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Abstract
A central question in multilingual language mod-
eling is whether large language models (LLMs)
develop a universal concept representation, dis-
entangled from specific languages. In this paper,
we address this question by analyzing Llama-2’s
forward pass during a word translation task. We
strategically extract latents from a source transla-
tion prompt and insert them into the forward pass
on a target translation prompt. By doing so, we
find that the output language is encoded in the
latent at an earlier layer than the concept to be
translated. Building on this insight, we conduct
two key experiments. First, we demonstrate that
we can change the concept without changing the
language and vice versa through activation patch-
ing alone. Second, we show that patching with
the mean over latents across different language
pairs does not impair and instead improves the
model’s performance in translating the concept.
Our results provide evidence for the existence of
language-agnostic concept representations within
the model.

1. Introduction
The emergence of the field of mechanistic interpretabil-
ity has led to the conception of powerful tools (Carter
et al., 2019; Nostalgebraist, 2020; Schubert et al., 2020;
Belrose et al., 2023; Cunningham et al., 2023; Kramár et al.,
2024; Marks et al., 2024; O’Neill & Bui, 2024; Tufanov
et al., 2024) for the investigation of the inner workings
of deep neural networks such as large language models
(LLMs) (Vaswani et al., 2017; Radford et al., 2019; Touvron
et al., 2023) with the ultimate goal of reverse engineering
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Figure 1. For two given concepts, e.g., BOOK and LEMON, we
construct a source prompt for translating from German to Italian,
and a target prompt for translating from French to Chinese. Then
we extract the latent of the last token after some layer j from
the source prompt and insert it at the corresponding position in
the forward pass of the target prompt. The resulting next token
probabilities will concentrate on the target concept in the target
language (LEMONZH , i.e.,柠檬) when patching at layers 0–11, on
the target concept in the source language (LEMONIT, “limone”)
for layers 12–16, and on the source concept in the source language
(BOOKIT, “libro”) for layers 17–31.

the algorithms encoded in their weights. As a result, re-
searchers today are often able to open up a “black box”
neural network, and with near surgical precision pinpoint
where a certain input-output behaviour comes from (Wang
et al., 2022; Conmy et al., 2023; Nanda et al., 2023; Zhong
et al., 2024; Furuta et al., 2024).

One such recent approach has been to use patch-
scopes (Ghandeharioun et al., 2024) or self-interpretation of
embeddings (Chen et al., 2024). The key idea behind those
methods is to repurpose a LLM1 to unpack information con-

1Note that we use LLM and transformer (Vaswani et al., 2017)

1



How Do Llamas Process Multilingual Text? A Latent Exploration through Activation Patching

tained in its own intermediate results. This can be achieved
by patching a latent from one forward pass into another one
while observing the output (cf. Fig. 1).

Summary of contributions. In this work, inspired by those
patching based approaches, we leverage activation patch-
ing to understand how LLMs like Llama-2 (Touvron et al.,
2023) processes multilingual text. In particular, we investi-
gate whether it uses a language-agnostic concept space, as
theorized by Wendler et al. (2024). In such a space, concepts
would be represented independently of the language used to
express them. In order to do so, we design multiple patch-
ing experiments leveraging pairs of translation prompts with
differing expected predicted concept and language.

1. We start by patching at the last token (as in Fig. 1).
As a result, we find that first the model resolves the
output language and, in later layers, the concept to be
translated.

2. Next, we come up with two hypotheses about how
Llama-2’s forward pass might have solved the task.
H1, in which language and concept are represented in
a disentangled way, and H2, in which they are always
entangled.

3. Finally, we perform targeted experiments to gather
more evidence for either H1 or H2, and find H1 is
better supported by our results.

Therefore, our results agree with the theory outlined by
Wendler et al. (2024). In contrast to their analysis which is
purely observational with the logit lens, ours is based on in-
terventions by virtue of activation patching. Additionally, by
using activation patching, we circumvent the potential pit-
falls of cosine similarity (Steck et al., 2024) inherent in the
logit lens analysis and instead utilize Llama-2’s full power
to draw conclusions about the computations performed and
representations used.

2. Llama-2’s forward pass
Because we need full model access for our analysis, we
focus on Llama-2 (Touvron et al., 2023)2. Llama-2
is an autoregressive, decoder-only, residual-based trans-
former (Vaswani et al., 2017) that was trained to map a
sequence of input tokens x1, . . . ,xn ∈ V , where n is the se-
quence length, to a sequence of latents in Rd that is refined
layer by layer such that the final latents are well-suited for
predicting the next tokens x2, . . . ,xn+1 ∈V .

On a technical level, this is achieved using transformer
blocks, consisting of a causally masked self-attention layer
followed by a feed-forward network with a residual connec-

interchangeably.
2Additionally, we reproduce our results on a few other LLMs

as shown in App. D.

tion and root mean square (RMS) normalization in between
(Vaswani et al., 2017; Touvron et al., 2023), that are used to
update the latent at position i in layer j:

h( j)
i = h( j−1)

i + f j

(
h( j−1)

1 , . . . ,h( j−1)
i

)
, (1)

where h( j−1)
1 , . . . ,h( j−1)

i and h( j)
i ∈ Rd .

The initial latents h(0)1 , . . . ,h(0)n ∈ Rd are learnt token em-
beddings. Finally, for a m-layer transformer, the next-token
probabilities are obtained via a learnt linear layer followed
by a softmax operation mapping h(m)

i to P(xi+1|h(m)
i ).

3. Exploratory analysis with patching

Notation. Let C denote an abstract concept and Cℓ its
language-specific version. Further, let w(Cℓ) denote the
set of words3 expressing the abstract concept C in language
ℓ. For example, using capitalization to denote the abstract
concepts, let C = CAT. Then for ℓ= EN we have w(CEN) =
{“cat”} and similarly w(CDE) = {“Katze”,“Kater”}.

Problem statement. We aim to understand whether lan-
guage and concept information can vary independently dur-
ing Llama-2’s forward pass when processing a multilingual
prompt. For example, a representation of Cℓ of the form
zCℓ = zC + zℓ, in which zC ∈U , zℓ ∈U⊥ and U ⊕U⊥ = Rd

is a decomposition of Rd into a subspace U and its orthogo-
nal complement U⊥, would allow for language and concept
information to vary independently: language can be var-
ied by changing zℓ ∈U⊥ and concept by changing zC ∈U .
Conversely, if language and concept information were entan-
gled, a decomposition like this should not exist: varying the
language would mean varying the concept and vice versa.

3.1. Experimental design

We start our analysis with an exploratory experiment in
which we utilize simple few-shot translation prompts from
Wendler et al. (2024) to create paired source and target
prompt datasets with different concept CS ̸=CT , input lan-
guage ℓ

(in)
S ̸= ℓ

(in)
T , and output language ℓ

(out)
S ̸= ℓ

(out)
T .

If not mentioned otherwise, ℓS and ℓT refer to the output
language of the source and target prompt.

Prompt design. An example translation prompt:

3We talk about words for the sake of simplicity. However, on a
technical level w refers to the set of starting tokens of these words.
Therefore, each time we patch and track different sets of tokens W ,
(e.g. W ∈ {w(CIT

1 ),w(CZH
1 ),w(CIT

2 ),w(CZH
2 ),w(CEN

1 )∪w(CEN
2 )}=

W ), we ensure that there is no token in common between any pair
of W1,W2 ∈ W with W1 ̸=W2.
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English: “lake” - Français: “lac”
English: “south” - Français: “sud”
English: “mother” - Français: “mère”
English: “seat” - Français: “siège”
English: “cloud” - Français: “

Here the task is to translate w(CLOUDEN) = {“cloud”} into
w(CLOUDFR) = {“nuage”}.

Importantly, whether the model correctly answers the
prompt is determined by its next token prediction. For
example above, the next token predicted should be “nu”,
the first token of “nuage”. Thus, we can track P(Cℓ), i.e.,
the probability of the concept C occurring in language ℓ, by
simply summing up the probabilities of all starting tokens
of w(Cℓ) in the next-token distribution.

We improve upon the construction of Wendler et al. (2024)
by considering all the possible expressions of C in ℓ using
BabelNet (Navigli et al., 2021), instead of GPT-4 transla-
tions, when computing P(Cℓ). This allows us to capture
many possible translations, instead of one. For example,
“commerce”, “magasin” and “boutique” are all valid words
for SHOPFR.

Patching setup. We would like to infer at which layers
the output language and the concept enter the latent h( j)

nT (T )
respectively and whether they can vary independently. In
order to investigate this question, we perform the exper-
iment depicted in Fig. 1. For each transformer block f j
we create two parallel forward passes, one processing the
source prompt S = (s1, . . . ,snS) and one processing the tar-
get prompt T = (t1, . . . , tnT ). While doing so, we extract
the latent of the last token of the source prompt at layer
j, h( j)

nS (S), and insert it at the same layer at position nT
in the forward pass of the target prompt, i.e., by setting
h( j)

nT (T ) = h( j)
nS (S) and subsequently completing the altered

forward pass. From the resulting next token distribution, we
compute P(CℓS

S ),P(CℓT
S ),P(CℓS

T ), and P(CℓT
T ).

3.2. Results

In this experiment, we use differing concepts, and ℓ
(in)
S =

DE, ℓ
(out)
S = IT for the source and ℓ

(in)
T = FR, ℓ

(out)
T = ZH

for the target prompt. We perform the patching at one
layer at a time and report the probability that is assigned
to P(CℓS

S ),P(CℓT
S ),P(CℓS

T ), and P(CℓT
T ). As a result we ob-

tain Fig. 2 in which we report means and 95% confidence
interval over 200 examples. As model we use Llama-2-7B.

Interpretation. We observe the following pattern while
patching at different layers (see Fig. 2):

• Layers 0–11: Target concept decoded in target lan-
guage, resulting in large P(CZH

T ).
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Figure 2. Our first patching experiment with a DE to IT source
prompt and a FR to ZH target prompt with different concepts. We
patch at the last token. For each of the plots the x-axis shows at
which layer the patching was performed during the forward pass on
the target prompt and the y-axis shows the probability of predicting
the correct concept in language ℓ (see legend). In the legend, the
prefix “src” stands for source and “tgt” for target concept. The
orange dashed line and blue dash-dotted line correspond to the
mean accuracy on source and target prompt. We report means and
95% Gaussian confidence intervals computed over 200 source-,
target prompt pairs featuring 41 source concepts and 38 target
concepts.

• Layers 12–16: Target concept decoded in source lan-
guage, resulting in large P(CIT

T ).
• Layers 16–31: Source concept decoded in source lan-

guage, resulting in large P(CIT
S ).

This pattern suggests that the model first computes the out-
put language: from layer 12 onwards, we decode in the
source output language. This indicates that up until that
layer, the need to decode to ℓ(out) is being encoded in the
latent and subsequently remains unchanged. For example,
this could be achieved by the model computing a function
vector zℓ(out) (Todd et al., 2023). If this hypothesis is correct,
patching at layer 12 would overwrite the function vector
encoding the need to decode to ZH from the target prompt
with the one to decode to IT from the source prompt. This
would explain the shape of the green line in Fig. 2.

In later layers, the model determines the concept: from layer
16 onwards, the source concept is decoded. This suggests
that z

Cℓ(out)
T

is overwritten at layer 16. 4

4In Appendix A, we collected additional experimental results
investigating the right part of Fig. 2 more deeply and in Appendix B
the left part. For the right part, we use the patchscope lens (Ghan-
deharioun et al., 2024) to investigate from which layer it is possible
to decode the source concept in App. Fig. 6. The results of both
experiments agree: from layer 16 it is possible to decode the source
concept in source language. For the left part, we experiment with
randomized source prompts and different prompting templates in
between source and target prompt in App. Fig. 7. We find that
indeed before layer 11 there is no translation task specific informa-
tion in the latent, only prompt-template specific information.
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Hypotheses. We are left with two hypotheses compatible
with these results, depicted in Fig. 3:

• H1: Concept and language are represented indepen-
dently. When doing the translation, the model first
computes ℓ(out) from context, and then identifies C.
In the last layers, it then maps C to the first token of
w(Cℓ(out)

).
• H2: The representation of a concept is always entan-

gled with its language. When doing the translation,
the model first computes ℓ(out), then computes ℓ(in) and
Cℓ(in) from its context and solves the language-pair-
specific translation task of mapping Cℓ(in) to Cℓ(out)

.

Figure 3. Our hypothesis about how the forward pass could look
like on our translation prompts. Every block consists of multi-
ple transformer blocks and in between the blocks we denote the
relevant content contained in the latents (in the residual stream).
Because in hypothesis 2 concept and language cannot be disen-
tangled one input-output language specific translation circuit per
language pair is required.

4. Ruling out hypotheses
Next, we run additional experiments to (1) provide further
evidence that we are either in H1 or H2 and (2) to disam-
biguate whether we are in H1 or H2.

Further evidence experiment. In the experiments in Sec. 3
we did not observe source concept in target language. How-
ever, both H1 and H2 would allow for that to happen via
patching in the right way. Therefore, in this experiment,
instead of overwriting latents at the last token of the prompt,
we overwrite them at the last token of the word to be trans-
lated. Let ρS and ρT denote the position of that token in

source and target prompt respectively. Since the concept in-
formation seems to enter via multiple layers (16-20) into the
latent of the last token, we overwrite the latent correspond-
ing to the token at position ρT at layer j and all subsequent
ones as depicted in Fig. 4. By patching in this way in both
H1 and H2 we would expect to see large P(CℓT

S ).

Formally, we patch by setting h( j)
ρT (T ) =

h( j)
ρS (S), . . . ,h

(m)
ρT (T ) = h(m)

ρS (S) (in Llama-2-7B with
0-indexing, m = 31).

Figure 4. For two given concepts, e.g., BOOK and LEMON, we
construct a source prompt for translating from German to Italian,
and a target prompt for translating from French to Chinese. Then
we extract the latents of the last token of the word to be translated
after some layer j and all subsequent ones from the source prompt
and insert them at the corresponding positions in the forward pass
of the target prompt. The resulting next token probabilities will
concentrate on the source concept in target language (BOOKZH,
i.e.,柠檬) when patching at layers 0–15, on the target concept in
target language (LEMONZH,书) for layers 16–31

.

Disambiguation experiment. Both H1 and H2 compute
w(CℓT

S ) but in different ways. In H1 one decoding circuit
per output language is required in order to compute the
expression for the concept CS in language ℓT . In contrast,
in H2 one translation circuit per input-output language pair

is required to map the entangled C
ℓ
(in)
S

S to C
ℓ
(out)
T

S . Therefore,
in order to disambiguate the two, we construct a patching
experiment that should work under H1, but fail under H2.

In order to do so, instead of patching the latent containing

C
ℓ
(in)
S

S from a single source forward pass, we create multi-
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ple source prompts with the same concept CS but in differ-
ent input languages ℓ(in)S1

̸= . . . ̸= ℓ
(in)
Sk

and output languages

ℓ
(out)
S1

̸= . . . ̸= ℓ
(out)
Sk

and patch by setting

h(α)
ρT (T ) =

1
k

k

∑
i=1

h(α)
ρSi

(Si),

for α ∈ j, . . . ,m. Let Ci =C
ℓ
(in)
Si

S , under H1, taking the mean
of several language-specific concept representations should
keep the concept information intact, since

1
k

k

∑
i=1

zCi = zCS +
1
k

k

∑
i=1

z
ℓ
(in)
Si

.

Therefore, we’d expect high P(CℓT
S ) in this case. However,

under H2, in which zCi cannot be disentangled, this mean
may not correspond to a well-defined concept. Additionally,
the interference between multiple input languages should
cause difficulties for the language-pair-specific translation,
which should result in a drop in P(CℓT

S ). A visualization of
this argument can be seen in App. Fig. 8

Results. In the first experiment we use the same languages
as above and in the second one we used DE, NL, ZH, ES, RU
as input and IT, FI, ES, RU, KO as output languages for the
source prompts, and, FR to ZH for the target prompt.

In Fig. 5 we observe, that in both experiments we obtain
very high probability for the source concept in the target
language P(CZH

S ) from layers 0 to 15, i.e., exactly until the
latents at the last token stop attending to the last concept-
token.

Therefore, Fig. 5 (a) supports that we are indeed either in
H1 or H2, since as planned we successfully decode source
concepts in the target language P(CZH

S ) from layers 0 to 15.
Conversely, if we were not able to decode source concept in
target language in this way this would have spoken against
both H1 and H2.

Additionally, Fig. 5 (b) supports that we are in H1 and not
in H2 because patching in the mean keeps P(CZH

S ) in tact
and even increases it. Therefore, instead of observing inter-
ference between the different language-entangled concepts
as would have been predicted by H2, we observe a concept-
denoising effect by averaging multiple language-agnostic
concept representations which only makes sense under H1.
Taking the mean over concept representations correspond-
ing to different input languages seems to act like a majority
voting mechanism resulting in an increase in P(CZH

S ). 5

5Conversely, e.g., averaging over different translation prompt
contexts but while keeping the input and output language fixed
does not lead to an increase in P(CZH

S ) (see App. Fig. 10 (b)).

(a) Single source prompt
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(b) Mean over source prompts
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Figure 5. Here we use different input languages (DE, FR), different
concepts, different output languages (IT, ZH) in (a). In (b) we use
multiple source input languages DE, NL, ZH, ES, RU and output
languages IT, FI, ES, RU, KO. We patch at the last token of the
concept-word at all layers from j to 31. In (a) we patch latents from
the single source prompt in (b) we patch the mean of the latents
over the source prompts. For each of the plots, the x-axis shows
at which layer the patching was performed during the forward
pass on the target prompt and the y-axis shows the probability of
predicting the correct concept in language ℓ (see legend). The
prefix “src” stands for source and “tgt” for target concept. We
report means and 95% Gaussian confidence intervals computed
over a dataset of size 200.

5. Other models
In Appendix D we perform the experiments from Sec. 3 and
Sec. 4 on several other models, namely, Mistral-7B (Jiang
et al., 2023), Llama-3-8B6, Qwen1.5-7B (Bai et al., 2023),
and Llama-2-70B, and find that they display the same be-
haviour.

6. Discussion
In this paper, we performed multiple experiments that in-
deed indicate that Llama-2 processes language and con-
cept information independently in the few-shot translation
prompts used. This also speaks for language and concept
information being represented in a disentangled way. Our
results are aligned with findings from prior work (Wendler
et al., 2024) that indicate that Llama-2 represents concepts in
a concept space independent of the language of the prompt.
However, our analysis goes beyond the purely observational
logit lens analysis performed by Wendler et al. (2024). Us-
ing activation patching, we circumvent potential pitfalls
of cosine similarity (Steck et al., 2024) and instead utilize
Llama-2’s full power.

6https://github.com/meta-llama/llama3
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Limitations
In this work, we studied how Llama-2 represents concepts
when processing multilingual text. However, we only con-
sidered very simple translation prompts and also probed
only for the language-specific words describing the con-
cept. Further experiments are needed to make claims about
how Llama-2 and other language models process multi-
lingual text in general settings. Furthermore, more fine-
grained probing will be required to determine to which
degree Llama-2 is able to specialize a concept to a language
and whether concepts and languages are entangled in more
subtle ways.
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A. Patchscope experiment
We performed an additional experiment using the patch-
scope lens (Ghandeharioun et al., 2024) to collect more
evidence about from which layer it is possible to decode
the source concept in Fig. 6. The results of this experiment
corroborate the findings presented in Section 3. To enable a
convenient comparison of the experimental results, we also
include Fig. 2 in Fig. 6.

(a) Activation patching
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(b) Patchscope lens
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Figure 6. (a) Our first patching experiment with a DE to
IT source prompt and a FR to ZH target prompt with
different concepts. (b) Our patchscope lens experiment
with a DE to IT source prompt and identity target prompt
king king\n1135 1135\nhello hello\n? . We patch at the last

token respectively. For each of the plots the x-axis shows at which
layer the patching was performed during the forward pass on the
target prompt and the y-axis shows the probability of predicting
the correct concept in language ℓ (see legend). In the legend the
prefix “src” stands for source and “tgt” for target concept. The
orange dashed line and blue dash-dotted line correspond to the
mean accuracy on source and target prompt. We report means and
95% Gaussian confidence intervals computed over 200 source-,
target prompt pairs featuring 41 source concepts and 38 target
concepts for (a) and 38 prompts for (b).

B. Random prompt task experiment
In order to investigate the leftmost part of Fig. 6a more
deeply, we performed additional experiments in which we
explore “random” source prompts instead of translation
source prompts.

The experimental setting here is similar to the one in Sec. 3
(illustrated in Fig. 1), except for the fact that instead of
patching in latents from a translation source prompt we
patch latents from different “random” source prompts. For
the random source prompts, we gradually move away from
the prompting template.

Same template. In Fig. 7a, we randomized both input
and output language as well as concepts in the source
prompts, resulting in prompts of the following form:

A: “CATDE” - B: “DOGIT”
A: “OWLJA” - B: “SUNHI”
A: “ICEFR” - B: “

By doing this, the latent of the source prompt is similar
in terms of prompt structure, but the model cannot infer a
task vector specifying the output language since the source
prompt instantiates an impossible task (to predict a random
word in a random language). As shown in Fig. 7a, for layers
0–11, we observe no drop in the accuracy, which confirms
our hypothesis that in those layers the latent at last token
position contains no information specific to the translation
task.
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(a) Random prompt
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(b) Empty prompt
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(c) Random prompt with “@” in-
stead of quotation mark
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(d) Random shuffled prompt
(random hidden state)
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Figure 7. (a) activation patching experiment with a randomized
source prompt (random concepts, and languages, but same tem-
plate) and a FR to ZH target prompt. (b) we construct a source
prompt with empty context. (c) we replace the quotation mark
with @ in the random source prompt from (a). (d) we randomly
shuffle the source prompts from (c). We patch at the last token
respectively. For each of the plots, the x-axis shows at which layer
the patching was performed during the forward pass on the target
prompt and the y-axis shows the probability of predicting the cor-
rect concept in language ℓ (see legend). We only plot the target
(“tgt”) concept, as there is no source concept to predict. We report
means and 95% Gaussian confidence intervals computed over 200
source-, target prompt pairs.

Instead, we think that in our chosen prompting template
the last token, which is a quotation mark, merely indicates
where to put the translation result. In order to investigate
this, we performed further patching experiments investigat-
ing how changes in the prompting template in the source
prompt affects the target forward pass ability to compute an
answer.

Empty context. For example, replacing the source prompt
with an empty prompt, merely containing B: ” results in
Fig. 7b. In contrast to Fig 7a, the target concept in target
language probability drops already starting from layer 4.
We think this is due to the fact that until layer 4 the quota-
tion mark token information which is shared among the two
prompting templates “dominates” the latent representation
and is not yet converted to a task specific position marker yet.
Then, starting from layer 4 the latent representation of the
last token also aggregates task specific information, in par-
ticular, the fact that the quotation mark in this task actually

Figure 8. Illustration of two hypotheses on the latent representation
of concepts across multiple languages:
H1.: When given prompts like

Deutsch: “Dorf” - Italiano: “villaggio”... Deutsch: “Buch”
with different input languages, we expect to obtain a salient
representation of the language-agnostic concept (e.g., a book,
shown as the left vectors in orange) along with some task-
irrelevant information (the right vectors in blue). Averaging these
representations should yield a concept representation at least as
salient as those from individual prompts.
H2.: In this scenario, concept vectors differ due to language

entanglement. As a result, we would not expect the mean vector to
be as interpretable as those from single-language prompts.

marks the position after which the translated word should
be decoded. As a result, replacing the task specific quota-
tion mark embedding, which contains the information that
the translated word comes next, with the “empty-context”-
one, which does not contain this information, results in a
performance drop.

Modified template. Next, replacing the quotation
marks by “@” (Fig. 7c) in the random prompt, i.e.,

A: @CATDE@ - B: @DOGIT@
A: @OWLJA@ - B: @SUNHI@
A: @ICEFR@ - B: @

leads to a drop of performance for early layers, but for layers
5–11, the model is not much affected by the patching. We
postulate that at those layers, position-marker tokens have
been already mapped to a general position-marker feature
that is similar in between source and target forward pass,
even though at input level different symbols have been used.

Shuffled tokens. Lastly, in Fig. 7d we try to destroy all of
the shared structure in between the source and the target
prompt by randomly shuffling the characters of the source
prompts from the modified template task. As expected, the
probability of the target concept in target language becomes
very low (albeit surprisingly not zero), which shows that the
task cannot be solved without the position marker feature.

C. Mean hypothesis visualization
Here, we include a more visual explanation of our intuition
behind the mean patching experiment (c.f. Fig. 8).
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D. Other models
In this section, we report results for additional models,
namely, Mistral-7B (Jiang et al., 2023), Llama-3-8B7,
Qwen1.5-7B (Bai et al., 2023), and Llama-2-70B.

D.1. Exploratory analysis

The results of the exploratory analysis outlined in Sec. 3 are
in Fig. 9.

As can be seen in Fig. 9, the target concept in source lan-
guage spike is smaller for Llama-3, Mistral 7B v0.3 and
Qwen1.5 7B. This hints that for those models, zℓ(out) and C
computation overlap more than for Llama-2-7B.

D.2. Ruling out hypotheses

In this section, we report results for the experiments per-
formed in Sec. 4.

In addition, instead of just patching in the mean over differ-
ent language pairs (Fig. 10c), we also patch in the mean over
contexts composed of different concept words in Fig. 10b.
In particular, we take the mean over 5 different few-shot
contexts from the same language pair. E.g.:

Deutsch: “Dorf” - Italiano: “villaggio”
...
Deutsch: “Buch

...

Deutsch: “Zitrone” - Italiano: “limone”
...
Deutsch: “Buch

Our results in Fig. 10 show that the mean over contexts does
not increase P(CℓT

S ), whereas the mean over language pairs
does. This is intuitive, since there may be some languages
in which the mapping from words to concept features results
in the correct concept feature vector. Therefore, averaging
over different language pairs can increase the signal about
the source concept. However, having additional random
contexts stemming from the same language pair does not
bring in any information about the source concept.

Note that Fig. 9 and Fig. 10 are on the next two pages.

7https://github.com/meta-llama/llama3
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(a) Mistral-7b v0.3
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(b) Llama3-8b
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(c) Qwen1.5-7b
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(d) Llama2-70b
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Figure 9. Our first patching experiment with a DE to IT source prompt and a FR to ZH target prompt with different concepts. We patch at
the last token. For each of the plots the x-axis shows at which layer the patching was performed during the forward pass on the target
prompt and the y-axis shows the probability of predicting the correct concept in language ℓ (see legend). In the legend the prefix “src”
stands for source and “tgt” for target concept. The orange dashed line and blue dash-dotted line correspond to the mean accuracy on
source and target prompt. We report means and 95% Gaussian confidence intervals computed over 200 source-, target prompt pairs
featuring 41 source concepts and 38 target concepts.
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(a) Single source setup (b) Mean over contexts (c) Mean over language pairs
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Llama-2 7B

0 5 10 15 20 25 30
layer

0.0

0.2

0.4

0.6

0.8

1.0

co
nc

ep
t p

ro
ba

bi
lit

y

0 5 10 15 20 25 30
layer

0.0

0.2

0.4

0.6

0.8

1.0
co

nc
ep

t p
ro

ba
bi

lit
y

0 5 10 15 20 25 30
layer

0.0

0.2

0.4

0.6

0.8

1.0

co
nc

ep
t p

ro
ba

bi
lit

y

Llama-3 8B

0 5 10 15 20 25 30
layer

0.0

0.2

0.4

0.6

0.8

1.0

co
nc

ep
t p

ro
ba

bi
lit

y

0 5 10 15 20 25 30
layer

0.0

0.2

0.4

0.6

0.8

1.0

co
nc

ep
t p

ro
ba

bi
lit

y

0 5 10 15 20 25 30
layer

0.0

0.2

0.4

0.6

0.8

1.0

co
nc

ep
t p

ro
ba

bi
lit

y

Mistral 7B v0.3
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LLama-2 70B

Figure 10. Here we use different input languages (DE, FR), different concepts, different output languages (IT, ZH) in (a). In (b) we use the
same source and target language pairs as in (a). In (c) we use multiple source input languages DE, NL, ZH, ES, RU and output languages IT,
FI, ES, RU, KO. We patch at the last token of the concept-word at all layers from j to 31. In (a) we patch latents from the single source
prompt. In (b) for each concept, we patch the average latent over different few-shot DE to IT translation contexts. In (c) we patch the
mean of the latents over the source prompts. For each of the plots, the x-axis shows at which layer the patching was performed during the
forward pass on the target prompt and the y-axis shows the probability of predicting the correct concept in language ℓ (see legend). The
prefix “src” stands for source and “tgt” for target concept. We report means and 95% Gaussian confidence intervals computed over a
dataset of size 200.
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