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Fundamental information extraction tasks, such as relation extraction and event detection,
suffer from a data imbalance problem. To alleviate this problem, existing methods rely
mostly on well-designed loss functions to reduce the negative influence of imbalanced
data. However, this approach requires additional hyper-parameters and limits scalability.
Furthermore, these methods can only benefit specific tasks and do not provide a unified
framework across relation extraction and event detection. In this paper, a Classifier-
Adaptation Knowledge Distillation (CAKD) framework is proposed to address these issues,
thus improving relation extraction and event detection performance. The first step is to
exploit sentence-level identification information across relation extraction and event
detection, which can reduce identification errors caused by the data imbalance problem
without relying on additional hyper-parameters. Moreover, this sentence-level identifica-
tion information is used by a teacher network to guide the baseline model’s training by
sharing its classifier. Like an instructor, the classifier improves the baseline model’s ability
to extract this sentence-level identification information from raw texts, thus benefiting
overall performance. Experiments were conducted on both relation extraction and event
detection using the Text Analysis Conference Relation Extraction Dataset (TACRED) and
Automatic Content Extraction (ACE) 2005 English datasets, respectively. The results
demonstrate the effectiveness of the proposed framework.
� 2021 The Author(s). Published by Elsevier Inc. This is an open access article under the CC

BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Information extraction, which aims to capture structural information from plain texts, plays an important role in many
downstream tasks, including reading comprehension, automatic text summarization, question answering, knowledge graph
augmentation, and others. Among information extraction tasks, relation extraction and event detection are two of the most
vital. Specifically, relation extraction discriminates relation types between given entity pairs, whereas event detection
locates event trigger words and recognizes their corresponding event types. For example, in the sentence ‘‘Mary died on
Thursday in Memphis”, a relation extraction system needs to recognize a ‘‘Place of Death” relation between the given entity
pair [Mary, Memphis], and an event detection system needs to detect an event trigger ‘‘died” and its corresponding event type
‘‘Life:Die”. Relation extraction and event detection both suffer from a data imbalance problem, although existing methods
have achieved state-of-the-art performance. For instance, the percentage of non-relation entity pairs is 79.5% in the TACRED
dataset [1], and there is no event trigger in over 76% of sentences in the ACE 2005 English dataset. The large negative/positive
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instance ratio makes it difficult for existing methods to capture the distinct features of positive instances effectively, and
therefore these methods perform poorly at distinguishing positive instances from negative ones. To alleviate this problem,
emphasizing the characteristics of positive instances or reducing the negative effect of the extreme positive/negative
instance ratio seems to be a solution. Without considering non-relation entity pairs, [2] used a pairwise ranking loss to cap-
ture the common features of positive instances for relation extraction. To strengthen the influence of event labels, [3] used a
bias function for event detection. [4] proposed a multi-task framework by adding an extra relation identification task with a
weighted loss function, thus taking advantage of the characteristics of all the positive instances. However, these methods
relied on well-designed loss functions and needed extra hyper-parameters to fit different degrees of imbalance for different
datasets, which hindered their scalability. Furthermore, these methods could only benefit specific tasks and did not provide
unified frameworks across relation extraction and event detection. Therefore, this study has explored a unified framework
across relation extraction and event detection to alleviate the data imbalance problem without extra hyper-parameters, thus
promoting higher performance in relation extraction or event detection.

Unlike existing methods that focus on adjusting the effect of positive/negative instances, this study explores how the data
imbalance problem influences overall performance on extraction tasks and further explores ways to alleviate this influence
directly. Empirical results have demonstrated that the data imbalance problem leads to a situation where existing
approaches tend to assign negative labels to positive instances and vice versa [4]. In other words, the data imbalance prob-
lem limits the ability of existing approaches to identify whether a given instance is positive or negative. This identification
problem further limits overall performance (identifying whether each instance is positive or negative and classifying the
positive instances into correct types). Hence, improving performance on this identification task can be regarded as a direct
solution to the data imbalance problem and should promote better overall performance on extraction tasks.

To improve identification performance on extraction tasks, some concepts are introduced based on sentence A and sen-
tence B, as shown in Fig. 1. A Certain Type means that the sentence is not the special type NONE, which represents a non-
relation or non-event; Identification means that whether one instance is positive or negative is known; Sentence-level iden-
tification means that whether any Certain Types are present in the sentence is known. As Table 1 shows, when sentence-level
Fig. 1. Example of identification and sentence-level identification.
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Table 1
F1-scores of existing approaches on trigger identification (identification performance) and trigger classification
(overall performance) using the ACE 2005 English corpus for event detection. TI and TC refer to trigger
identification and trigger classification, respectively; TI+ and TC+ refer to trigger identification and trigger
classification with sentence-level identification information, respectively; Bi-LSTM refers to bidirectional
LSTM; JMEE [5] refers to integrating the GCN with self-attention; MOGANED [6] refers to modeling multi-order
syntactic representations using the GCN with aggregative attention; EE-GCN [7] refers the GCN with an edge-
aware node update module.

Model TI TI+ TC TC+

Bi-LSTM 70.1 78.6 67.8 71.7
JMEE 75.2 79.4 72.8 75.4
MOGANED 75.9 79.8 73.4 76.6
EE-GCN 78.3 81.8 77.6 79.2
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identification information is added for event detection, the identification performance of existing approaches can be signif-
icantly enhanced, and this improved identification further enhances overall performance. As for relation extraction, adding
sentence-level identification information directly improves identification performance. Therefore, sentence-level identifica-
tion information can improve identification performance, which further improves overall performance for relation extraction
or event detection with imbalanced data. The biggest challenge facing this study was that this sentence-level identification
information can be obtained only during training because it is derived from true labels. Intuitively, knowledge distillation
methods must be considered because they can transfer knowledge from one model to another. The basic knowledge distil-
lation method uses a teacher network’s soft target distribution as the student network’s supervised information, thus distill-
ing and transferring knowledge from a teacher network to a student network [8]. However, for relation extraction or event
detection, the teacher network’s soft target distribution contains little information because it includes too many negative
instances. In this paper, a Classifier-Adaptation Knowledge Distillation (CAKD) framework is proposed to effectively enhance
performance on relation extraction or event detection by alleviating the data imbalance problem. First, a teacher network is
trained, and the sentence-level identification information is clearly given as part of the input. As a result, the sentence-level
identification information is possessed by the teacher network. Then the classifier of the teacher network is trained in con-
sistency with the input space. At this point, the classifier, which latently possesses the sentence-level identification informa-
tion, is frozen. Next, the ultimate neural network is regarded as the student network and is trained without any sentence-
level identification information. However, in the process of training the student network, the frozen classifier guides the stu-
dent network’s adaptation and makes the salient semantic information in the student network’s extracted features consis-
tent with the information in the teacher network’s extracted features. By ensuring consistent salient semantic information,
the sentence-level identification information is transferred from the teacher network to the student network, thus improving
identification performance and further enhancing the performance of the target neural network. The main contributions of
this paper are as follows:

1. To the best of our knowledge, this study is the first to use knowledge distillation to alleviate the imbalanced data
problem.

2. A novel knowledge distillation framework (CAKD) is proposed that can not only automatically adapt to different datasets
with various positive/negative instance ratios, but also can effectively benefit relation extraction and event detection,
which are both challenging and vital information extraction tasks.

3. Experiments were conducted on the TACRED corpus for relation extraction and on the ACE 2005 English corpus for event
detection. The results demonstrate the effectiveness of the proposed CAKD framework.

4. Because the proposed CAKD framework can adapt effectively to different extraction tasks including token-level tasks and
sentence-level tasks with different baseline models, it can be generalized to other similar extraction tasks.

The rest of this paper is structured as follows: the proposed method is presented in Section 2, experimental results are
described in Section 3, extensional experiments with a long-tail distribution are introduced in Section 4, the limitations
of the proposed method are presented in Section 5, and related work is discussed in Section 6.
2. Methodology

2.1. Task statement

Given one n-token sentence w1;w2; . . . ;wnf g and one entity pair ei; ej
� �

, relation extraction predicts the relation type for
this entity pair, whereas event detection involves assigning one event label to each token wi.

The task aims to propose a unified framework to improve relation extraction or event detection performance. The unified
framework can fit relation extraction or event detection, but cannot be used to jointly extract relations and detect events.
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2.2. Overview

As Fig. 2 shows, the proposed Classifier-Adaptation Knowledge Distillation (CAKD) framework consists of a teacher net-
work and a student network and aims to alleviate the data imbalance problem for relation extraction or event detection.
First, the teacher network incorporates sentence-level identification information by adding sentence-level identification
embeddings to the input layer during training. Then the teacher network’s classifier is frozen, but guides the student net-
work’s salient semantic information to be consistent with that of the teacher network, thus helping the student network
to capture sentence-level identification information from raw sentences automatically. Thus, the student network enhances
its performance on relation extraction or event detection with the help of sentence-level identification information. The red
dotted line represents the flow of the sentence-level identification information, which is transferred from the teacher net-
work to the student network. In addition, another classifier is used to predict final extraction results. This framework will
be described in detail below.

2.3. The teacher network

The teacher network aims to incorporate sentence-level identification information during training. The sentence-level
identification information is directly derived from sentences in the training set and does not rely on any external knowledge
or resources. The information is obtained according to whether each sentence contains any Certain Types and is represented
by the tag Positive/Negative. In other words, if no Certain Type is present, the sentence is labeled as Negative. Similarly, the
sentence is labeled as Positive if one or more Certain Types are present. For instance, the following two sentences are
included in the training set for event detection: ‘‘Mary died on Thursday in Memphis” and ‘‘Mary lives in Memphis”. Because
these two sentences belong to the training set, it is known that ‘‘died” triggers the ‘‘Life:Die” event in the former sentence,
but that no word triggers an event in the latter sentence. Thus, the sentence-level identification is obtained directly: the for-
mer sentence contains a trigger that triggers events, but the latter sentence has no trigger that triggers events. Based on this
sentence-level identification, the former sentence is labeled as Positive, and the latter sentence is labeled as Negative. To
ensure that the teacher network possesses the sentence-level identification information, this information is transformed into
sentence-level identification embeddings, and the sentence-level identification embeddings are included in the input of the
teacher network. Because it possesses sentence-level identification information, the teacher network can perform extraction
tasks well enough. The teacher network contains an input layer, a feature extraction layer, and a shared classifier layer. In the
input layer, given the n-token sentence w1;w2; . . . ;wnf g, the following two embeddings are concentrated together as the tea-
cher network input vector. The input is denoted by Xteacher ¼ x1; x2; . . . ; xn½ �.

� Ordinary Input Embeddings represent the tokens’ low-level features, which contain different necessary embeddings for
different tasks.
� Sentence-level Identification Embeddings are used to provide the sentence-level identification information with ran-
dom initialization. Two tags are defined: Positive and Negative. Given a sentence, if no Certain Type exists, Negative is used
to label every token in the sentence. On the contrary, every token is labeled as Positive.Next, the input Xteacher is fed into the
feature extraction layer. In this layer, various feature extractors can be used to extract features. To provide a clear descrip-
tion, a Bi-LSTM is used to extract features as an example. The input Xteacher is fed into the Bi-LSTM to extract the feature
representation Fteacher . Specifically, Fteacher contains f 1; f 2; . . . ; f n½ �, which represents all tokens’ features in the sentence for
event detection, whereas Fteacher contains f n, which is the high-level representation of the sentence for relation extraction.
Fig. 2. Overview of the proposed CAKD framework.
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f i ¼ f i
!
; f i
 � �

; ð1Þ

f i
!
¼ LSTM xi; f i�1

!� �
; ð2Þ

f i
 
¼ LSTM xi; f iþ1

 � �
: ð3Þ
Then the shared classifier layer (i.e., a multi-class classifier Cshare) predicts the corresponding types given the sentence. The
extracted feature representation Fteacher is fed into Cshare to produce a vector oteacher , which represents the confidence of can-
didate types. The prediction probability for the tth type qteacher tjHð Þ is computed as:
oteacher ¼ softmax Wshare � Fteacher þ bshareð Þ; ð4Þ
qteacher tjHð Þ ¼ oteacher tð Þ; ð5Þ
where oteacher tð Þ represents the tth element of oteacher;Wshare and bshare are model parameters of Cshareto be learned; and H rep-
resents the overall parameters. Hence, the loss of the teacher network is calculated as follows given the training set:
lossteacher ¼ �
X
k2K

X
t2T

p tð Þ log qteacher tð Þð Þ; ð6Þ
where K is the training set; T is the set of all extracted types; and p represents the given instance’s true label, which is a one-
hot vector. Note that every instance’s loss is summed directly, without any hyper-parameters.

2.4. The student network

The student network is the ultimate model that is applied for relation extraction or event detection. Because sentence-
level identification information can help existing models to reduce errors caused by the data imbalance problem, but can
only be obtained during training, the teacher network is used, which stores the sentence-level identification information
during training to guide the student network to learn the sentence-level identification information automatically during
the test process. The teacher network transfers the sentence-level identification information to the student network by
means of the shared classifier during training, and the student network latently learns to capture the sentence-level iden-
tification information automatically from raw text without relying on having this information in the input. With the coop-
eration of the teacher and student networks, the student network can automatically acquire the sentence-level identification
information during the test process and further alleviate the data imbalance problem. This network includes an input layer, a
feature extraction layer, a shared classifier layer, and a type prediction layer. The input layer takes raw texts as input without
any sentence-level identification information. For the feature extraction layer, various effective feature extractors such as Bi-
LSTM and GCNs can be chosen. The shared classifier layer is shared by the teacher network to instruct the student network’s
feature extraction layer to extract salient semantic information that is consistent with that of the teacher network, thus
transferring the sentence-level identification information from the teacher network to the student network. Furthermore,
to make each classifier perform its own tasks better, the type prediction layer (i.e., another multi-class classifier) is used
to predict the possible types for relation extraction or event detection, enabling the shared classifier layer to focus on trans-
ferring the sentence-level identification information. Compared with the teacher network, sentence-level identification
embeddings are excluded, and ordinary input embeddings are reserved in the input layer. The input is denoted by Xstudent .
For the feature extraction layer, different feature extractors that correspond to the teacher network are used. Similarly,
another LSTM is used to extract features that are obtained in the same way as in the teacher network. The extracted features
are denoted by Fstudentin the student network. Then the extracted features Fstudent are directly fed into the classifier Cshareshared
by the teacher network, thus calculating the loss of the student network analogously, which is denoted by lossstudent:
ostudent ¼ softmax Wshare � Fstudent þ bshareð Þ; ð7Þ
qstudent tjHð Þ ¼ ostudent tð Þ; ð8Þ
lossstudent ¼ �

X
k2K

X
t2T

p tð Þ log qstudent tð Þð Þ; ð9Þ
where Wshare and bshare are parameters learned by the teacher network and all other parameters are adjusted by the student
network. The extracted features Fstudent are fed into another classifier Cpredin the type prediction layer, thus obtaining opred,
which indicates the ultimate prediction probabilities of the different types and the corresponding losspred of each:
opred ¼ softmax Wpred � Fstudent þ bpred

� �
; ð10Þ

qpred tjHð Þ ¼ opred tð Þ; ð11Þ
losspred ¼ �

X
k2K

X
t2T

p tð Þ log qpred tð Þ� �
; ð12Þ
where Wpred and bpred are the parameters of the classifier Cpred.
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2.5. Training and test strategy

First, the teacher network is trained by lossteacher . Because the teacher network’s input layer includes sentence-level iden-
tification information, the shared classifier Cshare can acquire this information. Then the shared classifier Cshare is frozen, and
the student network is trained by losssum:
losssum ¼ lossstudent þ losspred: ð13Þ

On the one hand, lossstudent is minimized to make Fstudent adapt the classifier Cshare to learn to extract the sentence-level iden-
tification information automatically during training. On the other hand, Fstudent and Cpred can become aware of the ground-
truth types of instances by minimizing losspred. In the test process, Cpred is used to obtain prediction results for relation extrac-
tion or event detection.

2.6. Two application tasks

The proposed CAKD framework was applied to two information extraction tasks: relation extraction and event detection.
Both relation extraction and event detection are formalized as multi-class classification problems, but they are performed at
different levels. Given a sentence, each entity pair is classified as a certain relation type for relation extraction, and each
token is classified to a certain event type for event detection. The implementation differences between relation extraction
and event detection are described below. In the input layer, ordinary input embeddings include word embeddings, POS
embeddings, and NER embeddings for relation extraction. Word embeddings and NER embeddings constitute ordinary input
embeddings in the event detection task. In the feature extraction layer, the extracted feature Fteacher/Fstudent is a vector con-
taining a high-level representation of the sentence for relation extraction, whereas in the event detection task, the extracted
feature Fteacher/Fstudent is a matrix that represents all tokens’ features in the given sentence. Except for these input and output
differences and the corresponding use of different feature extractors for different tasks, the proposed framework is unified
and can accommodate relation extraction or event detection.

3. Experiments

This section demonstrates the effectiveness of the proposed CAKD framework in enhancing relation extraction and event
detection performance with imbalanced data. The micro-averaged precision (P), recall (R), and F1-score (F1) are used as eval-
uation metrics.

3.1. Datasets

For relation extraction, the proposed framework was evaluated on TACRED as released in [1], which consists of 106,264
examples and 41 relation types. Note that the released TACRED training set is imbalanced because it includes 13,012 positive
instances and 55,112 negative instances. For event detection, the ACE 2005 English corpus, which contains 599 documents
and 33 event types, was used. As in previous work [9], we used 529, 40, and 30 documents as training, development, and test
sets, respectively. Note also that the training set of the ACE 2005 English corpus is imbalanced because it includes 3073 pos-
itive sentences and 10,966 negative sentences.

3.2. Compare with similar methods

3.2.1. Relation extraction
For relation extraction, the performance of the following models was compared with different feature extractors:

� Baseline: Only the student network, which does not freeze its classifier, was used; this case therefore degenerated into a
baseline model corresponding with the feature extractor.
� Baseline + MTL [4]: A multi-task learning framework was used to learn relation identification and relation classification
simultaneously. The multi-task learning framework used a shared network to extract shared features for relation identi-
fication and relation classification, and therefore the relation identification enhanced relation classification performance
with imbalanced data. This model is introduced in detail below.
� Baseline + CAKD (Ours): The teacher network was first trained, and then the sentence-level identification information
was transferred to the student network by sharing the classifier Cshare. Furthermore, another classifier Cpred was used to
generate the prediction results.
� Baseline + Sim-CAKD (Ours): The proposed CAKD framework was simplified by using the shared classifier Cshare to obtain
the prediction results.

As for Baseline + MTL, following [4], the input layer, which includes word embeddings, position embeddings, and BIO tag
embeddings, was first used to obtain the input embeddings. Given one n-token sentence, the input embedding was denoted
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by Xmtl ¼ x1; x2; . . . ; xn½ �. Then Xmtl was fed into the selected feature extractor to extract the sentence-level features Fmtl. Next,
the cross-entropy loss was used to identify relations, whereas the ranking loss was used to classify relations based on the
shared features Fmtl. To identify relations, the shared features Fmtl were fed into a binary classifier Cidentify, which calculated
the loss of the relation identification, denoted by lossidentify:
oidentify ¼ softmax Widentify � Fmtl þ bidentify

� �
; ð14Þ

qidentify tjHð Þ ¼ oidentify tð Þ; ð15Þ
lossidentify ¼ �

X
p 1ð Þ log qidentify 1ð Þ� �þ p 0ð Þ log qidentify 0ð Þ� �� �

; ð16Þ

where Widentify and bidentify are model parameters of Cidentifyto be learned; p represents the given instance’s true identification
label, which is a two-dimensional one-hot vector; and H represents the overall parameters. For classifying relations, the
shared features Fmtl were fed into a fully connected layer, which calculated the vector s containing all relations’ predicted
scores:
s ¼Wclassify � Fmtl: ð17Þ

Then the ranking loss lossclassify of the relation classification is calculated as follows given the sentence:
lossþ ¼ log 1þ exp k mþ � s rþð Þð Þð Þð Þ; ð18Þ
loss� ¼ log 1þ exp k m� þ s r�ð Þð Þð Þð Þ; ð19Þ
lossclassify ¼ lossþ þ loss�; ð20Þ
where rþ represents the correct relation class; r� represents the chosen incorrect relation class whose score is higher than
that of any other relation class except the correct one; mþ and m� are margin hyper-parameters; and k is a scaling value.
Based on lossidentify and lossclassify, the multi-task learning framework was trained by the total loss lossmulti:
lossmulti ¼ a � lossidentify þ b � lossclassify; ð21Þ

where a and b represent the weight hyper-parameters.

3.2.2. Event detection
For event detection, various feature extractors were used to compare the performance of Baseline, Baseline + CAKD, and

Baseline + Sim-CAKD. Unlike relation extraction, Baseline + MTL, which is a sentence-level approach, could not be applied to
event detection directly because event detection is a token-level task. Therefore, inspired by [10], who separated identifica-
tion from classification to enhance event detection performance, this study used the baseline model not only to classify event
types, but also to identify positive and negative types through a multi-task learning framework, denoted by Baseline + MTL
(Token). The specific description of Baseline + MTL(Token) refers to Baseline + MTL, with the only difference from Base-
line + MTL being that the extracted features are word-level.

3.2.3. Experimental settings
For relation extraction, the following effective feature extractors were chosen to capture sentence representations besides

Bi-LSTM, GRU, and Bi-GRU. Note that these feature extractors are specially designed for relation extraction and rely on entity
pairs:

� PA-LSTM: [1] used a position-aware attention mechanism to explicitly emphasize the corresponding word-based LSTM.
� GCN: [11] used a graph convolution network with path-centric pruning to effectively capture the dependency structure of
sentences.
� C-GCN: [11] combined a graph convolution network with a bi-directional LSTM to capture contextual information.
� C-AGGCN: [12] transformed the structure of a dependency tree into a weighted graph to leverage the dependency tree
structure and ignore irrelevant information simultaneously.
� GDPNet: [24] captured the latent relationships between tokens by using a multi-view graph and concentrates the graph-
based and BERT-based representation to predict relations.

Four kinds of embeddings (word embeddings, POS embeddings, NER embeddings, and sentence-level identification
embeddings) were used. These four embeddings had dimensions of 300, 30, 30, and 100, respectively. For details of these
feature extractors’ hyper-parameters, refer to the original papers. The batch size was 50. For event detection, the following
effective feature extractors were chosen to capture sentence representations besides Bi-LSTM, GRU, and Bi-GRU. Note that
these feature extractors are specially designed for event detection and do not rely on entity pairs:

� JMEE: [5] integrated self-attention with a graph convolution network to encode syntactic structures and effectively cap-
ture different events’ associations.
� MOGANED: [6] used a graph convolution network aggregating multi-order syntactic information-based dependency trees
to effectively extract dependency information.
228



D. Song, J. Xu, J. Pang et al. Information Sciences 573 (2021) 222–238
� EE-GCN: [7] used a graph convolution network with an edge-aware node update module to capture the dependency label
information of dependency trees.

Three kinds of embeddings (word embeddings, NER embeddings, and sentence-level identification embeddings) were
used. These three embeddings had dimensions of 200, 50, and 300, respectively. Specifically, five kinds of embeddings were
used by adding pos-tagging embeddings and positional embeddings for JMEE, and the batch size of MOGANED was set to 8
due to the limitation of the GPUs used, which was more stringent than the original setting. The dimensions of the pos-
tagging and positional embeddings were both 50. The hyper-parameters of these three feature extractors followed their orig-
inal setups. The SGD optimizer was used for both relation extraction and event detection to optimize the networks. The num-
ber of teacher network training epochs depends on the teacher network’s performance during training. Pytorch was used to
implement the proposed framework. Note that the word embeddings were learned by the GloVe or Skip-grammodel and the
other embeddings were all randomly initialized for both relation extraction and event detection.
3.2.4. Experiment results
For relation extraction, the results shown in Table 2 indicate that Baseline + Sim-CAKD and Baseline + CAKD outperformed

their corresponding baseline models using various feature extractors including Bi-LSTM, GRU, Bi-GRU, PA-LSTM, GCN, C-
GCN, and GDPNet. This demonstrates that the proposed approach can be regarded as a general framework to improve rela-
tion extraction performance. Note that the best F1-score of C-AGGCN was 67.7 when [13] reran the source code and that the
proposed C-AGGCN + CAKDmodel delivered competitive performance comparedwith C-AGGCN. In addition, Baseline + CAKD
performed better than Baseline + Sim-CAKD with most feature extractors, which justifies the assertion that separating type
prediction from knowledge transfer leads to greater improvement. As for Baseline + MTL, it enhanced baseline model per-
formance using Bi-LSTM, GRU, and Bi-GRU as feature extractors, although it was not better than Baseline + CAKD. However,
it performed worse than the baseline model when using the other feature extractors. Therefore, it can be concluded that
Baseline + MTL has a limited ability to generalize this multi-task learning method to different feature extractors. In addition,
the proposed framework improves upon baseline models mainly in recall. This is the case because the proposed framework
Table 2
Evaluation of the proposed CAKD framework compared with three similar models on the TACRED dataset for
relation extraction. � represents the best F1-score when [13] reruns the published source code.

Model P R F1

Bi-LSTM 65.7 58.9 62.1
Bi-LSTM + MTL 63.4 62.8 63.1
Bi-LSTM + Sim-CAKD 63.8 62.3 63.0
Bi-LSTM + CAKD 66.2 62.0 64.1

GRU 72.2 57.3 63.9
GRU + MTL 65.5 64.0 64.7
GRU + Sim-CAKD 65.8 64.1 64.9
GRU + CAKD 67.7 63.2 65.4

Bi-GRU 70.1 59.1 64.2
Bi-GRU + MTL 64.0 65.8 64.9
Bi-GRU + Sim-CAKD 66.7 64.5 65.6
Bi-GRU + CAKD 67.4 64.1 65.7

PA-LSTM 65.7 64.5 65.1
PA-LSTM + MTL 66.2 63.4 64.8
PA-LSTM + Sim-CAKD 69.1 61.9 65.3
PA-LSTM + CAKD 67.1 66.4 66.7

GCN 69.8 59.0 64.0
GCN + MTL 67.4 59.9 63.4
GCN + Sim-CAKD 68.1 62.5 65.2
GCN + CAKD 68.5 61.7 64.9

C-GCN 69.9 63.3 66.4
C-GCN + MTL 69.8 62.2 65.8
C-GCN + Sim-CAKD 70.4 63.5 66.8
C-GCN + CAKD 69.7 65.0 67.3

C-AGGCN 71.8 66.4 69.0(67.7⁄)
C-AGGCN + MTL 69.2 64.1 66.6
C-AGGCN + Sim-CAKD 71.6 64.7 68.0
C-AGGCN + CAKD 70.7 65.5 68.0

GDPNet 72.0 69.0 70.5
GDPNet + MTL 69.9 66.9 68.4
GDPNet + Sim-CAKD 71.0 70.2 70.6
GDPNet + CAKD 71.3 70.6 70.9
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learns to extract sentence-level identification information and further helps to identify whether a given instance is positive
or negative, which means that the proposed framework tends to be more confident in extracting positive instances. In con-
trast, the baseline models tend to avoid predicting positive classes without the extracted sentence-level identification infor-
mation. Therefore, the proposed CAKD framework can improve the recall ratio with different feature extractors. In the event
detection task, which is totally different from relation extraction, the experimental results are summarized in Table 3. Over-
all, these results suggest that the proposed CAKD framework can also enhance baseline model performance by using Bi-
LSTM, GRU, Bi-GRU, JMEE, MOGANED, and EE-GCN as feature extractors in the event detection task. Moreover, the results
indicate that the proposed CAKD framework outperforms Baseline + MTL(Token) with different feature extractors and that
Baseline + MTL(Token) negatively affects baseline model performance using JMEE, MOGANED and EE-GCN as the feature
extractor. Furthermore, the improvement in the F1-score can be mainly attributed to the gain in recall. This further justifies
the assertion that the teacher network transfers the sentence-level identification information to the student network and
that the student network, therefore, becomes more confident in capturing positive instances.
3.3. Compare with SOTA Models

To demonstrate that the proposed CAKD framework delivered competitive performance compared with the state-of-the-
art models, it was further compared with the latest relation extraction or event detection models.
3.3.1. Relation extraction
As for relation extraction, the following methods were selected as baselines:

� LST-AGCN: [13] transformed dependency tree structure into a weighted graph.
� Contrastive Pre-training: [14] explored a contrastive pre-training method to capture relational facts and entity types
from context effectively.
� SpanBERT: [15] proposed a span-based pretraining method based on BERT.

As shown in Table 4, GDPNet + CAKD outperformed LST-AGCN and Contrastive Pre-training, and delivered comparable per-
formance with SpanBERT. Therefore, the fact is justified that the proposed CAKD framework can also support existing effec-
tive feature extractors to achieve competitive performance compared with these state-of-the-art models for relation
extraction.
Table 3
Evaluation of the proposed CAKD framework compared with several similar
models using the ACE 2005 English corpus for event detection.

Model P R F1

Bi-LSTM 68.6 67.0 67.8
Bi-LSTM + MTL(Token) 66.4 70.6 68.4
Bi-LSTM + Sim-CAKD 67.2 71.5 69.3
Bi-LSTM + CAKD 68.2 71.7 69.6

GRU 67.3 60.6 63.8
GRU + MTL(Token) 67.2 63.2 65.1
GRU + Sim-CAKD 66.6 65.3 66.0
GRU + CAKD 65.6 65.6 65.6

Bi-GRU 69.4 68.4 68.9
Bi-GRU + MTL(Token) 67.0 73.3 70.0
Bi-GRU + Sim-CAKD 67.5 73.8 70.5
Bi-GRU + CAKD 68.1 76.2 71.9

JMEE 75.3 70.5 72.8
JMEE + MTL(Token) 71.9 65.3 68.5
JMEE + Sim-CAKD 74.0 73.1 73.6
JMEE + CAKD 75.0 72.4 73.7

MOGANED 81.0 67.0 73.4
MOGANED + MTL(Token) 76.5 66.1 70.9
MOGANED + Sim-CAKD 79.4 69.1 73.9
MOGANED + CAKD 78.7 72.3 75.4

EE-GCN 76.7 78.6 77.6
EE-GCN + MTL(Token) 75.5 75.6 75.5
EE-GCN + Sim-CAKD 76.2 79.1 77.6
EE-GCN + CAKD 76.4 79.9 78.1
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Table 4
Evaluation of the proposed CAKD framework compared with several SOTA
methods using the TACRED dataset for relation extraction.

Model P R F1

LST-AGCN – – 68.8
Contrastive Pre-training – – 69.5
SpanBERT 70.8 70.9 70.8
GDPNet + CAKD 71.3 70.6 70.9
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3.3.2. Event detection
As for event detection, the following methods were selected as baselines:

� AD-DMBERT: [25] selected informative training instances to expand event detection datasets by adversarial training.
� RCEE_ER: [26] used a machine reading comprehension paradigm to deal with the event detection task.
� DRMM: [27] utilized image information for event detection by an alternative dual attention mechanism.

The results shown in Table 5 indicated that EE-GCN + CAKD outperformed AD-DMBERT, RCEE_ER, and DRMM. This further
justifies the assertion that the proposed CAKD framework is able to achieve competitive performance compared with these
state-of-the-art models when using existing feature extractors.

3.4. Experimental analysis

3.4.1. Effectiveness in distinguishing positive and negative instances
To demonstrate that the proposed CAKD framework can improve the baseline model’s ability to identify whether a given

instance is positive or negative, which is motivated by the data imbalance problem, the identification performance of the
proposed CAKD framework was compared with those of corresponding baseline models. As Table 6 shows, the proposed
CAKD framework outperformed the corresponding baseline models using various feature extractors, thus demonstrating that
the proposed CAKD framework can improve identification ability. Thanks to this improvement in identification, the data
imbalance problem is alleviated.

3.4.2. Effect of various degrees of data imbalance
The proposed CAKD framework’s performance was investigated with different degrees of data imbalance by randomly

dropping 3000, 6000, 9000, and 12,000 positive instances from the TACRED training set to generate different datasets.
Because Bi-LSTM and GRU(Bi-GRU) can be regarded as similar feature extractors, and because Baseline + MTL degrades
the performance of baseline models when PA-LSTM, GCN, C-GCN, C-AGGCN, or GDPNet is used, Bi-LSTMwas used as the fea-
ture extractor to compare the proposed framework with Baseline + MTL with varying degrees of data imbalance. The process
of dropping positive instances was repeated three times. For example, 3000 positive instances were randomly dropped three
times from TACRED, obtaining three new datasets that had the same number of positive instances in the training set. The
performance of each model on T-3000 was calculated by averaging performance on these three datasets. Specifically, preci-
sion/recall was calculated by averaging the corresponding precision/recall of these repeated datasets, whereas the F1-score
was calculated using the averaged precision and the averaged recall. Table 7 shows the experimental results. In terms of the
F1-score, as the positive/negative instance ratios declined, the performance of all variant models dropped. Moreover, the per-
formance gap between Baseline and Baseline + CAKD/Sim-CAKD grew substantially as the data imbalance problem became
more serious. This phenomenon indicates that the proposed CAKD framework highlights the effectiveness of alleviating the
data imbalance problem compared with the baseline model when the data imbalance problem becomes more serious. Thus,
it was indirectly proved that the proposed method can alleviate the data imbalance problem. Moreover, compared with
Baseline + MTL, the proposed CAKD framework performed consistently better with different positive/negative instance
ratios. This justifies the assertion that the proposed CAKD framework has a better ability to mitigate the data imbalance
problem regardless of the degree of imbalance.
Table 5
Evaluation of the proposed CAKD framework compared with several SOTA
methods using the ACE 2005 English corpus for event detection.

Model P R F1

AD-DMBERT 77.9 72.5 75.1
RCEE_ER 75.6 74.2 74.9
DRMM 77.9 74.8 76.3
EE-GCN + CAKD 76.4 79.9 78.1
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Table 6
Performance of the proposed CAKD framework on
the ACE 2005 English corpus for a trigger identifi-
cation task compared with baseline models.

Model Baseline Baseline + CAKD

Bi-LSTM 70.1 71.6
JMEE 75.2 77.2
MOGANED 75.9 78.7
EE-GCN 78.3 79.4

Table 7
Comparison of the proposed CAKD framework with several variant models on datasets with different degrees of data imbalance. Specifically, T-Nwas generated
by dropping N positive instances from TACRED, and D represents the gain of F1 compared with the Baseline models.

Dataset Model P R F1 D

TACRED Baseline 65.7 58.9 62.1 –
+MTL 63.4 62.8 63.1 1.0
+Sim-CAKD 63.8 62.3 63.0 0.9
+CAKD 66.2 62.0 64.1 2.0

T-3000 Baseline 66.1 55.8 60.5 –
+MTL 64.0 58.8 61.3 0.8
+Sim-CAKD 60.1 62.3 61.6 1.1
+CAKD 62.2 62.3 62.3 1.8

T-6000 Baseline 68.0 49.0 56.9 –
+MTL 64.8 52.4 57.9 1.0
+Sim-CAKD 65.2 52.8 58.4 1.5
+CAKD 66.6 52.9 59.0 2.1

T-9000 Baseline 69.9 39.9 50.8 –
+MTL 62.1 44.6 51.9 1.1
+Sim-CAKD 68.6 43.9 53.5 2.7
+CAKD 67.3 45.0 53.9 3.1

T-12000 Baseline 75.4 17.8 28.8 –
+MTL 65.2 19.8 30.4 1.6
+Sim-CAKD 66.5 21.5 32.5 3.7
+CAKD 68.8 20.9 32.1 3.3
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3.4.3. Case study
In this section, the proposed CAKD framework is shown to improve the ability to identify rare event/relation types or

sparse trigger words, thus alleviating the data imbalance problem. As shown in Table 8, two practical experimental results
of event detection are presented to compare the proposed CAKD framework with the baseline model. Although ‘‘acquitted”
obviously triggers the event type ‘‘Acquit” in S1, the baseline model tends to assign the type ‘‘None” to ‘‘acquitted” due to the
rarity of ‘‘Acquit”. In S2, the baseline model also could not recognize ‘‘rally” as the trigger of the type ‘‘Demonstrate” because
‘‘rally” is a sparse trigger word. However, the proposed CAKD framework could identify the rare event type ‘‘Acquit” and the
sparse trigger word ‘‘rally” because it latently possessed sentence-level identification information. Similarly, Table 9 shows
two practical experimental results for relation extraction, where the relation type ‘‘org:parents” in S1 and ‘‘per:-
cause_of_death” in S2 both appear rarely in the training set. The proposed CAKD framework dealt competently with these
situations, but the baseline model could not recognize these rare relations effectively. The improved ability to identify rare
event/relation types or sparse trigger words also justifies the conclusion that the proposed framework’s improvement of the
F1-score was mainly attributable to better recall, and therefore the proposed CAKD framework can become more confident
in recognizing positive instances.

4. Extension of datasets with long-tail distribution

Because the proposed CAKD framework can alleviate the data imbalance problem effectively, whether the proposed
framework can benefit datasets with a long-tail distribution was investigated further. For example, as shown in Fig. 3, many
relations suffer from data sparsity, and the numbers of corresponding instances are fewer than 50 in the TACRED dataset. To
focus on the long-tail problem, two different settings were used to generate two versions of the variant datasets:

� Dataset–NONE: Only non-relation or non-event sentences were dropped in Dataset, where Dataset means that specific
arbitrary dataset.
232



Table 8
Case study of event detection. The words in bold refer to event triggers.

Sentence Ground-truth Baseline Baseline + CAKD Frequency

S1: The Pakistani supreme court
last year acquitted Ayub Masih.

Acquit None Acquit %0.01

S2: Judge Shahid Rafiq. . .., found
Ranjha Masih guilty of defiling
Koranic verses during a protest
rally by the minority Christian
community in 1998.

Demonstrate None Demonstrate %1.47

Table 9
Case study of relation extraction. The bold words refer to entity pairs.

Sentence Ground-truth Baseline Baseline + CAKD Frequency

S1: The initial offering of
AIA raised $ 178 billion
for AIG, while the sale of
ALICO to MetLife reaped
about $ 155 billion.

org:parents None org:parents %0.42

S2: Ruben is recovering after
surgery to his smashed legs,
and would be transported to
the Netherlands as soon as
his medical condition allowed.

per: cause_of_death None per: cause_of_death %0.17

Fig. 3. Distribution of TACRED by relation type.
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� Dataset–K: Given the specific type K, the first step is to pick out all types that have a number of instances greater than or
equal to the number of instances of the specific type in the training set of Dataset to obtain a type set SK . Then all sen-
tences containing any types in SK are dropped to generate Dataset–K. For example, given the relation type Per:employee
of, the set SPer:employeeof , which contains None, Per:title, Org:top members/employees, was first extracted. Then all sentences
containing any types in SPer:employeeof were removed to obtain Dataset–Per : employeeof .

For relation extraction, TACRED was chosen as the original dataset. From Fig. 3, Per:title, Org:top members/employees, Per:em-
ployee of, and Org:alternate names, which all have numerous instances, were picked out to replace NONE in training the pro-
posed CAKD framework for TACRED–NONE. Note that Bi-LSTM alone was chosen as the feature extractor. As shown in
Table 10, the experimental results indicate that the proposed CAKD framework can enhance baseline model performance
on datasets with a long-tail distribution, regardless of the relation type chosen. Furthermore, specific types Per:title, Org:top
members/employees, Per:employee of, and Org:alternate names were chosen to generate the corresponding datasets. Bi-LSTM
was chosen as the feature extractor, and only the relation type that had the most instances in the datasets was chosen to
replace NONE. For example, the relation type Per:title was used to replace NONE for TACRED–Per:title in the process of train-
ing. The results shown in Table 11 indicate that the proposed CAKD also outperformed the baseline model when the degree
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Table 10
Performance of the proposed CAKD framework by choosing different
relation types to replace the special type NONE for TACRED–NONE

Relation Types to Replace NONE Bi-LSTM Bi-LSTM + CAKD

Per:title 86.7 88.6
Org:top_members/employees 86.7 87.6
Per:employee_of 86.7 87.2
Org:alternate_names 86.7 87.9

Table 11
Performance of the proposed CAKD framework with different variant datasets
TACRED–* generated by choosing different specific relation types

Datasets Bi-LSTM Bi-LSTM + CAKD

TACRED–Per:title 86.7 88.6
TACRED–Org:top_members/employees 84.9 85.9
TACRED–Per:employee_of 84.1 84.8
TACRED–Org:alternate names 82.3 82.8
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of the long-tail was reduced. These results further justify the assertion that the proposed CAKD framework can deal with
datasets having long-tail distributions for relation extraction. For event detection, ACE 2005 English was chosen as the orig-
inal dataset. Because each sentence that has Certain Types also has the type NONE, the type NONE was reserved, and no other
types were chosen to replace it during training. From Fig. 4, specific types Conflict:Attack, Movement:Transport, Life:Die, Con-
tact:Meet were chosen to generate corresponding datasets. The results shown in Table 12 demonstrate that the proposed
CAKD framework can enhance baseline model performance on datasets with long-tail distributions. Furthermore, it was
found that if the event types Conflict:Attack, Movement:Transport, and Life:Die were dropped to generate the ACE 2005 Eng-
lish–Contact:Meet dataset, the performance gap between the proposed CAKD framework and the baseline model was greatly
reduced. This phenomenon is attributable to the degree of data imbalance. Compared with ACE 2005 English, the ACE 2005
English–Contact:Meet generated dataset became more balanced. Because the proposed framework focuses on the data
imbalance problem, it cannot enhance performance much with well-balanced datasets.
Fig. 4. Distribution of ACE 2005 English by event type.

Table 12
Performance of the proposed CAKD framework with different variant datasets ACE
2005 English–* generated by choosing different specific event types.

Datasets Bi-LSTM Bi-LSTM + CAKD

ACE 2005 English–Conflict:Attack 71.0 72.3
ACE 2005 English–Movement:Transport 57.0 58.0
ACE 2005 English–Life:Die 50.2 51.3
ACE 2005 English–Contact:Meet 47.8 48.0
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5. Limitations

Although the method proposed in this study can automatically and effectively alleviate different degrees of data imbal-
ance for relation extraction or event detection, there is limitation on non-extraction tasks. The present study aimed to deal
with extraction tasks, but these tasks have too many negative instances. With abundant negative instances, the soft target
distribution from the teacher network in conventional knowledge distillation contains little information. The classifier-
adaptation knowledge distillation method proposed here can transfer information effectively. However, the proposed
classifier-adaptation knowledge distillation is specifically designed for tasks that suffer from the data imbalance problem,
but is not a good fit for non-extraction tasks such as text classification, which can use more information from the teacher
network’s predicted probability distribution due to their more balanced datasets.
6. Related work

6.1. Relation extraction

For relation extraction, traditional kernel-based or feature-based approaches depend on the quality of hand-crafted fea-
tures and lack of generalization. Therefore, an increasing number of neural-based approaches have been proposed recently.
[16] used a convolutional neural network with multiple filter sizes to adapt to imbalanced data. [1] built an LSTM-based
model with a position-aware attention mechanism to explicitly emphasize corresponding words. PCA/CNNs and SVMs were
integrated to extract relations from massive news texts by [17]. To alleviate the data imbalance problem for distant super-
vised relation extraction, [18] adjusted the reachable cost of misclassification by applying the silhouette score to measure
class-to-class separability. [19] used high-quality negative classes generated by GAN to enhance the performance of distant
supervised relation extraction. [20] combined tree-structured LSTMwith attention to obtain structure features of the depen-
dency tree and word-based features. Then these features promoted the performance of semantic relation extraction. To take
good advantage of the semantic features about the document for document-level relation extraction, [21] used entity pairs to
capture the key features among multiple sentences and integrated these features with document-level features by gating
mechanism. [22] utilized domain-specific knowledge and multiple source embeddings to generate meta-embeddings in
an unsupervised manner, thus benefiting relation extraction. In recent years, GCNs have also been widely used for relation
extraction because they can effectively encode information on dependency structures. [11] used a contextualized GCN with
path-centric pruning to demonstrate better performance than sequential models. To ignore irrelevant information and lever-
age the dependency tree structure simultaneously, [13] transformed this structure into a weighted graph. Unlike approaches
that rely on structured input, [23] proposed a generalized GCN that can encode unstructured information to obtain the edge
parameters of graphs, thus adapting to unstructured input.

6.2. Event detection

As for event detection, feature-based methods rely on human-made lexical features that resemble relation extraction
[32], whereas representation-based methods use neural networks to extract semantic information effectively. [9] captured
salient event information from sentences using a CNN with a dynamic pooling operation. [28] proposed a unified framework
to identify event triggers and corresponding arguments by integrating global and local contexts effectively for biomedical
event extraction. [29] utilized dependency tree to capture syntactic features effectively by proposing a tree-based neural net-
work. To reduce noise from unlabeled biomedical data, [30] proposed a novel error detection method to obtain high-quality
samples. These samples were then added to expand the training data and enhance biomedical event extraction performance.
[31] used gated polar attention mechanism to apply dependency representation learning for biomedical event detection,
which alleviates sparsity diffusion and dependency weakness of traditional manual dependency embedding. Recently, del-
icate hybrid networks have been used for event detection, thus integrating the advantages of different sub-networks. [5]
integrated self-attention with GCNs to encode syntactic structures and capture different event associations simultaneously.
[10] investigated ways to distill and fuse both discrimination and generalization knowledge to alleviate diversity and ambi-
guity problems. [6] first used a Bi-LSTM to generate contextualized representations, then added a GCN aggregating multi-
order syntactic information-based dependency trees to extract dependency information more effectively. Besides, some
efforts to use external resources to enhance event detection performance have proven to be effective. [33] relied on previ-
ously trained language models to extract events and generate labeled data for event detection. The labeled data further
improved the performance of the event detection framework.

6.3. Knowledge distillation

Knowledge distillation, as proposed by [8], aims to distill knowledge from teacher networks and transfer the resulting
knowledge to student networks [34]. Knowledge distillation was originally applied to model compression tasks [35]. More
recently, it has been widely and effectively used in various tasks. [36] used knowledge distillation to integrate logic rules into
neural networks to enhance the performance of sentiment analysis and named entity recognition. [37] used rich fashion
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domain knowledge to enhance performance on the clothing matching task with attentive knowledge distillation. To further
incorporate rich knowledge rules for the clothing matching problem, [38] encoded these rules in a probabilistic manner
based on knowledge distillation. [39] used a teacher network to learn to recognize actions with full videos and then trans-
ferred the progressive knowledge to a student network. The student network could deal better with the early action predic-
tion problem using partial videos. [40] used language branch knowledge distillation and self-knowledge distillation to distill
linguistic knowledge, thus enhancing the performance of multilingual unsupervised neural machine translation. To promote
the performance of clients in the federated learning framework, [41] regarded model output as knowledge and transferred
this knowledge between servers and clients. [42] enhanced the teacher network’s ability of mining the knowledge from
training set with an inter-class correlation regularization. Thus, this enhanced ability further benefited the performance
of student network. As for information extraction tasks, [43] presented a GAN-style knowledge distillation method for the
event detection task, which learns to capture knowledge from raw data automatically. [44] distilled monolingual model
structure knowledge to a multilingual model to improve the performance of the multilingual model on multilingual named
entity recognition. [45] used a marking mechanism and knowledge distillation to integrate open-domain knowledge of trig-
gers from unlabeled data to improve event detection performance. The framework proposed here resembles but is also dif-
ferent from that proposed in [45,46]. These earlier studies focused on distilling knowledge from open-domain resources or
soft labels for specific tasks, whereas the present work aimed to explore a unified framework to alleviate the data imbalance
problem.
6.4. Relevant extraction tasks

Recently, artificial intelligence technology has been widely used in relevant extraction tasks besides relation extraction
and event detection. [47] used the power spectrum analysis algorithm and Contourlet to extract texture features from cloud
images, thus helping to automatically detect cloud types. [48] investigated ways to extract, combine, and filter dynamic and
static features from the Android system. Then these features were used to enhance the detection of Android malware using
the multi-dimensional hybrid feature vector. Lesion extraction was used by [49] to better hide reversible data. The hidden
reversible data improved the quality of medical images and protected patients’ privacy.
7. Conclusions

In this paper, a novel Classifier-Adaptation Knowledge Distillation (CAKD) framework was proposed to alleviate the data
imbalance problem. This framework can not only automatically adapt to datasets with different positive/negative instance
ratios, but can also effectively benefit relation extraction and event detection, which are both challenging and vital informa-
tion extraction tasks. Based on knowledge distillation, the framework can help existing models to reduce errors resulting
from the data imbalance problem, thus enhancing relation extraction or event detection performance. Experiments on
two standard datasets demonstrated the effectiveness of the proposed framework. In future work, inspired by [50], we will
explore a better incorporation location for the sentence-level identification embeddings in the proposed framework, thus
further improving the quality of the sentence-level identification information transferred from the teacher network and
enhancing the performance of the overall framework.
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