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Abstract
Robust and effective scaling of models from small
to large width typically requires the precise ad-
justment of many algorithmic and architectural
details, such as parameterization and optimizer
choices. In this work, we propose a new per-
spective on parameterization by investigating a
key assumption in prior work about the alignment
between parameters and data and derive new the-
oretical results under weaker assumptions and a
broader set of optimizers. Our extensive empirical
investigation includes tens of thousands of mod-
els trained with all combinations of three opti-
mizers, four parameterizations, several alignment
assumptions, more than a dozen learning rates,
and fourteen model sizes up to 26.8B parameters.
We find that the best learning rate scaling pre-
scription would often have been excluded by the
assumptions in prior work. Our results show that
all parameterizations, not just maximal update
parameterization (muP), can achieve hyperparam-
eter transfer; moreover, our novel per-layer learn-
ing rate prescription for standard parameterization
outperforms muP. Finally, we demonstrate that
an overlooked aspect of parameterization, the ep-
silon parameter in Adam, must be scaled correctly
to avoid gradient underflow and propose Adam-
atan2, a new numerically stable, scale-invariant
version of Adam that eliminates the epsilon hy-
perparameter entirely.

1. Introduction
A neural network parameterization is a prescription for scal-
ing a set of important quantities with respect to a set of
scaling dimensions. Most often, the parameterized quan-
tities include the initialization scale, parameter multipli-
ers and learning rate, and scaling dimensions may include
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model width, model depth, context length, batch size and
training horizon. Among the scaling dimensions, the ex-
isting literature for width scaling has the most extensive
theoretical results. Yang & Hu (2021) and Yang & Littwin
(2023) define a space of width-scaling parameterizations for
stochastic gradient descent (SGD) and Adam respectively.
Based on the goals of ensuring the activations remain at
constant scale and the logits do not exceed constant scale
with respect to width, they derive constraints for stability
and non-triviality of a parameterization that predict how the
learning rate should scale with width.

The derivations of these constraints make a key assumption:
the updates to the parameters are assumed to be sufficiently
correlated with the data distribution to impact the scaling
exponent of the activations. We refer to this correlation as
“alignment” because, when correlated, the parameter and
data vectors point in similar directions. However, the litera-
ture is lacking in extensive empirical measurements of when,
where, and how much alignment accumulates between the
parameters and activations during training and its impact on
the scaling exponents of the learning rate. Moreover, the
characterization of parameterizations into feature learning
and kernel limits are specific to the alignment assumptions.

In this paper, we take a broad perspective on the theory
and practice of width scaling across parameterizations and
optimizers. Our theoretical contributions consider a more
general space of parameterizations which explicitly quantify
the contribution of several distinct alignment terms; under
specific alignment assumptions we recover prior work as a
special case. We propose a metric for alignment that we use
in our empirical investigation. In addition, we develop new
parameterization theory for a family of adaptive optimizers
with parameter scaling, including Adafactor.

In our experiments, we measure alignment throughout train-
ing across optimizers, parameterizations and model sizes.
Our measurements suggest that existing theory may be
overly conservative, thereby excluding interesting param-
eterizations. We show that for all parameterizations and
optimizers, there are theoretically motivated per-layer learn-
ing rate exponents that improve performance over global
learning rate baselines, and in numerous settings the best
performing exponents would have been excluded by the
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Table 1. Left: Parameterizations and gradients at initialization for width n. Middle: Max stable per-layer learning rate scaling for each
optimizer assuming αl = 1, ωl = 1/2 for all layers l. Right: Max stable learning rates assuming αl = ωl = ul = 1/2 for all layers.

Initialization
Variance

Parameter
Multiplier

Gradient SGD LR,
Full Align

Adam LR,
Full Align

Adafactor LR,
Full Align

SGD LR,
No Align

Adam LR,
No Align

Adafactor LR,
No Align

Standard
Embedding 1 1 1/

√
n

√
n 1 1

√
n 1 1

Hidden 1/n 1 1/
√
n 1/

√
n 1/n 1/

√
n 1 1/

√
n 1

Readout 1/n 1 1 1/n 1/n 1/
√
n 1/

√
n 1/

√
n 1

NTK
Embedding 1 1 1/

√
n

√
n 1 1

√
n 1 1

Hidden 1 1/
√
n 1/n

√
n 1/

√
n 1/

√
n n 1 1

Readout 1 1/
√
n 1/

√
n 1 1/

√
n 1/

√
n

√
n 1 1

muP
Embedding 1/n

√
n 1/

√
n 1 1/

√
n 1 1 1/

√
n 1

Hidden 1/n 1 1/n 1 1/n 1/
√
n

√
n 1/

√
n 1

Readout 1/n 1/
√
n 1/

√
n 1 1/

√
n 1 1 1 1

MFP
Embedding 1 1 1/n n 1 1 n 1 1
Hidden 1 1/

√
n 1/n1.5 n 1/

√
n 1/

√
n n1.5 1 1

Readout 1 1/n 1/n n 1 1 n
√
n 1

alignment assumptions of prior work. In particular, a novel
per-layer learning rate prescription for standard parameteri-
zation is shown to outperform muP. In addition, while prior
work emphasizes the hyperparameter transfer properties of
muP specifically, we show that all parameterizations can
perform hyperparameter transfer. We introduce constant
multiplicative factors to the per-layer learning rate prescrip-
tions and show that tuning these factors is both essential
and practical: the constants can be tuned at relatively small
scale and successfully reused across model sizes up to 26.8
billion parameters, inducing substantial performance gains.

Finally, we consider the epsilon hyperparameter in Adam
and similar adaptive optimizers. Our theoretical prediction
that the mean-field parameterization will be most sensitive
to epsilon underflow is validated in our experiments. We
see significant performance improvements from three miti-
gations to epsilon, including our proposal Adam-atan2 that
eliminates epsilon entirely. After addressing epsilon, pa-
rameterizations that are theoretically equivalent to give very
similar performance, illustrating that finite precision plays a
practical role in the study of parameterization.

2. Background
2.1. Parameterizations and Optimizers

We define a width-scaling parameterization as in Yang &
Hu (2021) as the prescription of the scaling exponents for
three quantities on each layer: (1) the initialization variance
for the parameters, (2) a parameter multiplier1 by which
the trainable parameter weights are multiplied during the
forward pass, and (3) the learning rate. It is typical for
different layer types (embedding, hidden, and readout) to
use different parameterizations within the same network.

1The parameter multiplier is a constant that multiplies the out-
put of the matrix multiplication in the layer during the forward
pass. The trainable parameters are updated during training but
the parameter multiplier is not. However, the backpropagated
gradients for the parameters will include this multiplier as a term.

We will consider all combinations of four common param-
eterizations and three common optimizer families. Our
parameterizations, shown in Table 1, include standard (Neal,
1996; Glorot & Bengio, 2010; He et al., 2015), Neural Tan-
gent Kernel (NTK) (Jacot et al., 2018), Maximal Update
(muP) (Yang & Hu, 2021), and Mean Field (Bordelon &
Pehlevan, 2022). Following convention, the names of param-
eterizations will refer to the initialization scale and parame-
ter multipliers, although formally speaking, the learning rate
prescription is an essential element of a parameterization.

We select optimizers that represent three distinct width-
scaling regimes: Stochastic Gradient Descent (SGD),
Adam (Kingma & Ba, 2014), and Adafactor (Shazeer &
Stern, 2018) due to their varying relationships between the
parameter, gradient, and update scales. Our theoretical per-
spective focuses on the width-scaling relationships between
these elements and will omit more specific optimizer fea-
tures like momentum and gradient or update clipping. SGD
represents optimizers where the scale of the update matches
the scale of the learning rate times the scale of the gradi-
ents. Adam represents adaptive optimizers where, due to
the normalization by the gradient scale, the scale of the
update matches the scale of the learning rate regardless of
the gradient. Finally, Adafactor represents adaptive opti-
mizers with parameter scaling that normalize the gradient
similarly to Adam but then multiply by the parameter scale.
This results in an update scale that matches the learning
rate scale × the parameter scale; under constant learning
rates, the Adafactor updates match the RMS (or Frobenius)
norm of the parameters. Note that parameter scaling is the
key distinction between the last two regimes: Adam plus
parameter scaling falls into the Adafactor family; Adafactor
with parameter scaling removed falls into the Adam family.

2.2. Stability, nontriviality and feature learning

Yang & Hu (2021); Yang & Littwin (2023) derive a system
of linear constraints on the exponents of the parameteri-
zation from the two following concepts: stability, where
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the activations are exactly constant scale and the logits are
no more than constant scale, and nontriviality, where the
change in logits after the initialization is at least constant
scale. Note these constraints are defined solely in terms
of the activations and logits, so that only the forward pass
is directly constrained and any constraints on backward
pass quantities like gradients or updates are indirect con-
sequences. In addition, they define feature learning as a
constant scale change after initialization in the activations
directly before the readout layer. They also present a full
characterization of the infinite-width limits of the space of
width-scaling parameterizations as a dichotomy between a
feature learning regime and a kernel regime, where feature
learning is defined as a constant scale change after initial-
ization in the activations directly before the readout layer.

2.3. Hyperparameter Transfer

Parameterizations with well-understood scaling behavior
can enable hyperparameter transfer across scales as rela-
tively cheap hyperparameter search using small models can
be used to select hyperparameters for larger, more expen-
sive models (Yang et al., 2022). This transfer is enabled
by the particular functional form for each parameterized
quantity: the scaling dimension is raised to a theoretically
motivated exponent, with a constant multiplicative factor
that is determined empirically. When theory holds and the
scaling is perfectly encapsulated by the exponent, the opti-
mal empirical constant is the same across scales and can be
determined via hyperparameter search on small models and
then reused on large models where hyperparameter search
would be expensive or impossible. Yang et al. (2022) shows
how per-layer learning rates as in muP can be implemented
in Transformers, and demonstrates the benefits of muP to
hyperparameter transfer across width.

2.4. Alignment

As we will see in Section 3, the conditions for stability differ
between the first and subsequent forward passes because of
the learning process itself. While the initial random parame-
ters are independent from the data distribution, correlations
can develop over time because the updates carry informa-
tion about the data. Such correlations cause “alignment”
between the parameters and activations, in the sense that
the vectors may point in similar directions. As such, the
norm of the activations after a given layer depends on three
quantities: the scale of the input to the layer, the scale of the
parameters in the layer, and the alignment between the pa-
rameters and the input or “data”. In a matrix multiplication,
when we sum over the interior dimension n, this alignment
contributes a scaling term that is O(

√
n) when there is no

alignment and O(n) when there is significant alignment.

The intuition for this calculation can be seen by consider-

ing the simpler case of the scaling of the inner product of
two random vectors, because the entries in the product of
a matrix multiplication are each vector-vector inner prod-
ucts themselves. As the length of the two random vectors
becomes large, by straightforward application of the Central
Limit Theorem the inner product is a sample from a normal
distribution, so its norm has two terms coming from the
mean and the variance of this distribution. The takeaway is
that the mean term contributes an O(n) term to the norm of
the inner product and the variance term contributes O(

√
n).

When the mean term is zero because the vectors are zero-
mean and independent, then the variance term dominates
and the inner product scales like O(

√
n). However, when

the vectors are correlated or in the worst case are identical,
then the inner product scales like O(n) because the coef-
ficient to the mean term is a constant. Yang & Hu (2021)
refers to this idea as “Central Limit Scaling” versus “Law
of Large Numbers” scaling owing to the idea that the Law
of Large Numbers governs how the mean converges and the
Central Limit Theorem governs how the variance converges.

This scaling affects the norm of the activations following a
layer that multiplies its parameter matrix by the input to that
layer. On the first forward pass, due to the random initializa-
tion the parameters cannot be aligned with the data, so the
O(
√
n) scaling holds. However, during the first backwards

pass, the updates to the parameters are a function of the first
batch of data, so the parameters may become correlated to
the data distribution. As a result, during subsequent forward
passes, we can no longer assume perfect independence be-
tween the parameters and data and instead the activations
might scale with up to an O(n) term. The consequence
of this difference in scaling is that the learning rate needs
to counteract this O(

√
n) or O(n) term, so the maximal

stable learning rate is smaller by a factor of O(
√
n) when

the parameters and data are aligned than when they are not.

3. Theoretical Contributions
In this section we make four theoretical contributions. First,
we define a general space of width-scaling parameterizations
that explicitly quantifies the contribution of three alignment
terms. Rather than making specific assumptions about align-
ment and then deriving which parameterizations are stable
and nontrivial under those assumptions, as in Yang & Hu
(2021); Yang & Littwin (2023), we propose general stability
and nontriviality constraints as a function of those alignment
variables. Second, we propose theory for Adafactor or other
adaptive optimizers using parameter scaling. Third, for all
parameterizations × optimizers, we find the maximum sta-
ble learning rate for each layer as a function of the alignment
terms, and compute the learning rate exponents under two
specific alignment assumptions, which we refer to as “full
alignment” and “no alignment”. While the alignment as-
sumptions in Yang & Hu (2021) prevent standard and NTK
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parameterizations from feature learning regardless of the
per-layer learning rate prescription, under our assumptions
of either full alignment or no alignment all parameteriza-
tions have per-layer learning rates in the feature learning
limit. Fourth, we propose the alignment ratio metric that
we will use for empirical investigation, which measures the
contribution of alignment to the activations during training.

3.1. Model and Notation

Following a similar model and notation as Yang & Hu
(2021), we consider a multilayer perceptron with L hidden
layers with weight matrices W1 ∈ Rn×d, W2, . . .WL ∈
Rn×n, and WL+1 ∈ Rd×n and nonlinearity φ : R → R.
The parameterization for each layer l is specified by three
values {al, bl, cl}, where the parameter multiplier is n−al ,
the parameters after t backward passes are W t

l and are
initialized as W 0

l ∼ N (0, n−2bl), and the learning rate
ηl ∝ n−cl .

For an input x ∈ Rd, the model that outputs logits zL+1 is
z1 = φ(n−a1W1 · x)

zl = φ(n−alWl · zl−1)

zL+1 = n−aL+1WL+1 · zL
We assume the nonlinearity φ has bounded derivative, and
that the number of layers L and number of training steps are
O(1). These parameterizations occupy equivalence classes
under infinite precision owing to our ability to “factor out”
a constant term from the initialization into the parameter
multiplier (see §B.2). In particular, standard + NTK pa-
rameterizations and muP + mean-field parameterization are
equivalent under the right learning rates. As neural networks
regularly encounter finite-precision effects, we consider all
four parameterizations separately. See §B for details.

3.2. Alignment-General Space of Parameterizations

We now propose a general space of parameterizations where
we define three alignment variables and define the space of
parameterizations that are stable and nontrivial as a function
of these variables. Throughout this section, we are interested
in the “scale” of quantities, or the exponents of quantities
with respect to width in the large-width limit, defined for-
mally in §B.3. A parameterization is stable if the activations
have exactly constant scale and the logits have at most con-
stant scale, and a parameterization is nontrivial if the change
in logits after initialization has at least constant scale. To
define the alignment variables, we assign αl, ωl and ul to
be the exponents of the alignment contributions from three
terms ∆Wlzl−1,Wl∆zl−1 and ∆Wl∆zl−1, respectively,
that appear in the expansion (Wl+∆Wl)(zl−1 +∆zl−1) =
(Wlzl−1+∆Wlzl−1+Wl∆zl−1+∆Wl∆zl−1) when com-
puting the activations during training. See §B for formal
definitions and a full derivation.

Stability at initialization During the first forward pass, the
activations have no alignment because of the random initial-
ization, inducing these constraints regardless of optimizer:

a1 + b1 = 0

al + bl = 1/2, l ∈ [2, . . . , L]

aL+1 + bL+1 ≥ 1/2

Stability during training We first define rl as the negative
exponent of ∆zl for all l. Then, the constraints rl ≥ 0
for l ∈ [1, L] ensure the activations remain constant scale
during training, and the constraint rL+1 ≥ 0 ensures the
logits remain at most constant scale during training. In
addition, feature learning corresponds to rL = 0.

SGD: gl := max(aL+1 + bL+1, 2aL+1 + cL+1) + al

r1 = g1 + a1 + c1

rl = min


gl + al + cl − αl

gl + al + cl + rl−1 − ul

1/2 + rl−1 − ωl

rL+1 = min


2aL+1 + cL+1 − αL+1

2aL+1 + cL+1 + rL − uL+1

aL+1 + bL+1 + rL − ωL+1

Adam: r1 = a1 + c1

rl = min


al + cl − αl

al + cl + rl−1 − ul

1/2 + rl−1 + ωl

rL+1 = min


aL+1 + cL+1 − αL+1

aL+1 + cL+1 + rL − uL+1

aL+1 + bL+1 + rL − ωL+1

Adafactor: r1 = c1

rl = min


1/2 + cl − αl

1/2 + cl + rl−1 − ul

1/2 + rl−1 + ωl

rL+1 = min


aL+1 + bL+1 + cL+1 − αL+1

aL+1 + bL+1 + cL+1 + rL − uL+1

aL+1 + bL+1 + rL − ωL+1

cL+1

Tensor Programs as a Special Case We recover the sta-
bility and nontriviality constraints in Yang & Hu (2021);
Yang & Littwin (2023) exactly if and only if αl = 1 ∀l ∈
[2, L + 1], ωl = 1/2 ∀l ∈ [2, L] and ωL+1 = 1. This
assumption that ωL+1 = 1 is at the very core of the theo-
retical motivation for muP. Feature learning corresponds to
rL = 0, and standard and NTK parameterizations both have
aL+1 + bL+1 = 1/2. Therefore, due to the logit constraint
that aL+1 + bL+1 + rL − ωL+1 ≥ 0, when ωL+1 = 1 it is
not possible for STP and NTK to achieve feature learning
where rL = 0 regardless of what learning rate prescription
is used. In contrast, muP and MFP shift the readout layer
by
√
n so that aL+1 + bL+1 = 1, so they can attain feature

learning where rL = 0 when ωL+1 = 1.
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Figure 1. The log alignment ratio metric in readout and hidden (MLP) layers across training steps for each parameterization, for Adam
1.9B parameter models (H = 32, D = 4096) using optimal global learning rates.

Maximum Stable Learning Rate Exponents In Table 1
we compute the maximum stable per-layer learning rate
exponents under two specific alignment assumptions, giving
one prescription for “full alignment” where αl = ul = 1,
and one for “no alignment” where αl = ul = 1/2 for
l ∈ [2, L + 1]. In both settings, we assume ωl = 1/2
for l ∈ [2, L + 1], which in particular relaxes the ωL+1

assumption to 1/2 instead of 1. As a result, our per-layer
learning rate prescriptions for standard and NTK are in
feature learning limits under our alignment assumptions, a
significant difference from prior work.

3.3. Alignment Ratio

In the forward pass, the activations following layer l are
computed as zl = n−al(Wl + ∆Wl)(zl−1 + ∆zl−1). The
alignment variables αl, ωl, and ul quantify the alignment
in each of the last three terms in the expanded sum
(Wl + ∆Wl)(zl−1 + ∆zl−1) = Wlzl−1 + ∆Wlzl−1 +
Wl∆zl−1 + ∆Wl∆zl−1. However, we note that in prac-
tice the alignment in the terms in this sum may interfere
constructively or destructively, and the single alignment
quantity that actually governs the scale of the activations zl
is the alignment between (Wl + ∆Wl) and (zl−1 + ∆zl−1).

We therefore propose a metric that measures this alignment,
between (Wl + ∆Wl) and (zl−1 + ∆zl−1), in order to un-
derstand empirically how alignment that accumulates during
training is contributing to the activation scales throughout
the model. This metric is defined on each dense layer and
quantifies the contribution from alignment between the cur-
rent parameters and the current pre-layer activations on the
scaling exponent of the post-layer activations.

Consider a neural network layer l at training step t with
parameters W t

l ∈ Rn×m, and pre-layer activations ztl−1 ∈
RB×n, where B is the batch size, n is the fan-in and m is
the fan out. The matrix multiplication between the pre-layer
activations and parameters has an interior dimension n, so
this is the base of the exponent to the alignment term.

Definition 3.1. We define the log alignment ratio as

Atl = logn
‖ztl−1W

t
l ‖

‖ztl−1‖‖W t
l ‖
∈ R,

where the norm is the root-mean-square (RMS) norm.

4. Experiments
We investigate the role of alignment, per-layer learning rate
exponents and constant factors, and the epsilon hyperpa-
rameter by running tens of thousands of experiments in a
decoder-only Transformer language model (Liu et al., 2024)
across all combinations of the three optimizers, four param-
eterizations, learning rate sweeps with a granularity of 20.25

or 20.5, and fourteen model widths ranging up to 26.8B
parameters. We include additional experiment results that
suggest that our conclusions should hold when using small
amounts of weight decay (§F), that Adam + parameter scal-
ing and Adafactor have very similar behavior and occupy
the same width-scaling regime (§G), and that moving from
the fixed step setting to the compute optimal setting likely
requires sharper decay in the learning rate exponents (§H).
See §C for more experiment details.

4.1. Alignment Experiments

We measure the log alignment ratio throughout training for
three model sizes for each parameterization × optimizer,
using a global learning rate that is close to optimal. For
Adam, alignment values for the readout and MLP layers are
shown for model dimension D = 4096 in Figure 1 and full
results including the other optimizers and the dense layers
within the attention block (query, key, value, and output
projection dense layers) are included in Appendix C.3. As
expected, the measured alignment values start at 0.5 due
to the independence between the random initialization and
the data, and change during training as parameters become
aligned with the data or parameters in earlier layers.

The alignment values vary significantly across the training
horizon and the trajectories depend heavily on the param-
eterization and layer type. We see similar values across
three model sizes, suggesting that our measurements are
likely indicative of the large width behavior. For SGD, the
results show high instability and are difficult to interpret;
one consistent pattern is that NTK and MFP have almost
no alignment and STP and muP have low amounts. Adam
and Adafactor show matching trends: the readout layer has
the highest peak among the layers, with high peak readout
alignment above 0.9 in muP and mean-field parameteriza-
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Figure 2. For Adam, eval loss comparisons for all parameterizations across a sequence of interventions. From left to right panels: (a)
global lr exponents + default constants, (b) per-layer lr exponents assuming perfect alignment + default constants, (c) per-layer lr exponents
assuming perfect alignment + optimal constants, (d) per-layer lr exponents assuming no alignment + optimal constants.

tion and only moderate peak readout alignment between 0.7
and 0.8 in standard and NTK parameterizations. In the MLP
layers, alignment in all parameterizations is moderate and
does not exceed 0.8.

Overall, these results indicate that the alignment assump-
tions in Yang & Hu (2021); Yang & Littwin (2023) may
be overly conservative; if in practice alignment contributes
less than one to the activation exponents, then the learning
rate exponents can be larger. However, even given these
measurements for alignment, it is not obvious how exactly
the learning rate exponents that control the base or peak
learning rate should be adjusted. First, we see that align-
ment is a dynamical quantity that varies widely throughout
training: even when the readout alignment is close to maxi-
mum early in training for muP and MFP, it is much lower
for the vast majority of training steps. In addition, alignment
varies across layers within the same layer type, which typi-
cally use the same learning rate or at least the same learning
rate exponent. Further, the interaction between the align-
ment measurement and learning rate schedule is complex.
The learning rate schedule likely influences the alignment
measurements, and alignment likely influences the opti-
mal learning rate schedule: one possible role of learning
rate schedules is that the decay counteracts alignment that
develops later in training. Even if we used alignment mea-
surements from experiments under one set of learning rates
to inform adjustments to the learning rate exponents, this
would induce an iterative loop where the adjusted learning
rates would then affect the alignment. We will therefore take
an empirical approach to determine how alignment should
influence the learning rate exponents, and consider several
choices of alignment assumptions for the per-layer learning
rate experiments in the following section.

4.2. Per-layer Learning Rates

As in Table 1, all parameterizations have per-layer learning
rate exponents specific to the optimizer and the choice of
alignment assumption. In this section, we empirically vali-
date these theoretical learning rate exponent prescriptions

and investigate the impact of tuning the per-layer constant
factors. We compare against global learning rates as a base-
line: while global learning rates are in most cases not theo-
retically principled, they are the overwhelmingly dominant
paradigm in practice. In most settings, the theoretical learn-
ing rate exponents differ across layers, implying a mismatch
in at least some layers when using global learning rates.
However, there are certain cases, such as muP + SGD + full
alignment, or Adafactor + any parameterization + no align-
ment, where the theoretically motivated per-layer exponents
happen to be the same in all layers so that global learning
rate actually coincides with the theoretical prescription. We
include experiments using the theoretical prescriptions from
both the full alignment and no alignment settings since our
empirical alignment measurements show intermediate and
highly dynamic values.

Our first experiment compares per-layer learning rates when
assuming full alignment against the baseline of global learn-
ing rates. For all experiments, we select a base model
dim of b = 1024 and define the learning rate in layer l
as ηl = βn · nb

−cl . We determine the best βn for each model
dim n with a one-dimensional sweep and report the eval loss
from the best value. For global learning rates, cl = 0 for all
l, and for per-layer learning rates, cl follows Table 1. Since
there is no contribution from the learning rate exponents at
the base model size, the global and per-layer learning rate
settings coincide exactly at the base model dim and differ
only when scaling away from the base model size. The
per-layer results in Figure 2(b), compared with the global
learning rate results in Figure 2(a), show that standard, muP
and mean-field parameterizations all improve significantly
with per-layer learning rates. The notable exception is that
NTK actually performs worse using the prescribed per-layer
exponents: we note that these exponents assume full align-
ment and return to this result later in this section.

We next introduce constant multiplicative factors to the per-
layer learning rates and propose a hyperparameter transfer
strategy where we tune these constants at small scale and
reuse them across model sizes. Again using the base model
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dim of b = 1024, we now define the learning rate in layer l
as ηl = βn · γl · nb

−cl where γl is this constant factor that
should be determined empirically. We use the same learning
rate for all hidden layers, so we need to determine γ1 for
the embedding layer, γh for the hidden layers, and γL+1 for
the readout layer. The previous experiments correspond to
setting these constants equal to one by default. We continue
to sweep one dimension at all model sizes to determine βn,
so we note the choice of (γ1, γh, γL+1) really defines two
ratios as a common factor can be absorbed by βn.

We tune (γ1, γh, γL+1) at the base model dim using a
three-dimensional hyperparameter search described in Ap-
pendix C and reuse the best set of values across all model
sizes. For the base model dim, tuning these constants can
only improve performance, but comparing Figure 2(c) to
2(b) shows these constants improve performance substan-
tially for all model sizes across all parameterizations. The
only exception is that these constants may not transfer well
to the mean-field parameterization models above 2B param-
eters: we will show in Section 4.3 that this is due to epsilon
underflow and is addressed with our epsilon mitigations.
This result indicates that this recipe for these per-layer con-
stant multiplicative factors is both essential and practical:
the performance gains are substantial and the hyperparame-
ter transfer makes them feasible. If instead, these constants
improved performance only at or near the model sizes where
they were tuned, it would be impractical to include them for
large model training because the three-dimensional sweep
would be prohibitively expensive at large scale. While mu-
Transfer (Yang et al., 2022) emphasizes that muP is the
unique parameterization that allows hyperparameter transfer
across width, this result shows that all parameterizations
can perform hyperparameter transfer across width when
each parameterization uses theoretically motivated per-layer
learning rate exponents.

Yang et al. (2022) also presents empirical results in which
muP outperforms standard parameterization. We note, how-
ever, that this comparison across parameterizations has sev-
eral elements that favor muP. First, the muP experiments
use per-layer learning rate scaling while the standard param-
eterization experiments use a global learning rate. Second,
the muP results tune a handful of constant factors at small
scale and transfer them to large scale. While the specific
constant factors differ from our setting, this is comparable
to using our optimal constant learning rate factors instead
of the default constant factors. As such, their comparison of
muP and standard parameterization is analogous to compar-
ing muP in our third experiment (Figure 2(c), green curve)
against standard parameterization in our first experiment
(Figure 2(a), blue curve), which indeed shows a benefit
for muP. Instead, we argue that the fair comparison across
parameterizations would use per-layer learning rates and
optimal constants for both, that is, to consider both parame-
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Figure 3. SGD and Adam+parameter scaling for all parameteriza-
tions × full and no alignment assumptions + optimal constants.

terizations in our third experiment Figure 2(c). There, we
see that standard parameterization outperforms muP and in
fact substantially so: the second largest standard parameter-
ization model outperforms the largest muP model despite
having 57% as many parameters.

Finally, we investigate how alignment assumptions impact
performance, still using per-layer learning rates and optimal
constants. In Figure 2(d), we use the learning rate exponents
from the right side of Table 1 derived from assuming no
alignment rather full alignment. This yields surprising re-
sults given the focus on alignment in prior work: for Adam,
all parameterizations except standard parameterization ben-
efit from using the no alignment assumption. In contrast,
standard parameterization shows better performance using
full alignment where the difference is slight but consistent
across scale. Moreover, for Adam with parameter scaling,
Figure 3 shows that all parameterizations perform signifi-
cantly better using no alignment rather than full; the perfor-
mance gap increases with scale suggesting the no alignment
exponents are truly preferable. Finally, the best perform-
ing model across all parameterizations and optimizers is
quite unexpected: it is Adam + param scaling + NTK + no
alignment! This result further validates that it is critical to
consider our more general space of parameterizations rather
than making specific alignment assumptions upfront.

We note these empirical results could occur due to a mecha-
nism other than the activation or logit growth with respect
to width that is predicted by alignment. For example, prior
work notes training instabilities in Transformers due to atten-
tion logit growth (Dehghani et al., 2023; Zhai et al., 2023)
or output logit divergence (Chowdhery et al., 2023) and that
these instabilities are sensitive to the learning rate (Worts-
man et al., 2023). We may also miss slight undercorrec-
tion of the alignment in our finite size models: if the true
alignment is slightly larger than the learning rate exponents
account for, we could have slow growth of activations or
logits with respect to width that does not harm performance
in our models but would eventually induce instability at
sufficient width. However, we note our largest model with
26.8B parameters has a model dimension of 16, 384 which
encompasses the width of many even larger models.
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4.3. Epsilon Underflow in Adaptive Optimizers

In adaptive optimizers like Adam, the denominator of the
update rule adds a small epsilon parameter to the gradi-
ent second-order moment, originally intended to regular-
ize against division by zero when the gradients are very
small (Duchi et al., 2011; Hinton et al., 2012). Despite
its small value, typically around 1e-8 (Paszke et al., 2019;
Babuschkin et al., 2020), the epsilon parameter prevents
Adam from being perfectly scale-invariant where multiply-
ing the gradients by a constant would not alter the resulting
update. In particular, if the gradient scale drops below the
size of epsilon then epsilon dominates the gradients instead
of acting as a negligible additive constant. Since gradients
decrease in scale with model width as in Table 1, for any
constant value of epsilon there exists a sufficiently large
model that will encounter this scenario.

Two recent works note this phenomenon and propose possi-
ble mitigations. From an empirical perspective, Wortsman
et al. (2023) observes that gradient norms in standard param-
eterization models decrease with model size and approach
1e-8 for 1.2B parameter models, suggesting this epsilon un-
derflow is relevant in practice. As a mitigation, they propose
using a smaller constant value for epsilon and show that
decreasing epsilon from 1e-8 to 1e-15 improves the loss in
a 4.6B parameter model. From a theoretical perspective,
Yang & Littwin (2023) notes that epsilon should be treated
as part of the parameterization and propose per-layer ep-
silon scaling. For each layer, epsilon is proportional to the
parameterization and layer-specific gradient scale shown
in Table 1. Similar to our per-layer learning rate experi-
ments, we implement this as εl = base epsilon · (nb )−gl

for each layer l, where gl is the negative exponent of the
gradient scale, the base model dim b is 1024, and the base
epsilon is determined empirically. This approach has not
been empirically validated and adds significant implemen-
tation complexity, but should ensure that epsilon and the
gradients scale in tandem across width.

We investigate the practical impact of epsilon across param-
eterizations. As seen in the gradients column of Table 1,
gradients decrease as model width increases with an expo-
nent specific to both the parameterization and layer. As such,
we expect that different parameterizations will encounter
epsilon underflow at different model sizes: in particular, the
steepest exponent is the mean-field parameterization hidden
layer, which scales like 1/D1.5. This suggests that mean-
field parameterization should encounter epsilon underflow
at smaller model sizes than other parameterizations.

Both constant epsilon and per-layer epsilon require hyper-
parameter tuning, to select the constant or the base constant
multiplier, respectively. As shown in Figure 4(a-b), values
that are too large lead to suboptimal performance; values
that are too small lead to instability, presumably by failing
to prevent the numerical instability epsilon was originally in-
tended to prevent. Rather than providing numerical stability
for small number division with an additive constant in the
denominator that breaks scale-invariance, we propose Adam-
atan2: a variant of Adam that replaces the standard division
operation in the update rule with the standard library func-
tion arctangent, which performs numerically stable small
number division and is defined even at (0, 0) exactly. The
single-line code change in Appendix C.3 to use arctangent
in the Adam update equation eliminates the epsilon hyperpa-
rameter entirely and restores the scale invariance to Adam.

For all parameterizations, we compare the three mitigations
using the best choice of constant in each setting against
a baseline epsilon (1e-9): small constant epsilon (1e-15),
per-layer epsilon scaling (base = 1e-12), and our proposal
Adam-atan2. In Figure 4(c), we see that all three mitigations
have noticeable improvements in the eval loss in mean-
field parameterization and that the gap increases with model
size. The other parameterizations, seen here in Figure 4(d)
and in Figure 8 in the appendix, show similar but more
subtle improvements for NTK and no improvements for
standard and muP. The particular sensitivity of mean-field
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parameterization to epsilon is consistent with our theoretical
motivation: due to its hidden layer gradients scaling like
1/D1.5, we expect that among the parameterizations, mean-
field will encounter epsilon underflow at the smallest model
sizes and benefit most from these mitigations.

We therefore recommend care when setting epsilon. For
standard parameterization models with up to a billion pa-
rameters, the typical default value of 1e-8 is likely accept-
able but slightly smaller values of 1e-12 or 1e-15 may be
preferable. For larger models or other parameterizations,
using epsilon requires smaller constants or per-layer epsilon
scaling, with tradeoffs between implementation complexity
and, at least theoretically, hyperparameter tuning costs. In
principle, the theoretical prescription for per-layer epsilon
encapsulates the epsilon scaling in the exponents, allowing
hyperparameter transfer of the constant multiplier similar
to other parameterized quantities like learning rates. In con-
trast, the optimal constant epsilon should be scale-dependent
in theory, but we note that with our model sizes and constant
search resolution we did not see scale dependence of the
optimal epsilon constant. However, this epsilon hyperpa-
rameter can be eliminated entirely with Adam-atan2 with a
one-line code change and the same improved performance.

Lastly, epsilon illustrates that finite precision plays an im-
portant role in parameterization in practice. Recall that stan-
dard and NTK parameterizations, and similarly muP and
mean-field parameterizations, are theoretically equivalent
under the equivalence relations in Appendix B.2. Yet, before
addressing epsilon we see significant performance gaps be-
tween equivalent parameterizations, which are closed when
epsilon underflow is mitigated: now the pairs standard +
NTK and muP + mean-field show approximately equal per-
formance. Moreover, this illustrates that the standard param-
eterization equivalence class outperforms the entire muP
equivalence class, which narrows the possible explanations
for the performance differences to the readout layer, as this
is the primary difference between the equivalence classes.

5. Related Work
Prior work on width-scaling parameterizations (Lee et al.,
2017; Matthews et al., 2018; Jacot et al., 2018) includes the
neural tangent kernel parameterization (Jacot et al., 2018),
a modification to standard parameterization to enable a con-
sistent infinite-width limit (Sohl-Dickstein et al., 2020), and
a mean-field limit (Mei et al., 2018; Geiger et al., 2020;
Rotskoff & Vanden-Eijnden, 2018; Chizat & Bach, 2018;
Araújo et al., 2019) of single-hidden-layer MLPs. Bordelon
& Pehlevan (2022) proposed the mean-field parameteriza-
tion by extending this mean-field limit to deep neural net-
works using self-consistent dynamical field theory. Yaida
(2022) proposed a one-parameter family of hyperparame-
ter scaling strategies that interpolates between the neural

tangent scaling and mean-field or muP scaling. This meta-
parameterized scaling strategy has been used to propose
width-scaling initialization and training hyperparameters in
Transformers (Dinan et al., 2023). Various “unit scaling”
strategies proposed by Shazeer (2020); Kaplan (2019) are
similar to NTK parameterization; in addition Blake et al.
(2023) also modifies the per-layer gradients to keep the ac-
tivations and parameters close to unit scale regardless of
model size. Yang et al. (2023) proposes a spectral perspec-
tive on muP and Ishikawa & Karakida (2023) extend muP
to second-order optimizers (K-FAC, Shampoo).

6. Conclusions and Future Work
From our broad perspective across parameterizations and
optimizers, we find that key assumptions about alignment
in prior work require additional consideration. Using em-
pirical measurements from our alignment ratio metric, we
find that alignment is a dynamical quantity that depends
significantly on the training step, parameterization and layer,
and less heavily on the optimizer. The alignment measured
during training gives intermediate values that indicate that
alignment assumptions in prior work may be overly conser-
vative, suggesting that a larger set of parameterizations is
more interesting than previously thought.

By considering a more general space of parameterizations
with respect to the alignment, we show that all parameter-
izations benefit from theoretically motivated learning rate
exponent prescriptions. We also demonstrate that several
hyperparameters should be chosen carefully. First, we show
the necessity and practicality of tuning the constant factors
in per-layer learning rate prescriptions. These constants
transfer well across model sizes, showing that all parameter-
izations can perform hyperparameter transfer under the right
theoretical prescription. Second, the epsilon hyperparameter
in adaptive optimizers induces gradient underflow using typ-
ical defaults at realistic model sizes, in particular for mean-
field parameterization. Theoretically, epsilon should be
considered part of the parameterization and scaled per-layer,
but practically, small constant values can perform just as
well when selected carefully. To eliminate epsilon entirely,
we propose making Adam scale-invariant with Adam-atan2.

Future work might consider alignment-aware learning rate
schedules or alignment-aware optimizers. In addition, since
the characterization of parameterizations into feature learn-
ing and kernel limits is specific to the alignment assump-
tions, this characterization could be extended to the general
alignment setting. Beyond width scaling, future work should
investigate the other scaling dimensions that are necessary
for large model training, in particular depth and batch size.
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Appendix
A. Author Contributions

Katie, Lechao, Jaehoon and Jeffrey were the four core project contributors. All core contributors were closely involved
throughout the duration of the project and made contributions to developing the theory, analyzing and debugging experiments,
framing the narrative, reviewing code and giving feedback on writing. Katie led the project and led the theory, implemented
and ran all experiments, produced all figures, and wrote the paper. Lechao made particular contributions to theory. Jaehoon
made particular contributions to experimental design and framing the paper in relation to prior work, including drafting the
related work section. Jeffrey made particular contributions to theory, experiment analysis, and paper framing and provided
the primary advising on the project.

The experiments were implemented on top of a base Transformer model codebase. Peter led the development of this base
model codebase and Roman, Mitchell, Jaehoon, Lechao and Katie made significant contributions to this codebase.

In addition, Mitchell contributed expertise on optimizers and weight decay. Alex contributed expertise on quantifying the
uncertainty in exponent measurements. Roman implemented a small library used for reparameterization and gradient scaling.
Jascha contributed to early discussions on parameterization and gradient scaling, contributed ideas about weight decay,
and gave feedback on writing. Izzeddin contributed to technical discussions on alignment. Leslie contributed to technical
discussions and gave feedback on paper framing.

B. Theoretical Details

In this section, we provide formal definitions and a complete derivation of the constraints for our alignment-general space of
parameterizations.

B.1. MODEL

Following a similar model and notation as Yang & Hu (2021), we consider a multilayer perceptron with L hidden layers with
weight matrices W1 ∈ Rn×d, W2, . . .WL ∈ Rn×n, and WL+1 ∈ Rd×n and nonlinearity φ : R→ R. The parameterization
for each layer l is specified by three quantities {al, bl, cl} which are the negative exponents for the parameter multiplier,
initialization standard deviation, and learning rate, respectively. More precisely, for layer l the parameter multiplier is
n−al , the parameters after t backward passes are W t

l and are initialized as W 0
l ∼ N (0, n−2bl), and the learning rate ηl is

proportional to n−cl with a width-independent proportionality constant.

that is determined empirically. For our derivations we will omit that constant and write ηl = n−cl .

For an input x ∈ Rd, we have

z1 = φ(n−a1W1 · x)

zl = φ(n−alWl · zl−1)

zL+1 = n−aL+1WL+1 · zL

where zL+1(x) gives the logits from the model.

There can be additional values prescribed in a width-scaling parameterization beyond the initialization scale, parameter
multipliers and learning rate. For example, Yang & Littwin (2023) includes the epsilon hyperparameter, gradient clipping
and weight decay in the parameterization for adaptive optimizers like Adam.

B.2. EQUIVALENCE CLASSES

The parameterizations occupy equivalence classes owing to our ability to “factor out” a constant term from the parameter
initialization into the parameter multiplier, which exactly preserves the output of the forward pass while multiplying the
gradients by this constant. (Yang & Hu, 2021) This change in the gradients can then be “corrected for” by modifying
the learning rate in an optimizer-specific manner. We omit any contribution from the epsilon parameter in the adaptive
optimizers, equivalent to assuming that epsilon is zero.
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In this one-dimensional symmetry group parameterized by θ, to preserve the forward pass, regardless of optimizer,

al ← al + θ

bl ← bl − θ

Then specific to the optimizer, to preserve the effect of the backwards pass, correct the learning rate according to

SGD: cl ← cl − 2θ

Adam: cl ← cl − θ
Adafactor: cl ← cl

These equivalence classes were presented for SGD and Adam in Yang & Hu (2021) and Yang & Littwin (2023) respectively,
and we propose this relation for Adafactor.

B.3. DEFINING “SCALE”

We are interested in the “scale” of various quantities in the infinite-width limit, specifically the exponent with respect to
width n as the width becomes large.

Definition B.1. We say that the scale of a quantity U is nv if

v = logn lim
n→∞

‖U‖RMS

where the norm is the root-mean-square (RMS) norm. Intuitively, the RMS norm describes the size of “typical” entries in a
matrix: if all entries were the same then the RMS norm would match the value of each entry.

We use standard Big O notation or the ∼ symbol to denote this asymptotic behavior and write:

U = Θ(nv) or U ∼ nv if v = logn lim
n→∞

‖U‖RMS

U = O(nv) if v ≥ logn lim
n→∞

‖U‖RMS

U = Ω(nv) if v ≤ logn lim
n→∞

‖U‖RMS

B.4. ASSUMPTIONS AND NOTATION

We will assume the following:

• The input data is Θ(1).
• The number of layers L is O(1).
• The number of training steps T is O(1).
• The batch size is one.
• The input and output dimensionality d is O(1).
• The nonlinearity φ has bounded (weak) derivative, so the derivative of the nonlinearity does not contribute to the

exponent in the infinite-width limit. As such, we omit the nonlinearity in the following calculations, equivalent to
assuming φ is the identity function.

• We assume that the derivative of the loss with respect to the logits∇zL+1
L is Θ(1). Since the output dimensionality d

is O(1), this assumption holds for many common loss functions.
• Our theoretical derivations use real numbers, i.e. assuming infinite precision, despite possible effects from finite

precision in practice.
• We denote the difference in a quantity after initialization as ∆•t := •t − •0, for example ∆ztl := ztl − z0l .
• When the timestep is clear from the context, we omit the superscripts.
• Unless otherwise stated, a norm refers to the RMS norm.
• The learning rate ηl is proportional to n−cl with a width-independent proportionality constant that is typically

determined empirically. For our derivations we will omit the proportionality constant and write ηl = n−cl .
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• We use∇Wl
L and ∂L

∂Wl
interchangeably.

B.5. DEFINING STABILITY AND NONTRIVIALITY

We will use the definitions from Yang & Hu (2021) for stability and nontriviality:
Definition B.2. A parameterization is stable if the activations have exactly constant scale, i.e. ztl = Θ(1) ∀l ∈ [1, L] and
the logits are at most constant scale, i.e. zL+1 = O(1), at all timesteps 0 ≤ t ≤ T during training.
Definition B.3. A parameterization is nontrivial if the change in logits after initialization is at least constant scale, i.e.
ztL+1 − z0L+1 = Ω(1) for some timestep 0 ≤ t ≤ T during training.

The specific choice to require exactly constant scale activations and at most constant scale logits should be thought of as a
design choice from which theoretical results follow rather than a theoretical result itself.

B.6. FIRST FORWARD PASS: STABILITY AT INITIALIZATION:

The stability constraints at initialization ensure that all intermediate activations zl are Θ(1) and the logits zL+1 are O(1).
The constraints apply iteratively across O(1) layers: since the input x is O(1), the constraint on the first layer ensures that
z1 is O(1), then the constraint on layer l ensures that zl is O(1) assuming the previous layer l − 1 constraint are satisfied so
that zl−1 is O(1).

This gives the constraints for stability at initialization:

a1 + b1 = 0

al + bl = 1/2, l ∈ [2, . . . , L]

aL+1 + bL+1 ≥ 1/2

B.7. GRADIENTS AT INITIALIZATION

At initialization, the gradients for each layer can be calculated using straightforward application of the chain rule. We first
define gtl as the negative exponent of the gradient scale of the loss with respect to the parameters in layer l at timestep t.

Definition B.4. Let gtl = − logn limn→∞

∥∥∥ ∂L
∂W t

l

∥∥∥ so that ∂L
∂Wl

= Θ(n−gl).

Then by the chain rule, the gradient decomposes as

∂L
∂Wl

=
∂L

∂zL+1

∂zL+1

∂zL
· · · ∂zl+1

∂zl

∂zl
∂Wl

where ∂zL+1

∂zL
= Θ(1) by assumption, ∂zl

∂zl−1
= n−al · n−bl and ∂zl

∂Wl
= n−al .

After taking the logarithm and flipping the negative signs, this gives

gl = al +

L∑
i=l+1

(ai + bi − 1/2) + aL+1 + bL+1

If we then assume the stability at initialization constraints, the terms inside the sum for all hidden layers cancel, leaving that
the gradients at initialization are:

gL+1 = aL+1

gl = al + aL+1 + bL+1 for l ∈ [1, . . . , L]

B.8. OPTIMIZER UPDATE RULES

We write out the version of the update rules that we use for these derivations for each optimizer family, which include
the aspects that are essential to the scaling exponents but omit more specific features like momentum or moving averages,
learning rate schedules, weight decay, clipping, and low-rank factoring. For intuition, it is useful to consider the relationship
between the scale of the updates, gradients, parameters, and learning rate for each optimizer. In SGD, the scale of the
update matches the scale of the learning rate times the scale of the gradients. In Adam, or similar adaptive optimizers that
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normalize by the gradient scale, the scale of the updates match the scale of the learning rate regardless of the gradient scale.
In Adafactor, Adam with parameter scaling, or similar optimizers that normalize by the gradient scale and then multiply by
the parameter scale, the scale of the updates matches the scale of the learning rate times the scale of the parameters.

SGD: ∆Wl = ηl · ∇Wl
L

Adam: ∆Wl = ηl ·
∇Wl
L

‖∇Wl
L‖

Adafactor: ∆Wl = ηl · ‖Wl‖ ·
∇Wl
L

‖∇Wl
L‖

B.9. FIRST BACKWARD PASS

Using the update rules in the previous section, we write out the update for each optimizer during the first backward pass. We
note here that so far the calculations and constraints have been the same for all optimizers, and this step is the first one that
is specific to the optimizer based on its update rule.

SGD: ∆Wl = ηl · ∇Wl
L ∼ n−cl · n−gl ,

where gL+1 = aL+1 or gl = al + aL+1 + bL+1,

so ∆Wl ∼ n−aL+1−bL+1−al−cl ,

∆WL+1 ∼ n−aL+1−cL+1

Adam: ∆Wl = ηl ·
∇Wl
L

‖∇Wl
L‖
∼ n−cl · 1

so ∆Wl ∼ n−cl

Adafactor: ∆Wl = ηl · ‖Wl‖ ·
∇Wl
L

‖∇Wl
L‖
∼ n−cl · n−bl · 1

so ∆Wl ∼ n−cl−bl

B.10. DEFINING THE ACTIVATION UPDATE RESIDUAL

We will define rl for all l in [1, L+ 1] to be the negative exponent of ∆zl. We refer to this as a “residual” quantity because rl
is exactly zero when the updates are maximal such that any increase would cause the activation zl to exceed constant scale.

Definition B.5. Let rl := − logn limn→∞ ‖∆zl‖, so that ∆zl ∼ n−rl .

B.11. DEFINING ALIGNMENT VARIABLES

In this section, we will define three alignment variables αl, ωl and ul that are the exponents of the alignment contributions
from the ∆Wl · zl−1, Wl ·∆zl−1 and ∆Wl ·∆zl−1 terms respectively.

Starting in the second forward pass, each activation for layer l in [2, L+ 1] expands into four terms:

zl = n−al(Wl + ∆Wl)(zl−1 + ∆zl−1)

= n−al(Wl · zl−1 + ·Wl∆zl−1 + ∆Wl · zl−1 + ∆Wl ·∆zl−1)

Due to the random initialization, the Wl · zl−1 term has no alignment. For the remaining three terms, we introduce the
following alignment variables.
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Definition B.6. We define the alignment variables as

αl = logn lim
n→∞

‖∆Wlzl−1‖
‖∆Wl‖‖zl−1‖

so that ∆Wlzl−1 ∼ nαl‖∆Wl‖‖zl−1‖,

ωl = logn lim
n→∞

‖Wl∆zl−1‖
‖Wl‖‖∆zl−1‖

so that Wl∆zl−1 ∼ nωl‖Wl‖‖∆zl−1‖,

ul = logn lim
n→∞

‖∆Wl∆zl−1‖
‖∆Wl‖‖∆zl−1‖

so that ∆Wl∆zl−1 ∼ nul‖∆Wl‖‖∆zl−1‖.

We have omitted the timestep superscripts above, but alignment is a dynamic quantity so more formally we have

αtl := logn lim
n→∞

∥∥∆W t
l z
t
l−1
∥∥

‖∆W t
l ‖
∥∥ztl−1∥∥

and similarly for ωtl and utl .

Note that for many quantities in our notation, we define the variable to be a negative exponent, but for these alignment
variables we are defining αl, ωl, ul as positive exponents so they take on values between 0 and 1.

B.12. SECOND FORWARD PASS: STABILITY DURING TRAINING

To derive stability constraints for the second forward pass that ensure all intermediate activations are exactly constant scale
and the logits are at most constant scale, we will proceed starting from the embedding layer l, followed by the hidden layers
l in [2, L] and finally the readout layer L + 1. These constraints work iteratively across layers: the first constraints will
ensure z1 = Θ(1), and then the subsequent constraints will ensure zl = Θ(1) assuming that zl−1 = Θ(1), and finally the
readout constraints will ensure that zL+1 = O(1) assuming zL = Θ(1).

In the second forward pass, the embedding layer activations are

z11 = n−a1(W 0
1 + ∆W 1

1 )x

= n−a1W 0
1 x+ n−a1∆W 1

1 x

= z01 + n−a1∆W 1
1 x.

Recall that the input x is O(1) and that the input dimensionality d that is the interior dimension in the W1 · x term is O(1).
Since z01 = Θ(1) by the stability at initialization constraints, we have ∆z11 = n−a1∆W 1

1 x = O(1) ⇐⇒ z11 = Θ(1). Then
by plugging in ∆W 1

1 for each optimizer from §B.9, we have

SGD Adam Adafactor

∆W 1
1 ∼ n−aL+1−bL+1−al−cl n−c1 n−b1−c1

∆z11 = n−a1∆W 1
1 x ∼ n−aL+1−bL+1−2a1−c1 n−a1−c1 n−a1−b1−c1

∆z11 = O(1)⇔ aL+1+bL+1+2a1+c1 ≥ 0 a1 + c1 ≥ 0 c1 ≥ 0 since a1 + b1 = 0

Next, for the hidden layer activations we have

z1l = n−alW 1
l z

1
l−1 = n−al(W 0

l + ∆W 1
l )(z0l−1 + ∆z1l−1)

= n−alW 0
l z

0
l−1 + n−alW 0

l ∆z1l−1 + n−al∆W 1
l z

0
l−1 + n−al∆W 1

l ∆z1l−1

where z0l = Θ(1) by the stability at initialization constraints and we assume that z1l−1 = Θ(1) by these constraints on the
previous layer. This gives us four terms to bound, and in the table below we write one row for each term and in the columns
we write the constraints needed to bound that term for the relevant optimizer.
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SGD Adam Adafactor

n−alW 0
l z

0
l−1 al + bl − 1/2 = 0 by stability at init so no constraint required

n−alW 0
l ∆z1l−1 1/2 + rl−1 − ωl ≥ 0

n−al∆W 1
l z

0
l−1 aL+1 + bL+1 + 2al + cl − αl ≥ 0 al + cl − αl ≥ 0 1/2 + cl − αl ≥ 0

n−al∆W 1
l ∆z1l−1 aL+1 + bL+1 + 2al + cl + rl−1 − ul ≥ 0 al + cl + rl−1 − ul ≥ 0 1/2 + cl + rl−1 − ul ≥ 0

Finally, for the logits we have

z1L+1 = n−aL+1W 1
L+1z

1
L = n−aL+1(W 0

L+1 + ∆W 1
L+1)(z0L + ∆z1L)

= n−aL+1W 0
L+1z

0
L + n−aL+1W 0

L+1∆z1L + n−aL+1∆W 1
L+1z

0
L + n−aL+1∆W 1

L+1∆z1L

where z0L = Θ(1) by stability at initialization and z1L = Θ(1) by the constraints on the hidden layers, and we want to find
the constraints so that z1L+1 = O(1).

Similar to the hidden activations, we have four terms to bound and show the constraints for each term and optimizer in the
following table:

SGD Adam Adafactor

n−aL+1W 0
L+1z

0
L aL+1 + bL+1 − 1/2 ≥ 0 by stability at init so no constraint required

n−aL+1W 0
L+1∆z1L aL+1 + bL+1 + rL − ωL+1 ≥ 0

n−aL+1∆W 1
L+1z

0
L 2aL+1 + cL+1 − αL+1 ≥ 0 aL+1 + cL+1 − αL+1 ≥ 0 aL+1 + bL+1 + cL+1 − αL+1 ≥ 0

n−aL+1∆W 1
L+1∆z1L 2aL+1 + cL+1 + rL − uL+1 ≥ 0 aL+1 + cL+1 + rL − uL+1 ≥ 0 aL+1 + bL+1 + cL+1 + rL − uL+1 ≥ 0

B.13. THIRD AND SUBSEQUENT FORWARD PASSES: STABILITY DURING TRAINING

For the third and subsequent forward passes, there are slight modifications required to the stability constraints from the
second forward pass. Since we require the activations to be exactly constant scale at initialization, the parameter updates
for the embedding and hidden layers are never larger in scale than the initial parameters and therefore never dominate the
contribution from the initial parameters to the activations following that layer. However, the readout parameters might have
updates that are larger in scale than the initialization, so we need to calculate the scale of the readout parameters after the
first update and then consider how this changes the constraints on each optimizer.

For SGD, after the first update we have W 1
L+1 = W 0

L+1 + ∆W 1
L+1 ∼ max(−bL+1,−aL+1 − cL+1). This changes the

gradients for all layers before the readout layer, which were g0l = aL+1 + bL+1 + al, and are now g1l = max(aL+1 +
bL+1, 2aL+1 + cL+1) + al. We account for this by replacing the constraints

g01 + a1 + c1 = aL+1 + bL+1 + 2a1 + c1 ≥ 0

g0l + al + cl − αl = aL+1 + bL+1 + 2al + cl − αl ≥ 0

g0l + al + cl + rl−1 − ul = aL+1 + bL+1 + 2al + cl + rl−1 − ul ≥ 0
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with 
g11 + a1 + c1 = max(aL+1 + bL+1, 2aL+1 + cL+1) + 2a1 + c1 ≥ 0

g1l + al + cl − αl = max(aL+1 + bL+1, 2aL+1 + cL+1) + 2al + cl − αl ≥ 0

g1l + al + cl + rl−1 − ul = max(aL+1 + bL+1, 2aL+1 + cL+1) + 2al + cl + rl−1 − ul ≥ 0

For Adam, even if the readout parameters do increase in scale after initialization, leading to increased gradient scales, the
Adam update scale does not depend on the gradient scale so the existing constraints are sufficient.

For Adafactor, similar to Adam we do not require an additional constraint as a result of a change in gradient scales, but
there is one additional constraint required due to the parameter scaling: we require cL+1 ≥ 0 to avoid exponential growth as
n−cL+1·t across steps t.

Finally, by induction over the steps, combining all the above constraints ensures stability for any time t ≤ T . Note that it is
essential that we assumed the number of training steps T is O(1) so that this induction step does not introduce any width
dependence.

B.14. NONTRIVIALITY

Recall that a parameterization is nontrivial if the change in logits after initialization is at least constant scale. This corresponds
to exact equality on one of the stability constraints on the logits, specifically

SGD Adam Adafactor

aL+1 + bL+1 + rL − ωL+1 = 0 aL+1 + bL+1 + rL − ωL+1 = 0 aL+1 + bL+1 + rL − ωL+1 = 0

or or or

2aL+1 + cL+1 − αL+1 = 0 aL+1 + cL+1 − αL+1 = 0 aL+1 + bL+1 + cL+1 − αL+1 = 0

or or or

2aL+1 + cL+1 + rL − uL+1 = 0 aL+1 + cL+1 + rL − uL+1 = 0 aL+1+bL+1+cL+1+rL−uL+1 = 0

B.15. SUMMARY OF CONSTRAINTS

In Table 2, we summarize the full set of stability and nontriviality constraints derived in the previous sections, which define
the alignment-general space of parameterizations.
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Table 2. Summary of stability and nontriviality constraints for our alignment-general space of parameterizations.

SGD Adam Adafactor

St
ab

ili
ty

at
in

it a1 + b1 = 0

al + bl = 1/2 for l ∈ [2, L]

aL+1 + bL+1 ≥ 1/2

St
ab

le
ac

tiv
at

io
ns

g1 + a1 + c1 ≥ 0 a1 + c1 ≥ 0 c1 ≥ 0

gl + al + cl − αl ≥ 0 al + cl − αl ≥ 0 1/2 + cl − αl ≥ 0

gl + al + cl + rl−1 − ul ≥ 0 al + cl + rl−1 − ul ≥ 0 1/2 + cl + rl−1 − ul ≥ 0

1/2 + rl−1 + ωl ≥ 0, where 1/2 + rl−1 + ωl ≥ 0 1/2 + rl−1 + ωl ≥ 0

gl := max(aL+1 + bL+1, 2aL+1 + cL+1)

St
ab

le
lo

gi
ts

aL+1 + bL+1 + rL − ωL+1 ≥ 0 aL+1 + bL+1 + rL − ωL+1 ≥ 0 aL+1 + bL+1 + rL − ωL+1 ≥ 0

2aL+1 + cL+1 − αL+1 ≥ 0 aL+1 + cL+1 − αL+1 ≥ 0 aL+1 + bL+1 + cL+1 − αL+1 ≥ 0

2aL+1 + cL+1 + rL − uL+1 ≥ 0 aL+1 + cL+1 + rL − uL+1 ≥ 0 aL+1 + bL+1 + cL+1 + rL − uL+1 ≥ 0

cL+1 ≥ 0

N
on

tr
iv

ia
lit

y aL+1 + bL+1 + rL − ωL+1 = 0 aL+1 + bL+1 + rL − ωL+1 = 0 aL+1 + bL+1 + rL − ωL+1 = 0

or 2aL+1 + cL+1 − αL+1 = 0 or aL+1 + cL+1 − αL+1 = 0 or aL+1 + bL+1 + cL+1 − αL+1 = 0

or 2aL+1 + cL+1 + rL − uL+1 = 0 or aL+1 + cL+1 + rL − uL+1 = 0 or aL+1 + bL+1 + cL+1 + rL − uL+1 = 0

B.16. TENSOR PROGRAMS AS A SPECIAL CASE

When we assume αl = 1 ∀l ∈ [2, L + 1], ωl = 1/2 for l ∈ [2, L], and ωL+1 = 1, by plugging these values into our
constraints we recover exactly the stability and nontriviality constraints in Yang & Hu (2021); Yang & Littwin (2023). These
assumptions are the necessary and sufficient conditions to recover their constraints exactly. In particular, their constraints
imply no assumption on ul as their αl = 1 is maximal so αl ≥ ul in all cases and the ∆zl−1∆Wl term never dominates the
zl−1∆Wl term.

B.17. MAXIMUM STABLE LEARNING RATES FOR ALL PARAMETERIZATIONS

In Table 1 (repeated here), we compute the maximum stable per-layer learning rate exponents under two specific alignment
assumptions: “full alignment” where αl = ul = 1, and “no alignment” where αl = ul = 1/2, l ∈ [2, L+ 1]. In both of
these settings, we assume ωl = 1/2, l ∈ [2, L + 1]. This ωL+1 term is the alignment exponent on the ∆zLWL+1 term,
which quantifies the alignment between parameter updates in earlier layers that contribute to ∆zL and the initialization in
the readout layer WL+1. Our ωL+1 = 1/2 relaxes the ωL+1 = 1 assumption in Yang & Hu (2021); Yang & Littwin (2023).

The maximal learning rate exponents follow by first plugging in the values for αl, ωl, and ul and then solving for the
minimal value of cl (where minimal cl corresponds to the maximal learning rate, as cl is the negative exponent) that satisfies
the stability constraints in each layer l. Due to the relaxation with ωL+1 = 1/2, for all parameterizations and optimizers in
both our alignment settings, this results in values of cl that make rl = 0 for all l ∈ [2, L+ 1], indicating that all layers are
being updated maximally and that the parameterization is in a feature learning limit.
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Table 1 (repeated). Left: Parameterizations and gradients at initialization for width n. Middle: Max stable per-layer learning rate scaling
for each optimizer assuming αl = 1, ωl = 1/2 for all layers l. Right: Max stable learning rates assuming αl = ωl = ul = 1/2 for all
layers.

Initialization
Variance

Parameter
Multiplier

Gradient SGD LR,
Full Align

Adam LR,
Full Align

Adafactor LR,
Full Align

SGD LR,
No Align

Adam LR,
No Align

Adafactor LR,
No Align

Standard
Embedding 1 1 1/

√
n

√
n 1 1

√
n 1 1

Hidden 1/n 1 1/
√
n 1/

√
n 1/n 1/

√
n 1 1/

√
n 1

Readout 1/n 1 1 1/n 1/n 1/
√
n 1/

√
n 1/

√
n 1

NTK
Embedding 1 1 1/

√
n

√
n 1 1

√
n 1 1

Hidden 1 1/
√
n 1/n

√
n 1/

√
n 1/

√
n n 1 1

Readout 1 1/
√
n 1/

√
n 1 1/

√
n 1/

√
n

√
n 1 1

muP
Embedding 1/n

√
n 1/

√
n 1 1/

√
n 1 1 1/

√
n 1

Hidden 1/n 1 1/n 1 1/n 1/
√
n

√
n 1/

√
n 1

Readout 1/n 1/
√
n 1/

√
n 1 1/

√
n 1 1 1 1

MFP
Embedding 1 1 1/n n 1 1 n 1 1
Hidden 1 1/

√
n 1/n1.5 n 1/

√
n 1/

√
n n1.5 1 1

Readout 1 1/n 1/n n 1 1 n
√
n 1

For standard and NTK parameterizations, our full alignment per-layer learning rate prescriptions differ from prior work, and
can attain feature learning. For muP and MFP, our full alignment per-layer learning rates coincide exactly for SGD and
Adam in Yang & Hu (2021) and Yang & Littwin (2023) respectively as the ωL+1 term does not constrain the learning rates
in the embedding and hidden layers in those parameterizations.

We note here that throughout the paper, we consider from a theoretical perspective what the maximum stable learning rate
exponents should be, but empirically we are interested in the optimal learning rate. It is not necessarily the case that the
maximum stable learning rate and optimal learning rate scale with the same exponents, and future work could more carefully
investigate the relationship between these two entities.
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C. Experimental Details

All experiments use the NanoDO (Liu et al., 2024) decoder-only Transformer architecture employing learned positional
embeddings, pre-layer norm (Xiong et al., 2020), and GeLU nonlinearity (Hendrycks & Gimpel, 2016) with no tying of the
embedding and readout parameters. We do not use bias terms for weight parameters or Layernorm, following Chowdhery
et al. (2023). Layernorm has a learnable scale parameter. All experiments are implemented in Flax (Heek et al., 2023) on
top of JAX (Bradbury et al., 2018) and use Optax optimizers (Babuschkin et al., 2020).

All models are trained on the C4 dataset encoded with the T5 SentencePiece (Kudo & Richardson, 2018) tokenizer (Raffel
et al., 2020), with an additional beginning-of-sequence (BOS) token, resulting in the vocabulary size of V = 32, 001
(32, 000 original vocabulary + 1 BOS).2 Training inputs are sequence-packed, while evaluation inputs are padded.

We use a fixed batch size 256, context length 512 and depth L = 8 for all experiments. Unless stated otherwise, we
use typical default optimizer hyperparameters (for SGD, momentum m = 0.9, for Adam, ε = 10−9, and for Adafactor
ε = 10−30). We do not use weight decay except for in the weight decay experiments in Figure 9, and we do not use dropout.
The learning rate schedule for all experiments uses linear warmup of 1, 000 steps followed by a cosine decay schedule with
initial and final learning rates of 0.0.

The different model sizes considered are listed in Table 3. Specifically, we fix the head dimension h = 128 and co-scale the
model dimension D, number of heads H and MLP dimension F such that D = H × h and F = 4×D in all models. The
resulting number of parameters is approximately L× 12D2 + 2V D, with exact parameter counts reported in Table 3. The
compute optimal experiments include models up to H = 32 or H = 48, and the fixed (50,000) step experiments include
models up to H = 128.

For each model size, we sweep the learning rate in increments of 20.25 or 20.5, with the largest stable learning rate determined
by a heuristic: if the learning rate exceeds the optimal learning rate and the eval loss exceeds the minimum eval loss by more
than 20% or causes NaNs, we consider the learning rate unstable. We ensured that our learning rate sweeps covered this
stability threshold so that the gap between the largest plotted learning rate and smallest unstable learning rate is at most 20.5

and in many cases is 20.25. The learning rate sweep plots show only the stable learning rates so learning rates larger than the
rightmost point in each plot can therefore be considered unstable.

For all optimizers except Adafactor, we use ZeRO3 (Rajbhandari et al., 2020) fully-sharded data parallelism (FSDP). Our
FSDP implementation did not work with Adafactor out-of-the-box due to tensor shape mismatches as a result of the factored
matrices in Adafactor so we omit it for that optimizer.

Table 3. Model sizes used in experiments.

Number of heads Model dimension MLP width Parameter Counts
H D = 128H F = 4D Embedding Non-embedding Total

1 128 512 4, 108, 928 5, 749, 504 9, 858, 432
2 256 1, 024 8, 217, 856 14, 644, 736 22, 862, 592
4 512 2, 048 16, 435, 712 41, 872, 384 58, 308, 096
6 768 3, 072 24, 653, 568 81, 682, 944 106, 336, 512
8 1, 024 4, 096 32, 871, 424 134, 076, 416 166, 947, 840

12 1, 536 6, 144 49, 307, 136 276, 612, 096 325, 919, 232
16 2, 048 8, 192 65, 742, 848 469, 479, 424 535, 222, 272
20 2, 560 10, 240 82, 178, 560 712, 678, 400 794, 856, 960
24 3, 072 12, 288 98, 614, 272 1, 006, 209, 024 1, 104, 823, 296
32 4, 096 16, 384 131, 485, 696 1, 744, 265, 216 1, 875, 750, 912
48 6, 144 24, 576 197, 228, 544 3, 824, 357, 376 4, 021, 585, 920
64 8, 192 32, 768 262, 971, 392 6, 709, 755, 904 6, 972, 727, 296
96 12, 288 49, 152 394, 457, 088 14, 896, 472, 064 15, 290, 929, 152

128 16, 384 65, 536 525, 942, 784 26, 304, 413, 696 26, 830, 356, 480

2Effective vocabulary dimension in experiments is 32, 101 due to 100 unused tokens.
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C.1. PARAMETERIZATION DETAILS

This section includes details about the parameterization implementation for our Transformer model. For the purpose of
parameterization, the embedding layers include the embeddings, positional embeddings and the Layernorm scale parameter,
the hidden layers include the MLP layers in the Transformer block, the dense query, key and value layers, and the attention
output projection layer, and the readout layer is just the readout layer.

We use the variant of muP originally proposed by Yang & Hu (2021), which is also presented in Table 9 of Yang et al.
(2022).

When the embedding initialization is a constant (i.e. has zero as the exponent), we use 0.01 for the embedding and positional
embedding initialization standard deviation. We otherwise omit constant factors from parameterized quantities unless
otherwise specified.

The attention operator contains a tensor contraction between the query and key matrices, which induces another question
about alignment: if we assume alignment between the query and key, then we should normalize by the head dimension h
and if we do not assume alignment then we should normalize by

√
h inside the softmax. We follow convention and use√

h for standard and NTK parameterizations and h for muP and mean-field. However, we note that due to our fixed head
dimension that this difference amounts to only a constant factor.

C.2. TUNING CONSTANT PER-LAYER LEARNING RATE FACTORS

When tuning the per-layer constant multiplicative factors defined in Section 4.2, we use a Bayesian optimization li-
brary (Golovin et al., 2017) to perform a three-dimensional hyperparameter search for (γ1, γh, γL+1), using 800 trials with
at most 100 trials in parallel with a range set to [1e− 2, 1e2] for each constant. If the optimal values for any of the constants
is at or near the edge of the range after this first search, we extend the range of the sweep for that constant to 0.01 and 100x
the optimal value found in the original sweep and repeat the same tuning procedure.

Since the eval loss has some noise, we consider all trials that perform within 0.1% relative eval loss of the best trial to be
equivalently good, and determine the optimal constants using the average for each constant over this set of best trials.

C.3. ADAM-ATAN2 CODE CHANGE

To implement Adam-atan2 using the jax numpy package, imported here as jnp, we change a single line of code to replace
the default Adam update rule:

m / (jnp.sqrt(v + eps_root) + eps)

with the Adam-atan2 update rule:

4/jnp.pi * jnp.arctan2(m, jnp.sqrt(v))

We found that stretching the arctangent function to extend the region where arctangent is linear improved performance
slightly, and used

4/jnp.pi * lambda * jnp.arctan2(m, lambda * jnp.sqrt(v))

with a value of lambda = 8 for all Adam-atan2 experiments.

23



Scaling Exponents Across Parameterizations and Optimizers

D. Alignment Experiments

SGD+Momentum Alignment Experiments
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Figure 5. SGD alignment
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Adam Alignment Experiments

101 102 103 1040.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Al
ig

nm
en

t

Standard, D=1024, LR=2^-9.0

101 102 103 1040.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0 NTK, D=1024, LR=2^-4.0

101 102 103 1040.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0 muP, D=1024, LR=2^-8.5

101 102 103 1040.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0Mean Field, D=1024, LR=2^-3.75

101 102 103 104

Steps
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Al
ig

nm
en

t

101 102 103 104

Steps
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

101 102 103 104

Steps
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

101 102 103 104

Steps
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

101 102 103 1040.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Al
ig

nm
en

t

Standard, D=2048, LR=2^-9.5

101 102 103 1040.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0 NTK, D=2048, LR=2^-3.75

101 102 103 1040.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0 muP, D=2048, LR=2^-9.5

101 102 103 1040.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0 Mean Field, D=2048, LR=2^-3.5

101 102 103 104

Steps
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Al
ig

nm
en

t

101 102 103 104

Steps
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

101 102 103 104

Steps
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

101 102 103 104

Steps
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

101 102 103 1040.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Al
ig

nm
en

t

Standard, D=4096, LR=2^-11.25

101 102 103 1040.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0 NTK, D=4096, LR=2^-4.25

101 102 103 1040.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0 muP, D=4096, LR=2^-10.75

101 102 103 1040.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0 Mean Field, D=4096, LR=2^-3.5

101 102 103 104

Steps
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Al
ig

nm
en

t

101 102 103 104

Steps
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

101 102 103 104

Steps
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

101 102 103 104

Steps
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

B0/mlp_0
B0/mlp_1
B0/query
B0/key
B0/value
B0/attn_out
readout

B1/mlp_0
B1/mlp_1
B1/query
B1/key
B1/value
B1/attn_out
end of warmup

B2/mlp_0
B2/mlp_1
B2/query
B2/key
B2/value
B2/attn_out

B3/mlp_0
B3/mlp_1
B3/query
B3/key
B3/value
B3/attn_out

B4/mlp_0
B4/mlp_1
B4/query
B4/key
B4/value
B4/attn_out

B5/mlp_0
B5/mlp_1
B5/query
B5/key
B5/value
B5/attn_out

B6/mlp_0
B6/mlp_1
B6/query
B6/key
B6/value
B6/attn_out

B7/mlp_0
B7/mlp_1
B7/query
B7/key
B7/value
B7/attn_out

Figure 6. Adam alignment
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Adafactor Alignment Experiments
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Figure 7. Adafactor alignment
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E. Additional Epsilon Experiments
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Figure 8. Experiments for all parameterizations comparing the three epsilon mitigations (small constant epsilon = 1e-15, per-layer epsilon
with base epsilon = 1e-12, and Adam-atan2) to the baseline default constant epsilon of 1e-9.
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F. Weight Decay Experiments

In current practice, weight decay is typically used for training large Transformers and may improve training stability by
providing a small amount of regularization (Brown et al., 2020). For the majority of our experiments, we do not use weight
decay in order to reduce the number of possible confounding factors and focus our investigation on the impact of the
parameterization and optimizer choices.

As a cross-check to ensure our conclusions are likely to transfer to settings with weight decay, we perform a set of
experiments for Adam using global learning rates with a small constant weight decay of 1e-4, using “decoupled” or
“independent” weight decay as proposed in AdamW (Loshchilov & Hutter, 2018). In decoupled weight decay, the weight
decay is not scaled by the base learning rate; our value of 1e-4 decoupled weight decay corresponds to the higher values
around 1e-2 or 1e-1 typically used for weight decay that does scale by the base learning rate.

Across parameterizations, we see a slight improvement in the eval loss due to weight decay, but similar learning rate scaling
as the zero weight decay setting. This suggests that while weight decay plays a beneficial role, it does not significantly alter
the scaling behavior or have parameterization-specific interactions and therefore we expect our conclusions should transfer
to settings with a small amount of weight decay. Full results for the weight decay experiments are included in Figure 9.
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Adam + Weight Decay: 50k and compute optimal
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Figure 9. Adam + Weight Decay: 50k and compute optimal
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G. Adafactor and Adam + Parameter Scaling experiments

As a cross-check that Adafactor and Adam + parameter scaling are in similar width-scaling regimes, we compare the two
optimizers on all parameterizations in two settings: global learning rate + default constants and per-layer learning rate +
full alignment + optimal constants. Due to the factored matrices in Adafactor, we encountered issues with tensor shape
mismatches when using Adafactor with our implementation of FSDP, which the limited the model sizes we could use
for Adafactor. Instead, we use Adam + parameter scaling for all our experiments in Section 4.2. For Adam + parameter
scaling, the only difference from our Adam optimizer experiments is the adddition of parameter scaling. We use the standard
Optax implementation of Adafactor here that includes the factored second moment estimate and update clipping. We see in
Figure 10 that there are minor differences in performance but overall the optimizers show similar scaling behavior across
model sizes up to 4B parameters, suggesting these two optimizers should be considered members of the same width-scaling
regime.
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Figure 10. Adafactor and Adam + parameter scaling experiments.
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H. Fixed Step vs Compute Optimal experiments

Since the cost of compute is currently the most significant factor that limits the scale of large model training runs, the dominant
paradigm for training large models in practice is the compute-optimal regime. The compute-optimal setting (Kaplan, 2019)
aims to maximize model performance under a fixed budget of FLOPS for training, where these FLOPS can be traded off
between the number of parameters in the model and the number of training tokens the model is trained on. The Chinchilla
paper (Hoffmann et al., 2022) finds empirically that the optimal tradeoff occurs when the number of parameters and number
of tokens scale in proportion. When the batch size and context length are fixed, as in our setting, the number of training
tokens is proportional to the number of training steps. Due to the n× n parameter matrices in dense hidden layers with
width n, the number of parameters grow quadratically with respect to the width. Therefore, the Chinchilla results imply that
the compute optimal number of steps grows quadratically with respect to the model width.

This contradicts the fixed step assumption used in the theoretical derivations in both this paper and Yang & Hu (2021); Yang
& Littwin (2023), which assume that the number of training steps T is O(1). Intuitively, this fixed step assumption is used
so that the derivations can consider the contributions to the scaling exponents of a single step at a time: if we satisfactorily
bound the contribution of each step to the scaling exponents, and then take only a constant number of steps, then the constant
number of steps does not introduce any width-dependent scaling factors. The naive extension of this theory to a setting with
Θ(n2) instead of O(1) training steps would give impractical bounds: in the worst-case analysis, each learning rate would
need to be divided by n2 to correct for the n2 number of steps giving learning rates that are far too conservative to be useful.

We therefore take an empirical approach rather than a worst-case theoretical analysis to investigate the role of the training
horizon. We perform a set of experiments using both fixed step and compute optimal training horizons in the global learning
rate settings for SGD+momentum, Adam and Adafactor across all parameterizations using default constant learning rate
multipliers. In each setting, we sweep both model width and learning rate, and then fit a power law with an irreducible loss
term to determine the scaling exponent for the optimal learning rate. The measured learning rate exponents are reported in
Table 4. For all fixed step experiments, we train for 50, 000 steps. For the compute optimal setting, we compute the training
horizon using the Chinchilla-optimal heuristic (Hoffmann et al., 2022) with 20x multiplier, i.e. the number of training tokens
is equal to 20 times the number of non-embedding parameters. Full results for the learning rate sweeps are included in
Figure 11, 12 and 13.

Table 4. Optimal global learning rate scaling exponent with respect to model dimension for given optimizer, parameterization combi-
nation. We report measured exponents for fixed step (50k) and compute optimal training horizon settings.

Fixed Step: 50k Compute Optimal

SGD

STP -0.68 -0.91
NTK 0.65 0.06
muP -0.12 -1.17
MFP 0.25 -0.72

Adam

STP -1.09 -1.27
NTK -0.50 -0.89
muP -0.99 -1.24
MFP -0.09 -0.49

Adafactor

STP -0.16 -0.59
NTK -0.16 -0.57
muP -0.21 -0.62
MFP -0.15 -0.51

Our exponent measurements show that in every parameterization × optimizer setting, the learning rate exponent in the
compute optimal setting is smaller than in the fixed steps setting, indicating that the learning rate would need to decrease
more aggressively as width grows than predictions from the fixed steps setting would imply. The median difference from the
twelve optimizer × parameterization settings is 0.40 and ranges from 0.23 to 1.05. We note this difference of 0.40 is much
less than the difference of 2 that would come from the naive worst-case theoretical analysis.

This result has implications both for theoretical and empirical settings. First, it motivates theoretical work to consider the
compute optimal setting instead of the fixed steps setting. Second, it implies that hyperparameter search should be careful
not to assume that results from the fixed step setting will extrapolate to the compute optimal setting. In particular, given
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a fixed compute budget to spend on hyperparameter search before training a single large model with a compute optimal
horizon, one possible approach to choosing the learning rate would be to train model sizes close to the final model size
for shorter training horizons, and use this to extrapolate the best learning rate for the large model compute optimal run. A
priori, this strategy might be advantageous because the shorter training horizons let you use larger models for the same
hyperparameter search budget so the search occurs closer in size to the final model. However, our results suggest that this
may not be a viable strategy: if we extrapolate a learning rate to larger models based on an exponent fitted in the fixed
steps setting, we may significantly overestimate the learning rate that is optimal in the compute optimal setting. Instead,
we recommend considering performing the hyperparameter search for the learning rate by training smaller models at their
compute optimal training horizon and then extrapolating across model sizes to the compute optimal setting for the largest
model.
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Stochastic Gradient Descent global learning rate experiments: 50k steps and compute optimal
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Figure 11. Stochastic Gradient Descent experiments: 50k steps and compute optimal
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Adam global learning rate experiments: 50k steps and compute optimal
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Figure 12. Adam experiments: 50k steps and compute optimal
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Adafactor global learning rate experiments: 50k steps and compute optimal
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Figure 13. Adafactor experiments: 50k steps and compute optimal
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