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ABSTRACT

The quadratic computational complexity of self-attention poses a critical bottle-
neck for large language models (LLMs) processing ultra-long contexts. While
various sparse attention and KV cache compression methods have been proposed
to improve efficiency, they often suffer from limitations such as reliance on fixed
patterns, inability to handle both prefilling and decoding stages, or the requirement
for additional training. In this paper, we propose Training-free Core-context-
aware Attention (TFCA-Attention), a training-free sparse attention mechanism
that achieves “one stone three birds”: it unifies acceleration for prefilling, decod-
ing, and KV cache reduction through a consistent sparsity mechanism. TFCA-
Attention features an offline calibration phase that determines head-specific spar-
sity budgets and an online token selection phase that adaptively retains core con-
text tokens using a lightweight redundancy metric. Theoretically, we provide a
bounded approximation error guarantee, ensuring long context modeling accu-
racy. Extensive experiments demonstrate that TFCA-Attention achieves a 2.8×
speedup and reduces KV cache by 61% at 128K context length while maintaining
performance comparable to full attention across various benchmarks, offering a
practical plug-and-play solution for efficient long-context inference.

1 INTRODUCTION

Large language models (LLMs) (Touvron et al., 2023a;b; Brown et al., 2020a; Wei et al., 2022)
like GPT-o1 (OpenAI, 2024) and DeepSeek-R1 (Guo et al., 2025) have become the cornerstone of
modern natural language processing, demonstrating remarkable capabilities in tasks requiring long-
context understanding, such as multi-step reasoning (Brown et al., 2020b; Singhal et al., 2025) and
document-level comprehension (Cao et al., 2017; Pasunuru et al., 2021). This success is largely
attributed to the self-attention mechanism (Vaswani et al., 2017), which enables modeling depen-
dencies across entire sequences. However, as context lengths extend to extremes (e.g., 128K), the
quadratic complexity of self-attention becomes a critical bottleneck. Moreover, the presence of
redundant tokens, which contribute minimally to the final output, dilutes attention to critical infor-
mation, degrading efficiency and accuracy (Jiang et al., 2024; Chen et al., 2025).

To address these challenges, researchers have pursued several distinct approaches. Early efforts,
such as static sparse attention Zaheer et al. (2020); Beltagy et al. (2020); Xiao et al. (2024), employ
predefined attention patterns to reduce computation, yet they lack adaptability to input content and
often compromise performance on context-sensitive tasks. More recent prefilling-stage dynamic
methods Jiang et al. (2024); Lai et al. (2025); Xu et al. (2025) adjust attention patterns per head
during prefilling, but they are restricted to a limited set of handcrafted sparsity patterns and do not
address inefficiency in the decoding phase. On the other hand, decoding-stage KV cache compres-
sion techniques Hao et al. (2025); Li et al. (2024); Qin et al. (2025); Behnam et al. (2025) reduce
memory usage by evicting or merging cached KV entries, yet they fail to accelerate prefilling and
typically apply uniform compression strategies across attention heads, ignoring the intrinsic diver-
sity of redundancy across heads. While a few unified frameworks (Xiao et al., 2025; Yang et al.,
2025; Gao et al., 2024; 2025) target both prefilling and decoding, they require continued training to
determine head-specific patterns or learn block-sparse patterns.
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Figure 1: Visualizations of attention distributions in LLaMA-3.1-8B-Instruct: 1) average attention
scores across key positions on the first row, and 2) scatter points highlighting attention scores above
row-wise averages on the second row. The observations motivate the design principles of TFCA-
Attention (see Appendix B for more visualizations).

The fundamental limitations of existing work can be summarized as two critical gaps: First, no
existing method provides a comprehensive training-free solution that dynamically accelerates both
prefilling and decoding while simultaneously reducing KV cache footprint without requiring ar-
chitectural modifications or parameter updates. Second, they fail to model the intricate nature of
attention redundancy adequately. As demonstrated in Figure 1, different attention heads exhibit
diverse redundancy distributions across layers and models, ranging from uniform distributions to
attention sinks, aligning with findings in prior works (Beltagy et al., 2020; Xiao et al., 2024; Jiang
et al., 2024). Meanwhile, token importance varies dynamically within input content. However, ex-
isting methods either use uniform compression strategies or rely on a limited set of hand-designed
patterns, lacking the fine-grained, input-adaptive mechanism required to handle such head-specifc
and context-dependent redundancy.

To address these limitations, we propose Training-free Core-context-aware Attention (TFCA-
Attention), a training-free dynamic attention mechanism that achieves “one stone three birds” by
accelerating prefilling, decoding, and reducing KV cache simultaneously. In contrast to prior uni-
fied approaches (Xiao et al., 2025; Yang et al., 2025; Gao et al., 2024; 2025), TFCA-Attention
requires no parameter updates, architectural adjustments, or training data. It operates in two phases:
1) An offline sparsity configuration determination phase determines a head-specific sparsity budget
by estimating the redundancy level for each head. 2) An online core context selection phase dy-
namically selects a subset of core tokens per head based on a lightweight redundancy metric. This
dual-phase design ensures our method is both head-aware and context-aware, enabling fine-grained,
input-dependent acceleration without any finetuning or retraining. Furthermore, we provide a the-
oretical guarantee for TFCA-Attention, proving that its approximation error is bounded and can be
explicitly controlled, thus ensuring reliability. Our contributions are summarized as:
• We propose TFCA-Attention, a training-free sparse attention mechanism that unifies acceleration

for prefilling, decoding, and KV cache reduction via adaptive token allocation. Unlike prior uni-
fied approaches, our method eliminates any training overhead and dynamically adapts sparsity to
input content, enabling plug-and-play deployment for efficient long-context inference.

• Our proposed TFCA-Attention integrates: (1) an offline calibration phase for head-specific spar-
sity configuration, and (2) an online token selection phase with a lightweight, context-aware re-
dundancy metric. This design makes TFCA-Attention dynamically adapt to the two fundamental,
yet underexploited, properties of redundancy (head-specific and context-dependent redundancy).

• We provide theoretical error bounds for our approximation, and extensive experiments demon-
strate that our method achieves a 2.8× speedup and reduces KV cache by 61% at 128K context
length while maintaining performance comparable to full attention.

2 RELATED WORKS

Long-Context Language Models. Handling long input sequences is critical for applications re-
quiring document-level reasoning, code generation, or extended dialogue history(Liu et al., 2024;
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Bai et al., 2023; Hsieh et al., 2024). Some methods focus on data-driven adaptation, where models
are retrained or fine-tuned on ultra-long context datasets to extend their effective context length (Fu
et al., 2024; Xiong et al., 2024). These methods are computationally expensive and data-dependent.
Others modify positional encoding mechanisms, such as Rotary Position Embeddings (RoPE) (Su
et al., 2024), via interpolation (Chen et al., 2023), dynamic scaling (Peng & Quesnelle, 2023), or
learned biases (Peng et al., 2024). While these enhance context extrapolation, they also require
retraining. Alternative strategies (Xu et al., 2024; Tworkowski et al., 2023) employ memory or re-
trieval mechanisms to reduce computation, but often at the cost of losing fine-grained local context.

Efficient Attention. Existing efficient attention methods fall into two categories: sparse attention
and KV cache compression. Sparse attention methods reduce the quadratic cost of self-attention by
sparsifying the attention matrix. They either use fixed patterns across all heads (Zaheer et al., 2020;
Beltagy et al., 2020; Xiao et al., 2024) or adapt patterns per head in a small set of predefined sparse
patterns(Jiang et al., 2024; Lai et al., 2025; Xu et al., 2025). Crucially, these methods only accelerate
the prefilling stage and neglect decoding. KV cache compression methods reduce memory during
decoding by evicting or merging cached entries (Li et al., 2024; Qin et al., 2025; Wan et al., 2025;
Hao et al., 2025; Behnam et al., 2025), but cannot accelerate prefilling and often apply uniform
compression, ignoring head-specific redundancy. Recent studies (Chen et al., 2025; Yuan et al.,
2025; Lu et al., 2025; Zhang et al., 2025; Gao et al., 2024; 2025) attempt to bridge both stages
using consistent sparsity patterns. However, they often require additional model training, complex
profiling, or intrusive system-level changes. Our TFCA-Attention provides a training-free, head-
aware, and context-adaptive sparse attention mechanism that simultaneously accelerates prefilling
and decoding.

3 MOTIVATIONS

3.1 UNDERSTANDING BOTTLENECKS OF SELF-ATTENTION IN LONG-CONTEXT MODELING

Most existing LLMs are built on the Transformer (Vaswani et al., 2017) architecture, where the
self-attention mechanism serves as the core module for capturing global contextual dependencies.
Given an input sequence X = {x1,x2, . . . ,xL} ∈ RL×d of L tokens with model dimension d, The
multi-head self-attention mechanism computes contextualized representations through h heads:

MultiHead(X) = [Att1, . . . ,Atth] ∈ RL×d,

Atti = softmax

(
QiKi⊤

√
dh

)
Vi,

Qi = XWQi , Ki = XWKi , Vi = XWVi ,

(1)

where dh is the head dimension (typically dh = d/h), WQi ,WKi ,WVi ∈ Rd×dh are learnable
parameters for the i-th head. The multi-head mechanism enables parallel attention operations across
distinct feature subspaces, facilitating position-aware information aggregation.

Challenges of Self-Attention in Handling Context Redundancy: As the context length L grows,
the context inevitably exhibits redundant information (Jiang et al., 2024; Chen et al., 2025; Zhang
et al., 2025). Vanilla self-attention faces three challenges in handling such redundancy: 1)
Quadratic computational complexity: It incurs O(L2) computational cost by computing pairwise
attention scores across all tokens. This leads to excessive computation when much of the context
is redundant. 2) Memory growth in key-value (KV) Cache: The KV cache, which grows linearly
with L, presents a major deployment bottleneck. For instance, processing a 128K sequence with
LLaMA2-7B requires 64GB GPU memory for KV cache, exceeding the capacity of most GPUs. 3)
Interference from irrelevant tokens: More critically, irrelevant tokens degrade the model’s ability
to focus on critical information, thereby harming performance.

3.2 EXPLORATION AND EXPLOITATION OF ATTENTION REDUNDANCY PROPERTIES

The severe inefficiency of self-attention in long contexts raises a critical question: given the well-
observed yet underutilized properties of attention redundancy, how can we construct a unified frame-
work that fully exploits them to accelerate both prefilling and decoding? As established in Section 1
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and visualized in Figure 1, the existence of head-specific redundancy (heterogeneous sparsity pat-
terns across heads and layers) and context-dependent redundancy (dynamic token importance) is
widely observed in prior works (Jiang et al., 2024; Xu et al., 2025; Lai et al., 2025; Xiao et al.,
2024). The fundamental challenge, however, lies not in observing these properties but in addressing
them simultaneously and effectively within a single, training-free acceleration framework.

Existing approaches, as categorized earlier, only address a subset of this challenge. Static sparse
methods (Beltagy et al., 2020; Zaheer et al., 2020; Xiao et al., 2024) ignore both dynamic context
and head specificity. Prefilling-only dynamic attention methods (Jiang et al., 2024; Lai et al., 2025)
adapt per head but are constrained to a small set of hand-designed patterns and, critically, fail to
accelerate decoding. Decoding-only KV compression methods (Hao et al., 2025; Li et al., 2024;
Qin et al., 2025; Wan et al., 2025) reduce memory but cannot accelerate prefilling and often apply
uniform policies across heads within a layer. While recent unified methods (Xiao et al., 2025; Yang
et al., 2025; Gao et al., 2024; 2025) target both stages, they require continuous training, which
hinders practical adaptation and deployment.

Design Principles for Efficient Attention. This fragmented landscape reveals a clear design gap:
no existing method fulfills all the requirements for a truly efficient and practical long-context atten-
tion mechanism. We distill these requirements into four key design principles:

1. Sparse Computation: Selectively attend to a small subset of critical tokens and discard irrelevant
ones due to the tokens’ redundancy in both prefilling and decoding stages.

2. Dynamic Adaptation: The selection of critical tokens must be input-dependent, not predeter-
mined by fixed sparse patterns.

3. Head-aware Sparsity Customization: Sparsity strategies must be tailored to the redundancy
level of each attention head.

4. Training-free Deployment: Eliminates the need for parameter updates, architectural modifica-
tions, or retraining, enabling immediate plug-and-play deployment without compromising model
performance.

Existing methods fulfill only a subset of these principles, creating a performance-efficiency gap.
Static methods violate (2) and (3); prefill-only and decoding-only methods violate (1); existing
unified approaches violate (2) and (4). This motivates our design of a unified attention mechanism
that satisfies all four principles simultaneously, i.e., sparsity, dynamic, head-aware, and training-free.

4 TRAINING-FREE CORE-CONTEXT-AWARE ATTENTION

In this paper, we propose Training-free Core-context-aware Attention (TFCA-Attention) that simul-
taneously accelerates prefilling, reduces decoding latency, and compresses KV cache by dynami-
cally selecting core tokens in a head-specific and context-aware manner. Our method is completely
training-free, which ensures seamless integration into existing LLMs.

Overview of Training-free Core-context-aware Attention. Our TFCA-Attention includes two
phases: 1) During the offline sparsity configuration determination phase (Section 4.1), we adopt a
small calibration dataset to estimate the redundancy level of each head and determine its appropriate
sparsity configuration (i.e., the number of tokens to preserve). This phase is performed only once
per model. 2) During inference, we dynamically select active tokens in each head based on the
determined sparsity configuration (Section 4.2). Theoretically, we prove that the approximation error
of TFCA-Attention is bounded and controllable (Appendix A). We implement our method using
Triton (Tillet et al., 2019) to enable efficient parallelization across attention heads (Appendix.D.3).
We illustrate the overview in Figure 2 and present the pseudo-code in Algorithms 1 and 2.

To capture both long-range and short-range dependencies, our dynamic token selection operates on
two complementary components: a global subset and a local subset. We dynamically select the
global subset KG = KS and VG = VS from the entire context based on the head-specific sparsity
configuration, where S ⊆ {1, . . . , L} is the selected token index set. We detail the computation
of S in Section 4.2. This subset is responsible for modeling long-distance dependencies. On the
other hand, we always preserve the most recent w tokens as the local subset KL and VL to capture
fine-grained local context, a critical element highlighted by prior works (Manakul & Gales, 2021;
Yang et al., 2021; Xiao et al., 2024) and our analysis. Notably, we ensure no overlap between the
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Figure 2: Overview of our TFCA-Attention. We dynamically select a subset of key/value tokens,
which combines (1) a global subset KG,VG, selected online based on a pre-determined configura-
tion (Sec. 4.2), to modeling long-distance dependencies; and (2) a local subset KL,VL, preserving
neighboring tokens to capture fine-grained local context. The concatenation of these complementary
subsets is used for the final attention computation in Eq. (2).

global and local subsets to avoid duplicated computation. Given the query matrix Q ∈ RL×dh , our
TFCA-Attention computes the attention output as follows:

Att = Softmax
(
Q[KG;KL]⊤√

dh

)
[VG;VL]. (2)

Since the resulting output Att∈RL×dh preserves the original sequence length L, our method seam-
lessly integrates into existing LLM architectures without requiring any structural modifications. For
clarity and brevity, we describe all operations with respect to a single attention head in the following.
We apply the same mechanism independently and in parallel to all heads in all layers.

4.1 OFFLINE HEAD-SPECIFIC SPARSITY DETERMINATION

Motivated by the head-specific redundancy property observed in Figure 1 and prior works (Zaheer
et al., 2020; Xiao et al., 2024; Jiang et al., 2024), we introduce a one-time offline calibration to
determine a unique sparsity configuration for each attention head. This configuration dictates how
many tokens (token budget) the head should preserve during inference based on its inherent re-
dundancy level. To handle a sequence X with the arbitrary length L, we operate on a block-wise
basis. We partition the input sequence X into m = ⌊L/b⌋ non-overlapping blocks of size b. Let
K = {1, 2, 4, . . . , b} denote the discrete set of allowable per-block retain counts. For each head, we
seek a configuration p = [pk|k ∈ K], where

∑
k∈K pk=1. Each pk ∈ p represents the proportion

of blocks assigned a budget of k tokens, enabling an adaptive policy: the actual number of tokens
preserved per block can vary based on its content, while the overall distribution is governed by p.

Gaussian-Sampling Configuration Candidates Generation. Given the diverse redundancy levels
across heads, we need a set of candidate configurations that smoothly transition from high-efficiency
to high-accuracy modes. Creating such a diverse configuration set manually is infeasible, as it would
require tuning dozens of hyperparameters across all heads. To solve this, we propose a log-Gaussian
sampling strategy that generates candidate configurations C = {p1,p2, . . . ,pM} from efficiency-
focused to accuracy-focused, controlled by just two intuitive hyperparameters. Specifically, We
model the probability of retaining k tokens using a log-Gaussian distribution centered around µ:

pk =
Φ[log2(k)]∑

k′∈K Φ[log2(k
′)]

, where Φ[x] = exp

(
− (x− µ)2

2σ2

)
, (3)

where µ controls the center of the token budget in log-space (a larger µ prioritizes performance via
more token requirement) and σ regulates diversity in sampled configurations (a larger σ explores
extreme token budget). In practice, we generate M configuration candidates by uniformly sweeping
µ from 0 to log2(b) with a fixed σ: C={p1,p2, . . . ,pM} (see Appendix D.4 for a concrete example),
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Algorithm 1 Offline Pattern Determination

Require: Queries Q∈RL×dh , keys K∈RL×dh ,
configuration candidates C = {p1, . . . ,pM}
threshold τ ∈ [0, 1].

1: Compute attention A=softmax
(
QK⊤/

√
dh

)
2: Initialize valid set Cvalid ← ∅
3: for each configuration pi ∈ C do
4: Compute the selected token indexes Si based

on pi as described in Section 4.2
5: Compute aggregated score ai via Eq. (4)
6: if ai ≥ τ then Cvalid ← Cvalid ∪ {pi}
7: end for
8: p∗ = argminpi∈Cvalid

|Si|
Ensure: Configuration p∗

Algorithm 2 Inference with Online Key Token Selection

Require: Input queries Q ∈ RL×dh , keys K ∈ RL×dh ,
values V ∈ RL×dh , block size b, local window size
w, configuration p∗ generated by Alg. 1.

1: Compute token scores s=softmax(QL,:K
⊤/
√
dh)

2: Split K into m = ⌊L/b⌋ blocks (same for V)
3: Compute block sparsity h=[h1, . . ., hm] via Eq. (6)
4: Sort blocks in descending order by the sparsity h
5: Compute token requirement t=[t1, t2, . . . , tm]

based on configuration p∗ via Eq. (7)
6: Generated selected tokens index S via Eq. (8)
7: Att = Softmax

(
Q[KG;KL]⊤/

√
dh

)
[VG;VL],

KG=KS , VG=VS , KL=KL−w:,:, VL=VL−w:,:

Ensure: Attention output Att

where the i-th configuration pi is computed with µi= log2

(
1 + (i−1)·(b−1)

M−1

)
. This ensures smooth

interpolation between efficiency-oriented and accuracy-oriented sparsity patterns.

Cumulative-Score Configuration Determination. The goal of offline determination is to find the
most efficient (sparsest) configuration from the candidate set C that maintains the head’s perfor-
mance. We measure performance via the aggregated attention score retained by the selected tokens.
For a given candidate pi, we simulate its token selection on a calibration dataset (using our online
mechanism from Sec. 4.2) to obtain the set of indices Si. We then compute the sum of the average
attention scores for each selected token:

ai =
∑
k∈Si

1

∥A:,k∥0

∥A:,k∥0∑
j=1

Aj,k, (4)

where A = softmax(QK⊤/
√
dh) ∈ RL×L is computed on a calibration dataset, ∥A:,k∥0 denotes

the number of non-zero elements in the k-th column of A. We select the configuration p∗ =
argminpi∈Cvalid

|Si|, where Cvalid denotes a configuration set with each pi satisfying ai ≥ τ and |Si|
denotes the number of preserved tokens. This selects the configuration that preserves the fewest
tokens while retaining at least a threshold τ of the aggregated attention mass. This is a one-time,
model-specific process, resulting in a task-agnostic configuration that generalizes across inputs.

4.2 ONLINE CORE CONTEXT SELECTION

During inference, the offline calibrated configuration p∗ for each head dictates its overall token
budget. The goal of the online stage is to distribute this budget adaptively across the input sequence
based on the current context, thereby reducing the context-dependent redundancy. For an input
sequence of length L, we first obtain a global, token-level importance score s ∈ RL. Motivated by
the observation that the final token has full visibility over all preceding tokens in the causal self-
attention mechanism, we leverage this inherent property to identify tokens that are most relevant to
the overall context. We compute the importance score by:

s = softmax(
QL,:K

⊤
√
dh

). (5)

where QL,: is the query vector of the last token. Compared to methods like MInference and Flex-
Prefill, which use the last k tokens to score importance (with O(kL) complexity), This reduces the
cost to O(L) while maintaining performance. This design is not only computationally efficient but
also avoids introducing handcrafted heuristics or arbitrary hyperparameters (e.g., the choice of k).
Then, similar to the offline phase, we partition the input sequence into non-overlapping blocks of
size b. The tokens of the blocks that are not divisible are put into the local subset. For each block
Bj , we compute a redundancy score hj that quantifies its information density:

hj = (1− α) ·
∑
i∈Bj

si + α ·

1−
∑

i∈Bj
s2i(∑

i∈Bj
si

)2
 , (6)
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The first term (weighted by 1 − α) penalizes blocks with low total attention mass. The second
term (weighted by α) is a variant of the Herfindahl-Hirschman Index (Rhoades, 1993); it decreases
as attention becomes more concentrated on a few tokens (indicating higher redundancy within the
block). Thus, a lower hj score indicates a more redundant block. The blocks are then sorted by their
hj scores, resulting in an ordered list of block indices I = SortIndex(h).

In online selection, we adaptively assign a token budget ti to each block, dictated by its rank in
I and the head’s pre-defined configuration p∗. Recall that p∗ = [p1, p2, ..., pb] defines the head’s
sparsity policy: it specifies that a proportion pk of blocks should be assigned a budget of k tokens.
We enforce this policy through a deterministic mapping:

ti = Ψ[Ii], where Ψ =
(
1, . . . , 1︸ ︷︷ ︸
⌊m×p1⌋

, 2, . . . , 2︸ ︷︷ ︸
⌊m×p2⌋

, . . . , b . . . , b︸ ︷︷ ︸
⌊m×pb⌋

)
. (7)

This mechanism ensures that the most information-dense blocks (highest rank in I) receive the
largest token budgets (later entries in Ψ), as dictated by the head’s sparsity configuration p∗. For
each block Bi, we select the top-ti tokens with the highest importance scores s:

Si = Top(ti;Bi). (8)

The union of all these subsets S =
⋃m

i=1 Si forms the global subset. This set, concatenated with the
local subset of the most recent w tokens, is used to compute the final attention output via Eq. (2). As
analyzed in Appendix E.9, the overhead of our lightweight redundancy metric is marginal compared
to the significant computational savings achieved by sparsification.

Online Token Selection in Decoding Stage. Our method naturally extends to the decoding stage,
where tokens are incrementally generated. Specifically, once the number of new tokens reaches the
block size b, we evaluate the importance of its tokens using the same scoring function in Eq. (5)
based on the last query. We then retain only the top-t most informative tokens in the block based
on their scores. The value t=⌊

∑
k∈K k · pk⌋ corresponds to the average number of tokens preserved

per block, derived from the determined configuration p∗. This ensures that only the relevant context
is kept, enabling efficient and effective long-sequence modeling in the decoding stage.

4.3 THEORETICAL GUARANTEES FOR TFCA-ATTENTION

To provide a theoretical foundation for our approach, we analyze the approximation error of TFCA-
Attention relative to full attention. We show that the error is naturally bounded by the probability
mass assigned to tokens not selected by our method, and is thus controllable via the threshold τ .

Theorem 1 (Error Bound for a Single Query). Let γi =
∑

j /∈Stotal

exp(Aij)
Zi

be the total proba-
bility mass assigned by the full softmax to tokens not selected by TFCA-Attention, where Zi is the
normalization constant. Then the approximation error is bounded by

|Atti − Ãtti|1 ≤ 2γi · |V|∞, (9)

where Atti and Ãtti denote the i-th rows of the full and approximate attention outputs, respectively,
|V|∞ is the maximum absolute value in the value matrix.

Theorem 1 shows that the error scales linearly with γi, i.e., the fraction of probability mass on
unselected tokens. By configuring the token selection threshold τ to keep γi small, TFCA-Attention
explicitly controls the approximation error, ensuring faithfulness to the full attention mechanism.

5 EXPERIMENTS

We evaluate on two state-of-the-art LLMs: 1) LLaMA-3.1-8B-Instruct-128K (AI, 2024), 2)
Qwen2.5-7B-Instruct-128K (Yang et al., 2024). For benchmarks, we consider long-context un-
derstanding tasks, i.e., LongBench-E (Bai et al., 2023) and RULER (Hsieh et al., 2024), and short-
context benchmarks. i.e., MMLU (Hendrycks et al., 2021), GSM-8K (Cobbe et al., 2021a), and
HumanEval (Chen et al., 2021). We set the threshold τ , the block size b, the balancing parameter
α, and the window size w to 0.9, 128, 0.5, and 4096, respectively. All the latency is measured on a
single A800 GPU. All latency for full attention are based on the highly optimized FlashAttention-
2 (Dao, 2024) kernel. See Appendix D for more details.
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Table 2: Comparisons of different models on LongBench-E Bai et al. (2023). We report the attention
computation latency in 64K context.

Methods S. QA M. QA Sum. F. S. Syn. Code Avg. Latency (ms)
LLaMA3.1-8B-Instruct-128K 51.63 53.23 30.78 68.67 54.29 60.52 53.19 316.14
•MInference (Jiang et al., 2024) 51.70 52.72 30.76 68.58 53.50 61.12 53.06 324.84
• FlexPrefill (Lai et al., 2025) 50.35 52.85 30.71 68.41 54.30 62.76 53.23 280.11
• XAttention (Xu et al., 2025) 49.96 51.98 31.22 68.07 48.50 55.75 50.91 133.85
• TFCA-Attention (Ours) 52.28 52.83 30.84 68.40 54.86 61.82 53.51 120.96

Qwen2.5-7B-Instruct-128K 48.75 52.24 27.81 65.00 52.00 61.14 51.16 268.55
•MInference (Jiang et al., 2024) 48.80 52.37 27.64 64.67 51.50 62.08 51.18 292.33
• FlexPrefill (Lai et al., 2025) 49.08 52.16 27.86 65.18 52.00 62.20 51.41 244.37
• XAttention (Xu et al., 2025) 48.50 50.08 27.48 66.40 50.50 60.98 50.66 119.87
• TFCA-Attention (Ours) 48.50 52.91 27.74 64.92 52.25 62.74 51.51 105.93

Table 3: Comparisons of different models on RULER. We report the latency in 128K context.

Methods 4K 8K 16K 32K 64K 128K Avg. Latency (s)
LLaMA3.1-8B-Instruct-128K 96.74 94.03 92.02 84.17 81.32 76.89 87.52 1.28
•MInference (Jiang et al., 2024) 96.54 94.06 91.37 85.79 83.03 54.13 84.15 0.84
• FlexPrefill (Lai et al., 2025) 95.99 93.67 92.73 88.14 81.14 74.67 87.72 1.02
• XAttention (Xu et al., 2025) 96.15 93.95 93.71 90.90 83.35 72.57 88.44 0.50
• TFCA-Attention (Ours) 96.31 95.38 93.92 86.38 82.89 77.46 88.72 0.45

Qwen2.5-7B-Instruct-128K 96.00 94.85 91.77 89.85 70.38 52.92 82.63 1.10
•MInference (Jiang et al., 2024) 96.08 94.92 91.69 89.92 70.46 51.62 82.45 0.77
• FlexPrefill (Lai et al., 2025) 95.62 94.31 92.00 88.23 70.23 52.15 82.09 0.89
• XAttention (Xu et al., 2025) 95.45 92.91 92.04 88.84 68.84 55.36 82.24 0.44
• TFCA-Attention (Ours) 96.00 94.77 91.92 90.08 69.85 52.31 82.49 0.40

5.1 COMPARISONS WITH STATE-OF-THE-ART METHODS

Table 1: Characteristic comparisons between ex-
isting methods and our TFCA-Attention.

Methods Dynamic Prefilling Decoding
MInference ✓ ✓
FlexPrefill ✓ ✓
XAttention ✓ ✓
SnapKV ✓ ✓
CAKE ✓ ✓
Ours ✓ ✓ ✓

As a dynamic sparse attention method, TFCA-
Attention is primarily compared with state-
of-the-art sparse attention methods: MInfer-
ence (Jiang et al., 2024), FlexPrefill (Lai et al.,
2025), and XAttention (Xu et al., 2025). This
constitutes a fair comparison within the same
category of techniques. To address the broader
impact on end-to-end inference, we further con-
duct experiments by combining the strongest
prefilling-stage baselines with KV cache com-
pression methods (see Table 5). We summarize
differences from existing methods in Table 1.

Comparisons on LongBench-E. In Table 2, TFCA-Attention achieves the highest average score
among sparse attention methods. For LLaMA3.1-8B, it attains a 2.6× speedup (120.96ms vs.
316.14ms) at 64K context while outperforming XAttention by 2.6 average score. On Qwen2.5-
7B, it delivers the best performance with the fastest latency (2.5× speedup). These results validate
our method’s effectiveness and architectural adaptability without compromising accuracy.

Comparisons on RULER. In Table 3, TFCA-Attention achieves superior efficiency and accuracy
in long context understanding across different context lengths. On LLaMA3.1-8B-Instruct and
Qwen2.5-7B-Instruct, TFCA-Attention attains the highest average score with up to 2.8× speedup
compared to vanilla self-attention (0.45s vs 1.28s), outperforming the strongest counterpart method
XAttention despite faster computation. These results confirm that our dynamic sparsity mechanism
effectively maintains performance while accelerating computation across varying sequence lengths.

Comparisons on Short-context Tasks. In Table 4, our TFCA-Attention achieves competitive re-
sults on LLaMA3.1-8B-Instruct-128K and outperforms all baselines on Qwen2.5-7B-Instruct-128K,

Table 4: Comparisons on short-context tasks, covering common sense, math, and code.

(a) Comparisons on LLaMA3.1-8B-Instruct.
Methods MMLU GSM-8K HumanEval
LLaMA3.1-8B-Instruct 69.38 83.85 68.29
• MInference 69.14 84.08 67.30
• FlexPrefill 69.16 84.15 67.07
• XAttention 69.21 84.15 67.39
• TFCA-Attention (Ours) 69.21 84.23 67.46

(b) Comparisons on Qwen2.5-7B-Instruct.
Methods MMLU GSM-8K HumanEval
Qwen2.5-7B-Instruct 74.22 79.68 81.71
• MInference 74.14 80.29 79.88
• FlexPrefill 74.23 80.36 81.10
• XAttention 74.20 79.30 80.49
• TFCA-Attention (Ours) 74.26 80.44 81.10
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Figure 3: Comparisons in terms of computational and storage overhead on LLaMA3.1-8B-Instruct.
Attention computation latency is the time to compute a single attention layer. “ITL” (inter token
latency) is the time between generating consecutive tokens (except for the first token) in decoding.

Table 5: Performance comparisons across prefilling and decoding on LongBench-E.

Methods S. QA M. QA Sum. F.S. Syn. Code Avg.
MInference + SnapKV 49.66 53.16 29.90 67.60 51.72 58.25 51.72
FlexPrefill + CAKE 50.27 52.87 30.77 66.96 52.25 60.24 52.23
DuoAttention 51.05 52.70 29.70 67.27 52.25 59.86 52.14
TFCA-Attention (Ours) 50.71 53.11 30.24 67.93 52.59 60.05 52.44

demonstrating robust cross-model generalization. Notably, it preserves the capability of the original
model, validating that our method effectively retains critical information without fine-tuning.

Comparisons on Computational Efficiency. As shown in Figure 3, TFCA-Attention achieves a
2.8× speedup in prefilling latency and a 2.1× faster decoding speed over vanilla self-attention at
128K context length on LLaMA3.1-8B-Instruct. By dynamically selecting tokens, it also reduces
KV cache memory by 61% (3.12GB vs. 8.00GB). In contrast, methods like MInference only ac-
celerate prefilling, leaving decoding latency and memory unchanged. Our analysis of the official
DuoAttention implementation reveals that it does not accelerate the prefill stage, relying instead
on a standard FlashAttention-2 kernel during this stage. Its optimization is primarily confined to
KV cache compression and decoding. This demonstrates TFCA-Attention’s unique advantage in
enabling end-to-end efficiency.

Performance Comparison across Prefilling and Decoding. We further conduct experiments on
LongBench-E to validate the effectiveness of our unified framework across both prefilling and de-
coding stages. We integrate the strongest methods from prefilling acceleration and KV cache com-
pression to enable comprehensive benchmarking. The results in Table 5 demonstrate that our ap-
proach achieves superior performance across most tasks. This highlights that our method establishes
a more efficient end-to-end framework for long-context processing.

5.2 ABLATIONS

We perform ablation studies on Qwen2.5-7B-Instruct-128K and report the average score on
LongBench-E and decoding latency in Figure 4 (see more results in Appendix E).

Ablations on Block Size b. As shown in Figure 4a, the model achieves the highest average score
of 51.51 with a block size of 128. Smaller block sizes may fail to capture sufficient contextual
redundancy, while larger sizes risk over-compressing critical information.
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(b) Ablation on window size w.
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Figure 4: Ablations on hyper-parameters. We report average score on LongBench-E and lantency.
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Ablations on Local Window Size w. As shown in Figure 4b, performance peaks at w = 4096
(avg score 51.51), with latency increasing only marginally from 38.8ms to 41.5ms, indicating that
preserving richer local context yields significant accuracy gains with minimal computational cost.

Ablations on Threshold τ . In Figure 4c, increasing τ from 0.3 to 0.9 improves the average score,
peaking at 51.51 for τ=0.9, due to stricter retention of core context. Higher thresholds enhance
context preservation by retaining more important tokens while incurring marginal latency increases.

6 CONCLUSION

In this work, we propose TFCA-Attention, a training-free dynamic attention mechanism that miti-
gates the critical bottleneck of quadratic complexity in long-context LLMs in a one-stone-three-birds
manner: accelerating prefilling, reducing decoding latency, and compressing KV cache. By adapting
to both head-specific and context-dependent redundancy, TFCA-Attention achieves efficient compu-
tation without sacrificing accuracy. Extensive experiments demonstrate that our approach provides
significant efficiency gains (2.8× decoding speedup, 61% KV cache reduction) while maintaining
full-attention accuracy. The plug-and-play nature of TFCA-Attention makes it a practical solution
for deploying LLMs in long-context scenarios without retraining or architectural changes.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

REPRODUCIBILITY STATEMENT

To facilitate the reproducibility of our work, we have made the following efforts:

• Datasets: All datasets used in our experiments are publicly available benchmarks: LongBench-
E (Bai et al., 2023), RULER (Hsieh et al., 2024), MMLU (Hendrycks et al., 2021), GSM-8K
(Cobbe et al., 2021b), and HumanEval (Chen et al., 2021). We provide detailed descriptions of
each dataset, including preprocessing steps and evaluation metrics, in Appendix D.2.

• Implementation Details: We provide a complete description of our method in Section 4, in-
cluding pseudo-code in Algorithms 1 and 2. Additional implementation details, such as hyper-
parameter settings, parallelization strategies, and Triton-based optimizations, are elaborated in
Appendix D.3 and D.4. Our code will be released upon acceptance.

• Computational Resources: All experiments were conducted on a single node with 8 NVIDIA
A800 GPUs (80GB memory each). We report latency and memory usage for both prefill and
decoding stages in Section 5, and provide a detailed latency breakdown in Appendix E.9.

• Theoretical Claims: We include a full theoretical analysis of the approximation error bound of
TFCA-Attention in Appendix A, with proofs clearly stated.

We believe these efforts will enable researchers to reproduce our results and build upon our work.
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A THEORETICAL ANALYSIS OF APPROXIMATION ERROR

A central question for any sparse attention mechanism is its capacity to accurately approximate the
full attention output. In this section, we present a theoretical analysis that bounds the approximation
error of TFCA-Attention. We show that the error is bounded and can be explicitly controlled via the
method’s hyperparameters, particularly the threshold τ used in the offline configuration process.

For a single attention head, let the full attention output be Att = softmax(A)V, where A =
QK⊤
√
dh

∈ RL×L is the pre-softmax score matrix. TFCA-Attention computes an approximation Ãtt =

softmax(Ã)Ṽ, where Ã = QK̃⊤
√
dh

, and K̃, Ṽ ∈ RL×dh contain only the selected global and local
tokens (with other rows zeroed). The token selection is determined by the index set Stotal = S∪Slocal.
We measure the error for a single query vector qi (the i-th row of Q) in terms of the ℓ1 norm between
the full attention output vector and our approximation.

Theorem 1 (Error Bound for a Single Query) Let γi =
∑

j /∈Stotal

exp(Aij)
Zi

be the total proba-
bility mass assigned by the full softmax to tokens not selected by TFCA-Attention, where Zi is the
normalization constant. Then the approximation error is bounded by

|Atti − Ãtti|1 ≤ 2γi · |V|∞, (10)

where Atti and Ãtti denote the i-th rows of the full and approximate attention outputs, respectively,
|V|∞ is the maximum absolute value in the value matrix.

Proof. Let si = softmax(Ai) = exp(Ai)
Zi

be the full attention probability distribution for query i.

Let s̃i = softmax(Ãi) be the approximate distribution. Note that s̃i is defined only over the selected
tokens; for mathematical convenience, we consider it a distribution over all L tokens by setting
(s̃i)j = 0 for j /∈ Stotal. Then, the attention outputs are:

Atti = siV, Ãtti = s̃iṼ

Note that Ṽ is V with rows zeroed out for unselected tokens, so Ṽ = M⊙V, where M is a masking
matrix. Thus, the error can be split using the triangle inequality:

Ei = |Atti − Ãtti|1 = ∥siV − s̃iṼ∥1 ≤ ∥(si − s̃i)V∥1︸ ︷︷ ︸
Term I: Softmax Error

+ ∥s̃i(V − Ṽ)∥1︸ ︷︷ ︸
Term II: Value Error

. (11)

1) Bounding Term II (Value Error): Since Ṽ and V are identical for all selected tokens j ∈ Stotal,
and s̃i is zero for unselected tokens, this term is zero.

Term II = ∥s̃i(V − Ṽ)∥1 = 0. (12)

2) Bounding Term I (Softmax Error): We now bound the difference between the two distributions
si and s̃i.

Term I = ∥(si − s̃i)V∥1 ≤ ∥si − s̃i∥1 · ∥V∥∞. (13)
We directly analyze the total variation. Let Zi =

∑
j exp(Aij) and Z̃i =

∑
j∈Stotal

exp(Aij). The
difference is:

∥si − s̃i∥1 =
∑

j∈Stotal

∣∣∣∣exp(Aij)

Zi
− exp(Aij)

Z̃i

∣∣∣∣+ ∑
j /∈Stotal

exp(Aij)

Zi

The second term is precisely γi by definition. The first term can be simplified:∑
j∈Stotal

exp(Aij)

∣∣∣∣ 1Zi
− 1

Z̃i

∣∣∣∣ = Z̃i ·
|Zi − Z̃i|
ZiZ̃i

=
|Zi − Z̃i|

Zi

Recall that γi =
∑

j /∈Stotal

exp(Aij)
Zi

= Zi−Z̃i

Zi
. Thus, we have

∥si − s̃i∥1 =
∑

j∈Stotal

∣∣∣∣exp(Aij)

Zi
− exp(Aij)

Z̃i

∣∣∣∣+ γi

= γi

(
Z̃i

Zi
+ 1

)
= γi ((1− γi) + 1) = γi(2− γi) ≤ 2γi.
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Since γi ∈ [0, 1], the term γi(2− γi) is always ≤ 2γi. This is a tighter bound. Therefore, we get

Term I ≤ 2γi · ∥V∥∞. (14)

According to the bounds for Term I in Eqn. (14) and Term II in Eqn. (12), we obtain the result:

Ei ≤ 2γi · ∥V∥∞. (15)

Interpretation and Discussion. Theorem 1 provides a rigorous bound on the approximation error
for each query position. The error scales linearly with γi, the total probability mass of the full
attention is assigned to the tokens discarded by TFCA-Attention.

• Controllability: Our offline calibration phase (Section 4.1) directly controls this error. By setting
a threshold τ (e.g., 0.9) and ensuring that the aggregated attention mass of the selected tokens
ai ≥ τ , we are effectively enforcing that γi ≤ 1− τ for the calibration data. This guarantees that
the error bound is approximately limited to (1−τ)·∥V∥∞ on the calibration distribution. By using
a small calibration set, we ensure this bound generalizes to test inputs, which is demonstrated in
Appendix E.6.

• Role of Local Context: The local window Slocal ensures that the most recent tokens, which of-
ten have high attention scores for generative tasks, are always included. This prevents γi from
becoming large for these critical query positions, thus proactively minimizing the error bound.

• Head-Specificity: The error bound is per-head and per-query. This aligns with our design: heads
with higher inherent redundancy (lower γi for the same number of discarded tokens) can tolerate
a sparser configuration (p∗ with a lower budget) without violating the error constraint.

In conclusion, TFCA-Attention is a principled approximation algorithm whose output deviation
from full attention is theoretically bounded and explicitly managed by its configuration process.
The empirical results showing maintained performance across diverse benchmarks (Section 5) pro-
vide strong evidence that the values of γi encountered in practice are indeed small, validating our
theoretical analysis.
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B MORE VISUALIZATIONS OF ATTENTION SCORE DISTRIBUTIONS

In this section, we provide more visualizations of attention score distributions for both LLaMA-
3.1-8B-Instruct (Figure 5) and Qwen2.5-7B-Instruct (Figure 6). Our analysis reveals consistent
patterns across models: 1) significant variation in attention distributions across different layers and
heads; 2) position-dependent scoring patterns throughout the sequence length; 3) the emergence
of all four distribution types identified in Section 3.2 (uniform, bipolar, terminal bias, attention
sink, and sparse activation). These observations hold regardless of model architecture, strongly
motivating our design of a unified efficient attention mechanism that can automatically adapt to these
heterogeneous patterns while maintaining computational efficiency. The cross-model consistency of
these findings suggests that our approach may generalize well to other transformer-based LLMs.
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Figure 5: More visualization of attention score distributions across different layers and heads in
LLaMA-3.1-8B-Instruct.
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Figure 6: More visualization of attention score distributions across different layers and heads in
Qwen2.5-7B-Instruct. (continued from previous page)
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C MORE DISCUSSIONS

C.1 MORE DISCUSSIONS ON DIFFERENCES FROM EXISTING METHODS

Self-attention mechanisms (Vaswani et al., 2017) in LLMs face significant computational redun-
dancy when processing ultra-long contexts (e.g., 128K tokens). As identified in our Section 1,
the redundancy in attention distributions exhibits two critical properties: (1) head-specific redun-
dancy, where different attention heads exhibit diverse sparsity patterns across layers, and (2) context-
dependent redundancy, where token importance varies dynamically with input content. While these
properties have been partially observed in prior work, no existing method adequately addresses both
in a unified manner across prefilling and decoding stages. Based on these observations, we propose
TFCA-Attention, which simultaneously adapts to both types of redundancy while accelerating both
prefilling and decoding stages. This section further clarifies our methodological distinctions from
recent dynamic sparse attention methods and KV cache compression methods:

Unified Acceleration of Prefilling and Decoding. Existing approaches are typically limited to op-
timizing either prefilling or decoding due to fundamental architectural constraints. Sparse attention
methods like Minference (Jiang et al., 2024) and FlexPrefill (Lai et al., 2025) accelerate prefilling
by computing subsets of attention scores through predefined patterns. However, these methods rely
on predefined sparse patterns and 2D attention block scoring. These techniques require computing a
2D attention map, which is infeasible under sequential decoding constraints. KV cache compression
techniques such as SnapKV (Li et al., 2024) reduce memory during decoding by evicting or merging
tokens, but operate after full attention computation and thus cannot accelerate the prefilling stage.

TFCA-Attention achieves unified acceleration through a token selection mechanism designed for
both computational stages. Global redundancy is removed before prefilling attention computaion,
while local context is preserved—accelerating computation without sacrificing quality. In decoding
stage, Block-wise token selection is position-aware, metric-driven, and unbound by 2D dependen-
cies, making it suitable for sequential generation. This explains our superior latency in Figure 3.

Adaptation to Head-Specific and Context-Dependent Redundancy. Most existing methods fail
to adequately address both of head-specific and context-dependent redundancy due to their design
paradigms. Fixed-pattern sparse attention methods (Zaheer et al., 2020; Beltagy et al., 2020; Xiao
et al., 2024) apply uniform patterns across all heads, ignoring variations in redundancy distributions.
While dynamic variants (Jiang et al., 2024; Xu et al., 2025; Lai et al., 2025) adapt per head, they
select from a limited set of hand-designed patterns that cannot capture intricate redundancy variation.
KV cache compression methods Hao et al. (2025); Wan et al. (2025); Qin et al. (2025); Li et al.
(2024) typically apply uniform policies across all heads within a layer, neglecting head-specific
characteristics.

TFCA-Attention addresses both redundancies through a decoupled two-phase approach. The offline
configuration phase estimates each head’s intrinsic redundancy level to determine head-specific to-
ken budgets. The online selection phase then identifies core tokens based on local contextual im-
portance using efficiently computable metrics. This design enables adaptation to both head-specific
sparsity characteristics and context-dependent token importance.

In summary, TFCA-Attention differs from prior work by simultaneously addressing both identified
forms of redundancy through a unified method that accelerates both inference stages while main-
taining comparable performance with vanilla self-attention.

C.2 MORE DISCUSSIONS ON SCALABILITY

Context length: As shown in Figure 3, TFCA-Attention’s efficiency gains increase with longer
contexts. This is because longer sequences naturally contain more redundancy, making our dynamic
token selection increasingly beneficial. The speedup ratio grows from 2.6× at 64K to 2.8× at 128K
context length.

Number of heads: Our method demonstrates consistent effectiveness across models with different
head counts. We validated TFCA-Attention on both LLaMA3.1-8B (32 heads) and Qwen2.5-7B (28
heads), showing that TFCA-Attention works regardless of the specific head count.
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Batch size: We follow the standard practice in long-context acceleration research (MInfer-
ence (Jiang et al., 2024), FlexPrefill (Lai et al., 2025), XAttention (Xu et al., 2025)) by evaluat-
ing latency at batch size=1, where sequence length (L), not batch size, dominates computational
bottlenecks. While our current implementation targets the predominant long-context scenario, the
theoretical overhead would scale sublinearly due to shared redundancy pattern determination across
batches. We left this in the future.

D MORE IMPLEMENTATION DETAILS

D.1 MORE DETAILS ON MODELS

We employ two state-of-the-art LLMs renowned for their exceptional performance in long-context
tasks: 1) LLaMA-3.1-8B-Instruct-128K (AI, 2024), 2) Qwen2.5-7B-Instruct-128K (Yang et al.,
2024). All selected models are instruction-tuned for chat-based interactions. We use the default
chat templates provided with each model in the experiments.

D.2 MORE DETAILS ON DATASET AND EVALUATION METRICS

LongBench (Bai et al., 2023) represents a cutting-edge benchmark architecture engineered for the
systematic assessment of LLMs across three critical dimensions: bilingual (Chinese-English) com-
petence, multitask generalization, and long-context semantic processing. Its cross-linguistic de-
sign enables rigorous comparative analysis of multilingual contextual encoding abilities in scenar-
ios demanding comprehension of extended textual sequences exceeding standard input boundaries.
Structured into six overarching task categories—encompassing single-document question answer-
ing, multi-document reasoning, summarization, few-shot learning paradigms, synthetic linguistic
tasks, and code completion workflows—the benchmark instantiates 21 meticulously designed sub-
tasks that span the core application domains of long-text processing. Specifically, the corpus in-
cludes 14 English-language tasks, 5 Chinese-language tasks, and 2 code-oriented evaluation mod-
ules, with median sequence lengths ranging from 5K to 15K tokens and a total of 4,750 instances.
Additionally, LongBench-E is an enhanced variant of the benchmark, specifically crafted to assess
model performance across input lengths on English tasks.

RULER (Hsieh et al., 2024) is a next-generation synthetic benchmark based on the NIAH paradigm,
designed to evaluate the long-context capabilities of language model through configurable task com-
plexity and sequence length. It extends traditional ”needle” concepts into a taxonomy of semantic
entities, relational patterns, and structural anomalies, enabling adjustable needle density to assess
hierarchical information processing. The framework includes 13 subtasks across four categories: 8
retrieval tasks testing exact/semantic retrieval under noise, 3 multi-hop tracing tasks assessing se-
quential reasoning, 1 aggregation task evaluating contextual integration, and 1 complex QA task
simulating multi-step inference. Its synthetic data pipeline ensures precise control over context
length and needle correlations, supporting rigorous ablation studies and performance analysis of
sequential memory, structural understanding, and multi-step reasoning.

Massive Multitask Language Understanding (MMLU) (Hendrycks et al., 2021) dataset is a
comprehensive, multi-domain benchmark designed to rigorously assess the intellectual breadth and
reasoning capabilities of language models across 57 diverse subject areas. These subjects span
a wide spectrum of disciplines, including STEM, humanities, social sciences, and professional
fields such as law and medicine, challenging models to demonstrate both factual knowledge and
higher-order cognitive skills like analysis, inference, and application. Each question is crafted as a
multiple-choice problem that requires nuanced understanding and logical reasoning, often surpass-
ing surface-level pattern matching to evaluate a model’s ability to generalize knowledge in zero-shot
and few-shot settings. By incorporating content ranging from elementary concepts to advanced ex-
pertise, MMLU simulates real-world scenarios where models must rely on their pretraining knowl-
edge without task-specific fine-tuning. This interdisciplinary design makes MMLU a cornerstone
for evaluating the adaptability, knowledge retention, and cross-domain generalization of modern
language models, offering critical insights into their performance in realistic, knowledge-intensive
environments.

GSM8K (Cobbe et al., 2021a) is a benchmark designed to evaluate language models’ numerical
reasoning and problem-solving abilities through grade-school math problems, consisting of 7,473
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training and 1,319 test samples that focus on multi-step reasoning tasks involving 2 to 8 sequential
steps, requiring models to break down complex problems into logical sub-tasks while demonstrating
both conceptual understanding of mathematical principles like arithmetic, proportions, and algebra
and precise computation skills. The dataset’s handcrafted problems exhibit rich linguistic variability
with diverse narrative structures and real-world contextualizations, ensuring that models interpret
nuanced language alongside solving equations, and it emphasizes chain-of-thought reasoning by
encouraging models to articulate intermediate steps rather than provide direct answers, offering
deeper insights into their logical processes and error patterns.

HumanEval (Chen et al., 2021) is a carefully curated code generation benchmark that consists
of 164 hand-crafted Python programming problems, each designed to rigorously assess the coding
capabilities of language models. Each problem in the dataset includes detailed specifications such
as function signatures, docstrings, and a set of test cases, providing a comprehensive framework
to evaluate both the syntactic correctness and functional accuracy of generated code. By covering
a wide range of programming tasks—from basic algorithmic challenges to more complex logic-
based problems—HumanEval ensures a thorough assessment of a model’s ability to produce high-
quality, executable code. The inclusion of unit tests further allows for precise validation of functional
correctness, simulating real-world software development scenarios. As a result, HumanEval has
become a cornerstone for evaluating the coding proficiency, logical reasoning, and problem-solving
abilities of large language models in practical programming contexts.

Table 6: The candidate configurations used in offline sparsity determination.

µ 1 2 4 8 16 32 64 128
0.00 33.26% 29.36% 20.18% 10.80% 4.50% 1.46% 0.37% 0.07%
0.58 26.99% 27.57% 21.94% 13.59% 6.56% 2.46% 0.72% 0.17%
1.00 22.71% 25.73% 22.71% 15.61% 8.35% 3.48% 1.13% 0.28%
1.58 17.09% 22.42% 22.90% 18.22% 11.29% 5.45% 2.05% 0.58%
2.00 13.53% 19.69% 22.31% 19.69% 13.53% 7.24% 3.02% 0.99%
2.58 9.26% 15.60% 20.46% 20.90% 16.63% 10.30% 4.97% 1.88%
3.00 6.82% 12.74% 18.53% 21.00% 18.53% 12.74% 6.82% 2.82%
3.58 4.18% 9.05% 15.23% 19.98% 20.41% 16.24% 10.06% 4.85%
4.00 2.84% 6.82% 12.74% 18.53% 21.00% 18.53% 12.74% 6.80%
4.58 1.56% 4.33% 9.36% 15.76% 20.67% 21.12% 16.80% 10.40%
5.00 0.98% 3.02% 7.24% 13.53% 19.69% 22.31% 19.69% 13.54%
5.58 0.49% 1.73% 4.81% 10.40% 17.51% 22.96% 23.45% 18.65%
6.00 0.29% 1.13% 3.48% 8.35% 15.61% 22.71% 25.73% 22.70%
6.58 0.13% 0.60% 2.13% 5.90% 12.76% 21.49% 28.19% 28.80%

D.3 MORE DETAILS ON PARALLEL IMPLEMENTATION

To address the challenges of efficient parallelization in TFCA-Attention, we have developed special-
ized implementation strategies that overcome two critical barriers: non-contiguous memory access
patterns and variable-length attention computation across attention heads.

Memory Access Optimization. The top-k token selection would lead to non-contiguous memory
access, significantly degrading GPU performance. To mitigate this, we employ a parallel tokens
gathering strategy that groups blocks where blocks within each group share the same top-k value.
For each group, we perform the top-k selection in parallel across its blocks. Crucially, token se-
lection is implemented by loading contiguous chunks of tokens within each block (since tokens are
stored contiguously per block) and then gathering only the selected tokens. The selected tokens
from all blocks are concatenated to form the global subsets KG,VG. This grouping strategy re-
duces memory fragmentation by minimizing random access scope, achieving near-optimal memory
bandwidth utilization.

Multi-head Parallelization. Since each attention head requires a different number of tokens, this
presents a significant challenge for parallelization. To address this, we flatten all head tokens into
a single contiguous buffer and precompute offsets that map to each head’s token region. During
Triton kernel execution, each parallel thread uses these offsets to directly access the corresponding
token region for its assigned head. This approach enables efficient parallel processing of variable-
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length multi-head attention computation without synchronization overhead, making full use of GPU
parallelism while maintaining the head-aware design principle.

Future Optimization Directions. We plan to further enhance performance through latency-hiding
scheduling techniques. Specifically, while computing attention between queries and the local sub-
set KL,VL, we can concurrently perform global token selection in the background. Once local
attention computation completes, the global subsets KG,VG would be ready, allowing seamless
transition to global attention without additional delay. While this approach shows promise for fur-
ther reducing end-to-end latency, it requires sophisticated kernel-level scheduling and is left as future
work.

D.4 MORE EXPERIMENTAL PROTOCOLS

TFCA-Attention (Ours). We integrate the proposed TFCA-Attention with existing LLMs through
a plug-and-play replacement of full self-attention, requiring no architectural modifications or
parameter updates. Our experiments are conducted on a computational node equipped with 8
NVIDIA A800 GPUs, each with 80GB of memory. The experiments pipeline is implemented us-
ing PyTorch. Following FlashAttention Dao (2024), we further optimize the computation process
of TFCA-Attention through Triton Tillet et al. (2019). The implementation follows GPU-aligned
memory access patterns and cache-friendly computation schemes to maximize hardware utilization,
while the dynamic token selection inherently eliminates redundant computations.

The threshold τ in offline determination is set to 0.9. The block size b and window size w are set
to 128 and 4096 for all models, respectively. In all experiments, we adopt the 14 candidate con-
figurations shown in Table 6 for all LLMs, where the appropriate configuration for each head is
determined through Offline Sparsity Pattern Determination in Section 4.1. These candidate config-
urations are generated using Eq. 3. σ is set to 2 and µ is sampled uniformly from log2(1) to log2(b)
with 14 discrete steps. We find that setting σ worked well in our experiments, so we did not further
tune this hyperparameter. To ensure fair comparison with existing methods, we follow the standard
practice in long-context acceleration research (Jiang et al., 2024; Lai et al., 2025; Xu et al., 2025) by
evaluating latency at batch size=1. All experiments employed a greedy decoding strategy to ensure
reproducibility and eliminate sampling variance.

Compared Methods. We compare our approach against three state-of-the-art baseline methods: 1)
Minference Jiang et al. (2024): This method employs offline determination to select optimal sparse
attention patterns per attention head, combined with online dynamic adjustment of computation re-
gions for each pattern. We use the officially released implementation in our all experiments. The
pattern determined for all attention heads in the evaluated LLMs are vertical-slash patterns. Specif-
ically, these patterns predominantly consisted of 1,000 vertical lines and 6,096 slash lines across
different heads and layers. 2) FlexPrefill Lai et al. (2025): This approach dynamically selects be-
tween Query-Aware and Vertical-Slash attention patterns per head, while adaptively determining the
required Key-Value indices for computation. In our experiments, we use the official implementation
and follow the original paper’s settings: γ=0.9, τ=0.1, with a minimum retained budget of 1,024
tokens and a block size of 128 across all evaluated models. 2) XAttention Xu et al. (2025): This
method employs an antidiagonal scoring pattern to select sparse attention blocks, reducing compu-
tation by processing only the selected regions. In our experiments, we follow the original paper’s
optimal setting with stride S = 8. For LLaMA3.1-8B, we adopt the officially released set of mini-
mum thresholds to determine block selection. For Qwen2.5-7B, we set the threshold to 0.9 – higher
than the paper’s average recommendation of 0.8 – to preserve more contextual information.

E MORE EXPERIMENTAL RESULTS

E.1 COMPARISONS ON REASONING BENCHMARK

To further validate TFCA-Attention’s effectiveness on highly challenging reasoning tasks, we
evaluate our method using Qwen2.5-7B-Instruct on OlympiadBench, a challenging Olympiad-
level benchmark covering math and physics reasoning. As shown in Table 7, TFCA-Attention
demonstrates exceptional performance while significantly accelerating inference. Notably, TFCA-
Attention matches the baseline model’s mathematics performance while actually improving physics
accuracy (19.95% vs. 19.73%), resulting in a slightly higher overall score (31.27% vs. 31.20%).
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This is particularly impressive given that TFCA-Attention achieves these results with 2.8× faster in-
ference compared to the vanilla self-attention. The results confirm that TFCA-Attention effectively
preserves critical reasoning paths even for highly complex tasks that require sophisticated multi-step
reasoning, validating the ability to maintain performance while substantially improving efficiency
for the most demanding cognitive tasks.

Table 7: Results on OlympiadBench with Qwen2.5-7B-Instruct and attention computation latency
at 128K context.

Model Math Physics Avg. Latency (s)↓
Qwen2.5-7B-Instruct 38.85 19.73 31.20 1.10
• FlexPrefill 38.73 19.06 30.86 0.44
• TFCA-Attention (Ours) 38.82 19.95 31.27 0.40

E.2 COMPARISONS ON MULTI-TURN CONVERSATION BENCHMARK

Based on the comprehensive evaluation on the multi-turn conversation benchmark MT-Bench-101,
our proposed TFCA-Attention demonstrates superior performance in conversational settings. As
shown in Table 8, TFCA-Attention achieves an average score of 8.97, outperforming both the full-
attention baseline (8.90) and the strongest competitor FlexPrefill (8.90). This performance advan-
tage is consistent across multiple dialogue dimensions including Generation (GR), Reasoning (CR),
and Safety (SA), where our method shows particularly strong results. These findings conclusively
demonstrate that our token selection strategy, while computationally efficient, effectively preserves
critical conversational context and reasoning paths across multiple dialogue turns. The results val-
idate TFCA-Attention’s robustness in real-world conversational applications while maintaining its
training-free, plug-and-play advantage over methods that require architectural modifications or pa-
rameter updates.

Table 8: Results on MT-Bench-101 with Qwen2.5-7B-Instruct.

Methods GR IC AR FR MR CC TS CR SA SI CM PI SC average
Qwen2.5-7B-Instruct 8.20 7.71 9.49 9.56 7.57 9.89 8.90 9.50 9.29 8.26 9.19 8.64 9.42 8.90
• FlexPrefill 7.81 7.67 9.55 9.57 7.23 9.91 9.40 9.57 9.22 8.33 9.27 8.63 9.53 8.90
• TFCA-Attention (Ours) 8.50 7.71 9.56 9.74 7.48 9.91 9.39 9.49 9.26 8.38 9.20 8.62 9.43 8.97

E.3 COMPARISONS WITH TRAINING-BASED METHODS

We compare our TFCA-Attention with training-based methods on LongBench-E, including CCA-
Attention (Chen et al., 2025). In Table 9, TFCA-Attention achieves performance on par with the
original model (22.28 vs. 22.42 average score), without any architectural modifications or training
overhead. In contrast, CCA-Attention involves parameter updates, incurring high computational
costs. In comparison, TFCA-Attention enables plug-and-play deployment.

Table 9: Comparisons with training-based methods on LongBench-E Bai et al. (2023).

Methods Training-free S. QA M. QA Sum. F.S. Syn. Code Avg.
LLaMA2-7B-Instruct-80K – 3.22 2.71 3.90 64.98 0.56 59.16 22.42
• CCA-LLM (Chen et al., 2025) % 5.62 4.34 8.99 59.60 0.48 54.40 22.24
• TFCA-Attention (Ours) ✓ 3.38 2.72 4.01 63.39 0.64 59.52 22.28

E.4 EFFECTIVENESS OF LOCAL-CONTEXT REDUNDANCY METRIC

To validate the efficacy of our proposed Local-context Redundancy Metric h for redundancy esti-
mation, we conduct an ablation study comparing our Online Core Context Selection strategy with
a variant that randomly sorts blocks on LongBench-E with Qwen2.5-7B-Instruct. As shown in Ta-
ble 10, our metric-driven approach achieves 1.59% average score improvement over the random
baseline. This significant performance gap demonstrates that the proposed metric accurately quan-
tifies block-wise redundancy levels and enables adaptive token retention requirements.
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Table 10: Comparisons of different models on LongBench-E Bai et al. (2023).

Methods S. QA M. QA Sum. F.S. Syn. Code Avg.
Qwen2.5-7B-Instruct-128K 48.75 52.24 27.81 65.00 52.00 61.14 51.16
• Random Sort 47.19 50.78 26.63 63.35 51.50 60.07 49.92
• Sort with Metric h 48.50 52.91 27.74 64.92 52.25 62.74 51.51

E.5 ABLATION STUDY ON COMPRESSION RATE

We analyze the performance of TFCA-Attention across varying compression levels to understand
its behavior under different threshold τ settings. As shown in Table 11, TFCA-Attention maintains
strong performance across the LongBench-E benchmark with varying compression ratios. The most
aggressive setting (τ = 0.3, 84.69% compression) yields a total reduction of only 1.34% in average
performance. Tasks primarily relying on sparse context (Single Document QA, Summarization,
and Few-Shot Learning) demonstrate remarkable robustness even at extreme compression rates,
while tasks requiring dense global context show mild degradation at the highest compression levels.
This demonstrates that TFCA-Attention successfully identifies and preserves the critical information
paths needed for these tasks. Tasks requiring dense global context (Multi-Document QA, Synthetic
tasks, and Code) show moderate performance degradation at extreme compression. This occurs
because these tasks rely on information distributed throughout the entire sequence, making them
more sensitive to aggressive token compression.

This differential behavior provides valuable insights into when and how aggressively TFCA-
Attention can be applied. For applications where global context integration is critical (e.g., multi-
document reasoning), a more conservative compression setting (τ = 0.6 or 0.9) may be preferable.
However, for tasks where only specific passages contain relevant information (e.g., single-document
question answering), the highest compression settings can be used with minimal performance im-
pact, maximizing computational efficiency.

Table 11: Performance on LongBench-E at different compression ratios (τ values).

Comp. Ratio (%) (τ ) S. QA M. QA Sum. F.S. Syn. Code Avg.
52.72 (τ = 0.9) 48.50 52.91 27.74 64.92 52.25 62.74 51.51
73.06 (τ = 0.6) 48.14 49.78 27.67 64.77 51.00 62.10 50.58
84.69 (τ = 0.3) 48.11(-0.39) 49.34(-3.57) 27.66(-0.08) 65.20(+0.28) 50.00(-2.25) 60.72(-2.02) 50.17(-1.34)

E.6 ABLATION STUDY ON CALIBRATION DATASET

We conduct an ablation study to evaluate TFCA-Attention’s sensitivity to calibration dataset choice
and size. As shown in Table 12, our method achieves consistent performance across different cal-
ibration datasets and sizes. When calibrated on diverse domains—general web text (SlimPajama),
long-form governmental documents (GovReport), and programming code (McEval)—the average
score on LongBench-E remains remarkably stable (51.54-51.56). More importantly, this stability
persists even with minimal calibration: using just a single input sequence (size=1), our method
achieves virtually identical performance to using five samples, with variations of ≤ 0.04. These re-
sults demonstrate two critical properties: (1) head-specific redundancy patterns transfer well across
domains, and (2) these patterns are remarkably stable across different inputs within the same model,
requiring only minimal calibration data. This efficiency makes TFCA-Attention highly practical for
real-world deployment, as it eliminates the need for domain-specific calibration or extensive calibra-
tion datasets while maintaining consistent performance across diverse benchmarks (LongBench-E,
MMLU, GSM8K, HumanEval).

E.7 ABLATION STUDY ON BALANCING PARAMETER α

We conduct an ablation study to evaluate the sensitivity of TFCA-Attention to the α parameter,
which balances the global and local context contributions in our redundancy metric. As shown in
Table 13, the performance remains remarkably stable across a wide range of α values (0.1-0.9),
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Table 12: Results of Qwen2.5-7B-Instruct on LongBench-E with different calibration datasets and
sizes.

Calibration Dataset Domain Average Score
SlimPajama General web text 51.54±0.03

GovReport Long-form governmental docs 51.56±0.04

McEval Programming code 51.55±0.02

demonstrating the robustness of our method to this hyperparameter. The highest average score
of 51.51 on LongBench-E is achieved at α = 0.5, indicating an optimal balance between global
attention patterns and local context dynamics. Notably, even at extreme values (α = 0.1 or α =
0.9), the performance degradation is minimal (≤ 0.38), confirming that TFCA-Attention maintains
strong performance without requiring precise parameter tuning. This stability makes our method
practical for real-world deployment where automatic parameter selection is preferred over manual
optimization.

Table 13: Performance on LongBench-E using Qwen2.5-7B-Instruct with different α values.

alpha 0.1 0.3 0.5 0.7 0.9
Avg. 51.14 51.25 51.51 51.24 51.13

E.8 ABLATION STUDY ON CONCENTRATION INDEX IN THE REDUNDANCY METRIC

We conduct an ablation study to evaluate the effectiveness of the Herfindahl-Hirschman Index in
Eq.6. As shown in Table 14, Replacing our Herfindahl-Hirschman Index in Eq.6 with a block-wise
entropy measure results in a noticeable performance drop. The Herfindahl-Hirschman Index con-
sistently delivers higher or comparable performance across most tasks, leading to a higher overall
average score. This empirically validates that it is a more effective metric for identifying and pre-
serving information-critical context.

Table 14: Performance on LongBench-E using Qwen2.5-7B-Instruct with different Concentration
Indexes.

Methods S. QA M. QA Sum. F.S. Syn. Code Avg.
Entropy 48.75 51.39 27.51 64.98 51.25 62.42 51.05
Herfindahl-Hirschman Index 48.50 52.91 27.74 64.92 52.25 62.74 51.51

E.9 COMPUTATIONAL EFFICIENCY ANALYSIS

To understand the computational overhead of TFCA-Attention, we conducted a detailed latency
breakdown of our Triton implementation at 128K context length. As shown in Table 15, our block-
wise design effectively minimizes the overhead of dynamic token selection components. This effi-
ciency stems from our fundamental design choice to operate at the block level rather than token level.
The importance score calculation (8.13%) and other auxiliary operations collectively contribute less
than 40% of total latency, demonstrating that our method’s adaptive mechanisms introduce only
marginal overhead.

F LLM USAGE STATEMENT

In preparing this work, the authors used large language models (LLMs) solely to improve the read-
ability and language quality of the manuscript. Specifically, LLMs were employed to assist with:

• Polishing sentence structures and grammatical correctness

• Enhancing the fluency of certain paragraphs

• Ensuring consistent academic tone throughout the paper
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Table 15: Latency breakdown of TFCA-Attention components at 128K context length.

Phase Improtance Score Redundancy Metric Sorting Token Selection Attention Total
Latency (ms) 32.45 46.62 42.37 39.62 238.03 399.09

Ratio (%) 8.13% 11.68% 10.62% 9.93% 59.64% 100.00%

The core research contributions, including the conceptualization of TFCA-Attention, methodologi-
cal design, theoretical analysis, experimental setup, implementation, and all empirical evaluations,
remain entirely our own without any involvement of LLMs.
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