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Abstract

The impressive performance of Large Language Models (LLMs) across various
natural language processing tasks comes at the cost of vast computational resources
and storage requirements. One-shot pruning techniques offer a way to alleviate
these burdens by removing redundant weights without the need for retraining.
Yet, the massive scale of LLMs often forces current pruning approaches to rely
on heuristics instead of optimization-based techniques, potentially resulting in
suboptimal compression. In this paper, we introduce ALPS, an optimization-
based framework that tackles the pruning problem using the operator splitting
technique and a preconditioned conjugate gradient-based post-processing step. Our
approach incorporates novel techniques to accelerate and theoretically guarantee
convergence while leveraging vectorization and GPU parallelism for efficiency.
ALPS outperforms state-of-the-art methods in terms of the pruning objective and
perplexity reduction, particularly for highly sparse models. On the LLaMA3-8B
model with 70% sparsity, ALPS achieves a 29% reduction in test perplexity on
the WikiText dataset and a 8% improvement in zero-shot benchmark performance
compared to existing methods. Our code is available at https://github.com/
mazumder-lab/ALPS.

1 Introduction

Large Language Models (LLMs) have revolutionized the field of natural language processing, demon-
strating remarkable performance across a wide spectrum of tasks, from question answering and text
generation to sentiment analysis and named entity recognition [Wei et al., 2022, Bubeck et al., 2023,
Achiam et al., 2023]. The success of LLMs can in part be attributed to their massive scale—state-of-
the-art models like OPT-175B [Zhang et al., 2022a] and LLaMA3 [Dubey et al., 2024] have hundreds
of billions of parameters. However, this enormous size comes at a steep cost in terms of storage and
computational resources. For instance, the OPT-175B model requires at least 320 GB of memory to
store its parameters in half-precision (FP16) format, necessitating the use of multiple high-end GPUs
for inference [Frantar and Alistarh, 2023]. To make LLMs more accessible and efficient, considerable
efforts have been made to compress these models, with a particular emphasis on model quantization
techniques [Lin et al., 2023, Behdin et al., 2023, Dettmers et al., 2023].

Network pruning [LeCun et al., 1989, Hassibi and Stork, 1992, Han et al., 2015], a complementary
approach to quantization, has received comparatively less attention in the realm of LLMs. Pruning

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

https://github.com/mazumder-lab/ALPS
https://github.com/mazumder-lab/ALPS


aims to reduce the model size by identifying and removing redundant or less important weights,
resulting in a sparser and more efficient network. Traditional pruning methods rely on iterative
retraining to recover accuracy after each pruning stage [Han et al., 2015, Luo et al., 2017, Molchanov
et al., 2016, Liu et al., 2018], which can be computationally expensive and time-consuming. To
address this, recent research has focused on one-shot pruning methods [He et al., 2017, Singh
and Alistarh, 2020] that compress a pre-trained model using only a small amount of data (e.g., a
few thousand samples)—the key idea here is to perform pruning while retaining model accuracy
as much as possible without expensive fine-tuning/retraining on the entire dataset. Many prior
works [Frantar and Alistarh, 2022, Yu et al., 2022, Benbaki et al., 2023] on one-shot pruning address
such pruning-accuracy tradeoffs using optimization based approaches.

Despite the progress made in one-shot pruning, the massive scale of LLMs poses additional challenges,
as many one-shot pruning methods designed for vision models cannot be directly applied due to
their large model sizes. To overcome this, existing LLM pruning methods often rely on heuristic
approaches to prune instead of solving optimization problems. For instance, SparseGPT [Frantar
and Alistarh, 2023] approximates the OBS [Hassibi and Stork, 1992] algorithm by employing partial
weight updates and adaptive mask selection to reduce costly Hessian computation. Similarly, Wanda
[Sun et al., 2023] prunes weights based on the product of their magnitudes and corresponding input
activations. Zhang et al. [2023] propose to iteratively grow and prune the weight mask according to
the change in reconstruction error achieved by each update. While these heuristics enable pruning
at scale, they may lead to suboptimal compression (and hence, suboptimal compression-accuracy
tradeoffs) compared to advanced optimization-based approaches, as we show in this paper.

In this paper, we propose ALPS1, an optimization-based framework for one-shot LLM pruning.
ALPS consists of two key components. First, it formulates pruning LLMs as an ℓ0-constrained
optimization problem and solves it directly using the operator splitting technique (i.e., ADMM) [Boyd
et al., 2011, Davis and Yin, 2016] without any simplification. The proposed algorithm simultaneously
finds the support2 of the weights and updates them. After the support stabilizes, ALPS fixes the
support and employs preconditioned conjugate gradient (PCG) [Nocedal and Wright, 1999, Section
5] to compute the optimal weights on the support. Our modified PCG leverages sparse matrix
structure (arising from pruning) and GPU computation to solve large systems efficiently, providing a
significant speed advantage over direct matrix inversion. An outline of our proposed optimization-
based framework ALPS is given in Figure 1. Compared to previous heuristics, ALPS offers higher
quality supports and weights, as demonstrated in Section 4.1. This improvement translates to a better
performance of the pruned model compared to existing methods, particularly in the challenging
high-sparsity regime.
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Figure 1: Overview of the proposed ALPS algorithm. (Left) The pruning problem with a layerwise reconstruc-
tion objective and an ℓ0 constraint on the weights (Section 3.1). (Middle) ADMM with a ρ-update scheme
(Algorithm 1) is employed to determine high-quality support for the weight matrix W (Section 3.2). (Right)
The optimization problem is restricted to the obtained support, and a modified PCG method (Algorithm 2) is
used to solve for the optimal weight values within the support (Section 3.3).

Contributions. Our technical contributions are:

1. We introduce ALPS, a novel one-shot LLM pruning framework that formulates an ℓ0-constrained
optimization problem with a layer-wise reconstruction objective. By extending the operator split-
ting technique (i.e., ADMM) to this non-convex, non-continuous problem, ALPS simultaneously
1ADMM-based LLM Pruning in one-Shot
2The “support” of the weights refers to the set of indices corresponding to non-zero weights within a layer.
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finds a high-quality support and updates the weights on the support. This approach leads to
improvements over state-of-the-art heuristics in terms of the pruning objective. Furthermore, we
provide theoretical convergence guarantees for our proposed algorithm, which, to the best of our
knowledge, is a novel convergence result for ℓ0-constrained problems.

2. We further enhance the performance of ALPS through two techniques. First, we design a novel
penalty parameter updating scheme that enables ALPS to find better support and accelerates its
convergence. Second, we propose a post-processing technique to further improve the performance
of the pruned models—we fix the support determined by ADMM and optimally solve the resulting
quadratic problem using the PCG method. We utilize vectorization to solve the problem in a single
pass and leverage GPU parallelism to further accelerate PCG. Our proposed method achieves a
20x-200x speedup compared to the vanilla backsolve approach.

3. ALPS substantially improves upon state-of-the-art methods for one-shot unstructured pruning
of LLMs. For the LLaMA3-8B model with 70% sparsity, ALPS achieves a 29% reduction in
test perplexity on the WikiText dataset and a 4%-13% improvement in performance on zero-shot
benchmark evaluations. We also adapt ALPS to the popular N:M sparsity format [Zhou et al.,
2021] and observe a 3%-10% higher performance compared to existing methods. Our code is
publicly available at: https://github.com/mazumder-lab/ALPS.

2 Related Work

Network pruning. Network pruning is a well-established technique for reducing the complexity
of deep neural networks by removing redundant weights [LeCun et al., 1989, Han et al., 2015].
Pruning methods can be classified based on the structure of the resulting sparse network and the
training requirements. In terms of structure, pruning can be categorized into unstructured pruning,
which removes individual weights [Han et al., 2015, Guo et al., 2016], and structured pruning,
which removes entire structures such as channels, filters, or attention heads [Lebedev and Lempitsky,
2016, Wen et al., 2016, Voita et al., 2019, El Halabi et al., 2022]. Unstructured pruning offers
better flexibility and higher sparsity levels but requires specialized hardware for acceleration, while
structured pruning is more hardware-friendly but may suffer from larger performance loss. Based
on the training requirements, pruning methods can be classified into three categories: (i) one-shot
pruning, which directly removes weights from a pre-trained model without further training [Gale
et al., 2019, Frantar and Alistarh, 2022, Meng et al., 2024a,b], (ii) gradual pruning, which begins with
a pre-trained model but alternates between pruning and fine-tuning via SGD to recover performance
[Molchanov et al., 2016, Zhu and Gupta, 2017, Blalock et al., 2020, Kurtic et al., 2022], and (iii)
training from scratch, where the model is trained from randomly initialized weights, and the sparse
network structure is either determined before training or evolves during the training process, [Mocanu
et al., 2018, Dettmers and Zettlemoyer, 2019, Evci et al., 2020, Kusupati et al., 2020, Chen et al.,
2021]. In this paper, we focus on one-shot unstructured pruning.

Post-training unstructured pruning. Based on their pruning objectives, there are three types of
post-training unstructured pruning methods: (i) Importance-based methods, which assign a score
to each weight (e.g., its absolute value) to assess its significance and decide whether it should
be eliminated [Han et al., 2015, Lee et al., 2018, Molchanov et al., 2019, Sun et al., 2023]. (ii)
Second-order techniques, which consider a local quadratic approximation of the loss function around
the pre-trained model and remove weights based on their influence on the loss [Hassibi and Stork,
1992, Singh and Alistarh, 2020, Yu et al., 2022, Benbaki et al., 2023]. These approaches employ the
empirical Fisher information matrix to estimate the Hessian matrix efficiently. (iii) Layer-wise pruning
algorithms, which adapt OBS [Hassibi and Stork, 1992] framework to the layer-wise reconstruction
objective [Dong et al., 2017, Frantar and Alistarh, 2022, 2023]. These methods prune each layer
separately to address the computational challenge of calculating the full Hessian required in OBS.
This work considers layer-wise reconstruction error as the pruning objective.

Unstructured pruning in LLMs. While pruning algorithms designed for convolutional networks
[Singh and Alistarh, 2020, Chen et al., 2020, Frantar and Alistarh, 2022] can be readily adapted
to moderate-sized language models like BERT [Vaswani et al., 2017], pruning LLMs with billions
of parameters presents distinct challenges. The immense model size and extensive datasets associ-
ated with LLMs render traditional pruning methods computationally infeasible [Ma et al., 2023].
SparseGPT [Frantar and Alistarh, 2023] utilizes partial weight updates and adaptive mask selection
to mitigate the expensive Hessian computation, while Wanda [Sun et al., 2023] directly obtains a
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sparse LLM model using a criterion that considers the product of the absolute values of weights and
their activations. DSnoT [Zhang et al., 2023] iteratively grow and prune the weight mask according
to the change in reconstruction error achieved by each update. [Boža, 2024] introduces an efficient
approach to determine the optimal weights on a given support and extends this technique to develop
heuristics for updating the support.

ADMM in network pruning. The operator-splitting technique [Boyd et al., 2011, Davis and
Yin, 2016] (also known as Alternating Direction Method of Multipliers, ADMM) is a well-known
approach for solving composite optimization or optimization problems with coupled variables (or
constraints), and has been used earlier in network pruning. Ye et al. [2018] applied ADMM to
solve the original loss function under sparsity constraint, and Boža [2024] used ADMM to solve a
convex pruning problem with fixed support. Moreover, Zhang et al. [2018] employed ADMM to train
deep neural networks under sparsity constraints, while Ye et al. [2019] utilized ADMM to perform
concurrent adversarial training and weight pruning. Our proposed method differs significantly from
previous methods in two key aspects: (i) ALPS solves the pruning problem with an ℓ0 constraint at
LLM scale, simultaneously optimizes over the weights and the sparsity pattern. (ii) We introduce a
novel penalty parameter update scheme that ensures convergence both practically and theoretically.

3 ALPS: Effective LLM pruning in One-shot

3.1 Problem formulation

A common approach in post-training unstructured pruning of LLMs is to decompose the full-model
compression problem into layer-wise subproblems. The quality of the solution for each subproblem
is assessed by measuring the ℓ2 error between the output of the dense layer and that of the pruned
one, given a set of input activations.

Formally, let Ŵ ∈ RNin×Nout denote the (dense) weight matrix of layer ℓ, where Nin and Nout

denote the input and output dimension of the layer, respectively. Given a set of N calibration samples,
the input activations can be represented as X ∈ RNL×Nin , where L is the sequence length. The goal
of pruning is to find a sparse weight matrix W that minimizes the reconstruction error between the
original and pruned layer outputs, while satisfying a target sparsity constraint. In addition, we add
a ridge term that penalizes the distance between W and Ŵ, preventing W from diverging too far
from the original weights. This layer-wise pruning problem can be formulated as an ℓ0-constrained
optimization problem:

minW∈RNin×Nout ∥XŴ −XW∥2F + λ2∥Ŵ −W∥2F s.t. ∥W∥0 ≤ k, (1)

where λ2 ≥ 0 and ∥ · ∥0 denotes the ℓ0-(pseudo)norm, which counts the number of non-zero elements.

3.2 Operator-splitting for layer-wise pruning

Optimization of Problem (1) is quite challenging: we need to simultaneously find a support of W
and a corresponding set of optimal weights (that minimize the objective restricted to the support).
Notably, W may contain over 100 million parameters in the LLM setting, making (1) even more
computationally demanding. To address this, we employ an operator-splitting technique [Boyd
et al., 2011, Davis and Yin, 2016] (also known as ADMM), which decomposes the problem into two
computationally ‘friendlier’ subproblems. Specifically, we reformulate problem (1) by introducing a
copy D of weight matrix W:

minW,D∈RNin×Nout ∥XŴ −XW∥2F + λ2∥Ŵ −W∥2F +∞ · 1∥D∥0>k s.t. W = D, (2)

where the penalty function “∞ · 1∥D∥0>k” imposes the ℓ0 constraint ∥D∥0 ≤ k by assigning a
value of zero when this condition is met and infinity otherwise. This reformulation separates the
objective function into two independent parts while coupling the variables W and D through the
linear constraint W = D. We consider the augmented Lagrangian function of this problem:

Lρ(W,D,V) = ∥XŴ−XW∥2F +λ2∥Ŵ−W∥2F +∞·1∥D∥0>k+⟨V,W−D⟩+ ρ

2
∥W−D∥2F ,

(3)
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where ρ > 0 is the quadratic penalty parameter. We minimize the augmented Lagrangian with respect
to W and D alternatively, followed by a dual update. We get the following update at iteration t:

W(t+1) = argminW Lρ(W,D(t),V(t)) = (H+ ρI)
−1
(
HŴ −V(t) + ρD(t)

)
,

D(t+1) = argminD Lρ(W
(t+1),D,V(t)) = Pk

(
W(t+1) +V(t)/ρ

)
,

V(t+1) = V(t) + ρ(W(t+1) −D(t+1)),

(4)

where H = X⊤X+ λ2I. Here, the W-update aims to minimize the objective by solving a system
of equations, while the D update enforces sparsity by using the projection operator Pk(·), which
projects an input matrix onto the set of matrices with at most k non-zero elements. The dual update
on matrix V ensures consistency between W and D. As the iterations (4) progress, our proposed
method concurrently identifies the support of the weight matrix and updates the weights on the
determined support.

ρ update scheme. In practice, we observe that the sequence of updates (4) and the resulting solution
can be sensitive to the choice of the penalty parameter ρ. A small ρ leads to slow convergence due
to large changes in the support of D across iterations, while a large ρ may compromise solution
quality though the support stabilizes early on. To balance support quality and convergence speed, we
introduce a novel penalty parameter update scheme. Starting with a small ρ, we gradually increase it
every few iterations, with the increase rate proportional to the change in the support of D. The detailed
ρ update scheme is provided in Appendix B.1. This scheme allows our algorithm to explore and find
a good support when ρ is small and to converge rapidly as ρ grows, as demonstrated experimentally
in Appendix B.2.1.

Algorithm 1 outlines the proposed operator-splitting technique with the ρ update scheme. The
convergence of Algorithm 1 is guaranteed by the following theorem, with its proof provided in
Appendix A. We note that existing convergence results for operator-splitting type methods (e.g.,
ADMM) focus on convex or continuous problems [Hong et al., 2016, Wang et al., 2019]. However,
our result guarantees the convergence on a non-convex, non-continuous ℓ0-constrained problem,
which, to the best of our knowledge, is a novel convergence result for such a problem.

Theorem 1. Let
{
D(t)

}∞
t=0

and
{
W(t)

}∞
t=0

be the sequences generated in Algorithm 1. Suppose
the penalty parameter {ρt}∞t=1 chosen in Algorithm 1 satisfies

∑∞
t=1 1/ρt < ∞. It then holds

max
{
∥D(t+1) −D(t)∥F , ∥W(t+1) −D(t+1)∥F

}
≤ C/ρt, (5)

where C is a constant depending on X, Ŵ, λ2, and
∑∞

t=1 1/ρt. In particular, there exists a matrix
D̄ such that D(t) → D̄ and W(t) → D̄ as t → ∞.

Algorithm 1 ADMM for layer-wise pruning with ℓ0 constraint
Input: Initial penalty ρ0.

1: Initialize V(0) = 0Nin×Nout
and D(0) = W(0) = Ŵ

2: for t = 0, 1, · · · do
3: Update W(t+1),D(t+1) and V(t+1) according to (4) with ρ = ρt.
4: Increase ρt to get ρt+1 based on the change in the support of Supp

(
D(t)

)
.

5: end for

Computational cost. The primary computational cost of Algorithm 1 arises from the W-update
step in display (4), which involves solving a system of linear equations. In the update, the inverse
of H + ρI can be reused across iterations and needs to be updated when ρ changes. To avoid
re-computing the inverse, we store the eigenvalue decomposition H = QMQ⊤. For varying ρ
values, the inverse can be efficiently calculated as (H+ ρI)−1 = Q(M+ ρI)−1Q⊤, requiring only
a single matrix-matrix multiplication. Additionally, the term HŴ in W-update remains constant
across iterations and can be pre-computed and stored. Thus, each iteration of update (4) requires at
most two matrix-matrix multiplications, leading to a time complexity of O(N2

inNout).

Extension to other sparsity patterns. Algorithm 1 can be extended to support N : M sparsity
[Zhou et al., 2021, Hubara et al., 2021], a pattern in which a neural network has at most N non-zero
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weights in each group of M consecutive weights. This sparsity pattern enables inference time
acceleration on specialized hardware like NVIDIA A100 GPUs. To accommodate N : M sparsity,
we modify the D-update step in (4) by replacing the projection operator Pk(·) with a projection
onto the set of matrices satisfying N : M sparsity. This modification can be easily implemented by
applying magnitude pruning [Zhou et al., 2021] to W(t+1) +V(t)/ρ. Our approach can be further
generalized to handle other structured sparsity patterns, such as block sparsity [Gray et al., 2017]
and row sparsity [Meng et al., 2024b]. Similar to the N : M sparsity adaptation, this is achieved by
modifying the D-update step to project onto the set of matrices satisfying the desired sparsity pattern.
Importantly, our convergence results and the refining procedure introduced in Section 3.3 remain
applicable to these various sparsity patterns.

3.3 Efficiently refining weights after support stabilization

Our proposed ρ-update technique enables Algorithm 1 to search for a high-quality support when ρ is
small, and the support stabilizes quickly as ρ increases. However, once the support stabilizes, the
convergence rate of Algorithm 1 becomes slow in practice. To accelerate the optimization process
on the support, we employ a Preconditioned Conjugate Gradient (PCG) [Nocedal and Wright, 1999,
Section 5] method with GPU parallelism and vectorization for efficient computation.

Formally, we introduce a post-processing technique that fixes the support S of the current solution
W and refines the solution within this support, leading to the following problem:

minW∈RNin×Nout ∥XŴ −XW∥2F + λ2∥Ŵ −W∥2F s.t. Supp(W) ⊂ S. (6)

(6) decomposes into separate least squares problems across the columns of W. However, as illustrated
in Figure 1 (Middle), the supports of the columns of W are different. Using direct matrix inversion
(backsolve) to solve these problems would involve solving Nout linear equations, each requiring the
inversion of a submatrix of H = X⊤X+ λ2I. Since the submatrices under consideration vary across
different columns, parallelization is not straightforward, and we must solve Nout different linear
equations, each with size O(Nin). In LLMs, where Nout and Nin are of the order 104, this would
result in a significant computational expense. We present a workaround as discussed next.

To efficiently solve problem (6), we propose using the Preconditioned Conjugate Gradient (PCG)
method, a high-performance numerical linear algebra technique for approximately solving systems of
equations through repeated matrix-matrix multiplications. We further enhance PCG’s performance
by introducing two novel acceleration strategies. First, instead of solving for each column of W
separately, we solve the entire problem in a single pass by directly solving the linear equation
HW = HŴ using PCG and projecting W onto the given support S in each iteration (Algorithm
2, line 8). We leverage vectorization to significantly enhance the speed. Second, we perform the
matrix-matrix multiplications involved in PCG on the GPU, further utilizing GPU acceleration to
expedite the computations. Algorithm 2 provides the detailed steps for the PCG method, and Figure1
offers an overview of our proposed ALPS method.

Algorithm 2 PCG with vectorization for solving problem (6)
Input: Support S, pre-conditioner M = Diag(H), initial solution W0

1: Set R0 := H(Ŵ −W0)
2: Project R0 onto the support S by setting all elements outside the support to zero.
3: Set Z0 = M−1R0 and P0 = Z0

4: for t = 0, 1, . . . do
5: αt = Tr(R⊤

t Zt)/Tr(P
⊤
t HPt)

6: Wt+1 = Wt + αtPt

7: Rt+1 = Rt − αtHPt

8: Project Rt+1 onto the support S by setting all elements outside the support to zero.
9: Zt+1 = M−1Rt+1

10: if Rt+1 is sufficiently small then
11: break
12: end if
13: βt = Tr(R⊤

t+1Zt+1)/Tr(R
⊤
t Zt)

14: Pt+1 := Zt+1 + βtPt

15: end for
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4 Experimental Results

This section compares our proposed framework, ALPS, with state-of-the-art unstructured pruning
methods for LLMs. Detailed information on the experimental setup and reproducibility is provided
in Appendix B.1, while additional results are presented in Appendix B.2.

Models and datasets. We evaluate the performance of ALPS on the OPT model family [Zhang
et al., 2022b] with sizes ranging from 1.3 billion to 30 billion parameters, the LLaMA2 model
family [Touvron et al., 2023] with 7 billion and 13 billion parameters, and the LLaMA3 model
[Dubey et al., 2024] with 8 billion parameters. Following the approach of Frantar and Alistarh,
2023, we use 128 segments of 2048 tokens each, randomly selected from the first shard of the C4
dataset [Raffel et al., 2020], as calibration data. We assess the performance using perplexity and
zero-shot evaluation benchmarks, with perplexity calculated according to the procedure described by
HuggingFace [Per, 2022], using full stride. The test sets of raw-WikiText2 [Merity et al., 2017], PTB
[Marcus et al., 1994], and a subset of the C4 validation data, which are popular benchmarks in LLM
pruning literature [Yao et al., 2022, Xiao et al., 2023, Meng et al., 2024b], are used for evaluation.
Additionally, we consider five zero-shot tasks: MMLU [Hendrycks et al., 2021], PIQA [Bisk et al.,
2020], LAMBADA [Paperno et al., 2016], ARC-Easy and ARC-Challenge [Clark et al., 2018].

Competing methods. We compare ALPS with several one-shot pruning methods for LLMs, including
(i) Magnitude Pruning (MP, [Han et al., 2015]), (ii) SparseGPT [Frantar and Alistarh, 2023], (iii)
Wanda Sun et al. [2023], and (iv) DSnoT [Zhang et al., 2023].

4.1 Reconstruction error on a single layer
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Figure 2: Performance analysis of pruning the
“self_attn.k_proj” layer in the first block of the
OPT-13B model at various sparsity levels. The plot
shows the relative reconstruction error of pruned
weights, comparing different pruning methods.

We first evaluate the performance of our pro-
posed ALPS framework on a single layer. Specif-
ically, we prune a linear layer in the OPT-13B
model with input and output dimensions of 5120
to various sparsity levels and compute the rel-
ative reconstruction error of the pruned weight
W using ∥XŴ − XW∥2F /∥XŴ∥2F . The re-
sults are shown in Figure 2. As demonstrated,
ALPS achieves significantly lower reconstruc-
tion errors compared to other methods, espe-
cially at high sparsity levels. For instance, at a
sparsity level of 0.8, ALPS yields a 7.6% relative
reconstruction error, while SparseGPT shows
a 12% error, and other methods exceed 20%.
As demonstrated in Sections 4.2 and 4.3, our
method’s superior ability to approximate the
dense model’s output at each layer translates to
much better performance in the pruned model.

We attribute the superior performance of
ALPS in solving the reconstruction problem at
each layer to two key aspects: (i) Algorithm 1
obtains a high-quality support by directly opti-
mizing for an optimal subset of weights that contribute the most to recovering the dense model’s
output (ii) The PCG method in Algorithm 2 efficiently solves the reconstruction problem on a fixed
support, further reducing the reconstruction error. To verify these claims, we conducted the following
two ablation studies.

Firstly, we compare the quality of the support determined by various pruning methods. For each
method, we prune the layer to different sparsity levels and fix the support of the weights matrix
provided by the method. We then solve the post-processing problem (6) with this support to optimality
and compute the relative reconstruction error of the resulting weights. This approach ensures that
the reconstruction error depends solely on the quality of the support. Table 1 (left) presents the
performance of each method. As shown, the support determined by ALPS yields 20% ∼ 40%
lower reconstruction error compared to other methods, demonstrating its effectiveness in finding
high-quality supports.
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Sparsity MP SparseGPT Wanda DSnoT ALPS

0.5 1.10e-2 9.40e-3 1.17e-2 1.14e-2 7.56e-3

0.6 2.25e-2 1.88e-2 2.39e-2 2.38e-2 1.47e-2

0.7 4.38e-2 3.60e-2 4.65e-2 4.58e-2 2.78e-2

0.8 8.50e-2 6.95e-2 8.99e-2 9.02e-2 5.32e-2

0.9 1.78e-1 1.47e-1 1.87e-1 2.01e-1 1.13e-1

Sparsity
w/o pp. ALPS Backsolve

Error Time(s) Error Time(s) Error

0.5 3.18e-2 0.77 1.24e-2 131 1.10e-2

0.6 6.01e-2 0.79 2.43e-2 95.0 2.25e-2

0.7 1.09e-1 0.78 4.56e-2 64.1 4.38e-2

0.8 1.98e-1 0.77 8.63e-2 37.8 8.50e-2

0.9 3.66e-1 0.76 1.78e-1 15.0 1.78e-1

Table 1: Performance analysis of pruning the “self_attn.k_proj” layer in the first block of the OPT-13B
model at various sparsity levels. (Left) Relative reconstruction error ∥XŴ −XW∥2F /∥XŴ∥2F
of the optimal weights W constrained to the support determined by each pruning method. (Right)
Comparison of time and reconstruction error for three scenarios, all using magnitude pruning to
determine the support and then: (i) no post-processing (w/o pp.), (ii) refining the weights with ALPS,
and (iii) refining the weights optimally with backsolve.

We then evaluate the effectiveness of our proposed post-processing method in finding optimal
weights on a given support. We first apply magnitude pruning (MP) to determine the support of
the weights and then consider three scenarios: (i) without post-processing (w/o pp.), (ii) using
Algorithm 2 to solve (6) to refine the weights on the support (ALPS), and (iii) using PyTorch’s
torch.linalg.solve function to solve (6) to optimality (Backsolve). We assessed both the relative
reconstruction error and the computational time for each scenario, with results presented in Table
1 (right). The findings demonstrate that the post-processing procedure significantly lowers the
reconstruction error. Notably, our PCG method achieves errors comparable to the optimal solution
but is 20x-200x faster, underscoring the efficiency and effectiveness of our approach.

4.2 Pruning OPT and LLaMA models

This section focuses on pruning OPT models and LLaMA models to various sparsity levels and
evaluating the performance of the pruned models using perplexity and zero-shot benchmarks. The

Model Algorithm WikiText2 ↓ PTB ↓ C4 ↓ LAMBADA ↑ PIQA ↑ ARC-Easy ↑ ARC-Challenge ↑

OPT-1.3B

MP 9409(±0) 6689(±0) 5652(±0) 0.00(±0.00) 52.12(±0.00) 26.18(±0.00) 20.90(±0.00)
Wanda 100.8(±3.8) 128.4(±3.1) 78.58(±2.34) 9.77(±0.63) 59.38(±0.46) 37.92(±0.32) 18.02(±0.36)
SparseGPT 52.02(±2.22) 70.10(±3.31) 37.05(±1.78) 27.27(±1.04) 62.38(±0.79) 40.79(±0.58) 19.69(±0.78)
DSnoT 367.5(±19.6) 370.2(±30.6) 205.4(±6.1) 8.62(±0.23) 56.90(±0.37) 33.27(±0.47) 17.49(±0.57)
ALPS 39.50(±2.38) 50.68(±1.13) 28.52(±1.25) 32.11(±1.71) 64.43(±0.37) 45.01(±1.03) 21.08(±0.32)

OPT-2.7B

MP 12249(±0) 10993(±0) 9960(±0) 0.00(±0.00) 52.94(±0.00) 26.52(±0.00) 19.71(±0.00)
Wanda 365.1(±16.5) 379.4(±37.6) 224.4(±4.8) 5.02(±0.40) 58.01(±0.38) 34.85(±0.38) 17.61(±0.28)
SparseGPT 28.93(±1.62) 40.89(±1.19) 23.11(±0.66) 34.96(±1.97) 66.50(±0.32) 49.55(±0.50) 21.67(±0.57)
DSnoT 114.8(±1.5) 116.2(±6.7) 75.28(±3.51) 9.39(±0.63) 59.62(±0.23) 37.37(±0.48) 18.43(±0.78)
ALPS 25.36(±1.34) 35.76(±0.90) 20.93(±0.75) 42.53(±2.40) 67.62(±0.36) 51.55(±0.84) 22.27(±0.43)

OPT-6.7B

MP 9970(±0) 4779(±0) 5055(±0) 0.00(±0.00) 52.67(±0.00) 26.60(±0.00) 21.16(±0.00)
Wanda 162.9(±8.7) 204.9(±10.6) 206.0(±13.5) 2.82(±0.10) 58.13(±0.16) 35.82(±0.43) 17.22(±0.39)
SparseGPT 21.14(±0.69) 29.34(±0.44) 19.07(±0.62) 47.20(±0.94) 69.23(±0.76) 54.67(±0.20) 24.08(±0.28)
DSnoT 7985(±465) 6572(±783) 4764(±478) 0.15(±0.12) 53.19(±0.36) 29.13(±0.78) 18.46(±0.48)
ALPS 18.99(±0.85) 24.89(±0.26) 17.01(±0.60) 56.04(±1.32) 71.39(±0.27) 58.52(±0.74) 26.19(±0.52)

OPT-13B

MP 524559(±0) 146680(±0) 155160(±0) 0.00(±0.00) 52.99(±0.00) 25.25(±0.00) 22.95(±0.00)
Wanda 63.42(±2.22) 66.50(±1.93) 50.19(±2.28) 10.82(±0.95) 63.03(±0.72) 43.66(±0.52) 23.50(±0.63)
SparseGPT 19.29(±0.42) 25.50(±0.32) 16.79(±0.45) 47.97(±1.73) 69.16(±0.31) 53.51(±0.49) 26.23(±0.96)
DSnoT 78.13(±2.94) 60.11(±0.91) 56.39(±1.79) 14.43(±0.41) 61.57(±0.60) 40.52(±0.62) 20.77(±0.67)
ALPS 16.71(±0.62) 21.49(±0.40) 15.07(±0.46) 57.08(±1.62) 71.73(±0.22) 59.30(±0.50) 27.97(±0.93)

OPT-30B

MP 26271(±0) 12693(±0) 13057(±0) 0.00(±0.00) 52.23(±0.00) 25.46(±0.00) 19.97(±0.00)
Wanda 10384(±198) 5467(±104) 6692(±191) 0.01(±0.01) 52.21(±0.27) 25.61(±0.10) 20.20(±0.41)
SparseGPT 13.61(±0.22) 18.94(±0.25) 13.96(±0.35) 60.50(±0.88) 73.74(±0.27) 63.26(±0.44) 28.81(±0.40)
DSnoT 11328(±368) 5685(±248) 6579(±298) 0.04(±0.02) 52.48(±0.30) 26.36(±0.15) 20.15(±0.31)
ALPS 12.67(±0.23) 17.47(±0.27) 13.00(±0.32) 63.52(±1.38) 75.05(±0.38) 65.52(±0.75) 30.55(±0.76)

Table 2: Performance analysis for one-shot unstructured pruning of OPT models (1.3B ∼ 30B) at
70% sparsity. We run each method five times and report the mean and standard deviation of each
performance criterion. Here, ↓ denotes lower values corresponding to better performance, and ↑
denotes higher values corresponding to better performance.
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Figure 3: Performance analysis for one-shot unstructured pruning of LLaMA3-8B model at various
sparsity levels on two datasets: WikiText2 (Left) and PIQA (Right). We run each method five times
and plot the shaded region as the area between the mean (solid line) and two standard deviations
above and below the mean.

performance of the pruned LLaMA3-8B model at different sparsity levels on the WikiText2 and
PIQA datasets is presented in Figure 3. Table 2 showcases the performance of OPT models with 70%
sparsity on various datasets. Additional results on different models, sparsity levels, and datasets are
provided in Appendix B.2.5.

Figure 3 demonstrates that ALPS outperforms other competitors when sparsity levels exceed 50%,
and the performance gap between ALPS and other methods widens as the sparsity level increases.
For instance, ALPS achieves a 60% perplexity reduction on the WikiText2 dataset compared to
other methods at 80% sparsity level. This observation aligns with our findings in Section 4.1,
confirming that ALPS’s highly advanced optimization method in solving layer-wise reconstruction
problems enables it to better preserve performance at medium-to-high sparsity levels compared to
other methods. Table 2 further validates this fact, showing that ALPS outperforms other methods by
a large margin across all models on all criteria. This suggests the superiority of ALPS in pruning
models at medium-to-high sparsity levels.

4.3 N:M sparsity

We further assess ALPS’s performance on N : M sparsity patterns, with Table 3 listing the results
for pruning OPT-30B and LLaMA2-13B models at 2:4 and 4:8 sparse patterns (see Appendix B.2.5
for other models). ALPS outperforms other methods on most datasets, achieving larger performance
improvements in N : M pruning compared to unstructured pruning at the same sparsity level. This
is due to the higher complexity of the N : M sparsity pruning problem, which ALPS, as a highly
advanced optimization algorithm, can handle more effectively than competing heuristics.

5 Conclusion

We present ALPS, an efficient optimization-based framework for one-shot unstructured LLM pruning.
ALPS employs the operator splitting technique to effectively solve the ℓ0-constrained layer-wise
pruning problem. To enhance the performance of our algorithm, we introduce a novel penalty
parameter updating scheme and a post-processing procedure using PCG with vectorization/GPU
parallelism that takes into account problem-structure. We also establish novel convergence guarantees
for our algorithm. ALPS can efficiently perform high-quality pruning of LLMs at scale. Our
experiments confirm that ALPS outperforms existing pruning methods in terms of both the pruning
objective and the performance of the pruned model. Future work will consider extending ALPS to
incorporate structured pruning constraints and quantization to get a better understanding of the
strengths and scope of our optimization-based approach.
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Model Sparsity Algorithm WikiText2 ↓ PTB ↓ C4 ↓ PIQA ↑ ARC-Easy ↑ ARC-Challenge ↑

OPT-30B

2:4

MP 1981(±0) 2061(±0) 1656(±0) 58.22(±0.00) 40.61(±0.00) 18.94(±0.00)
Wanda 13.23(±0.40) 16.95(±0.28) 14.67(±0.18) 74.87(±0.14) 64.21(±0.40) 29.23(±0.37)
SparseGPT 10.90(±0.07) 14.02(±0.10) 12.04(±0.14) 75.59(±0.28) 66.75(±0.55) 31.23(±0.32)
DSnoT 12.36(±0.10) 15.73(±0.07) 13.55(±0.08) 74.94(±0.20) 64.19(±0.19) 29.44(±0.50)
ALPS 10.64(±0.09) 13.75(±0.08) 11.69(±0.15) 75.93(±0.09) 66.82(±0.54) 31.45(±0.37)

4:8

MP 564.1(±0.0) 1487(±0) 1005(±0) 62.84(±0.00) 42.47(±0.00) 22.27(±0.00)
Wanda 10.78(±0.08) 14.07(±0.07) 12.13(±0.03) 75.65(±0.18) 66.90(±0.46) 30.48(±0.41)
SparseGPT 10.30(±0.06) 13.35(±0.15) 11.52(±0.09) 76.10(±0.25) 67.88(±0.48) 32.17(±0.88)
DSnoT 10.83(±0.08) 13.93(±0.04) 12.16(±0.03) 75.42(±0.18) 66.31(±0.44) 30.58(±0.46)
ALPS 10.14(±0.05) 13.18(±0.12) 11.32(±0.09) 76.61(±0.50) 67.89(±0.25) 32.01(±0.49)

LLaMA2-13B

2:4

MP 8.89(±0.00) 203.8(±0.0) 10.80(±0.00) 71.49(±0.00) 57.66(±0.00) 30.38(±0.00)
Wanda 9.02(±0.04) 88.93(±1.02) 11.12(±0.05) 73.16(±0.27) 63.67(±0.54) 33.92(±0.37)
SparseGPT 8.76(±0.10) 64.82(±3.16) 10.06(±0.26) 73.94(±0.60) 65.10(±0.86) 35.31(±0.57)
DSnoT 9.21(±0.05) 87.54(±2.04) 11.43(±0.07) 72.30(±0.23) 63.38(±0.68) 33.63(±0.63)
ALPS 8.14(±0.10) 52.34(±2.08) 9.36(±0.33) 74.72(±0.58) 65.71(±0.59) 35.96(±0.50)

4:8

MP 7.32(±0.00) 137.3(±0.0) 9.14(±0.00) 74.43(±0.00) 63.01(±0.00) 35.67(±0.00)
Wanda 7.02(±0.01) 55.07(±0.79) 8.84(±0.02) 75.69(±0.31) 67.05(±0.13) 38.26(±0.56)
SparseGPT 7.01(±0.03) 47.64(±0.81) 8.52(±0.14) 75.84(±0.26) 69.36(±0.84) 38.74(±0.95)
DSnoT 7.13(±0.02) 54.07(±0.88) 8.95(±0.02) 75.64(±0.23) 67.33(±0.42) 37.58(±0.63)
ALPS 6.81(±0.07) 42.15(±0.89) 8.22(±0.17) 76.52(±0.57) 69.41(±0.69) 39.22(±0.56)

Table 3: Performance analysis for one-shot pruning of OPT-30B and LLaMA2-13B at 2 : 4 and 4 : 8
sparsity patterns. We run each method five times and report the mean and standard deviation of each
performance criterion. Here, ↓ denotes lower values correspond to better performance, and ↑ denotes
higher values correspond to better performance.
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A Proofs of Theorem 1

Proof. For the sake of conciseness, throughout the proof, we denote H = X⊤X + λ2I and G =(
X⊤X+ λ2I

)
Ŵ. To establish the theorem, we first present the following two lemmas. The proofs

of these two lemmas are given in Section A.1 and A.2, respectively.

Lemma 1. Let
{
D(t)

}∞
t=0

and
{
V(t)

}∞
t=0

be the sequence generated in Algorithm 1. Then for any
t ≥ 0, it holds

∥V(t+1)∥F ≤ ∥G−HD(t)∥F +
∥HV(t)∥F

ρt
(7)

and

∥D(t+1) −D(t)∥F ≤ 2

ρt

(
∥G−HD(t)∥F +

∥HV(t)∥F
ρt

)
. (8)

Lemma 2. Let
{
D(t)

}∞
t=0

,
{
W(t)

}∞
t=0

and
{
V(t)

}∞
t=0

be the sequence generated in Algorithm 1.
Suppose {ρt}∞t=0 is non-decreasing. Then for any t ≥ 0, it holds

∥D(t)∥F +
∥V(t)∥F

ρt
≤

[
t−1∏
s=0

(
1 +

3∥H∥2
ρs

)]
·

(
∥D(0)∥F +

∥V(0)∥F
ρ0

+

t−1∑
s=0

3∥G∥F
ρs

)
(9)

Returning to the proof of the main theorem, combining Lemma 2 with the initialization of Algorithm
1 gives

∥D(t)∥F +
∥V(t)∥F

ρt
≤

[
t−1∏
s=0

(
1 +

3∥H∥2
ρs

)]
·

(
∥D(0)∥F +

∥V(0)∥F
ρ0

+

t−1∑
s=0

3∥G∥F
ρs

)

≤ exp

(
3∥H∥2

∞∑
s=0

1

ρs

)
·

(
∥G∥F + 3∥G∥F

∞∑
s=0

1

ρs

) (10)

Let

C(X,Ŵ, ρ0, tu, τ̂) := 2∥G∥F + 2∥H∥2

(
exp

(
3∥H∥2

∞∑
s=0

1

ρs

)
·

(
∥G∥F + 3∥G∥F

∞∑
s=0

1

ρs

))
(11)

be the constant depending on X, Ŵ and
∑∞

s=0 1/ρs. Lemma 1 together with (10) leads to

∥V(t+1)∥F ≤ ∥G−HD(t)∥F +
∥HV(t)∥F

ρt

≤ ∥G∥F + ∥H∥2
(
∥D(t)∥F +

∥V(t)∥F
ρt

)
≤ 1

2
C(X,Ŵ, ρ0, tu, τ̂)

(12)

and

∥D(t+1) −D(t)∥F ≤ 2

ρt

(
∥G−HD(t)∥F +

∥HV(t)∥F
ρt

)
≤ C(X,Ŵ, ρ0, tu, τ̂)

ρt
. (13)

It then follows from W(t+1) −D(t+1) = (V(t+1) −V(t))/ρt that

∥W(t+1) −D(t+1)∥F ≤ ∥V(t+1)∥F + ∥V(t)∥F
ρt

≤ C(X,Ŵ, ρ0, tu, τ̂)

ρt
. (14)

Therefore, we prove the desired inequality. Since
∑∞

s=0 1/ρs < ∞, {D}∞t=0 is a Cauchy sequence,
and therefore there exists a matrix D̄ such that D(t) → D̄. It follows from ∥W(t+1)−D(t+1)∥F → 0
that W(t) → D̄. The proof is completed.
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A.1 Proof of Lemma 1

Proof. According to the W−update rule in (4), it holds

W(t+1) −D(t) +
V(t)

ρ(t)
= (H+ ρtI)

−1(G−V(t) + ρtD
(t))−D(t) +

V(t)

ρ(t)

=
(
(H+ ρtI)

−1ρt − I
)
D(t) + (H+ ρtI)

−1(G−V(t)) +
V(t)

ρt

= − 1

ρt

(
I+

H

ρt

)−1

HD(t) +
1

ρt

(
I+

H

ρt

)−1

(G−V(t)) +
V(t)

ρt

=
1

ρt

(
I+

H

ρt

)−1

(G−HD(t)) +
1

ρt

[
I−

(
I+

H

ρt

)−1
]
V(t)

=
1

ρt

(
I+

H

ρt

)−1(
G−HD(t) +

HV(t)

ρt

)
(15)

Therefore, we obtain∥∥∥∥W(t+1) −D(t) +
V(t)

ρ(t)

∥∥∥∥
F

≤ 1

ρt

∥∥∥∥∥
(
I+

H

ρt

)−1
∥∥∥∥∥
2

∥∥∥∥G−HD(t) +
HV(t)

ρt

∥∥∥∥
F

≤ 1

ρt

∥∥∥∥G−HD(t) +
HV(t)

ρt

∥∥∥∥
F

≤ 1

ρt

(
∥G−HD(t)∥F +

∥HV(t)∥
ρt

)
.

(16)

Denote Ĩ := {(i, j) ∈ [Nin] × [Nout] | D(t)
ij = 0}. It follows from the D−update rule and the

definition of the projection operator that∥∥∥∥D(t+1) −W(t+1) − V(t)

ρt

∥∥∥∥2
F

= min
I⊆[Nin]×[Nout]
|I|=NinNout−k

∑
(i,j)∈I

(
W(t+1) +

V(t)

ρt

)2

i,j

≤
∑

(i,j)∈Ĩ

(
W(t+1) +

V(t)

ρt

)2

i,j

=
∑

(i,j)∈Ĩ

(
W(t+1) −D(t) +

V(t)

ρt

)2

i,j

≤
∥∥∥∥W(t+1) −D(t) +

V(t)

ρt

∥∥∥∥2
F

(17)

Together with (16), we get∥∥∥∥D(t+1) −W(t+1) − V(t)

ρt

∥∥∥∥
F

≤ 1

ρt

(
∥G−HD(t)∥F +

∥HV(t)∥
ρt

)
. (18)

It then follows from the V−update rule that

∥V(t+1)∥F
ρt

=

∥∥∥∥D(t+1) −W(t+1) − V(t)

ρt

∥∥∥∥
F

≤ 1

ρt

(
∥G−HD(t)∥F +

∥HV(t)∥
ρt

)
(19)

This establishes the inequality (7). Furthermore, by summing up (16) and (18) and applying the
triangle inequality, we verify the inequality (8).

A.2 Proof of Lemma 2

Proof. It follows from Lemma 1 that

∥V(t+1)∥F ≤ ∥G−HD(t)∥F +
∥HV(t)∥F

ρt

≤ ∥H∥2∥D(t)∥F + ∥G∥F +
∥H∥2∥V(t)∥F

ρt

(20)
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and

∥D(t+1) −D(t)∥F ≤ 2

ρt

(
∥G−HD(t)∥F +

∥HV(t)∥F
ρt

)
≤ 2

ρt

(
∥H∥2∥D(t)∥F + ∥G∥F +

∥H∥2∥V(t)∥F
ρt

)
.

(21)

This further implies

∥D(t+1)∥F ≤
(
1 +

2∥H∥2
ρt

)
∥D(t)∥F +

2∥G∥F
ρt

+
2∥H∥2∥V(t)∥F

ρ2t
(22)

Combining inequalities (20) and (22) yields

∥D(t+1)∥F +
∥V(t+1)∥F

ρt+1
≤ ∥D(t+1)∥F +

∥V(t+1)∥F
ρt

≤
(
1 +

3∥H∥2
ρt

)
∥D(t)∥F +

3∥G∥F
ρt

+
3∥H∥2∥V(t)∥F

ρ2t

≤
(
1 +

3∥H∥2
ρt

)(
∥D(t)∥F +

∥V(t)∥F
ρt

)
+

3∥G∥F
ρt

(23)

Denote at := ∥D(t)∥F + ∥V(t)∥F /ρt, then the above inequality can be rewritten as

at+1 ≤
(
1 +

3∥H∥2
ρt

)
at +

3∥G∥F
ρt

(24)

Therefore,

at+1∏t
s=0(1 + 3∥H∥2/ρk)

≤ at∏t−1
s=0(1 + 3∥H∥2/ρk)

+
3∥G∥F

ρt
∏t

s=0(1 + 3∥H∥2/ρk)

≤ at∏t−1
s=0(1 + 3∥H∥2/ρk)

+
3∥G∥F

ρt

(25)

It then follows from telescoping that

at∏t−1
s=0(1 + 3∥H∥2/ρk)

≤ a0 +

t−1∑
s=0

3∥G∥F
ρt

(26)

Recalling the definition of at completes the proof.

B Experimental Details

B.1 Experimental setup

We performed all experiments on a computing cluster using an Intel Xeon Gold 6248 machine with
20 CPUs and a single NVIDIA V100 GPU, which is equipped with 192GB of CPU RAM and 32GB
of CUDA memory. The PyTorch library Paszke et al. [2017] was used to implement all language
models and pruning methods for our experiments.

Pruning problem setup. For a given sparsity s, we set the ℓ0 constraint k in the pruning problem (1)
to ⌊NinNouts⌋. Following the pruning framework proposed by Frantar and Alistarh [2023], Meng
et al. [2024b], we solve the LLM pruning problem sequentially, layer by layer. For layer ℓ, the input
activation matrix X in (1) is set as the output of the previous ℓ− 1 pruned layers on N calibration
samples.

Data pre-processing. Let E = Diag(X⊤X + λ2I)
−1/2. To achieve better scaling, we define

W′ = E−1W and reformulate Equation (1) into the following equivalent form:

min
W′∈RNin×Nout

∥XŴ −XEW′∥2F + λ2∥Ŵ −EW′∥2F s.t. ∥W′∥0 ≤ k (27)

Practically, we apply Algorithm 1 to solve Equation (27) and recover the solution to the original
problem by setting W = EW′. It is important to note that this pre-processing step does not alter

18



the procedure of Algorithm 1 or affect the convergence analysis. It only modifies the updates within
Algorithm 1 and can lead to a better convergence rate in practice.

Hyperparamter choice. We choose λ2 = 0.01Tr(X⊤X). In Algorithm 1, we set ρ0 = 0.1. And
we update ρ every 3 iteration based on a step function that depends on the current value of ρt and
st := |Supp

(
D(t)

)
∆Supp

(
D(t−3)

)
|, which represents the number of elements in the symmetric

difference between Supp
(
D(t)

)
and Supp

(
D(t−3)

)
. Specifically, we set

ρt+1 =

{
1.3ρt if st ≥ 0.1k,
1.2ρt if st ≥ 0.005k,
1.1ρt if st ≥ 1.

(28)

If st = 0, it indicates that ρ is sufficiently large and the support has stabilized. In this case, we
terminate Algorithm 1, set S as the support of W, and apply Algorithm 2 with 10 iterations to solve
problem (6) with support S.

Implementation details. Below are the configuration and implementation details for the competing
methods and our proposed framework ALPS.

• MP: For each layer in the LLM, we perform magnitude pruning by sorting the absolute values of
all entries of the dense weight Ŵ in descending order, keeping the top k entries unchanged, and
setting the remaining entries to zero.

• SparseGPT: We utilize the authors’ implementation (codes available on GitHub) with default
hyperparameter settings to perform one-shot unstructured LLM pruning.

• Wanda: We utilize the authors’ implementation (codes available on GitHub) with default hyperpa-
rameter settings to perform one-shot unstructured LLM pruning.

• DSnoT: We utilize the authors’ implementation (codes available on GitHub) with default hyperpa-
rameter settings to perform one-shot unstructured LLM pruning.

B.2 Additional experimental results

B.2.1 The importance of the ρ update scheme

Our proposed ρ update scheme, theoretically supported by Theorem 1, ensures that ALPS converges
rapidly while finding high quality solutions. In contrast, ADMM with a fixed ρ may fail to converge
when applied to ℓ0 constrained least squares problems. To provide empirical evidence for this claim,
we compare ALPS with ADMM using fixed ρ values. We examined two key metrics: reconstruction
loss (objective) and the rate of change of the support (of weights) between consecutive iterations (this
measures the convergence speed of the algorithm).Tables 4 and 5 present the results for these metrics,
respectively. Our findings show that ADMM with a large ρ(= 3) converges quickly but yields poor
solutions, while a small ρ(= 0.3) fails to converge. ALPS, utilizing our ρ update scheme, achieves
both rapid convergence and high-quality solutions.

Supp change / Iter 5 10 20 30 50 100

ALPS 1.63e-1 1.28e-1 5.95e-2 5.32e-2 5.31e-2 5.31e-2
ADMM(ρ = 0.3) 7.83e-2 7.55e-2 7.50e-2 7.47e-2 7.47e-2 7.45e-2
ADMM(ρ = 0.3) 9.32e-2 8.18e-2 7.64e-2 7.53e-2 7.45e-2 7.42e-2

Table 4: The relative reconstruction error ∥XŴ − XW∥2F /∥XŴ∥2F over iterations, comparing
ALPS with ADMM using a fixed penalty parameter ρ.

Supp change / Iter 5 10 20 30 50 100

ALPS 20.2% 17.0% 2.8% 0.0% 0.0% 0.0%

ADMM(ρ = 0.3) 6.4% 7.0% 7.0% 7.0% 6.9% 6.9%

ADMM(ρ = 0.3) 0.2% < 0.1% < 0.1% < 0.1% < 0.1% < 0.1%

Table 5: The rate of change of the support (of weights) between consecutive iterations, comparing
ALPS with ADMM using a fixed penalty parameter ρ.
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Algorithm OPT-1.3B OPT-2.7B OPT-6.7B OPT-13B OPT-30B LLaMA2-7B LLaMA2-13B LLaMA3-8B
MP 4.7 8.9 23 47 120 25 46 24

Wanda 99 161 280 502 1027 214 407 1118
SparseGPT 363 728 1621 2980 6662 1263 2319 2392

DSnoT 125 213 417 758 1528 347 651 1176
ALPS 963 2360 6069 14323 48366 3043 7145 6735

Table 6: Runtime (in seconds) comparison for one-shot unstructured pruning of OPT models and
LLaMA models. Here, runtime includes input activation generation and model pruning.

B.2.2 Runtime comparison

We compare the runtime of ALPS with other methods in Table 6. ALPS employs an advanced
optimization method to solve the layerwise reconstruction problem, which results in longer running
times compared to other algorithms. However, it’s important to note that ALPS ’s runtime is still
negligible when compared to fine-tuning methods for LLMs, e.g., LoRA [Hu et al., 2021].

B.2.3 Comparison of ALPS and ADMM-Grad

We discuss the difference between ALPS and ADMM-Grad [Boža, 2024], another interesting work
using ADMM for LLM unstructured pruning. [Boža, 2024] selects the sparsity mask via iterative
magnitude pruning and applies ADMM to solve problem (6) with the selected sparsity mask. ALPS,
in contrast, is an end-to-end approach that directly targets the ℓ0 constrained least squares problem
(1). By simultaneously optimizing both weights and sparsity patterns, ALPS achieves lower layerwise
reconstruction loss compared to ADMM-Grad, as demonstrated in Table 7.

Additionally, since [Boža, 2024] employs ADMM for solving problem (6), we compare it with our
proposed PCG procedure. We tested both approaches for solving problem (6) with a given support.
Results presented in Table 8 show that PCG outperforms ADMM-Grad in both computational time
and objective value. The time advantage of PCG stems from its ability to backsolve without explicitly
computing matrix inverses.

Sparsity 0.4 0.5 0.6 0.7 0.8 0.9
ALPS 3.55e-3 7.56e-3 1.47e-2 2.77e-2 5.32e-2 1.13e-1

ADMM-Grad 4.47e-3 9.53e-3 1.83e-2 3.36e-2 6.19e-2 1.25e-1

Table 7: Relative reconstruction error ∥XŴ −XW∥2F /∥XŴ∥2F comparison between ALPS and
ADMM-Grad across different sparsity levels.

Sparsity 0.4 0.5 0.6 0.7 0.8 0.9

ALPS
time 0.01s 0.01s 0.01s 0.01s 0.01s 0.01s
loss 3.55e-3 7.56e-3 1.47e-2 2.77e-2 5.32e-2 1.13e-1

ADMM-Grad
time 0.11s 0.11s 0.11s 0.11s 0.11s 0.11s
loss 5.1e-3 1.12e-2 2.32e-2 4.49e-2 8.83e-2 2.00e-1

Table 8: Comparison of PCG (Algorithm 2) and ADMM [Boža, 2024] for solving problem (6).
Results show runtime (seconds) and layerwise reconstruction loss ∥XŴ−XW∥2F /∥XŴ∥2F across
supports with different sparsity levels.

B.2.4 Pruned model performance on MMLU benchmark

We evaluated the one-shot unstructured pruning performance of MP, SparseGPT, Wanda, DSnoT, and
ALPS on LLaMA3-8B using the MMLU benchmark to give a comprehensive assessment of each
method’s effectiveness. Table 1 shows the mean accuracy across all MMLU categories. The results
demonstrate that ALPS outperforms other methods, further validating its effectiveness in producing
high-performance pruned models. We also observe significant performance degradation on MMLU
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at high sparsity levels, suggesting that one-shot pruning should be combined with fine-tuning [Hu
et al., 2021] or prompting [Sahoo et al., 2024] techniques to maintain model performance in practical
applications.

Sparsity MP Wanda SparseGPT DSnoT ALPS
0.4 47.30 53.48 56.74 54.19 57.42
0.5 36.11 42.64 50.87 44.49 51.01
0.6 25.35 29.50 37.54 28.96 40.40
0.7 23.10 24.78 27.99 24.73 28.71
2:4 25.30 28.24 34.27 29.25 33.98
4:8 28.70 32.64 38.37 34.59 41.21

Table 9: Performance analysis for one-shot unstructured pruning of LLaMA-3 8B models at various
sparsity levels using MMLU benchmark.

B.2.5 Comprehensive model performance across sparsity levels

We compare the one-shot unstructured pruning performance of MP, SparseGPT, Wanda, DSnoT, and
ALPS on OPT-1.3B-30B models and LLaMA2-7B, LLaMA2-13B, LLaMA3-8B models in Tables
10-17. The models are pruned at unstructured sparsity levels of 40%, 50%, 60%, 70%, 80%, and
90%, as well as at 2:4 and 4:8 sparsity patterns. We evaluate the perplexity of the pruned models
on WikiText2, PTB, and C4 datasets. Additionally, we assess the accuracy of the pruned models on
PIQA, LAMBADA, ARC-Easy, and ARC-Challenge. However, LAMBADA accuracy results for the
LLaMA model have been omitted since LLaMA models have unsatisfactory performance on this
dataset without further modifications. For each combination of model, sparsity, and pruning approach,
we run each method five times and report the mean and standard deviation of each performance
criterion.
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Model Algorithm WikiText2 ↓ PTB ↓ C4 ↓ LAMBADA ↑ PIQA ↑ ARC-Easy ↑ ARC-Challenge ↑

OPT-1.3B

MP 149.7(±0.0) 131.9(±0.0) 95.35(±0.00) 9.24(±0.00) 63.93(±0.00) 45.88(±0.00) 19.71(±0.00)
Wanda 16.09(±0.24) 21.13(±0.20) 16.43(±0.06) 46.77(±0.46) 69.68(±0.30) 54.99(±0.26) 24.01(±0.29)
SparseGPT 16.34(±0.15) 19.57(±0.23) 16.91(±0.28) 46.69(±0.46) 68.43(±0.10) 50.05(±0.30) 23.02(±0.24)
DSnoT 16.52(±0.11) 20.61(±0.22) 16.73(±0.05) 47.40(±0.45) 69.49(±0.24) 54.06(±0.15) 23.05(±0.26)
ALPS 15.67(±0.10) 18.72(±0.04) 15.79(±0.06) 50.40(±0.53) 71.32(±0.19) 56.08(±0.29) 23.82(±0.28)

OPT-2.7B

MP 21.83(±0.00) 27.07(±0.00) 18.48(±0.00) 40.11(±0.00) 71.76(±0.00) 54.92(±0.00) 24.91(±0.00)
Wanda 12.95(±0.29) 19.27(±0.19) 13.85(±0.03) 54.59(±0.40) 72.46(±0.24) 59.37(±0.37) 26.06(±0.35)
SparseGPT 12.61(±0.09) 15.96(±0.06) 13.67(±0.03) 55.47(±0.40) 72.47(±0.25) 59.42(±0.45) 26.37(±0.30)
DSnoT 12.83(±0.10) 17.96(±0.49) 13.84(±0.02) 55.22(±0.37) 72.50(±0.26) 59.13(±0.25) 26.18(±0.36)
ALPS 12.62(±0.03) 15.78(±0.02) 13.57(±0.04) 58.73(±0.36) 72.88(±0.05) 60.20(±0.21) 26.08(±0.36)

OPT-6.7B

MP 16.31(±0.00) 20.55(±0.00) 16.11(±0.00) 39.58(±0.00) 74.37(±0.00) 61.07(±0.00) 27.05(±0.00)
Wanda 10.98(±0.07) 15.30(±0.35) 12.24(±0.02) 64.09(±0.34) 75.55(±0.09) 65.00(±0.24) 29.88(±0.20)
SparseGPT 10.94(±0.08) 13.84(±0.15) 12.08(±0.03) 65.27(±0.43) 75.27(±0.21) 64.54(±0.36) 29.97(±0.35)
DSnoT 10.98(±0.07) 13.90(±0.06) 12.20(±0.02) 64.45(±0.40) 75.23(±0.14) 64.85(±0.11) 29.69(±0.22)
ALPS 10.86(±0.05) 13.64(±0.04) 12.03(±0.03) 66.40(±0.46) 75.59(±0.25) 65.49(±0.16) 30.20(±0.27)

OPT-13B

MP 59.87(±0.00) 72.90(±0.00) 43.10(±0.00) 11.28(±0.00) 68.06(±0.00) 52.90(±0.00) 23.72(±0.00)
Wanda 10.60(±0.05) 13.21(±0.05) 11.65(±0.01) 62.95(±0.24) 75.65(±0.18) 66.26(±0.22) 32.13(±0.53)
SparseGPT 10.38(±0.06) 12.75(±0.02) 11.47(±0.02) 64.07(±0.32) 75.75(±0.20) 66.06(±0.20) 31.55(±0.38)
DSnoT 10.50(±0.05) 12.95(±0.03) 11.59(±0.01) 64.88(±0.45) 75.47(±0.10) 66.30(±0.24) 32.08(±0.19)
ALPS 10.32(±0.04) 12.65(±0.02) 11.39(±0.02) 64.23(±0.56) 75.66(±0.18) 66.87(±0.17) 32.47(±0.37)

OPT-30B

MP 20.31(±0.00) 23.74(±0.00) 16.70(±0.00) 35.90(±0.00) 73.56(±0.00) 61.83(±0.00) 27.90(±0.00)
Wanda 9.45(±0.03) 12.35(±0.04) 10.97(±0.01) 66.54(±0.31) 77.03(±0.15) 69.71(±0.14) 33.38(±0.44)
SparseGPT 9.47(±0.06) 12.13(±0.01) 10.85(±0.02) 67.36(±0.08) 77.31(±0.14) 69.84(±0.13) 33.52(±0.53)
DSnoT 9.43(±0.04) 12.26(±0.03) 10.95(±0.01) 67.75(±0.40) 76.96(±0.14) 69.36(±0.21) 33.79(±0.23)
ALPS 9.47(±0.05) 12.11(±0.02) 10.81(±0.02) 67.42(±0.29) 77.46(±0.20) 69.91(±0.22) 34.16(±0.37)

LLaMA2-7B

MP 7.37(±0.00) 133.6(±0.0) 9.50(±0.00) - 76.22(±0.00) 66.62(±0.00) 38.99(±0.00)
Wanda 6.07(±0.00) 25.12(±0.06) 7.63(±0.00) - 77.15(±0.07) 68.40(±0.19) 40.17(±0.14)
SparseGPT 6.11(±0.02) 27.75(±0.57) 7.63(±0.02) - 77.13(±0.26) 67.81(±0.75) 39.83(±0.23)
DSnoT 5.98(±0.01) 24.94(±0.05) 7.52(±0.00) - 76.76(±0.15) 67.81(±0.44) 38.60(±0.27)
ALPS 6.07(±0.02) 27.14(±0.49) 7.58(±0.04) - 77.21(±0.47) 68.74(±0.69) 40.29(±0.57)

LLaMA2-13B

MP 5.50(±0.00) 40.99(±0.00) 7.16(±0.00) - 77.53(±0.00) 69.32(±0.00) 42.58(±0.00)
Wanda 5.38(±0.01) 34.11(±0.17) 6.98(±0.00) - 78.96(±0.12) 72.69(±0.13) 44.08(±0.15)
SparseGPT 5.38(±0.01) 34.47(±0.56) 6.95(±0.02) - 78.59(±0.28) 71.78(±0.30) 43.79(±0.30)
DSnoT 5.30(±0.00) 32.40(±0.12) 6.88(±0.00) - 78.61(±0.10) 71.52(±0.36) 41.84(±0.19)
ALPS 5.36(±0.01) 33.44(±0.26) 6.91(±0.03) - 78.38(±0.15) 72.58(±0.30) 43.70(±0.16)

LLaMA3-8B

MP 20.83(±0.0) 21.29(±0.0) 23.69(±0.0) - 73.45(±0.0) 67.09(±0.0) 38.99(±0.0)
Wanda 7.45(±0.00) 12.04(±0.01) 10.70(±0.00) - 77.74(±0.19) 75.55(±0.53) 45.90(±0.34)
SparseGPT 7.52(±0.02) 11.93(±0.06) 10.51(±0.08) - 78.23(±0.19) 76.76(±0.61) 46.83(±0.58)
DSnoT 7.43(±0.00) 11.96(±0.02) 10.64(±0.00) - 77.58(±0.25) 74.81(±0.52) 45.29(±0.58)
ALPS 7.45(±0.02) 11.68(±0.03) 10.31(±0.11) - 78.68(±0.15) 76.89(±0.85) 46.09(±0.58)

Table 10: Performance analysis for one-shot unstructured pruning of OPT models and LLaMA models
at 40% sparsity. (↑): higher is better; (↓): lower is better. We omit LLaMA results on LAMBADA
due to its poor performance without modifications.

Model Algorithm WikiText2 ↓ PTB ↓ C4 ↓ LAMBADA ↑ PIQA ↑ ARC-Easy ↑ ARC-Challenge ↑

OPT-1.3B

MP 799.5(±0.0) 536.0(±0.0) 270.6(±0.0) 1.31(±0.00) 59.85(±0.00) 37.12(±0.00) 18.34(±0.00)
Wanda 18.62(±0.36) 26.60(±0.31) 18.74(±0.14) 41.10(±0.85) 68.93(±0.36) 52.79(±0.48) 22.46(±0.22)
SparseGPT 17.77(±0.09) 22.08(±0.22) 17.55(±0.22) 45.82(±1.00) 68.07(±0.45) 48.54(±0.47) 22.59(±0.27)
DSnoT 19.24(±0.15) 26.19(±0.63) 19.12(±0.13) 41.01(±0.80) 68.34(±0.19) 51.49(±0.39) 21.52(±0.36)
ALPS 17.29(±0.12) 21.61(±0.24) 16.97(±0.15) 47.53(±1.10) 70.36(±0.38) 54.17(±0.47) 23.33(±0.40)

OPT-2.7B

MP 119.8(±0.0) 138.7(±0.0) 55.45(±0.00) 17.99(±0.00) 68.61(±0.00) 46.51(±0.00) 22.27(±0.00)
Wanda 14.36(±0.28) 21.72(±0.09) 15.09(±0.08) 49.39(±0.55) 71.68(±0.33) 56.91(±0.36) 24.44(±0.34)
SparseGPT 13.49(±0.09) 18.75(±0.49) 14.39(±0.08) 53.88(±0.78) 71.95(±0.41) 57.45(±0.40) 25.96(±0.36)
DSnoT 14.44(±0.13) 21.41(±0.24) 15.18(±0.06) 51.23(±0.77) 71.48(±0.20) 55.36(±0.31) 24.32(±0.35)
ALPS 13.33(±0.13) 17.64(±0.26) 14.19(±0.10) 57.81(±0.72) 72.51(±0.44) 59.22(±0.56) 25.87(±0.26)

OPT-6.7B

MP 532.3(±0.0) 222.9(±0.0) 222.6(±0.0) 2.92(±0.00) 67.74(±0.00) 47.14(±0.00) 22.35(±0.00)
Wanda 12.02(±0.11) 17.72(±0.10) 13.08(±0.05) 60.76(±0.55) 74.48(±0.23) 63.66(±0.33) 27.85(±0.34)
SparseGPT 11.64(±0.09) 15.85(±0.44) 12.60(±0.08) 64.68(±0.66) 74.69(±0.18) 63.48(±0.53) 28.77(±0.42)
DSnoT 11.97(±0.12) 15.70(±0.19) 13.09(±0.05) 61.33(±0.55) 73.95(±0.26) 62.74(±0.36) 27.61(±0.27)
ALPS 11.46(±0.09) 15.26(±0.28) 12.45(±0.08) 66.31(±0.57) 74.86(±0.18) 64.67(±0.35) 29.16(±0.52)

OPT-13B

MP 2963(±0) 2734(±0) 3240(±0) 0.00(±0.00) 57.78(±0.00) 34.76(±0.00) 20.05(±0.00)
Wanda 11.99(±0.09) 15.95(±0.23) 12.54(±0.04) 60.90(±0.71) 74.71(±0.19) 63.33(±0.33) 30.07(±0.18)
SparseGPT 11.17(±0.10) 13.91(±0.04) 11.93(±0.06) 64.25(±0.91) 74.67(±0.23) 65.00(±0.29) 30.60(±0.17)
DSnoT 11.53(±0.07) 14.41(±0.10) 12.38(±0.03) 63.38(±0.66) 74.44(±0.10) 63.70(±0.46) 30.36(±0.39)
ALPS 10.76(±0.07) 13.48(±0.06) 11.71(±0.06) 65.21(±0.48) 75.11(±0.10) 66.09(±0.20) 32.15(±0.79)

OPT-30B

MP 107.8(±0.0) 245.8(±0.0) 69.17(±0.00) 4.99(±0.00) 65.23(±0.00) 45.79(±0.00) 20.56(±0.00)
Wanda 10.03(±0.06) 13.37(±0.24) 11.48(±0.03) 64.95(±0.66) 76.77(±0.04) 68.30(±0.18) 32.06(±0.24)
SparseGPT 9.75(±0.05) 12.86(±0.11) 11.10(±0.05) 67.83(±0.14) 76.72(±0.17) 69.54(±0.32) 32.88(±0.53)
DSnoT 10.03(±0.06) 13.03(±0.02) 11.44(±0.02) 67.02(±0.57) 76.72(±0.15) 68.18(±0.21) 32.83(±0.21)
ALPS 9.71(±0.07) 12.68(±0.10) 11.01(±0.05) 67.71(±0.56) 77.36(±0.31) 69.35(±0.20) 33.77(±0.61)

LLaMA2-7B

MP 11.82(±0.00) 1206(±0) 17.21(±0.00) - 74.27(±0.00) 60.10(±0.00) 33.62(±0.00)
Wanda 6.93(±0.01) 29.89(±0.05) 8.54(±0.01) - 76.26(±0.22) 66.14(±0.35) 36.21(±0.60)
SparseGPT 7.00(±0.02) 46.85(±2.55) 8.46(±0.07) - 76.12(±0.28) 65.07(±1.10) 36.48(±0.57)
DSnoT 6.94(±0.02) 30.25(±0.16) 8.55(±0.01) - 75.47(±0.22) 66.03(±0.33) 34.61(±0.46)
ALPS 6.85(±0.04) 39.95(±2.61) 8.26(±0.10) - 76.43(±0.10) 66.62(±0.46) 37.18(±0.99)

LLaMA2-13B

MP 6.41(±0.00) 79.31(±0.00) 8.23(±0.00) - 73.72(±0.00) 58.71(±0.00) 35.07(±0.00)
Wanda 5.98(±0.01) 40.28(±0.26) 7.68(±0.01) - 78.30(±0.06) 71.43(±0.39) 40.89(±0.31)
SparseGPT 6.04(±0.02) 41.81(±0.36) 7.62(±0.06) - 77.66(±0.26) 69.27(±0.72) 40.90(±0.89)
DSnoT 5.95(±0.01) 37.92(±0.37) 7.63(±0.01) - 77.40(±0.17) 70.51(±0.48) 39.16(±0.37)
ALPS 5.95(±0.04) 40.33(±0.66) 7.46(±0.08) - 78.28(±0.15) 70.17(±0.60) 40.82(±0.47)

LLaMA3-8B

MP 54.40(±0.0) 72.28(±0.0) 69.50(±0.0) - 67.90(±0.0) 60.52(±0.0) 32.42(±0.0)
Wanda 9.87(±0.03) 15.32(±0.02) 13.49(±0.01) - 75.57(±0.32) 71.19(±0.16) 40.48(±0.32)
SparseGPT 9.47(±0.05) 14.30(±0.10) 12.35(±0.17) - 75.82(±0.39) 73.72(±0.83) 41.18(±1.17)
DSnoT 9.94(±0.06) 15.22(±0.07) 13.49(±0.03) - 75.44(±0.20) 71.24(±0.34) 39.52(±0.20)
ALPS 9.11(±0.07) 13.38(±0.08) 11.78(±0.23) - 76.90(±0.23) 75.15(±0.48) 42.99(±1.26)

Table 11: Performance analysis for one-shot unstructured pruning of OPT models and LLaMA models
at 50% sparsity. (↑): higher is better; (↓): lower is better. We omit LLaMA results on LAMBADA
due to its poor performance without modifications.
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Model Algorithm WikiText2 ↓ PTB ↓ C4 ↓ LAMBADA ↑ PIQA ↑ ARC-Easy ↑ ARC-Challenge ↑

OPT-1.3B

MP 6136(±0) 4017(±0) 2232(±0) 0.00(±0.00) 55.60(±0.00) 30.35(±0.00) 19.20(±0.00)
Wanda 27.17(±0.20) 42.55(±0.28) 25.46(±0.34) 28.94(±0.98) 66.05(±0.27) 47.95(±0.44) 21.31(±0.29)
SparseGPT 22.86(±0.30) 29.29(±0.17) 20.94(±0.33) 39.80(±1.26) 65.47(±0.64) 46.14(±0.82) 21.43(±0.41)
DSnoT 30.47(±0.34) 50.08(±0.69) 29.38(±0.41) 27.86(±0.56) 63.85(±0.49) 44.76(±0.39) 20.84(±0.46)
ALPS 21.51(±0.53) 28.17(±0.50) 19.62(±0.40) 43.54(±1.15) 67.53(±0.32) 51.00(±0.94) 22.53(±0.44)

OPT-2.7B

MP 4283(±0) 3504(±0) 2229(±0) 0.04(±0.00) 57.67(±0.00) 34.60(±0.00) 20.22(±0.00)
Wanda 20.24(±0.28) 31.78(±0.35) 19.74(±0.20) 34.27(±0.87) 69.88(±0.21) 52.37(±0.58) 22.18(±0.49)
SparseGPT 16.21(±0.18) 24.00(±0.29) 16.24(±0.20) 48.59(±0.88) 70.79(±0.12) 55.08(±0.17) 24.28(±0.40)
DSnoT 20.72(±0.25) 33.01(±0.34) 20.32(±0.16) 38.07(±1.56) 68.53(±0.24) 50.76(±0.49) 21.76(±0.42)
ALPS 15.67(±0.20) 22.06(±0.26) 15.75(±0.26) 53.43(±0.91) 71.34(±0.29) 56.09(±0.16) 25.14(±0.55)

OPT-6.7B

MP 9643(±0) 4791(±0) 5876(±0) 0.00(±0.00) 53.86(±0.00) 26.30(±0.00) 20.82(±0.00)
Wanda 15.34(±0.19) 24.50(±0.18) 16.17(±0.12) 49.10(±1.49) 72.50(±0.28) 58.27(±0.48) 25.26(±0.22)
SparseGPT 13.53(±0.21) 18.78(±0.20) 13.92(±0.20) 60.60(±0.98) 73.39(±0.30) 61.64(±0.33) 27.10(±0.42)
DSnoT 15.32(±0.19) 23.30(±0.21) 16.00(±0.13) 51.53(±1.28) 71.86(±0.27) 57.98(±0.11) 24.85(±0.56)
ALPS 13.05(±0.14) 17.76(±0.25) 13.52(±0.23) 64.00(±1.48) 74.03(±0.29) 62.46(±0.40) 27.24(±0.86)

OPT-13B

MP 111710(±0) 24830(±0) 14398(±0) 0.00(±0.00) 52.61(±0.00) 26.18(±0.00) 21.59(±0.00)
Wanda 16.09(±0.13) 22.45(±0.25) 15.38(±0.10) 50.93(±1.39) 71.55(±0.26) 58.78(±0.15) 28.38(±0.41)
SparseGPT 13.04(±0.09) 17.32(±0.09) 13.11(±0.16) 61.96(±1.00) 73.14(±0.30) 61.15(±0.69) 27.97(±0.69)
DSnoT 15.11(±0.14) 20.03(±0.42) 15.10(±0.09) 54.96(±1.24) 71.88(±0.26) 58.49(±0.24) 27.35(±0.18)
ALPS 12.05(±0.18) 15.77(±0.16) 12.55(±0.16) 64.58(±1.32) 74.19(±0.32) 64.05(±0.43) 30.07(±0.60)

OPT-30B

MP 13224(±0) 6381(±0) 6069(±0) 0.00(±0.00) 53.54(±0.00) 26.26(±0.00) 19.80(±0.00)
Wanda 24.85(±1.97) 25.88(±1.78) 21.13(±1.09) 38.37(±2.09) 74.60(±0.47) 64.52(±0.48) 29.04(±0.30)
SparseGPT 10.67(±0.07) 14.61(±0.20) 11.78(±0.12) 67.26(±0.72) 76.00(±0.45) 67.63(±0.23) 32.63(±0.81)
DSnoT 14.88(±0.26) 18.27(±0.33) 15.58(±0.24) 56.47(±1.05) 74.77(±0.23) 65.27(±0.33) 30.27(±0.24)
ALPS 10.43(±0.09) 14.23(±0.15) 11.52(±0.12) 67.66(±0.73) 76.34(±0.30) 68.09(±0.38) 32.58(±0.67)

LLaMA2-7B

MP 7058(±0) 285318(±0) 42050(±0) - 63.11(±0.00) 44.99(±0.00) 26.37(±0.00)
Wanda 10.82(±0.04) 65.23(±0.84) 12.61(±0.03) - 71.19(±0.18) 59.24(±0.48) 30.56(±0.63)
SparseGPT 10.19(±0.06) 215.8(±47.2) 11.52(±0.23) - 71.78(±0.52) 58.87(±0.65) 30.27(±0.66)
DSnoT 11.47(±0.09) 64.02(±1.18) 13.41(±0.05) - 70.05(±0.19) 59.00(±0.54) 28.48(±0.59)
ALPS 9.36(±0.19) 107.6(±14.2) 10.26(±0.34) - 73.68(±0.14) 60.56(±2.13) 31.55(±0.96)

LLaMA2-13B

MP 10.10(±0.00) 301.5(±0.0) 13.25(±0.00) - 68.17(±0.00) 46.51(±0.00) 26.45(±0.00)
Wanda 8.44(±0.03) 89.78(±0.60) 10.44(±0.03) - 75.03(±0.13) 63.43(±0.56) 36.48(±0.50)
SparseGPT 8.25(±0.10) 83.82(±3.18) 9.78(±0.22) - 74.95(±0.13) 64.30(±1.32) 35.39(±0.57)
DSnoT 8.88(±0.04) 79.41(±1.33) 10.92(±0.04) - 74.09(±0.24) 63.48(±0.39) 34.71(±0.32)
ALPS 7.55(±0.10) 65.86(±3.81) 8.93(±0.26) - 76.16(±0.34) 67.74(±1.24) 37.66(±0.78)

LLaMA3-8B

MP 410664(±0.0) 317003(±0.0) 66461(±0.0) - 62.68(±0.0) 39.23(±0.0) 23.38(±0.0)
Wanda 23.55(±0.24) 37.74(±0.57) 29.55(±0.16) - 68.30(±0.19) 60.04(±0.27) 27.85(±0.42)
SparseGPT 15.63(±0.14) 22.89(±0.58) 17.92(±0.50) - 71.81(±0.55) 63.20(±0.85) 31.96(±1.08)
DSnoT 23.05(±0.16) 36.15(±0.40) 27.71(±0.17) - 67.85(±0.49) 60.51(±0.30) 28.07(±0.67)
ALPS 14.09(±0.18) 21.26(±0.69) 15.67(±0.77) - 73.41(±0.64) 67.10(±0.57) 34.52(±0.83)

Table 12: Performance analysis for one-shot unstructured pruning of OPT models and LLaMA models
at 60% sparsity. (↑): higher is better; (↓): lower is better. We omit LLaMA results on LAMBADA
due to its poor performance without modifications.

Model Algorithm WikiText2 ↓ PTB ↓ C4 ↓ LAMBADA ↑ PIQA ↑ ARC-Easy ↑ ARC-Challenge ↑

OPT-1.3B

MP 9409(±0) 6689(±0) 5652(±0) 0.00(±0.00) 52.12(±0.00) 26.18(±0.00) 20.90(±0.00)
Wanda 100.8(±3.8) 128.4(±3.1) 78.58(±2.34) 9.77(±0.63) 59.38(±0.46) 37.92(±0.32) 18.02(±0.36)
SparseGPT 52.02(±2.22) 70.10(±3.31) 37.05(±1.78) 27.27(±1.04) 62.38(±0.79) 40.79(±0.58) 19.69(±0.78)
DSnoT 367.5(±19.6) 370.2(±30.6) 205.4(±6.1) 8.62(±0.23) 56.90(±0.37) 33.27(±0.47) 17.49(±0.57)
ALPS 39.50(±2.38) 50.68(±1.13) 28.52(±1.25) 32.11(±1.71) 64.43(±0.37) 45.01(±1.03) 21.08(±0.32)

OPT-2.7B

MP 12249(±0) 10993(±0) 9960(±0) 0.00(±0.00) 52.94(±0.00) 26.52(±0.00) 19.71(±0.00)
Wanda 365.1(±16.5) 379.4(±37.6) 224.4(±4.8) 5.02(±0.40) 58.01(±0.38) 34.85(±0.38) 17.61(±0.28)
SparseGPT 28.93(±1.62) 40.89(±1.19) 23.11(±0.66) 34.96(±1.97) 66.50(±0.32) 49.55(±0.50) 21.67(±0.57)
DSnoT 114.8(±1.5) 116.2(±6.7) 75.28(±3.51) 9.39(±0.63) 59.62(±0.23) 37.37(±0.48) 18.43(±0.78)
ALPS 25.36(±1.34) 35.76(±0.90) 20.93(±0.75) 42.53(±2.40) 67.62(±0.36) 51.55(±0.84) 22.27(±0.43)

OPT-6.7B

MP 9970(±0) 4779(±0) 5055(±0) 0.00(±0.00) 52.67(±0.00) 26.60(±0.00) 21.16(±0.00)
Wanda 162.9(±8.7) 204.9(±10.6) 206.0(±13.5) 2.82(±0.10) 58.13(±0.16) 35.82(±0.43) 17.22(±0.39)
SparseGPT 21.14(±0.69) 29.34(±0.44) 19.07(±0.62) 47.20(±0.94) 69.23(±0.76) 54.67(±0.20) 24.08(±0.28)
DSnoT 7985(±465) 6572(±783) 4764(±478) 0.15(±0.12) 53.19(±0.36) 29.13(±0.78) 18.46(±0.48)
ALPS 18.99(±0.85) 24.89(±0.26) 17.01(±0.60) 56.04(±1.32) 71.39(±0.27) 58.52(±0.74) 26.19(±0.52)

OPT-13B

MP 524559(±0) 146680(±0) 155160(±0) 0.00(±0.00) 52.99(±0.00) 25.25(±0.00) 22.95(±0.00)
Wanda 63.42(±2.22) 66.50(±1.93) 50.19(±2.28) 10.82(±0.95) 63.03(±0.72) 43.66(±0.52) 23.50(±0.63)
SparseGPT 19.29(±0.42) 25.50(±0.32) 16.79(±0.45) 47.97(±1.73) 69.16(±0.31) 53.51(±0.49) 26.23(±0.96)
DSnoT 78.13(±2.94) 60.11(±0.91) 56.39(±1.79) 14.43(±0.41) 61.57(±0.60) 40.52(±0.62) 20.77(±0.67)
ALPS 16.71(±0.62) 21.49(±0.40) 15.07(±0.46) 57.08(±1.62) 71.73(±0.22) 59.30(±0.50) 27.97(±0.93)

OPT-30B

MP 26271(±0) 12693(±0) 13057(±0) 0.00(±0.00) 52.23(±0.00) 25.46(±0.00) 19.97(±0.00)
Wanda 10384(±198) 5467(±104) 6692(±191) 0.01(±0.01) 52.21(±0.27) 25.61(±0.10) 20.20(±0.41)
SparseGPT 13.61(±0.22) 18.94(±0.25) 13.96(±0.35) 60.50(±0.88) 73.74(±0.27) 63.26(±0.44) 28.81(±0.40)
DSnoT 11328(±368) 5685(±248) 6579(±298) 0.04(±0.02) 52.48(±0.30) 26.36(±0.15) 20.15(±0.31)
ALPS 12.67(±0.23) 17.47(±0.27) 13.00(±0.32) 63.52(±1.38) 75.05(±0.38) 65.52(±0.75) 30.55(±0.76)

LLaMA2-7B

MP 141884(±0) 56430(±0) 9843(±0) - 52.61(±0.00) 28.24(±0.00) 21.33(±0.00)
Wanda 76.05(±1.45) 320.0(±6.3) 68.45(±2.19) - 55.59(±0.43) 28.86(±0.27) 18.74(±0.55)
SparseGPT 27.20(±0.75) 1049(±256) 26.14(±0.92) - 62.76(±0.34) 39.62(±0.83) 22.47(±0.63)
DSnoT 63.12(±2.82) 322.0(±9.7) 61.91(±2.05) - 56.30(±0.25) 29.72(±0.17) 19.06(±0.20)
ALPS 19.31(±0.68) 480.1(±198.7) 17.66(±1.03) - 66.82(±0.92) 48.37(±0.31) 24.95(±0.64)

LLaMA2-13B

MP 190.9(±0.0) 2246(±0) 192.1(±0.0) - 60.45(±0.00) 35.19(±0.00) 20.73(±0.00)
Wanda 47.20(±1.52) 410.3(±3.6) 47.03(±1.10) - 58.39(±0.35) 35.62(±0.35) 18.67(±0.36)
SparseGPT 19.93(±0.66) 275.6(±16.9) 20.08(±0.84) - 66.14(±0.41) 48.27(±0.31) 26.31(±0.53)
DSnoT 47.21(±0.79) 328.9(±4.8) 47.93(±0.83) - 57.19(±0.23) 33.05(±0.32) 18.24(±0.42)
ALPS 14.23(±0.43) 152.8(±6.9) 14.14(±0.88) - 70.21(±0.70) 56.48(±0.48) 29.39(±0.53)

LLaMA3-8B

MP 572874(±0.0) 243236(±0.0) 211703(±0.0) - 52.77(±0.0) 26.64(±0.0) 21.50(±0.0)
Wanda 116.8(±3.1) 174.8(±8.8) 121.2(±4.0) - 55.75(±0.43) 32.02(±0.43) 17.94(±0.19)
SparseGPT 43.15(±2.62) 76.50(±5.28) 38.46(±2.43) - 62.64(±1.20) 44.88(±1.99) 21.67(±0.87)
DSnoT 108.7(±2.3) 166.9(±4.0) 114.2(±1.2) - 55.50(±0.29) 31.60(±0.10) 17.78(±0.13)
ALPS 30.53(±1.58) 53.12(±3.28) 27.42(±1.89) - 65.15(±0.92) 50.61(±0.96) 23.23(±1.07)

Table 13: Performance analysis for one-shot unstructured pruning of OPT models and LLaMA models
at 70% sparsity. (↑): higher is better; (↓): lower is better. We omit LLaMA results on LAMBADA
due to its poor performance without modifications.
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OPT-1.3B

MP 10988(±0) 8966(±0) 7767(±0) 0.00(±0.00) 52.99(±0.00) 24.58(±0.00) 19.62(±0.00)
Wanda 3327(±412) 1783(±169) 1306(±145) 0.32(±0.05) 55.17(±0.38) 28.80(±0.30) 18.46(±0.65)
SparseGPT 1005(±76) 521.0(±36.2) 311.9(±27.4) 5.91(±0.47) 55.59(±0.52) 29.81(±0.34) 18.92(±0.74)
DSnoT 10757(±798) 7749(±509) 5559(±287) 0.00(±0.00) 53.84(±0.20) 26.03(±0.32) 18.79(±0.53)
ALPS 326.7(±63.3) 311.3(±38.5) 117.3(±13.3) 11.38(±0.55) 57.29(±0.80) 32.11(±0.69) 18.26(±0.43)

OPT-2.7B

MP 19200(±0) 9475(±0) 13627(±0) 0.00(±0.00) 52.45(±0.00) 26.01(±0.00) 20.65(±0.00)
Wanda 6580(±705) 4946(±601) 4861(±763) 0.00(±0.00) 53.45(±0.68) 27.06(±0.29) 20.44(±0.47)
SparseGPT 154.9(±11.2) 142.7(±8.4) 73.43(±4.16) 12.02(±0.53) 58.05(±0.39) 34.88(±0.54) 18.63(±0.34)
DSnoT 18322(±2378) 11516(±1479) 15210(±2139) 0.00(±0.00) 52.10(±0.61) 26.37(±0.32) 21.31(±0.27)
ALPS 108.2(±7.2) 114.4(±2.0) 53.83(±3.32) 19.48(±0.60) 59.61(±0.68) 38.25(±0.63) 19.27(±0.50)

OPT-6.7B

MP 42719(±0) 18213(±0) 20049(±0) 0.00(±0.00) 52.45(±0.00) 26.39(±0.00) 21.50(±0.00)
Wanda 4317(±293) 2429(±190) 2321(±189) 0.17(±0.06) 54.27(±0.63) 29.04(±0.43) 18.28(±0.37)
SparseGPT 109.1(±5.6) 92.51(±2.90) 56.94(±3.22) 14.28(±0.78) 60.55(±0.53) 38.75(±0.97) 18.87(±0.20)
DSnoT 10990(±2902) 8165(±2179) 8405(±2379) 0.00(±0.00) 53.13(±0.35) 26.46(±0.75) 20.17(±0.31)
ALPS 70.97(±5.76) 73.94(±3.62) 40.33(±2.42) 25.85(±1.35) 62.44(±0.51) 44.23(±0.80) 20.14(±0.38)

OPT-13B

MP 266874(±0) 98067(±0) 97073(±0) 0.00(±0.00) 51.74(±0.00) 25.55(±0.00) 21.25(±0.00)
Wanda 11025(±1789) 4900(±673) 6256(±897) 0.00(±0.01) 53.67(±0.62) 26.28(±0.79) 21.52(±0.47)
SparseGPT 78.05(±6.82) 72.64(±3.30) 41.60(±3.02) 14.56(±0.35) 62.10(±0.64) 40.26(±1.19) 21.71(±0.74)
DSnoT 11697(±490) 5860(±320) 6295(±245) 0.00(±0.00) 52.81(±0.32) 25.72(±0.20) 21.84(±0.39)
ALPS 42.92(±3.03) 45.19(±1.16) 27.17(±1.44) 31.38(±1.71) 65.57(±0.72) 48.50(±0.51) 22.54(±0.56)

OPT-30B

MP 68520(±0) 31584(±0) 31793(±0) 0.00(±0.00) 52.07(±0.00) 25.97(±0.00) 20.39(±0.00)
Wanda 8184(±379) 3855(±238) 5387(±382) 0.00(±0.00) 51.98(±0.35) 26.22(±0.36) 20.07(±0.15)
SparseGPT 50.33(±5.81) 48.59(±1.04) 33.42(±2.83) 19.79(±1.35) 63.69(±0.56) 46.17(±0.48) 21.91(±0.91)
DSnoT 11788(±1611) 5178(±636) 6403(±814) 0.00(±0.00) 51.81(±0.28) 26.41(±0.26) 20.12(±0.39)
ALPS 25.05(±1.84) 30.64(±0.57) 19.29(±1.14) 44.46(±2.43) 69.72(±0.61) 56.65(±0.59) 24.98(±0.39)

LLaMA2-7B

MP 60361(±0) 72505(±0) 47003(±0) - 53.32(±0.00) 26.05(±0.00) 22.70(±0.00)
Wanda 3140(±692) 3158(±669) 2146(±478) - 52.97(±0.36) 26.20(±0.20) 20.65(±0.34)
SparseGPT 114.9(±6.0) 1733(±68) 83.04(±3.31) - 54.86(±0.59) 26.34(±0.52) 19.15(±0.33)
DSnoT 7300(±648) 6036(±650) 6385(±738) - 53.05(±0.44) 26.31(±0.26) 19.97(±0.47)
ALPS 52.02(±4.85) 1462(±294) 39.37(±2.22) - 58.05(±0.45) 30.27(±0.59) 19.97(±0.16)

LLaMA2-13B

MP 12018(±0) 8573(±0) 11705(±0) - 53.37(±0.00) 26.81(±0.00) 21.25(±0.00)
Wanda 1123(±128) 4111(±281) 799.4(±57.9) - 53.26(±0.60) 26.24(±0.21) 20.44(±0.41)
SparseGPT 100.8(±4.0) 605.4(±36.4) 64.61(±2.25) - 54.94(±0.53) 28.17(±0.40) 19.37(±0.26)
DSnoT 13908(±535) 10634(±842) 13102(±935) - 52.51(±0.30) 26.73(±0.38) 22.30(±0.11)
ALPS 39.07(±2.83) 345.8(±27.3) 30.70(±1.85) - 59.39(±0.63) 34.19(±0.47) 21.01(±0.32)

LLaMA3-8B

MP 491419(±0.0) 283948(±0.0) 624818(±0.0) - 52.77(±0.0) 24.87(±0.0) 22.61(±0.0)
Wanda 1133(±219) 1785(±408) 696.3(±105.4) - 52.89(±0.42) 28.27(±0.60) 20.12(±0.25)
SparseGPT 210.0(±19.3) 342.3(±15.0) 108.6(±5.4) - 54.94(±0.65) 29.87(±0.37) 18.46(±0.58)
DSnoT 959.9(±77.2) 1061(±58) 454.0(±17.4) - 52.74(±0.20) 28.01(±0.20) 19.69(±0.48)
ALPS 120.6(±7.1) 158.9(±10.0) 61.08(±3.38) - 57.19(±0.48) 33.35(±0.40) 16.86(±0.58)

Table 14: Performance analysis for one-shot unstructured pruning of OPT models and LLaMA models
at 80% sparsity. (↑): higher is better; (↓): lower is better. We omit LLaMA results on LAMBADA
due to its poor performance without modifications.

Model Algorithm WikiText2 ↓ PTB ↓ C4 ↓ LAMBADA ↑ PIQA ↑ ARC-Easy ↑ ARC-Challenge ↑

OPT-1.3B

MP 20486(±0) 13134(±0) 11298(±0) 0.00(±0.00) 52.99(±0.00) 25.55(±0.00) 19.28(±0.00)
Wanda 13290(±3657) 7120(±2742) 7376(±2527) 0.00(±0.00) 53.19(±0.49) 25.41(±0.54) 20.15(±1.16)
SparseGPT 7771(±589) 5797(±585) 2761(±218) 0.00(±0.01) 53.00(±0.24) 25.72(±0.31) 19.20(±0.32)
DSnoT 18519(±3418) 14488(±2478) 15067(±2433) 0.00(±0.00) 52.67(±0.27) 24.72(±0.59) 19.97(±0.77)
ALPS 4891(±344) 2900(±62) 1415(±78) 0.10(±0.02) 52.72(±0.58) 25.66(±0.52) 19.85(±0.91)

OPT-2.7B

MP 16397(±0) 11205(±0) 15578(±0) 0.00(±0.00) 52.67(±0.00) 25.25(±0.00) 23.89(±0.00)
Wanda 15018(±2265) 11282(±1736) 9191(±1993) 0.00(±0.00) 52.93(±0.92) 26.10(±0.41) 21.01(±0.62)
SparseGPT 5923(±544) 4546(±416) 2486(±135) 0.02(±0.02) 52.27(±0.42) 26.68(±0.16) 20.36(±0.65)
DSnoT 18201(±14215) 13289(±10085) 15652(±11455) 0.00(±0.00) 52.60(±0.58) 25.40(±0.58) 22.34(±0.85)
ALPS 3686(±266) 1599(±121) 800.0(±47.0) 0.23(±0.07) 52.64(±0.42) 26.55(±0.56) 19.93(±0.33)

OPT-6.7B

MP 232525(±0) 95928(±0) 115340(±0) 0.00(±0.00) 51.90(±0.00) 26.47(±0.00) 20.14(±0.00)
Wanda 17429(±1621) 11334(±1067) 13656(±1433) 0.00(±0.00) 52.84(±0.18) 25.70(±0.56) 19.42(±0.74)
SparseGPT 10287(±1598) 5432(±1322) 4930(±1756) 0.00(±0.00) 52.48(±0.64) 25.87(±0.47) 20.15(±0.54)
DSnoT 11233(±4770) 7810(±2983) 9622(±4536) 0.00(±0.00) 53.12(±0.84) 25.73(±0.43) 20.44(±0.38)
ALPS 6424(±194) 4112(±154) 2806(±174) 0.01(±0.02) 52.35(±0.85) 26.30(±0.34) 20.77(±0.31)

OPT-13B

MP 567627(±0) 238209(±0) 202496(±0) 0.00(±0.00) 52.29(±0.00) 26.52(±0.00) 21.33(±0.00)
Wanda 48747(±19963) 24633(±8918) 30681(±12658) 0.00(±0.00) 52.25(±0.40) 25.24(±0.43) 20.09(±0.42)
SparseGPT 44328(±35324) 84805(±93235) 49471(±49558) 0.00(±0.00) 51.08(±0.87) 26.48(±0.67) 21.26(±0.94)
DSnoT 40268(±9573) 18442(±5345) 19745(±4020) 0.00(±0.00) 52.11(±0.45) 25.32(±0.45) 21.88(±0.77)
ALPS 15020(±4799) 43428(±33717) 10101(±2617) 0.02(±0.03) 52.50(±0.30) 26.23(±0.56) 20.51(±0.51)

OPT-30B

MP 8458877440(±0) 2651165184(±0) 2297142016(±0) 0.00(±0.00) 52.07(±0.00) 26.39(±0.00) 20.39(±0.00)
Wanda 11122(±1998) 6063(±1105) 7205(±1107) 0.00(±0.00) 51.75(±0.33) 26.06(±0.37) 20.03(±0.29)
SparseGPT 8695(±1067) 4986(±521) 4380(±537) 0.00(±0.00) 52.50(±0.73) 26.16(±0.35) 20.89(±0.56)
DSnoT 10001(±1011) 4357(±399) 5683(±546) 0.00(±0.00) 52.27(±0.22) 26.09(±0.42) 20.14(±0.20)
ALPS 2353(±233) 1192(±33) 640.3(±89.9) 0.69(±0.12) 53.68(±0.44) 29.25(±0.46) 19.54(±0.83)

LLaMA2-7B

MP 78367(±0) 160179(±0) 37324(±0) - 53.59(±0.00) 26.30(±0.00) 24.91(±0.00)
Wanda 10820(±2403) 7850(±1479) 8309(±1844) - 51.95(±0.55) 26.46(±0.35) 21.43(±0.57)
SparseGPT 1500(±111) - 829.3(±49.9) - 52.69(±0.42) 25.32(±0.39) 21.55(±0.38)
DSnoT 13944(±1025) 21231(±1038) 15297(±1305) - 52.38(±0.36) 26.36(±0.41) 21.64(±0.39)
ALPS 228.0(±11.7) 1800(±373) 135.8(±7.1) - 53.81(±0.48) 26.16(±0.25) 19.66(±0.21)

LLaMA2-13B

MP 201060(±0) 381074(±0) 189457(±0) - 51.74(±0.00) 24.92(±0.00) 21.76(±0.00)
Wanda 17470(±5922) 19851(±5184) 10680(±3894) - 52.60(±0.28) 25.80(±0.50) 21.13(±0.82)
SparseGPT 1443(±136) 2651(±482) 878.3(±101.7) - 53.31(±0.26) 26.41(±0.26) 21.35(±0.40)
DSnoT 46515(±33563) 26995(±8616) 27673(±14262) - 51.85(±0.18) 26.04(±0.25) 21.91(±0.28)
ALPS 251.1(±19.6) 795.9(±46.7) 124.2(±11.7) - 53.62(±0.63) 26.47(±0.38) 19.06(±0.30)

LLaMA3-8B

MP 2115317(±0.0) 1330667(±0.0) 1355430(±0.0) - 52.50(±0.0) 24.20(±0.0) 21.67(±0.0)
Wanda 9913(±1033) 12855(±2742) 6487(±693) - 52.33(±0.45) 26.52(±0.33) 20.73(±0.69)
SparseGPT 1102(±63) 1641(±121) 464.5(±22.4) - 52.76(±0.33) 27.52(±0.49) 19.20(±0.65)
DSnoT 35323(±9006) 25843(±5941) 14828(±3567) - 53.06(±0.57) 26.09(±0.28) 20.89(±0.38)
ALPS 515.9(±34.2) 524.6(±30.9) 212.2(±10.2) - 54.47(±0.54) 28.89(±0.62) 17.65(±0.69)

Table 15: Performance analysis for one-shot unstructured pruning of OPT models and LLaMA models
at 90% sparsity. (↑): higher is better; (↓): lower is better. We omit LLaMA results on LAMBADA
due to its poor performance without modifications.
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OPT-1.3B

MP 427.1(±0.0) 343.6(±0.0) 127.0(±0.0) 2.38(±0.00) 61.53(±0.00) 39.35(±0.00) 17.75(±0.00)
Wanda 28.34(±0.37) 41.67(±0.72) 25.73(±0.25) 27.93(±0.70) 65.73(±0.34) 47.98(±0.46) 21.02(±0.42)
SparseGPT 24.39(±0.62) 32.50(±1.78) 22.81(±0.78) 36.37(±0.67) 64.73(±0.51) 45.34(±0.82) 20.70(±0.34)
DSnoT 32.94(±0.71) 50.37(±1.11) 30.04(±0.35) 29.97(±0.64) 64.34(±0.27) 45.70(±0.32) 20.75(±0.34)
ALPS 22.68(±0.58) 27.63(±0.25) 20.16(±0.36) 39.86(±1.11) 67.15(±0.77) 50.11(±0.69) 21.60(±0.43)

OPT-2.7B

MP 1153(±0) 975.3(±0.0) 718.6(±0.0) 0.53(±0.00) 57.73(±0.00) 36.53(±0.00) 19.20(±0.00)
Wanda 21.58(±0.50) 32.51(±0.42) 20.77(±0.18) 33.38(±0.71) 68.51(±0.34) 51.60(±0.62) 21.71(±0.39)
SparseGPT 17.45(±0.18) 23.50(±0.70) 17.27(±0.22) 46.44(±0.62) 69.61(±0.51) 54.47(±0.33) 23.14(±0.32)
DSnoT 23.69(±0.29) 37.97(±0.99) 23.04(±0.25) 36.54(±0.35) 67.57(±0.44) 49.60(±0.54) 21.60(±0.38)
ALPS 16.84(±0.29) 21.17(±0.16) 16.47(±0.28) 49.59(±1.14) 70.99(±0.24) 55.57(±0.42) 23.40(±0.64)

OPT-6.7B

MP 264.1(±0.0) 205.8(±0.0) 203.5(±0.0) 1.46(±0.00) 63.06(±0.00) 42.51(±0.00) 20.48(±0.00)
Wanda 16.08(±0.14) 24.88(±0.25) 17.04(±0.12) 47.53(±0.89) 71.34(±0.18) 56.80(±0.43) 24.68(±0.41)
SparseGPT 14.25(±0.16) 18.39(±0.24) 14.61(±0.22) 58.90(±0.88) 72.55(±0.34) 59.99(±0.32) 25.63(±0.42)
DSnoT 16.26(±0.16) 23.32(±0.34) 16.47(±0.09) 51.41(±0.67) 70.87(±0.16) 56.00(±0.17) 24.88(±0.42)
ALPS 13.54(±0.10) 17.51(±0.19) 13.93(±0.25) 61.47(±1.21) 73.26(±0.25) 61.03(±0.36) 26.59(±0.64)

OPT-13B

MP 485.0(±0.0) 379.1(±0.0) 257.7(±0.0) 0.47(±0.00) 60.50(±0.00) 36.99(±0.00) 21.08(±0.00)
Wanda 15.69(±0.11) 20.73(±0.19) 15.01(±0.06) 50.56(±0.63) 71.68(±0.29) 58.44(±0.36) 27.32(±0.25)
SparseGPT 12.98(±0.10) 15.88(±0.10) 13.39(±0.17) 62.03(±0.78) 73.25(±0.41) 61.89(±0.58) 28.74(±0.99)
DSnoT 15.28(±0.09) 19.34(±0.08) 15.21(±0.04) 54.54(±0.70) 72.43(±0.37) 57.48(±0.43) 26.25(±0.37)
ALPS 12.25(±0.08) 15.25(±0.08) 12.83(±0.19) 62.58(±1.14) 73.80(±0.21) 63.56(±0.46) 29.78(±0.74)

OPT-30B

MP 1981(±0) 2061(±0) 1656(±0) 0.84(±0.00) 58.22(±0.00) 40.61(±0.00) 18.94(±0.00)
Wanda 13.23(±0.40) 16.95(±0.28) 14.67(±0.18) 52.86(±1.58) 74.87(±0.14) 64.21(±0.40) 29.23(±0.37)
SparseGPT 10.90(±0.07) 14.02(±0.10) 12.04(±0.14) 66.74(±0.49) 75.59(±0.28) 66.75(±0.55) 31.23(±0.32)
DSnoT 12.36(±0.10) 15.73(±0.07) 13.55(±0.08) 59.77(±0.51) 74.94(±0.20) 64.19(±0.19) 29.44(±0.50)
ALPS 10.64(±0.09) 13.75(±0.08) 11.69(±0.15) 67.30(±0.64) 75.93(±0.09) 66.82(±0.54) 31.45(±0.37)

LLaMA2-7B

MP 37.76(±0.00) 14864(±0) 59.76(±0.00) - 70.57(±0.00) 56.14(±0.00) 30.55(±0.00)
Wanda 12.10(±0.07) 86.02(±1.47) 14.05(±0.08) - 70.10(±0.18) 57.15(±0.38) 29.80(±0.30)
SparseGPT 10.94(±0.08) 75.97(±4.97) 12.04(±0.28) - 71.40(±0.34) 59.93(±0.72) 29.88(±0.75)
DSnoT 12.68(±0.09) 102.0(±5.1) 14.85(±0.11) - 69.31(±0.59) 55.90(±0.42) 26.81(±0.27)
ALPS 9.95(±0.17) 88.49(±9.20) 10.87(±0.42) - 72.83(±0.56) 60.42(±0.68) 31.69(±0.68)

LLaMA2-13B

MP 8.89(±0.00) 203.8(±0.0) 10.80(±0.00) - 71.49(±0.00) 57.66(±0.00) 30.38(±0.00)
Wanda 9.02(±0.04) 88.93(±1.02) 11.12(±0.05) - 73.16(±0.27) 63.67(±0.54) 33.92(±0.37)
SparseGPT 8.76(±0.10) 64.82(±3.16) 10.06(±0.26) - 73.94(±0.60) 65.10(±0.86) 35.31(±0.57)
DSnoT 9.21(±0.05) 87.54(±2.04) 11.43(±0.07) - 72.30(±0.23) 63.38(±0.68) 33.63(±0.63)
ALPS 8.14(±0.10) 52.34(±2.08) 9.36(±0.33) - 74.72(±0.58) 65.71(±0.59) 35.96(±0.50)

LLaMA3-8B

MP 2403(±0.0) 3434(±0.0) 2372(±0.0) - 60.99(±0.0) 40.03(±0.0) 21.67(±0.0)
Wanda 24.36(±0.38) 44.89(±1.12) 30.81(±0.27) - 67.56(±0.32) 56.20(±0.43) 26.11(±0.70)
SparseGPT 16.35(±0.18) 25.08(±0.61) 18.89(±0.71) - 70.54(±0.70) 63.09(±0.71) 31.84(±0.59)
DSnoT 23.09(±0.42) 40.95(±1.04) 28.78(±0.14) - 67.70(±0.65) 56.46(±0.38) 25.68(±0.41)
ALPS 14.82(±0.26) 23.55(±0.34) 16.59(±0.83) - 72.72(±1.04) 64.98(±0.83) 33.09(±1.10)

Table 16: Performance analysis for one-shot unstructured pruning of OPT models and LLaMA
models at 2 : 4 sparsity. (↑): higher is better; (↓): lower is better. We omit LLaMA results on
LAMBADA due to its poor performance without modifications.

Model Algorithm WikiText2 ↓ PTB ↓ C4 ↓ LAMBADA ↑ PIQA ↑ ARC-Easy ↑ ARC-Challenge ↑

OPT-1.3B

MP 240.1(±0.0) 241.4(±0.0) 90.84(±0.00) 7.31(±0.00) 61.97(±0.00) 41.37(±0.00) 19.62(±0.00)
Wanda 22.40(±0.22) 32.41(±0.45) 21.34(±0.19) 35.57(±0.63) 67.83(±0.40) 50.78(±0.37) 22.41(±0.45)
SparseGPT 20.23(±0.35) 25.28(±0.20) 19.42(±0.38) 41.54(±0.97) 65.85(±0.57) 48.01(±0.74) 21.95(±0.44)
DSnoT 23.69(±0.25) 35.09(±0.34) 22.74(±0.16) 35.58(±0.99) 67.06(±0.15) 49.52(±0.34) 21.76(±0.56)
ALPS 19.48(±0.37) 23.65(±0.13) 18.19(±0.24) 43.91(±1.19) 68.42(±0.86) 52.07(±0.72) 22.95(±0.60)

OPT-2.7B

MP 166.9(±0.0) 195.3(±0.0) 88.42(±0.00) 10.74(±0.00) 66.05(±0.00) 45.29(±0.00) 20.73(±0.00)
Wanda 17.04(±0.45) 25.87(±0.20) 17.14(±0.11) 41.06(±0.53) 70.79(±0.18) 53.23(±0.19) 23.26(±0.41)
SparseGPT 15.14(±0.24) 20.36(±0.41) 15.59(±0.15) 49.32(±0.35) 71.09(±0.20) 55.49(±0.51) 24.39(±0.38)
DSnoT 17.10(±0.24) 24.72(±0.64) 17.51(±0.09) 44.60(±0.72) 69.75(±0.16) 52.61(±0.25) 22.59(±0.45)
ALPS 14.75(±0.16) 18.90(±0.15) 15.18(±0.18) 52.66(±1.08) 71.46(±0.19) 56.96(±0.50) 25.03(±0.34)

OPT-6.7B

MP 196.2(±0.0) 163.7(±0.0) 160.4(±0.0) 2.96(±0.00) 65.61(±0.00) 43.48(±0.00) 20.90(±0.00)
Wanda 13.64(±0.12) 20.93(±0.14) 14.40(±0.06) 57.75(±1.02) 72.98(±0.39) 60.08(±0.25) 26.50(±0.43)
SparseGPT 12.63(±0.08) 16.65(±0.32) 13.42(±0.15) 61.96(±1.13) 73.22(±0.28) 61.68(±0.44) 26.45(±0.41)
DSnoT 13.59(±0.11) 19.01(±0.27) 14.43(±0.06) 57.93(±0.70) 72.88(±0.13) 58.87(±0.33) 26.35(±0.62)
ALPS 12.31(±0.07) 16.18(±0.24) 13.07(±0.16) 64.10(±0.82) 73.80(±0.41) 62.41(±0.38) 27.87(±0.47)

OPT-13B

MP 449.6(±0.0) 366.9(±0.0) 211.7(±0.0) 1.54(±0.00) 62.73(±0.00) 41.46(±0.00) 21.84(±0.00)
Wanda 13.37(±0.10) 18.56(±0.20) 13.57(±0.04) 57.09(±0.77) 73.80(±0.23) 60.29(±0.18) 27.94(±0.29)
SparseGPT 11.77(±0.09) 14.76(±0.11) 12.54(±0.10) 64.41(±0.96) 73.66(±0.37) 63.71(±0.42) 29.56(±0.39)
DSnoT 13.07(±0.10) 16.41(±0.10) 13.57(±0.04) 60.80(±0.81) 72.86(±0.34) 59.71(±0.24) 28.24(±0.27)
ALPS 11.37(±0.04) 14.37(±0.09) 12.22(±0.12) 64.32(±0.83) 74.31(±0.32) 64.65(±0.39) 30.51(±0.28)

OPT-30B

MP 564.1(±0.0) 1487(±0) 1005(±0) 3.90(±0.00) 62.84(±0.00) 42.47(±0.00) 22.27(±0.00)
Wanda 10.78(±0.08) 14.07(±0.07) 12.13(±0.03) 61.94(±0.59) 75.65(±0.18) 66.90(±0.46) 30.48(±0.41)
SparseGPT 10.30(±0.06) 13.35(±0.15) 11.52(±0.09) 68.40(±0.46) 76.10(±0.25) 67.88(±0.48) 32.17(±0.88)
DSnoT 10.83(±0.08) 13.93(±0.04) 12.16(±0.03) 64.58(±0.55) 75.42(±0.18) 66.31(±0.44) 30.58(±0.46)
ALPS 10.14(±0.05) 13.18(±0.12) 11.32(±0.09) 67.88(±0.49) 76.61(±0.50) 67.89(±0.25) 32.01(±0.49)

LLaMA2-7B

MP 15.91(±0.00) - 26.84(±0.00) - 71.93(±0.00) 59.22(±0.00) 32.85(±0.00)
Wanda 8.63(±0.01) 46.90(±0.67) 10.34(±0.02) - 73.74(±0.17) 62.01(±0.18) 31.47(±0.33)
SparseGPT 8.46(±0.03) 45.03(±1.13) 9.75(±0.13) - 74.44(±0.26) 63.80(±1.25) 33.52(±0.66)
DSnoT 8.88(±0.01) 48.00(±1.02) 10.68(±0.01) - 73.34(±0.23) 61.43(±0.44) 30.96(±0.34)
ALPS 8.12(±0.08) 51.21(±2.78) 9.29(±0.20) - 74.78(±0.17) 63.56(±0.54) 33.29(±0.56)

LLaMA2-13B

MP 7.32(±0.00) 137.3(±0.0) 9.14(±0.00) - 74.43(±0.00) 63.01(±0.00) 35.67(±0.00)
Wanda 7.02(±0.01) 55.07(±0.79) 8.84(±0.02) - 75.69(±0.31) 67.05(±0.13) 38.26(±0.56)
SparseGPT 7.01(±0.03) 47.64(±0.81) 8.52(±0.14) - 75.84(±0.26) 69.36(±0.84) 38.74(±0.95)
DSnoT 7.13(±0.02) 54.07(±0.88) 8.95(±0.02) - 75.64(±0.23) 67.33(±0.42) 37.58(±0.63)
ALPS 6.81(±0.07) 42.15(±0.89) 8.22(±0.17) - 76.52(±0.57) 69.41(±0.69) 39.22(±0.56)

LLaMA3-8B

MP 181.9(±0.0) 347.9(±0.0) 174.7(±0.0) - 65.18(±0.0) 53.41(±0.0) 26.37(±0.0)
Wanda 14.52(±0.08) 24.26(±0.10) 18.88(±0.11) - 71.52(±0.36) 64.91(±0.39) 34.03(±0.42)
SparseGPT 12.40(±0.13) 17.90(±0.19) 14.94(±0.38) - 73.20(±0.74) 68.54(±0.82) 34.86(±0.76)
DSnoT 14.76(±0.09) 23.90(±0.20) 18.89(±0.04) - 71.49(±0.23) 65.65(±0.23) 33.57(±0.81)
ALPS 11.57(±0.12) 16.57(±0.38) 13.76(±0.47) - 74.57(±0.40) 69.65(±0.61) 37.20(±0.79)

Table 17: Performance analysis for one-shot unstructured pruning of OPT models and LLaMA
models at 4 : 8 sparsity. (↑): higher is better; (↓): lower is better. We omit LLaMA results on
LAMBADA due to its poor performance without modifications.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: At the end of the introduction, we include a paragraph that clearly states the
contributions and scope of our paper.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We briefly discuss the limitation of our work in Section 5.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
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Justification: We clearly state all assumptions in Theorem 1 and provide a formal proof in
Appendix A.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We thoroughly describe our proposed pruning approach in Algorithms 1 and 2,
and we include all other details necessary for reproducing the results in Appendix B.1.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: Our code is available at https://github.com/mazumder-lab/ALPS.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We provide detailed settings of our proposed pruning framework and its
competitors used in our experiments in Appendix B.1.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: In our experiments, for each combination of model, pruning method, and
sparsity level, we ran 5 different seeds and reported the mean and standard deviation of the
results.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We provide details of the computational resources used for our experiments in
Appendix B.1.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We have reviewed the NeurIPS Code of Ethics and ensured that the research
conducted in this paper fully complies with it.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: To the best of our knowledge, our work has no societal impact.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
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• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: To the best of our knowledge, our work poses no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: At the beginning of Section 4, we cite all the datasets and models used in our
experiments.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: Our paper does not release new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: Our paper does not involve crowdsourcing or research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: Our paper does not involve crowdsourcing or research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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