate the watermark. Thibaud et al. (2024) formulates
tests to determine whether a black-box language model is employing watermarking, and they do not
find strong evidence of watermarking among currently popular LLMs.

A.4 ADDITIONAL EXPERIMENTAL DETAILS

Prompting strategies for Gemini. We use Gemini for paraphrasing and as an LLM judge. Occasion-
ally, Gemini will refuse to return a response due to safety filters that cannot be bypassed. We use the
following prompt to compute win rates:

“Is (A) or (B) a better response to PROMPT? Answer with either (A) or (B). (A): GREEDY RESPONSE.
(B): WATERMARKED RESPONSE.”

For determining the best response, we use:

“Is (A), (B), or (C) the best responses to PROMPT? Answer with either (A), (B), (C). (A): RESPONSE
1. (B): RESPONSE 2. (C): RESPONSE 3.”

In both cases, we search for the first identifier (i.e. “(A)”, “(B)”, “(C)”). If one is not found or if
Gemini does not return a response, the example is not used in the win rate calculation or the first
response is chosen.

For paraphrasing, we use the following:

“Paraphrase the following: RESPONSE”.

We skip examples for which Gemini does not return a response.

A.5 OMITTED EXPERIMENTAL RESULTS

Figure 2 shows the effect of varying the amount of random token corruption on detection pAUC.
We observe the same trend as for AUC. Figure 3 plots a histogram of the entropy of the underlying
next-token probability distribution under temperature 1 random sampling without watermarking
across our dataset. We see the entropy is concentrated between 0.5 and 3 nats. We plot the AUC
lower bound predicted by Theorem 4.2 (k = 1,m = 1024) sweeping our entropy term α across
this range, with the understanding that for sufficiently large m, our α is a good estimator of the true
underlying entropy. In Figure 4 we look at the impact of m and T on our AUC bound when the
optimal α = log(m) is plugged in. We see sharp diminishing returns w.r.t. m (performance saturates
after around m = 10 for all T ’s). We empirically observe this saturation in Table 1, where AUC
saturated at 97.7% at m = 16 — that is, increasing m beyond 16 had negligible impact. Furthermore,
we observe that the bound increases sharply with T , corroborating the trend we see empirically in
Figure 1.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Figure 2: Effect of the amount of (random token replacement) corruption on detection pAUC (mixed
T ’s) with 1% max FPR.

Figure 3: Left: Histogram of the average entropy (nats) in the LLM’s underlying next-token
distribution across non-watermarked response tokens. Right: A lower bound for ROC-AUC predicted
by Theorem 4.2 as a function of the entropy term α for the range of values we observe empirically.
When m is large, α becomes a reasonable estimator of the LLM’s entropy.

Given a next-token distribution over the vocabulary, we can estimate α via simulation. In Figure 5
we plot the effect of m on α̂, our simulated entropy, for two distributions p — uniform and Zipf —
over a 32k token vocabulary. Neither may be realistic in practice, but the exercise is still informative
as we observe that α̂ follows log(m) pretty well for even large m’s when p is uniform. As expected,
α̂ is smaller when p is Zipf (lower entropy) and deviates from log(m) for large m.

Figure 7 plots the performance that Theorem 4.4 predicts when using the optimal likelihood ratio test
with the Gamma distribution.

Table 6 shows perplexity and detection performance for GEMMA-7B-INSTRUCT on the eli5-category
dataset. The trends here are as before. Figure 6 shows the impact of number of test samples on
detection.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Figure 4: Left: A lower bound for ROC-AUC predicted by Theorem 4.2 as a function of m (using
optimal α = log(m)). Right: Same plot, but as a function of T (again, using optimal α).

Figure 5: Given a distribution over the vocabulary (taken to be of size 32k), we can estimate α for
finite m via simulation (1000 trials). We observe that when the underlying next-token distribution is
uniform, α ≈ log(m) in a practical range for m. However, when the underlying distribution is Zipf
(less entropy), α quickly deviates from log(m) as m grows and the probability of sampling duplicate
tokens increases.

Figure 6: Impact of number of test samples T on detection performance for GEMMA-7B-INSTRUCT
on eli5-category

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

PPL LH AUC pAUC C. AUC C. pAUC
Max Std. Error 0.03 0.002 0.1 0.1 0.2 0.1

Unif. Fisher p-value

Flat (k = 1)

2 3.46 0.597 86.3 62.3 75.8 54.7
4 3.36 0.604 94.8 79.0 87.6 66.4

16 3.20 0.618 97.9 90.0 94.0 80.2
32 3.06 0.629 98.2 91.7 94.9 82.7
512 2.63 0.668 98.5 93.0 95.7 85.5
1024 2.61 0.670 98.5 93.2 95.7 85.8

Flat (k = 10)

2 4.10 0.568 78.9 53.1 67.4 51.0
4 4.06 0.572 91.2 65.3 80.5 55.0

16 3.86 0.583 97.1 82.8 90.9 68.1
32 3.80 0.587 97.9 86.3 92.7 72.7

Flat (k = 50)

2 3.79 0.581 65.5 50.5 57.1 50.2
4 3.76 0.584 78.4 52.0 66.1 50.7

16 3.72 0.586 89.8 60.2 77.9 53.1
32 3.67 0.589 92.0 64.7 80.7 54.5

Table 2: Results (10% corruption, 1% max FPR) for U(0, 1) when a meta p-value is used for scoring,
wherein the T n-gram-level p-values are combined using Fisher’s method. The k = 1 setting is
precisely a stochastic version of Aaronson Corrected. AUCs, pAUCS and their standard errors are
scaled by 100.

Figure 7: Detection performance (TPR at 1% FPR) of the likelihood ratio test (LRT) predicted by
Theorem 4.4. Left: Effect of m, the number of sampled sequences, for various sequence lengths k,
when the number of test samples T = 100. Right: Effect of T for various m’s when k = 50. We see
that degradation due to large k can be offset by using a larger m and that the hit from small m can be
compensated by large T .

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

PPL LH AUC pAUC C. AUC C. pAUC
Max Std. Error 0.03 0.002 0.1 0.3 0.2 0.1

Unif. KDE LRT

Flat (k = 1)

2 3.46 0.597 78.1 57.7 64.4 51.5
4 3.36 0.604 73.9 56.0 60.7 51.2

16 3.20 0.618 66.6 53.9 56.7 51.3
32 3.06 0.629 64.0 53.6 55.2 51.3
512 2.63 0.668 56.2 51.3 50.4 50.3
1024 2.61 0.670 55.4 51.1 49.9 50.2

Flat (k = 10)

2 4.10 0.568 84.1 58.0 72.8 53.1
4 4.06 0.572 94.8 72.9 83.9 58.7

16 3.86 0.583 97.8 85.1 88.3 64.2
32 3.80 0.587 97.3 85.6 86.9 64.0

Flat (k = 50)

2 3.79 0.581 69.0 51.6 60.9 50.9
4 3.76 0.584 83.1 55.6 71.0 52.4

16 3.72 0.586 94.0 68.2 81.8 56.2
32 3.67 0.589 95.5 72.5 84.0 57.9

Gamma Exact LRT

Flat (k = 1)

2 3.45 0.598 76.6 57.0 63.8 51.6
4 3.44 0.600 74.4 55.2 61.5 51.2

16 3.17 0.623 68.3 53.6 57.8 51.3
32 3.04 0.634 65.5 53.5 56.2 51.5

Flat (k = 10)

2 4.07 0.570 82.9 58.4 70.3 52.8
4 4.01 0.573 89.4 67.5 73.4 54.1

16 3.96 0.577 85.1 61.4 68.0 51.7
32 3.93 0.580 82.1 57.7 65.7 51.2

Table 3: Results when the likelihood-ratio test is used for scoring in place of p-values. When
F = U(0, 1), the null and alternative likelihoods are estimated non-parametrically using kernel
density estimation (KDE). When F = −Gamma(1/k, 1), the densities given in Theorem 4.4 are
used. AUCs, pAUCs, and their standard errors are scaled by 100.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

PPL LH AUC pAUC C. AUC C. pAUC
Max Std. Error 0.04 0.002 0.1 0.2 0.1 0.2

F = N(0, 1)

Flat (k = 1)

2 3.47 0.597 90.4 68.7 81.7 58.5
4 3.36 0.605 95.9 83.0 90.2 70.7

16 3.15 0.622 98.0 90.6 94.2 80.4
32 3.05 0.631 98.2 91.8 94.9 82.2
512 2.72 0.661 98.5 92.9 95.4 83.8
1024 2.70 0.663 98.5 93.0 95.4 84.1

Flat (k = 10)

2 4.13 0.567 84.1 56.3 73.3 52.1
4 4.02 0.573 94.2 73.3 85.8 59.8

16 3.93 0.579 98.0 87.9 93.2 74.5
32 3.84 0.584 98.4 90.0 94.1 77.7

Flat (k = 50)

2 3.82 0.580 71.0 50.9 62.5 50.4
4 3.73 0.585 83.8 53.9 72.4 51.5

16 3.69 0.588 93.0 67.5 83.1 55.9
32 3.67 0.589 94.5 72.7 85.6 58.6

F = χ2
2

Flat (k = 1)

2 3.45 0.597 86.2 62.1 75.5 54.5
4 3.39 0.602 94.8 79.1 87.8 66.8

16 3.20 0.617 97.9 90.1 93.9 80.1
32 3.08 0.627 98.2 91.7 94.9 82.9
512 2.98 0.644 98.7 95.2 96.7 89.6
1024 3.03 0.641 98.8 95.7 97.0 90.5

Flat (k = 10)

2 4.12 0.567 81.6 54.4 69.8 51.4
4 4.04 0.573 93.5 70.3 84.0 57.7

16 3.84 0.585 98.1 87.5 93.1 74.1
32 3.65 0.596 98.7 90.6 94.7 78.6

Flat (k = 50)

2 3.77 0.583 68.1 50.6 58.7 50.2
4 3.74 0.585 82.0 52.9 69.4 51.0

16 3.68 0.588 92.9 65.6 81.9 55.0
32 3.65 0.591 94.5 71.5 84.5 57.7

Table 4: Results (10% corruption, 1% max FPR) when F is N(0, 1) or χ2
2 and p-values are used for

scoring. AUCs, pAUCS, and their standard errors are scaled by 100.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

LH AUC pAUC C. AUC C. pAUC P. AUC P. pAUC
Greedy Decoding 0.814 - - - - - -

Random Sampling 0.593 - - - - - -

Aaronson 0.654 71.8 67.7 65.7 62.6 52.4 50.9
Aaronson Cor. 0.654 98.3 92.9 95.4 84.7 57.6 51.7

Kirchenbauer

0.5 0.596 70.7 51.7 68.3 51.2 47.3 49.9
1 0.594 85.4 59.9 81.9 56.5 50.9 50.0
2 0.569 96.6 82.5 94.8 76.5 55.7 50.4
3 0.522 99.1 94.0 98.4 90.4 60.5 51.3
4 0.493 99.8 98.2 99.6 96.6 63.9 52.4

Kuditipudi 0.592 85.8 76.5 85.1 74.3 67.5 52.2

Flat (k = 1)

2 0.597 90.5 69.7 82.6 59.4 50.6 50.1
4 0.604 96.0 83.7 90.6 71.4 51.6 50.5

16 0.618 97.7 90.2 94.1 79.9 53.0 50.8
32 0.629 97.9 90.7 94.4 80.8 52.8 50.7
512 0.668 97.8 90.5 94.3 80.5 53.2 50.9
1024 0.670 97.8 90.5 94.2 80.5 52.4 50.7

Flat (k = 10)

2 0.568 84.0 56.5 74.3 52.3 49.2 50.0
4 0.572 94.1 73.8 86.2 60.2 51.0 50.1

16 0.583 97.9 87.7 93.2 74.2 53.5 50.4
32 0.587 98.3 89.7 94.2 77.7 54.1 50.5

Flat (k = 50)

2 0.581 70.5 50.9 63.1 50.5 47.6 50.0
4 0.584 83.5 54.1 72.7 51.6 49.5 50.0

16 0.586 93.0 67.9 83.7 56.3 50.2 50.1
32 0.589 94.5 72.9 86.0 59.0 51.4 50.2

Rec. (k = 1)

4 0.601 93.9 78.2 87.3 65.8 50.0 50.3
16 0.607 95.4 83.5 90.8 72.5 53.5 50.7
32 0.612 96.5 85.8 92.0 74.5 50.4 50.6
512 0.632 97.4 88.6 92.9 77.5 51.0 51.1

Rec. (k = 10)
4 0.567 89.6 64.9 80.3 55.6 49.1 50.0

16 0.568 93.6 74.8 87.0 62.4 53.0 50.2
32 0.573 95.1 78.0 88.6 64.4 51.2 50.2

Rec. (k = 50)
4 0.582 75.9 52.2 67.0 51.0 48.1 50.0

16 0.583 81.5 55.0 73.7 52.2 52.1 50.2
32 0.582 84.0 56.6 75.3 52.6 49.7 50.0

Table 5: Average per-token likelihoods and detection performance when the negative class is taken to
be non-watermarked generations sampled with temperature 1. The trends here are consistent with
those discussed in the main text, where the negative class consists of non-watermarked argmax /
greedy generations and perplexity is used to measure distortion. AUCs and pAUCS are scaled by 100.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

PPL LH AUC pAUC
Greedy Decoding 1.313 0.872 - -

Random Sampling 1.627 0.811 - -

Aaronson 1.619 0.814 61.0 57.8
Aaronson Cor. 1.619 0.814 93.0 70.9

Kirchenbauer

0.5 1.649 0.808 61.6 50.7
1 1.673 0.803 72.1 52.3
2 1.836 0.782 87.8 63.0
3 2.159 0.743 95.3 78.5
4 2.847 0.683 98.3 90.0

Kuditipudi 1.615 0.814 58.4 51.0

Flat (k = 1)

2 1.631 0.810 77.1 53.6
4 1.623 0.811 87.0 61.7
16 1.621 0.812 92.4 70.3
32 1.615 0.812 92.8 71.9

512 1.610 0.814 93.2 73.1
1024 1.610 0.814 93.2 72.9

Flat (k = 10)
4 1.657 0.807 89.4 61.7
16 1.653 0.808 94.7 75.0

Flat (k = 50)
4 1.652 0.808 80.5 52.6
16 1.645 0.810 89.7 60.4

Rec. (k = 1)

4 1.623 0.813 82.1 57.0
16 1.621 0.812 87.5 63.0
32 1.630 0.810 88.1 63.9

512 1.615 0.815 90.0 66.7

Rec. (k = 10)
4 1.665 0.805 84.0 56.2
16 1.662 0.806 89.6 64.4

Rec. (k = 50)
4 1.664 0.806 73.2 51.2
16 1.653 0.808 79.4 53.5

Table 6: Main results (mixed T ’s for AUC and pAUC where max FPR is 1%) for GEMMA-7B-
INSTRUCT on the eli5-category test split. AUC and pAUC are scaled by 100. We observe the same
trends here as with MISTRAL-7B-INSTRUCT on databricks-dolly-15k. When k = 1 and m = 1024
(white-box setting) we are slightly better in perplexity and detection (sans corruption) than Kuditipudi
et al. (2023) and on-par with Aaronson (2023). Kirchenbauer et al. (2023a) can always outperform
on detection by cranking up δ, but when matched on perplexity, we achieve better detection. For
example, δ = 0.5 gives perplexity of 1.649 and AUC of 61.6% whereas we achieve perplexities /
AUC’s of 1.610 and 93.2% when k = 1,m = 1024 and even 1.645 / 89.7% when k = 50,m = 16
(black-box).

AUC pAUC C. AUC C. pAUC P. AUC P. pAUC
Aaronson Cor. (sum p-value) 97.1 75.2 92.5 62.9 54.6 50.0

Table 7: Detection performance (mixed T ’s) when a sum-based p-value is used in the length correction
of Aaronson (2023). We observe slightly worse performance than using Fisher’s method to combine
the p-values of individual tests. AUCs and pAUCs are scaled by 100.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

A.6 OMITTED PROOFS

Lemma A.1. Assume all draws from LM (· | P ; k) are i.i.d. with distribution µ and that the unique
seeds across n-grams and sequences, {Si,l}i,l are conditionally independent given the counts of the
sampled sequences. Then the output of any number of calls to WATERMARKSINGLE with LM using
key K are also i.i.d. with distribution µ.

Proof. For concreteness, let m̃ be the number of calls to WATERMARKSINGLE, where the v-th
call draws m samples Qv =

{
Q(v,1), . . . , Q(v,m)

}
from LM (· | P ; k). First we show (mutual)

independence. We note that because F , m, K, P are all fixed, non-random quantities, the watermark
selection process embodied in Algorithm 1 can be seen as a deterministic function ψF,m,K,P that
takes m input sequences Qv and outputs one of them. The randomness in the deduplication of
n-grams is a non-issue since it is independent across calls. Since functions of independent random
variables are independent and {Qv}m̃v=1 is independent, so is {ψF,m,K,P (Qv)}m̃v=1. This proves
independence.

Now, we prove that the outputs are identically distributed with the same distribution as their inputs.
To do this, consider the v-th call in isolation and for ease of notation, let {Q1, . . . , Qm} = Qv and
Xw = ψF,n,K,P (Qv). Let {(X1, c1), . . . , (Xj , cj)} be the unique sequences and corresponding
counts. Note that the {(Xi, ci)}i need not be independent (it is easy to come up with a counter-
example). Let Si be the integer seeds forXi after deduplication. Conditioned on (c1, . . . , cj), {Si,l}i,l
is independent and so {Ri,l}i,l consists of i.i.d. draws from F by virtue of pseudorandomness. As F

is also continuous, we have that when conditioned on (c1, . . . , cj), ui
iid∼ U(0, 1) for i = 1, . . . , j, by

the inverse-sampling theorem.

Let x be any sequence. We wish to show that P(Xw = x) = µ(x). Let c =
∑

i 1[Qi = x].
The independence of the 1[Qi = x]’s follows from the independence of the Qi’s, and thus c ∼
Binomial(m,µ(x)). Clearly, P({x selected} | c = 0) = 0. If c > 0 then obviously one of the Xi’s
is x, and we can, without loss of generality, label X1 = x and c1 = c, so that P({x selected} | c =
i) = P({X1 selected} | c1 = i). Now,

P({X1 selected} | c1, . . . , cj) = P
({

1 = argmaxt u
m/ct
t

} ∣∣∣ c1, . . . , cj)
= P

({
1 = argmaxt

log(ut)

ct/m

} ∣∣∣∣ c1, . . . , cj)
= P ({1 = argmint log(− log(ut))− log(ct/m)} | c1, . . . , cj)
= P ({1 = argmaxt − log(− log(ut)) + log(ct/m)} | c1, . . . , cj) .

Let gt = − log(− log(ut)). It is a known fact that if ut
iid∼ U(0, 1), then gt

iid∼ Gumbel(0, 1). Now
we can apply what is often referred to the "Gumbel-Max trick" in machine learning. Conditioned on
(c1, . . . , cj),

argmaxt gt + log(ct/m) ∼ Categorial
(

ct/m∑
t ct/m

)
t

= Categorial (ct/m)t .

Thus,

P({X1 selected} | c1 = i) =
∑

c2,...,cj

P({X1 selected} | c1 = i, c2, . . . , cj)P(c1 = i, c2, . . . , cj)

P(c1 = i)

=
i/m P(c1 = i)

P(c1 = i)
= i/m.

Putting it all together, we have that

P(Xw = x) =

m∑
i=0

P({x selected} | c = i)P(c = i)

=

m∑
i=0

i

m

(
m

i

)
µ(x)i(1− µ(x))m−i

=
1

m
mµ(x) = µ(x).

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

We have shown that the outputs of WATERMARKSINGLE are mutually independent and carry the
same distribution µ as their inputs.

Remark. The proof of Lemma A.1 treats the secret key K as fixed (possibly unknown); treating it as
random changes the story, as we illustrate with the following toy example.

Suppose that regardless of the conditioning prompt, the LM outputs one of two sequences — x1 or
x2 with equal probability. Let ui = SCORESEQS(F, (xi),K, n, P) for i ∈ {1, 2}. If m is very large,
then it becomes very likely that X1 = x1, X2 = x2 (modulo the labeling) and c1 ≈ c2 ≈ m/2 and
so argmax2i=1 u

m/ci
i ≈ argmaxi ui. The outputs to two sequential calls to WATERMARKSINGLE

should not be independent, because the output and key are dependent and the key is shared across
calls. Concretely, if the output to the first call is x1 we learn that our scheme with key K prefers x1
over x2, and so we will likely output x1 in the second call. In contrast, if we had not observed the
first call (and our prior on the key had not been updated), we may have returned each sequence with
equal probability.

Proof of Theorem 4.1. We first show that WATERMARKSINGLE and WATERMARKRECURSIVE are
distortion-free and then that autoregressive calls to them as done by WATERMARK preserves this
property.

To show WATERMARKSINGLE is distortion-free, we observe that the LM argument supplied is the
true underlying language model µ and that our stochastic samples from the model are i.i.d., so we
can apply Lemma A.1 directly.

Distortion-free for WATERMARKRECURSIVE follows easily from induction on t, the number of keys
(and hence the number of recursive calls). When t = 1, the LM is the true underlying language model,
so the outputs are i.i.d. from µ. We get t = v + 1 by combining Lemma A.1 with the inductive step
— that the outputs of WATERMARKRECURSIVE with keys (K2, . . . ,Kv+1) are i.i.d. from µ.

Finally, we show that autoregressive decoding where sequences no longer than k tokens are generated
one at a time via watermarking continues to be distortion-free.

To do this, we introduce two sets of random variables: {X(i)
u }∞i=1 represents k-sized chunks of the

model’s response when watermarking is not employed — that is, X(i)
u represents non-watermarked

response tokens for indices (i− 1)k + 1 to ik. Unused chunks can be set to a sentinel value like ϕ.
{X(i)

w }i represents the same collection but when WATERMARK is employed. Let x be a sequence of
any length. Partition x into contiguous k-sized chunks (x1, . . . , xt). Note that xt may have length
less than k if the stop-token was reached in that chunk, but all other chunks have exactly k tokens.
With P as the original prompt, we need to show P(Xw = x | P) = P(Xu = x | P), where Xw and
Xu are the watermarked and non-watermarked responses of any length.

P(Xw = x | P) = P(X(t)
w = xt | X(t−1)

w = xt−1, . . . , X
(1)
w = x1, P) · · ·P(X(1)

w = x1 | P)
= P(X(1)

w = xt | (P, x1, . . . , xt−1)) · · ·P(X(1)
w = x1 | P)

Because WATERMARKSINGLE and WATERMARKRECURSIVE are distortion-free:

= P(X(1)
u = xt | (P, x1, . . . , xt−1)) · · ·P(X(1)

u = x1 | P)
= P(Xu = x).

Proof of Theorem 4.3. First consider the flat scheme. Under the null, given our assumption of
independence, Rj

iid∼ F , so F|R|

(∑
j Rj

)
∼ U(0, 1) and the result follows. For the recursive

scheme, we know from the flat scheme and from assumed independence that Pj
iid∼ U(0, 1), where

Pj is the p-value associated with the j-th key. Thus, y ∼ χ2
2|P | so that χ2

2|P |(y) ∼ U(0, 1).

Lemma A.2. Assume the conditions of Theorem 4.2. Conditioned on the counts c of each token in
the vocabulary, and which token id i∗ was selected (i.e. is the argmax), ui∗ ∼ Beta(m/ci∗ , 1).

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

Proof of Lemma A.2. Let zi = −m log(ui)/ci, where ui
iid∼ U(0, 1). Then, zi ∼ Exp(ci/m) and

i∗ = argmaxji=1 u
m/ci
i = argmini −m log(ui)/ci = argmini zi.

By nice properties of the Exponential, we have that

zi∗ ∼ Exp

(∑
i

ci
m

)
= Exp(1).

ui∗ = exp(−ci∗zi∗/m), so

P(ui∗ ≤ t) = P(zi∗ ≥ −m log(t)/ci∗) = exp(m log(t)/ci∗) = tm/ci∗ .

Differentiating this w.r.t to t, we recover the pdf of Beta(m/ci∗ , 1).

Proof of Theorem 4.2. F is U(0, 1). The detection score is FT

(∑
j Rj

)
with Rj

iid∼ F under H0

and when conditioned on the counts C and the argmax token ids I∗, Rj ∼ Beta
(
m/Cj,I∗

j
, 1
)

under
H1. Redefine s0 and s1 to be

∑
j Rj under H0 and H1 respectively.

P(FT (s1) ≥ FT (s0)) = P(s1 ≥ s0) = Et(s1 ≥ t),

where t ∼ IrwinHall(T) since s0 is the sum of T i.i.d. U(0, 1)’s. Our task now is to find a lower-
bound for s1. Noting independence across tokens and that Rj ∈ [0, 1], we can use Popoviciu’s bound
on variance to obtain,

V(s1) =
∑
j

V(Rj) ≤
T

4
(1− 0)2 = T/4.

Plugging in the expectation of a Beta and recalling that when conditioned on C, the probability that
token i in the vocabulary is the argmax token at step j is Cj,i/m, we have

E(s1) =
T∑

j=1

EC

(
V∑
i=1

Cj,i/m

1 + Cj,i/m

)
.

With tedious calculation, it can be shown that
x

1 + x
≥ x

2
− λx log(x), for x =

j

m
, j ∈ [1, . . . ,m], where

λ =
1

log(m)

(
m

m+ 1
− 1

2

)
.

Thus,

E(s1) ≥
T∑

j=1

(
1

2
− λEC

V∑
i=1

1 [Cj,i > 0]
Cj,i

m
log

(
Cj,i

m

))
.

=
∑
j

1/2 + λα = T/2 + λTα.

With bounds on expectation and variance, we proceed to upper-bound the error. Firstly, we have that,

E(s1 − s0) ≥ T/2 + λTα− T/2 = λTα ≥ 0,

V(s1 − s0) ≤ T/4 + T/12 = T/3.

P(s1 ≤ s0) = P(s1 − s0 − E(s1 − s0) ≤ −E(s1 − s0))

≤ P(s1 − s0 − E(s1 − s0) ≤ −λTα)

≤ V(s1 − s0)

V(s1 − s0) + (λTα)2

≤ 1

1 + 3Tλ2α2
,

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

where the penultimate line follows from Cantelli’s inequality. Thus, we have that

P(s1 ≥ s0) = 1− P(s1 ≤ s0) ≥
1

1 + 1/(3Tλ2α2)
.

Proof of Theorem 4.4. Let r be the PRF value for some n-gram from the text we wish to text. Let
F0 = −Gamma(1/k, β) with pdf f0 and F1 = −Gamma(1/k,mβ) with pdf f1. By definition,
r ∼ F0 under H0. By our assumptions, ci = 1 and |Ri| = k, ∀i. So, argmaxmi=1 u

m/ci
i =

argmaxmi=1 ui = argmaxi Fk

(∑
j Ri,j

)
= argmaxi

∑
j Ri,j = argmini −

∑
j Ri,j , where the

second-to-last equality follows from the monotonicity of Fk. −
∑

j Ri,j ∼ Gamma(k/k, β) =

Exp(1, β).
∑

j Ri∗,j ∼ −Exp(1,mβ), because the minimum of Exponentials is Exponential. Thus,
∀j, Ri∗,j ∼ −Gamma(1/k,mβ) = F1 and r ∼ F1 under H1. Now let R refer to the T test-
time PRF values. From the independence of test n-grams, the log-likelihood ratio test has score
s(R) =

∑T
i=1 (log f1(Ri)− log f0(Ri)) and the fact that it is the uniformly most powerful test

follows directly from the Neyman–Pearson lemma. We now have that,

f0(r) =
β1/k

Γ(1/k)
(−r)1/k−1 exp(βr),

f1(r) =
m1/kβ1/k

Γ(1/k)
(−r)1/k−1 exp(mβr),

s(R) =
T

k
log(m) + (m− 1)β

T∑
i=1

Ri, so that

PH0(s > t) = PH0

(
(m− 1)β

∑
i

Ri > t− T

k
log(m)

)
= Gamma(T/k, β) (Q(t)) , and

PH1
(s ≤ t) = PH1

(
(m− 1)β

∑
i

Ri ≤ t− T

k
log(m)

)
= 1− Gamma(T/k,mβ) (Q(t)) , where

Q(t) =
T log(m)/k − t

(m− 1)β
.

26

	Introduction
	Related Work
	Algorithm
	Theory
	Experiments
	Models, Datasets, and Hyper-parameters
	Evaluation Metrics
	Adversarial Attacks
	Baselines
	Experimental Results
	Overall performance of our flat and recursive schemes
	Effects of Hyperparameters
	Observations on detection

	Conclusion
	Appendix
	Algorithm
	Extensions
	Full Related Work
	Additional Experimental Details
	Omitted Experimental Results
	Omitted Proofs

