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Abstract

To address the challenges of sim-to-real gap and sample efficiency in reinforcement
learning (RL), this work studies distributionally robust Markov decision processes
(RMDPs) — optimize the worst-case performance when the deployed environment
is within an uncertainty set around some nominal MDP. Despite recent efforts,
the sample complexity of RMDPs has remained largely undetermined. While the
statistical implications of distributional robustness in RL have been explored in
some specific cases, the generalizability of the existing findings remains unclear,
especially in comparison to standard RL. Assuming access to a generative model
that samples from the nominal MDP, we examine the sample complexity of
RMDPs using a class of generalized Lp norms as the ’distance’ function for the
uncertainty set, under two commonly adopted sa-rectangular and s-rectangular
conditions. Our results imply that RMDPs can be more sample-efficient to solve
than standard MDPs using generalized Lp norms in both sa- and s-rectangular
cases, potentially inspiring more empirical research. We provide a near-optimal
upper bound and a matching minimax lower bound for the sa-rectangular scenarios.
For s-rectangular cases, we improve the state-of-the-art upper bound and also
derive a lower bound using L∞ norm that verifies the tightness.

1 Introduction

Reinforcement learning (RL) [Sutton, 1988] is a popular paradigm in machine learning, particularly
noted for its success in practical applications. The RL framework, usually modeled within the context
of a Markov decision process (MDP), focuses on learning effective decision-making strategies based
on interactions with a fixed environment. However, the work of Mannor et al. [2004], among others,
has highlighted a vulnerability in RL strategies, revealing the sensitivity to inherent shift or estimation
errors in the reward and transition probabilities. A specific example of this is when, because of a
sim-to-real gap, policies learned in idealized environments fail when deployed in environments with
slight changes or adversarial perturbations [Klopp et al., 2017, Mahmood et al., 2018].

To address this issue, distributionally robust RL, usually formulated as robust MDPs (RMDPs),
proposed by Iyengar [2005] and Nilim and El Ghaoui [2005], have attracted considerable attention.
RMDPs are formulated as max-min problems, seeking policies that are resilient to model environment
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perturbations within a specified uncertainty set. Despite the robustness benefits, solving RMDPs is
NP-hard for general uncertainty sets [Nilim and El Ghaoui, 2005]. To overcome this challenge, the
rectangularity condition is often adopted so that the uncertainty set can be decomposed as products of
independent subsets for each state or state-action pair, denoted as s-rectangular or sa-rectangular
assumptions (see Definition 4 and 5). These assumptions facilitate computation traceability of meth-
ods such as robust value iteration and robust policy iteration, preserving many structural properties
of MDPs [Ho et al., 2021]. The s-rectangularity condition, though with less restrictive structure
assumption, impose more challenges for algorithm design, while the sa-rectangularity condition
allows for deterministic optimal policies akin to non-robust MDPs [Wiesemann et al., 2013]. Note
that dealing with uncertainty in transition kernels is much more difficult than that in rewards [Kumar
et al., 2022, Derman et al., 2021].

The question of sample efficiency is central in RL problems ranging from practice to theory. Although
minimax sample efficiency has been achieved for standard MDPs [Azar et al., 2013b, Li et al., 2023c],
this goal in general remains open in RMDPs. Specifically, there exists prior work studying the sample
complexity of distributionally robust RL for a few specific divergences such as total variation (TV )
distance, χ2 divergence, Kullback-Leibler divergence (KL) divergence, and Wasserstein distance
(see discussions in Appendix A) [Yang et al., 2022b, Zhou et al., 2021, Panaganti and Kalathil, 2022].
While such results remain unclear for more general class, such as the general smooth Lp norms (see
Def. 1). To the best of our knowledge, minimax optimal sample complexity for the full range of
uncertainty level has only been achieved for one case — TV distance [Shi et al., 2023]. In this work,
we focus on understanding the sample complexity of RMDPs with a general smooth Lp that will
be defined in Def. 1. This generalized result is appealing for both practice and theory. In practice,
numerous applications are based on optimizations or learning approaches that involve general norms
beyond those specific cases that have been studied in prior works. Additionally, optimizing Lp

norm weighted ambiguity sets for robust MDPs has been proposed in the context of RMDPs in
Russel et al. [2019], which justifies our formulation. Theoretically, prior work has characterized
the sample complexity of RMDPs for some specific norms have suggested intriguing insights about
the statistical implications of distributional robustness in RL. It is interesting to further understand
the statistical cost of robust RL in more general scenarios. One area of focus is the contrast between
the sample efficiency of solving distributionally robust RL and solving standard RL. In particular,
for the specific case of TV distance, Shi et al. [2023] shows that the sample complexity for solving
robust RL is at least the same as and sometimes (when the uncertainty level is relatively large) could
be smaller than that of standard RL. This motivates the following open question:

Is distributionally robust RL more sample efficient than standard RL for some general class of norms
(Def. (1)) ?

A second question is about the comparisons between the sample complexity of solving s-rectangular
RMDPs and that of solving sa-rectangular RMDPs. Note that s-rectangular RMDPs involve more
complex optimization problems with additional variables (uncertainty levels for each action) to op-
timize. This leads to a richer class of optimal policy candidates—stochastic policies in s-rectangular
cases, in contrast to the class of deterministic policies for sa-rectangular cases. In addition, existing
sample complexity upper bounds for solving s-rectangular RMDPs are larger than that for solving
sa-rectangularity [Yang et al., 2022b] for the investigated cases. This motivates the curious question:

Does solving s-rectangular RMDPs require more samples than solving sa-rectangular RMDPs with
general smooth Lp norms defined in Def. 1?
Main contributions. In this paper, we address each of the two questions discussed above. In
particular, we provide the first sample complexity analysis for RMDPs with general Lp norms
(cf. Def. 1) under both the s- and sa-rectangularity conditions. For convenience, we present detailed
comparisons between the prior arts and our results in Table 1 for quick reference and discuss the
contributions and their implications as below.

• Considering the first question, we illustrate our results in both sa- and s-rectangular cases in
Figure 1. In the case of sa-rectangularity, we derive a sample complexity upper bound for RMDPs
using general smooth Lp norms (cf. Theorem 1) in the order of Õ

(
SA

(1−γ)2 max{1−γ,Cgσ}ε2

)
. Here, σ

is the uncertainty level/radius of the uncertainty set, and Cg > 0 is a positive constant related to the
geometry of the norm defined in Def. 1. For classical Lp norms, Cg ≥ 1 so we can directly relax this
constant to 1 to obtain the result in Table 1. In addition, we provide a matching minimax lower bound
(cf. Theorem 2) that confirms the near-optimality of the upper bound for almost full range of the
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Result type Reference Distance

sa-rectangularity s-rectangularity

0 < σ ≲ 1− γ 1− γ ≲ σ < σmax 0 < σ̃ ≲ 1− γ 1− γ ≲ σ̃ < σ̃max

Upper bound

Yang et al. [2022a] TV S2A(2+σ)2

σ2(1−γ)4ε2
S2A(2+σ)2

σ2(1−γ)4ε2
S2A2(2+σ̃)2

σ̃2(1−γ)4ε2
S2A2(2+σ̃)2

σ̃2(1−γ)4ε2

Panaganti and Kalathil [2022] TV S2A
(1−γ)4ε2

S2A
(1−γ)4ε2 × ×

Shi et al. [2023] TV SA
(1−γ)3ε2

SA
σ(1−γ)2ε2 × ×

Clavier et al. [2023] Lp
SA

(1−γ)3ε2
SA

(1−γ)4ε2
SA

(1−γ)3ε2
SA

(1−γ)4ε2

This paper Lp
SA

(1−γ)3ε2
SA

σ(1−γ)2ε2
SA

(1−γ)3ε2
SA

(1−γ)2σ̃mins∥πs∥∗ε
2

This paper General Lp [1] SA
(1−γ)3ε2

SA
σ(1−γ)2ε2

SA
(1−γ)3ε2

SA
(1−γ)2σ̃Cg mins∥πs∥∗ε

2

Lower bound

Yang et al. [2022a] TV SA
(1−γ)3ε2

SA(1−γ)
σ4ε2 × ×

Shi et al. [2023] TV SA
(1−γ)3ε2

SA
σ(1−γ)2ε2 × ×

This paper Lp
SA

(1−γ)3ε2
SA

σ(1−γ)2ε2 × ×

This paper L∞
SA

(1−γ)3ε2
SA

σ(1−γ)2ε2
SA

(1−γ)3ε2
SA

σ̃(1−γ)2ε2

Table 1: Comparisons with prior results (up to log terms) regarding finding an ε-optimal policy for the
distributionally RMDP, where σ is the radius of the uncertainty set and σmax defined in Theorem 1.

uncertainty level. Our results match the near-optimal sample complexity derived in Shi et al. [2023]
for the specific case using TV distance, while holding for broader cases using general Lp norms. The
results rely on a new dual optimization form for sa-rectangular RMDPs and reveal the relationship
between the sample complexity and this new dual form — the infinite span seminorm (controlled in
Lemma 5), which may be of independent interest.

In the case of s-rectangularity, we provide a sample complexity upper bound for solving RMDPs
with general smooth Lp norms in the order of Õ

(
SA

(1−γ)2 max{1−γ,Cg mins∥πs∥∗σ̃}ε2

)
with ∥.∥∗ the

dual norm and σ̃ the radius of the ball in the s-rectangular uncertainty set. This result improves the
prior art Õ

(
SA

(1−γ)4ε2

)
in Clavier et al. [2023] for classical Lp — by at least a factor of O

(
1

1−γ

)
when σ̃ ≲ 1− γ. Furthermore, we present a lower bound for a representative case with L∞ norm,
which corroborates the tightness of the upper bound. To the best of our knowledge, this is the first
lower bound for solving RMDPs with s-rectangularity.

• We highlight the technical contributions as below. For the upper bounds, regarding optimization
contribution, we derive new dual optimization problem forms for both sa− and s− rectangular cases
(Lemma 3 and 4), which is the foundation of the covering number argument in finite-sample analysis.
From a statistical point of view, a new concentration lemma (See Lemma 8 for dual forms) is
introduced to obtain a lower sample complexity than standard RL, controlling the infinite span semi
norm of the value function, both for sa− and s− rectangular case are derived (See Lemma 5 and
6). For the lower bound, the technical contributions are mainly in s-rectangular cases, which involves
entire new challenges compared to sa-rectangularity case: the optimal policies can be stochastic
and hard to be characterized as a closed form, compared to the deterministic one in sa-rectangular
cases. Therefore, we construct new hard instances for s-rectangular cases that is distinct from those
used in sa-rectangular cases or standard RL.

• Considering the second question, as illustrated in Figure 1, our results highlight that robust RL
is at least the same as and sometimes can be more sample-efficient to solve than standard RL for
general smooth Lp norms (cf. Def. 1). This insight is of significant practical importance and serves
to provide crucial motivation for the use and study of distributionally robustness in RL. Notably,
robust RL does not only reduce the vulnerability of RL policy to estimation errors and sim-to-real
gaps, but also leads to better data efficiency. In terms of comparing the statistical implications of sa-
and s- rectangularity, our results show that solving s-rectangular RMDPs is not harder than solving
sa-rectangular RMDPs in terms of sample requirement (See Theorem 3 and Figure 2, Right).

2 Problem Formulation: Robust Markov Decision Processes

In this section, we formulate distributionally robust Markov decision processes (RMDPs) in the
discounted infinite-horizon setting, introduce the sampling mechanism, and describe our goal.
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Figure 1: Left: Sample complexity results for RMDPs with sa- and s-rectangularity with Lp with
comparisons to prior arts [Shi et al., 2023] (for L1 norm, or called total variation distance) and
[Clavier et al., 2023] ; Right: The data and instance-dependent sample complexity upper bound of
solving s-rectangular dependency RMDPs with Lp norms.

Standard Markov decision processes (MDPs). A discounted infinite-horizon MDP is represented
by M = (S,A, γ, P, r), where S = {1, · · · , S} and A = {1, · · · , A} are the finite state and action
spaces, respectively, γ ∈ [0, 1) is the discounted factor, P : S ×A → ∆(S) denotes the probability
transition kernel, and r : S × A → [0, 1] is the immediate reward function, which is assumed to
be deterministic. Moreover, we assume that the reward function is bounded in (0, 1) without loss of
generality of the results due to the variance reward invariance. Finally we denote 1A or 1S the unitary
vector of respectively dimension A or S. Moreover, es is the standard unitary vector supported
on s. The policy we are looking for is denoted by π : S → ∆(A), which specifies the probability
of action selection over the action space in any state. Note that if the policy is deterministic in the
sa-rectangular case, we overload the notation and refer to π(s) as the action selected by the policy
π in state s. Finally, to characterize the cumulative reward, the value function V π,P for any policy
π under the transition kernel P is defined by ∀s ∈ S

V π,P (s) := Eπ,P

[ ∞∑
t=0

γtr
(
st, at

) ∣∣∣ s0 = s

]
. (1)

The expectation is taken over the randomness of the trajectory {st, at}∞t=0 generated by executing
the policy π under the transition kernel P , such that at ∼ π(· | st) and st+1 ∼ P (· | st, at) for all
t ≥ 0. In the same way, the Q function Qπ,P associated with any policy π under the transition kernel
P is defined using expectation taken over the randomness of the trajectory under policy π as

Qπ,P (s, a) := Eπ,P

[ ∞∑
t=0

γtr
(
st, at

) ∣∣∣ s0, a0 = s, a

]
, (2)

Distributionally robust MDPs. We consider distributionally robust MDPs (RMDPs) in the
discounted infinite-horizon setting, denoted by Mrob = {S,A, γ,Uσ

∥·∥(P
0), r}, where S,A, γ, r

are the same sets and parameters as in standard MDPs. The main difference compared to standard
MDPs is that instead of assuming a fixed transition kernel P , it allows the transition kernel to be
arbitrarily chosen from a prescribed uncertainty set Uσ

∥·∥(P
0) centered around a nominal kernel

P 0 : S × A → ∆(S), where the uncertainty set is specified using some called Lp smooth norm
denoted ∥·∥ defined in of radius σ > 0 defined in 1.
Definition 1 (General smooth Lp norms and dual norms). A norm ∥ · ∥ is said to be a general smooth
Lp, norm , p > 1 if

• for all x ∈ Rn, ∥x∥ := ∥x∥p,w = (
∑n

k=1 wk(|xk|)p)1/p for some w ∈ Rn
+, being an

arbitrary positive vector.

• it is twice continuously differentiable Rudin et al. [1964] with the supremum of the Hessian
Matrix over the simplex CS = supx∈∆S

∥∥∇2 ∥x∥
∥∥
2
, where ∥·∥2 here is the spectral norm.
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Finally, we denote the dual norm of ∥·∥ as ∥·∥∗ s.t. ∥y∥∗ := maxx x
T y : ∥x∥ ≤ 1. Moreover, for

any metric ∥·∥, we define Cg Cg := 1/mins ∥es∥ where es ∈ RS is the standard basis vector with
only 1 at the s-th entry, otherwise 0.

Note that the quantity CS exists, as the Hessian of a C2 functional is continuous and because the
simplex is a compact set, so by Extreme Value Theorem Rudin et al. [1964], CS is finite. For
example, considering Lp norms with any p ≥ 2, CS is bounded by (p− 1)S1/q. (See (154) ) This
definition is general and includes Lp norms [Rudin et al., 1964] for any p ≥ 2 and all rescaled and
weighted norms. Moreover, we could extend our results to a larger set than the one of the norms
defined in Def. 1, where the further discussion can be found in Appendix B. However, it does
not include divergences such as KL and χ2. Not that the case of TV which is not C2 smooth is
treated independently with different arguments in the proof but has the same sample complexity.
In particular, given the nominal transition kernel P 0 and some uncertainty level σ, the uncertainty
set—with arbitrary smooth Lp norm metric ∥ ∥ : RS× → R+ in sa rectangular case or from RS×A

in the s-rectangular case, is specified as Uσ
∥·∥(P

0) := ⊗s,a U sa,σ
∥·∥ (P 0

s,a)

U sa,σ
∥·∥ (P 0

s,a) :=
{
Ps,a ∈ ∆(S) :

∥∥Ps,a − P 0
s,a

∥∥ ≤ σ
}
, (3)

Ps,a := P (· | s, a) ∈ R1×S , P 0
s,a := P 0(· | s, a) ∈ R1×S , (4)

where we denote a vector of the transition kernel P or P 0 at state-action pair (s, a). In other
words, the uncertainty is imposed in a decoupled manner for each state-action pair, obeying the
so-called sa-rectangularity [Zhou et al., 2021, Wiesemann et al., 2013]. More generally, we
define s-rectangular MDPs as Uσ

∥·∥(P ) = ⊗s U s,σ̃
∥·∥(Ps), for the general smooth Lp norm ∥·∥. The

uncertainty is imposed in a decoupled manner for each state pair, and a fixed budget given a state
for all action is defined. To get a similar meaning for the radius of the ball between sa-rectangular
and s-rectangular assumptions, we need to rescale the radius depending on the norm like in Yang
et al. [2022b]. The s- uncertainty set is then defined using the rescaled radius σ̃ as

U s,σ̃
∥·∥(Ps) :=

{
P ′
s ∈ ∆(S)A : ∥P ′

s − Ps∥ ≤ σ̃ = σ ∥1A∥
}
, (5)

Ps := P (·, · | s) ∈ R1×SA, P 0
s := P 0(·, · | s) ∈ R1×SA. (6)

where 1A ∈ RA denotes the unitary vector. For the specific case of respectively L1,Lp and L∞ norm,
σ̃ is equal to |σA|, σ|A|1/p and σ. Note that this scaling allows for a fair comparison between sa-
and s-rectangular MDPs. In RMDPs, we are interested in the worst-case performance of a policy
π over all the possible transition kernels in the uncertainty set. This is measured by the robust value
function V π,σ and the robust Q-function Qπ,σ in Mrob, defined respectively as ∀(s, a) ∈ S ×A

V π,σ(s) := inf
P∈U sa,σ

∥·∥ (P 0)
V π,P (s), Qπ,σ(s, a) := inf

P∈U sa,σ
∥·∥ (P 0)

Qπ,P (s, a). (7)

Similarly for s-rectangularity, the value function is denoted V π,σ
s (s) := inf

P∈U s,σ̃
∥·∥(P

0)
V π,P (s).

Optimal robust policy and robust Bellman operator. As a generalization of properties of standard
MDPs in the sa-rectangular robust case, it is well-known that there exists at least one deterministic
policy that maximizes the robust value function (resp. robust Q-function) simultaneously for all states
(resp. state-action pairs) [Iyengar, 2005, Nilim and El Ghaoui, 2005] but not in the s-rectangular case.
Therefore, we denote the optimal robust value function (resp. optimal robust Q-function) as V ⋆,σ

(resp. Q⋆,σ), and the optimal robust policy as π⋆, which satisfy ∀(s, a) ∈ S ×A

V ⋆,σ(s) := V π⋆,σ(s) = max
π

V π,σ(s), Q⋆,σ(s, a) := Qπ⋆,σ(s, a) = max
π

Qπ,σ(s, a). (8a)

A key concept in RMDPs is a generalization of Bellman’s optimality principle, encapsulated in the
following robust Bellman consistency equation (resp. robust Bellman optimality equation):

∀(s, a) ∈ S ×A, Qπ,σ(s, a) = r(s, a) + γ inf
P∈U sa,σ

∥·∥ (P 0
s,a)

PV π,σ, (9a)

∀(s, a) ∈ S ×A, Q⋆,σ(s, a) = r(s, a) + γ inf
P∈U sa,σ

∥·∥ (P 0
s,a)

PV ⋆,σ. (9b)
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for the sa-rectangular case and same equation replacing P 0
s,a by P 0

s and σ by σ̃. The robust Bellman
operator [Iyengar, 2005, Nilim and El Ghaoui, 2005] is denoted by T σ(·) : RSA → RSA

T σ(Qπ)(s, a) := r(s, a) + γ inf
P∈U sa,σ

∥·∥ (P 0
s,a)

PV, with V (s) := max
π

Qπ(s, a). (10)

for sa-rectangular MDPs. Given that Q⋆,σ is the unique-fixed point of T σ one can recover the
optimal robust value function and Q-function using a procedure termed distributionally robust
value iteration (DRV I). Generalizing the standard value iteration, DRV I starts from some given
initialization and recursively applies the robust Bellman operator until convergence. As has been
shown previously, this procedure converges rapidly due to the γ-contraction property of T σ with
respect to the L∞ norm [Iyengar, 2005, Nilim and El Ghaoui, 2005].

3 Distributionally Robust Value Iteration

Generative model-based sampling. Following Zhou et al. [2021], Panaganti and Kalathil [2022],
we assume access to a generative model or a simulator [Kearns and Singh, 1999], which allows us
to collect N independent samples for each state-action pair generated based on the nominal kernel
P 0: ∀(s, a) ∈ S ×A, si,s,a

i.i.d∼ P 0(· | s, a), i = 1, 2, · · · , N. The total sample size is, therefore,
NSA. We consider a model-based approach tailored to RMDPs, which first constructs an empirical
nominal transition kernel based on the collected samples and then applies distributionally robust
value iteration (DRVI) to compute an optimal robust policy. As we decouple the statistical estimation
error and the optimization error, we exhibit an algorithm that can achieve arbitrary small error ϵopt
in the empirical MDP defined as an empirical nominal transition kernel P̂ 0 ∈ RSA×S that can be
constructed on the basis of the empirical frequency of state transitions, i.e. ∀(s, a) ∈ S ×A

P̂ 0(s′ | s, a) := 1

N

N∑
i=1

1
{
si,s,a = s′

}
, (11)

which leads to an empirical RMDP M̂rob = {S,A, γ,Uσ
∥·∥(P̂

0), r}. Analogously, we can define

the corresponding robust value function (resp. robust Q-function) of policy π in M̂rob as V̂ π,σ

(resp. Q̂π,σ) (cf. (8)). In addition, we denote the corresponding optimal robust policy as π̂⋆ and the
optimal robust value function (resp. optimal robust Q-function) as V̂ ⋆,σ (resp. Q̂⋆,σ) (cf. (9)), which
satisfies the robust Bellman optimality equation ∀(s, a) ∈ S ×A:

Q̂⋆,σ(s, a) = r(s, a) + γ inf
P∈U sa,σ

∥·∥ (P̂ 0
s,a)

PV̂ ⋆,σ. (12)

Equipped with P̂ 0, we can define the empirical robust Bellman operator T̂ σ as ∀(s, a) ∈ S ×A

T̂ σ(Qπ)(s, a) := r(s, a) + γ inf
P∈U sa,σ

∥·∥ (P̂ 0
s,a)

PV, (13)

with V (s) := maxπ Q
π(s, a). The aim of this work is given the collected samples, to learn

the robust optimal policy for the RMDP w.r.t. some prescribed uncertainty set Uσ(P 0) around the
nominal kernel using as few samples as possible. Specifically, given some target accuracy level ε > 0,
the goal is to seek an ε-optimal robust policy π̂ obeying

∀s ∈ S : V ⋆,σ(s)− V π̂,σ(s) ≤ ε, (14)

V̂ π̂⋆,σ − V̂ π̂,σ ≤ εopt. (15)

This formulation allows plugging any solver of RMDPs in this bound, for instance, the distributionally
robust value iteration (DRVI) algorithm detailed in Appendix G.

4 Theoretical guarantees

In this section, we present our main results characterizing the sample complexity of solving RMDPs
with sa-and s-rectangularity. Additionally, we discuss the implications of our results for the com-
parisons between standard and robust RL, and for comparisons between sa- versus s-rectangularity.
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4.1 sa-rectangular uncertainty set with general smooth norms

To begin, we consider the RMDPs with sa-rectangularity with general norms. We first provide the
following sample complexity upper bound for certain oracle planning algorithms, whose proof is
postponed to Appendix D.2. Technically, we derive two new dual forms for RMDPs problems using
arbitrary norms in Lemmas 3 and 4 for respectively sa- and s-rectangular RMDPS. In these dual
forms, a central quantity denoted sp(.)∗, representing the dispersion of the value function, appears
and is the dual span semi-norm associated with the considered general Lp norm ∥.∥ defined in 1
in the initial primal problem. The main challenge in this analysis is to derive a tight upper bound
on this quantity in Lemmas (5) and (6), leading to the following sample complexity.
Theorem 1 (Upper bound for sa-rectangularity). Consider the uncertainty set U sa,σ

∥·∥ (·) associated
with arbitrary Lp smooth norm ∥ · ∥ defined in 1. We denote σmax := maxp1,p2∈∆(S) ∥p1 − p2∥ as
the accessible maximal uncertainty level. Consider any δ ∈ (0, 1), discount factor γ ∈

[
1
4 , 1
)
, and

uncertainty level σ ∈ (0, σmax]. Let π̂ be the output policy of some oracle planning algorithm with
optimization error εopt introduced in (15). With introduced in 1, one has with probability at least 1−δ,

∀s ∈ S : V ⋆,σ(s)− V π̂,σ(s) ≤ ε+
8εopt
1− γ

(16)

for any ε ∈ (0,
√

1/max{1− γ, σCg}], as long as the total number of samples obeys

NSA ≳
c1SA

(1− γ)2 max{1− γ,Cgσ}ε2
+

c2SACS ∥1S∥∗
(1− γ)2ϵ

(17)

with c1, c2, c3 a universal positive constant. For a sufficiently small level of accuracy
ϵ ≤ (max{1− γ,Cgσ})/(CS ∥1S∥), the sample complexity is

NSA ≳
c3SA

(1− γ)2 max{1− γ,Cgσ}ε2
. (18)

Note that this result is also true for TV without the geometric smooth term depending on CS .
Considering Lp norms, Cg ≥ 1 and CS ≤ S1/q(p− 1). In Theorem 1, we introduce the following
minimax-optimal lower bound to verify the tightness of the above upper bound; a proof is provided
in Appendix E.
Theorem 2 (Lower bound for sa-rectangularity). Consider the uncertainty set U sa,σ

∥·∥ (·) associated
with arbitrary LP norm ∥ · ∥ defined in 1. We denote σmax := maxp1,q1∈∆(S) ∥p1 − p2∥ as
the accessible maximal uncertainty level. Consider any tuple (S,A, γ, σ, ε), where γ ∈

[
1
2 , 1
)
,

σ ∈ (0, σmax(1 − c0)] with 0 < c0 ≤ 1
8 being any small enough positive constant, and ε ∈(

0, c0
256(1−γ)

]
. We can construct two infinite-horizon RMDPs M0,M1 such that giving a dataset

with N independent samples for each state-action pair over the nominal transition kernel (for either
M0 or M1 respectively), one has

inf
π̂

max
M∈{M0,M1}

{
PM

(
max
s∈S

[
V ⋆,σ(s)− V π̂,σ(s)

]
> ε
)}

≥ 1

8
,

where the infimum is taken over all estimators π̂, P0 (resp. P1) are the probability when the RMDP is
M0 (resp. M1), as long as, for c7 is a universal positive constant,

NSA ≤ c7SA

(1− γ)2 max{1− γ,Cgσ}ε2
. (19)

• Near minimax-optimal sample complexity with general Lp norms. Recall that Theorem 1
shows that the sample complexity upper bound of oracle algorithms for RMDPs is in the order of
Õ
(

SA
(1−γ)2 max{1−γ,Cgσ}ε2

)
. Combined with the lower bound in Theorem 2, we observe that the

above sample complexity is near minimax-optimal, in almost the full range of uncertainty.

• Solving RMDPs with general Lp norms can be easier than solving standard RL. Recall that
the sample complexity of solving standard RL with a generative model [Agarwal et al., 2020, Li
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et al., 2024, Azar et al., 2013a] is: Õ
(

SA
(1−γ)3ε2

)
. Comparing this with the sample complexity in

(18), it highlights that solving robust MDPs (cf. (18)) using any norm as the divergence function for
the uncertainty set is not harder than (and is sometimes easier than) solving standard RL (cf. (4.1)).
Specifically, when the uncertainty level is small σ ≲ 1 − γ, the sample complexity of solving
robust MDPs matches that of standard MDPs. While when the uncertainty level is relatively larger
1− γ ≲ σ ≤ σmax, the sample complexity of solving robust MDPs is smaller than that of standard
MDPs by a factor or σ

1−γ , which goes to 1
1−γ when σ = O(1).

• Comparisons with prior arts. In Figure 1, we illustrate the comparisons with two state-of-the-
arts [Clavier et al., 2023, Shi et al., 2023] which use some divergence functions belonging to the class
of general norms considered in this work. In particular, Shi et al. [2023] achieved the state-of-the-art
minimax-optimal sample complexity Õ

(
SA

(1−γ)2 max{1−γ,σ}ε2

)
for specific L1 norm (or called total

variation distance). In this work, we attain near minimax-optimal sample complexity for any general
norm (including L1) which matches the one in Shi et al. [2023] when narrowing down to L1 norm.
Note that in TV case, Cg = 1. This reveals that the finding of robust MDPs can be easier than
standard MDPs [Shi et al., 2023] in terms of sample requirement does not only hold for L1 norm,
but for any general norm. In addition, compared to Clavier et al. [2023] which focuses on Lp norms
for any 1 ≤ p ≤ ∞: when 1− γ ≲ σ ≤ σmax, we improve the sample complexity Õ( SA

(1−γ)4ε2 ) to

Õ( SA
(1−γ)2σε2 ) by at least a factor of 1

1−γ ; otherwise, we match the results in Clavier et al. [2023].

• Burn-in Condition, Cg factor and TV case : In Th. 1 and 3 we need a sufficiently small level
of accuracy ϵ ≤ (max{1 − γ,Cgσ})/(Cs ∥1S∥), to obtain the sample complexity. This type of
condition is usual in MDPS analysis Shi et al. [2022] and is equivalent to burn in term. Moreover,
the quantity CS exists (see 1) and for example, considering Lp norms, CS is bounded by S1/q . (See
(154)) and the product CS ∥1S∥ is upper bounded by S for L2 norm. Moreover, note that our theorem
for the smooth norm is also true for TV which is not C2 and has the same complexity as (Shi et al.
[2023]. In this case, the burn-in condition is not needed. (See Lemma D.3.3). Finally, the factor
Cg = 1/mins ∥es∥ is norm dependent and depends on how big the vector es0 is in the considered
norm. Note for classical Lp this quantity is bigger than 1, which reduces the sample complexity.

4.2 s-rectangular uncertainty set with general norms

To continue, we move on to the case when the uncertainty set is constructed under s-rectangularity
smooth norm. The following theorem presents the sample complexity upper bound for learning an
ϵ-optimal policy for RMDPs with s-rectangularity. A proof is shown in Appendix D.2.

Theorem 3 (Upper bound for s-rectangularity). Consider the uncertainty set U s,σ̃
∥·∥(·) with

s-rectangularity. Consider any discount factor γ ∈
[
1
4 , 1
)
, the rescaled uncertainty level σ̃ = σ ∥1A∥,

and denote σ̃max := ∥1A∥maxp1,p2∈∆(S) ∥p1 − p2∥ and δ ∈ (0, 1). Let π̂ be the output policy of
an arbitrary optimization algorithm with error εopt. , with probability at least 1− δ, one has for any
ε ∈ (0,

√
1/max{1− γ,Cg mins ∥πs∥∗ σ}], ∀s ∈ S : V ⋆,σ̃(s) − V π̂,σ̃(s) ≤ ε +

8εopt
1−γ as long

as the total number of samples obeys

NSA ≳
c4SA

(1− γ)2ε2
min

{
1

max{1− γ,Cgσ}
,

1

σCg min
s∈S

{
∥π∗

s∥∗ ∥1A∥ , ∥π̂s∥∗ ∥1A∥
}}+

c5SACS ∥1S∥∗
(1− γ)2ϵ

(20)

For a sufficiently small accuracy, ϵ ≤ (max{1− γ,Cgσ̃})/(Cs ∥1S∥) the sample complexity is

NSA ≳
c6SA

(1− γ)2ε2
min

{
1

max{1− γ,Cgσ}
,

1

σCg mins∈S
{
∥π∗

s∥∗ ∥1A∥ , ∥π̂s∥∗ ∥1A∥
}} (21)

where π̂s ∈ ∆A denote the policy of the empirical RMPDs at state s, π∗
s ∈ ∆A the optimal policy

given s of the true RMPDs, ∥.∥∗ the dual norm and c4, c5, c6 are universal constant. Note that this
result is also true for TV without the term depending on smoothness CS . In addition, we provide the
lower bounds for a representative divergence function — L∞ norm in the following. Note that for
classical Lp, CS = S1/q(p−1) and Cg can be lower bounded by 1. A proof is provided in Appendix F.
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Theorem 4 (Lower bound for s-rectangularity). Consider the uncertainty set U s,σ̃
L∞

(·) associated with
the L∞ norm. Consider any tuple (S,A, γ, σ, ε) and 0 < c0 ≤ 1

8 being any small enough positive
constant, where γ ∈

[
1
2 , 1
)
, and ε ∈

(
0, c0

256(1−γ)

]
. Correspondingly, we denote the accessible

maximal uncertainty level for U s,σ̃
L∞

(·) as σ∞
max := maxp1,p1∈∆(S)A ∥p1 − p2∥∞ = 1. Then we can

construct a collection of infinite-horizon RMDPs ML∞ defined by the uncertainty set with U s,σ̃
L∞

(·)
so that for any σ ∈ (0, σ∞

max(1− c0)], and any dataset with in total Nall independent samples for all
state-action pairs over the nominal transition kernel (for any RMDP inside ML∞ ), one has

inf
π̂

max
M∈ML∞

{
PM

(
max
s∈S

[
V ⋆,σ(s)− V π̂,σ(s)

]
> ε
)}

≥ 1

8
, (22)

provided that for c8 is a universal positive constant,

Nall ≤
c8SA

(1− γ)2 max{1− γ, σ̃}ε2
, (23)

with PM the probability when the RMDP is M, and the infimum is taken over all estimators π̂.

Now we can present some implications of Theorem 3 and Theorem 4.

• Robust MDPs with s-rectangularity are at least as easy as sa-rectangularity. Theorem 3
shows that the sample complexity of solving RMDPs with s-rectangularity does not exceed the
order of Õ

(
SA

(1−γ)2 max{1−γ,Cgσ}ε2

)
. This matches the sample complexity for sa-rectangularity

(cf. (18)) and indicates that although s-rectangular RMDPs are of a more complicated formulation,
solving s-rectangular RMDPs is at least as easy as solving sa-rectangular RMDPs in terms of the
sample complexity. In addition to the worst-case sample complexity upper bound, Theorem 3 also
provides a data and instance-dependent sample complexity upper bound for s-rectangular RMDPs
(cf. in (20)).Taking the divergence function ∥ · ∥ = Lp for instance, the data and instance-dependent
sample complexity upper bound isÕ

(
SA

(1−γ)2ε2
1

max{1−γ,σ}

)
if π̂s(a | s) = π∗

s (a | s) = 1
A , ∀(s, a) ∈ S ×A

Õ
(

SA
(1−γ)2ε2

1
max{1−γ,σA1/p}

)
if ∥π̂s(· | s)∥0 = ∥π∗

s (· | s)∥0 = 1, ∀s ∈ S.

where ∥.∥0 corresponds to the total number of nonzero elements in a vector.The intuition beyond
this theorem is that when the policy becomes proportional to uniform, the uncertainty budget of
the s-rectangular MDPs is equally spread into all actions, and we retrieve the sa-rectangular case.
When the policy becomes deterministic, all the uncertainty budget concentrates on one action. In
this case, most of the actions are not robust except one, and the problem is simpler than classical
MDP for this only specific action. An illustration of this result can be found in Fig. 2.

• Comparisons with prior arts. In Figure 1, we illustrate the comparisons with Clavier et al.
[2023] which use Lp norms functions belonging to the class of general norms considered in this
work. We do not compare in this section to Yang et al. [2022a] as it is not anymore state-of-the-art
with regard to the work of Clavier et al. [2023]. In particular, the latest achieves in the s-rectangular
case at sample complexity of Õ

(
SA

(1−γ)3ε2

)
in the regime where σ̃ ≲ 1− γ. In this regime, our result

is the same but more general but in the regime where σ̃ ≳ 1− γ, they achieve sample complexity
of Õ

(
SA

(1−γ)4ε2

)
which is bigger than our result Õ

(
SA

(1−γ)2 max{1−γ,σ̃}ε2

)
by a factor at least 1

1−γ .

5 Conclusion

This work refined sample complexity bounds to learn robust Markov decision processes when the
uncertainty set is characterized by an general Lp metric, assuming the presence of a generative model.
Our findings not only strengthen the current knowledge by improving both the upper and lower bounds,
but also highlight that learning s-rectangular MDPs is less challenging in terms of sample complexity
compared to classical sa-rectangular MDPs. This work is the first to provide results with a minimax
bound, as prior results concerning s-rectangular cases were not minimax optimal. Additionally, we

9



have established the minimax sample complexity for RMDPs using a general Lp norm, demonstrating
that it is never larger than that required for learning standard MDPs. Our research identifies potential
avenues for future work, such as exploring the characterization of tight sample complexity for RMDPs
under a broader family of uncertainty sets, such as those defined by f -divergence. It would be highly
desirable for a more unified theoretical foundation, as the distance between probability measures
is more natural to define using divergence. Moreover, it would be interesting to focus on the finite-
horizon Setting and linear setting, as our current analytical framework opens the door for potential ex-
tensions to address finite-horizon RMDPs. Such an extension would contribute to a more comprehen-
sive understanding of tabular cases. Finally, the case of linear MDPs would be interesting to explore.
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A Other related works

Here we provide additional discussion of related work that could not be fit into the main paper due
to space considerations. We limit our discussions to the tabular setting with finite state and action
spaces provable RL algorithms.

Classical reinforcement learning with finite-sample guarantees. A recent surge in attention
for RL has leveraged the methodologies derived from high-dimensional probability and statistics
to analyze RL algorithms in non-asymptotic scenarios. Substantial efforts have been devoted to
conducting non-asymptotic sample analyses of standard RL in many settings. Illustrative instances
encompass investigations employing Probably Approximately Correct (PAC) bonds in the context
of generative model settings [Kearns and Singh, 1999, Beck and Srikant, 2012, Li et al., 2022a, Chen
et al., 2020, Azar et al., 2013b, Sidford et al., 2018, Agarwal et al., 2020, Li et al., 2023a,b, Wainwright,
2019] and the online setting via both in PAC-base or regret-based analyses [Jin et al., 2018, Bai
et al., 2019, Li et al., 2021, Zhang et al., 2020b, Dong et al., 2019, Jin et al., 2020, Li et al., 2023c,
Jafarnia-Jahromi et al., 2020, Yang et al., 2021] and finally offline setting [Rashidinejad et al., 2021,
Xie et al., 2021, Yin et al., 2021, Shi et al., 2022, Li et al., 2022b, Jin et al., 2021, Yan et al., 2022].

Robustness in reinforcement learning. Reinforcement learning has had notable achievements
but has also exhibited significant limitations, particularly when the learned policy is susceptible
to deviations in the deployed environment due to perturbations, model discrepancies, or structural
modifications. To address these challenges, the idea of robustness in RL algorithms has been studied.
Robustness could concern uncertainty or perturbations across different Markov Decision Processes
(MDPs) components, encompassing reward, state, action, and the transition kernel. Moos et al. [2022]
gives a recent overview of the different work in this field.

The distributionally robust MDP (RMDP) framework has been proposed [Iyengar, 2005] to enhance
the robustness of RL has been proposed. In addition to this work, various other research efforts,
including, but not limited to, Zhang et al. [2020a, 2021], Han et al. [2022], Clavier et al. [2022],
Qiaoben et al. [2021], explore robustness regarding state uncertainty. In these scenarios, the agent’s
policy is determined on the basis of perturbed observations generated from the state, introducing
restricted noise, or undergoing adversarial attacks. Finally, robustness considerations extend to
uncertainty in the action domain. Works such as Tessler et al. [2019], Tan et al. [2020] consider
the robustness of actions, acknowledging potential distortions introduced by an adversarial agent.

Given the focus of our work, we provide a more detailed background on progress related to distribu-
tionally robust RL. The idea of distributionally robust optimization has been explored within the con-
text of supervised learning [Rahimian and Mehrotra, 2019, Gao, 2020, Duchi and Namkoong, 2018,
Blanchet and Murthy, 2019] and has also been extended to distributionally robust dynamic program-
ming and Distributionally Robust Markov Decision Processes (DRMDPs) such as in [Iyengar, 2005,
Xu and Mannor, 2012, Wolff et al., 2012, Kaufman and Schaefer, 2013, Ho et al., 2018, Smirnova et al.,
2019, Ho et al., 2021, Goyal and Grand-Clement, 2022, Derman and Mannor, 2020, Tamar et al., 2014,
Badrinath and Kalathil, 2021]. Despite the considerable attention received, both empirically and theo-
retically, most previous theoretical analyses in the context of RMDPs adopt an asymptotic perspective
[Roy et al., 2017] or focus on planning with exact knowledge of the uncertainty set [Iyengar, 2005, Xu
and Mannor, 2012, Tamar et al., 2014]. Many works have focused on the finite-sample performance
of verifiable robust Reinforcement Learning (RL) algorithms. These investigations encompass various
data generation mechanisms and uncertainty set formulations over the transition kernel. Closely
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related to our work, various forms of uncertainty sets have been explored, showcasing the versatility
of approaches. Divergence such as Kullback-Leibler (KL) divergence is another prevalent choice,
extensively studied by Yang et al. [2022a], Panaganti and Kalathil [2022], Zhou et al. [2021], Shi and
Chi [2022], Xu et al. [2023], Wang et al. [2023], Blanchet et al. [2023], who investigated the sample
complexity of both model-based and model-free algorithms in simulator or offline settings. Xu et al.
[2023] considered various uncertainty sets, including those associated with the Wasserstein distance.
The introduction of an R-contamination uncertainty set Wang and Zou [2021], has been proposed to
tackle a robust Q-learning algorithm for the online setting, with guarantees analogous to standard RL.
Finally, the finite-horizon scenario has been studied by Xu et al. [2023], Dong et al. [2022] with finite-
sample complexity bounds for (RMDPs) using TV and χ2 divergence. More broadly, other related
topics have been explored, such as the iteration complexity of policy-based methods [Li et al., 2022c,
Kumar et al., 2023], and regularization-based robust RL [Yang et al., 2023]. Finally, Badrinath and
Kalathil [2021] examined a general sa-rectangular form of the uncertainty set, proposing a model-free
algorithm for the online setting with linear function approximation to address large state spaces.

B Further discussions of Theorem 1 and Theorem 3

• What norms are included in the Definition 1? In our upper bound result Theorems
3 and 1, we upper bound the sample complexity for C2 norms and TV. The set of C2

smooth norm is very large as it includes all, Lp norm, weighted, rescaled Lp norms for
p ≥ 2. Weighted norms can be useful in practice, to get more weights on dangerous
specific states in Robust MDPs formulation such as in Russel et al. [2019]. Moreover, note
that our result can generalize to metric or pseudo metric (which are not homogeneous ie
∥λ∥ = |λ| ∥x∥ ∀x ∈ Rn, λ ∈ R) with norms of the form x 7→ ϕ−1(

∑n
k=1, ϕ(|xk|)) with

ϕ a convex incising function such as the norm is still positive, definite positive. Choosing
ϕ(x) = xp leads to the Lp norms.

• Assumptions on γ in Theorems 1 and 3, and Assumptions on γ for lower bound. When
γ is small (e.g., γ ∈ (0, 1

2 ] leads to the effective horizon length is at most 2), the sequential
structure almost disappears and is much less of interest for RL community. So people Li
et al. [2023b] Yan et al. [2023] usually focus on reasonable range γ ∈ (c, 1) for some small
positive constant c, such as γ ∈ [ 12 , 1). However, the theorems can be directly extended
to a broader range of γ ∈ (c, 1) along with c as small as desired so that almost cover the
full range (0, 1).

• Why final results on s depend on π̂?

Theorem 3 is π̂ data dependent which is randomness-dependent measure. However, taking
the minimum of this quantity leads to the same bound as is sa-rectangular, so to illustrate
that it is possible to get tighter bounds for s-rectangular with instance-dependent RMDPs,
we decide to write also randomness-dependent quantity, while the less tight upper bound
is written also in the theorem, taking the first term in the min operator in (21).

• Why our results are still true for TV ? Theorems 1 and 3 are stated for C2 smooth norms,
however, our result is still true for TV which is not C2 as in this specific case, the dual
of the optimization problem becomes a 1−dimensional problem. In this case in the main
concentration lemma 8, the additional term involving smoothness term denoted CS is not
present and the bound is simpler as is not required this additional term.

• Why burn-in or sufficiently small ϵ condition is not too restrictive? The burn-in term in
Th. 1 and 3 is proportional to 1/ϵ where the "sample complexity" term is proportional to
1/ϵ2. The smooth term depending on CS or burn-in is then not too large for sufficiently
small ϵ compared to the other term, which will give final sample complexity.

• Why this is not extendable to f -divergence currently? The f-divergence as a distinct family of
divergence is beyond the scope of this paper. Current proof for arbitrary norms cannot be di-
rectly extended since the key phenomenon of shrinking range of the robust value function has
not been verified for f -divergence yet, while it is promising as an interesting future direction.
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C Preliminaries

These quantities appear in the dual formulation of the robust optimization problem and more pre-
ciously the dual span semi norm sp(.)∗ note that for L2, we retrieve the classical mean with the
definition of ω) With slight abuse of notation, we denote 0 (resp. 1) as the all-zero (resp. all-one)
vector. We then introduce the notation [T ] := {1, · · · , T} for any positive integer T > 0. Then, for
all 1 ≤ i ≤ n, for two vectors x = [xi]1≤i≤n and y = [yi]1≤i≤n, the notation x ≤ y (resp. x ≥ y)
means xi ≤ yi (resp. xi ≥ yi) . Finally, for any vector x, the notation is overloaded by letting
x◦2 =

[
x(s, a)2

]
(s,a)∈S×A (resp. x◦2 =

[
x(s)2

]
s∈S), Finally, we drop the subscript ∥.∥ to write

Uσ
∥.∥(·) = Uσ(·) for both sa- and s- rectangular assumptions such that we write uncertainty set in the

for sa-rectangular case U sa,σ(.) or U s,σ̃(.) in the s-rectangular assumptions.

Matrix and Vector Notations. We define the following notation.

• r ∈ RSA the reward function, such that r(s,a) = r(s, a) for all (s, a) ∈ S ×A.

• P 0 ∈ RSA×S the nominal transition kernel matrix using P 0
s,a as the (s, a)-th row.

• P̂ 0 ∈ RSA×S the estimated nomimal transition kernel matrix with P̂ 0
s,a as the (s, a)-th row.

• Ππ ∈ {0, 1}S×SA the projection matrix associated with a policy π

Ππ =


1⊤π(1) 0⊤ · · · 0⊤

0⊤ 1⊤π(2) · · · 0⊤

...
...

. . .
...

0⊤ 0⊤ · · · 1⊤π(S)

, (24)

where 1⊤π(1), 1
⊤
π(2), . . . , 1

⊤
π(S) ∈ RA are simplex vector such as

1⊤π(1) = (π(a1|s1), π(a2|s1), ..., π(aA|s1)).

• The two matrices PV ∈ RSA×S , P̂V ∈ RSA×S represent the probability transition kernel
in the uncertainty set that leads to the worst-case value for any vector V ∈ RS . Moreover,
the quantities PV

s,a (resp. P̂V
s,a) stands for the (s, a)-th row of the transition matrix PV

(resp. P̂V ). In sa-rectangular case , the (s, a)-th rows of these transition matrices are
defined as

PV
s,a = argminP∈U sa,σ(P 0

s,a)
PV, and P̂V

s,a = argminP∈U sa,σ(P̂ 0
s,a)

PV. (25a)

Moreover, the shorthand notation defined below is used
Pπ,V
s,a := PV π,σ

s,a = argminP∈U sa,σ(P 0
s,a)

PV π,σ, (25b)

Pπ,V̂
s,a := P V̂ π,σ

s,a = argminP∈U sa,σ(P 0
s,a)

PV̂ π,σ, (25c)

P̂π,V
s,a := P̂V π,σ

s,a = argminP∈U sa,σ(P̂ 0
s,a)

PV π,σ, (25d)

P̂π,V̂
s,a := P̂ V̂ π,σ

s,a = argminP∈U sa,σ(P̂ 0
s,a)

PV̂ π,σ. (25e)

In the following, we define the corresponding probability transition matrices which are
denoted by Pπ,V ∈ RSA×S , Pπ,V̂ ∈ RSA×S , P̂π,V ∈ RSA×S and P̂π,V̂ ∈ RSA×S .

• Using the projection over π, the matrices Pπ ∈ RS×S , P̂π ∈ RS×S , Pπ,V ∈ RS×S ,

Pπ,V̂ ∈ RS×S , P̂
π,V

∈ RS×S and P̂
π,V̂

∈ RS×S represent probability transition matrices
w.r.t. policy π.

Pπ := ΠπP 0, P̂π := ΠπP̂ 0, Pπ,V := ΠπPπ,V , Pπ,V̂ := ΠπPπ,V̂ ,

P̂
π,V

:= ΠπP̂π,V , and P̂
π,V̂

:= ΠπP̂π,V̂ . (26)

For s-rectangular, we will use the same notation for these transition matrices. Finally, we
denote Pπ

s as the s-th row of the transition matrix Pπ .
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• rπ ∈ RS is the reward function restricted to the actions chosen by π, rπ = Ππr.
• VarP (V ) ∈ RSA is the variance for a given transition kernel P ∈ RSA×S and vector
V ∈ RS , we denote the (s, a)-th row of VarP (V ) as

VarP (s, a) := VarPs,a
(V ). (27)

C.1 Additional definitions and basic facts

For any norm smooth ∥.∥ introduced in 1, we define the span semi norm as
Definition 2 (Span semi norm). Given any norm ∥ · ∥, we define the span semi norm as: sp(x) =
minω∈R ∥v − ω1∥ and the generalized mean as ω(x) := argminω∈R ∥x− ω1∥.

Let vector P ∈ R1×S and vector V ∈ RS , we define the variance
VarP (V ) := P (V ◦ V )− (PV ) ◦ (PV ). (28)

The following lemma bounds the Lipschitz constant of the variance function.
Lemma 1. (Shi et al. [2023] , Lemma 2 ) Assuming 0 ≤ V1, V2 ≤ 1

1−γ which obey ∥V1−V2∥∞ ≤ x,
then for P ∈ ∆(S), one has

|VarP (V1)−VarP (V2)| ≤
2x

(1− γ)
. (29)

Lemma 2. [Panaganti and Kalathil, 2022, Lemma 6] Consider any δ ∈ (0, 1). For any fixed policy
π and fixed value vector V ∈ RS , one has with probability at least 1− δ,∣∣∣√VarP̂π (V )−

√
VarPπ (V )

∣∣∣ ≤
√

2∥V ∥2∞ log( 2SA
δ )

N
1.

C.2 Empirical robust MDP M̂rob Bellman equations

We define the robust MDP M̂rob = {S,A, γ,Uσ(P̂ 0), r} based on the estimated nominal distribution
P̂ 0 in (11). Then, we denote the associated robust value function (resp. robust Q-function) are V̂ π,σ

(resp. Q̂π,σ) qnd we can notice that that Q̂⋆,σ is the unique-fixed point of T̂ σ(·) (see Lemma C.3),
the empirical robust Bellman operator constructed using P̂ 0. Finally, similarly to (9), for M̂rob, the
Bellman’s optimality principle gives the following robust Bellman consistency equation (resp. robust
Bellman optimality equation) for sa-rectangular assumptions:

Q̂π,σ(s, a) = r(s, a) + γ inf
P∈U sa,σ(P̂ 0

s,a)
PV̂ π,σ, (30a)

Q̂⋆,σ(s, a) = r(s, a) + γ inf
P∈U sa,σ(P̂ 0

s,a)
PV̂ ⋆,σ. (30b)

Using matrix notation, we can write the robust Bellman consistency equations as

Qπ,σ = r + γ inf
P∈U sa,σ(P 0)

PV π,σ and Q̂π,σ = r + γ inf
P∈U sa,σ(P̂ 0)

PV̂ π,σ, (31)

which imply

V π,σ = rπ + γΠπ inf
P∈U sa,σ(P 0)

PV π,σ (i)
= rπ + γPπ,V V π,σ,

V̂ π,σ = rπ + γΠπ inf
P∈U sa,σ(P̂ 0)

PV̂ π,σ (ii)
= rπ + γP̂

π,V̂
V̂ π,σ, (32)

where (i) and (ii) hold by the definitions in (24), (25) and (26). For s-rectangular, we can define the
same notation, removing a subscript:

V π,σ = rπ + γΠπ inf
P∈U s,σ̃(P 0)

PV π,σ (i)
= rπ + γPπ,V V π,σ,

V̂ π,σ = rπ + γΠπ inf
P∈U s,σ̃(P̂ 0)

PV̂ π,σ (ii)
= rπ + γP̂

π,V̂
V̂ π,σ, . (33)
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C.3 Properties of the robust Bellman operator and dual representation

The robust Bellman operator (cf. (10)) shares the γ-contraction property of the standard Bellman
operator as:

[Iyengar, 2005, Theorem 3.2] Given γ ∈ [0, 1), the robust Bellman operator T σ(·) (cf. (10)) is a
γ-contraction w.r.t. ∥ · ∥∞. More formally, for any Q1, Q2 ∈ RSA s.t. Q1(s, a), Q2(s, a) ∈

[
0, 1

1−γ

]
for all (s, a) ∈ S ×A, one has

∥T σ(Q1)− T σ(Q2)∥∞ ≤ γ ∥Q1 −Q2∥∞ . (34)

It can be also shown that, Q⋆,σ is the unique fixed point of T σ(·) obeying 0 ≤ Q⋆,σ(s, a) ≤ 1
1−γ for

all (s, a) ∈ S ×A.

One of the main contributions is to derive the dual form of optimization problem using arbitrary
norms. These lemma take ideas from Iyengar [2005] and are adapted to arbitrary norms and not only
TV distance.

Dual equivalence of the robust Bellman operator. Fortunately, the robust Bellman operator can
be evaluated efficiently by resorting to its dual formulation, and this idea is central in all proofs for
RMPDs. Dual formulation of RMDPs have been introduced in [Iyengar, 2005] but the proof was
done uniquely for the TV and the χ2 case. Before continuing, for any V ∈ RS , we denote [V ]α as
its clipped version by some non-negative vector α, namely,

[V ]α(s) :=

{
α, if V (s) > α(s),

V (s), otherwise.
(35)

Defining the gradient of P 7→ ∥P∥ as ∇∥P∥, λ > 0, a positive scalar and ω is the generalized mean
defined as the argmin in the definition of the span semi norm in Def.2, we derive two optimization
lemmas.
Lemma 3 (Strong duality using norm ∥·∥ in the sa-rectangular case.). Consider any probability
vector P ∈ ∆(S) and any fixed uncertainty level σ, we abbreviate the notation of the uncertainty set
U sa,σ
∥.∥ (P ) (cf. (3)) as U sa,σ(P ). For any vector V ∈ RS obeying V ≥ 0, recalling the definition of

[V ]α in (35), one has

inf
P∈U sa,σ(P )

PV = max
µλ,ω
P ∈Mλ,ω

P

{
P (V − µλ,ω

P )− σ
(
sp((V − µλ,ω

P ))∗

)}
. (36)

= max
αλ,ω

P ∈Aλ,ω
P

{
P [V ]αλ,ω

P
− σ

(
sp([V ]αλ,ω

P
)∗

)}
(37)

where sp()∗ is defined in Def..2. Here, the two auxiliary variational family Aλ,ω
P ,Mλ,ω

P are defined
as below:

Aλ,ω
P = {αλ,ω

P : αλ,ω
P (s) = ω + λ|∇ ∥P∥ (s) : λ > 0, w > 0, P ∈ ∆(S), αλ,ω

P ∈
[
0,

1

1− γ

]S
}

(38)

Mλ,ω
P = {µλ,ω

P = V − αλ,ω
P , λ, ω ∈ R+, P ∈ ∆(S), µ ∈ RS

+, µ
λ,ω
P =

[
0,

1

1− γ

]S
}. (39)

(40)

For L1 or TV , case , the vector αλ,ω
P reduces to a 1 dimensional scalar such as α ∈ [0, 1/(1− γ)].

Proof.

inf
P∈U sa,σ(P )

PV = inf
{P:P∈∆s,∥P−P∥≤σ}

∑
s′

P(s′)V (s′)

= PV + inf
{y:∥y∥≤σ,1y=0,y≥−P}

∑
s′

y(s′)V (s′)
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where we use the change of variable y(s′) = P(s′) − P(s′) for all s′ ∈ S. Then the Lagrangian
function of the above optimization problem can be written as follows:

inf
P∈Uσ

s,a(P )
PV =PV + sup

µ≥0,ν∈R
inf

{y:∥y∥≤σ}
−
∑
s′

µ(s)P(s′) +
∑
s′

(y(s′)(V (s′)− µ(s′)− ν) (41)

(a)
= PV + sup

µ≥0,ν∈R
−
∑
s′

µ(s′)P(s′)− σ ∥(V (s′)− µ(s′)− ν1)∥∗ (42)

(b)
= sup

µ≥0
P(V − µ)− σsp(V − µ)∗ (43)

where µ ∈ RS
+, ν ∈ R are Lagrangian variables, (a) is true using the equality case of Cauchy-Swartz

inequality for dual norm Yang [1991], and (b) is due to is the definition of the span semi-norm (see
(C)). The value that maximizes the inner maximization problem in (42) in ω(V, µ) is the generalized-
mean by definition denoted with abbreviate notation ω. If the norm is differentiable, then we have
that the equality (a) comes from the generalized Holder’s inequality for arbitrary norms Yang [1991],
namely, defining z = (V − µ− ω), it satisfies

z = ∥z∥∗ ∇∥y∥ (44)

The quantity ν is replaced by the generalized mean for equality in (b) while (44) comes from Yang
[1991]. Using complementary slackness Karush [2013]stackness let B = {s ∈ S : µ(s) > 0}

∀s ∈ B : y∗(s) = −P (s), (45)

which leads to the following equality by plugging the previous (45) in (44) and defining z∗ =
V − µ∗ − ω:

∀s ∈ B, z∗(s) = ∥z∗∥∗ ∇∥P∥ (s) (46)

or

∀s ∈ B, V (s)− µ∗(s) = ω + λ∇∥P∥ (s)=̂αλ,ω
P (47)

by letting λ = ∥z∗∥∗ ∈ R+ . Note that here the hypothesis of 1 are use and especially separability is
needed to ensure that for s ∈ B, ∇∥y∥ = ∇∥P∥ only depend on P (s) and not on other coordinates,
which is true form generalized Lp norms. We can remark that v − µ∗ is P dependent, but if P is
known, the best µ∗ is only determined by one 2 dimensional parameters λ = ∥v − µ∗ − ν∥∗ and
ω ∈ R+. Moreover, when P is fixed, the scalar ω is a constant is fully determined by P , v and µ∗.
This is why the quantity defined αλ

P varies through 2 parameter λ and ω. Given this observation, we
can rewrite the optimization problem as :

sup
µ≥0

P(V − µ)− σsp(V − µ)∗ = sup
µλ,ω
P ∈Mλ,ω

P

P(V − µλ,ω
P )− σsp((V − µλ,ω

P ))∗ (48)

= sup
αλ,ω

P ∈Aλ,ω
P

P[V ]αλ,ω
P

− σsp([V ]αλ,ω
P

)∗ (49)

where we defined the maximization problem on µ not in RS but at the optimal in the variational
family denote Mλ,ω

P = {v − αλ,ω
P , (λ, ω) ∈ R2

+, P ∈ ∆(S)}. We can rewrite the optimization
problem in terms of αP with [V ]αλ,ω

P
defined in 35. Contrary to the TV case, α is not a scalar but

αλ,ω
P belongs to a variational family only determined by two parameter. Note that this lemma is

still true writing subgradient and not gradient of P . As we assume C2-regularity on norms, the
subgradient space of the norm reduce to the singleton of the gradient in our case. C2 smoothness
will be needed in concentration part while it is possible to be more general in optimization lemmas.
Note that for TV or L1, this lemma holds, but the vector αλ,ω

P reduces to a positive scalar denoted α
which is equal to ∥v − µ∗∥∞ according to Iyengar [2005].

Lemma 4 (Strong duality for the distance induced by the norm ∥∥ in the s-rectangular case.).
Consider any probability vector Pπ := ΠπP ∈ ∆s for P ∈ ∆(S)A , any fixed uncertainty level σ̃
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and the uncertainty set U s,σ̃
∥.∥(P ), we abbreviate the subscript to use U s,σ̃(P ) := U s,σ̃

∥.∥(P ). Then for
any vector V ∈ RS obeying V ≥ 0, recalling the definition of [V ]α in (35), one has

inf
P∈U s,σ̃(P )

PπV =
∑
a

π(a|s)(
(

max
αλ,ω

Psa
∈Aλ,ω

Psa

Psa[V ]αλ,ω
Psa

− σ̃ ∥πs∥∗ sp([V ]αλ,ω
Psa

)∗

)
. (50)

with the definition of sp()∗ in C and where the variational family Aλ,ω
P is defined as :

Aλ,ω
P = {α ∈

[
0, 1/(1− γ)

]S
, α = ω + λ|∇ ∥P∥ | := αλ,ω

P } (51)

(52)

with ω is the generalized mean defined as the argmin in the definition of the span semi norm in 2 and
λ, ω a positive scalar. Moreover, for L1 or TV , case, the vector αλ,ω

P reduces to a 1 dimensional
scalar such as α ∈ [0, 1/(1− γ)].

In the proof of the previous lemma, we decompose this problem s-rectangular radius σ̃ into sa-
rectangular sub-problem with respectively radius σsa.

Proof.

inf
Pπ∈U s,σ̃(Pπ)

PπV = inf
{σsa:∥σsa∥≤σ̃}

inf
P′∈U sa,σ(Psa)

∑
a

π(a|s)P ′V

(a)
=
∑
a

π(a|s)PsaV + min
{σsa:∥σsa∥≤σ̃}

∑
a

π(a|s) min
{y:∥y∥≤σsa,1y=0,y≥−Psa}

∑
s′

y(s′)V

where we use the change of variable y(s′) = Psa(s
′)−Psa(s

′) in (a). Then we case use the previous
lemma for sa rectangular assumption, Lemma 3. Then,

min
{σsa:∥σsa∥≤σ̃}

∑
a

π(a|s) min
{y,∥y∥≤σs,a,1y=0,y≥−Psa}

∑
s′

y(s′)V

= min
{σsa:∥σsa∥≤σ̃}

∑
a

π(a|s)max
µ≥0

(
− Psaµ− σsasp(V − µ)∗

)
=

(∑
a

π(a|s)max
µ≥0

{
(−Psaµ)− max

{σsa:∥σsa∥≤σ̃}

∑
a

π(a|s)σsp(V − µ)∗

})
=
∑
a

π(a|s)max
µ≥0

{
(−Psaµ)− σ̃ ∥πs∥∗ sp(V − µ)∗

}
.

We can exchange the min and the max as we get concave-convex problems in σ and µ in the second
line according to minimax theorem [v. Neumann, 1928] and using Cauchy Swartz inequality which is
attained in the last equality. Finally, we obtain:

inf
P∈U s,σ̃(P)

PπV =
∑
a

π(a|s)
(
max
µ≥0

Psa(V − µ)− σ̃ ∥πs∥∗ sp(V − µ)∗

)
(a)
=
∑
a

π(a|s)
(

max
αλ,ω

Psa
∈Aλ,ω

Psa

Psa[V ]αλ,ω
Psa

− σ̃ ∥πs∥∗ sp([V ]αλ,ω
Psa

)∗

)
where in (a) we use the previous lemma for sa− rectangular case. Note that as we are using sa-
rectangular case, for TV or L1, this lemma holds, but the vector αλ

P reduces to a positive scalar
denoted α which is equal to ∥v − µ∗∥∞. (See also Iyengar [2005]).
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D Proof of the upper bound : Theorem 1 and 3

D.1 Technical lemmas

We begin with a key lemma concerning the dynamic range of the robust value function V π,σ (cf. (7)),
which produces tighter control when σ is large; the proof is deferred to Appendix D.3.1. This lemma
allows tighter control compared to Clavier et al. [2023].
Lemma 5. In sa−rectangular case (see (3), for any nominal transition kernel P ∈ RSA×S , any
fixed uncertainty level σ, and any policy π, its corresponding robust value function V π,σ (cf. (7))
satisfies

sp(V π,σ)∞ ≤ 1

γmax{1− γ,Cgσ}
(53)

where Cg = 1/(mins ∥es∥) is a geometric constant depending on the geometry of the norm. For
example, for Lp, norms p ≥ 1, Cg ≥ 1 which reduce the sample complexity. In s-rectangular case,
we obtain a slightly different lemma because of the dependency on π.
Lemma 6. The infinite span semi norm can be controlled as follows for every s in s-rectanuglar case
(See (5)):

sp(V π,σ)∞ ≤ 1

γmax{1− γ, ∥πs∥∗ Cgσ̃}
≤ 1

γmax{1− γ,mins ∥πs∥∗ Cgσ̃}
(54)

where Cg = 1
mins∥es∥ is a geometric constant depending on the geometry of the norm. These lemmas

are required to get tight bounds for the sample complexity. The main difference between sa- and s-
rectangular case is that we have an extra dependency on ∥πs∥∗, which represents how stochastic the
policy can be in s rectangular MDPs.
Lemma 7. Consider an MDP with transition kernel matrix P and reward function 0 ≤ r ≤ 1. For any
policy π and its associated state transition matrix Pπ := ΠπP and value function 0 ≤ V π,P ≤ 1

1−γ

(cf. (1)), one has for sa- and s- rectangular assumptions.

(I − γPπ)
−1
√
VarPπ (V

π,P ) ≤

√
8

γ2(1− γ)2
sp(V π,P )∞1.

See D.3.7 for the proof

D.2 Proof of Theorem 1 and Theorem 3

The first decomposition of the proof of Theorem 1 and Theorem 3 Agarwal et al. [2020] while
the argument needs essential adjustments in order to adapt to the robustness setting. One has by
assumptions using any planner in empirical RMDPs :∥∥V̂ ⋆,σ − V̂ π̂,σ

∥∥
∞ ≤ εopt, (55)

using previous inequality, performance gap
∥∥V ⋆,σ − V π̂,σ

∥∥
∞, can be upper bounded using 3 steps.

First step: subdivide the performance gap in 3 terms. We recall the definition of the optimal
robust policy π⋆ with regard to Mrob and the optimal robust policy π̂⋆, the optimal robust value
function V̂ ⋆,σ (resp. robust value function Q̂π,σ) w.r.t. M̂rob. Then, the performance gap V ⋆,σ−V π̂,σ

can be decomposed in one optimization term and two statistical error terms

V ⋆,σ − V π̂,σ =
(
V π⋆,σ − V̂ π⋆,σ

)
+
(
V̂ π⋆,σ − V̂ π̂⋆,σ

)
+
(
V̂ π̂⋆,σ − V̂ π̂,σ

)
+
(
V̂ π̂,σ − V π̂,σ

)
(i)

≤
(
V π⋆,σ − V̂ π⋆,σ

)
+
(
V̂ π̂⋆,σ − V̂ π̂,σ

)
+
(
V̂ π̂,σ − V π̂,σ

)
(ii)

≤
(
V π⋆,σ − V̂ π⋆,σ

)
+ εopt +

(
V̂ π̂,σ − V π̂,σ

)
(56)
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where (i) holds by V̂ π⋆,σ − V̂ π̂⋆,σ ≤ 0 since π̂⋆ is the robust optimal policy for M̂rob, and (ii) comes
from (55) and definition of optimization error. The proof aims to control the last remaining terms in
(56) using concentration theory and sufficiently big number of step N . To do so, we will consider a
more general term V̂ π,σ − V π,σ for any policy π even if control of these two terms slightly differ at
the end. Using (32), it holds that for both sa- and s-rectangular assumptions:

V̂ π,σ − V π,σ = rπ + γP̂
π,V̂

V̂ π,σ −
(
rπ + γPπ,V V π,σ

)
=
(
γP̂

π,V̂
V̂ π,σ − γPπ,V̂ V̂ π,σ

)
+
(
γPπ,V̂ V̂ π,σ − γPπ,V V π,σ

)
(i)

≤ γ
(
Pπ,V V̂ π,σ − Pπ,V V π,σ

)
+
(
γP̂

π,V̂
V̂ π,σ − γPπ,V̂ V̂ π,σ

)
,

where (i) holds because Pπ,V̂ V̂ π,σ ≤ Pπ,V V̂ π,σ because of the optimality of Pπ,V̂ (see. (25)).
Factorizing terms leads to the following equation

V̂ π,σ − V π,σ ≤ γ
(
I − γPπ,V

)−1
(
P̂

π,V̂
V̂ π,σ − Pπ,V̂ V̂ π,σ

)
. (57)

In the same manner, we can also obtain a lower bound of this quantity:

V̂ π,σ − V π,σ = rπ + γP̂
π,V̂

V̂ π,σ −
(
rπ + γPπ,V V π,σ

)
=
(
γP̂

π,V̂
V̂ π,σ − γPπ,V̂ V̂ π,σ

)
+
(
γPπ,V̂ V̂ π,σ − γPπ,V V π,σ

)
≥ γ

(
Pπ,V̂ V̂ π,σ − Pπ,V̂ V π,σ

)
+
(
γP̂

π,V̂
V̂ π,σ − γPπ,V̂ V̂ π,σ

)
≥ γ

(
I − γPπ,V̂

)−1 (
P̂

π,V̂
V̂ π,σ − Pπ,V̂ V̂ π,σ

)
. (58)

Using both (57) and (58), we obtain infinite norm control:∥∥V̂ π,σ − V π,σ
∥∥
∞ ≤ γmax

{∥∥∥ (I − γPπ,V
)−1

(
P̂

π,V̂
V̂ π,σ − Pπ,V̂ V̂ π,σ

)∥∥∥
∞
,∥∥∥(I − γPπ,V̂

)−1 (
P̂

π,V̂
V̂ π,σ − Pπ,V̂ V̂ π,σ

)∥∥∥
∞

}
. (59)

By decomposing the error in a symmetric way, he have∥∥V̂ π,σ − V π,σ
∥∥
∞ ≤ γmax

{∥∥∥(I − γP̂
π,V
)−1 (

P̂
π,V

V π,σ − Pπ,V V π,σ
)∥∥∥

∞
,∥∥∥(I − γP̂

π,V̂
)−1(

P̂
π,V

V π,σ − Pπ,V V π,σ
)∥∥∥

∞

}
. (60)

Armed with these inequalities, we can use concentration inequalities to upper bound the two remaining
terms

∥∥V̂ π⋆,σ − V π⋆,σ
∥∥
∞ and

∥∥V̂ π̂,σ − V π̂,σ
∥∥
∞ in (56). Taking π = π̂, applying (59) leads to∥∥V̂ π̂,σ − V π̂,σ

∥∥
∞ ≤ γmax

{∥∥∥(I − γP π̂,V̂
)−1 (

P̂
π̂,V̂

V̂ π̂,σ − P π̂,V̂ V̂ π̂,σ
)∥∥∥

∞
,∥∥∥(I − γP π̂,V

)−1 (
P̂

π̂,V̂
V̂ π̂,σ − P π̂,V̂ V̂ π̂,σ

)∥∥∥
∞

}
. (61)

Finally, π = π⋆, applying (60) gives us∥∥V̂ π⋆,σ − V π⋆,σ
∥∥
∞ ≤ γmax

{∥∥∥(I − γP̂
π⋆,V

)−1(
P̂

π⋆,V
V π⋆,σ − Pπ⋆,V V π⋆,σ

)∥∥∥
∞
,∥∥∥(I − γP̂

π⋆,V̂
)−1(

P̂
π⋆,V

V π⋆,σ − Pπ⋆,V V π⋆,σ
)∥∥∥

∞

}
. (62)

Note that to control
∥∥V̂ π⋆,σ − V π⋆,σ

∥∥
∞, we use decomposition not depending on π̂ for value

function as V π⋆,σ is deterministic and fixed, allowing use of classical concentration analysis tools.
This decomposition is the same for both sa-rectangular and s-rectangular case.
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Second step: bound first term and second term in (62) to control ∥V̂ π⋆,σ−V π⋆,σ∥∞ To control
the two terms in (62), we use lemma 8 based Bernstein’s concentration argument and whose proof is
in Appendix D.3.3.

Lemma 8. For both sa− and s-rectangular setting, consider any δ ∈ (0, 1), with probability 1− δ,
it holds: ∣∣∣P̂π⋆,V

V π⋆,σ − Pπ⋆,V V π⋆,σ
∣∣∣ ≤ 2

√
L

N

√
VarPπ⋆ (V ⋆,σ) +

3LCS ∥1∥∗
N(1− γ)

1 (63)

with L = 2 log(18 ∥1∥∗ SAN/δ) and where VarPπ⋆ (V ⋆,σ) is defined in (27). Moreover, for the
specific case of TV , this lemma is true without the smoothness term 3LCS∥1∥∗

N(1−γ) .

Armed with the above lemma, now we control the first term on the right-hand side of (62) as follows:(
I − γP̂

π⋆,V
)−1(

P̂
π⋆,V

V π⋆,σ − Pπ⋆,V V π⋆,σ
)

(a)

≤
(
I − γP̂

π⋆,V
)−1∥∥∥P̂π⋆,V

V π⋆,σ − Pπ⋆,V V π⋆,σ
∥∥∥
∞

(b)

≤
(
I − γP̂

π⋆,V
)−1

(
2

√
L

N

√
VarPπ⋆ (V ⋆,σ) +

3LCS ∥1∥∗
N(1− γ)

)
≤
(
I − γP̂

π⋆,V
)−1 3LCS ∥1∥∗

N(1− γ)
1 + 2

√
L

N

(
I − γP̂

π⋆,V
)−1√

Var
P̂

π⋆,V (V ⋆,σ)︸ ︷︷ ︸
=:R1

+ 2

√
L

N

(
I − γP̂

π⋆,V
)−1

√∣∣∣VarP̂π⋆ (V ⋆,σ)−Var
P̂

π⋆,V (V ⋆,σ)
∣∣∣︸ ︷︷ ︸

=:R2

+ 2

√
L

N

(
I − γP̂

π⋆,V
)−1(√

VarPπ⋆ (V ⋆,σ)−
√
VarP̂π⋆ (V ⋆,σ)

)
︸ ︷︷ ︸

=:R3

, (64)

where (a) holds as the matrix
(
I − γP̂

π⋆,V
)−1

is positive definite, (b) holds due to Lemma 8, and
the last point holds from the following decomposition for variance and triangular inequality

√
VarPπ⋆ (V ⋆,σ) =

(√
VarPπ⋆ (V ⋆,σ)−

√
VarP̂π⋆ (V ⋆,σ)

)
+
√
VarP̂π⋆ (V ⋆,σ)

≤
(√

VarPπ⋆ (V ⋆,σ)−
√

VarP̂π⋆ (V ⋆,σ)
)

+

√∣∣∣VarP̂π⋆ (V ⋆,σ)−Var
P̂

π⋆,V (V ⋆,σ)
∣∣∣+√Var

P̂
π⋆,V (V ⋆,σ).

Finally, the fact that P̂
π⋆,V

is a stochastic matrix, so

(
I − γP̂

π⋆,V
)−1

1 =
(
I +

∞∑
t=1

γt
(
P̂

π⋆,V
)t)

1 ≤ 1

1− γ
1. (65)

Armed with these inequalities, the three terms R1,R2,R3 in (64) can be controlled separately.

• Consider R1. We first introduce the following lemma, whose proof is postponed to Ap-
pendix D.3.4.
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Lemma 9. Consider any δ ∈ (0, 1). With probability at least 1− δ, one has

(
I − γP̂

π⋆,V
)−1√

Var
P̂

π⋆,V (V ⋆,σ) ≤ 4

√√√√(1 + (√ L
(1−γ)2N +

CS∥1∥∗L

N(1−γ)

))
γ3(1− γ)2 max{1− γ,Cgσ}

1

≤ 4

√√√√(1 + (√ L
(1−γ)2N +

CS∥1∥∗L

N(1−γ)

))
γ3(1− γ)3

1

with L = 2 log(
18∥1∥∗SAN

δ ) in the sa-rectangular case. In the s-rectangular case, it holds:

(
I − γP̂

π⋆,V
)−1√

Var
P̂

π⋆,V (V ⋆,σ) ≤ 4

√√√√ (
1 +

(√
L

(1−γ)2N +
CS∥1∥∗L

N(1−γ)

))
γ3(1− γ)2 max{1− γ,Cgσ̃mins ∥πs∥∗}

1

≤ 4

√√√√(1 + (√ L
(1−γ)2N +

CS∥1∥∗L

N(1−γ)

))
γ3(1− γ)3

1

Using Lemma 9 and inserting back to (64) gives in sa-rectangular case

R1 = 2

√
L

N

(
I − γP̂

π⋆,V
)−1√

Var
P̂

π⋆,V (V ⋆,σ)

≤ 8

√√√√ L

γ3(1− γ)2 max{1− γ,Cgσ}N

(
1 +

√
L

(1− γ)2N
+

CS ∥1∥∗ L
N(1− γ)

)
1. (66)

• Consider R2. First, denote V ′ := V ⋆,σ − η1 η ∈ R, by Lemma 5, we have for any π,

0 ≤ min
η

∥V − η1∥∞ ≤ 1

γmax{1− γ,Cgσ}
(67)

for sa-rectangular case or in s-rectangular we obtain

0 ≤ min
η

∥V − η1∥∞ ≤ 1

γmax{1− γ, σ̃Cg ∥πs∥∗}
(68)

by the definition of the span semi norm. Moreover, we can use Holder with L1 and L∞ we
have for both sa and s-rectangular case to as it holds that:

∣∣VarP̃s,a
(V ⋆,σ)− VarPs,a

(V ⋆,σ)
∣∣ = ∣∣VarP̃s,a

(V ′)− VarPs,a
(V ′)

∣∣
≤
∥∥P̃s,a − Ps,a

∥∥
1

∥∥V ′∥∥2
∞

a
≤ σ1

(γ2(max (1− γ), Cgσ)2

≤ 1

γ2 max{(1− γ), σCg}
. (69)

In the first inequality, we use
∥∥V ′

∥∥2
∞ =

∥∥V ′2
∥∥
∞ and and we use Lemma 5 in (a) where

Cgσ = σ1.
With the same arguments for s-rectangular, we obtain for V ′ := V ⋆,σ − η1, η ∈ R,∣∣Ππ⋆

(
VarP̃s

(V ⋆,σ)− VarPs
(V ⋆,σ)

)∣∣ = ∣∣Ππ⋆
(
VarP̃s

(V ′)− VarPs
(V ′)

)∣∣
≤ |
∑
a

π∗(a|s)
∑
s′

(P̃s(s
′, a)− Ps(s

′, a))V ′(s′)2| (70)

≤ ∥V ′∥2∞
∑
a

∑
s′

π∗(a|s)(P̃s(s
′, a)− Ps(s

′, a))
a
≤ ∥V ′∥2∞ σ̃ ∥π∗

s∥∗ C
s
g1 (71)

b
≤

σ̃Cs
g ∥π∗

s∥∗
∥∥V ′

∥∥
∞

γ ∥π∗
s∥∗ σ̃Cs

g

1 ≤
∥∥V ′

∥∥
γ

1. (72)
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where (a) comes Eq 126, (b) comes lemma 6 or more precisely eq (139). Then, taking the
sup over s in the previous equations, it holds

∣∣Ππ⋆
(
VarP̃s

(V ⋆,σ)− VarPs(V
⋆,σ)
)∣∣ ≤ infη∈R+

∥∥V − η1′
∥∥

γ
1 (73)

≤ 1

γ2σ̃mins ∥π∗
s∥∗ Cg

1. (74)

Applying the previous inequality, it holds in sa-rectangular case:

R2 = 2

√
L

N

(
I − γP̂

π⋆,V
)−1

√∣∣∣VarP̂π⋆ (V ⋆,σ)−Var
P̂

π⋆,V (V ⋆,σ)
∣∣∣

= 2

√
L

N

(
I − γP̂

π⋆,V
)−1√∣∣Ππ⋆

(
VarP̂ 0(V ⋆,σ)−VarP̂π⋆,V (V ⋆,σ)

)∣∣
≤ 2

√
L

N

(
I − γP̂

π⋆,V
)−1√∥∥VarP̂ 0(V ⋆,σ)−VarP̂π⋆,V (V ⋆,σ)

∥∥
∞ 1

≤ 2

√
L

N

(
I − γP̂

π⋆,V
)−1

√
1

γ2 max{1− γ,Cgσ}
1 (75)

≤ 4

√
L

γ2(1− γ)2 max{1− γ,Cgσ}N
1, (76)

where the last inequality uses
(
I − γP̂

π⋆,V
)−1

1 ≤ 1
1−γ 1 (cf. (65)) for sa-rectangular. In

the s-rectangular case, we obtain a different result as

R2 = 2

√
L

N

(
I − γP̂

π⋆,V
)−1

√∣∣∣VarP̂π⋆ (V ⋆,σ)−Var
P̂

π⋆,V (V ⋆,σ)
∣∣∣

= 2

√
L

N

(
I − γP̂

π⋆,V
)−1√∣∣Ππ⋆

(
VarP̂ 0(V ⋆,σ)−VarP̂π⋆,V (V ⋆,σ)

)∣∣
≤ 2

√
L

N

(
I − γP̂

π⋆,V
)−1

√
1

γ2 max{1− γ,mins ∥π∗
s∥∞ Cgσ̃}

1 (77)

≤ 2

√
L

γ2(1− γ)2 max{1− γ,mins ∥π∗
s∥∞ σ̃Cg}N

1, (78)

• Consider R3. The following lemma plays an important role.
Applying Lemma 2 and using π = π⋆ and V = V ⋆,σ , it holds

√
VarPπ⋆ (V ⋆,σ)−

√
VarP̂π⋆ (V ⋆,σ) ≤

√
2∥V ⋆,σ∥2∞ log( 2SA

δ )

N
1,

which can be inserted in (64) to gives

R3 = 2

√
L

N

(
I − γP̂

π⋆,V
)−1 (√

VarPπ⋆ (V ⋆,σ)−
√
VarP̂π⋆ (V ⋆,σ)

)
≤ 4

(1− γ)

log(SAN
δ )∥[V ⋆,σ∥∞

N
1 ≤ 4L

(1− γ)2N
1, (79)

where the last line uses
(
I − γP̂

π⋆,V
)−1

1 ≤ 1
1−γ 1 (cf. (65)).
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Finally, inserting the results of R1 in (66), R2 in (76), R3 in (79), and (65) back into (64) gives

(
I − γP̂

π⋆,V
)−1(

P̂
π⋆,V

V π⋆,σ − Pπ⋆,V V π⋆,σ
)

(80)

≤ 8

√√√√ L

γ3(1− γ)2 max{1− γ,Cgσ}N

(
1 +

√
L

(1− γ)2N
+

CS ∥1∥∗ L
N(1− γ)

)
1 +

3LCS ∥1∥∗
N(1− γ)2

1

+ 2

√
2L

γ2(1− γ)2 max{1− γ,Cgσ}N
1 +

4L

(1− γ)2N
1

≤ 10

√√√√ 2L

γ3(1− γ)2 max{1− γ,Cgσ}N

(
1 +

√
L

(1− γ)2N
+

CS ∥1∥∗ L
N(1− γ)

)
1 +

4L

(1− γ)2N
1

(81)

+
3LCS ∥1∥∗
N(1− γ)2

1

≤ 160

√√√√ L(1 +
CS∥1∥∗
N(1−γ) )

(1− γ)2 max{1− γ,Cgσ}N
1 +

7LCS ∥1∥∗
N(1− γ)2

1, (82)

where the last inequality holds by the fact γ ≥ 1
4 and letting N ≥ L

(1−γ)2 . We have the same result
for s-rectangular, replacing, max{1− γ,Cgσ} by max{1− γ,mins ∥π∗

s∥∗ σ̃Cg}.

Now we are ready to control second term in (62) to control ∥V̂ π⋆,σ − V π⋆,σ∥∞. To proceed,
applying Lemma 8 on the second term of the right-hand side of (62) leads to

(
I − γP̂

π⋆,V̂
)−1(

P̂
π⋆,V

V π⋆,σ − Pπ⋆,V V π⋆,σ
)

≤
(
I − γP̂

π⋆,V̂
)−1

(
2

√
L

N

√
VarPπ⋆ (V ⋆,σ) +

3LCS ∥1∥∗
N(1− γ)

)
≤
(
I − γP̂

π⋆,V̂
)−1L′CS ∥1∥∗

N(1− γ)
+ 2

√
L

N

(
I − γP̂

π⋆,V̂
)−1

√
Var

P̂
π⋆,V̂ (V̂ π⋆,σ)︸ ︷︷ ︸

=:R4

2

√
L

N

(
I − γP̂

π⋆,V̂
)−1

(√
Var

P̂
π⋆,V̂ (V π⋆,σ − V̂ π⋆,σ)

)
︸ ︷︷ ︸

=:R5

+ 2

√
L

N

(
I − γP̂

π⋆,V̂
)−1

(√∣∣∣VarP̂π⋆ (V ⋆,σ)−Var
P̂

π⋆,V̂ (V ⋆,σ)
∣∣∣)︸ ︷︷ ︸

=:R6

+ 2

√
L

N

(
I − γP̂

π⋆,V̂
)−1 (√

VarPπ⋆ (V ⋆,σ)−
√

VarP̂π⋆ (V ⋆,σ)
)

︸ ︷︷ ︸
=:R7

. (83)

We now bound the above four terms R4,R5,R6,R7 separately.
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• Using Lemma 7 with P = P̂π⋆,V̂ , π = π⋆ and V = V̂ π⋆,σ which follow V̂ π⋆,σ =

rπ⋆ + γP̂
π⋆,V̂

V̂ π⋆,σ , and in view of (65), the term R4 in (83) can be controlled as follows:

R4 = 2

√
L

N

(
I − γP̂

π⋆,V̂
)−1

√
Var

P̂
π⋆,V̂ (V̂ π⋆,σ)

≤ 2

√
L

N

√
8min{sp(V̂ π⋆,σ)∗, 1/(1− γ))

γ2(1− γ)2
1

≤ 8

√
L

γ3(1− γ)2 max{1− γ,Cgσ}N
1, (84)

where the last inequality is due to Lemma 5 for sa-rectangular case and with the same
quantity replacing max{1 − γ, σ} by max{1 − γ,mins ∥π∗

s∥∗ σ̃} in the s− rectangular
case.

• For bounding R5, we can simply use (65)) to get

R5 = 2

√
L

N

(
I − γP̂

π⋆,V̂
)−1

√
Var

P̂
π⋆,V̂ (V π⋆,σ − V̂ π⋆,σ)

≤ 2

√
L

(1− γ)2N

∥∥∥V ⋆,σ − V̂ π⋆,σ
∥∥∥
∞

1. (85)

R5 ≤ 2

√
L

(1− γ)2N

∥∥∥V ⋆,σ − V̂ π⋆,σ
∥∥∥
∞

1. (86)

• The term R6 can upper bounded as (76) as follows:

R6 ≤ 2

√
2L

γ2(1− γ)2 max{1− γ,Cgσ}N
1. (87)

for sa-rectangular case and with the same quantity replacing max{1−γ,Cgσ} by max{1−
γ,mins ∥π∗

s∥∗ σ̃Cg} in the s− rectangular case.

• Finally, R7 can be controlled the same as (79) shown below:

R7 ≤ 4L

(1− γ)2N
1. (88)

Combining the results in (84), (86), (87), and (88) and inserting back to (83) leads to for N ≥ L
(1−γ)2

(
I − γP̂

π⋆,V̂
)−1(

P̂
π⋆,V

V π⋆,σ − Pπ⋆,V V π⋆,σ
)
≤ 8

√√√√ L(1 +
CS∥1∥∗
N(1−γ) )

γ3(1− γ)2 max{1− γ,Cgσ}N
1

+ 2

√
L

(1− γ)2N

∥∥∥V ⋆,σ − V̂ π⋆,σ
∥∥∥
∞

1 + 2

√
2L

γ2(1− γ)2 max{1− γ,Cgσ}N
1 +

7LCS ∥1∥∗
N(1− γ)2

≤ 80

√√√√ L(1 +
CS∥1∥∗
N(1−γ) )

(1− γ)2 max{1− γ,Cgσ}N
1 + 2

√
L

(1− γ)2N

∥∥∥V ⋆,σ − V̂ π⋆,σ
∥∥∥
∞

1 +
7LCS ∥1∥∗
N(1− γ)2

1,

(89)
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where the last inequality follows from the assumption γ ≥ 1
4 . Finally, inserting (82) and (89) back to

(62) yields

∥∥∥V̂ π⋆,σ − V π⋆,σ
∥∥∥
∞

≤ max

{
160

√√√√ L(1 +
CS∥1∥∗
N(1−γ) )

(1− γ)2 max{1− γ,Cgσ}N
+

7LCS ∥1∥∗
N(1− γ)2

,

80

√√√√ L(1 +
CS∥1∥∗
N(1−γ) )

(1− γ)2 max{1− γ,Cgσ}N
+ 2

√
L

(1− γ)2N

∥∥∥V ⋆,σ − V̂ π⋆,σ
∥∥∥
∞

+
7LCS ∥1∥∗
N(1− γ)2

}

≤ 160

√√√√ L(1 +
CS∥1∥∗
N(1−γ) )

(1− γ)2 max{1− γ,Cgσ}N
+

14LCS ∥1∥∗
N(1− γ)2

, (90)

where the last inequality holds by taking N ≥ 16 log(SAN
δ )

(1−γ)2 rearranging terms. In s-rectangular case,
we obtain the same result, replacing max{1− γ,Cgσ} by max{1− γ,mins ∥π∗

s∥∗ Cgσ̃}.

Third step: controlling ∥V̂ π̂,σ −V π̂,σ∥∞ or bounding the first and second term in (61). Unlike
the earlier term, one has to face a more complicated statistical dependency between π̂ and the
empirical RMDP. To begin with, we introduce the following lemma which controls the main term on
the right-hand side of (61), which is proved in Appendix D.3.5.
Lemma 10. Consider any δ ∈ (0, 1). Taking N ≥ L′′ with probability at least 1− δ, one has for sa-
or s-rectangular case :∣∣∣P̂ π̂,V̂

V̂ π̂,σ − P π̂,V̂ V̂ π̂,σ
∣∣∣ ≤ 2

√
L′

N

√
VarP 0

s,a
(V̂ ⋆,σ)1 + 2εopt1 +

15L′′CS ∥1∥∗
N(1− γ)

≤ 2

√
L′′

(1− γ)2N
1 + 2εopt1 +

14L′′CS ∥1∥∗
N(1− γ)

1. (91)

with L′′ = 2 log(
54∥1∥∗SAN2

(1−γ)δ ). Moreover, for TV this lemma holds but without the geometric term
14L′′CS∥1∥∗

N(1−γ) 1. Taking the sup over s gives the final result.

With Lemma 10 in hand, we have to control first term in (61)(
I − γP π̂,V̂

)−1(
P̂

π̂,V̂
V̂ π̂,σ − P π̂,V̂ V̂ π̂,σ

)
(i)

≤
(
I − γP π̂,V̂

)−1
∣∣∣∣P̂ π̂,V̂

V̂ π̂,σ − P π̂,V̂ V̂ π̂,σ

∣∣∣∣
≤ 2

√
L′

N

(
I − γP π̂,V̂

)−1
√
VarP π̂ (V̂ ⋆,σ) +

(
I − γP π̂,V π̂

)−1
(
2εopt

)
1 (92)

+
(
I − γP π̂,V π̂

)−1 14L′′CS ∥1∥∗
N(1− γ)

1

(ii)

≤

(
2εopt
1− γ

)
1 + 2

√
L′

N

(
I − γP π̂,V̂

)−1√
Var

P π̂,V̂ (V̂ π̂,σ)︸ ︷︷ ︸
=:S1

+ 2

√
L′

N

(
I − γP π̂,V̂

)−1
√∣∣∣VarP π̂,V̂ (V̂ ⋆,σ)−Var

P π̂,V̂ (V̂ π̂,σ)
∣∣∣︸ ︷︷ ︸

=:S2

+ 2

√
L′

N

(
I − γP π̂,V̂

)−1
√∣∣∣VarP π̂ (V̂ ⋆,σ)−Var

P π̂,V̂ (V̂ ⋆,σ)
∣∣∣︸ ︷︷ ︸

=:S3

+
14L′′CS ∥1∥∗
N(1− γ)2

1, (93)
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where (i) and (ii) hold by the fact that each row of (1− γ)
(
I − γP π̂,V̂

)−1

is a probability vector
that falls into ∆(S). The remainder of the proof will focus on controlling the three terms in (93)
separately.

• For S1, we introduce the following lemma, whose proof is postponed to D.3.6.

Lemma 11. Consider any δ ∈ (0, 1). Taking N ≥ L′′

(1−γ)2 one has with probability at least
1− δ, for sa− rectangular

(
I − γP π̂,V̂

)−1√
Var

P π̂,V̂ (V̂ π̂,σ) ≤ 6

√√√√ (
1 + εopt +

L′′CS∥1∥∗
N(1−γ)

)
γ3(1− γ)2 max{1− γ, σ}

1

≤ 6

√√√√(1 + εopt +
L′′CS∥1∥∗
N(1−γ)

)
(1− γ)3γ3

1.

and for s-rectangular

(
I − γP π̂,V̂

)−1√
Var

P π̂,V̂ (V̂ π̂,σ) ≤ 6

√√√√ L′′
(
1 + εopt +

CS∥1∥∗
N(1−γ)

)
γ3(1− γ)2 max{1− γ,Cgσ̃mins ∥π̂s∥∞}

1

≤ 6

√√√√L′′
(
1 + εopt +

CS∥1∥∗
N(1−γ)

)
(1− γ)3γ2

1.

Applying Lemma 11 and (65) to (93) leads to

S1 = 2

√
L′

N

(
I − γP π̂,V̂

)−1√
Var

P π̂,V̂ (V̂ π̂,σ)

≤ 12

√
L′′

γ3(1− γ)2 max{1− γ,Cgσ}N
1. (94)

for sa-rectangular and the same quantity replacing max{1 − γ,Cgσ} by max{1 −
γ,Cgσ̃mins ∥π̂s∥∗} for s− rectangular case.

• Applying Lemma 1 with ∥V̂ ⋆,σ − V̂ π̂,σ∥∞ ≤ εopt and (65), S2 can be controlled as

S2 = 2

√
L′′

N

(
I − γP π̂,V̂

)−1
√∣∣∣VarP π̂,V̂ (V̂ ⋆,σ)−Var

P π̂,V̂ (V̂ π̂,σ)
∣∣∣

≤ 4

√
L′′

N

(
I − γP π̂,V̂

)−1

√
εopt

1

1− γ

2

≤ 8

√
εoptL′′

(1− γ)4N
1. (95)

• S3 can be controlled similar to R2 in (76) as follows:

S3 = 2

√
L′′

N

(
I − γP π̂,V̂

)−1
√∣∣∣VarP π̂ (V̂ ⋆,σ)−Var

P π̂,V̂ (V̂ ⋆,σ)
∣∣∣

≤ 4

√
L′′

N

(
I − γP π̂,V̂

)−1
√

1

γ2 max{1− γ,Cgσ}
1 (96)

≤ 8

√
L′′

γ2(1− γ)2 max{1− γ,Cgσ}N
1 (97)

for sa-rectangular and replacing max{1 − γ, σ} by max{1 − γ, σ̃mins ∥π̂s∥∗} for s−
rectangular case.
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Finally, summing up the results in (94), (95), and (97) and inserting them back to (93) yields: taking
N ≥ L′′

(1−γ)2 , with probability at least 1− δ,(
I − γP π̂,V̂

)−1
(
P̂

π̂,V̂
V̂ π̂,σ − P π̂,V̂ V̂ π̂,σ

)
≤
(
2εopt
1− γ

)
1 +

14L′′CS ∥1∥∗
N(1− γ)2

1

+ 12

√√√√ L′′
(
1 + εopt +

CS∥1∥∗
N(1−γ)

)
γ3(1− γ)2 max{1− γ,Cgσ}N

1 + 8

√
εoptL′

(1− γ)4N
1+ (98)

8

√
L′

γ2(1− γ)2 max{1− γ,Cgσ}N
1

≤ 16

√√√√ L′′
(
1 + εopt +

CS∥1∥∗
N(1−γ)

)
γ3(1− γ)2 max{1− γ, σ}N

1 +

(
2εoptγ

(1− γ)
+ 8

√
εoptγL′

(1− γ)4N
1 +

15L′′CS ∥1∥∗
N(1− γ)2

1

)
(99)

(100)
for sa-rectangular and the same quantity replacing max{1− γ, σ} by max{1− γ, σ̃mins ∥π̂s∥∗}
for s− rectangular case. In this step, it is harder to decouple terms as V̂ π̂ depends on data both in π̂

and V̂ .

Step 5: controlling ∥V̂ π̂,σ − V π̂,σ∥∞: bounding the second term in (61). Towards this, applying
Lemma 10 leads to in sa-rectangular case:(
I − γP π̂,V

)−1(
P̂

π̂,V̂
V̂ π̂,σ − P π̂,V̂ V̂ π̂,σ

)
≤
(
I − γP π̂,V

)−1∣∣∣P̂ π̂,V̂
V̂ π̂,σ − P π̂,V̂ V̂ π̂,σ

∣∣∣
≤ 2

√
L′′

N

(
I − γP π̂,V

)−1
√
VarP π̂ (V̂ ⋆,σ) +

(
I − γP π̂,V

)−1
(
2εopt

)
1 (101)

+
(
I − γP π̂,V

)−1L′′14CS ∥1∥∗
N(1− γ)

1

≤

(
2εopt

(1− γ)

)
1 + 2

√
L′′

N

(
I − γP π̂,V

)−1√
VarP π̂,V (V π̂,σ)︸ ︷︷ ︸

=:S4

+
(
I − γP π̂,V

)−1 14L′′CS ∥1∥∗
N(1− γ)

1

+ 2

√
L′

N

(
I − γP π̂,V

)−1√
VarP π̂,V (V̂ π̂,σ − V π̂,σ)︸ ︷︷ ︸

=:S5

+ 2

√
L′′

N

(
I − γP π̂,V̂

)−1
√∣∣∣VarP π̂,V (V̂ ⋆,σ)−VarP π̂,V ([V̂ π̂,σ)

∣∣∣︸ ︷︷ ︸
=:S6

+ 2

√
L′′

N

(
I − γP π̂,V̂

)−1
√∣∣∣VarP π̂ (V̂ ⋆,σ)−VarP π̂,V ([V̂ ⋆,σ)

∣∣∣︸ ︷︷ ︸
=:S7

. (102)

We shall bound each of the terms separately.

• Applying Lemma 7 with P = P π̂,V , π = π̂, and taking V = V π̂,σ which obeys V π̂,σ =

rπ̂ + γP π̂,V V π̂,σ , the term S4 can be controlled similar to (84) as follows:

S4 ≤ 8

√√√√ L′′
(
1 + εopt +

CS∥1∥∗
N(1−γ)

)
γ3(1− γ)2 max{1− γ,Cgσ}N

1. (103)

for sa-rectangular and the same quantity replacing max{1 − γ,Cgσ} by max{1 −
γ,mins ∥π̂s∥∗ σ̃Cg} for s− rectangular case.
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• For S5, it is observed that

S5 = 2

√
L′′

N

(
I − γP π̂,V

)−1√
VarP π̂,V (V̂ π̂,σ − V π̂,σ)

≤ 2

√
L′′

(1− γ)2N

∥∥∥V π̂,σ − V̂ π̂,σ
∥∥∥
∞

1. (104)

• Next, observing that S6 and S7 are almost the same as the terms S2 (controlled in (95)) and
S3 (controlled in (97)) in (93), it is easily verified that they can be controlled as follows

S6 ≤ 4

√
εoptL′′

(1− γ)4N
1, S7 ≤ 4

√
L′′

γ2(1− γ)2 max{1− γ,Cgσ}N
1. (105)

for sa-rectangular and the same quantity replacing max{1− γ, σ} by max{1− γ,mins ∥π̂s∥∗ σ̃}
for s− rectangular case. Then inserting the results in (103), (104), and (105) back to (102) leads to(
I − γP π̂,V

)−1(
P̂

π̂,V̂
V̂ π̂,σ − P π̂,V̂ V̂ π̂,σ

)
(106)

≤

(
2εopt

(1− γ)

)
1 + 8

√√√√ L′′
(
1 + εopt +

CS∥1∥∗
N(1−γ)

)
γ3(1− γ)2 max{1− γ, σ}N

1 +
14L′′CS ∥1∥∗
N(1− γ)2

1

+ 2

√
L′′

(1− γ)2N

∥∥∥V π̂,σ − V̂ π̂,σ
∥∥∥
∞

1 + 4

√
L′′εopt

(1− γ)4N
1 + 4

√
L′′

γ2(1− γ)2 max{1− γ,Cgσ}N
1

≤ 12

√√√√ L′′
(
1 + εopt +

CS∥1∥∗
N(1−γ)

)
γ3(1− γ)2 max{1− γ, σ}N

+ 4

√
L′′

(1− γ)2N

∥∥∥V π̂,σ − V̂ π̂,σ
∥∥∥
∞

1 (107)

+
3εopt

(1− γ)
1 +

14L′′CS ∥1∥∗
N(1− γ)2

1. (108)

(109)

Taking N ≥ 16L′′

1−γ , we obtain 2εopt
(1−γ) + 4εopt

√
L′′

(1−γ)4N 1 ≤ 3εopt
(1−γ) with probability at least 1 − δ,

inserting (99) and (107) back to (61)

∥∥∥V̂ π̂,σ − V π̂,σ
∥∥∥
∞

≤ max
{
16

√√√√ L′′
(
1 + εopt +

CS∥1∥∗
N(1−γ)

)
γ3(1− γ)2 max{1− γ, σ}N

+

(
2εoptγ

(1− γ)
+

14L′′CS ∥1∥∗
N(1− γ)2

)
,

12

√√√√ L′′
(
1 + εopt +

CS∥1∥∗
N(1−γ)

)
γ3(1− γ)2 max{1− γ, σ}N

+ 4

√
L′′

(1− γ)2N

∥∥∥V π̂,σ − V̂ π̂,σ
∥∥∥
∞

(110)

+
3εopt

(1− γ)
+

14L′′CS ∥1∥∗
N(1− γ)2

}

≤ 48

√√√√ L′′
(
1 + εopt +

CS∥1∥∗
N(1−γ)

)
γ3(1− γ)2 max{1− γ,Cgσ}N

+
6εopt

(1− γ)
+

28L′′CS ∥1∥∗
N(1− γ)2

(111)

for sa-rectangular and the same quantity, replacing max{1−γ,Cgσ} by max{1−γ, σ̃mins ∥π̂s∥∗}
for s− rectangular case. The proof is similar for TV without the geometric term depending on CS .

Step 6: summing all the previous inequalities results. Using all the previous results in (90) and
(111) and inserting back to (56) complete the proof as follows: taking N ≥ 16L′′

(1−γ)2 , γ > 1/4, , with
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probability at least 1− δ, for sa-rectangular∥∥V ⋆,σ − V π̂,σ
∥∥
∞ ≤

∥∥V π⋆,σ − V̂ π⋆,σ
∥∥
∞ + εopt +

∥∥V̂ π̂,σ − V π̂,σ
∥∥
∞

≤ εopt + 48

√√√√ L′′
(
1 + εopt +

CS∥1∥∗
N(1−γ)

)
γ3(1− γ)2 max{1− γ,Cgσ}N

+
6εopt

(1− γ)
+

28L′′CS ∥1∥∗
N(1− γ)2

+ 160

√√√√ L(1 +
CS∥1∥∗
N(1−γ) )

(1− γ)2 max{1− γ,Cgσ}N
+

14LCS ∥1∥∗
N(1− γ)2

≤ 8εopt
1− γ

+
42L′′CS ∥1∥∗
N(1− γ)2

+ 1508

√√√√ L′′(1 +
CS∥1∥∗
N(1−γ) )

(1− γ)2 max{1− γ,Cgσ}N
(112)

where the last inequality holds by γ ≥ 1
4 and N ≥ 16L′′

(1−γ)2 for sa-rectangular and the same quantity
replacing max{1 − γ, σ} by max{1 − γ, σ̃mins{∥π∗

s∥∗}} for s− rectangular case. The proof is
similar for TV without the geometric term depending on CS .

D.3 Proof of the auxiliary lemmas

D.3.1 Proof of Lemma 5

Similarly to Shi et al. [2023], denoting s0 the argmax of V π,σ such that V π,σ (s0) = mins∈S V π,σ(s)
using recursive Bellman’s equation

max
s∈S

V π,σ(s) = max
s∈S

Ea∼π(·|s)

[
r(s, a) + γ inf

P∈Uσ(Ps,a)
PV π,σ

]
(113)

≤ max
(s,a)∈S×A

(
1 + γ inf

P∈Uσ(Ps,a)
PV π,σ

)
(114)

where the second line holds since the reward function r(s, a) ∈ [0, 1] for all (s, a) ∈ S ×A.

Then we construct for any (s, a) ∈ S ×A, P̃s,a ∈ RS by reducing the values of some elements of

Ps,a such that Ps,a ≥ P̃s,a ≥ 0 and
∑

s′

(
Ps,a (s

′)− P̃s,a (s
′)
)
= σCs,a

g . with Cs,a
g = 1

∥es0∥
It

lead to P̃s,a + σCs,a
g e⊤s0 ∈ Uσ

∥∥ (Ps,a), where es0 is the standard basis vector supported on s0, since

1

2

∥∥∥P̃s,a + σCs,a
g e⊤s0 − Ps,a

∥∥∥ ≤ 1

2

∥∥∥P̃s,a − Ps,a

∥∥∥+ Cs,a
g σ ∥es0∥

2
= σ/2 + σ/2 = σ (115)

Consequently,

inf
P∈Uσ

∥.∥(Ps,a)
PV π,σ ≤

(
P̃s,a + σCs,a

g e⊤s0

)
V π,σ ≤

∥∥∥P̃s,a

∥∥∥
1
∥V π,σ∥∞ + σV π,σ (s0)C

s,a
g (116)

≤ (1− Cs,a
g σ)max

s∈S
V π,σ(s) + σCs,a

g min
s∈S

V π,σ(s) (117)

where the second inequality holds by∥∥∥P̃s,a

∥∥∥
1
=
∑
s′

P̃s,a (s
′) = −

∑
s′

(
Ps,a (s

′)− P̃s,a (s
′)
)
+
∑
s′

Ps,a (s
′) = 1− σCs,a

g (118)

Plugging this back to the previous relation gives
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max
s∈S

V π,σ(s) ≤ 1 + γ(1− Cs,a
g σ)max

s∈S
V π,σ(s) + γCs,a

g σmin
s∈S

V π,σ(s) (119)

which, by rearranging terms, yields

max
s∈S

V π,σ(s) ≤
1 + γCs,a

g σmins∈S V π,σ(s)

1− γ(1− Cs,a
g σ)

(120)

≤ 1

(1− γ) + γCs,a
g σ

+min
s∈S

V π,σ(s) ≤ 1

γmax{1− γ,Cs,a
g σ}

+min
s∈S

V π,σ(s)

(121)

So rearranging terms it holds :

sp(V π,σ)∞ ≤ 1

γmax{1− γ,Cs,a
g σ}

(122)

or taking the sup over s:

sp(V π,σ)∞ ≤ 1

γmax{1− γ,Cgσ}
(123)

As we pick the supreme over s, the quantity, Cs,a
g is replaced by Cg = 1/(mins ∥es∥) to obtain a

control for every s.

D.3.2 Proof of Lemma 6

Similarly to 5 denoting s0 the argmax of V π,σ such that V π,σ (s0) = mins∈S V π,σ(s) using recursive
Bellman’s equation

max
s∈S

V π,σ(s) = max
s∈S

Ea∼π(·|s)

[
r(s, a) + γ inf

P∈U σ̃(Ps)
PV π,σ̃

]
(124)

≤ max
s∈S

(
1 + γ inf

Pπ∈U σ̃(Pπ
s )

PπV π,σ̃

)
(125)

where the second line holds since the reward function r(s, a) ∈ [0, 1] for all (s, a) ∈ S × A.Then
we construct for any s ∈ S P̃s ∈ RS×A by reducing the values of some elements of Ps such that
Ps ≥ P̃s ≥ 0 and

∀a ∈ A,
∑
s′

(
Ps (s

′, a)− P̃s (s
′, a)

)
= σs,aC

s
g

where Cs
g is defined as 1/ ∥es∥. Writting ∥σs,a∥ ≤ σ̃ we construction σs,a such that∑

a

π(a|s)
∑
s′

(
Ps (s

′, a)− P̃s (s
′, a)

)
= ∥πs∥∗ σ̃C

s
g . (126)

Not that this construction is possible as it is simply Cauchy Swartz equality case. It leads to
P̃s + σe⊤s0,a ∈ U σ̃ (Ps), where es0,a ∈ RS×A is the standard basis vector supported on s0 which is
equal to 1 at s0 for every a and otherwise.

1

2

∥∥∥P̃s + σs,aC
s
ge

⊤
s0,a − Ps

∥∥∥ ≤ 1

2

∥∥∥P̃s − Ps

∥∥∥+ σ̃ ∥es0∥Cs
g

2
= σ̃/2 + σ̃/2 (127)
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as Cs
g ∥σs,aes0,a∥ is equal to Cs

g σ̃ ∥es0∥ Consequently,

inf
Pπ∈Uσ(Ps)

PπV π,σ̃ ≤ Ππ
(
P̃π
s + σCs

ge
⊤
s0

)
V π,σ̃ (128)

=
∑
a

∑
s′

P̃s(s
′, a)π(a|s)V π,σ̃(s′) + σes0,aC

s
gV

π,σ̃ (s0)π(a|s) (129)

≤
∑
a

sup
s′

[V π,σ̃(s′)](
∑
s′

P̃s(s
′, a)))π(a|s) + V π,σ̃ (s0)π(a|s)σs,aC

s
g (130)

(a)
= max

s∈S
V π,σ(s)

∑
a

(1− σCs
g)π(a|s) +

∑
a

V π,σ̃ (s0)π(a|s)σs,aC
s
g (131)

(b)
= max

s∈S
V π,σ(s)(1− σ̃Cs

g) ∥πs∥∗ + ∥πs∥∗ σ̃C
s
g min

s∈S
V π,σ̃(s) (132)

≤ (1− Cs
g σ̃)max

s∈S
V π,σ(s) + σCs

g min
s∈S

V π,σ̃(s) (133)

where ∥π∥∞ is the norm of the vector π(.|s) and where (a) holds because∑
s′

P̃s (s
′) = −

∑
s′

(
Ps (s

′)− P̃s (s
′)
)
+
∑
s′

Ps (s
′) = 1− σs,aC

s
g (134)

Finally (b) is due to (126) and using Holder’s inequality in the second term. Plugging this back to the
previous relation gives

max
s∈S

V π,σ̃(s) ≤ 1 + γ(1− σ̃Cs
g ∥πs∥∗)max

s∈S
V π,σ(s) + γ ∥πs∥∗ σ̃C

s
g min

s∈S
V π,σ̃(s) (135)

which, by rearranging terms, yields

max
s∈S

V π,σ̃(s) ≤
1 + γσ̃ ∥πs∥∗ Cs

g mins∈S V π,σ̃(s)

1− γ(1− Cs
g σ̃ ∥πs∥∗)

(136)

≤ 1

(1− γ) + ∥πs∥∗ γCs
g σ̃

+min
s∈S

V π,σ̃(s) (137)

≤ 1

(1− γ) + γ ∥πs∥∗ Cs
g σ̃

+min
s∈S

V π,σ̃(s) (138)

≤ 1

γmax{1− γ,Cs
g ∥πs∥∗ σ̃}

+min
s∈S

V π,σ̃(s). (139)

So rearranging and taking the sumpremum over all sterm it holds :

sp(V π,σ̃)∞ ≤ 1

γmax{1− γ,mins ∥πs∥∗ Cgσ̃}
. (140)

As we pick the supreme over s ovf this quantity, Cs
g is replaced by Cg = 1/mins ∥es∥.

D.3.3 Proof of Lemma 8

Proof. Concentration of the robust values function. with probability 1− δ, it holds:∣∣∣Pπ,V
s,a V − P̂π,V

s,a V
∣∣∣ ≤ 2

√
L

N

√
VarP 0

s,a
(V ) +

3LCS ∥1∥∗
N(1− γ)
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with L = 2 log(18 ∥1∥∗ SAN/δ) and First we can use optimization duality such as in (50):

∣∣∣Pπ,V
s,a V − P̂π,V

s,a V
∣∣∣ (141)

=
∣∣∣ max
µλ,ω

P0
s,a

∈Mλ,ω

P0
s,a

{
P 0
s,a(V − µ)− σ (sp((V − µ))∗)

}
− max

µλ,ω

P̂0
s,a

∈Mλ,ω

P̂0
s,a

{
P̂ 0
s,a(V − µλ,ω

P̂ 0
s,a

)− σ

(
sp((V − µλ,ω

P̂ 0
s,a

))∗

)} ∣∣∣
≤ max

{∣∣∣ max
µλ,ω

P0
s,a

∈Mλ,ω

P0
s,a

{
P 0
s,a(V − µλ,ω

P 0
s,a

)− σ
(
sp((V − µλ,ω

P 0
s,a

))∗

)}
− max

µλ,ω

P0
s,a

∈Mλ,ω

P0
s,a

{
P̂ 0
s,a(V − µλ,ω

P 0
s,a

)− σ
(
sp((V − µλ,ω

P 0
s,a

))∗

)} ∣∣∣; (142)

∣∣∣ max
µλ,ω

P̂0
s,a

∈Mλ,ω

P̂0
s,a

{
P̂ 0
s,a(V − µλ,ω

P̂ 0
s,a

)− σ

(
sp((V − µλ,ω

P̂ 0
s,a

))∗

)}
(143)

− max
µλ,ω

P̂0
s,a

∈Mλ,ω

P̂0
s,a

{
P 0
s,a(V − µλ,ω

P̂ 0
s,a

)− σ

(
sp((V − µλ,ω

P̂ 0
s,a

))∗

)} ∣∣∣}

≤ max
{ ∣∣∣∣∣∣ max

µ∈µλ,ω

P0
s,a

(
P 0
s,a − P̂ 0

s,a

)
(V − µλ,ω

P 0
s,a

)

∣∣∣∣∣∣︸ ︷︷ ︸
=:gs,a(α

λ,ω
P ,V )

,

∣∣∣∣∣∣ max
µλ,ω

P̂0
s,a

∈Mλ,ω

P̂0
s,a

(
P 0
s,a − P̂ 0

s,a

)
(V − µλ,ω

P̂ 0
s,a

)

∣∣∣∣∣∣︸ ︷︷ ︸
=:gs,a(α

λ,ω

P̂
,V )

}

(144)

where in the first equality we use Lemma 3. The final inequality is a consequence of the 1-
Lipschitzness of the max operator. First, we control gs,a(α

λ,ω
P , V ). To do so, we use for a fixed αλ,ω

P

and any vector V that is independent with P̂ 0, the Bernstein’s inequality, one has with probability at
least 1− δ with sa-rectangular notations,

gs,a(α
λ,ω
P , V ) =

∣∣∣(P 0
s,a − P̂ 0

s,a

)
[V ]αλ,ω

P

∣∣∣ ≤
√

2 log(2δ )

N

√
VarP 0

s,a
(V ) +

2 log(2δ )

3N(1− γ)
. (145)

Once pointwise concentration derived, we will use uniform concentration to yield this lemma. First,
union bound, is obtained noticing that gs,a(α

λ,ω
P , V ) is 1-Lipschitz w.r.t. λ and ω as it is linear in

λ and ω. Moreover, λ∗ = ∥V − µ∗ − ω∥∗ obeying λ∗ ≤ ∥1∥∗
1−γ . The quantity ω ∈ [0, 1/(1 − γ)]

as it is always smaller that V by definition. We construct then a 2-dimensional a ε1-net Nε1 over

λ∗ ∈ [0,
∥1∥∗
1−γ ] and ω ∈ [0, 1/(1 − γ)] whose size satisfies |Nε1 | ≤

(
3∥1∥∗

ε1(1−γ)

)2
[Vershynin, 2018].

Using union bound and (145), it holds with probability at least 1− δ
SA that for all λ ∈ Nε1 ,

gs,a(α
λ
P , V ) ≤

√
2 log(

2SA|Nε1
|

δ )

N

√
VarP 0

s,a
(V ) +

2 log(
2SA|Nε1

|
δ )

3N(1− γ)
. (146)
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Using the previous equation and also (144), it results in using notation 2 log(
18SAN∥1∥∗

δ ) = L,

gs,a(α
λ
P , V )

(a)

≤ sup
αλ

P∈Nε1

∣∣∣(P 0
s,a − P̂ 0

s,a

)
[V ]αλ

P

∣∣∣+ ε1

(b)

≤

√
2 log(

SA|Nε1
|

δ )

N

√
VarP 0

s,a
(V ) +

2 log(
2SA|Nε1

|
δ )

3N(1− γ)
+ ε1 (147)

(c)

≤

√
2 log(

2SA|Nε1 |
δ )

N

√
VarP 0

s,a
(V ) +

log(
2SA|Nε1 |

δ )

N(1− γ)

(d)

≤
√

L

N

√
VarP 0

s,a
(V ) +

L

N(1− γ)
(148)

≤
√

L

N
∥V ∥∞ +

L

N(1− γ)

≤ 2

√
L

(1− γ)2N
(149)

where (a) is because the optimal α falls into the ε1-ball centered around some point inside Nε1 and
gs,a(α

λ
P , V ) is 1-Lipschitz with regard to λ and ω, (b) is due to Eq. (146), (c) arises from taking

ε1 =
log(

2SA|Nε1
|

δ )

3N(1−γ) , (d) is verified by |Nε1 | ≤
(

3∥1∥∗
ε1(1−γ)

)2
≤ 9N ∥1∥ and that variance of a ceiling

function of a vector is smaller than the variance of non-ceiling vector , and the last inequality comes
from the fact ∥V ⋆,σ∥∞ ≤ 1

1−γ and taking N ≥ 2 log(
18SAN∥1∥∗

δ ) = L.

Contrary to the previous term, the second term gs,a(α
λ
P̂
, V ) is more difficult as we need concentration.

Still, the data has an extra dependency through the parameter αλ
P̂

. We need to decouple this problem
using absorbing MDPs. Then it leads to

gs,a(α
λ,ω

P̂
, V ) (150)

= | max
µλ,ω

P̂0
s,a

∈Mλ,ω

P̂0
s,a

(
P 0
s,a − P̂ 0

s,a

)
(V − µλ,ω

P̂ 0
s,a

)| (151)

= | max
µ∈Mλ,ω

P̂0
s,a

(
P 0
s,a − P̂ 0

s,a

)
(V − µλ,ω

P 0
s,a

) +
(
P 0
s,a − P̂ 0

s,a

)
(µλ,ω

P 0
s,a

− µλ,ω

P̂ 0
s,a

)| (152)

≤ | max
µλ,ω

P0
s,a

∈Mλ,ω

P0
s,a

(
P 0
s,a − P̂ 0

s,a

)
(V − µλ,ω

P 0
s,a

) + max
µλ,ω

P̂0
s,a

∈Mλ,ω

P̂0
s,a

(
P 0
s,a − P̂ 0

s,a

)
(µλ,ω

P 0
s,a

− µλ,ω

P̂ 0
s,a

)|.

(153)

In the first equality, we add the term µλ,ω
P 0

s,a
to retrieve the previous concentration problem, fixing P 0

s,a

and optimizing λ, ω. In the second, we extend the max using triangular inequality. The first term in
the last equality is exactly the term we have controlled previously, while the second one needs more
attention. We decouple the data’s dependency, then control the difference between the µ. Then using
the characterization of the optimal µ from equation (47):(

P 0
s,a − P̂ 0

s,a

)
(µλ,ω

P 0
s,a

− µλ,ω

P̂ 0
s,a

) =
∑
s′

λ
(
P 0
s,a(s

′)− P̂ 0
s,a(s

′)
)
(∇
∥∥P 0

s,a

∥∥−∇
∥∥∥P̂ 0

s,a

∥∥∥)
Here we assume that the subgradient is a gradient as we assume that the norm is C2. The question
that arises is whether the gradient of the norm is Lipschitz.

Note that we are considering the worst case as (µλ,ω
P 0

s,a
− µλ,ω

P̂ 0
s,a

) can be zero in the case where µ the

Lagrangian variable is equal to zero. Finally, note that we can also control this term when one of
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the two terms µλ,ω
P 0

s,a
or µλ,ω

P̂ 0
s,a

is equal to zero as µλ,ω

P̂ 0
s,a

and µλ,ω
P 0

s,a
smaller that V because V − µ need

to be positive in equation (43). In this case, classical control using Bernstein’s inequality without
uniform concentration can be applied, giving the same result. In the worst case where all terms in
(µλ,ω

P 0
s,a

− µλ,ω

P̂ 0
s,a

) are non zero, assuming that the norm is C2, using mean value theorem, we know that

∥∥∥(∇∥∥P 0
s,a

∥∥−∇
∥∥∥P̂ 0

s,a

∥∥∥)∥∥∥
2
≤ sup

x∈∆(S)

∥∥∇2 ∥x∥
∥∥
2

∥∥∥(P 0
s,a − P̂ 0

s,a)
∥∥∥
2
.

As the norm is C2, is continuous and as the simplex is bounded, this quantity exists according to the
Extreme value theorem. It is possible to compute this contact depending on S for explicit norms such
as Lp. Indeed, for L2:

∇2 ∥x∥2 =
(I − x

⊗
x)

∥x∥2
2

∥x∥2
≤ 1

∥x∥2
I ≤ 1

minx∈∆(S) ∥x∥2
I =

√
S

where
⊗

is the Kronecker product. So we have an upper bound independent of x. For Lp = ∥x∥p
norms, p ≥ 2, we have simple taking derivative twice:

∇2 ∥x∥p =
p− 1

Lp

(
Ap−2 − gpg

T
p

)
with

A = Diag

(
abs(x)

Lp

)
gp = Ap−2

(
x

Lp

)
.

where Diag is the diagonal matrix. However, as x ≤ Lp, A ≤ I , we get

H ≤ p− 1

∥x∥p
≤ (p− 1)S1/q = CS (154)

where the 1/Lp is minimized for the uniform distribution. Then using Cauchy Swartz inequality, it
holds (

P 0
s,a − P̂ 0

s,a

)
(µλ,ω

P 0
s,a

− µλ,ω

P̂ 0
s,a

) ≤ λ
∥∥∥(P 0

s,a − P̂ 0
s,a

)∥∥∥2
2
. (155)

Then the question is how to bound the quantity
∥∥∥(P 0

s,a − P̂ 0
s,a

)∥∥∥2
2
. To do so, we will use McDiarmid

inequality.

Definition 3. Bounded difference property

A function f : X1 × . . .Xn → R satisfies the bounded difference property if for each i = 1, . . . , n
the change of coordinate from si to s′i may change the value of the function at most on ci

∀i ∈ [n] : sup
x′
i∈Xi

|f (x1, . . . , xi, . . . , xn)− f (x1, . . . , x
′
i, . . . , xn)| ≤ ci

In our case, we consider f (X1, . . . , Xn) = ∥
∑n

k=1 Xk∥2. Then we can notice that by triangle
inequality for any x1, . . . , xn and x′

k with Xi,s′ = P 0
i,s,a(s

′)− P 0
s,a(s

′) ( index i holds for index of
sample generated from the generative model) that

f (x1, . . . , xk, . . . , xn) = ∥x1 + . . .+ xn∥2 ≤ ∥x1 + . . .+ xn − xk + x′
k∥2 + ∥xk − x′

k∥2
≤ f (x1, . . . , x

′
k, . . . , xn) + 2
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Theorem 5. (McDiarmid’s inequality). McDiarmid et al. [1989] Let f : X1 × . . .Xn → R be a
function satisfying the bounded difference property with bounds c1, . . . , cn. Consider independent
random variables X1, . . . , Xn, Xi ∈ Xi for all i. Then for any t > 0

P [f (X1, . . . , Xn)− E [f (X1, . . . , Xn)] ≥ t] ≤ exp

(
− 2t2∑n

i=1 c
2
i

)
Using McDiarmid’s inequality and union bound, we can bound the term here(∥∥∥(P 0

s,a − P̂ 0
s,a

)∥∥∥
2
− E[

∥∥∥(P 0
s,a − P̂ 0

s,a

)∥∥∥
2
]
)2

≤ 2N log(|S||A|/δ))
N2

with probability 1− δ/(|S||A|). Moreover, the additional term can be bounded as follows:

E[
∥∥∥(P 0

s,a − P̂ 0
s,a

)∥∥∥2
2
] = E[

∑
s′

(P 0
s,a(s

′)− P 0
s,a(s

′))2 = E[
∑
s′

(
1

N

N∑
i

Xi,s′)
2]

with Xi,s′ = P 0
i,s,a(s

′)− P 0
s,a(s

′) is one sample sampled from the generative model. Then

E[
∥∥∥(P 0

s,a − P̂ 0
s,a

)∥∥∥2
2
] =

1

N2

∑
s′

Var(
N∑
i

Xi,s)
a
=

1

N2

N∑
i

∑
s′

Var(Xi,s) (156)

=
1

N2

N∑
i

E(
∑
s′

X2
i,s) ≤

4

N
(157)

where (a) the last equality comes from the independence of the random variables, and where the last
inequality comes from the fact the maximum of two elements in the simplex is bounded by 2.

Moreover, we know that,

E
[ ∥∥∥(P 0

s,a − P̂ 0
s,a

)∥∥∥
2

]2
≤ E[

∥∥∥(P 0
s,a − P̂ 0

s,a

)∥∥∥2
2
] (158)

due to Jensen’s inequality. Finally, regrouping the two terms, we obtain with probability 1 −
δ/(|S||A|):

∥∥∥(P 0
s,a − P̂ 0

s,a

)∥∥∥2
2
=
(∥∥∥(P 0

s,a − P̂ 0
s,a

)∥∥∥
2
− E

[ ∥∥∥(P 0
s,a − P̂ 0

s,a

)∥∥∥
2

])2
+
(
E
[ ∥∥∥(P 0

s,a − P̂ 0
s,a

)∥∥∥
2

])2
+ 2E

[ ∥∥∥(P 0
s,a − P̂ 0

s,a

)∥∥∥
2

]( ∥∥∥(P 0
s,a − P̂ 0

s,a

)∥∥∥
2
− E

[ ∥∥∥(P 0
s,a − P̂ 0

s,a

)∥∥∥
2

])
a
≤ 2N log(|S||A|/(δ)))

N2
+

4

N
+

√
4
N

√
2N log(|S||A|/(δ)))

N

≤ 10 log(|S||A|/(δ))
N

=
L′

N

where in first inequality use (a+ b)2 = a2 + b2 + 2ab and where in (a) we combine equation (158)
and (157) and (156).

with L′ = 10 log(|S||A|/(δ)). Finally, plugging the previous equation in (155):

max
µ∈µλ

P̂0
s,a

(
P 0
s,a − P̂ 0

s,a

)
(µλ

P 0
s,a

− µ)| ≤ max
λ

∥∥∥(P 0
s,a − P̂ 0

s,a

)∥∥∥2
2
CSλ.

This term can be easily controlled by taking the supremum over λ, which is a 1 dimensional parameter.
Then we can bound λ ∈ [0, H ∥1∥∗]. Indeed,

λ∗ = ∥V − µ∗ − η∥∗ ≤ ∥V ∥∗ ≤ H ∥1∥∗ .
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Finally, we obtain:

max
λ

∥∥∥(P 0
s,a − P̂ 0

s,a

)∥∥∥2
2
CSλ ≤

L′CS ∥1∥∗
N(1− γ)

.

Regrouping all terms:

gs,a(α
λ
P̂
, V ) ≤ | max

µλ
P0
s,a

∈Mλ
P0
s,a

(
P 0
s,a − P̂ 0

s,a

)
(V − µλ

P 0
s,a

) + max
µλ
P̂0
s,a

∈Mλ
P̂0
s,a

(
P 0
s,a − P̂ 0

s,a

)
(µλ

P 0
s,a

− µλ
P̂ 0

s,a
)|

≤ 2

√
L

N

√
VarP 0

s,a
(V ) +

L′CS ∥1∥∗
N(1− γ)

+
L

N(1− γ)

≤ 2

√
L

N

√
VarP 0

s,a
(V ) +

3LCS ∥1∥∗
N(1− γ)

(159)

(160)

We can recognize that the second term is a second-order term as long as N ≥ (CS ∥1∥∗)2, we can
regroup the two terms. Finally, as gs,a(αλ

P̂
, V ) ≥ gs,a(α

λ
P , V ), we obtain

∣∣∣Pπ,V
s,a V − P̂π,V

s,a V
∣∣∣ ≤ 2

√
L

N

√
VarP 0

s,a
(V ) +

3LCS ∥1∥∗
N(1− γ)

(161)

It is important to note that the geometry of the norm is present in the second order term 3LCS∥1∥
N(1−γ)

but this term is negligible as it is proportional to 1/N with regard to the variance term in 1/
√
N .

Moreover, note that the quantity CS ∥1∥∗ = S for L2 norms.

For the specific case of TV which is not C2 smooth, this lemma still holds as in (144), we only need
to control one term without the dependency on data in the supremum as αλ

P reduces to a scalar α
which does not depend on P . Then extra decomposition using smoothness of the norm is not needed,
as the only remaining term in the max in (144) is the left-hand side term.

For the s-rectangular case, the first equation can be rewritten simply by factorizing by π(a|s) using
lemma 4.

∣∣∣Pπ,V
s,a V − P̂π,V

s,a V
∣∣∣ = ∣∣∣∑

a

π(a|s) max
µλ
P0
s,a

∈Mλ
P0
s,a

{
P 0
s,a(V − µ)− σ (sp((V − µ))∗)

}
− max

µλ
P̂0
s,a

∈Mλ
P̂0
s,a

{
P̂ 0
s,a(V − µλ

P̂ 0
s,a

)− σ
(
sp((V − µλ

P̂ 0
s,a

)∗

)} ∣∣∣ (162)

≤
∑
a

π(a|s)
(
2

√
L

N

√
VarP 0

s,a
(V ) +

LCS ∥1∥∗
N(1− γ)

)
(163)

= 2

√
L

N

√
VarP 0

s,a
(V ) +

3LCS ∥1∥∗
N(1− γ)

(164)

using sa-rectangular results, which gives the result for s-rectangular case.

Combining this lemma with a matrix notation using union bound, one has with probability 1− δ:

∣∣∣P̂π∗,V
V π∗,σ − Pπ∗,V V π∗,σ

∣∣∣ ≤ 2

√
L

N

√
VarP∗ (V ⋆,σ) +

3LCS ∥1∥∗
N(1− γ)

1 (165)

(166)
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D.3.4 Proof of Lemma 9

Using the same argument as in (216), it holds that for any α∗ solution of (53)

(
I − γP̂

π⋆,V
)−1√

Var
P̂

π⋆,V (V ⋆,σ) =

√
1

1− γ

√√√√ ∞∑
t=0

γt
(
P̂

π⋆,V
)t

Var
P̂

π⋆,V (V ⋆,σ). (167)

Then we can control Var
P̂

π⋆,V (V ⋆,σ) . Defining V ′ := V ⋆,σ−η1, η ∈ R, we use Bellman’s equation
in (32)) which lead to

V ′ = V ⋆,σ − η1 ≤ V ⋆,σ − η1 = rπ⋆ + γPπ⋆,V V ⋆,σ − η1 (168)

=rπ⋆ + γPπ⋆,V V ⋆,σ − γσsp(V ⋆,σ)∗ − η1 (169)

= r′π⋆ + γP̂
π⋆,V

V ′ + γ
(
Pπ⋆,V − P̂

π⋆,V
)
V ⋆,σ − γσsp(V ⋆,σ)∗ (170)

= r′π⋆ + γP̂
π⋆,V

V ′ + γ
(
Pπ⋆,V − P̂

π⋆,V
)
V ⋆,σ (171)

≤ r′π⋆ + γP̂
π⋆,V

V ′ + γ
(
Pπ⋆,V − P̂

π⋆,V
)
V ⋆,σ (172)

where in the second line we use Lemma 3. and we define r′π⋆ = rπ⋆ − (1 − γ)η < rπ⋆ < 1. We
obtain the same result in s-rectangular case using lemma 4 instead. Then

Var
P̂

π⋆,V (V ⋆,σ)
(a)
= Var

P̂
π⋆,V (V ′) = P̂

π⋆,V
(V ′ ◦ V ′)−

(
P̂

π⋆,V
V ′) ◦ (P̂π⋆,V

V ′)
= P̂

π⋆,V
(V ′ ◦ V ′)−

(
P̂

π⋆,V
V ′) ◦ (P̂π⋆,V

V ′)
(b)

≤ P̂
π⋆,V

(V ′ ◦ V ′)− 1

γ2

(
V ′ − r′π⋆ − γ

(
Pπ⋆,V − P̂

π⋆,V
)
V ⋆,σ

)◦2
= P̂

π⋆,V
(V ′ ◦ V ′)− 1

γ2
V ′ ◦ V ′ +

2

γ2
V ′ ◦

(
r′π⋆ + γ

(
Pπ⋆,V − P̂

π⋆,V
)
V ⋆,σ

)
− 1

γ2

(
r′π⋆ + γ

(
Pπ⋆,V − P̂

π⋆,V
)
V ⋆,σ

)◦2
(c)

≤ P̂
π⋆,V

(V ′ ◦ V ′)− 1

γ
V ′ ◦ V ′ +

2

γ2
∥V ′∥∞1 (173)

+
2

γ
∥V ′∥∞

∣∣∣(Pπ⋆,V − P̂
π⋆,V

)
V ⋆,σ

∣∣∣ (174)

≤ P̂
π⋆,V

(V ′ ◦ V ′)− 1

γ
V ′ ◦ V ′ +

2

γ2
∥V ′∥∞1 (175)

+
2

γ
∥V ′∥∞

(
2

√
L

(1− γ)2N
+

3CS ∥1∥∗ L
N(1− γ)

)
1, (176)

where (a) holds by the fact that VarPπ
(V −η1) = VarPπ

(V ) for any scalar η, (b) follows from (172),
moreover (c) comes from 1

γ2V
′ ◦ V ′ ≥ 1

γV
′ ◦ V ′ and −1 ≤ rπ⋆ − (1− γ)Vmin1 = r′π⋆ ≤ rπ⋆ ≤ 1.
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Finally, the inequality is due to Lemma 8. Plugging (176) into (167) gives,

(
I − γP̂

π⋆,V
)−1√

Var
P̂

π⋆,V (V ⋆,σ) (177)

≤
√

1

1− γ

( ∞∑
t=0

γt

(
P̂

π⋆,V
)t
(
P̂

π⋆,V
(V ′ ◦ V ′)− 1

γ
V ′ ◦ V ′ +

2

γ2
∥V ′∥∞1 (178)

+
2

γ
∥V ′∥∞

(
2

√
L

(1− γ)2N
+

3CS ∥1∥∗ L
N(1− γ)

)
1

))1/2
(i)

≤
√

1

1− γ

√√√√∣∣∣∣ ∞∑
t=0

γt
(
P̂

π⋆,V
)t(

P̂
π⋆,V

(V ′ ◦ V ′)− 1

γ
V ′ ◦ V ′

)∣∣∣∣
+

√
1

1− γ

√√√√ ∞∑
t=0

γt
(
P̂

π⋆,V
)t( 2

γ2
∥V ′∥∞1 +

2

γ
∥V ′∥∞

(
2

√
L

(1− γ)2N
+

3CS ∥1∥∗ L
N(1− γ)

)
1

)

≤
√

1

1− γ

√√√√∣∣∣∣ ∞∑
t=0

γt
(
P̂

π⋆,V
)t [

P̂
π⋆,V

(V ′ ◦ V ′)− 1

γ
V ′ ◦ V ′

]∣∣∣∣ (179)

+

√√√√(2 + 2
(
2
√

L
(1−γ)2N +

3CS∥1∥∗L

N(1−γ)

))
∥V ′∥∞

(1− γ)2γ2
1, (180)

using in (i) the triangle inequality. The final part of the proof focuses on the first term, which follows

∣∣∣∣ ∞∑
t=0

γt
(
P̂

π⋆,V
)t(

P̂
π⋆,V

(V ′ ◦ V ′)− 1

γ
V ′ ◦ V ′

)∣∣∣∣
=

∣∣∣∣( ∞∑
t=0

γt
(
P̂

π⋆,V
)t+1

−
∞∑
t=0

γt−1
(
P̂

π⋆,V
)t)

(V ′ ◦ V ′)

∣∣∣∣ ≤ 1

γ
∥V ′∥2∞1 (181)

using recursion between the two sums. Then, using (181) back to (180) leads to

(
I − γP̂

π⋆,V
)−1√

Var
P̂

π⋆,V (V ⋆,σ)

≤

√
∥V ∥2∞
γ(1− γ)

1 + 3

√√√√(1 + (√ L
(1−γ)2N +

CS∥1∥∗L

N(1−γ)

))
∥V ′∥∞

(1− γ)2γ2
1

≤ 4

√√√√(1 + (√ L
(1−γ)2N +

CS∥1∥∗L

N(1−γ)

))
∥V ′∥∞

(1− γ)2γ2
1 (182)

≤ 4

√√√√(1 + (1√ L
(1−γ)2N +

CS∥1∥∗L

N(1−γ)

))
∥V ′∥∗

(1− γ)2γ2
1 (183)
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Taking the infimum over η in the right-hand side, recall V ′ := V ⋆,σ − η1, we obtain the definition of
the span semi norm.(

I − γP̂
π⋆,V

)−1√
Var

P̂
π⋆,V (V ⋆,σ) ≤ 4

√√√√(1 + (√ L
(1−γ)2N +

CS∥1∥∗L

N(1−γ)

))
sp(V ⋆,σ)∗

(1− γ)2γ2
1

≤ 4

√√√√(1 + (√ L
(1−γ)2N +

CS∥1∥∗L

N(1−γ)

))
γ3(1− γ)2 max{1− γ,Cgσ}

1 (184)

≤ 4

√√√√(1 + (√ L
(1−γ)2N +

CS∥1∥∗L

N(1−γ)

))
γ3(1− γ)3

1, (185)

where the penultimate inequality follows from applying Lemma 5 with P = P 0 and π = π⋆:

sp(V ⋆,σ)∗ ≤ 1

γmax{1− γ,Cgσ}
or with an extra factor for s rectangular assumptions.

sp(V ⋆,σ)∗ ≤ 1

γmax{1− γ,mins ∥πs∥∗ σ̃Cg}
.

D.3.5 Proof of Lemma 10

In this proof, we will sa-rectangular notations, for any (s, a) ∈ S ×A, using the results in (144). In
the sa-rectangular case:

∣∣∣P̂ π̂,V̂
s,a V̂ π̂,σ − P π̂,V̂

s,a V̂ π̂,σ
∣∣∣ ≤ max

{ ∣∣∣∣(P 0
s,a − P̂ 0

s,a

) [
V̂ π̂,σ

]
αλ,ω∗

Ps,a

∣∣∣∣ , ∣∣∣∣(P 0
s,a − P̂ 0

s,a

) [
V̂ π̂,σ

]
αλ,ω∗

P̂s,a

∣∣∣∣ }
(186)

The first term in this max can be bounded using:

∣∣∣(P 0
s,a − P̂ 0

s,a

) [
V̂ π̂,σ

]
αλ,ω∗

Psa

∣∣∣ (187)

(a)

≤
(∣∣∣(P 0

s,a − P̂ 0
s,a

) [
V̂ ⋆,σ

]
αλ,ω∗

Psa

∣∣∣+ ∣∣∣(P 0
s,a − P̂ 0

s,a

)([
V̂ π̂,σ

]
αλ,ω∗

Psa

−
[
V̂ ⋆,σ

]
αλ,ω∗

Psa

)∣∣∣)
≤
( ∣∣∣(P 0

s,a − P̂ 0
s,a

) [
V̂ ⋆,σ

]
αλ,ω∗

Psa

∣∣+ ∥∥∥P 0
s,a − P̂ 0

s,a

∥∥∥
1

∥∥∥[V̂ π̂,σ
]
αλ,ω∗

Psa

−
[
V̂ ⋆,σ

]
αλ,ω∗

Psa

∥∥
∞

)
(b)

≤
∣∣∣(P 0

s,a − P̂ 0
s,a

) [
V̂ ⋆,σ

]
αλ,ω∗

Psa

∣∣∣+ 2
∥∥∥V̂ π̂,σ − V̂ ⋆,σ

∥∥∥
∞

(c)

≤
∣∣∣(P 0

s,a − P̂ 0
s,a

) [
V̂ ⋆,σ

]
αλ,ω∗

Psa

∣∣∣+ 2εopt (188)

where (a) comes from the triangle inequality, and (b) comes from
∥∥P 0

s,a − P̂ 0
s,a

∥∥
1

≤ 2 and∥∥[V̂ π̂,σ
]
αλ,ω∗

Psa

−
[
V̂ ⋆,σ

]
αλ,ω∗

Psa

∥∥
∞ ≤

∥∥V̂ π̂,σ − V̂ ⋆,σ
∥∥
∞, and (c) follows from the definition of the

optimization error in (55). The second term of the max can be controlled in the same manner, i.e.:

∣∣∣∣(P 0
s,a − P̂ 0

s,a

) [
V̂ π̂,σ

]
αλ,ω∗

P̂sa

∣∣∣∣ ≤ ∣∣∣∣(P 0
s,a − P̂ 0

s,a

) [
V̂ ⋆,σ

]
αλ,ω∗

P̂sa

∣∣∣∣+ 2εopt (189)

≤ | max
µλ
P0
s,a

∈Mλ
P0
s,a

(
P 0
s,a − P̂ 0

s,a

)
(V̂ ⋆,σ − µλ

P 0
s,a

) + max
µλ
P̂0
s,a

∈Mλ
P̂0
s,a

(
P 0
s,a − P̂ 0

s,a

)
(µλ

P 0
s,a

− µλ
P̂ 0

s,a
)|

(190)
+ 2εopt (191)
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where the last inequality follow the decomposition of (150). Finally, to control the remaining term

max
µλ
P0
s,a

∈Mλ
P0
s,a

(
P 0
s,a − P̂ 0

s,a

)
(V̂ ⋆,σ − µλ

P 0
s,a

) = max
αλ

P∈Aλ
P

{
(P 0

s,a − P̂ 0
s,a) [V ]αλ

P

}
(192)

(191) for any given α ∈ [0, αλ,ω∗
Psa

[⊂
[
0, 1

1−γ

]S
in the variational family with one parameter λ, with

the dependency between V̂ ⋆,σ and P̂ 0, we resort to the following leave-one-out argument or absorbing
MDPs used in [Agarwal et al., 2020, Li et al., 2022b, Shi and Chi, 2022, Clavier et al., 2023]. To
begin, we create a collection of auxiliary RMDPs that exhibit the intended statistical independence
between robust value functions and the estimated nominal transition kernel. These auxiliary RMDPs
are designed to be minimally distinct from the initial RMDPs, subsequently, we manage to control
the relevant term within these auxiliary RMDPs and demonstrate that its value closely approximates
the target quantity for the desired RMDP. Recall that the empirical infinite-horizon robust MDP M̂rob

is defined using the nominal transition kernel P̂ 0. Inspired by Agarwal et al. [2020], we can construct
an auxiliary absorbing robust MDP M̂s,u

rob for each state s and any non-negative scalar u ≥ 0, so
that it is the same as M̂rob except for the transition properties in state s. These auxiliary MDPS are
called absorbing MDPs are have been used for the first time in the context of RMDPS in Clavier et al.
[2023]. Defining the reward function and nominal transition kernel of M̂s,u

rob as P s,u and rs,u, which
are expressed as follows using the same notation as Shi et al. [2023]:

{
rs,u(s, a) = u ∀a ∈ A,

rs,u(s̃, a) = r(s̃, a) ∀(s̃, a) ∈ S ×A and s̃ ̸= s.
(193)

{
P s,u(s′ | s, a) = 1(s′ = s) ∀(s′, a) ∈ S ×A,

P s,u(· | s̃, a) = P̂ 0(· | s̃, a) ∀(s̃, a) ∈ S ×A and s̃ ̸= s,
(194)

Nominal transition probability at state s of the auxiliary M̂s,u
rob never leaves state s once entered,

which gives the name absorbing to these auxiliary RMPDs. Finally, we define the robust Bellman
operator T̂ σ

s,u(·) associated M̂s,u
rob as

T̂ σ
s,u(Q)(s̃, a) = rs,u(s̃, a) + γ inf

P∈U sa,σ(P s,u
s̃,a )

PV, with V (s̃) = max
a

Q(s̃, a). (195)

in sa-rectangular case and with stochastic policy in s-rectangular case. Using these auxiliary RMDPs
we can remark equivalence between M̂rob and the auxiliary RMDP M̂s,u

rob fixed-point. First, Q̂⋆,σ

is the unique-fixed point of T̂ σ(·) with associated value V̂ ⋆,σ. We will show that the robust value
function V̂ ⋆,σ

s,u⋆ obtained from the fixed point of T̂ σ
s,u(·)is the same as the the robust value function

V̂ ⋆,σ derived from T̂ σ(·), as long as we choose u as

u⋆ := u⋆(s) = V̂ ⋆,σ(s)− γ inf
P∈U sa,σ(es)

PV̂ ⋆,σ. (196)

with es is the s-th standard basis vector in RS . This assertion is verified as:

• First for state s′ ̸= s, for all a ∈ A: it holds

rs,u
⋆

(s′, a) + γ inf
P∈U sa,σ(P s,u⋆

s′,a )

PV̂ ⋆,σ = r(s′, a) + γ inf
P∈U sa,σ(P̂ 0

s′,a)
PV̂ ⋆,σ

= T̂ σ(Q̂⋆,σ)(s′, a) = Q̂⋆,σ(s′, a), (197)
where the first equality holds because of (193) and (194), and the last inequality comes
from that Q̂⋆,σ is the fixed point of T̂ σ(·) (see Lemma C.3) and the definition of the robust
Bellman operator in (13).

• Then for state s, for any a ∈ A :

rs,u
⋆

(s, a) + γ inf
P∈Uσ(P s,u⋆

s,a )

PV̂ ⋆,σ = u⋆ + γ inf
P∈U sa,σ(es)

PV̂ ⋆,σ

= V̂ ⋆,σ(s)− γ inf
P∈U sa,σ(es)

PV̂ ⋆,σ + γ inf
P∈U sa,σ(es)

PV̂ ⋆,σ = V̂ ⋆,σ(s), (198)
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using in the first equality is the definition of P s,u⋆

s,a in (194) and where we use the definition
of u⋆ in (196) in the second one.

Finally, we have proved that there exists a fixed point Q̂⋆,σ
s,u⋆ of the operator T̂ σ

s,u⋆(·) by taking{
Q̂⋆,σ

s,u⋆(s, a) = V̂ ⋆,σ(s) ∀a ∈ A,

Q̂⋆,σ
s,u⋆(s′, a) = Q̂⋆,σ(s′, a) ∀s′ ̸= s and a ∈ A.

(199)

we have confirmed the existence of a fixed point of the operator T̂ σ
s,u⋆(·) with corresponding value

function V̂ ⋆,σ
s,u⋆ that coincide with V̂ ⋆,σ. Note that the corresponding properties between M̂rob and

M̂s,u
rob in Step 1 and Step 2 hold in fact for any uncertainty set and s- or sa-rectangular assumptions.

Equipped with these fixed point equalities, we can use concentration inequalities to show this lemma.

Concentration inequality using an ε-net for all reward values u. First we can verify that

0 ≤ u⋆ ≤ [V̂ ⋆,σ(s)]αλ,ω∗
Ps,a

≤ V̂ ⋆,σ(s) ≤ 1

1− γ
. (200)

Then, we define a Nε2-net over the interval
[
0, 1/(1 − γ)

]
, where |Nε2 | the size of the net can be

controlled by |Nε2 | ≤ 3
ε2(1−γ) [Vershynin, 2018]. The only parameter that varies is λ in the variation

family, αλ
Psa

so we have 1-dimensional control and not a vector in RS . Then similarly to Lemma C.3,
it holds that for each u ∈ Nε2 , there exists a unique fixed point Q̂⋆,σ

s,u of the operator T̂ σ
s,u(·), which

satisfies 0 ≤ Q̂⋆,σ
s,u ≤ 1

1−γ · 1. Consequently, the corresponding robust value function can be upper

bounded by
∥∥∥V̂ ⋆,σ

s,u

∥∥∥
∞

≤ 1
1−γ . Using (194) and (193) by construction for all u ∈ Nε2 , M̂s,u

rob is

statistically independent of P̂ 0
s,a. This independence indicates that [V̂ ⋆,σ

s,u ]α and P̂ 0
s,a are independent

for a fixed α. Using (148) and (149) and taking the union bound over all (s, a, α) ∈ S ×A×Nε1 ,
u ∈ Nε2 gives that, with probability at least 1− δ, it holds for all (s, a, u) ∈ S ×A×Nε2 that

max
αλ,ω

Psa
∈Aλ,ω

Psa

∣∣∣(P 0
s,a − P̂ 0

s,a

) [
V̂ ⋆,σ
s,u

]
αλ,ω∗

Psa

∣∣∣ ≤ 2

√
2 log(

18∥1∥∗SAN |Nε2 |
δ )

N

√
VarP 0

s,a
(V̂ ⋆,σ

s,u ) (201)

+ ε2

≤ 2

√
2 log(

18∥1∥∗SAN |Nε2
|

δ )

(1− γ)2N
+ ε2, (202)

Finally, we use uniform concentration to obtain the lemma. Recalling that u⋆ ∈
[
0, 1

1−γ

]
(see

(200)), we can always find some u ∈ Nε2 such that |u − u⋆| ≤ ε2. Consequently, plugging in the
operator T̂ σ

s,u(·) in (195) yields

∀Q ∈ RSA :
∥∥∥T̂ σ

s,u(Q)− T̂ σ
s,u⋆(Q)

∥∥∥
∞

= |u− u⋆| ≤ ε2

We can then remark that the fixed points of T̂ σ
s,u(·) and T̂ σ

s,u⋆(·) obey∥∥∥Q̂⋆,σ
s,u − Q̂⋆,σ

s,u⋆

∥∥∥
∞

=
∥∥∥T̂ σ

s,u(Q̂
⋆,σ
s,u)− T̂ σ

s,u⋆(Q̂
⋆,σ
s,u⋆)

∥∥∥
∞

≤
∥∥∥T̂ σ

s,u(Q̂
⋆,σ
s,u)− T̂ σ

s,u(Q̂
⋆,σ
s,u⋆)

∥∥∥
∞

+
∥∥∥T̂ σ

s,u(Q̂
⋆,σ
s,u⋆)− T̂ σ

s,u⋆(Q̂
⋆,σ
s,u⋆)

∥∥∥
∞

≤ γ
∥∥∥Q̂⋆,σ

s,u − Q̂⋆,σ
s,u⋆

∥∥∥
∞

+ ε2,

where we use that the operator T̂ σ
s,u(·) is a γ-contraction. It gives that:∥∥∥Q̂⋆,σ

s,u − Q̂⋆,σ
s,u⋆

∥∥∥
∞

≤ ε2
(1− γ)

and
∥∥∥V̂ ⋆,σ

s,u − V̂ ⋆,σ
s,u⋆

∥∥∥
∞

≤
∥∥∥Q̂⋆,σ

s,u − Q̂⋆,σ
s,u⋆

∥∥∥
∞

≤ ε2
(1− γ)

.

(203)
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Finally to control the first term in (191), using the identity V̂ ⋆,σ = V̂ ⋆,σ
s,u⋆ or fixed point relation

between the two RMPDS, established in previous step of the proof gives that: for all (s, a) ∈ S ×A,

max
αλ,ω

Ps,a
∈Aλ,ω

Ps,a

∣∣∣∣(P 0
s,a − P̂ 0

s,a

)
[V̂ ⋆,σ]αλ,ω

Ps,a

∣∣∣∣
≤ max

αλ,ω
Ps,a

∈Aλ,ω
Ps,a

∣∣∣∣(P 0
s,a − P̂ 0

s,a

)
[V̂ ⋆,σ]αλ,ω

Ps,a

∣∣∣∣
(a)

≤ max
αλ,ω

Ps,a
∈Aλ,ω

Ps,a

{∣∣∣∣(P 0
s,a − P̂ 0

s,a

)
[V̂ ⋆,σ

s,u ]αλ,ω
Ps,a

∣∣∣∣+ ∣∣∣∣(P 0
s,a − P̂ 0

s,a

)(
[V̂ ⋆,σ

s,u ]αλ,ω
Ps,a

− [V̂ ⋆,σ
s,u⋆ ]αλ

Ps,a

)∣∣∣∣}
(b)

≤ max
αλ,ω

Ps,a
∈Aλ,ω

Ps,a

∣∣∣(P 0
s,a − P̂ 0

s,a

)
[V̂ ⋆,σ

s,u ]αλ
Ps,a

∣∣∣+ 2ε2
(1− γ)

(c)

≤ 2ε2
(1− γ)

+ ε2 + 2

√
2 log(

18∥1∥∗SAN |Nε2 |
δ )

N

√
VarP 0

s,a
(V̂ ⋆,σ

s,u ) +
4 log(

18∥1∥∗SAN |Nε2 |
δ )

3N(1− γ)

≤ 3ε2
(1− γ)

+ 2

√
2 log(

18∥1∥∗SAN |Nε2 |
δ )

N

√
VarP 0

s,a
(V̂ ⋆,σ) +

4 log(
18∥1∥∗SAN |Nε2 |

δ )

3N(1− γ)

+ 2

√
2 log(

18∥1∥∗SAN |Nε2 |
δ )

N

√∣∣∣VarP 0
s,a

(V̂ ⋆,σ)−VarP 0
s,a

(V̂ ⋆,σ
s,u )

∣∣∣
(d)

≤ 3ε2
(1− γ)

+ 2

√
2
log(

18∥1∥∗SAN |Nε2
|

δ )

N

√
VarP 0

s,a
(V̂ ⋆,σ) + 2

√
4ε2 log(

18∥1∥∗SAN |Nε2
|

δ )

N(1− γ)2

(204)

≤ 2

√
L′′

N

√
VarP 0

s,a
(V̂ ⋆,σ) +

14 log(
54∥1∥∗SAN |Nε2

|
δ )

N(1− γ)
(205)

≤ 16

√
L′′

(1− γ)2N
, (206)

with L′′ = log
(

54∥1∥∗SAN2

(1−γ)δ

)
where (a) comes from triangular inequality, (b) is due (203), for any

α ∈ RS ∣∣∣(P 0
s,a − P̂ 0

s,a

)(
[V̂ ⋆,σ

s,u ]α − [V̂ ⋆,σ
s,u⋆ ]α

)∣∣∣ ≤ ∥∥∥P 0
s,a − P̂ 0

s,a

∥∥∥
1

∥∥∥[V̂ ⋆,σ
s,u ]α − [V̂ ⋆,σ

s,u⋆ ]α

∥∥∥
∞

≤ 2
∥∥∥V̂ ⋆,σ

s,u − V̂ ⋆,σ
s,u⋆

∥∥∥
∞

≤ 2ε2
(1− γ)

, (207)

(c) follows from (201), (d) holds using Lemma 1 with (203). Here, the two last inequalities hold by

letting ε2 =
2 log(

18∥1∥∗SAN|Nε2
|

δ )

N , which gives |Nε2 | ≤ 3
ε2(1−γ) ≤

3N
1−γ , and the last inequality holds

by the fact VarP 0
s,a

(V̂ ⋆,σ) ≤ ∥V̂ ⋆,σ∥∞ ≤ 1
1−γ and letting N ≥ 2 log

(
54∥1∥∗SAN2

(1−γ)δ

)
= L′′.

Rewriting (186), the first term of the max is controlled.

max
{ ∣∣∣∣(P 0

s,a − P̂ 0
s,a

) [
V̂ π̂,σ

]
αλ∗

Ps,a

∣∣∣∣ , ∣∣∣∣(P 0
s,a − P̂ 0

s,a

) [
V̂ π̂,σ

]
αλ∗

P̂s,a

∣∣∣∣ }
The second term can be controlled by the same term as the first one plus an additional term with∣∣∣∣(P 0

s,a − P̂ 0
s,a

) [
V̂ π̂,σ

]
αλ∗

P̂s,a

∣∣∣∣ ≤
| max
µλ
P0
s,a

∈Mλ
P0
s,a

(
P 0
s,a − P̂ 0

s,a

)
(V̂ ⋆,σ − µλ

P 0
s,a

) + max
µλ
P̂0
s,a

∈Mλ
P̂0
s,a

(
P 0
s,a − P̂ 0

s,a

)
(µλ

P 0
s,a

− µλ
P̂ 0

s,a
)|
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and similarly to previous lemma in (159), the residual or term in the right in the previous equation
can be controlled with L′CS∥1∥∗

N(1−γ) Finally, putting (205) and (206) back into Equation (191) and using
Eq. (206) with probability at least 1− δ we obtain

∣∣∣P̂ π̂,V̂
s,a V̂ π̂,σ − P π̂,V̂

s,a V̂ π̂,σ
∣∣∣ ≤ max

αλ,ω
Ps,a

∈Aλ,ω
Ps,a

∣∣∣∣(P 0
s,a − P̂ 0

s,a

)
[V̂ ⋆,σ]αλ,ω

Ps,a

∣∣∣∣+ 2εopt

≤ 2

√
L′

N

√
VarP 0

s,a
(V̂ ⋆,σ) + 2εopt +

14L′′CS ∥1∥∗
N(1− γ)

≤ 2

√
L′′

(1− γ)2N
+ 2εopt +

14L′′CS ∥1∥∗
N(1− γ)

, (208)

∀(s, a) ∈ S ×A. Using matrix form we obtain finally:

∣∣∣∣P̂ π̂,V̂
V̂ π̂,σ − P π̂,V̂ V̂ π̂,σ

∣∣∣∣ ≤ 2

√
L′′

N

√
VarP 0

s,a
(V̂ ⋆,σ)1 + 2εopt1

≤ 2

√
L′′

(1− γ)2N
1 + 2εopt1.+

14L′′CS ∥1∥∗
N(1− γ)

1 (209)

The proof is similar in the s-rectangular case, factorising by π(a|s), like in in 8. Moreover, the proof
is similar for TV without the geometric term depending on CS .

D.3.6 Proof of Lemma 11

We always use the same manner as in Appendix D.3.4. Similarly to (167), it holds:

(
I − γP π̂,V̂

)−1√
Var

P π̂,V̂ (V̂ π̂,σ) ≤
√

1

1− γ

√√√√ ∞∑
t=0

γt
(
P π̂,V̂

)t
Var

P π̂,V̂ (V̂ π̂,σ). (210)

In order to upper bound Var
P π̂,V̂ (V̂

π̂,σ), we define V ′ := V̂ π̂,σ − η1 with η ∈ R. Using as (174), it
holds

Var
P π̂,V̂ (V̂

π̂,σ) ≤ P π̂,V̂ (V ′ ◦ V ′)− 1

γ
V ′ ◦ V ′ +

2

γ2
∥V ′∥∞1 +

2

γ
∥V ′∥∞

∣∣∣∣(P̂ π̂,V̂
− P π̂,V̂

)
V̂ π̂,σ

∣∣∣∣
≤ P π̂,V̂ (V ′ ◦ V ′)− 1

γ
V ′ ◦ V ′+ (211)

2

γ2
∥V ′∥∞1 +

2

γ
∥V ′∥∞

(
2

√
L′′

(1− γ)2N
+ 2εopt +

14L′′CS ∥1∥∗
N(1− γ)

)
1, (212)
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where the last inequality makes use of Lemma 10. Plugging (212) back into (210) leads to

(
I − γP π̂,V̂

)−1√
Var

P π̂,V̂ (V̂ π̂,σ)
(a)

≤
√

1

1− γ

√√√√∣∣∣∣ ∞∑
t=0

γt
(
P π̂,V̂

)t (
P π̂,V̂ (V ′ ◦ V ′)− 1

γ
V ′ ◦ V ′

)∣∣∣∣
+

√√√√ 1

(1− γ)2γ2

(
2

√
L′′

(1− γ)2N
+ 2εopt +

14L′′CS ∥1∥∗
N(1− γ)

)
∥V ′∥∞1

(b)

≤

√
∥V ′∥2∞
γ(1− γ)

1 +

√√√√√
(
2
√

L′′

(1−γ)2N + 2εopt +
14L′′CS∥1∥∗

N(1−γ)

)
∥V ′∥∞

(1− γ)2γ2
1

(c)

≤

√
∥V ′∥2∞
γ(1− γ)

1 + 5

√(
1 + εopt +

L′′CS ∥1∥∗
N(1− γ)

) ∥V ′∥∞
(1− γ)2γ2

1 (213)

≤ 6

√(
1 + εopt +

L′′CS ∥1∥∗
N(1− γ)

) ∥V ′∥∞
(1− γ)2γ2

1, (214)

where (a) is the same as (180), (b) holds by repeating the argument of (181), (c) follows by taking
N ≥ L′′

(1−γ)2 and then the last inequality holds by ∥V ′∥∞ ≤ ∥V ⋆,σ∥∞ ≤ 1
1−γ . Then taking the

infimum over η in the right-hand side of the equation in the definition of V ′ and using sp(.)∞ ≤ ∥.∥∗
gives

(
I − γP π̂,V̂

)−1√
Var

P π̂,V̂ (V̂ π̂,σ) ≤ 6

√(
1 + εopt +

L′′CS ∥1∥∗
N(1− γ)

) sp(V )∞
(1− γ)2γ2

1

Finally, applying Lemma 5 with P = P̂ 0 and π = π̂ yields

sp(V̂ π̂,σ)∗ ≤ 1

γmax{1− γ, γCgσ}
, (215)

for sa-rectangular or

sp(V̂ π̂,σ)∗ ≤ 1

γmax{1− γ,mins ∥π̂∥∗ σ̃}

in the s-rectangular case, which can be inserted into (214) and gives in sa-rectangular case:

(
I − γP π̂,V̂

)−1√
Var

P π̂,V̂ (V̂ π̂,σ) ≤ 6

√√√√ (
1 + εopt +

L′′CS∥1∥∗
N(1−γ)

)
γ3(1− γ)2 max{1− γ, σ}

1

≤ 6

√√√√(1 + εopt +
L′′CS∥1∥∗
N(1−γ)

)
(1− γ)3γ3

1

where first inequalities comes from that we can bound it Eq. left-hand side of equation (214) by
∥V ′∥∞ ≤ ∥V ⋆,σ∥∞ ≤ 1

1−γ . Proof for s-rectangular is similar, but requires adding an extra factor
depending on the norm of the current policy and we have:

(
I − γP π̂,V̂

)−1√
Var

P π̂,V̂ (V̂ π̂,σ) ≤ 6

√√√√ (
1 + εopt +

L′′CS∥1∥∗
N(1−γ)

)
γ3(1− γ)2 max{1− γ,Cgσ̃mins ∥π̂s∥∞}

1

≤ 6

√√√√(1 + εopt +
L′′CS∥1∥∗
N(1−γ)

)
(1− γ)3γ2

1.
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D.3.7 Proof of Lemma 7

First, if each row of Pπ belongs to the simplex ∆(S), it lead that the row of (1 − γ) (I − γPπ)
−1

falls into ∆(S). Then,

(I − γPπ)
−1
√
VarPπ (V

π,P ) =
1

1− γ
(1− γ) (I − γPπ)

−1
√
VarPπ (V

π,P )

(a)

≤ 1

1− γ

√
(1− γ) (I − γPπ)

−1
VarPπ

(V π,P )

=

√
1

1− γ

√√√√ ∞∑
t=0

γt (Pπ)
t
VarPπ

(V π,P ), (216)

where (a) is due to Jensen’s inequality. Then for any η ∈ R+, V ′ := V π,P − η1 , we can upper bound
VarPπ (V

π,P ) :

VarPπ
(V π,P )

(i)
= VarPπ

(V ′) = Pπ (V
′ ◦ V ′)−

(
PπV

′) ◦ (PπV
′)

(ii)

≤ Pπ (V
′ ◦ V ′)− 1

γ2
(V ′ − rπ + (1− γ)η1) ◦ (V ′ − rπ + (1− γ)η1)

= Pπ (V
′ ◦ V ′)− 1

γ2
V ′ ◦ V ′ +

2

γ2
V ′ ◦ (rπ − (1− γ)η1) (217)

− 1

γ2
(rπ − (1− γ)η1) ◦ (rπ − (1− γ)η1)

≤ Pπ (V
′ ◦ V ′)− 1

γ
V ′ ◦ V ′ +

2

γ2
∥V ′∥∞1 ≤ Pπ (V

′ ◦ V ′)− 1

γ
V ′ ◦ V ′ +

2

γ2
∥V ′∥∞1, (218)

where (i) holds by the fact that VarPπ
(V π,P − b1) = VarPπ

(V π,P ) for any scalar b and V π,P ∈ RS ,
(ii) follows from V ′ ≤ rπ + γPπV

π,P − η1 = rπ − (1 − γ)η1 + γPπV
′, and the last line arises

from 1
γ2V

′ ◦ V ′ ≥ 1
γV

′ ◦ V ′ and ∥rπ − (1− γ)η1∥∞ ≤ 1. for η ∈ [0, 1/(1− γ)[. Plugging (218)
back to (216) leads to

(I − γPπ)
−1
√
VarPπ

(V π,P ) ≤
√

1

1− γ

√√√√ ∞∑
t=0

γt (Pπ)
t

(
Pπ (V ′ ◦ V ′)− 1

γ
V ′ ◦ V ′ +

2

γ2
∥V ′∥∞1

)
(i)

≤
√

1

1− γ

√√√√∣∣∣∣ ∞∑
t=0

γt (Pπ)
t

(
Pπ (V ′ ◦ V ′)− 1

γ
V ′ ◦ V ′

) ∣∣∣∣+√ 1

1− γ

√√√√ ∞∑
t=0

γt (Pπ)
t 2

γ2
∥V ′∥∞1

≤
√

1

1− γ

√√√√∣∣∣∣( ∞∑
t=0

γt (Pπ)
t+1 −

∞∑
t=0

γt−1 (Pπ)
t

)
(V ′ ◦ V ′)

∣∣∣∣+
√

2∥V ′∥∞1

γ2(1− γ)2

(ii)

≤

√
∥V ′∥2∞1

γ(1− γ)
+

√
2∥V ′∥∞1

γ2(1− γ)2

≤

√
8∥V ′∥∞1

γ2(1− γ)2
, (219)

(220)

where (i) holds due to, (ii) holds by following recursion between the two sums, and the last inequality
holds because∥V ′∥∞ ≤ 1

1−γ . Then taking the minimum over η in the right-hand side of the equation
gives the result.

(I − γPπ)
−1
√

VarPπ
(V π,P ) ≤

√
8sp(V π,P )∞
γ2(1− γ)2
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However, we also ∥V ′∥∞ ≤ ∥V π,P ∥∞ ≤ 1
1−γ in (219). So finally, the result is

(I − γPπ)
−1
√

VarPπ (V
π,P ) ≤

√
8

γ2(1− γ)2
sp(V π,P )∞1.

E Proof of Theorem 2

In this section, we focus on the scenarios in the uncertainty sets are constructed with (s, a)-
rectangularity condition with some general norms. Towards this, we firstly observe that for the
two limiting cases ℓ1 norm and ℓ∞ norm, one has ∥p1 − p2∥1 ≤ 2 and ∥p1 − p2∥∞ ≤ 1 for any two
probability distribution p1, p2 ∈ RS . Namely, the accessible ranges of the uncertainty level σ for ℓ1
norm and ℓ∞ norm are (0, 2] and (0, 1], respectively. In addition, we have

∀p1, p2 ∈ RS : ∥p1 − p2∥∞ ≤ ∥p1 − p2∥ ≤ ∥p1 − p2∥1 (221)

for any norm ∥ · ∥. It indicates that the accessible range of the uncertainty level σ∥·∥ for any given
norm ∥ · ∥ is between

(
0, σmax

∥·∥
]
, where 1 ≤ σmax

∥·∥ ≤ 2.

To continue, we specify the definition of the uncertainty set with sa-rectangularity condition with
some given general norm ∥ · ∥ as below: for any nominal transition kernel P ∈ RSA×S ,

Uσ
∥·∥(P ) := Uσ

∥·∥(P ) = ⊗ Uσ
p (Ps,a), Uσ

∥·∥(Ps,a) :=
{
P ′
s,a ∈ ∆(S) :

∥∥P ′
s,a − Ps,a

∥∥ ≤ σ∥·∥

}
.

(222)

Then, we recall the assumption of the uncertainty radius σ∥·∥ ∈
(
0, σmax

∥·∥ (1− c0)
]

with 0 < c0 < 1.

Then, resorting to the same class of hard MDPs in [Shi et al., 2023, Section C.1], we can complete
the proof by directly following the same proof pipeline of Shi et al. [2023, Section C] by replacing σ
with σmax

∥·∥ σ∥·∥.

F Proof of Theorem 4

Developing the lower bound for the cases with s-rectangular uncertainty set involves several new
challenges compared to that of (s, a)-rectangular cases. Specifically, the first challenge is that the
optimal policy can be stochastic and hard to be characterized with a closed form for the RMDPs with
a s-rectangular uncertainty set, rather than deterministic polices in (s, a)-rectangular cases. Such
richer and smoother class of optimal policies makes slightly changing the transition kernel generally
could only leads to a smoothly changed stochastic optimal policy instead of a completely different
one. Such reduced changing of optimal policy further gives smaller performance gap, thus challenges
of a tighter lower bound. Second, most of the hard instances in the literature are constructed as SA
states with a constant number of action spaces without loss of generality. While when it comes to
s-rectangular uncertainty set, the action space size becomes important and can’t be assumed as a
constant anymore. So a new class of instances are required.

To address these challenges, in this section, we construct a new set of hard RMDP instances for two
limiting cases: ℓ1 norm and ℓ∞ norm.

F.1 Construction of the hard problem instances

Before proceeding, we introduce two useful sets related to the state space and action space as below:

S = {0, 1, . . . , S}, and A = {0, 1, · · · , A− 1}.

In this section, we construct a set of RMDPs termed as Mℓ∞ , which consists of S(A−1) components
including S(A− 1) components, each associates with some different state-action pair. Specifically, it
is defined as

Mℓ∞ :=
{
Mθ =

(
S,A,Uσ(P θ), r, γ

)
| θ ∈ Θ =

{
(i, j) : (i, j) ∈ S ×A \ {0}

}}
. (223)

We introduce the detailed definition of Mℓ∞ by introducing several key components of it sequentially.
In particular, for any RMDP Mθ ∈ Mℓ∞ , the state space is of size 2S, which includes two classes

50



of states X = {x0, x1, · · · , xS−1} and Y = {y0, y1, · · · , yS−1}. The action space for each state is
A of A possible actions. So we have totally 2S states and there is in total 2SA state-action pairs.

Armed with the above definitions, we can first introduce the following nominal transition kernel: for
all (s, a) ∈ X ∪ Y ×A

P (0,0)(s′ | s, a) =


p1(s′ = yi) + (1− p)1(s′ = xi) if s = xi, a = 0, ∀i ∈ S

q1(s′ = yi) + (1− q)1(s′ = xi) if s = xi, a ̸= 0, ∀i ∈ S

1(s′ = s) if s ∈ Y

(224)

Here, p and q are set according to

0 ≤ p ≤ 1 and 0 ≤ q = p−∆ (225)

for some p and ∆ > 0 that will be introduced momentarily.

Then we introduce the S(A− 1) components inside M∞. Namely, for any (i, j) ∈ S ×A \ {0}, the
nominal transition kernel of M(i,j) is specified as

P (i,j)(s′ | s, a) =


p1(s′ = yi) + (1− p)1(s′ = xi) if s = xi, a = j

q1(s′ = yi) + (1− q)1(s′ = xi) if s = xi ∈ X , a = 0

P (0,0)(s′ | s, a) otherwise

(226)

In words, the nominal transition kernel of each variant M(i,j) only differs slightly from that of the
basic nominal transition kernel P (0,0) when s = xi and a = {0, j}, which makes all the components
inside Mℓ∞ closed to each other.

In addition, the reward function is defined as

∀a ∈ A : r(s, a) =

 1 if s ∈ Y

0 otherwise.
(227)

Uncertainty set of the transition kernels. Recall the following useful notation for any transition
probability P , i.e., the transition vector associated with some state s is denoted as:

Ps := P (·, · | s) ∈ R1×SA, P 0
s := P 0(·, · | s) ∈ R1×SA. (228)

With this in hand, the uncertainty set (definition in (5)) with ℓ∞ norm for any P θ with θ ∈ Θ can be
represented as:

U s,σ̃
∞ (P θ

s ) := U s,σ̃
∥.∥(P

θ
s ) =

{
P ′
s ∈ ∆(S)A :

∥∥P ′
s − P θ

s

∥∥ ≤ σ̃ = σ ∥1∥∞ = σ
}
. (229)

So without loss of generality, we set the radius σ ∈ (0, (1− c0)] with 0 < c0 < 1. Before proceeding,
we observe that as the uncertainty set above is defined with respect to ℓ∞, it directly implies that for
each (s, a) ∈ S ×A, the uncertainty set is independent and can be decomposed as

U s,σ̃
∞ (P θ

s ) = ⊗U s,σ̃
∥.∥(P

θ
s,a) =

{
P ′
s,a ∈ ∆(S) :

∥∥P ′
s,a − P θ

s,a

∥∥ ≤ σ
}
. (230)

Notably, this indicates that using s-rectangular uncertainty set with ℓ∞ norm as the divergence
function is analogous to the case of using (s, a)-rectangular uncertainty set with ℓ∞ norm. As a
result, we follow the pipeline of the prior art Shi et al. [2023, Section C] which established the
minimax-optimal lower bound for (s, a)-rectangular RMDPs with TV distance, which is analogous
to the ℓ∞ case. Towards this, we set p, q,∆ as the same as the ones in Shi et al. [2023, Section C.1],
where we recall the expressions of p, q,∆ for self-contained as below: taking c1 := c0

2 ,

p = (1 + c1)max{1− γ, σ} and ∆ ≤ c1 max{1− γ, σ}, (231)

which ensure several facts:

0 ≤ p ≤ 1 and p ≥ q ≥ max{1− γ, σ}. (232)
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Value functions and optimal policies. For each RMDP instance Mθ ∈ Mℓ∞ , with some abuse
of notation, we denote π⋆

θ as the optimal policy. In addition, let V π,σ
θ (resp. V ⋆,σ

θ ) represent the
corresponding robust value function of any policy π (resp. π⋆

θ ) with uncertainty level σ. Armed with
these notations, the following lemma shows some essential properties concerning the value functions
and optimal policies; the proof is postponed to Appendix F.3.
Lemma 12. Consider any Mθ ∈ Mℓ∞ and any policy π, one has

∀(i, j) ∈ Θ : V π,σ
(i,j)(xi) ≤

γ
(
zπ(i,j) − σ

)
(1− γ)

(
1 +

γ
(
zπ
(i,j)

−σ
)

1−γ(1−σ)

)
(1− γ (1− σ))

, (233)

where zπ(i,j) is defined as

∀(i, j) ∈ Θ : zπ(i,j) := pπ(j |xi) + q [1− π(j |xi)] . (234)

In addition, the robust optimal value functions and the robust optimal policies satisfy

∀(i, j) ∈ Θ, s ∈ X : V ⋆,σ
(i,j)(s) =

γ (p− σ)

(1− γ)
(
1 + γ(p−σ)

1−γ(1−σ)

)
(1− γ (1− σ))

(235)

and

π⋆
(i,j)(j |xi) = 1 and π⋆

(i,j)(0 | s) = 1 ∀s ∈ X \ {xi}. (236)

In words, this lemma shows that for any RMDP M(i,j), the optimal policy on state xi satisfies
π⋆
(i,j)(j |xi) = 1 and will focus on a = 0 for all other states s ∈ X \ {xi}.

F.2 Establishing the minimax lower bound

Step 1: converting the goal to estimate (i, j). Now we are in position to derive the lower bound.
Recall the goal is to control the following quantity associated with any policy estimator π̂ based on
the dataset with in total Nall samples:

max
(i,j)∈Θ

P(i,j)

{
max

s∈X∪Y

(
V ⋆,σ
(i,j)(s)− V π̂,σ

(i,j)(s)
)}

≥ max
(i,j)∈Θ

P(i,j)

{
max
s∈X

(
V ⋆,σ
(i,j)(s)− V π̂,σ

(i,j)(s)
)}

.

(237)

To do so, we can invoke a key claim in Shi et al. [2023] here since our problem setting can be reduced
to the same one in Shi et al. [2023]: With ε ≤ c1

32(1−γ) , letting

∆ = 32(1− γ)max{1− γ, σ}ε ≤ c1 max{1− γ, σ} (238)

which satisfies (231), it leads to that for any policy π̂ and all (i, j) ∈ Θ,

V ⋆,σ
(i,j)(xi)− V π̂,σ

(i,j)(xi) ≥ 2ε
(
1− π̂(j |xi)

)
,

∀s ∈ X \ {xi} : V ⋆,σ
(i,j)(s)− V π̂,σ

(i,j)(s) ≥ 2ε
(
1− π̂(0 | s)

)
. (239)

Before continuing, we introduce a useful notation for the subset of Θ excluding the cases with state i
is selected:

∀i ∈ S : Θ−i = Θ \ {(i′, j) : i′ = i, j ∈ A \ {0}}. (240)

Armed with the above facts and notations, we first suppose there exists a policy π̂ such that for some
(i, j) ∈ Θ,

P(i,j)

{
V ⋆,σ
(i,j)(xi)− V π̂,σ

(i,j)(xi) ≤ ε
}
≥ 3

4
. (241)

which in view of (239) indicates that we necessarily have π̂(j |xi) ≥ 1
A with probability at least 3

4 .
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As a result, taking

j′ = argmax
a∈A

π̂(a |xi), (242)

we are motivated to construct the following estimate of θ:

θ̂

{
= (i, j′) if j′ > 0

∈ G−w if j′ = 0,
(243)

which satisfies

P(i,j)

{
θ̂ = (i, j)

}
≥ P(i,j)

{
j′ = j

}
≥ P(i,j)

{
π̂(j |xi) >

1

A

}
≥ 3

4
. (244)

Step 2: developing the probability of error in testing multiple hypotheses. Before proceeding,
we discuss the dataset consisting of in total Nall independent samples. Observing that each RMDP
inside the set Mℓ∞ are constructed symmetrically associated with one pair of states (xi, yi) for all
i ∈ S and another action j ∈ A × {0}, respectively. Therefore, it is obvious that the dataset is
supposed to be generated uniformly on each (xi, yi, j) to maximize the information gain, leading to

Nall

S(A−1) samples for any states-action (xi, yi, j) with i ∈ S, j ∈ A \ {0}.

Then we are ready to turn to the hypothesis testing problem over (i, j) ∈ Θ. Towards this, we
consider the minimax probability of error defined as follows:

pe := inf
ϕ

max
(i,j)∈Θ

{
P(i,j)

(
ϕ ̸= (i, j)

)}
, (245)

where the infimum is taken over all possible tests ϕ constructed from the dataset introduced above.

To continue, armed with the above dataset with Nall independent samples, we denote µi,j

(resp. µi,j(s, a)) as the distribution vector (resp. distribution) of each sample tuple (s, a, s′) un-
der the nominal transition kernel P (i,j) associated with M(i,j). With this in mind, combined with
Fano’s inequality from Tsybakov [2009, Theorem 2.2] and the additivity of the KL divergence
(cf. Tsybakov [2009, Page 85]), we obtain

pe ≥ 1−Nall

max
(i,j),(i′,j′)∈Θ,(i,j)̸=(i′,j′)

KL
(
µi,j |µi′,j′

)
+ log 2

log |Θ|
(i)

≥ 1−Nall max
(i,j),(i′,j′)∈Θ,(i,j)̸=(i′,j′)

KL
(
µi,j |µi′,j′

)
− 1

2

=
1

2
−Nall max

(i,j),(i′,j′)∈Θ,(i,j)̸=(i′,j′)
KL
(
µi,j |µi′,j′

)
(246)

where (i) holds by log |Θ| ≥ 2 log 2 as long as S(A− 1) are large enough. Then following the same
proof pipeline of Shi et al. [2023, Section C.2], we can arrive at

pe ≥
1

2
− Nall

S(A− 1)

4096

c1
(1− γ)2 max{1− γ, σ}ε2 ≥ 1

4
, (247)

if the sample size is selected as

Nall ≤
c1S(A− 1)

16396(1− γ)2 max{1− γ, σ}ε2
. (248)

Step 3: summing up the results together. Finally, we suppose that there exists an estimator π̂
such that

max
(i,j)∈Θ

P(i,j)

[
max

s∈X∪Y

(
V ⋆,σ
(i,j)(s)− V π̂,σ

(i,j)(s)
)
≥ ε

]
<

1

4
, (249)

then according to (237), we necessarily have

∀s ∈ X : max
(i,j)∈Θ

P(i,j)

[
V ⋆,σ
(i,j)(s)− V π̂,σ

(i,j)(s) ≥ ε
]
<

1

4
, (250)
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which indicates

∀s ∈ X : max
(i,j)∈Θ

P(i,j)

[
V ⋆,σ
(i,j)(s)− V π̂,σ

(i,j)(s) < ε
]
≥ 3

4
. (251)

As a consequence, (244) shows we must have

∀(i, j) ∈ Θ : P(i,j)

[
θ̂ = (i, j)

]
≥ 3

4
(252)

to achieve (249). However, this would contract with (247) if the sample size condition in (248) is
satisfied. Thus, we complete the proof.

F.3 Proof of Lemma 12

Without loss of generality, we first consider any M(i,j) with (i, j) ∈ S × A \ {0}. Following the
same routine of Shi et al. [2023, Section C.3.1], we can verify that the order of the robust value
function V π,σ

(i,j) over different states satisfies

∀k ∈ S : V π,σ
(i,j)(xk) ≤ V π,σ

(i,j)(yk), (253)

which means the robust value function of the states inside X are always not larger than the corre-
sponding states inside Y .

Then we denote the minimum of the robust value function over states as below:
V π,σ
(i,j),min

:= min
s∈S

V π,σ
(i,j)(s). (254)

In the following arguments, we first take a moment to assume V π,σ
(i,j),min = V π,σ

(i,j)(xi). With this in
mind, we arrive at

V π,σ
(i,j)(yi) = 1 + γ (1− σ)V π,σ

(i,j)(yi) + γσV π,σ
(i,j),min =

1 + γσV π,σ
(i,j)(xi)

1− γ (1− σ)
. (255)

Then, when we move on to the characterization of the robust value function at state xi. To do so, we
notice two important facts:

1) The nominal transition probability P
(i,j)
xi,a at state-action pair (xi, a) for any a ∈ A is a

Bernoulli distribution (see (226) and (224)). The TV distance and the ℓ∞ norm between
two Bernoulli distribution are the same.

2) Invoking the definitions of the nominal transition probability in (226) and (224), we have

P
(i,j)
xi,j

= p1(s′ = yi) + (1− p)1(s′ = xi)

P (i,j)
xi,a = q1(s′ = yi) + (1− q)1(s′ = xi) ∀a ∈ A \ {j}. (256)

With the above two facts in hand, our problem setting is reduced to the same one in Shi et al. [2023]
and can reuse the results in Shi et al. [2023, Section C.3.1] to achieve

V π,σ
(i,j)(xi) ≤

γ(zπ
(i,j)−σ)

1−γ(1−σ)

(1− γ)

(
1 +

γ
(
zπ
(i,j)

−σ
)

1−γ(1−σ)

) . (257)

and
π⋆
(i,j)(j |xi) = 1

V ⋆,σ
(i,j)(xi) =

γ
(
zπ⋆

(i,j)−σ
)

1−γ(1−σ)

(1− γ)

(
1 +

γ
(
zπ⋆

(i,j)
−σ

)
1−γ(1−σ)

) =

γ(p−σ)
1−γ(1−σ)

(1− γ)
(
1 + γ(p−σ)

1−γ(1−σ)

) . (258)

Analogously, we can verify that for other xk ∈ X \ {xi},
π⋆
(i,j)(0 |xk) = 1

V ⋆,σ
(i,j)(xk) =

γ(p−σ)
1−γ(1−σ)

(1− γ)
(
1 + γ(p−σ)

1−γ(1−σ)

) . (259)
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G DRVI for sa− rectangular algorithm for arbitrary norm

In order to compute the fixed point of T̂ σ, distributionally robust value iteration (DRVI), is defined
in Algorithm 1. For sa-rectangularity, starting from an initialization Q̂0 = 0, the update rule at the
t-th (t ≥ 1) iteration is the following ∀(s, a) ∈ S ×A:

Q̂π
t (s, a) = T̂ σQ̂π

t−1(s, a) = r(s, a) + γ inf
P∈U sa,σ

∥.∥ (P̂ 0
s,a)

PV̂t−1, (260)

where V̂t−1(s) = maxπ Q̂
π
t−1(s, a) for all s ∈ S.

Directly solving (260) is computationally expensive since it involves optimization over a S-
dimensional probability simplex at each iteration, especially when the dimension of the state space S
is large. Fortunately, given strong duality (260) can be equivalently solved using its dual problem,
which concerns optimizing a two variable (λ and ω) and thus can be solved efficiently. The specific
form of the dual problem depends on the choice of the norm ∥.∥, which we shall discuss separately in
Appendix C.3. To complete the description, we output the greedy policy of the final Q-estimate Q̂T

as the final policy π̂, namely,

∀s ∈ S : π̂(s) = argmax
a

Q̂T (s, a). (261)

Encouragingly, the iterates
{
Q̂t

}
t≥0

of DRV I converge linearly to the fixed point Q̂⋆,σ, owing to

the appealing γ-contraction property of T̂ σ .

input: empirical nominal transition kernel P̂ 0; reward function r; uncertainty level σ; number of
iterations T .

initialization: Q̂0(s, a) = 0, V̂0(s) = 0 for all (s, a) ∈ S ×A.
for t = 1, 2, ..., T do

for s ∈ S, a ∈ A do
Set Q̂t(s, a) according to (260);

end
for s ∈ S do

Set V̂t(s) = maxa Q̂t(s, a);
end

end
output: Q̂T , V̂T and π̂ obeying π̂(s) := argmaxa Q̂T (s, a).
Algorithm 1: Distributionally robust value iteration (DRV I) for infinite-horizon RMDPs for
sa-rectangular for arbitrary norm

Using Algorithm 1, it allows getting an ϵopt error in the empirical MDP in the sa-rectangular case. In
the s-rectangular case, finding an algorithm to get ϵopt is more difficult to use, as the policy is not
deterministic anymore and 1 cannot anymore be applied. For Lp norms, Clavier et al. [2023] derived
an algorithm but for arbitrary norm we need to consider a more general problem for arbitrary norm in
Appendix G
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paper’s contributions and scope?

Answer: [Yes]

Justification: Yes

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.
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much the results can be expected to generalize to other settings.
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Justification: See conclusion.

Guidelines:
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• All assumptions should be clearly stated or referenced in the statement of any theorems.
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perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [NA]
Justification: Theoretical paper.
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• If the paper includes experiments, a No answer to this question will not be perceived
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to make their results reproducible or verifiable.
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some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.
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• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [NA]
Justification: Theoretical paper.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.

58

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy


• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.
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• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
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or cloud provider, including relevant memory and storage.
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didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification:Done
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
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generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.
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mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).
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release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
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• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [NA]
Justification: Theoretical paper.
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• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of
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• For existing datasets that are re-packaged, both the original license and the license of
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
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Answer: [NA]
Justification:Theoretical paper.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: Theoretical paper.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: Theoretical paper.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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