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Abstract

Graph contrastive learning (GCL) aims to learn representations by capturing the
agreements between different graph views. Traditional GCL methods generate
views in the spatial domain, but it has been recently discovered that the spectral
domain also plays a vital role in complementing spatial views. However, existing
spectral-based graph views either ignore the eigenvectors that encode valuable
positional information, or suffer from high complexity when trying to address
the instability of spectral features. To tackle these challenges, we first design
an informative, stable, and scalable spectral encoder, termed EigenMLP, to learn
effective representations from the spectral features. Theoretically, EigenMLP is
invariant to the rotation and reflection transformations on eigenvectors and robust
against perturbations. Then, we propose a spatial-spectral contrastive framework
(Sp?GCL) to capture the consistency between the spatial information encoded by
graph neural networks and the spectral information learned by EigenMLP, thus
effectively fusing these two graph views. Experiments on the node- and graph-level
datasets show that our method not only learns effective graph representations but
also achieves a 2—10x speedup over other spectral-based methods.

1 Introduction

Graph neural networks (GNNs) have become the de facto framework to encode graph-structured
data [14} 35, 139]]. However, training high-quality GNNs usually requires a large number of domain-
specific labels, which is not feasible in many real-world applications. Therefore, as a paradigm
of self-supervised learning, graph contrastive learning (GCL) is proposed to learn node or graph
representations without using labels [20, |19} 12 38]].

Typically, GCL methods first generate different views of a graph, and then contrast the positive
views against the negative ones. By minimizing a contrastive loss, GCL methods can learn invariant
information from different views for various downstream tasks. Therefore, how to generate ideal
graph views is crucial to GCL. Most graph views are obtained by augmenting graphs in the spatial
domain, such as dropping nodes and edges, heuristically [49] |44} |8]] or adversarially [27, 140} |41]].
Nevertheless, recent studies [18l [17] argue that spatial perturbations ignore the structural properties,
and propose to perturb graph spectrum in the spectral domain.

Generally, the spatial and spectral views represent different information of the graph. The spatial
domain captures the feature information and learns local graph representations by propagating the
node features along local topology, i.e., k-hop subgraphs. In contrast, the spectral domain covers the
global structural information. The eigenvalues and eigenvectors encode the global shapes [13]] and
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node absolute positions [25]. Leveraging the agreements between the spatial and spectral views can
significantly improve the expressive power and generalization ability of GNNs [37,147]. However,
several reasons hinder the study of spectral view: First, the spectral features are unstable. Previous
work [24] shows that randomly flipping the signs or rotating the coordinates of eigenvectors also
satisfies the eigenvalue decomposition, a.k.a., the sign and basis ambiguity issues, implying that
spectral features are not unique and hard to transfer [[15}[37]. Besides, perturbing spectral features is
time-consuming. Existing spectral-based methods [18 [17] need to decompose and reconstruct the
adjacency matrix, in which the complexity is cubic and quadratic in the number of nodes, respectively.

Therefore, to realize the spatial-spectral contrast, it is natural to ask: How fo encode the spectral view
of a graph effectively and efficiently? To answer this question, we first propose a spectral encoder,
named EigenMLP, which not only inherits the scalability advantage of multilayer perceptrons (MLP),
but also adheres to two key design principles. First, EigenMLP resolves the sign ambiguity issue
by taking both positive and negative eigenvectors as input. Second, to address the basis ambiguity
issue, the weights of EigenMLP are generated by a learnable mapping of the eigenvalues, making
them equivariant to the coordinates of eigenvectors. To integrate the representations learned from the
spatial and spectral views, we propose a Spatial-Spectral GCL framework (Sp>?GCL) to maximize the
agreements between views and learn effective representations for downstream tasks.

The contributions of our paper are as follows. (1) We propose EigenMLP, a novel spectral encoder to
effectively and efficiently learn sign- and basis-invariant representations from spectral features. (2)
We theoretically prove that EigenMLP is permutation-equivariant, rotation- and reflection-invariant,
and can learn more stable representations against structural perturbations. (3) We propose Sp?GCL,
a spatial-spectral GCL framework that utilizes the cross-domain contrasts to effectively fuse the
feature and structural information learned by spatial GNNs and EigenMLP. (4) Extensive experiments
on both node-level and graph-level tasks demonstrate the effectiveness of the proposed framework
Sp2GCL, and verify the scalability and stability aspects of EigenMLP.

2 Related Work

Graph Contrastive Learning. Most GCL methods aim to learn invariant information by max-
imizing the mutual information between different graph views [1l [36]. There are many ways to
generate graph views and we broadly categorize them into the spatial and spectral approaches. In the
spatial domain, graph views are usually generated by augmenting the original graphs. For example,
GRACE [48]], GCA [49] and CCA-SSG [44] propose to augment graphs by randomly dropping edges
and nodes, AD-GCL [27] leverages adversarial training to filter unimportant edges, and JOAO [41]]
combines different augmentation strategies automatically. While in the spectral domain, the views are
generated by perturbing graph spectrum. For example, MVGRL [§]] heuristically uses a graph diffu-
sion as augmentation, which acts as a low-pass filter, SpCo [[18] proposes to preserve low-frequency
components and perturbs high-frequency ones, and SPAN [[17] generates augmentations by maximiz-
ing the spectral change. Besides, SFA [40] analyzes the spectrum of node representations, which is
out of the scope of this work. In general, spectral views of graphs may have better performance and
interpretability than spatial views but also suffer from high complexity.

Spectral Encoder. Perturbing the graph spectrum is time-consuming. Another approach is to
encode the eigenvalues and eigenvectors instead of the eigenspaces. However, eigenvectors suffer
from sign and basis ambiguity issues, and using these features directly will affect the stability of the
model. Therefore, some spectral encoders are proposed to learn invariant representations from the
non-unique spectral features. For example, SAN [15] uses a Transformer-based [34] encoder, which
is invariant to the order of the bases. BasisNet [[16] uses IGN [21] to learn permutation-invariant
representations from the eigenspaces. PEG [37] leverages the distance between eigenvectors to
reweigh the graph structure and avoids sign and basis ambiguity. However, the complexity of SAN
and BasisNet is quadratic, which is difficult to scale to large graphs.

3 Preliminaries

Assume that G = (V, £) is a graph, where V is the node set with |[V| = N and & is the edge set with
|€] = E. Let A € {0,1}¥*¥ be the adjacency matrix, and X € RV *? be the node feature matrix
on G. The normalized graph Laplacian L of G is defined as L = I,, — D~ 2AD"z, where I, is the
N x N identity matrix and D is the degree matrix with D;; = > y A;j fori € Vand D;; = 0 for

i # j. The eigenvalue decomposition (EVD) of graph Laplacian is defined as L = UAU T, where A



is a diagonal matrix whose diagonal entries 0 < A; < --- < Ay < 2 are the eigenvalues of L, and
U = [uy, -, uy] are the corresponding eigenvectors.

It is worth noting that in some cases, randomly flipping the signs and rotating the coordinates of
eigenvectors may also satisfy EVD [24], which we refer to as sign and basis ambiguity.

Sign ambiguity. Given a pair of eigenvalue and eigenvector (\;, u;), it satisfies Lu; = \;u;, and
A = u;-'—Lui = Z(U v)eE (wip — uiv/)Q. Therefore, if u; is an eigenvector of L, then —u; also
satisfies EVD, i.e., u] Lu; = (—u;) ' L(—uw;).

Basis ambiguity. If there is high multiplicity in the eigenvalues, i.e., \py1 = -+ = Ap44 for
some ¢ > 1, then the corresponding eigenvectors [u,41, - - - , U,4,] lie in an orthogonal group O(q)
={Q e R™|QTQ = QQ' = I,}. Therefore, for any Q € O(q), replacing [up;1, - , Uptq)
with [up41, -, Upt4|Q also satisfies EVD, i.e., Lu; = \ju;,p+1 <4, <p+q.

The above two facts state that the eigenvectors of graph Laplacian are not unique. Therefore, the
model should consider how to learn sign- and basis-invariant representations from spectral features
for better stability and generalization [37, 16} [15]].

4 Proposed Framework: Sp>’GCL

In this section, we present the proposed spatial-spectral GCL framework called Sp?GCL. We first
give a high-level overview on how to represent and contrast the spatial and spectral views of a graph.
We then introduce the proposed invariant and equivariant spectral view encoder in detail. Finally, we
briefly describe the preprocessing, training, and inference processes.

4.1 Overview of Sp?’GCL

Views refer to different perspectives of the same data [30]. Unlike previous GCL methods that
generate graph views in a single domain, we propose to model the spatial and spectral views
separately and further utilize cross-domain contrasts to capture invariant information. Here we first
describe how to represent the spatial and spectral views of graphs.

Spatial View represents the explicit connectivity of nodes, which can be denoted as V, = (A, X).
Through propagating node features along graph substructures, the spatial view can naturally fuse the
topology and content information and learn local smooth representations of a graph.

Spectral View indicates the implicit relationships between nodes, which is expressed as V., = (A, U).
The eigenvalues and eigenvectors encode the geometric information and node positions of the graph
topology, which can be seen as global structural information of a graph.

Since graphs are non-Euclidean data, it is difficult to directly contrast the spatial and spectral views.
Therefore, we need to design suitable encoders to learn different view representations for GCL:

H, = f(A7X)7 H. = g(AvU)a (1

where f and g are the encoders of the spatial and spectral views, respectively, and H,, H, € RV x4
are the spatial and spectral representation matrices, respectively. These representations can then be
used in contrastive learning to learn invariant information across both domains.

The fundamental idea of contrastive learning is to define the positive and negative pairs, from which
the model can capture the self-supervised signals. In our framework, we define the spatial and
spectral representations of the same node or graph as positive pairs, and those of different nodes or
graphs as negative pairs. For graph-level contrasts, we additionally use a readout function to learn the
graph-level representations. Then, two projection heads ¢, @, : R¢ — R? are used to transform the
representations into the contrastive space:

Za = @G(Ha)a Ze = @e(He)- (2)

Subsequently, we employ InfoNCE [33]], a classical contrastive objective function, to maximize the
agreements between spatial and spectral representations:
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Table 1: Comparison between different spectral encoders.

Information Stability Scalability

Methods EigVal EigVec Sign Basis Inductive Complexity

MLP [3][4] v v O(Nkd)

SAN [15] v v v v O(Nk%d + Nkd)

BasisNet [16] v v o/ O(Nk2d + Nkd)

PEG [37] v v o/ v O(Ekd)

EigenMLP v oo/ v O(NTd) EigenMLP MLP
Note: Here k is the number of eigenvectors, 1" is the period of El'gur?\/[l];g Chzrrll\/ali%llslustratlon of
polynomial, and d is the hidden dimension. 1gen an '

where (-, -) represents the cosine similarity and ¢ is the index of nodes or graphs.

Finally, to materialize our contrastive framework Sp?GCL, we must choose or design the encoders f
and g for the two views. For the spatial encoder f, we directly employ a standard message-passing
neural network (MPNN)), e.g., GraphSAGE [7] or GIN [39], which is widely adopted in previous GCL
methods. For the spectral encoder g, which is the emphasis of this work, we propose EigenMLP in the
next part (Section[4.2) based on several key properties. Note that, on the one hand, although MPNNs
can learn useful representations, their expressive power is bounded by the 1-Weisfeiler-Lehman
(WL) test [39]]. On the other hand, the spectral view encodes the global information, which can help
overcome the limitation of the 1-WL test [5]]. Hence, from the perspective of expressive power, the
spectral view is also complementary to the spatial view.

4.2 Proposed Spectral Encoder: EigenMLP

The spectral encoder is designed to learn stable representations from spectral features. A desirable
spectral encoder should have three properties: (1) It can encode both the information of eigenvalues
and eigenvectors, which represent different structural information [[15]; (2) It is free of the sign
and basis ambiguity issues in spectral features, toward learning stable representations [37]; (3) It
is scalable to large graphs and has linear or sublinear time complexity. These three properties pose
great challenges to the design of spectral encoders. Here we propose EigenMLP, which adopts an
MLP-based architecture for scalability and addresses the sign and basis ambiguity problems for
stability. Table[T] summarizes the differences between the proposed EigenMLP and existing spectral
encoders. Specifically, EigenMLP satisfies all of the three properties above, as we elaborate below.

Scalability. In general, MLPs have demonstrated good scalability and have been widely used in
learning graph representations [45, [11]]. Since EigenMLP employs an MLP-based architecture, it
inherits the low complexity and is linear to the number of nodes V.

Stability. MLPs are sensitive to input data, making the outputs vary with respect to the flipping of
signs and rotation of coordinates of eigenvectors. This motivates us to increase the stability of MLP
while maintaining high efficiency. We adopt two design principles that enable MLPs to learn sign-
and basis-invariant representations. Figure [T]illustrates the difference between EigenMLP and MLP.

To address the sign ambiguity issue, we follow the design of SignNet [[16], taking both positive and
negative eigenvectors as inputs:

U = [¥(¢(u;) + ¢(—u)) ¥y, )

where ¢ and ¢ are neural networks, [-] is the concatenation operator, and U is the sign-invariant
eigenvectors. In practice, the sign-invariant neural networks may slow down model convergence. In
this case, we can resort to some heuristics to determine the sign of the eigenvectors [47].

To solve the basis ambiguity issue, we first observe that each eigenvector has a corresponding eigen-
value, and when the coordinates of the eigenvectors are rotated, the positions of the eigenvalues are
also displaced. Therefore, if we replace the weights of MLP with eigenvalues A = [A1, Ag, -+, An],
the model will be invariant to the rotation of eigenvectors, i.e., UQ(AQ)T = UQQTAT = UAT.
However, directly replacing the learnable weights with fixed eigenvalues is trivial and will greatly

3Some details, such as the neural networks ¢ and v, are omitted for brevity.



limit the expressive power of the model. Therefore, we first extend the scalar eigenvalues to their
high-dimensional Fourier features [28]. The weights of EigenMLP are then decoded from the Fourier
features using a learnable matrix:

p(A) = [sin(A), cos(A), sin(2A), cos(2X), - - -sin(T'A), cos(T'N)] - W, 5)

where T is the period and W, € R27*4 5 a learnable matrix. Here p(\) can be seen as a graph filter
and the filtered eigenvalues are equivariant to the coordinates of eigenvectors [2], which can be used
to learn powerful and basis-invariant spectral representations:

9(A,U)=T-p(N), (6)

where p(A) = [p(A1), p(A2), -+, p(An)]T € RY*4 represents all the filtered eigenvalues. The
detailed matrix form of Equation (6) is provided in Appendix [C} Note that the learnable matrix W,
is shared between different eigenvalues. Therefore, the size of W, is independent of the number of
eigenvalues but depends on the period 7', which reduces the number of parameters in EigenMLP.
More discussions can be found in Section[3.2

Information. Notably, the invariant layer, i.e., Equation (6)), in EigenMLP incorporates both
eigenvalues and eigenvectors, which can capture both geometric and positional information.

4.3 Preprocessing, Training, and Inference

It is worth noting that running EVD for full eigenvectors has the complexity O(N?), which is
unacceptable for large graphs. Therefore, in the preprocessing, we use the eigenvectors with smallest-
k eigenvalues as a substitute and reduce the complexity to O(N?k). Besides, we can pre-calculate
the rotation-invariant spectral features V - p(Ay). Therefore, in the training and inference, EigenMLP
has the implementation of MLP. Note that the decomposition is only computed once in the training.
Therefore, the overhead of the preprocessing should be amortized by each training epoch.

In training, traditional GCL methods need to compute the message-passing twice for different graph
views, whose complexity is O(E). While in our framework, only the spatial view needs to calculate
the message-passing, and the complexity of spectral view is O(N). Therefore, our framework is
faster than others in the training processing. In inference, because we need to calculate the spatial
and spectral representations separately, the inference speed is slightly lower than traditional methods.
The overheads of training and inference are provided in Section 6.6

S Deeper Insights

In this section, we provide deeper insights into EigenMLP to understand its effectiveness. Specifically,
we prove that EigenMLP is invariant, equivariant, and stable, and can generalize existing spectral
augmentations. Besides, we also comment on the connections to previous work.

5.1 Theoretical Results

Theorem 1. EigenMLP is equivariant to permutation, and invariant to rotation, and reflection.

Proof. (Permutation) Assume that there are two matrices L(Y), L) € RN*N and L) = PLO)PT.
We have L(Y) = PLOPT = (PU®)A(PU®)T such that UM p(A) = PUR) p(A).

(Rotation) For any rotation matrix Q € O(N), the eigenvectors are rotated as UQ, and the corre-
sponding Fourier matrix are permuted as Q" p(\). Therefore, we have UQ - Q" p(A) = Up(A).

(Reflection) Following Proposition 1 in [16], a continuous function is sign-invariant iff it satisfies
f() = h(v) + h(—v). Hence, EigenMLP is invariant to reflection on the signs of eigenvectors. [J

Lemma 1. (Lemma 3.4 in [37]) For any positive semidefinite L without multiple eigenvalues, set V
as the eigenvectors corresponding to the smallest k eigenvalues and sorted as 0 < Ay < --- < Ap.
For any sufficiently small € > 0, there exists a perturbation AL, |AL||r < € such that

i - > 0. i1 — il .
Qreng(lk)Il(VJrAV) VQllr 2 0.99 max [Aips — X[~ ||AL[F + ofe) @)



Theorem 2. For any sufficiently small € > 0, there exists a perturbation AL, | AL||p < € such that

Yaecom) [[(V +AV)p(Ar) = Vo(Ap)llr < 0.99T max [Airr — Xl THIAL [ 4 o). (8)

Lemmal [I]states that a small structural perturbation will produce changes unbounded from above in
non-equivariant spectral features V if there is a small spectral gap. Theorem [2]shows that there is a
finite upper bound on the changes of equivariant spectral features V p(\y). Therefore, EigenMLP can
learn more stable representations against structural perturbations. We present the proof of Theorem 2]
in Appendix[A] Experiments in Section [6.5]further give an empirical justification of Theorem 2]

Proposition 1. EigenMLP generalizes existing spectral augmentations.

Proof. Existing spectral augmentations, such as SpCo [18] and SPAN [17], generate graph views by
perturbing the graph spectrum. We assume that there is a continuous univariate function (-) between
the original eigenvalues A and the perturbed eigenvalues X', such that \; = §();), and the perturbed
eigenvalues are still non-negative. Then these spectral augmentations can be represented as:

A’ =US(A)UT = (US(A)?)(US(A)2)7. 9)

Note that Equation (3) is a Fourier series and can approximate any continuous functions. Therefore,
the function §(-) is a special case of p(-), and EigenMLP can approximate the simplex geometry [32]

of the augmentations, i.e., Ud (A)%, thus generalizing existing spectral augmentations. O

5.2 Connections to Existing Work

Hypernetworks [6] are a class of neural networks used to generate parameters for another network.
EigenMLP can be seen as a special case of Hypernetworks, which takes eigenvalues as input and
generates equivariant parameters for spectral features. Because Hypernetworks can generate a set of
non-shared weights from shared parameters, it can greatly reduce the number of trainable parameters.
EigenMLP inherits this advantage, and its number of parameters is only related to the period of the
Fourier series, rather than the number of eigenvectors. Therefore, EigenMLP is more efficient than
other spectral encoders, including vanilla MLP.

Spectral GNNs aim to combine the eigenspaces with filtered eigenvalues, i.e., Zfil S\,
and EigenMLP is used to combine the eigenvectors with filtered eigenvalues, i.e., vazl p(Ai)u,.
Therefore, both methods choose to use eigenvalue mappings as weights to guarantee the equivariance.
However, the calculation of eigenspaces has the complexity of O(IN?2), which is not suitable for large
graphs, whereas EigenMLP is more scalable.

6 Experiments

In this section, we conduct three types of experiments, including unsupervised node classification,
unsupervised graph prediction, and transfer learning, to verify the effectiveness of Sp?GCL. Besides,
we also test the stability and time overhead of the proposed method.

6.1 Unsupervised Node Classification

Datasets. In the node classification task, we consider using graphs with different scales to evaluate
both the effectiveness and scalability of GCL methods. Specifically, for the small graphs (< 50,000),
we use Pubmed [14]], Wiki-CS [22], and Facebook [23] datasets. For the large graphs (> 50,000), we
use Flickr [43]], arXiv [9]], and PPI [7]] datasets. Additional statistics are provided in Appendix

Baselines and Setting. We compare our model against a wide range of baselines, including semi-
supervised GNNs, e.g., GCN [14] and GAT [35]], graph self-supervised learning methods, e.g., DGI
[36] and BGRL [29], GCL with spatial augmentations, e.g., MVGRL [8]], GRACE [48]], and CCA-
SSG [44], and GCL with spectral augmentations, e.g., SpCo [18] and SPAN [17]]. For the Facebook
dataset, we randomly split the nodes into train/validation/test data with a ratio of 1:1:8. For other
datasets, we use the public splits for a fair comparison. We use a two-layer GCN as the encoder for



Table 2: Node classification on transductive and inductive graphs. Mean accuracy (%) + standard
deviation. Bold indicates the best performance and “-”” means out-of-memory or cannot be reproduced.

Small Graphs (Full-Batch) Large Graphs (Mini-Batch)
Model Data PubMed  Wiki-CS  Facebook arXiv Flickr PPI

GCN AX)Y 79.0 77.19£0.12  90.65+0.16  71.74+£0.29 49.20+0.31 82.28+0.24
GAT AXY 79.0£0.3 77.65+0.11 90.47+0.15 71.82+0.23 54.48+0.21 98.85+0.05
DGI A X 76.8+0.6 75.35+0.14 84.42+0.43 70.32+0.25 50.59+0.28 63.80+0.20
BGRL A X 79.6+0.5 79.98+0.13 89.71£0.35 71.54+0.17 51.87+£0.15 73.63+0.16
MVGRL A X 80.1£0.7 77.52+0.08 87.29+0.28 - - 71.45+0.14
GRACE A X 80.6£0.4 80.14+0.48 89.32+0.40 - - 69.71£0.17
CCA-SSG A X 81.0£0.4 78.85+0.32 89.45+0.60 71.21+0.20 51.66+0.10 73.34+0.17

SpCo AX A 81.5+0.4 79.16+0.27 89.98+0.45 - - -

SPAN AX A 81.5+0.2 82.13%0.15 - - - -

Sp’GCL A, X, A, U 82.3+0.3 79.42+0.19 90.4320.13 71.8320.19 52.05+0.33 74.28+0.22

Table 3: Results on the graph-level tasks. The best and runner-up results are highlighted with bold
and underline, respectively. | means lower the better, and 1 means higher the better.
Task Regression (Metric: RMSE ) Classification (Metric: ROC-AUC% 1)
Dataset molesol mollipo molfreesolv molbace molbbbp molclintox  moltox21 molsider
Supervised  1.173+0.057 0.757+0.018  2.755+0.349  72.97+4.00 68.17+1.48 88.14+2.51 74.91+0.51 57.60+1.40

InfoGraph  1.344+0.178 1.005+0.023  10.005+4.819 74.74+3.64 66.33+2.79 64.50+£5.32 69.74+0.57 60.54+0.90
GraphCL  1.272+0.089 0.910+0.016  7.679+2.748  74.32+#2.70 68.22+1.89 74.92+4.42 72.40£1.01 61.76x1.11
MVGRL  1.433+0.145 0.962+0.036  9.024+1.982  74.20+2.31 67.24%1.39 73.84+4.25 70.48+0.83 61.94+0.94
JOAO 1.285+0.121  0.865+0.032  5.131£0.722  74.43+x1.94 67.62+1.29 78.21+4.12 71.83+#0.92 62.73+0.92
AD-GCL  1.2170.087 0.842+0.028  5.150£0.624  76.37+2.03  68.24+1.47 80.77+£3.92 71.42+0.73 63.19£0.95
SPAN 1.218+0.052  0.802+0.019  4.531+0.463  76.74+2.02 69.59£1.34 80.28+2.42 72.83+0.62 64.87+0.88

Sp?GCL  1.235£0.119 0.835+0.026  4.1440.573  78.76+1.43 68.72+1.53 80.88+3.86 73.06x0.75 64.23+0.96

all datasets and set the hidden dimension d = 512 for all methods. For our model, the spatial encoder
is the same as baselines, and we additionally use EigenMLP to learn the spectral representation. In
the evaluation, we use a linear classifier to evaluate the performance of all methods, as suggested by
[27]. We run all the models 10 times and report the mean accuracy and standard deviation. More
details, e.g., optimizers, and hyperparameters, are provided in Appendix

Results. From Table we can find that Sp2GCL consistently outperforms state-of-the-art baselines
on 5 out of 6 datasets, which validates the effectiveness of the proposed spatial-spectral contrastive
framework. Meanwhile, spectral-based methods are proven to be more effective than spatial-based
methods, suggesting that integrating spectral information into GCL can help models learn better
representations. However, it is worth noting that neither SpCo nor SPAN works for large graphs,
implying that perturbing graph spectrum cannot be scalable to large-scale datasets. Therefore, the
application scenarios of these two graph augmentations are limited. On the contrary, our method can
be used for large graphs and can be easily trained in a mini-batch manner, which is more scalable
than other spectral-based methods. Additionally, We find that Sp?GCL does not perform well in the
Wiki-CS dataset. The reason is that the node features dominate the classification results while the
graph structure contributes less. Therefore, the spectral view cannot complement the spatial view.

6.2 Unsupervised Graph Prediction

Setup. We benchmark our model on the OGB graph property prediction task [9]], which contains
three regression datasets and five classification datasets. We choose a series of competitive GCL
methods as baselines, including InfoGraph [26], GraphCL [42], MVGRL [8]], JOAO [41]], AD-GCL
[27], and SPAN [17]. It is worth noting that SpCo [18]] is not designed for graph-level contrastive
learning, so we do not compare with it. We use a five-layer GIN [39] with a graph pooling layer as
the encoder for all methods. Similarly, we additionally use EigenMLP to encode the spectral view
for SpQGCL. We use a linear downstream classifier, e.g., logistic regression model, to evaluate the
performance of different GCL methods, as suggested by [27].



Table 4: Graph transfer learning on the molecular classification tasks. (Metric: ROC-AUC (%) 1)
ZINC-2M

Dataset BBBP  Tox2l  SIDER ClinTox  BACE HIV MUV ToxCast

No Pre-Train  65.844.5 74.0+£0.8 57.3x1.6 58.0%4.4 70.1£54 75319 71.8£2.5 63.4+0.6

InfoGraph  68.8+0.8 75.3+0.5 58.4+0.8 69.9+3.0 759+1.6 76.0+0.7 75.3¥2.5 62.7+0.4
GraphCL 69.7+£0.7 73.9+0.7 60.5+0.9 76.0£2.7 75.4+1.4 78.5+1.2 69.8+2.7 62.4+0.6
MVGRL 69.0+0.5 74.5+0.6 622+0.6 77.8+22 77.2+1.0 77.1#0.6 73.3%1.4 62.6+0.5

JOAO 71.4+0.9 743+0.6 60.5+0.7 81.0+1.6 755%+1.3 77.5%+1.2 73.7£1.0 63.2+0.5

AD-GCL 70.0+1.1 76.5+0.8 63.3+0.8 79.8+3.5 785+0.8 783%1.0 723%1.6 63.1+x0.7

SPAN 70.0+0.7 78.0+0.5 64.7+0.5 80.7+2.1 79.9+0.7 77.8+0.6 73.8+0.9 64.2+0.4

Sp>GCL 70.3+1.2 78.240.6 63.0+0.6 81.0+1.9 80.0+1.1 78.0+0.8 74.2+1.4 64.8+0.5

Table 5: Sp?GCL with different spectral encoders. Table 6: Justification of spatial-spectral contrast.

Pubmed Facebook Molbace Pubmed Facebook Molbace
EigenMLP 82.3 90.43 78.76 Sp?GCL 82.3 90.43 78.76
MLP 82.3 90.22 77.49 GRACE 80.6 89.32 76.45
SAN 78.6 81.52 75.96 +U 81.2 89.85 77.32
BasisNet 77.3 83.87 74.55 +UA 81.5 89.79 77.36

Results. Tablesummarizes the graph prediction performance. Sp?GCL has 4 best and 3 runner-up
performances and makes significant improvements on molfreesolv and molbace. Compared with
GraphCL and JOAO, which employ multiple spatial augmentations, e.g., edge and node dropping,
and feature masking, Sp2GCL outperforms them by only using the spectral domain information. This
demonstrates the effectiveness of spectral information. Compared with AD-GCL and SPAN, which
use adversarial learning to find the near-optimal invariant information [31]], Sp?GCL only uses the
traditional InfoMax principle [1]] and achieves competitive performance. This shows that the position
information of spectral features is crucial to graph representation learning. Besides, in Table[9] we
show that the efficiency and scalability of Sp?GCL significantly outperform adversarial learning.

6.3 Transfer Learning Scenario

Setup. The transfer learning experiments are used to evaluate the generalization ability of GCL
methods. We follow the experimental setup described in [10], which involves pre-training the GCL
methods on a large-scale dataset and subsequently fine-tuning the model on downstream datasets to
evaluate their out-of-distribution performance We use the same graph encoder and baseline as in the
unsupervised graph prediction task. Further details are provided in Appendix

Results. According to Table 4, Sp>2GCL outperforms baselines in 4 out of 8 datasets and achieves
an average rank of 1.7 across these datasets. Notably, the performance of different methods on
different downstream datasets varies greatly, suggesting that the downstream tasks require distinct
information for prediction. Nevertheless, spectral information proves to be crucial in the majority of
tasks. Furthermore, Sp2GCL achieves comparable performance to SPAN, which employs a spectrum-
based augmentation for learning graph representations. This observation indicates that Sp?GCL can
learn similar spectrums as SPAN. However, our model falls short of InfoGraph, GraphCL, and JOAO
on certain datasets due to the limited availability of feature information in the spectral view.

6.4 Ablation Studies

We conducted two ablation studies to validate the effectiveness of EigenMLP and the proposed
framework, Sp?GCL. Initially, we replace EigenMLP with different spectral encoders and evaluate
their performance on PubMed, Facebook, and molbace datasets. The results, presented in Tables E],
demonstrate that EigenMLP consistently outperforms other spectral encoders, thus confirming its
effectiveness in learning spectral representations. Moreover, we aim to justify the superior ability
of spatial-spectral contrast in fusing spatial and spectral representations. To accomplish this, we
concatenate node features with eigenvectors and eigenvalues and subsequently feed them into GRACE.
As shown in Table[6] we observe that incorporating spectral features improves the performance in



Table 7: Synthetic perturbations: Eigenvectors Table 8: Practical perturbations: Eigenvectors

with random reflection IT and rotation Q. with different EVD tolerances.
Test \ Test
PubMed ‘ U UTl uQ PubMed ‘ U, U, U,
| U | 788@*0.1) 783(55) 788(-64) 2| Us | 7186(+03) 739(-1.5) 73.7(-7.8)
E UIT | 78.5(-7.8) 789 (-04) 79.0(-5.2) E U, | 75.1(-3.2) 78.2(+0.3) 72.8(-6.8)
= | UQ | 787 (-5.1) 78.8(-9.3) 78.9 (+0.0) = | U;s | 73.7(-6.9) 72.0(-5.00 79.7(-0.5)

Table 9: Time overheads (s) of different GCL methods.  Table 10: Overall time overheads (s)
Training Inference  Of different spectral encoders in 1000

Method Preprocessing (100 Epochs)  (x10-3) forward passes.

GRACE 0.00 22.77 4.4 Method Facebook moltox21

MVGRL (GD) 898.23 20.01 4.7 (k =100) (7831 Graphs)

SpCo (SI, T=10) 127.16 2281 45 g’%ﬁ 123%‘3‘ 6322
PAN (EVD, T=1 62 142.92 - . .

SPAN (EVD. T=10) 658.6 ? BasisNet 169.83 84.64

Sp>GCL (EVD) 66.44 17.79 6.2 EigenMLP 5.34 3.14

GRACE. Nevertheless, the performance is still inferior to that of Sp?GCL, thus providing further
evidence of the effectiveness of spatial-spectral contrast.

6.5 Stability of EigenMLP and MLP

We conduct stability experiments to evaluate whether EigenMLP and MLP can learn stable representa-
tions against perturbations. We consider two types of perturbations: 1) Synthetic perturbation, which
applies random reflection IT and rotations Q on the eigenvectors. 2) Practical perturbation, which
decomposes the Laplacian matrix with different tolerances (10~3, 104, 10~°). The corresponding
eigenvectors are expressed as Ug, Uy, and Ujs. Note that synthetic perturbation only changes the
signs and coordinates of eigenvectors while practical perturbation is more challenging because it
perturbs the values. For clearer results, we only evaluate the performance of spectral representations.

For each type of perturbation, we construct three instances, i.e., (U, UIL, UQ) or (U3, Uy, Us). The
models are trained on one instance and tested on the other two instances on PubMed. We report the
results of EigenMLP and show the performance change after switching to MLP in the brackets. From
Table[7, we can find that the synthetic perturbation can hardly change the representations learned by
EigenMLP but has a great influence on MLP. Additionally, Table 8] shows that practical perturbations
can affect both EigenMLP and MLP. Nevertheless, EigenMLP still consistently outperforms MLP
across different tolerances, which verifies the stability of EigenMLP.

6.6 Time Overhead

To assess the efficiency, we compare the time overhead of Sp2GCL with other GCL methods as well
as compare EigenMLP with different spectral encoders. The time costs associated with preprocessing,
training, and inference are shown in Table[J] Previous spectrum-based methods have significant time
costs in the preprocessing stage, e.g., graph diffusion (GD) or Sinkhorn’s Iteration (SI), whereas
Sp2GCL exhibits minimal overhead. In the training stage, Sp2GCL outperforms other methods due to
the efficient spectral encoding, but it also introduces an additional burden during inference. Table[I0]
illustrates the overhead imposed by various spectral encoders within the Sp2GCL framework. Both
MLP and EigenMLP exhibit remarkable efficiency. Conversely, SAN and BasisNet entail excessive
time costs due to their quadratic time complexity.

7 Conclusion

In this study, we introduce Sp?GCL, a novel spatial-spectral GCL framework that learns the con-
sistency between the spatial and spectral views of graphs. To effectively and efficiently learn the
spectral view information, we propose EigenMLP, a scalable spectral encoder to learn stable spectral
representations from the non-unique spectral features. Extensive experiments on various graph-related
tasks demonstrate the effectiveness, efficiency, and stability of the proposed method.



Limitation and Broader Impact Currently, we focus on encoding spectral features while ignoring
node features. A promising future direction is to unify these two kinds of information to learn
effective graph representations. Our work reveals the superiority of integrating spectral information
into GCL and may inspire the community to pay more attention to the spectral view of graphs.
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Appendices

A Proof of Theorem

We use i to indicate the index of A™1 = max;en |\i+1 — A\;| ™! and perturb graph Laplacian L by
perturbing the eigenvectors. Specifically, we set

=v1— 2u; + eu;4q,

, ey

uH_l = —e€u; + 1 —62ui+1.
Note that |[uj|| = [[uj, || = 1 and u’Tu;+1 = 0. Therefore, replacing u; and u;41 with u} and
u;, , still satisfies EVD. We denote V' = [uy,--- ,uj,uj,,--- ,u]. Then the perturbation can be

represented as AL = V/AV'' — VAVT = \;(u/u Z-T —wu ) + Ait1(u ;Hu;HT —wipu) ).

For sufficient small € > 0, we have:

V+AV)-V
Qrenér(lkl\( +AV) -VQ[|r

=[] —w;,uj; — e
=|(VI =€ — D + eugpallr + [[(VI = € — Duigr — ewyl|r @
—4(1—V1-¢)

=262 + o(€?).

For Fourier features with period %, we have:
Vaeow) [[(V +AV)p(Ar) = Vp(Ar)llr
=|| [w} = ws,ulyy — i) [pO), pis1)]” |IF
T/2
= Z [[sin(A;) (u — ;) + sin(Xig1) (051 — i) ||F
(3)

T/2
+ Z [ cos(Ai)(u} — u;) + cos(Niv1)(Wiyy — Wit1)|[r

<T (||ui —wllr +[Juj; —wigil|r)
§T(262 + 0(62)),

Next, we characterize ||AL||p:
|AL||F

-
A (i = wan) (= )|
2
= H()\Hl - ) [—62 (uiuiT - ui+1uiT+1) +ev1—e2 (uiu;rl + ui+1u:)} HF %)
2
= Ower = A (€ oy + ] 2 40 ()

=2 ()\]H_l — )\k)Q (62 +o0 (62))

Combining Equations (2) and (@), we have the lower bound of the changes of non-equivariant spectral
features under small perturbations:

chl)n [[((V 4+ AV) - VQI|r > 0.99 11;1?§Xk INix1 — Ni| HIAL| | F + o(e), (5)
which concludes the Lemmal[l} i.e., Lemma 3.4 in [37].

Combining Equations (3) and (@), we have the upper bound of the changes of equivariant spectral
features under small perturbations:

Vaecow) IV +AV)p(Ar) = Vo(Au)llr < 0.99T max i1 — Ail THIAL|F 4 0(e),  (6)

which concludes the Theorem 2
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B Detailed Experimental Setup

In this section, we report the details of our experiments. Specifically, we first introduce some general
settings in all experiments. Then we introduce the detailed setup of each experiment one by one.

B.1 General Settings

Optimizer. For all experiments, we use the Adam optimizer.

Environment. The environment in which we run experiments is:

* Linux version: 5.19.0-38-generic

* Operating system: Ubuntu 22.04.2

¢ CPU information: AMD EPYC 7313P 16-Core Processor
¢ GPU information: GeForce RTX 3090 (24 GB)

Resources. The addresses and licenses of all datasets are as follows:

* PubMed: https://github.com/tkipf/pygcn (MIT License)

* Wiki-CS: https://github.com/pmernyei/wiki-cs-dataset (MIT License)

* Facebook: https://github.com/benedekrozemberczki/MUSAE (GPL-3.0 license)
* arXiv: https://github.com/snap-stanford/ogb (MIT license)

* Flickr: https://github.com/GraphSAINT/GraphSAINT (MIT license)

* PPL: https://github.com/mims-harvard/ohmnet (MIT license)

* OGB-graph: https://github.com/snap-stanford/ogb (MIT license)

ZINC-2M: https://github. com/snap-stanford/pretrain-gnns/(MIT license)

Reproducibility. Our code is attached in the supplementary material.

B.2 Unsupervised Node Classification

Evaluation protocol. In the unsupervised node classification task, all methods are first trained with
the corresponding self-supervised learning objectives. Then the learned representations are evaluated
with a Logistic classifier with l5 normalization. We evaluate the method every 10 epochs and the
maximum epoch is set to 1000. For the mini-batch training, we set the batch size to 1024. The
detailed statistics are shown in Table[T|and the hyperparameters are shown in Table[2]

Table 1: Statistics of unsupervised node classification datasets.

Graphs  Nodes Edges Features Classes

PubMed 1 19,717 88,648 500 3
Wiki-CS 1 11,701 216,123 300 10
Facebook 1 22,470 342,004 128 4
arXiv 1 169,343 1,116,243 128 40
Flickr 1 89,250 899,756 500 7
PPI 24 56,928 1,226,368 50 121

B.3 Unsupervised Graph Prediction

Evaluation protocol. In the unsupervised graph prediction task, we use the stand encoder, provided
by OGB Y] as the spatial encoder of Sp?GCL, which is a 5-layer GIN with hidden dimension d = 300.
We use add pooling to learn graph-level representations and set the batch size to 32. For the spectral

*https://github.com/snap-stanford/ogb/blob/master/ogb/graphproppred/mol_encoder.py
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Table 2: Statistics of unsupervised node classification datasets.
# Eigenvectors (k) Period (T") Ir wd  Dropout

PubMed 30 20 le-3 O 0
Wiki-CS 100 20 le-3 O 0
Facebook 100 20 le-3 0 0
arXiv 200 20 le-3 O 0
Flickr 100 20 le-3 O 0
PPI 50 20 le-3 0 0

encoder, due to the relatively small sizes of the molecular graphs, we use all eigenvectors as the
spectral features. We set the learning rate to 0.001 and the period to 10 for all datasets, and the number
of training epochs is chosen among {20, 50, 80, 100, 150} using the validation set, as suggested
by AD-GCL [27]]. For the downstream evaluator, we use a Riger regressor for the regression tasks
and a Logistic classifier for the binary classification tasks. The strength of [, normalization is grid
searched among {0.001, 0.01, 0.1, 1, 10, 100, 1000} on the validation set for each dataset. The
detailed statistics of the datasets are shown in Table

Table 3: Statistics of unsupervised graph prediction datasets.

Graphs Avg. Nodes Avg. Edges Classes Task Metric
ogbg-molesol 1,128 13.3 13.7 1 Regression RMSE
ogbg-mollipo 4,200 27.0 29.5 1 Regression RMSE
ogbg-molfreesolv 642 8.7 8.4 1 Regression RMSE
ogbg-molbace 1,513 34.1 36.9 1 Binary Class. ROC-AUC
ogbg-molbbbp 2,039 24.1 26.0 1 Binary Class. ROC-AUC
ogbg-molclintox 1,477 26.2 27.9 2 Binary Class. ROC-AUC
ogbg-moltox21 7,831 18.6 19.3 12 Binary Class. ROC-AUC
ogbg-molsider 1,427 33.6 354 27 Binary Class. ROC-AUC

B.4 Transfer Learning

Evaluation protocol. For the transfer learning task, we use the same GIN encoder as [10]. In the
pre-training stage, the learning rate is set to 0.001 and the number of training epochs is chosen from
{20, 50, 80, 100} based on the validation set. Similarly, we use all eigenvalues and eigenvectors as the
spectral features, and the period is set to 10. In the fine-tuning stage, we remove the self-supervised
learning objective, and an additional linear projection layer is used on the output of the encoder for
classification. The hyperparameters are the same as in the pre-training stage. The detailed statistics
of the datasets are shown in Table 4l

Table 4: Statistics of transfer learning datasets.

Graphs Utilization Avg. Nodes Avg. Edges

ZINC-2M  Pre-Training 2,000,000 26.62 57.72
BBBP Finetuning 2,039 24.06 51.90
Tox21 Finetuning 7,831 18.57 38.58
SIDER Finetuning 1,427 33.64 70.71
ClinTox Finetuning 1,477 26.15 55.76
BACE Finetuning 1,513 34.08 73.71
HIV Finetuning 41,127 25.51 54.93
MUV Finetuning 93,087 24.23 52.55
ToxCast Finetuning 8,576 18.78 38.52
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B.5 Stability Experiment

We use the PyTorch-style pseudo code to explain how we generate the synthetic perturbations (Figure

and practical perturbations (Figure [3)).

e, u = torch.linalg.eigh(L) # EVD

random_sign = 2*torch.randint(0, 2, (N,))- 1
sign_flip = torch.diag(random_sign).float()
coor_flip = torch.randperm(N)

u_sign = torch.mm(u, sign_flip)
u_basis = u.clone() [:, coor_flip]

e3, u3 = scipy.sparse.linalg.eigsh(
L, k=100, which='SM', tol=le-3)

e4, u4d = scipy.sparse.linalg.eigsh(
L, k=100, which='SM', tol=le-4)

e5, ub = scipy.sparse.linalg.eigsh(
L, k=100, which='SM', tol=le-5)

Figure 2: Synthetic perturbations

Figure 3: Practical perturbations

C Matrix Form of EigenMLP

We give a detailed matrix form of Equation[6] from which we can see that the Fourier features of
eigenvalues give different weights to the eigenvectors, thus making the model invariant to the rotation
of coordinates and preserving good fitting ability.

ui  oul o ug cos(A1) sin(Aq) cos(TA1) sin(TAy)
u? w3 o up cos(Aa) sin(Ag) cos(TAg) sin(TAz)
. X . . .
ul  wd oWl cos(Ag) sin(Ag) cos(TAg) sin(TA)
Eigenvectors, N X k Fourier features of eigenvalues, k& X 2T
1.1 1 BBl .l (N
ap Qg Qg 1 g d
o a3 - al h? h3 .- h3
X =
S I D g Ry

Parameters of learnable matrix, 2¢ X d Representations, N X d

D Pseudo Algorithm

In order to better demonstrate our algorithm, here we provide the pseudo algorithms of EigenMLP
(Figure ) and Sp>GCL (Figure[3).
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Figure 4: Pseudo Algorithm of EigenMLP

class EigenMLP(nn.Module)

def __init__(self, k, 4, T):
# k: number of Eigenvectors
# d: hidden dimension
# T: period
self.phi = nn.Sequential(nn.Linear(l, d), nn.ReLU(), nn.Linear(d, d))
self.psi = nn.Sequential(nn.Linear(d, d), nn.ReLU(), nn.Linear(d, 1))
self.mlp = nn.Sequential(nn.Linear(2*T, d), nn.ReLU(), nn.Linear(d, d))

def forward(e, u):
u = u.unsqueeze(-1)

u = self.psi(self.phi(u) + self.phi(-u)).squeeze(-1) # [N, k]
T_term = torch.arange(0, T).float()

T_e = e.unsqueeze(1l) * T

F_e = torch.cat([torch.sin(T_e), torch.cos(T_e)], dim=-1) # [k, 2T]

return self.mlp(torch.mm(u, F_e))

Figure 5: Pseudo Algorithm of Sp?GCL

def Sp2GCL(g, x, e, w):
# g: graph structures
# x: node features

e: eigenvalues

u: etgenvectors

a = GNN(g, %)

e = EigenMLP(e, u)

# For graph-level tasks
# z_a = add_pool(g, z_a)
# z_e = add_pool(g, z_e)

h_a = spa_projection_head(x_a)
h_e = spe_projection_head(x_e)
h_a = F.normalize(h_a, dim=-1, p=2)
h_e = F.normalize(h_e, dim=-1, p=2)

logits = torch.mm(h_a, h_e.t())
labels = torch.arange(h_a.size(0), dtype=torch.long)

return 0.5 * F.cross_entropy(logits, labels) +
0.5 * F.cross_entropy(logits.t(), labels)
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