

# 000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 ONE STONE THREE BIRDS: TRAINING-FREE CORE-CONTEXT-AWARE ATTENTION FOR EFFICIENT LLM PREFILLING, DECODING, AND KV CACHING

Anonymous authors

Paper under double-blind review

## ABSTRACT

The quadratic computational complexity of self-attention poses a critical bottleneck for large language models (LLMs) processing ultra-long contexts. While various sparse attention and KV cache compression methods have been proposed to improve efficiency, they often suffer from limitations such as reliance on fixed patterns, inability to handle both prefilling and decoding stages, or the requirement for additional training. In this paper, we propose Training-free Core-context-aware Attention (TFCA-Attention), a training-free sparse attention mechanism that achieves “one stone three birds”: it unifies acceleration for prefilling, decoding, and KV cache reduction through a consistent sparsity mechanism. TFCA-Attention features an offline calibration phase that determines head-specific sparsity budgets and an online token selection phase that adaptively retains core context tokens using a lightweight redundancy metric. Theoretically, we provide a bounded approximation error guarantee, ensuring long context modeling accuracy. Extensive experiments demonstrate that TFCA-Attention achieves a **2.8**× speedup and reduces KV cache by **61%** at 128K context length while maintaining performance comparable to full attention across various benchmarks, offering a practical plug-and-play solution for efficient long-context inference.

## 1 INTRODUCTION

Large language models (LLMs) (Touvron et al., 2023a;b; Brown et al., 2020a; Wei et al., 2022) like GPT-01 (OpenAI, 2024) and DeepSeek-R1 (Guo et al., 2025) have become the cornerstone of modern natural language processing, demonstrating remarkable capabilities in tasks requiring long-context understanding, such as multi-step reasoning (Brown et al., 2020b; Singhal et al., 2025) and document-level comprehension (Cao et al., 2017; Pasunuru et al., 2021). This success is largely attributed to the self-attention mechanism (Vaswani et al., 2017), which enables modeling dependencies across entire sequences. However, as context lengths extend to extremes (e.g., 128K), the quadratic complexity of self-attention becomes a critical bottleneck. Moreover, the presence of redundant tokens, which contribute minimally to the final output, dilutes attention to critical information, degrading efficiency and accuracy (Jiang et al., 2024; Chen et al., 2025).

To address these challenges, researchers have pursued several distinct approaches. Early efforts, such as *static sparse attention* Zaheer et al. (2020); Beltagy et al. (2020); Xiao et al. (2024), employ predefined attention patterns to reduce computation, yet they lack adaptability to input content and often compromise performance on context-sensitive tasks. More recent *prefilling-stage dynamic methods* Jiang et al. (2024); Lai et al. (2025); Xu et al. (2025) adjust attention patterns per head during prefilling, but they are restricted to a limited set of handcrafted sparsity patterns and do not address inefficiency in the decoding phase. On the other hand, *decoding-stage KV cache compression techniques* Hao et al. (2025); Li et al. (2024); Qin et al. (2025); Behnam et al. (2025) reduce memory usage by evicting or merging cached KV entries, yet they fail to accelerate prefilling and typically apply uniform compression strategies across attention heads, ignoring the intrinsic diversity of redundancy across heads. While a few unified frameworks (Xiao et al., 2025; Yang et al., 2025; Gao et al., 2024; 2025) target both prefilling and decoding, they require continued training to determine head-specific patterns or learn block-sparse patterns.

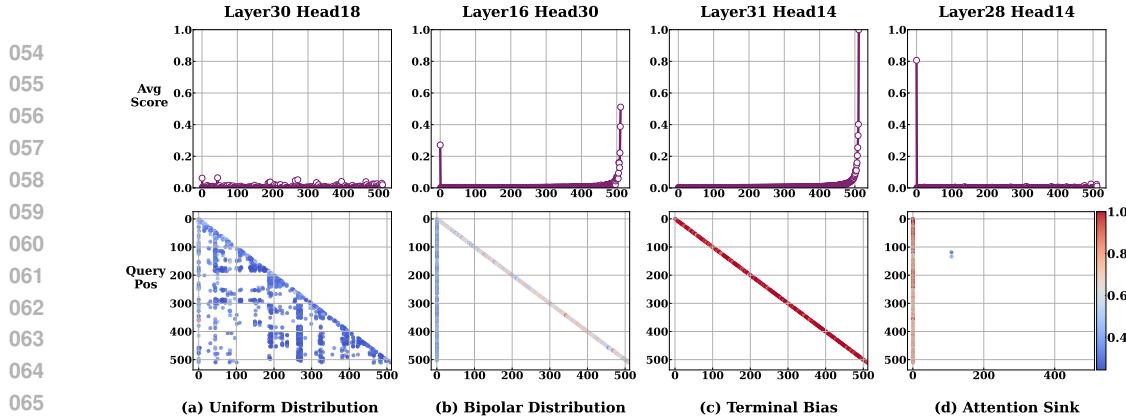


Figure 1: Visualizations of attention distributions in LLaMA-3.1-8B-Instruct: 1) average attention scores across key positions on the first row, and 2) scatter points highlighting attention scores above row-wise averages on the second row. The observations motivate the design principles of TFCA-Attention (see Appendix B for more visualizations).

The fundamental limitations of existing work can be summarized as two critical gaps: First, no existing method provides a comprehensive *training-free* solution that dynamically accelerates both prefilling and decoding while simultaneously reducing KV cache footprint without requiring architectural modifications or parameter updates. Second, they fail to model the intricate nature of attention redundancy adequately. As demonstrated in Figure 1, different attention heads exhibit diverse redundancy distributions across layers and models, ranging from uniform distributions to attention sinks, aligning with findings in prior works (Beltagy et al., 2020; Xiao et al., 2024; Jiang et al., 2024). Meanwhile, token importance varies dynamically within input content. However, existing methods either use uniform compression strategies or rely on a limited set of hand-designed patterns, lacking the fine-grained, input-adaptive mechanism required to handle such head-specific and context-dependent redundancy.

To address these limitations, we propose Training-free Core-context-aware Attention (TFCA-Attention), a training-free dynamic attention mechanism that achieves “one stone three birds” by accelerating *prefilling*, *decoding*, and reducing *KV cache* simultaneously. In contrast to prior unified approaches (Xiao et al., 2025; Yang et al., 2025; Gao et al., 2024; 2025), TFCA-Attention requires no parameter updates, architectural adjustments, or training data. It operates in two phases: 1) An offline sparsity configuration determination phase determines a head-specific sparsity budget by estimating the redundancy level for each head. 2) An online core context selection phase dynamically selects a subset of core tokens per head based on a lightweight redundancy metric. This dual-phase design ensures our method is both head-aware and context-aware, enabling fine-grained, input-dependent acceleration without any finetuning or retraining. Furthermore, we provide a theoretical guarantee for TFCA-Attention, proving that its approximation error is bounded and can be explicitly controlled, thus ensuring reliability. Our contributions are summarized as:

- We propose TFCA-Attention, a training-free sparse attention mechanism that unifies acceleration for prefilling, decoding, and KV cache reduction via adaptive token allocation. Unlike prior unified approaches, our method eliminates any training overhead and dynamically adapts sparsity to input content, enabling plug-and-play deployment for efficient long-context inference.
- Our proposed TFCA-Attention integrates: (1) an offline calibration phase for head-specific sparsity configuration, and (2) an online token selection phase with a lightweight, context-aware redundancy metric. This design makes TFCA-Attention dynamically adapt to the two fundamental, yet underexploited, properties of redundancy (head-specific and context-dependent redundancy).
- We provide theoretical error bounds for our approximation, and extensive experiments demonstrate that our method achieves a **2.8x** speedup and reduces KV cache by **61%** at 128K context length while maintaining performance comparable to full attention.

## 2 RELATED WORKS

**Long-Context Language Models.** Handling long input sequences is critical for applications requiring document-level reasoning, code generation, or extended dialogue history (Liu et al., 2024;

108 Bai et al., 2023; Hsieh et al., 2024). Some methods focus on data-driven adaptation, where models  
 109 are retrained or fine-tuned on ultra-long context datasets to extend their effective context length (Fu  
 110 et al., 2024; Xiong et al., 2024). These methods are computationally expensive and data-dependent.  
 111 Others modify positional encoding mechanisms, such as Rotary Position Embeddings (RoPE) (Su  
 112 et al., 2024), via interpolation (Chen et al., 2023), dynamic scaling (Peng & Quesnelle, 2023), or  
 113 learned biases (Peng et al., 2024). While these enhance context extrapolation, they also require  
 114 retraining. Alternative strategies (Xu et al., 2024; Tworkowski et al., 2023) employ memory or re-  
 115 trieval mechanisms to reduce computation, but often at the cost of losing fine-grained local context.

116 **Efficient Attention.** Existing efficient attention methods fall into two categories: *sparse attention*  
 117 and *KV cache compression*. *Sparse attention* methods reduce the quadratic cost of self-attention by  
 118 sparsifying the attention matrix. They either use fixed patterns across all heads (Zaheer et al., 2020;  
 119 Beltagy et al., 2020; Xiao et al., 2024) or adapt patterns per head in a small set of predefined sparse  
 120 patterns (Jiang et al., 2024; Lai et al., 2025; Xu et al., 2025). Crucially, these methods only accelerate  
 121 the *prefilling* stage and neglect decoding. *KV cache compression* methods reduce memory during  
 122 decoding by evicting or merging cached entries (Li et al., 2024; Qin et al., 2025; Wan et al., 2025;  
 123 Hao et al., 2025; Behnam et al., 2025), but cannot accelerate prefilling and often apply uniform  
 124 compression, ignoring head-specific redundancy. Recent studies (Chen et al., 2025; Yuan et al.,  
 125 2025; Lu et al., 2025; Zhang et al., 2025; Gao et al., 2024; 2025) attempt to bridge both stages  
 126 using consistent sparsity patterns. However, they often require additional model training, complex  
 127 profiling, or intrusive system-level changes. Our TFCA-Attention provides a training-free, head-  
 128 aware, and context-adaptive sparse attention mechanism that simultaneously accelerates prefilling  
 129 and decoding.

### 130 3 MOTIVATIONS

#### 132 3.1 UNDERSTANDING BOTTLENECKS OF SELF-ATTENTION IN LONG-CONTEXT MODELING

134 Most existing LLMs are built on the Transformer (Vaswani et al., 2017) architecture, where the  
 135 self-attention mechanism serves as the core module for capturing global contextual dependencies.  
 136 Given an input sequence  $\mathbf{X} = \{\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_L\} \in \mathbb{R}^{L \times d}$  of  $L$  tokens with model dimension  $d$ , The  
 137 multi-head self-attention mechanism computes contextualized representations through  $h$  heads:

$$138 \text{MultiHead}(\mathbf{X}) = [\mathbf{Att}^1, \dots, \mathbf{Att}^h] \in \mathbb{R}^{L \times d}, \\ 139 \mathbf{Att}^i = \text{softmax} \left( \frac{\mathbf{Q}^i \mathbf{K}^{i\top}}{\sqrt{d_h}} \right) \mathbf{V}_i, \\ 140 \mathbf{Q}^i = \mathbf{X} \mathbf{W}^{Q_i}, \mathbf{K}^i = \mathbf{X} \mathbf{W}^{K_i}, \mathbf{V}_i = \mathbf{X} \mathbf{W}^{V_i}, \\ 141 \quad (1)$$

144 where  $d_h$  is the head dimension (typically  $d_h = d/h$ ),  $\mathbf{W}^{Q_i}, \mathbf{W}^{K_i}, \mathbf{W}^{V_i} \in \mathbb{R}^{d \times d_h}$  are learnable  
 145 parameters for the  $i$ -th head. The multi-head mechanism enables parallel attention operations across  
 146 distinct feature subspaces, facilitating position-aware information aggregation.

147 **Challenges of Self-Attention in Handling Context Redundancy:** As the context length  $L$  grows,  
 148 the context inevitably exhibits redundant information (Jiang et al., 2024; Chen et al., 2025; Zhang  
 149 et al., 2025). Vanilla self-attention faces three challenges in handling such redundancy: 1)  
 150 **Quadratic computational complexity:** It incurs  $O(L^2)$  computational cost by computing pairwise  
 151 attention scores across all tokens. This leads to excessive computation when much of the context  
 152 is redundant. 2) **Memory growth in key-value (KV) Cache:** The KV cache, which grows linearly  
 153 with  $L$ , presents a major deployment bottleneck. For instance, processing a 128K sequence with  
 154 LLaMA2-7B requires 64GB GPU memory for KV cache, exceeding the capacity of most GPUs. 3)  
 155 **Interference from irrelevant tokens:** More critically, irrelevant tokens degrade the model’s ability  
 156 to focus on critical information, thereby harming performance.

#### 158 3.2 EXPLORATION AND EXPLOITATION OF ATTENTION REDUNDANCY PROPERTIES

160 The severe inefficiency of self-attention in long contexts raises a critical question: *given the well-  
 161 observed yet underutilized properties of attention redundancy, how can we construct a unified frame-  
 162 work that fully exploits them to accelerate both prefilling and decoding?* As established in Section 1

162 and visualized in Figure 1, the existence of head-specific redundancy (heterogeneous sparsity patterns across heads and layers) and context-dependent redundancy (dynamic token importance) is  
 163 widely observed in prior works (Jiang et al., 2024; Xu et al., 2025; Lai et al., 2025; Xiao et al.,  
 164 2024). The fundamental challenge, however, lies not in observing these properties but in addressing  
 165 them simultaneously and effectively within a single, training-free acceleration framework.

166 Existing approaches, as categorized earlier, only address a subset of this challenge. *Static sparse*  
 167 *methods* (Beltagy et al., 2020; Zaheer et al., 2020; Xiao et al., 2024) ignore both dynamic context  
 168 and head specificity. *Prefilling-only dynamic attention* methods (Jiang et al., 2024; Lai et al., 2025)  
 169 adapt per head but are constrained to a small set of hand-designed patterns and, critically, fail to  
 170 accelerate decoding. *Decoding-only KV compression* methods (Hao et al., 2025; Li et al., 2024;  
 171 Qin et al., 2025; Wan et al., 2025) reduce memory but cannot accelerate prefilling and often apply  
 172 uniform policies across heads within a layer. *While recent unified methods* (Xiao et al., 2025; Yang  
 173 et al., 2025; Gao et al., 2024; 2025) target both stages, they require continuous training, which  
 174 hinders practical adaptation and deployment.

175 **Design Principles for Efficient Attention.** This fragmented landscape reveals a clear design gap:  
 176 no existing method fulfills all the requirements for a truly efficient and practical long-context atten-  
 177 tion mechanism. We distill these requirements into four key design principles:

1. **Sparse Computation:** Selectively attend to a small subset of critical tokens and discard irrelevant  
 180 ones due to the tokens' redundancy in both prefilling and decoding stages.
2. **Dynamic Adaptation:** The selection of critical tokens must be input-dependent, not predeter-  
 182 mined by fixed sparse patterns.
3. **Head-aware Sparsity Customization:** Sparsity strategies must be tailored to the redundancy  
 184 level of each attention head.
4. **Training-free Deployment:** Eliminates the need for parameter updates, architectural modifica-  
 186 tions, or retraining, enabling immediate plug-and-play deployment without compromising model  
 187 performance.

188 Existing methods fulfill only a subset of these principles, creating a performance-efficiency gap.  
 189 Static methods violate (2) and (3); prefill-only and decoding-only methods violate (1); existing  
 190 unified approaches violate (2) and (4). This motivates our design of a unified attention mechanism  
 191 that satisfies all four principles simultaneously, *i.e.*, sparsity, dynamic, head-aware, and training-free.

## 194 4 TRAINING-FREE CORE-CONTEXT-AWARE ATTENTION

196 In this paper, we propose Training-free Core-context-aware Attention (TFCA-Attention) that sim-  
 197 ultaneously accelerates prefilling, reduces decoding latency, and compresses KV cache by dynami-  
 198 cally selecting core tokens in a head-specific and context-aware manner. Our method is completely  
 199 training-free, which ensures seamless integration into existing LLMs.

200 **Overview of Training-free Core-context-aware Attention.** Our TFCA-Attention includes two  
 201 phases: 1) During the offline sparsity configuration determination phase (Section 4.1), we adopt a  
 202 small calibration dataset to estimate the redundancy level of each head and determine its appropriate  
 203 sparsity configuration (*i.e.*, the number of tokens to preserve). This phase is performed only once  
 204 per model. 2) During inference, we dynamically select active tokens in each head based on the  
 205 determined sparsity configuration (Section 4.2). Theoretically, we prove that the approximation error  
 206 of TFCA-Attention is bounded and controllable (Appendix A). We implement our method using  
 207 Triton (Tillet et al., 2019) to enable efficient parallelization across attention heads (Appendix D.3).  
 208 We illustrate the overview in Figure 2 and present the pseudo-code in Algorithms 1 and 2.

209 To capture both long-range and short-range dependencies, our dynamic token selection operates on  
 210 two complementary components: *a global subset* and *a local subset*. We dynamically select the  
 211 global subset  $\mathbf{K}^G = \mathbf{K}_S$  and  $\mathbf{V}^G = \mathbf{V}_S$  from the entire context based on the head-specific sparsity  
 212 configuration, where  $S \subseteq \{1, \dots, L\}$  is the selected token index set. We detail the computation  
 213 of  $S$  in Section 4.2. This subset is responsible for modeling long-distance dependencies. On the  
 214 other hand, we always preserve the most recent  $w$  tokens as the local subset  $\mathbf{K}^L$  and  $\mathbf{V}^L$  to capture  
 215 fine-grained local context, a critical element highlighted by prior works (Manakul & Gales, 2021;  
 Yang et al., 2021; Xiao et al., 2024) and our analysis. Notably, we ensure no overlap between the

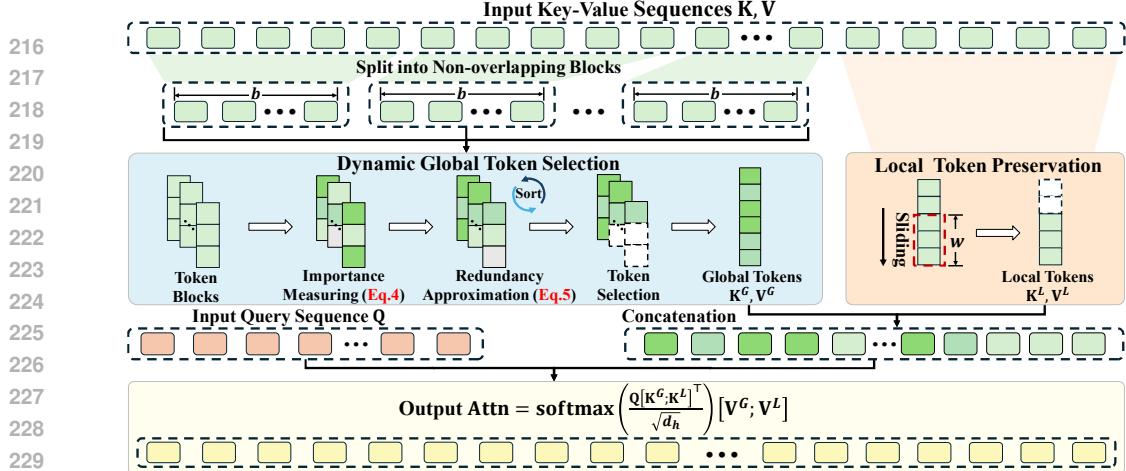


Figure 2: Overview of our TFCA-Attention. We dynamically select a subset of key/value tokens, which combines (1) a global subset  $\mathbf{K}^G, \mathbf{V}^G$ , selected online based on a pre-determined configuration (Sec. 4.2), to model long-distance dependencies; and (2) a local subset  $\mathbf{K}^L, \mathbf{V}^L$ , preserving neighboring tokens to capture fine-grained local context. The concatenation of these complementary subsets is used for the final attention computation in Eq. (2).

global and local subsets to avoid duplicated computation. Given the query matrix  $\mathbf{Q} \in \mathbb{R}^{L \times d_h}$ , our TFCA-Attention computes the attention output as follows:

$$\text{Att} = \text{Softmax} \left( \frac{\mathbf{Q}[\mathbf{K}^G; \mathbf{K}^L]^\top}{\sqrt{d_h}} \right) [\mathbf{V}^G; \mathbf{V}^L]. \quad (2)$$

Since the resulting output  $\text{Att} \in \mathbb{R}^{L \times d_h}$  preserves the original sequence length  $L$ , our method seamlessly integrates into existing LLM architectures without requiring any structural modifications. For clarity and brevity, we describe all operations with respect to a single attention head in the following. We apply the same mechanism independently and in parallel to all heads in all layers.

#### 4.1 OFFLINE HEAD-SPECIFIC SPARSITY DETERMINATION

Motivated by the head-specific redundancy property observed in Figure 1 and prior works (Zaheer et al., 2020; Xiao et al., 2024; Jiang et al., 2024), we introduce a one-time offline calibration to determine a unique sparsity configuration for each attention head. This configuration dictates how many tokens (token budget) the head should preserve during inference based on its inherent redundancy level. To handle a sequence  $\mathbf{X}$  with the arbitrary length  $L$ , we operate on a block-wise basis. We partition the input sequence  $\mathbf{X}$  into  $m = \lfloor L/b \rfloor$  non-overlapping blocks of size  $b$ . Let  $\mathcal{K} = \{1, 2, 4, \dots, b\}$  denote the discrete set of allowable per-block retain counts. For each head, we seek a configuration  $\mathbf{p} = [p_k | k \in \mathcal{K}]$ , where  $\sum_{k \in \mathcal{K}} p_k = 1$ . Each  $p_k \in \mathbf{p}$  represents the proportion of blocks assigned a budget of  $k$  tokens, enabling an adaptive policy: the actual number of tokens preserved per block can vary based on its content, while the overall distribution is governed by  $\mathbf{p}$ .

**Gaussian-Sampling Configuration Candidates Generation.** Given the diverse redundancy levels across heads, we need a set of candidate configurations that smoothly transition from high-efficiency to high-accuracy modes. Creating such a diverse configuration set manually is infeasible, as it would require tuning dozens of hyperparameters across all heads. To solve this, we propose a *log-Gaussian sampling strategy* that generates candidate configurations  $\mathcal{C} = \{\mathbf{p}^1, \mathbf{p}^2, \dots, \mathbf{p}^M\}$  from efficiency-focused to accuracy-focused, controlled by just two intuitive hyperparameters. Specifically, We model the probability of retaining  $k$  tokens using a log-Gaussian distribution centered around  $\mu$ :

$$p_k = \frac{\Phi[\log_2(k)]}{\sum_{k' \in \mathcal{K}} \Phi[\log_2(k')]} \text{, where } \Phi[x] = \exp \left( -\frac{(x - \mu)^2}{2\sigma^2} \right), \quad (3)$$

where  $\mu$  controls the center of the token budget in log-space (a larger  $\mu$  prioritizes performance via more token requirement) and  $\sigma$  regulates diversity in sampled configurations (a larger  $\sigma$  explores extreme token budget). In practice, we generate  $M$  configuration candidates by uniformly sweeping  $\mu$  from 0 to  $\log_2(b)$  with a fixed  $\sigma$ :  $\mathcal{C} = \{\mathbf{p}^1, \mathbf{p}^2, \dots, \mathbf{p}^M\}$  (see Appendix D.4 for a concrete example),

**Algorithm 1** Offline Pattern Determination

270  
271 **Require:** Queries  $\mathbf{Q} \in \mathbb{R}^{L \times d_h}$ , keys  $\mathbf{K} \in \mathbb{R}^{L \times d_h}$ ,  
272 configuration candidates  $\mathcal{C} = \{\mathbf{p}^1, \dots, \mathbf{p}^M\}$   
273 threshold  $\tau \in [0, 1]$ .  
274 1: Compute attention  $\mathbf{A} = \text{softmax}(\mathbf{Q}\mathbf{K}^\top / \sqrt{d_h})$   
275 2: Initialize valid set  $\mathcal{C}_{\text{valid}} \leftarrow \emptyset$   
276 3: **for** each configuration  $\mathbf{p}^i \in \mathcal{C}$  **do**  
277 4: Compute the selected token indexes  $\mathcal{S}_i$  based  
278 on  $\mathbf{p}^i$  as described in Section 4.2  
279 5: Compute aggregated score  $\mathbf{a}_i$  via Eq. (4)  
280 6: **if**  $\mathbf{a}_i \geq \tau$  **then**  $\mathcal{C}_{\text{valid}} \leftarrow \mathcal{C}_{\text{valid}} \cup \{\mathbf{p}_i\}$   
281 7: **end for**  
282 8:  $\mathbf{p}^* = \operatorname{argmin}_{\mathbf{p}^i \in \mathcal{C}_{\text{valid}}} |\mathcal{S}_i|$   
**Ensure:** Configuration  $\mathbf{p}^*$

**Algorithm 2** Inference with Online Key Token Selection

273 **Require:** Input queries  $\mathbf{Q} \in \mathbb{R}^{L \times d_h}$ , keys  $\mathbf{K} \in \mathbb{R}^{L \times d_h}$ ,  
274 values  $\mathbf{V} \in \mathbb{R}^{L \times d_h}$ , block size  $b$ , local window size  
275  $w$ , configuration  $\mathbf{p}^*$  generated by Alg. 1.  
276 1: Compute token scores  $\mathbf{s} = \text{softmax}(\mathbf{Q}_{L,:}\mathbf{K}^\top / \sqrt{d_h})$   
277 2: Split  $\mathbf{K}$  into  $m = \lfloor L/b \rfloor$  blocks (same for  $\mathbf{V}$ )  
278 3: Compute block sparsity  $\mathbf{h} = [h_1, \dots, h_m]$  via Eq. (6)  
279 4: Sort blocks in descending order by the sparsity  $\mathbf{h}$   
280 5: Compute token requirement  $\mathbf{t} = [t_1, t_2, \dots, t_m]$   
281 based on configuration  $\mathbf{p}^*$  via Eq. (7)  
282 6: Generated selected tokens index  $\mathcal{S}$  via Eq. (8)  
283 7:  $\mathbf{Att} = \text{Softmax}(\mathbf{Q}[\mathbf{K}^G; \mathbf{K}^L]^\top / \sqrt{d_h}) [\mathbf{V}^G; \mathbf{V}^L],$   
284  $\mathbf{K}^G = \mathbf{K}_{\mathcal{S}}, \mathbf{V}^G = \mathbf{V}_{\mathcal{S}}, \mathbf{K}^L = \mathbf{K}_{L-w::,:}, \mathbf{V}^L = \mathbf{V}_{L-w::,:}$   
**Ensure:** Attention output  $\mathbf{Att}$

283 where the  $i$ -th configuration  $\mathbf{p}^i$  is computed with  $\mu^i = \log_2 \left( 1 + \frac{(i-1) \cdot (b-1)}{M-1} \right)$ . This ensures smooth  
284 interpolation between efficiency-oriented and accuracy-oriented sparsity patterns.  
285

286 **Cumulative-Score Configuration Determination.** The goal of offline determination is to find the  
287 most efficient (sparsest) configuration from the candidate set  $\mathcal{C}$  that maintains the head’s per-  
288 formance. We measure performance via the aggregated attention score retained by the selected tokens.  
289 For a given candidate  $\mathbf{p}^i$ , we simulate its token selection on a calibration dataset (using our online  
290 mechanism from Sec. 4.2) to obtain the set of indices  $\mathcal{S}_i$ . We then compute the sum of the average  
291 attention scores for each selected token:

$$292 \mathbf{a}_i = \sum_{k \in \mathcal{S}_i} \frac{1}{\|\mathbf{A}_{:,k}\|_0} \sum_{j=1}^{\|\mathbf{A}_{:,k}\|_0} \mathbf{A}_{j,k}, \quad (4)$$

292 where  $\mathbf{A} = \text{softmax}(\mathbf{Q}\mathbf{K}^\top / \sqrt{d_h}) \in \mathbb{R}^{L \times L}$  is computed on a calibration dataset,  $\|\mathbf{A}_{:,k}\|_0$  denotes  
293 the number of non-zero elements in the  $k$ -th column of  $\mathbf{A}$ . We select the configuration  $\mathbf{p}^* =$   
294  $\operatorname{argmin}_{\mathbf{p}^i \in \mathcal{C}_{\text{valid}}} |\mathcal{S}_i|$ , where  $\mathcal{C}_{\text{valid}}$  denotes a configuration set with each  $\mathbf{p}^i$  satisfying  $\mathbf{a}_i \geq \tau$  and  $|\mathcal{S}_i|$   
295 denotes the number of preserved tokens. This selects the configuration that preserves the fewest  
296 tokens while retaining at least a threshold  $\tau$  of the aggregated attention mass. This is a one-time,  
297 model-specific process, resulting in a task-agnostic configuration that generalizes across inputs.  
298

## 302 4.2 ONLINE CORE CONTEXT SELECTION

304 During inference, the offline calibrated configuration  $\mathbf{p}^*$  for each head dictates its overall token  
305 budget. The goal of the online stage is to distribute this budget adaptively across the input sequence  
306 based on the current context, thereby reducing the context-dependent redundancy. For an input  
307 sequence of length  $L$ , we first obtain a global, token-level importance score  $\mathbf{s} \in \mathbb{R}^L$ . Motivated by  
308 the observation that the final token has full visibility over all preceding tokens in the causal self-  
309 attention mechanism, we leverage this inherent property to identify tokens that are most relevant to  
310 the overall context. We compute the importance score by:

$$311 \mathbf{s} = \text{softmax}\left(\frac{\mathbf{Q}_{L,:}\mathbf{K}^\top}{\sqrt{d_h}}\right). \quad (5)$$

312 where  $\mathbf{Q}_{L,:}$  is the query vector of the last token. Compared to methods like MInference and Flex-  
313 Prefill, which use the last  $k$  tokens to score importance (with  $\mathcal{O}(kL)$  complexity), This reduces the  
314 cost to  $\mathcal{O}(L)$  while maintaining performance. This design is not only computationally efficient but  
315 also avoids introducing handcrafted heuristics or arbitrary hyperparameters (e.g., the choice of  $k$ ).  
316 Then, similar to the offline phase, we partition the input sequence into non-overlapping blocks of  
317 size  $b$ . The tokens of the blocks that are not divisible are put into the local subset. For each block  
318  $\mathcal{B}_j$ , we compute a redundancy score  $\mathbf{h}_j$  that quantifies its information density:

$$319 \mathbf{h}_j = (1 - \alpha) \cdot \sum_{i \in \mathcal{B}_j} \mathbf{s}_i + \alpha \cdot \left( 1 - \frac{\sum_{i \in \mathcal{B}_j} \mathbf{s}_i^2}{\left( \sum_{i \in \mathcal{B}_j} \mathbf{s}_i \right)^2} \right), \quad (6)$$

The first term (weighted by  $1 - \alpha$ ) penalizes blocks with low total attention mass. The second term (weighted by  $\alpha$ ) is a variant of the Herfindahl-Hirschman Index (Rhoades, 1993); it decreases as attention becomes more concentrated on a few tokens (indicating higher redundancy within the block). Thus, a lower  $\mathbf{h}_j$  score indicates a more redundant block. The blocks are then sorted by their  $\mathbf{h}_j$  scores, resulting in an ordered list of block indices  $\mathbf{I} = \text{SortIndex}(\mathbf{h})$ .

In online selection, we adaptively assign a token budget  $\mathbf{t}_i$  to each block, dictated by its rank in  $\mathbf{I}$  and the head's pre-defined configuration  $\mathbf{p}^*$ . Recall that  $\mathbf{p}^* = [p_1, p_2, \dots, p_b]$  defines the head's sparsity policy: it specifies that a proportion  $p_k$  of blocks should be assigned a budget of  $k$  tokens. We enforce this policy through a deterministic mapping:

$$\mathbf{t}_i = \Psi[\mathbf{I}_i], \text{ where } \Psi = \left( \underbrace{1, \dots, 1}_{\lfloor m \times p_1 \rfloor}, \underbrace{2, \dots, 2}_{\lfloor m \times p_2 \rfloor}, \dots, \underbrace{b, \dots, b}_{\lfloor m \times p_b \rfloor} \right). \quad (7)$$

This mechanism ensures that the most information-dense blocks (highest rank in  $\mathbf{I}$ ) receive the largest token budgets (later entries in  $\Psi$ ), as dictated by the head's sparsity configuration  $\mathbf{p}^*$ . For each block  $\mathcal{B}_i$ , we select the top- $\mathbf{t}_i$  tokens with the highest importance scores  $\mathbf{s}$ :

$$\mathcal{S}_i = \text{Top}(\mathbf{t}_i; \mathcal{B}_i). \quad (8)$$

The union of all these subsets  $\mathcal{S} = \bigcup_{i=1}^m \mathcal{S}_i$  forms the global subset. This set, concatenated with the local subset of the most recent  $w$  tokens, is used to compute the final attention output via Eq. (2). As analyzed in Appendix E.9, the overhead of our lightweight redundancy metric is marginal compared to the significant computational savings achieved by sparsification.

**Online Token Selection in Decoding Stage.** Our method naturally extends to the decoding stage, where tokens are incrementally generated. Specifically, once the number of new tokens reaches the block size  $b$ , we evaluate the importance of its tokens using the same scoring function in Eq. (5) based on the last query. We then retain only the top- $t$  most informative tokens in the block based on their scores. The value  $t = \lfloor \sum_{k \in \mathcal{K}} k \cdot p_k \rfloor$  corresponds to the average number of tokens preserved per block, derived from the determined configuration  $\mathbf{p}^*$ . This ensures that only the relevant context is kept, enabling efficient and effective long-sequence modeling in the decoding stage.

### 4.3 THEORETICAL GUARANTEES FOR TFCA-ATTENTION

To provide a theoretical foundation for our approach, we analyze the approximation error of TFCA-Attention relative to full attention. We show that the error is naturally bounded by the probability mass assigned to tokens not selected by our method, and is thus controllable via the threshold  $\tau$ .

**Theorem 1 (Error Bound for a Single Query).** Let  $\gamma_i = \sum_{j \notin \mathcal{S}_{\text{total}}} \frac{\exp(\mathbf{A}_{ij})}{Z_i}$  be the total probability mass assigned by the full softmax to tokens not selected by TFCA-Attention, where  $Z_i$  is the normalization constant. Then the approximation error is bounded by

$$|\mathbf{Att}_i - \widetilde{\mathbf{Att}}_i|_1 \leq 2\gamma_i \cdot |\mathbf{V}|_\infty, \quad (9)$$

where  $\mathbf{Att}_i$  and  $\widetilde{\mathbf{Att}}_i$  denote the  $i$ -th rows of the full and approximate attention outputs, respectively,  $|\mathbf{V}|_\infty$  is the maximum absolute value in the value matrix.

Theorem 1 shows that the error scales linearly with  $\gamma_i$ , i.e., the fraction of probability mass on unselected tokens. By configuring the token selection threshold  $\tau$  to keep  $\gamma_i$  small, TFCA-Attention explicitly controls the approximation error, ensuring faithfulness to the full attention mechanism.

## 5 EXPERIMENTS

We evaluate on two state-of-the-art LLMs: 1) LLaMA-3.1-8B-Instruct-128K (AI, 2024), 2) Qwen2.5-7B-Instruct-128K (Yang et al., 2024). For benchmarks, we consider long-context understanding tasks, i.e., LongBench-E (Bai et al., 2023) and RULER (Hsieh et al., 2024), and short-context benchmarks. i.e., MMLU (Hendrycks et al., 2021), GSM-8K (Cobbe et al., 2021a), and HumanEval (Chen et al., 2021). We set the threshold  $\tau$ , the block size  $b$ , the balancing parameter  $\alpha$ , and the window size  $w$  to 0.9, 128, 0.5, and 4096, respectively. All the latency is measured on a single A800 GPU. All latency for full attention are based on the highly optimized FlashAttention-2 (Dao, 2024) kernel. See Appendix D for more details.

Table 2: Comparisons of different models on LongBench-E [Bai et al. \(2023\)](#). We report the attention computation latency in 64K context.

| Methods                                             | S. QA | M. QA | Sum.  | F. S. | Syn.  | Code  | Avg.         | Latency (ms) |
|-----------------------------------------------------|-------|-------|-------|-------|-------|-------|--------------|--------------|
| LLaMA3.1-8B-Instruct-128K                           | 51.63 | 53.23 | 30.78 | 68.67 | 54.29 | 60.52 | 53.19        | 316.14       |
| • MInference ( <a href="#">Jiang et al., 2024</a> ) | 51.70 | 52.72 | 30.76 | 68.58 | 53.50 | 61.12 | 53.06        | 324.84       |
| • FlexPrefill ( <a href="#">Lai et al., 2025</a> )  | 50.35 | 52.85 | 30.71 | 68.41 | 54.30 | 62.76 | 53.23        | 280.11       |
| • XAttention ( <a href="#">Xu et al., 2025</a> )    | 49.96 | 51.98 | 31.22 | 68.07 | 48.50 | 55.75 | 50.91        | 133.85       |
| • TFCA-Attention (Ours)                             | 52.28 | 52.83 | 30.84 | 68.40 | 54.86 | 61.82 | <b>53.51</b> | 120.96       |
| Qwen2.5-7B-Instruct-128K                            | 48.75 | 52.24 | 27.81 | 65.00 | 52.00 | 61.14 | 51.16        | 268.55       |
| • MInference ( <a href="#">Jiang et al., 2024</a> ) | 48.80 | 52.37 | 27.64 | 64.67 | 51.50 | 62.08 | 51.18        | 292.33       |
| • FlexPrefill ( <a href="#">Lai et al., 2025</a> )  | 49.08 | 52.16 | 27.86 | 65.18 | 52.00 | 62.20 | 51.41        | 244.37       |
| • XAttention ( <a href="#">Xu et al., 2025</a> )    | 48.50 | 50.08 | 27.48 | 66.40 | 50.50 | 60.98 | 50.66        | 119.87       |
| • TFCA-Attention (Ours)                             | 48.50 | 52.91 | 27.74 | 64.92 | 52.25 | 62.74 | <b>51.51</b> | 105.93       |

Table 3: Comparisons of different models on RULER. We report the latency in 128K context.

| Methods                                             | 4K    | 8K    | 16K   | 32K   | 64K   | 128K  | Avg.         | Latency (s) |
|-----------------------------------------------------|-------|-------|-------|-------|-------|-------|--------------|-------------|
| LLaMA3.1-8B-Instruct-128K                           | 96.74 | 94.03 | 92.02 | 84.17 | 81.32 | 76.89 | 87.52        | 1.28        |
| • MInference ( <a href="#">Jiang et al., 2024</a> ) | 96.54 | 94.06 | 91.37 | 85.79 | 83.03 | 54.13 | 84.15        | 0.84        |
| • FlexPrefill ( <a href="#">Lai et al., 2025</a> )  | 95.99 | 93.67 | 92.73 | 88.14 | 81.14 | 74.67 | 87.72        | 1.02        |
| • XAttention ( <a href="#">Xu et al., 2025</a> )    | 96.15 | 93.95 | 93.71 | 90.90 | 83.35 | 72.57 | 88.44        | 0.50        |
| • TFCA-Attention (Ours)                             | 96.31 | 95.38 | 93.92 | 86.38 | 82.89 | 77.46 | <b>88.72</b> | 0.45        |
| Qwen2.5-7B-Instruct-128K                            | 96.00 | 94.85 | 91.77 | 89.85 | 70.38 | 52.92 | 82.63        | 1.10        |
| • MInference ( <a href="#">Jiang et al., 2024</a> ) | 96.08 | 94.92 | 91.69 | 89.92 | 70.46 | 51.62 | 82.45        | 0.77        |
| • FlexPrefill ( <a href="#">Lai et al., 2025</a> )  | 95.62 | 94.31 | 92.00 | 88.23 | 70.23 | 52.15 | 82.09        | 0.89        |
| • XAttention ( <a href="#">Xu et al., 2025</a> )    | 95.45 | 92.91 | 92.04 | 88.84 | 68.84 | 55.36 | 82.24        | 0.44        |
| • TFCA-Attention (Ours)                             | 96.00 | 94.77 | 91.92 | 90.08 | 69.85 | 52.31 | <b>82.49</b> | 0.40        |

## 5.1 COMPARISONS WITH STATE-OF-THE-ART METHODS

As a dynamic sparse attention method, TFCA-Attention is primarily compared with state-of-the-art sparse attention methods: MInference ([Jiang et al., 2024](#)), FlexPrefill ([Lai et al., 2025](#)), and XAttention ([Xu et al., 2025](#)). This constitutes a fair comparison within the same category of techniques. To address the broader impact on end-to-end inference, we further conduct experiments by combining the strongest prefilling-stage baselines with KV cache compression methods (see Table 5). We summarize differences from existing methods in Table 1.

**Comparisons on LongBench-E.** In Table 2, TFCA-Attention achieves the highest average score among sparse attention methods. For LLaMA3.1-8B, it attains a  $2.6\times$  speedup (120.96ms vs. 316.14ms) at 64K context while outperforming XAttention by 2.6 average score. On Qwen2.5-7B, it delivers the best performance with the fastest latency ( $2.5\times$  speedup). These results validate our method’s effectiveness and architectural adaptability without compromising accuracy.

**Comparisons on RULER.** In Table 3, TFCA-Attention achieves superior efficiency and accuracy in long context understanding across different context lengths. On LLaMA3.1-8B-Instruct and Qwen2.5-7B-Instruct, TFCA-Attention attains the highest average score with up to  $2.8\times$  speedup compared to vanilla self-attention (0.45s vs 1.28s), outperforming the strongest counterpart method XAttention despite faster computation. These results confirm that our dynamic sparsity mechanism effectively maintains performance while accelerating computation across varying sequence lengths.

**Comparisons on Short-context Tasks.** In Table 4, our TFCA-Attention achieves competitive results on LLaMA3.1-8B-Instruct-128K and outperforms all baselines on Qwen2.5-7B-Instruct-128K,

Table 4: Comparisons on short-context tasks, covering common sense, math, and code.

(a) Comparisons on LLaMA3.1-8B-Instruct.

| Methods                 | MMLU         | GSM-8K       | HumanEval    |
|-------------------------|--------------|--------------|--------------|
| LLaMA3.1-8B-Instruct    | <b>69.38</b> | 83.85        | <b>68.29</b> |
| • MInference            | 69.14        | 84.08        | 67.30        |
| • FlexPrefill           | 69.16        | 84.15        | 67.07        |
| • XAttention            | 69.21        | 84.15        | 67.39        |
| • TFCA-Attention (Ours) | 69.21        | <b>84.23</b> | 67.46        |

(b) Comparisons on Qwen2.5-7B-Instruct.

| Methods                 | MMLU         | GSM-8K       | HumanEval    |
|-------------------------|--------------|--------------|--------------|
| Qwen2.5-7B-Instruct     | 74.22        | 79.68        | <b>81.71</b> |
| • MInference            | 74.14        | 80.29        | 79.88        |
| • FlexPrefill           | 74.23        | 80.36        | <b>81.10</b> |
| • XAttention            | 74.20        | 79.30        | 80.49        |
| • TFCA-Attention (Ours) | <b>74.26</b> | <b>80.44</b> | 81.10        |

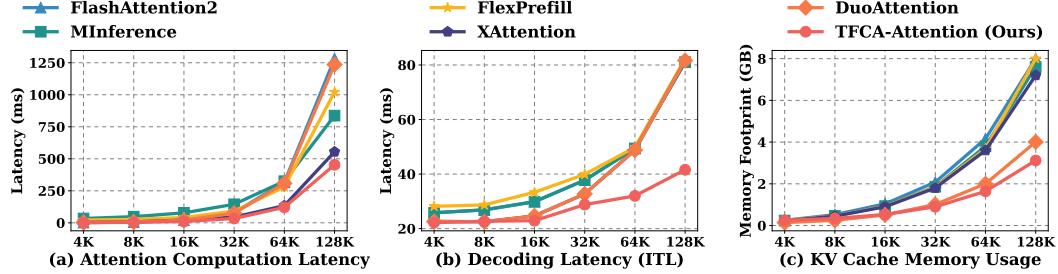


Figure 3: Comparisons in terms of computational and storage overhead on LLaMA3.1-8B-Instruct. Attention computation latency is the time to compute a single attention layer. “ITL” (inter token latency) is the time between generating consecutive tokens (except for the first token) in decoding.

Table 5: Performance comparisons across prefilling and decoding on LongBench-E.

| Methods               | S. QA | M. QA | Sum.  | F.S.  | Syn.  | Code  | Avg.         |
|-----------------------|-------|-------|-------|-------|-------|-------|--------------|
| MIInference + SnapKV  | 49.66 | 53.16 | 29.90 | 67.60 | 51.72 | 58.25 | 51.72        |
| FlexPrefill + CAKE    | 50.27 | 52.87 | 30.77 | 66.96 | 52.25 | 60.24 | 52.23        |
| DuoAttention          | 51.05 | 52.70 | 29.70 | 67.27 | 52.25 | 59.86 | 52.14        |
| TFCA-Attention (Ours) | 50.71 | 53.11 | 30.24 | 67.93 | 52.59 | 60.05 | <b>52.44</b> |

demonstrating robust cross-model generalization. Notably, it preserves the capability of the original model, validating that our method effectively retains critical information without fine-tuning.

**Comparisons on Computational Efficiency.** As shown in Figure 3, TFCA-Attention achieves a **2.8**× speedup in prefilling latency and a **2.1**× faster decoding speed over vanilla self-attention at 128K context length on LLaMA3.1-8B-Instruct. By dynamically selecting tokens, it also reduces KV cache memory by **61%** (3.12GB vs. 8.00GB). In contrast, methods like MIInference only accelerate prefilling, leaving decoding latency and memory unchanged. Our analysis of the official DuoAttention implementation reveals that it does not accelerate the prefill stage, relying instead on a standard FlashAttention-2 kernel during this stage. Its optimization is primarily confined to KV cache compression and decoding. This demonstrates TFCA-Attention’s unique advantage in enabling end-to-end efficiency.

**Performance Comparison across Prefilling and Decoding.** We further conduct experiments on LongBench-E to validate the effectiveness of our unified framework across *both prefilling and decoding stages*. We integrate the strongest methods from prefilling acceleration and KV cache compression to enable comprehensive benchmarking. The results in Table 5 demonstrate that our approach achieves superior performance across most tasks. This highlights that our method establishes a more efficient end-to-end framework for long-context processing.

## 5.2 ABLATIONS

We perform ablation studies on Qwen2.5-7B-Instruct-128K and report the average score on LongBench-E and decoding latency in Figure 4 (see more results in Appendix E).

**Ablations on Block Size  $b$ .** As shown in Figure 4a, the model achieves the highest average score of 51.51 with a block size of 128. Smaller block sizes may fail to capture sufficient contextual redundancy, while larger sizes risk over-compressing critical information.

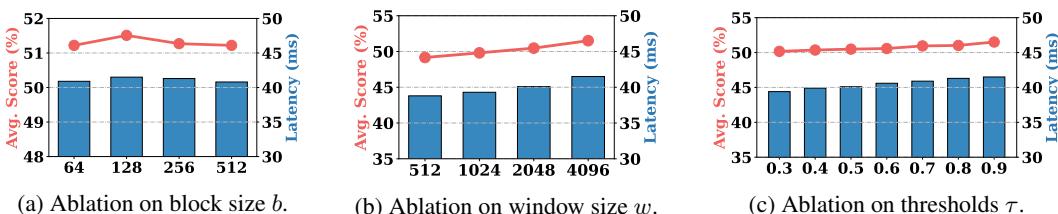


Figure 4: Ablations on hyper-parameters. We report average score on LongBench-E and latency.

486     **Ablations on Local Window Size  $w$ .** As shown in Figure 4b, performance peaks at  $w = 4096$   
487     (avg score 51.51), with latency increasing only marginally from 38.8ms to 41.5ms, indicating that  
488     preserving richer local context yields significant accuracy gains with minimal computational cost.  
489

490     **Ablations on Threshold  $\tau$ .** In Figure 4c, increasing  $\tau$  from 0.3 to 0.9 improves the average score,  
491     peaking at 51.51 for  $\tau=0.9$ , due to stricter retention of core context. Higher thresholds enhance  
492     context preservation by retaining more important tokens while incurring marginal latency increases.  
493

## 494     6 CONCLUSION

495     In this work, we propose TFCA-Attention, a training-free dynamic attention mechanism that miti-  
496     gates the critical bottleneck of quadratic complexity in long-context LLMs in a one-stone-three-birds  
497     manner: accelerating prefilling, reducing decoding latency, and compressing KV cache. By adapting  
498     to both head-specific and context-dependent redundancy, TFCA-Attention achieves efficient compu-  
499     tation without sacrificing accuracy. Extensive experiments demonstrate that our approach provides  
500     significant efficiency gains (2.8 $\times$  decoding speedup, 61% KV cache reduction) while maintaining  
501     full-attention accuracy. The plug-and-play nature of TFCA-Attention makes it a practical solution  
502     for deploying LLMs in long-context scenarios without retraining or architectural changes.  
503

504  
505  
506  
507  
508  
509  
510  
511  
512  
513  
514  
515  
516  
517  
518  
519  
520  
521  
522  
523  
524  
525  
526  
527  
528  
529  
530  
531  
532  
533  
534  
535  
536  
537  
538  
539

540 REPRODUCIBILITY STATEMENT  
541542 To facilitate the reproducibility of our work, we have made the following efforts:  
543

- 544 • **Datasets:** All datasets used in our experiments are publicly available benchmarks: LongBench-  
545 E (Bai et al., 2023), RULER (Hsieh et al., 2024), MMLU (Hendrycks et al., 2021), GSM-8K  
546 (Cobbe et al., 2021b), and HumanEval (Chen et al., 2021). We provide detailed descriptions of  
547 each dataset, including preprocessing steps and evaluation metrics, in Appendix D.2.
- 548 • **Implementation Details:** We provide a complete description of our method in Section 4, in-  
549 cluding pseudo-code in Algorithms 1 and 2. Additional implementation details, such as hyper-  
550 parameter settings, parallelization strategies, and Triton-based optimizations, are elaborated in  
551 Appendix D.3 and D.4. Our code will be released upon acceptance.
- 552 • **Computational Resources:** All experiments were conducted on a single node with 8 NVIDIA  
553 A800 GPUs (80GB memory each). We report latency and memory usage for both prefill and  
554 decoding stages in Section 5, and provide a detailed latency breakdown in Appendix E.9.
- 555 • **Theoretical Claims:** We include a full theoretical analysis of the approximation error bound of  
556 TFCA-Attention in Appendix A, with proofs clearly stated.

557 We believe these efforts will enable researchers to reproduce our results and build upon our work.  
558560 REFERENCES  
561

562 Meta AI. Introducing meta llama 3: The most capable ppenly available llm to date. <https://ai.meta.com/blog/meta-llama-3/>, 2024. Accessed: 2025-01-20.

563

564 Yushi Bai, Xin Lv, Jiajie Zhang, Hongchang Lyu, Jiankai Tang, Zhidian Huang, Zhengxiao Du,  
565 Xiao Liu, Aohan Zeng, Lei Hou, Yuxiao Dong, Jie Tang, and Juanzi Li. Longbench: A bilingual,  
566 multitask benchmark for long context understanding. *arXiv preprint arXiv:2308.14508*, 2023.

567 Payman Behnam, Yaosheng Fu, Ritchie Zhao, Po-An Tsai, Zhiding Yu, and Alexey Tumanov. Rock-  
568 etkv: Accelerating long-context llm inference via two-stage kv cache compression. In *Interna-  
569 tional Conference on Machine Learning*, 2025.

570 Iz Beltagy, Matthew E Peters, and Arman Cohan. Longformer: The long-document transformer.  
571 *arXiv preprint arXiv:2004.05150*, 2020.

572

573 Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,  
574 Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are  
575 few-shot learners. *Advances in Neural Information Processing Systems*, 33:1877–1901, 2020a.

576 Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhari-  
577 wal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal,  
578 Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M.  
579 Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin,  
580 Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford,  
581 Ilya Sutskever, and Dario Amodei. Language models are few-shot learners. In *Advances in  
582 Neural Information Processing Systems*, 2020b.

583 Ziqiang Cao, Wenjie Li, Sujian Li, and Furu Wei. Improving multi-document summarization via  
584 text classification. In *Proceedings of the AAAI conference on artificial intelligence*, 2017.

585

586 Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde De Oliveira Pinto, Jared  
587 Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large  
588 language models trained on code. *arXiv preprint arXiv:2107.03374*, 2021.

589

590 Shouyuan Chen, Sherman Wong, Liangjian Chen, and Yuandong Tian. Extending context window  
591 of large language models via positional interpolation. *arXiv preprint arXiv:2306.15595*, 2023.

592

593 Yaofo Chen, Zeng You, Shuhai Zhang, Haokun Li, Yirui Li, Yaowei Wang, and Mingkui Tan. Core  
context aware transformers for long context language modeling. In *International Conference on  
Machine Learning*, 2025.

594 Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,  
 595 Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John  
 596 Schulman. Training verifiers to solve math word problems. *arXiv preprint arXiv:2110.14168*,  
 597 2021a.

598 Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,  
 599 Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to  
 600 solve math word problems. *arXiv preprint arXiv:2110.14168*, 2021b.

602 Tri Dao. Flashattention-2: Faster attention with better parallelism and work partitioning. In *Inter-  
 603 national Conference on Learning Representations*, 2024.

604 Yao Fu, Rameswar Panda, Xinyao Niu, Xiang Yue, Hannaneh Hajishirzi, Yoon Kim, and Hao Peng.  
 605 Data engineering for scaling language models to 128k context. *arXiv preprint arXiv:2402.10171*,  
 606 2024.

608 Yizhao Gao, Zhichen Zeng, Dayou Du, Shijie Cao, Peiyuan Zhou, Jiaxing Qi, Junjie Lai, Hayden  
 609 Kwok-Hay So, Ting Cao, Fan Yang, et al. Seerattention: Learning intrinsic sparse attention in  
 610 your llms. *arXiv preprint arXiv:2410.13276*, 2024.

611 Yizhao Gao, Shuming Guo, Shijie Cao, Yuqing Xia, Yu Cheng, Lei Wang, Lingxiao Ma, Yutao Sun,  
 612 Tianzhu Ye, Li Dong, et al. Seerattention-r: Sparse attention adaptation for long reasoning. *arXiv  
 613 preprint arXiv:2506.08889*, 2025.

614 Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,  
 615 Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms  
 616 via reinforcement learning. *arXiv preprint arXiv:2501.12948*, 2025.

618 Jitai Hao, Yuke Zhu, Tian Wang, Jun Yu, Xin Xin, Bo Zheng, Zhaochun Ren, and Sheng Guo.  
 619 Omnikv: Dynamic context selection for efficient long-context llms. In *International Conference  
 620 on Learning Representations*, 2025.

621 Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and Jacob  
 622 Steinhardt. Measuring massive multitask language understanding. In *International Conference  
 623 on Learning Representations*, 2021.

625 Cheng-Ping Hsieh, Simeng Sun, Samuel Kriman, Shantanu Acharya, Dima Rekesh, Fei Jia, Yang  
 626 Zhang, and Boris Ginsburg. Ruler: What's the real context size of your long-context language  
 627 models? *arXiv preprint arXiv:2404.06654*, 2024.

628 Huiqiang Jiang, YUCHENG LI, Chengruidong Zhang, Qianhui Wu, Xufang Luo, Surin Ahn, Zhen-  
 629hua Han, Amir H. Abdi, Dongsheng Li, Chin-Yew Lin, Yuqing Yang, and Lili Qiu. MIference  
 630 1.0: Accelerating pre-filling for long-context LLMs via dynamic sparse attention. In *Advances in  
 631 Neural Information Processing Systems*, 2024.

632 Xunhao Lai, Jianqiao Lu, Yao Luo, Yiyuan Ma, and Xun Zhou. Flexprefill: A context-aware sparse  
 633 attention mechanism for efficient long-sequence inference. In *International Conference on Learn-  
 634 ing Representations*, 2025.

636 Yuhong Li, Yingbing Huang, Bowen Yang, Bharat Venkitesh, Acyr Locatelli, Hanchen Ye, Tianle  
 637 Cai, Patrick Lewis, and Deming Chen. Snapkv: Llm knows what you are looking for before  
 638 generation. *Advances in Neural Information Processing Systems*, 37:22947–22970, 2024.

639 Nelson F Liu, Kevin Lin, John Hewitt, Ashwin Paranjape, Michele Bevilacqua, Fabio Petroni, and  
 640 Percy Liang. Lost in the middle: How language models use long contexts. *Transactions of the  
 641 Association for Computational Linguistics*, 12:157–173, 2024.

642 Enzhe Lu, Zhejun Jiang, Jingyuan Liu, Yulun Du, Tao Jiang, Chao Hong, Shaowei Liu, Weiran He,  
 643 Enming Yuan, Yuzhi Wang, et al. Moba: Mixture of block attention for long-context llms. *arXiv  
 644 preprint arXiv:2502.13189*, 2025.

646 Potsawee Manakul and Mark J. F. Gales. Long-span summarization via local attention and content  
 647 selection. In Chengqing Zong, Fei Xia, Wenjie Li, and Roberto Navigli (eds.), *Association for  
 Computational Linguistics*, pp. 6026–6041, 2021.

648 OpenAI. Openai o1 system card, 2024.  
 649

650 Ramakanth Pasunuru, Asli Celikyilmaz, Michel Galley, Chenyan Xiong, Yizhe Zhang, Mohit  
 651 Bansal, and Jianfeng Gao. Data augmentation for abstractive query-focused multi-document  
 652 summarization. In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 35,  
 653 pp. 13666–13674, 2021.

654 Bowen Peng and Jeffrey Quesnelle. Ntk-aware scaled rope allows llama models to have extended  
 655 (8k+) context size without any fine-tuning and minimal perplexity degradation, 2023.  
 656

657 Bowen Peng, Jeffrey Quesnelle, Honglu Fan, and Enrico Shippole. YaRN: Efficient context window  
 658 extension of large language models. In *International Conference on Learning Representations*,  
 659 2024.

660 Ziran Qin, Yuchen Cao, Mingbao Lin, Wen Hu, Shixuan Fan, Ke Cheng, Weiyao Lin, and Jianguo  
 661 Li. Cake: Cascading and adaptive kv cache eviction with layer preferences. In *International*  
 662 *Conference on Learning Representations*, 2025.

663 Stephen A Rhoades. The herfindahl-hirschman index. *Fed. Res. Bull.*, 79:188, 1993.

664 Karan Singhal, Tao Tu, Juraj Gottweis, Rory Sayres, Ellery Wulczyn, Mohamed Amin, Le Hou,  
 665 Kevin Clark, Stephen R Pfahl, Heather Cole-Lewis, et al. Toward expert-level medical question  
 666 answering with large language models. *Nature Medicine*, pp. 1–8, 2025.

667

668 Jianlin Su, Murtadha Ahmed, Yu Lu, Shengfeng Pan, Wen Bo, and Yunfeng Liu. Roformer: En-  
 669 hanced transformer with rotary position embedding. *Neurocomputing*, 568:127063, 2024.

670

671 Philippe Tillet, Hsiang-Tsung Kung, and David D. Cox. Triton: an intermediate language and  
 672 compiler for tiled neural network computations. In *Proceedings of the International Workshop on*  
 673 *Machine Learning and Programming Languages*, pp. 10–19, 2019.

674

675 Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée  
 676 Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and  
 677 efficient foundation language models. *arXiv preprint arXiv:2302.13971*, 2023a.

678

679 Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-  
 680 lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Dan Bikel, Lukas Blecher,  
 681 Cristian Canton-Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, Jude Fernandes, Jeremy  
 682 Fu, Wenyin Fu, Brian Fuller, Cynthia Gao, Vedanuj Goswami, Naman Goyal, Anthony Hartshorn,  
 683 Saghar Hosseini, Rui Hou, Hakan Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa, Isabel  
 684 Kloumann, Artem Korenev, Punit Singh Koura, Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee,  
 685 Diana Liskovich, Yinghai Lu, Yuning Mao, Xavier Martinet, Todor Mihaylov, Pushkar Mishra,  
 686 Igor Molybog, Yixin Nie, Andrew Poulton, Jeremy Reizenstein, Rashi Rungta, Kalyan Saladi,  
 687 Alan Schelten, Ruan Silva, Eric Michael Smith, Ranjan Subramanian, Xiaoqing Ellen Tan, Binh  
 688 Tang, Ross Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu, Zheng Yan, Iliyan Zarov, Yuchen  
 689 Zhang, Angela Fan, Melanie Kambadur, Sharan Narang, Aurélien Rodriguez, Robert Stojnic,  
 690 Sergey Edunov, and Thomas Scialom. Llama 2: Open foundation and fine-tuned chat models.  
 691 *arXiv preprint arXiv:2307.09288*, 2023b.

692

693 Szymon Tworkowski, Konrad Staniszewski, Mikolaj Pasek, Yuhuai Wu, Henryk Michalewski, and  
 694 Piotr Milos. Focused transformer: Contrastive training for context scaling. In Alice Oh, Tristan  
 695 Naumann, Amir Globerson, Kate Saenko, Moritz Hardt, and Sergey Levine (eds.), *Advances in*  
 696 *Neural Information Processing Systems*, 2023.

697

698 Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,  
 699 Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In *Advances in Neural Infor-*  
 700 *mation Processing Systems*, pp. 5998–6008, 2017.

701

702 Zhongwei Wan, Xinjian Wu, Yu Zhang, Yi Xin, Chaofan Tao, Zhihong Zhu, Xin Wang, Siqi Luo,  
 703 Jing Xiong, and Mi Zhang. D2o: Dynamic discriminative operations for efficient generative  
 704 inference of large language models. In *International Conference on Learning Representations*,  
 705 2025.

702 Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny  
 703 Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. In *Advances*  
 704 *in Neural Information Processing Systems*, pp. 24824–24837, 2022.

705  
 706 Guangxuan Xiao, Yuandong Tian, Beidi Chen, Song Han, and Mike Lewis. Efficient streaming  
 707 language models with attention sinks. In *International Conference on Learning Representations*,  
 708 2024.

709 Guangxuan Xiao, Jiaming Tang, Jingwei Zuo, Shang Yang, Haotian Tang, Yao Fu, Song Han, et al.  
 710 Duoattention: Efficient long-context llm inference with retrieval and streaming heads. In *Inter-  
 711 national Conference on Learning Representations*, 2025.

712  
 713 Wenhao Xiong, Jingyu Liu, Igor Molybog, Hejia Zhang, Prajjwal Bhargava, Rui Hou, Louis Martin,  
 714 Rashi Rungta, Karthik Abinav Sankararaman, Barlas Oguz, Madian Khabsa, Han Fang, Yashar  
 715 Mehdad, Sharan Narang, Kshitiz Malik, Angela Fan, Shruti Bhosale, Sergey Edunov, Mike Lewis,  
 716 Sinong Wang, and Hao Ma. Effective long-context scaling of foundation models. In *Proceedings  
 717 of the Conference of the North American Chapter of the Association for Computational Linguis-  
 718 tics*, pp. 4643–4663, 2024.

719 Peng Xu, Wei Ping, Xianchao Wu, Lawrence McAfee, Chen Zhu, Zihan Liu, Sandeep Subramanian,  
 720 Evelina Bakhturina, Mohammad Shoeybi, and Bryan Catanzaro. Retrieval meets long context  
 721 large language models. In *International Conference on Learning Representations*, 2024.

722 Ruyi Xu, Guangxuan Xiao, Haofeng Huang, Junxian Guo, and Song Han. Xattention: Block sparse  
 723 attention with antidiagonal scoring. *arXiv preprint arXiv:2503.16428*, 2025.

724 An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li,  
 725 Dayiheng Liu, Fei Huang, Haoran Wei, et al. Qwen2. 5 technical report. *arXiv preprint  
 726 arXiv:2412.15115*, 2024.

727  
 728 Baosong Yang, Longyue Wang, Derek F Wong, Shuming Shi, and Zhaopeng Tu. Context-aware  
 729 self-attention networks for natural language processing. *Neurocomputing*, 458:157–169, 2021.

730  
 731 Shang Yang, Junxian Guo, Haotian Tang, Qinghao Hu, Guangxuan Xiao, Jiaming Tang, Yujun Lin,  
 732 Zhijian Liu, Yao Lu, and Song Han. Lserve: Efficient long-sequence llm serving with unified  
 733 sparse attention. In *Eighth Conference on Machine Learning and Systems*, 2025.

734 Jingyang Yuan, Huazuo Gao, Damai Dai, Junyu Luo, Liang Zhao, Zhengyan Zhang, Zhenda Xie,  
 735 Yuxing Wei, Lean Wang, Zhiping Xiao, Yuqing Wang, Chong Ruan, Ming Zhang, Wenfeng  
 736 Liang, and Wangding Zeng. Native sparse attention: Hardware-aligned and natively trainable  
 737 sparse attention. In *Association for Computational Linguistics*, pp. 23078–23097, Vienna, Aus-  
 738 tria, July 2025. Association for Computational Linguistics.

739 Manzil Zaheer, Guru Guruganesh, Kumar Avinava Dubey, Joshua Ainslie, Chris Alberti, Santiago  
 740 Ontanon, Philip Pham, Anirudh Ravula, Qifan Wang, Li Yang, et al. Big bird: Transformers for  
 741 longer sequences. *Advances in Neural Information Processing Systems*, 33:17283–17297, 2020.

742  
 743 Shuhai Zhang, Zeng You, Yaofu Chen, Zhiqian Wen, Qianyue Wang, Zhijie Qiu, Yuanqing Li, and  
 744 Mingkui Tan. Curse of high dimensionality issue in transformer for long context modeling. In  
 745 *International Conference on Machine Learning*, 2025.

746  
 747  
 748  
 749  
 750  
 751  
 752  
 753  
 754  
 755

756 **APPENDIX**  
757758 **CONTENTS**  
759

|     |                                                                              |           |
|-----|------------------------------------------------------------------------------|-----------|
| 761 | <b>A Theoretical Analysis of Approximation Error</b>                         | <b>16</b> |
| 762 |                                                                              |           |
| 763 | <b>B More Visualizations of Attention Score Distributions</b>                | <b>18</b> |
| 764 |                                                                              |           |
| 765 | <b>C More Discussions</b>                                                    | <b>20</b> |
| 766 | C.1 More Discussions on Differences from Existing Methods . . . . .          | 20        |
| 767 |                                                                              |           |
| 768 | C.2 More Discussions on Scalability . . . . .                                | 20        |
| 769 |                                                                              |           |
| 770 | <b>D More Implementation Details</b>                                         | <b>21</b> |
| 771 | D.1 More Details on Models . . . . .                                         | 21        |
| 772 | D.2 More Details on Dataset and Evaluation Metrics . . . . .                 | 21        |
| 773 | D.3 More Details on Parallel Implementation . . . . .                        | 22        |
| 774 | D.4 More Experimental Protocols . . . . .                                    | 23        |
| 775 |                                                                              |           |
| 776 |                                                                              |           |
| 777 | <b>E More Experimental Results</b>                                           | <b>23</b> |
| 778 | E.1 Comparisons on Reasoning Benchmark . . . . .                             | 23        |
| 779 | E.2 Comparisons on Multi-turn Conversation Benchmark . . . . .               | 24        |
| 780 | E.3 Comparisons with Training-based Methods . . . . .                        | 24        |
| 781 | E.4 Effectiveness of Local-context Redundancy Metric . . . . .               | 24        |
| 782 | E.5 Ablation Study on Compression Rate . . . . .                             | 25        |
| 783 | E.6 Ablation Study on Calibration Dataset . . . . .                          | 25        |
| 784 | E.7 Ablation Study on Balancing Parameter $\alpha$ . . . . .                 | 25        |
| 785 | E.8 Ablation Study on Concentration Index in the Redundancy Metric . . . . . | 26        |
| 786 | E.9 Computational Efficiency Analysis . . . . .                              | 26        |
| 787 |                                                                              |           |
| 788 |                                                                              |           |
| 789 |                                                                              |           |
| 790 |                                                                              |           |
| 791 | <b>F LLM Usage Statement</b>                                                 | <b>26</b> |
| 792 |                                                                              |           |
| 793 |                                                                              |           |
| 794 |                                                                              |           |
| 795 |                                                                              |           |
| 796 |                                                                              |           |
| 797 |                                                                              |           |
| 798 |                                                                              |           |
| 799 |                                                                              |           |
| 800 |                                                                              |           |
| 801 |                                                                              |           |
| 802 |                                                                              |           |
| 803 |                                                                              |           |
| 804 |                                                                              |           |
| 805 |                                                                              |           |
| 806 |                                                                              |           |
| 807 |                                                                              |           |
| 808 |                                                                              |           |
| 809 |                                                                              |           |

## 810 A THEORETICAL ANALYSIS OF APPROXIMATION ERROR 811

812 A central question for any sparse attention mechanism is its capacity to accurately approximate the  
813 full attention output. In this section, we present a theoretical analysis that bounds the approximation  
814 error of TFCA-Attention. We show that the error is bounded and can be explicitly controlled via the  
815 method's hyperparameters, particularly the threshold  $\tau$  used in the offline configuration process.

816 For a single attention head, let the full attention output be  $\text{Att} = \text{softmax}(\mathbf{A})\mathbf{V}$ , where  $\mathbf{A} =$   
817  $\frac{\mathbf{Q}\mathbf{K}^\top}{\sqrt{d_h}} \in \mathbb{R}^{L \times L}$  is the pre-softmax score matrix. TFCA-Attention computes an approximation  $\widetilde{\text{Att}} =$   
818  $\text{softmax}(\widetilde{\mathbf{A}})\widetilde{\mathbf{V}}$ , where  $\widetilde{\mathbf{A}} = \frac{\mathbf{Q}\widetilde{\mathbf{K}}^\top}{\sqrt{d_h}}$ , and  $\widetilde{\mathbf{K}}, \widetilde{\mathbf{V}} \in \mathbb{R}^{L \times d_h}$  contain only the selected global and local  
819 tokens (with other rows zeroed). The token selection is determined by the index set  $\mathcal{S}_{\text{total}} = \mathcal{S} \cup \mathcal{S}_{\text{local}}$ .  
820 We measure the error for a single query vector  $\mathbf{q}_i$  (the  $i$ -th row of  $\mathbf{Q}$ ) in terms of the  $\ell_1$  norm between  
821 the full attention output vector and our approximation.  
822

823 **Theorem 1 (Error Bound for a Single Query)** *Let  $\gamma_i = \sum_{j \notin \mathcal{S}_{\text{total}}} \frac{\exp(\mathbf{A}_{ij})}{Z_i}$  be the total proba-*  
824 *bility mass assigned by the full softmax to tokens not selected by TFCA-Attention, where  $Z_i$  is the*  
825 *normalization constant. Then the approximation error is bounded by*

$$826 |\text{Att}_i - \widetilde{\text{Att}}_i|_1 \leq 2\gamma_i \cdot |\mathbf{V}|_\infty, \quad (10)$$

827 where  $\text{Att}_i$  and  $\widetilde{\text{Att}}_i$  denote the  $i$ -th rows of the full and approximate attention outputs, respectively,  
828  $|\mathbf{V}|_\infty$  is the maximum absolute value in the value matrix.  
829

830 *Proof.* Let  $\mathbf{s}_i = \text{softmax}(\mathbf{A}_i) = \frac{\exp(\mathbf{A}_{ij})}{Z_i}$  be the full attention probability distribution for query  $i$ .  
831 Let  $\widetilde{\mathbf{s}}_i = \text{softmax}(\widetilde{\mathbf{A}}_i)$  be the approximate distribution. Note that  $\widetilde{\mathbf{s}}_i$  is defined only over the selected  
832 tokens; for mathematical convenience, we consider it a distribution over all  $L$  tokens by setting  
833  $(\widetilde{\mathbf{s}}_i)_j = 0$  for  $j \notin \mathcal{S}_{\text{total}}$ . Then, the attention outputs are:  
834

$$835 \text{Att}_i = \mathbf{s}_i \mathbf{V}, \quad \widetilde{\text{Att}}_i = \widetilde{\mathbf{s}}_i \widetilde{\mathbf{V}}$$

836 Note that  $\widetilde{\mathbf{V}}$  is  $\mathbf{V}$  with rows zeroed out for unselected tokens, so  $\widetilde{\mathbf{V}} = \mathbf{M} \odot \mathbf{V}$ , where  $\mathbf{M}$  is a masking  
837 matrix. Thus, the error can be split using the triangle inequality:  
838

$$839 E_i = |\text{Att}_i - \widetilde{\text{Att}}_i|_1 = \|\mathbf{s}_i \mathbf{V} - \widetilde{\mathbf{s}}_i \widetilde{\mathbf{V}}\|_1 \leq \underbrace{\|(\mathbf{s}_i - \widetilde{\mathbf{s}}_i) \mathbf{V}\|_1}_{\text{Term I: Softmax Error}} + \underbrace{\|\widetilde{\mathbf{s}}_i (\mathbf{V} - \widetilde{\mathbf{V}})\|_1}_{\text{Term II: Value Error}}. \quad (11)$$

840 **1) Bounding Term II (Value Error):** Since  $\widetilde{\mathbf{V}}$  and  $\mathbf{V}$  are identical for all selected tokens  $j \in \mathcal{S}_{\text{total}}$ ,  
841 and  $\widetilde{\mathbf{s}}_i$  is zero for unselected tokens, this term is zero.  
842

$$843 \text{Term II} = \|\widetilde{\mathbf{s}}_i (\mathbf{V} - \widetilde{\mathbf{V}})\|_1 = 0. \quad (12)$$

844 **2) Bounding Term I (Softmax Error):** We now bound the difference between the two distributions  
845  $\mathbf{s}_i$  and  $\widetilde{\mathbf{s}}_i$ .  
846

$$847 \text{Term I} = \|(\mathbf{s}_i - \widetilde{\mathbf{s}}_i) \mathbf{V}\|_1 \leq \|\mathbf{s}_i - \widetilde{\mathbf{s}}_i\|_1 \cdot \|\mathbf{V}\|_\infty. \quad (13)$$

848 We directly analyze the total variation. Let  $Z_i = \sum_j \exp(A_{ij})$  and  $\widetilde{Z}_i = \sum_{j \in \mathcal{S}_{\text{total}}} \exp(A_{ij})$ . The  
849 difference is:  
850

$$851 \|\mathbf{s}_i - \widetilde{\mathbf{s}}_i\|_1 = \sum_{j \in \mathcal{S}_{\text{total}}} \left| \frac{\exp(A_{ij})}{Z_i} - \frac{\exp(A_{ij})}{\widetilde{Z}_i} \right| + \sum_{j \notin \mathcal{S}_{\text{total}}} \frac{\exp(A_{ij})}{Z_i}$$

852 The second term is precisely  $\gamma_i$  by definition. The first term can be simplified:  
853

$$854 \sum_{j \in \mathcal{S}_{\text{total}}} \exp(A_{ij}) \left| \frac{1}{Z_i} - \frac{1}{\widetilde{Z}_i} \right| = \widetilde{Z}_i \cdot \frac{|Z_i - \widetilde{Z}_i|}{Z_i \widetilde{Z}_i} = \frac{|Z_i - \widetilde{Z}_i|}{Z_i}$$

855 Recall that  $\gamma_i = \sum_{j \notin \mathcal{S}_{\text{total}}} \frac{\exp(A_{ij})}{Z_i} = \frac{Z_i - \widetilde{Z}_i}{Z_i}$ . Thus, we have  
856

$$857 \|\mathbf{s}_i - \widetilde{\mathbf{s}}_i\|_1 = \sum_{j \in \mathcal{S}_{\text{total}}} \left| \frac{\exp(A_{ij})}{Z_i} - \frac{\exp(A_{ij})}{\widetilde{Z}_i} \right| + \gamma_i \\ 858 = \gamma_i \left( \frac{\widetilde{Z}_i}{Z_i} + 1 \right) = \gamma_i ((1 - \gamma_i) + 1) = \gamma_i (2 - \gamma_i) \leq 2\gamma_i.$$

864 Since  $\gamma_i \in [0, 1]$ , the term  $\gamma_i(2 - \gamma_i)$  is always  $\leq 2\gamma_i$ . This is a tighter bound. Therefore, we get  
 865

$$866 \quad \text{Term I} \leq 2\gamma_i \cdot \|\mathbf{V}\|_\infty. \quad (14)$$

867 According to the bounds for Term I in Eqn. (14) and Term II in Eqn. (12), we obtain the result:  
 868

$$869 \quad E_i \leq 2\gamma_i \cdot \|\mathbf{V}\|_\infty. \quad (15)$$

870  $\square$   
 871

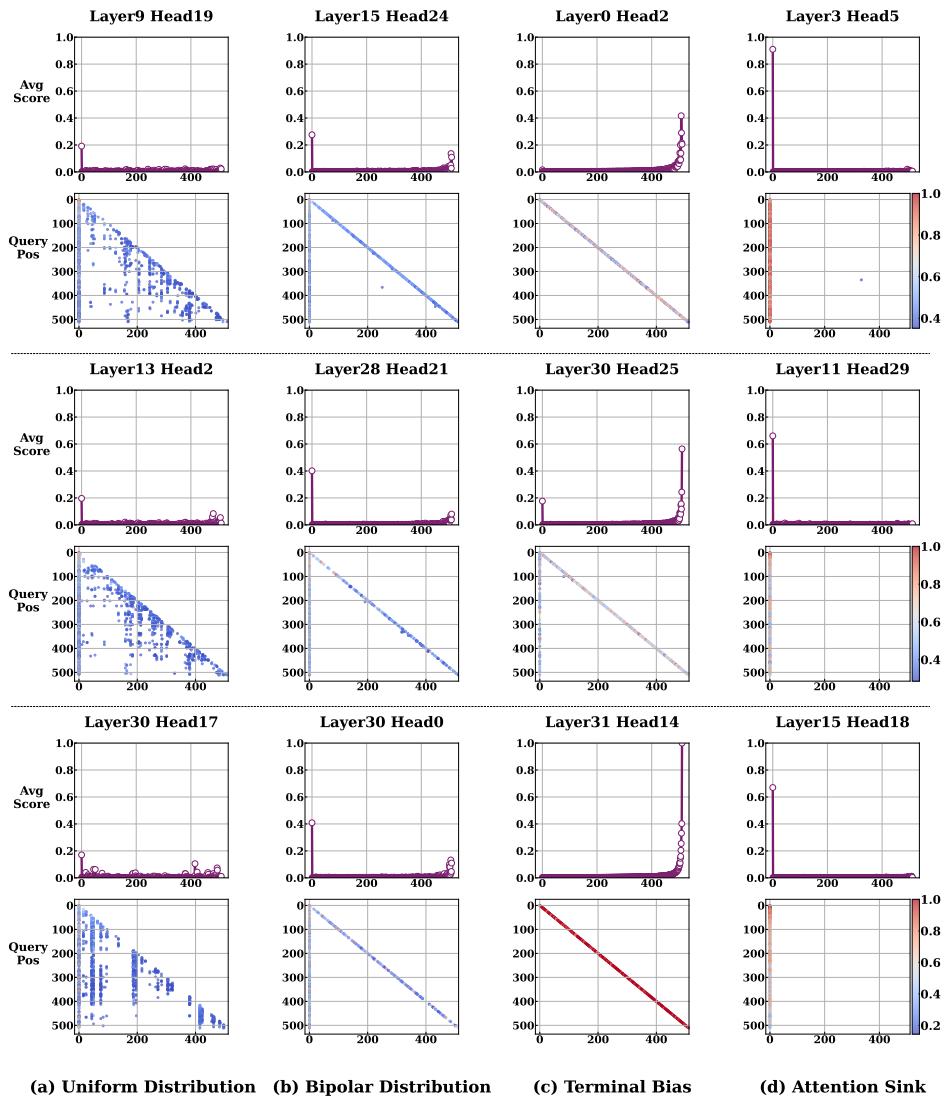
872 **Interpretation and Discussion.** Theorem 1 provides a rigorous bound on the approximation error  
 873 for each query position. The error scales linearly with  $\gamma_i$ , the total probability mass of the full  
 874 attention is assigned to the tokens discarded by TFCA-Attention.  
 875

- 876 • **Controllability:** Our offline calibration phase (Section 4.1) directly controls this error. By setting  
 877 a threshold  $\tau$  (e.g., 0.9) and ensuring that the aggregated attention mass of the selected tokens  
 878  $\mathbf{a}_i \geq \tau$ , we are effectively enforcing that  $\gamma_i \leq 1 - \tau$  for the calibration data. This guarantees that  
 879 the error bound is approximately limited to  $(1 - \tau) \cdot \|\mathbf{V}\|_\infty$  on the calibration distribution. By using  
 880 a small calibration set, we ensure this bound generalizes to test inputs, which is demonstrated in  
 881 Appendix E.6.
- 882 • **Role of Local Context:** The local window  $\mathcal{S}_{\text{local}}$  ensures that the most recent tokens, which of-  
 883 ten have high attention scores for generative tasks, are always included. This prevents  $\gamma_i$  from  
 884 becoming large for these critical query positions, thus proactively minimizing the error bound.
- 885 • **Head-Specificity:** The error bound is per-head and per-query. This aligns with our design: heads  
 886 with higher inherent redundancy (lower  $\gamma_i$  for the same number of discarded tokens) can tolerate  
 887 a sparser configuration ( $\mathbf{p}^*$  with a lower budget) without violating the error constraint.

888 In conclusion, TFCA-Attention is a principled approximation algorithm whose output deviation  
 889 from full attention is theoretically bounded and explicitly managed by its configuration process.  
 890 The empirical results showing maintained performance across diverse benchmarks (Section 5) pro-  
 891 vide strong evidence that the values of  $\gamma_i$  encountered in practice are indeed small, validating our  
 892 theoretical analysis.  
 893  
 894  
 895  
 896  
 897  
 898  
 899  
 900  
 901  
 902  
 903  
 904  
 905  
 906  
 907  
 908  
 909  
 910  
 911  
 912  
 913  
 914  
 915  
 916  
 917

918 B MORE VISUALIZATIONS OF ATTENTION SCORE DISTRIBUTIONS  
919

920 In this section, we provide more visualizations of attention score distributions for both LLaMA-  
921 3.1-8B-Instruct (Figure 5) and Qwen2.5-7B-Instruct (Figure 6). Our analysis reveals consistent  
922 patterns across models: 1) significant variation in attention distributions across different layers and  
923 heads; 2) position-dependent scoring patterns throughout the sequence length; 3) the emergence  
924 of all four distribution types identified in Section 3.2 (uniform, bipolar, terminal bias, attention  
925 sink, and sparse activation). These observations hold regardless of model architecture, strongly  
926 motivating our design of a unified efficient attention mechanism that can automatically adapt to these  
927 heterogeneous patterns while maintaining computational efficiency. The cross-model consistency of  
928 these findings suggests that our approach may generalize well to other transformer-based LLMs.



967 Figure 5: More visualization of attention score distributions across different layers and heads in  
968 LLaMA-3.1-8B-Instruct.  
969  
970

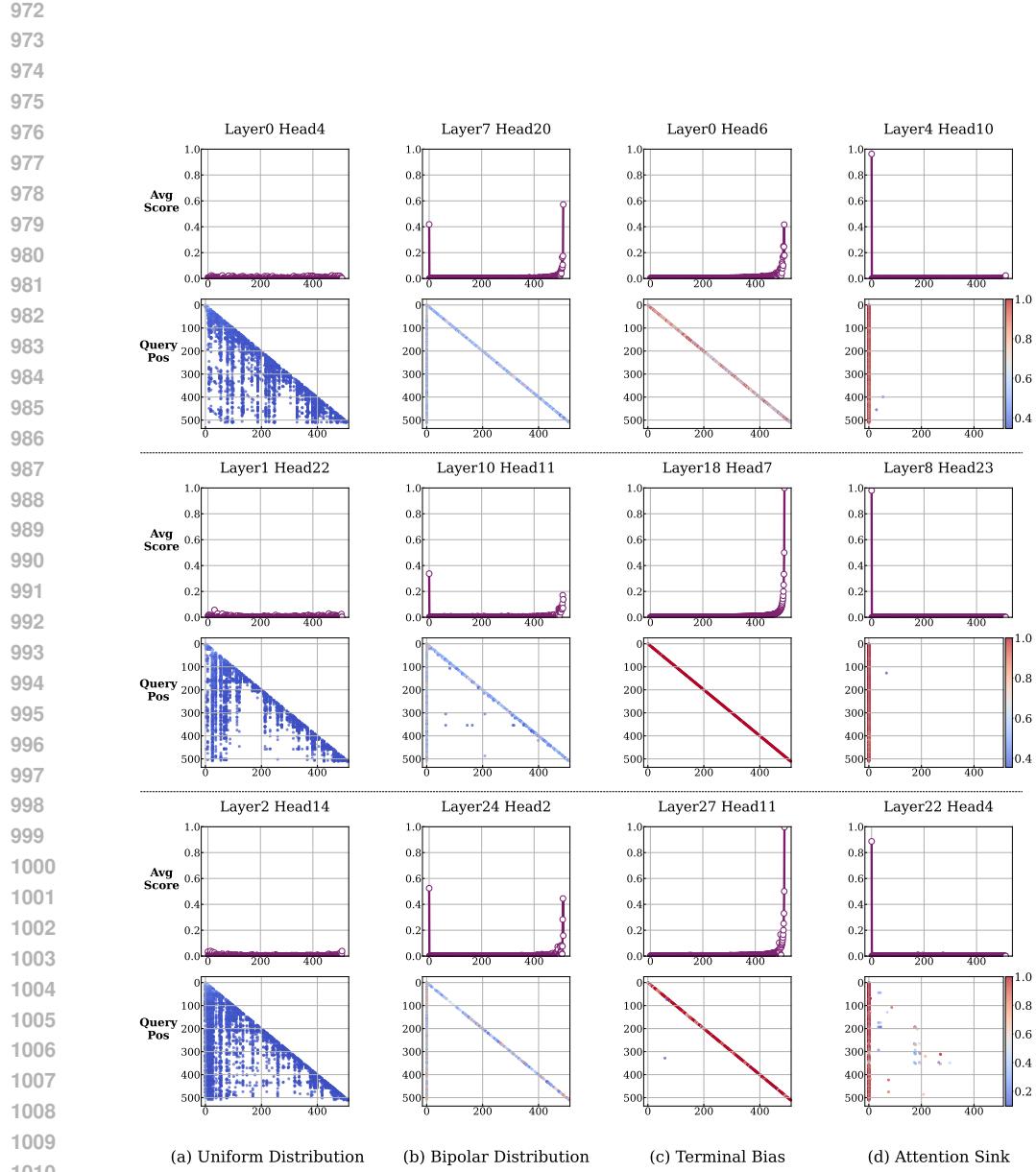


Figure 6: More visualization of attention score distributions across different layers and heads in Qwen2.5-7B-Instruct. (continued from previous page)

1026 **C MORE DISCUSSIONS**  
 1027

1028 **C.1 MORE DISCUSSIONS ON DIFFERENCES FROM EXISTING METHODS**  
 1029

1030 Self-attention mechanisms (Vaswani et al., 2017) in LLMs face significant computational redundancy when processing ultra-long contexts (e.g., 128K tokens). As identified in our Section 1,  
 1031 the redundancy in attention distributions exhibits two critical properties: (1) head-specific redundancy, where different attention heads exhibit diverse sparsity patterns across layers, and (2) context-  
 1032 dependent redundancy, where token importance varies dynamically with input content. While these  
 1033 properties have been partially observed in prior work, no existing method adequately addresses both  
 1034 in a unified manner across prefilling and decoding stages. Based on these observations, we propose  
 1035 TFCA-Attention, which simultaneously adapts to both types of redundancy while accelerating both  
 1036 prefilling and decoding stages. This section further clarifies our methodological distinctions from  
 1037 recent dynamic sparse attention methods and KV cache compression methods:  
 1038

1039 **Unified Acceleration of Prefilling and Decoding.** Existing approaches are typically limited to op-  
 1040 timizing either prefilling or decoding due to fundamental architectural constraints. Sparse attention  
 1041 methods like Minference (Jiang et al., 2024) and FlexPrefill (Lai et al., 2025) accelerate prefilling  
 1042 by computing subsets of attention scores through predefined patterns. However, these methods rely  
 1043 on predefined sparse patterns and 2D attention block scoring. These techniques require computing a  
 1044 2D attention map, which is infeasible under sequential decoding constraints. KV cache compression  
 1045 techniques such as SnapKV (Li et al., 2024) reduce memory during decoding by evicting or merging  
 1046 tokens, but operate after full attention computation and thus cannot accelerate the prefilling stage.  
 1047

1048 TFCA-Attention achieves unified acceleration through a token selection mechanism designed for  
 1049 both computational stages. Global redundancy is removed before prefilling attention computaion,  
 1050 while local context is preserved—accelerating computation without sacrificing quality. In decoding  
 1051 stage, Block-wise token selection is position-aware, metric-driven, and unbound by 2D dependen-  
 1052 cies, making it suitable for sequential generation. This explains our superior latency in Figure 3.  
 1053

1054 **Adaptation to Head-Specific and Context-Dependent Redundancy.** Most existing methods fail  
 1055 to adequately address both of head-specific and context-dependent redundancy due to their design  
 1056 paradigms. Fixed-pattern sparse attention methods (Zaheer et al., 2020; Beltagy et al., 2020; Xiao  
 1057 et al., 2024) apply uniform patterns across all heads, ignoring variations in redundancy distributions.  
 1058 While dynamic variants (Jiang et al., 2024; Xu et al., 2025; Lai et al., 2025) adapt per head, they  
 1059 select from a limited set of hand-designed patterns that cannot capture intricate redundancy variation.  
 1060 KV cache compression methods Hao et al. (2025); Wan et al. (2025); Qin et al. (2025); Li et al.  
 1061 (2024) typically apply uniform policies across all heads within a layer, neglecting head-specific  
 1062 characteristics.  
 1063

1064 TFCA-Attention addresses both redundancies through a decoupled two-phase approach. The offline  
 1065 configuration phase estimates each head’s intrinsic redundancy level to determine head-specific to-  
 1066 ken budgets. The online selection phase then identifies core tokens based on local contextual im-  
 1067 portance using efficiently computable metrics. This design enables adaptation to both head-specific  
 1068 sparsity characteristics and context-dependent token importance.  
 1069

1070 In summary, TFCA-Attention differs from prior work by simultaneously addressing both identified  
 1071 forms of redundancy through a unified method that accelerates both inference stages while main-  
 1072 taining comparable performance with vanilla self-attention.  
 1073

1074 **C.2 MORE DISCUSSIONS ON SCALABILITY**  
 1075

1076 **Context length:** As shown in Figure 3, TFCA-Attention’s efficiency gains increase with longer  
 1077 contexts. This is because longer sequences naturally contain more redundancy, making our dynamic  
 1078 token selection increasingly beneficial. The speedup ratio grows from  $2.6 \times$  at 64K to  $2.8 \times$  at 128K  
 1079 context length.  
 1080

1081 **Number of heads:** Our method demonstrates consistent effectiveness across models with different  
 1082 head counts. We validated TFCA-Attention on both LLaMA3.1-8B (32 heads) and Qwen2.5-7B (28  
 1083 heads), showing that TFCA-Attention works regardless of the specific head count.  
 1084

1080     **Batch size:** We follow the standard practice in long-context acceleration research (MInference (Jiang et al., 2024), FlexPrefill (Lai et al., 2025), XAttention (Xu et al., 2025)) by evaluating latency at batch size=1, where sequence length (L), not batch size, dominates computational bottlenecks. While our current implementation targets the predominant long-context scenario, the theoretical overhead would scale sublinearly due to shared redundancy pattern determination across batches. We left this in the future.

## 1087     D MORE IMPLEMENTATION DETAILS

### 1089     D.1 MORE DETAILS ON MODELS

1091     We employ two state-of-the-art LLMs renowned for their exceptional performance in long-context  
 1092     tasks: 1) LLaMA-3.1-8B-Instruct-128K (AI, 2024), 2) Qwen2.5-7B-Instruct-128K (Yang et al.,  
 1093     2024). All selected models are instruction-tuned for chat-based interactions. We use the default  
 1094     chat templates provided with each model in the experiments.

### 1095     D.2 MORE DETAILS ON DATASET AND EVALUATION METRICS

1097     **LongBench** (Bai et al., 2023) represents a cutting-edge benchmark architecture engineered for the  
 1098     systematic assessment of LLMs across three critical dimensions: bilingual (Chinese-English) com-  
 1099     petence, multitask generalization, and long-context semantic processing. Its cross-linguistic de-  
 1100     sign enables rigorous comparative analysis of multilingual contextual encoding abilities in scenar-  
 1101     rios demanding comprehension of extended textual sequences exceeding standard input bounda-  
 1102     ries. Structured into six overarching task categories—encompassing single-document question answer-  
 1103     ing, multi-document reasoning, summarization, few-shot learning paradigms, synthetic linguistic  
 1104     tasks, and code completion workflows—the benchmark instantiates 21 meticulously designed sub-  
 1105     tasks that span the core application domains of long-text processing. Specifically, the corpus in-  
 1106     cludes 14 English-language tasks, 5 Chinese-language tasks, and 2 code-oriented evaluation mod-  
 1107     ules, with median sequence lengths ranging from 5K to 15K tokens and a total of 4,750 instances.  
 1108     Additionally, LongBench-E is an enhanced variant of the benchmark, specifically crafted to assess  
 1109     model performance across input lengths on English tasks.

1110     **RULER** (Hsieh et al., 2024) is a next-generation synthetic benchmark based on the NIAH paradigm,  
 1111     designed to evaluate the long-context capabilities of language model through configurable task com-  
 1112     plexity and sequence length. It extends traditional “needle” concepts into a taxonomy of semantic  
 1113     entities, relational patterns, and structural anomalies, enabling adjustable needle density to assess  
 1114     hierarchical information processing. The framework includes 13 subtasks across four categories: 8  
 1115     retrieval tasks testing exact/semantic retrieval under noise, 3 multi-hop tracing tasks assessing se-  
 1116     quential reasoning, 1 aggregation task evaluating contextual integration, and 1 complex QA task  
 1117     simulating multi-step inference. Its synthetic data pipeline ensures precise control over context  
 1118     length and needle correlations, supporting rigorous ablation studies and performance analysis of  
 1119     sequential memory, structural understanding, and multi-step reasoning.

1120     **Massive Multitask Language Understanding (MMLU)** (Hendrycks et al., 2021) dataset is a  
 1121     comprehensive, multi-domain benchmark designed to rigorously assess the intellectual breadth and  
 1122     reasoning capabilities of language models across 57 diverse subject areas. These subjects span  
 1123     a wide spectrum of disciplines, including STEM, humanities, social sciences, and professional  
 1124     fields such as law and medicine, challenging models to demonstrate both factual knowledge and  
 1125     higher-order cognitive skills like analysis, inference, and application. Each question is crafted as a  
 1126     multiple-choice problem that requires nuanced understanding and logical reasoning, often surpass-  
 1127     ing surface-level pattern matching to evaluate a model’s ability to generalize knowledge in zero-shot  
 1128     and few-shot settings. By incorporating content ranging from elementary concepts to advanced ex-  
 1129     pertise, MMLU simulates real-world scenarios where models must rely on their pretraining knowl-  
 1130     edge without task-specific fine-tuning. This interdisciplinary design makes MMLU a cornerstone  
 1131     for evaluating the adaptability, knowledge retention, and cross-domain generalization of modern  
 1132     language models, offering critical insights into their performance in realistic, knowledge-intensive  
 1133     environments.

1134     **GSM8K** (Cobbe et al., 2021a) is a benchmark designed to evaluate language models’ numerical  
 1135     reasoning and problem-solving abilities through grade-school math problems, consisting of 7,473

1134 training and 1,319 test samples that focus on multi-step reasoning tasks involving 2 to 8 sequential  
 1135 steps, requiring models to break down complex problems into logical sub-tasks while demonstrating  
 1136 both conceptual understanding of mathematical principles like arithmetic, proportions, and algebra  
 1137 and precise computation skills. The dataset’s handcrafted problems exhibit rich linguistic variability  
 1138 with diverse narrative structures and real-world contextualizations, ensuring that models interpret  
 1139 nuanced language alongside solving equations, and it emphasizes chain-of-thought reasoning by  
 1140 encouraging models to articulate intermediate steps rather than provide direct answers, offering  
 1141 deeper insights into their logical processes and error patterns.

1142 **HumanEval** (Chen et al., 2021) is a carefully curated code generation benchmark that consists  
 1143 of 164 hand-crafted Python programming problems, each designed to rigorously assess the coding  
 1144 capabilities of language models. Each problem in the dataset includes detailed specifications such  
 1145 as function signatures, docstrings, and a set of test cases, providing a comprehensive framework  
 1146 to evaluate both the syntactic correctness and functional accuracy of generated code. By covering  
 1147 a wide range of programming tasks—from basic algorithmic challenges to more complex logic-  
 1148 based problems—HumanEval ensures a thorough assessment of a model’s ability to produce high-  
 1149 quality, executable code. The inclusion of unit tests further allows for precise validation of functional  
 1150 correctness, simulating real-world software development scenarios. As a result, HumanEval has  
 1151 become a cornerstone for evaluating the coding proficiency, logical reasoning, and problem-solving  
 1152 abilities of large language models in practical programming contexts.

1153 Table 6: The candidate configurations used in offline sparsity determination.

| $\mu$ | 1      | 2      | 4      | 8      | 16     | 32     | 64     | 128    |
|-------|--------|--------|--------|--------|--------|--------|--------|--------|
| 0.00  | 33.26% | 29.36% | 20.18% | 10.80% | 4.50%  | 1.46%  | 0.37%  | 0.07%  |
| 0.58  | 26.99% | 27.57% | 21.94% | 13.59% | 6.56%  | 2.46%  | 0.72%  | 0.17%  |
| 1.00  | 22.71% | 25.73% | 22.71% | 15.61% | 8.35%  | 3.48%  | 1.13%  | 0.28%  |
| 1.58  | 17.09% | 22.42% | 22.90% | 18.22% | 11.29% | 5.45%  | 2.05%  | 0.58%  |
| 2.00  | 13.53% | 19.69% | 22.31% | 19.69% | 13.53% | 7.24%  | 3.02%  | 0.99%  |
| 2.58  | 9.26%  | 15.60% | 20.46% | 20.90% | 16.63% | 10.30% | 4.97%  | 1.88%  |
| 3.00  | 6.82%  | 12.74% | 18.53% | 21.00% | 18.53% | 12.74% | 6.82%  | 2.82%  |
| 3.58  | 4.18%  | 9.05%  | 15.23% | 19.98% | 20.41% | 16.24% | 10.06% | 4.85%  |
| 4.00  | 2.84%  | 6.82%  | 12.74% | 18.53% | 21.00% | 18.53% | 12.74% | 6.80%  |
| 4.58  | 1.56%  | 4.33%  | 9.36%  | 15.76% | 20.67% | 21.12% | 16.80% | 10.40% |
| 5.00  | 0.98%  | 3.02%  | 7.24%  | 13.53% | 19.69% | 22.31% | 19.69% | 13.54% |
| 5.58  | 0.49%  | 1.73%  | 4.81%  | 10.40% | 17.51% | 22.96% | 23.45% | 18.65% |
| 6.00  | 0.29%  | 1.13%  | 3.48%  | 8.35%  | 15.61% | 22.71% | 25.73% | 22.70% |
| 6.58  | 0.13%  | 0.60%  | 2.13%  | 5.90%  | 12.76% | 21.49% | 28.19% | 28.80% |

### 1170 D.3 MORE DETAILS ON PARALLEL IMPLEMENTATION

1171 To address the challenges of efficient parallelization in TFCA-Attention, we have developed specialized  
 1172 implementation strategies that overcome two critical barriers: non-contiguous memory access  
 1173 patterns and variable-length attention computation across attention heads.

1174 **Memory Access Optimization.** The top-k token selection would lead to non-contiguous memory  
 1175 access, significantly degrading GPU performance. To mitigate this, we employ a parallel tokens  
 1176 gathering strategy that groups blocks where blocks within each group share the same top-k value.  
 1177 For each group, we perform the top-k selection in parallel across its blocks. Crucially, token se-  
 1178 lection is implemented by loading contiguous chunks of tokens within each block (since tokens are  
 1179 stored contiguously per block) and then gathering only the selected tokens. The selected tokens  
 1180 from all blocks are concatenated to form the global subsets  $\mathbf{K}^G, \mathbf{V}^G$ . This grouping strategy re-  
 1181 duces memory fragmentation by minimizing random access scope, achieving near-optimal memory  
 1182 bandwidth utilization.

1183 **Multi-head Parallelization.** Since each attention head requires a different number of tokens, this  
 1184 presents a significant challenge for parallelization. To address this, we flatten all head tokens into  
 1185 a single contiguous buffer and precompute offsets that map to each head’s token region. During  
 1186 Triton kernel execution, each parallel thread uses these offsets to directly access the corresponding  
 1187 token region for its assigned head. This approach enables efficient parallel processing of variable-

length multi-head attention computation without synchronization overhead, making full use of GPU parallelism while maintaining the head-aware design principle.

**Future Optimization Directions.** We plan to further enhance performance through latency-hiding scheduling techniques. Specifically, while computing attention between queries and the local subset  $\mathbf{K}^L, \mathbf{V}^L$ , we can concurrently perform global token selection in the background. Once local attention computation completes, the global subsets  $\mathbf{K}^G, \mathbf{V}^G$  would be ready, allowing seamless transition to global attention without additional delay. While this approach shows promise for further reducing end-to-end latency, it requires sophisticated kernel-level scheduling and is left as future work.

#### D.4 MORE EXPERIMENTAL PROTOCOLS

**TFCA-Attention (Ours).** We integrate the proposed TFCA-Attention with existing LLMs through a **plug-and-play** replacement of full self-attention, requiring **no architectural modifications** or **parameter updates**. Our experiments are conducted on a computational node equipped with 8 NVIDIA A800 GPUs, each with 80GB of memory. The experiments pipeline is implemented using PyTorch. Following FlashAttention [Dao \(2024\)](#), we further optimize the computation process of TFCA-Attention through Triton [Tillet et al. \(2019\)](#). The implementation follows GPU-aligned memory access patterns and cache-friendly computation schemes to maximize hardware utilization, while the dynamic token selection inherently eliminates redundant computations.

The threshold  $\tau$  in offline determination is set to 0.9. The block size  $b$  and window size  $w$  are set to 128 and 4096 for all models, respectively. In all experiments, we adopt the 14 candidate configurations shown in Table 6 for all LLMs, where the appropriate configuration for each head is determined through Offline Sparsity Pattern Determination in Section 4.1. These candidate configurations are generated using Eq. 3.  $\sigma$  is set to 2 and  $\mu$  is sampled uniformly from  $\log_2(1)$  to  $\log_2(b)$  with 14 discrete steps. We find that setting  $\sigma$  worked well in our experiments, so we did not further tune this hyperparameter. To ensure fair comparison with existing methods, we follow the standard practice in long-context acceleration research ([Jiang et al., 2024](#); [Lai et al., 2025](#); [Xu et al., 2025](#)) by evaluating latency at batch size=1. All experiments employed a greedy decoding strategy to ensure reproducibility and eliminate sampling variance.

**Compared Methods.** We compare our approach against three state-of-the-art baseline methods: **1) Minference** [Jiang et al. \(2024\)](#): This method employs offline determination to select optimal sparse attention patterns per attention head, combined with online dynamic adjustment of computation regions for each pattern. We use the officially released implementation in our all experiments. The pattern determined for all attention heads in the evaluated LLMs are vertical-slash patterns. Specifically, these patterns predominantly consisted of 1,000 vertical lines and 6,096 slash lines across different heads and layers. **2) FlexPrefill** [Lai et al. \(2025\)](#): This approach dynamically selects between Query-Aware and Vertical-Slash attention patterns per head, while adaptively determining the required Key-Value indices for computation. In our experiments, we use the official implementation and follow the original paper’s settings:  $\gamma=0.9$ ,  $\tau=0.1$ , with a minimum retained budget of 1,024 tokens and a block size of 128 across all evaluated models. **2) XAttention** [Xu et al. \(2025\)](#): This method employs an antidiagonal scoring pattern to select sparse attention blocks, reducing computation by processing only the selected regions. In our experiments, we follow the original paper’s optimal setting with stride  $S = 8$ . For LLaMA3.1-8B, we adopt the officially released set of minimum thresholds to determine block selection. For Qwen2.5-7B, we set the threshold to 0.9 – higher than the paper’s average recommendation of 0.8 – to preserve more contextual information.

## E MORE EXPERIMENTAL RESULTS

### E.1 COMPARISONS ON REASONING BENCHMARK

To further validate TFCA-Attention’s effectiveness on highly challenging reasoning tasks, we evaluate our method using Qwen2.5-7B-Instruct on OlympiadBench, a challenging Olympiad-level benchmark covering math and physics reasoning. As shown in Table 7, TFCA-Attention demonstrates exceptional performance while significantly accelerating inference. Notably, TFCA-Attention matches the baseline model’s mathematics performance while actually improving physics accuracy (19.95% vs. 19.73%), resulting in a slightly higher overall score (31.27% vs. 31.20%).

This is particularly impressive given that TFCA-Attention achieves these results with  $2.8 \times$  faster inference compared to the vanilla self-attention. The results confirm that TFCA-Attention effectively preserves critical reasoning paths even for highly complex tasks that require sophisticated multi-step reasoning, validating the ability to maintain performance while substantially improving efficiency for the most demanding cognitive tasks.

Table 7: Results on OlympiadBench with Qwen2.5-7B-Instruct and attention computation latency at 128K context.

| Model                   | Math         | Physics      | Avg.         | Latency (s)↓ |
|-------------------------|--------------|--------------|--------------|--------------|
| Qwen2.5-7B-Instruct     | <b>38.85</b> | 19.73        | 31.20        | 1.10         |
| • FlexPrefill           | 38.73        | 19.06        | 30.86        | 0.44         |
| • TFCA-Attention (Ours) | 38.82        | <b>19.95</b> | <b>31.27</b> | <b>0.40</b>  |

## E.2 COMPARISONS ON MULTI-TURN CONVERSATION BENCHMARK

Based on the comprehensive evaluation on the multi-turn conversation benchmark MT-Bench-101, our proposed TFCA-Attention demonstrates superior performance in conversational settings. As shown in Table 8, TFCA-Attention achieves an average score of 8.97, outperforming both the full-attention baseline (8.90) and the strongest competitor FlexPrefill (8.90). This performance advantage is consistent across multiple dialogue dimensions including Generation (GR), Reasoning (CR), and Safety (SA), where our method shows particularly strong results. These findings conclusively demonstrate that our token selection strategy, while computationally efficient, effectively preserves critical conversational context and reasoning paths across multiple dialogue turns. The results validate TFCA-Attention’s robustness in real-world conversational applications while maintaining its training-free, plug-and-play advantage over methods that require architectural modifications or parameter updates.

Table 8: Results on MT-Bench-101 with Qwen2.5-7B-Instruct.

| Methods                 | GR          | IC          | AR          | FR          | MR          | CC          | TS          | CR          | SA          | SI          | CM          | PI          | SC          | average     |
|-------------------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|
| Qwen2.5-7B-Instruct     | 8.20        | <b>7.71</b> | 9.49        | 9.56        | <b>7.57</b> | 9.89        | 8.90        | 9.50        | <b>9.29</b> | 8.26        | 9.19        | <b>8.64</b> | 9.42        | 8.90        |
| • FlexPrefill           | 7.81        | 7.67        | 9.55        | 9.57        | 7.23        | 9.91        | <b>9.40</b> | <b>9.57</b> | 9.22        | 8.33        | <b>9.27</b> | 8.63        | <b>9.53</b> | 8.90        |
| • TFCA-Attention (Ours) | <b>8.50</b> | <b>7.71</b> | <b>9.56</b> | <b>9.74</b> | 7.48        | <b>9.91</b> | 9.39        | 9.49        | 9.26        | <b>8.38</b> | 9.20        | 8.62        | 9.43        | <b>8.97</b> |

## E.3 COMPARISONS WITH TRAINING-BASED METHODS

We compare our TFCA-Attention with training-based methods on LongBench-E, including CCA-Attention (Chen et al., 2025). In Table 9, TFCA-Attention achieves performance on par with the original model (22.28 vs. 22.42 average score), without any architectural modifications or training overhead. In contrast, CCA-Attention involves parameter updates, incurring high computational costs. In comparison, TFCA-Attention enables *plug-and-play deployment*.

Table 9: Comparisons with training-based methods on LongBench-E Bai et al. (2023).

| Methods                       | Training-free | S. QA | M. QA | Sum. | F.S.  | Syn. | Code  | Avg.  |
|-------------------------------|---------------|-------|-------|------|-------|------|-------|-------|
| LLaMA2-7B-Instruct-80K        | —             | 3.22  | 2.71  | 3.90 | 64.98 | 0.56 | 59.16 | 22.42 |
| • CCA-LLM (Chen et al., 2025) | ✗             | 5.62  | 4.34  | 8.99 | 59.60 | 0.48 | 54.40 | 22.24 |
| • TFCA-Attention (Ours)       | ✓             | 3.38  | 2.72  | 4.01 | 63.39 | 0.64 | 59.52 | 22.28 |

## E.4 EFFECTIVENESS OF LOCAL-CONTEXT REDUNDANCY METRIC

To validate the efficacy of our proposed *Local-context Redundancy Metric*  $h$  for redundancy estimation, we conduct an ablation study comparing our Online Core Context Selection strategy with a variant that randomly sorts blocks on LongBench-E with Qwen2.5-7B-Instruct. As shown in Table 10, our metric-driven approach achieves **1.59%** average score improvement over the random baseline. This significant performance gap demonstrates that the proposed metric accurately quantifies block-wise redundancy levels and enables adaptive token retention requirements.

1296  
1297  
1298  
1299  
1300  
1301  
1302  
1303  
1304  
1305  
1306  
1307  
1308  
1309  
1310  
1311  
1312  
1313  
1314  
1315  
1316  
1317  
1318  
1319  
1320  
1321  
1322  
1323  
1324  
1325  
1326  
1327  
1328  
1329  
1330  
1331  
1332  
1333  
1334  
1335  
1336  
1337  
1338  
1339  
1340  
1341  
1342  
1343  
1344  
1345  
1346  
1347  
1348  
1349Table 10: Comparisons of different models on LongBench-E [Bai et al. \(2023\)](#).

| Methods                  | S. QA | M. QA | Sum.  | F.S.  | Syn.  | Code  | Avg.         |
|--------------------------|-------|-------|-------|-------|-------|-------|--------------|
| Qwen2.5-7B-Instruct-128K | 48.75 | 52.24 | 27.81 | 65.00 | 52.00 | 61.14 | 51.16        |
| • Random Sort            | 47.19 | 50.78 | 26.63 | 63.35 | 51.50 | 60.07 | 49.92        |
| • Sort with Metric h     | 48.50 | 52.91 | 27.74 | 64.92 | 52.25 | 62.74 | <b>51.51</b> |

## E.5 ABLATION STUDY ON COMPRESSION RATE

We analyze the performance of TFCA-Attention across varying compression levels to understand its behavior under different threshold  $\tau$  settings. As shown in Table 11, TFCA-Attention maintains strong performance across the LongBench-E benchmark with varying compression ratios. The most aggressive setting ( $\tau = 0.3$ , 84.69% compression) yields a total reduction of only 1.34% in average performance. Tasks primarily relying on sparse context (Single Document QA, Summarization, and Few-Shot Learning) demonstrate remarkable robustness even at extreme compression rates, while tasks requiring dense global context show mild degradation at the highest compression levels. This demonstrates that TFCA-Attention successfully identifies and preserves the critical information paths needed for these tasks. Tasks requiring dense global context (Multi-Document QA, Synthetic tasks, and Code) show moderate performance degradation at extreme compression. This occurs because these tasks rely on information distributed throughout the entire sequence, making them more sensitive to aggressive token compression.

This differential behavior provides valuable insights into when and how aggressively TFCA-Attention can be applied. For applications where global context integration is critical (e.g., multi-document reasoning), a more conservative compression setting ( $\tau = 0.6$  or  $0.9$ ) may be preferable. However, for tasks where only specific passages contain relevant information (e.g., single-document question answering), the highest compression settings can be used with minimal performance impact, maximizing computational efficiency.

Table 11: Performance on LongBench-E at different compression ratios ( $\tau$  values).

| Comp. Ratio (%) ( $\tau$ ) | S. QA        | M. QA        | Sum.         | F.S.         | Syn.         | Code         | Avg.         |
|----------------------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|
| 52.72 ( $\tau = 0.9$ )     | 48.50        | 52.91        | 27.74        | 64.92        | 52.25        | 62.74        | 51.51        |
| 73.06 ( $\tau = 0.6$ )     | 48.14        | 49.78        | 27.67        | 64.77        | 51.00        | 62.10        | 50.58        |
| 84.69 ( $\tau = 0.3$ )     | 48.11(-0.39) | 49.34(-3.57) | 27.66(-0.08) | 65.20(+0.28) | 50.00(-2.25) | 60.72(-2.02) | 50.17(-1.34) |

## E.6 ABLATION STUDY ON CALIBRATION DATASET

We conduct an ablation study to evaluate TFCA-Attention’s sensitivity to calibration dataset choice and size. As shown in Table 12, our method achieves consistent performance across different calibration datasets and sizes. When calibrated on diverse domains—general web text (SlimPajama), long-form governmental documents (GovReport), and programming code (McEval)—the average score on LongBench-E remains remarkably stable (51.54-51.56). More importantly, this stability persists even with minimal calibration: using just a single input sequence (size=1), our method achieves virtually identical performance to using five samples, with variations of  $\leq 0.04$ . These results demonstrate two critical properties: (1) head-specific redundancy patterns transfer well across domains, and (2) these patterns are remarkably stable across different inputs within the same model, requiring only minimal calibration data. This efficiency makes TFCA-Attention highly practical for real-world deployment, as it eliminates the need for domain-specific calibration or extensive calibration datasets while maintaining consistent performance across diverse benchmarks (LongBench-E, MMLU, GSM8K, HumanEval).

E.7 ABLATION STUDY ON BALANCING PARAMETER  $\alpha$ 

We conduct an ablation study to evaluate the sensitivity of TFCA-Attention to the  $\alpha$  parameter, which balances the global and local context contributions in our redundancy metric. As shown in Table 13, the performance remains remarkably stable across a wide range of  $\alpha$  values (0.1-0.9),

1350 Table 12: Results of Qwen2.5-7B-Instruct on LongBench-E with different calibration datasets and  
1351 sizes.

| Calibration Dataset | Domain                      | Average Score    |
|---------------------|-----------------------------|------------------|
| SlimPajama          | General web text            | $51.54 \pm 0.03$ |
| GovReport           | Long-form governmental docs | $51.56 \pm 0.04$ |
| McEval              | Programming code            | $51.55 \pm 0.02$ |

1358 demonstrating the robustness of our method to this hyperparameter. The highest average score  
1359 of 51.51 on LongBench-E is achieved at  $\alpha = 0.5$ , indicating an optimal balance between global  
1360 attention patterns and local context dynamics. Notably, even at extreme values ( $\alpha = 0.1$  or  $\alpha =$   
1361 0.9), the performance degradation is minimal ( $\leq 0.38$ ), confirming that TFCA-Attention maintains  
1362 strong performance without requiring precise parameter tuning. This stability makes our method  
1363 practical for real-world deployment where automatic parameter selection is preferred over manual  
1364 optimization.

1365 Table 13: Performance on LongBench-E using Qwen2.5-7B-Instruct with different  $\alpha$  values.

| alpha | 0.1   | 0.3   | 0.5   | 0.7   | 0.9   |
|-------|-------|-------|-------|-------|-------|
| Avg.  | 51.14 | 51.25 | 51.51 | 51.24 | 51.13 |

1371 

## E.8 ABLATION STUDY ON CONCENTRATION INDEX IN THE REDUNDANCY METRIC

1373 We conduct an ablation study to evaluate the effectiveness of the Herfindahl-Hirschman Index in  
1374 Eq.6. As shown in Table 14, Replacing our Herfindahl-Hirschman Index in Eq.6 with a block-wise  
1375 entropy measure results in a noticeable performance drop. The Herfindahl-Hirschman Index con-  
1376 sistently delivers higher or comparable performance across most tasks, leading to a higher overall  
1377 average score. This empirically validates that it is a more effective metric for identifying and pre-  
1378 serving information-critical context.

1379 Table 14: Performance on LongBench-E using Qwen2.5-7B-Instruct with different Concentration  
1380 Indexes.

| Methods                    | S. QA | M. QA | Sum.  | F.S.  | Syn.  | Code  | Avg.         |
|----------------------------|-------|-------|-------|-------|-------|-------|--------------|
| Entropy                    | 48.75 | 51.39 | 27.51 | 64.98 | 51.25 | 62.42 | 51.05        |
| Herfindahl-Hirschman Index | 48.50 | 52.91 | 27.74 | 64.92 | 52.25 | 62.74 | <b>51.51</b> |

1386 

## E.9 COMPUTATIONAL EFFICIENCY ANALYSIS

1388 To understand the computational overhead of TFCA-Attention, we conducted a detailed latency  
1389 breakdown of our Triton implementation at 128K context length. As shown in Table 15, our block-  
1390 wise design effectively minimizes the overhead of dynamic token selection components. This effi-  
1391 ciency stems from our fundamental design choice to operate at the block level rather than token level.  
1392 The importance score calculation (8.13%) and other auxiliary operations collectively contribute less  
1393 than 40% of total latency, demonstrating that our method’s adaptive mechanisms introduce only  
1394 marginal overhead.

1396 

## F LLM USAGE STATEMENT

1398 In preparing this work, the authors used large language models (LLMs) solely to improve the read-  
1399 ability and language quality of the manuscript. Specifically, LLMs were employed to assist with:

- 1401 • Polishing sentence structures and grammatical correctness
- 1402 • Enhancing the fluency of certain paragraphs
- 1403 • Ensuring consistent academic tone throughout the paper

1404 Table 15: Latency breakdown of TFCA-Attention components at 128K context length.  
1405

---

| Phase        | Importance Score | Redundancy Metric | Sorting | Token Selection | Attention | Total   |
|--------------|------------------|-------------------|---------|-----------------|-----------|---------|
| Latency (ms) | 32.45            | 46.62             | 42.37   | 39.62           | 238.03    | 399.09  |
| Ratio (%)    | 8.13%            | 11.68%            | 10.62%  | 9.93%           | 59.64%    | 100.00% |

1409  
1410 The core research contributions, including the conceptualization of TFCA-Attention, methodologi-  
1411 cal design, theoretical analysis, experimental setup, implementation, and all empirical evaluations,  
1412 remain entirely our own without any involvement of LLMs.  
1413  
1414  
1415  
1416  
1417  
1418  
1419  
1420  
1421  
1422  
1423  
1424  
1425  
1426  
1427  
1428  
1429  
1430  
1431  
1432  
1433  
1434  
1435  
1436  
1437  
1438  
1439  
1440  
1441  
1442  
1443  
1444  
1445  
1446  
1447  
1448  
1449  
1450  
1451  
1452  
1453  
1454  
1455  
1456  
1457