
Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

REVISE: LEARNING TO REFINE AT TEST-TIME VIA
INTRINSIC SELF-VERIFICATION

Hyunseok Lee1∗Seunghyuk Oh1∗Jaehyung Kim2 Jinwoo Shin1 Jihoon Tack1

1KAIST, 2Yonsei University

ABSTRACT

Self-awareness, i.e., the ability to assess and correct one’s generation, is a fun-
damental aspect of human intelligence, making its replication in large language
models (LLMs) an important yet challenging task. Previous works tackle this by
employing extensive reinforcement learning or relying on large external verifiers.
In this work, we propose Refine via Intrinsic Self-Verification (ReVISE), an ef-
ficient and effective framework that enables LLMs to self-correct their outputs
through self-verification. The core idea of ReVISE is to enable LLMs to verify their
reasoning processes and continually rethink reasoning trajectories based on its veri-
fication. To implement this efficiently, we introduce a structured curriculum based
on preference learning. Specifically, as ReVISE involves two challenging tasks
(i.e., self-verification and reasoning correction), we tackle each task sequentially
using curriculum learning, collecting both failed and successful reasoning paths to
construct preference pairs for efficient training. During inference, our approach
enjoys natural test-time scaling by integrating self-verification and correction capa-
bilities, further enhanced by our proposed confidence-aware decoding mechanism.
Our experiments on various reasoning tasks demonstrate that ReVISE achieves
efficient self-correction and significantly improves the reasoning performance of
LLMs.

1 INTRODUCTION

Large language models (LLMs) have demonstrated remarkable success across diverse domains,
such as coding assistants (Zhang et al., 2024b), search engines (Xiong et al., 2024), and personal
AI assistants (Sajja et al., 2024), progressively advancing toward human-like logical reasoning
capabilities (Amirizaniani et al., 2024). However, tasks requiring rigorous System 2 thinking—such
as complex reasoning (Jaech et al., 2024), iterative trial-and-error (Song et al., 2024), and dynamic
planning (Xie & Zou, 2024)—remain highly challenging (Lowe, 2024; Cai et al., 2024). A key
difficulty in LLM reasoning is that errors in early steps can accumulate over time, leading to
substantial inaccuracies (LeCun, 2022), while the models’ intrinsic ability to detect and rectify such
self-generated errors—often framed as a form of self-awareness—remains insufficient. This issue is
further exacerbated by the autoregressive nature of LLMs, which constrains their ability to revisit and
revise prior steps (Bachmann & Nagarajan, 2024).

To tackle this issue, recent approaches have emphasized verification (or correction) of LLM-generated
reasoning trajectories as a crucial mechanism (Zhang et al., 2024a; Madaan et al., 2023). For
instance, some methods utilize external large-scale verifiers to iteratively validate outputs and trigger
regeneration (Luo et al., 2024). However, the reliance on expensive external models introduces
computational inefficiencies. Alternatively, reinforcement learning (RL)-based techniques have
shown promise in improving reasoning accuracy by optimizing reward signals based on ground-
truth correctness, enabling self-correction (Kumar et al., 2024). However, RL is a complex and
often unstable procedure (Mnih et al., 2015; Rafailov et al., 2023), and it does not explicitly model
the verification of intermediate reasoning steps, making it difficult to assess whether a model is
confident in its current trajectory or prone to deviating toward incorrect conclusions, which may limit
interpretability and adaptability in complex reasoning tasks.

∗equal contribution

1

Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

This raises a key question: Can LLMs be equipped with an internal mechanism to explicitly verify
their own reasoning and correct potential errors based on their verification?

Contribution. We propose Refine Via Intrinsic SElf-Verification (ReVISE), a novel and effective
self-correction framework for LLM reasoning using self-verification. The core idea of ReVISE is
to enable LLMs to assess their reasoning process and refine reasoning trajectories based on self-
verification. Specifically, we introduce a special token, which outputs whether to stop the generation
or revise the reasoning trajectory. To train the model to utilize this token effectively, we design a
two-stage curriculum to simplify the learning of two challenging tasks—self-verification and self-
correction—by breaking them into separate training stages. Here, both stages employ preference
learning, allowing the model to learn these tasks efficiently without heavy computational overhead.
In the first stage, we collect pairs of correct and incorrect reasoning trajectories (i.e., positive and
negative samples for preference learning) based on output correctness to develop the model’s self-
verification ability. In the second stage, we generate new preference pairs for self-correction by
constructing positive samples where a correct reasoning path follows an incorrect one, and negative
samples where an incorrect reasoning path follows a correct one.

Furthermore, we introduce an inference-time scaling strategy for ReVISE that leverages self-
verification to enhance performance. First, as ReVISE inherently verifies and refines reasoning
paths when it detects incorrect outputs, it naturally benefits from increased test-time computation.
Additionally, we propose a novel test-time sampling scheme that incorporates self-verification confi-
dence (i.e., the confidence in deciding whether to terminate generation). Specifically, we integrate
this confidence into existing test-time sampling methods by adjusting the sampling score based on
the predicted confidence, leading to more reliable output.

We demonstrated the effectiveness of ReVISE through evaluations on multiple reasoning datasets in
the mathematical domain. Notably, ReVISE enhances reasoning performance beyond prior methods,
improving accuracy from 27.1→31.1% on GSM8K (Maj@3) (Cobbe et al., 2021) with Llama3 1B
(Dubey et al., 2024) and from 33.2→36.0% on MATH (Maj@3) (Hendrycks et al., 2021) with Llama3
8B. Furthermore, our experimental results show that ReVISE consistently improves accuracy without
relying on external feedback mechanisms, which often degrade performance on complex reasoning
tasks. For instance, unlike approaches such as Refine (Madaan et al., 2023), which struggle when
combined with existing models on complex tasks, ReVISE achieves these gains purely through self-
verification and self-correction. Finally, we show that the proposed sampling scheme is more efficient
than other sampling strategies when applied to models trained with ReVISE, further enhancing the
performance.

2 RELATED WORK

In this section, we provide a comprehensive review of related works, including reasoning, test-time
scaling, and self-improvement for LLMs.

LLM reasoning. LLMs have made significant progress in reasoning through techniques such as
Chain-of-Thought (CoT) prompting, fine-tuning, and self-improvement. CoT prompting, introduced
by (Wei et al., 2022) and expanded by (Kojima et al., 2022) enables models to break down complex
problems into intermediate steps, improving performance and interpretability. Structured reasoning
methods, including self-consistency (Wang et al., 2022) and Tree-of-Thought (ToT) (Yao et al.,
2024), enhance multi-step problem-solving by exploring various reasoning paths. Huang et al. (2022)
have demonstrated self-improvement through iterative feedback, refining their outputs over time.
Ensuring the reliability of reasoning approaches such as Reflexion (Shinn et al., 2024) and Self-
Refine (Madaan et al., 2023) introduce iterative feedback loops, while verification techniques like
step-by-step validation (Lightman et al., 2023) help maintain consistency and reduce errors. Unlike
prior approaches, ReVISE learns self-verification during training, reducing train-test discrepancy and
enabling more natural verification at inference.

Test-time scaling for LLMs. Recent works explored that scaling test-time computation, such as
best-of-N sampling, can be even better than scaling train-time computation for performance (Snell
et al., 2024). Specifically, test-time scaling strategies improve LLM performance by generating
numerous candidate outputs and selecting the best. To enhance decision-making, external verifiers
are often employed to evaluate and refine these outputs (Liang et al., 2024). Moreover, Kumar et al.

2

Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

Generate, Verify, and RefineMethod

1. ReVISE decides to stop or refine 2. Refine following ㏚refine㏛ token Stage 1. Learn how to self㎼verify

Stage 2. Learn how to self㎼correct

Train Two㎼stage curricula

ReVISE ReVISE

…

Intrinsic
Verifier

2nd reasoning1st reasoning

㏚eos㏛ or ㏚refine㏛

㏚refine㏛

ReVISE is a self㎼verifying and self㎼correcting framework

Prompt

ReVISE first learns to check correctness,
then learns to improve wrong reasoning

ReVISE

𝒙 𝒚𝟏 𝒚𝟐 𝒚𝟑

Reasoning

𝑝(⋅ |𝑦, 𝑥)
Correct

Reasoning

㏚eos㏛ ㏚refine㏛

𝑝(⋅ |𝑦, 𝑥)

Wrong
Reasoning

㏚eos㏛ ㏚refine㏛

ReVISE

㏚eos㏛

ReVISE

㏚refine㏛

Correct Reasoning Wrong Reasoning

: Correct
: Wrong
: GT

㏚refine㏛

Figure 1: Overview of ReVISE. Left: ReVISE is a self-verifying and self-correcting reasoning
framework. It first generates an initial answer, verifies its correctness, and decides whether to
stop or refine. If the model generates the [refine] token, it refines the initial reasoning. Right:
The structured curriculum-based training pipeline of ReVISE. In the first stage, the model learns
self-verification by selecting between [eos] and [refine]. In the second stage, it learns to correct
reasoning mistakes using golden data.

(2024); Qu et al. (2024) applied extensive reinforcement learning to overcome the efficiencies and
dependence on the verifier’s performance. In safety research, backtracking methods have introduced
reset tokens to correct unsafe responses (Zhang et al., 2024c). While they focus on reducing the
likelihood of unsafe outputs with limited second attempts to refuse answers, our approach targets
complex reasoning tasks enabled by self-correction through an explicit verification process and
two-stage curricula.

Self-improvement for LLMs. Self-training methods enable LLMs to refine themselves using their
own outputs. Supervised fine-tuning (SFT) (Brown et al., 2020b) trains on human-annotated data but
lacks self-correction (Huang et al., 2023). Rejection fine-tuning (RFT) (Yuan et al., 2023) improves
robustness by filtering low-quality responses but discards useful learning signals. STaR (Zelikman
et al., 2022) iteratively fine-tunes models on self-generated solutions but struggles with compounding
errors due to the absence of explicit verification. V-STaR (Hosseini et al., 2024) extends STaR by
jointly training a verifier alongside the generator, leveraging both correct and incorrect responses
to improve self-assessment, though it still depends on large-scale self-generated data. However,
discovering high-quality solutions remains a challenge, as (Luong et al., 2024) shows that RL-based
fine-tuning is ineffective without supervised initialization. Kim et al. (2024) explore using a stronger
LLM to refine incorrect rationales from a smaller model, though Huang et al. (2024) argue that LLMs
struggle with self-correction. Our approach integrates both generation and verification, leveraging
correct and incorrect responses for more effective self-improvement.

3 LEARNING TO REFINE AT TEST-TIME VIA INTRINSIC SELF-VERIFICATION

In this section, we present Refine via Intrinsic Self-Verification (ReVISE), an LLM reasoning
framework that self-verifies and refines the reasoning trajectory based on the verification. We first
introduce the problem of interest and a special token coined [refine], which is used for refining the
LLM’s generation (in Section 3.1). Then, we present the core training method, namely the two-stage
curricula (in Section 3.2) and the test-time inference strategy (in Section 3.3). The overview of
ReVISE is depicted in Figure 1.

3

Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

3.1 PROBLEM SETUP: LEARNING TO VERIFY AND REFINE

We describe the problem setup of our interest, i.e., self-verification and refinement. Given an input
x, the initial output yinit is sampled from the LLM M, i.e., yinit ∼ M(·|x), where the reasoning
path is included in yinit. The goal is to train an LLM that verifies the correctness of yinit and
decides whether to terminate generation or continue generating by refining its reasoning. To this
end, we introduce a special token [refine] that determines whether to proceed with refinement.
Specifically, given yinit, the model verifies its correctness by predicting v ∼ M(·|yinit, x), where
v ∈ {[eos], [refine]}, allowing it to either terminate generation by predicting [eos] or continue
generating by refining its reasoning by outputting [refine]. If refinement is needed, the model
generates a revised response yrefined ∼ M(·|[refine], yinit, x), completing the correction cycle.
Note that this modeling has distinct advantages as one can access the model’s verification confidence
of v.

3.2 REVISE: REFINE VIA INTRINSIC SELF-VERIFICATION

We first describe our core training pipeline of ReVISE, namely the structured curriculum based on
online preference learning. As ReVISE involves two challenging tasks (i.e., self-verification and
refinement), we propose two-stage curricula. In the first stage, we train the LLM to intrinsically
self-verify its generation by predicting the [eos] or [refine] tokens. Then, at the second stage, we
continually train this LLM to correct the generation when the output reasoning is wrong. For efficient
and stable training, we employ preference optimization (i.e., learning from preference-based positive
and negative pairs) based on our proposed preference data collection strategy. This allows us to
perform structured preference learning without relying on reinforcement learning (RL), which can be
computationally extensive and unstable (Rafailov et al., 2023).

Stage 1: Learning to verify self-generations. Given an initial LLM M0 and a supervised fine-tuning
dataset D = {(xi, yi)}i consisting of input-label pairs (including reasoning traces), our goal is to
construct preference pairs for training M0. Specifically, for each input x, we generate a positive
output y+ and a negative output y−. To achieve this, we first sample multiple responses from M0.
This allows us to obtain both correct reasoning outputs ycorrect and incorrect ones ywrong, which are
identified using the ground-truth answer y. Using these outputs, we construct a preference dataset
by distinguishing two cases: (i) when the model generates the correct answer ycorrect, predicting
[eos] is preferred over [refine], and (ii) vice versa for incorrect answers. Concretely, given an input
x with its correct reasoning output ycorrect and an incorrect output ywrong, we define the preference
triplets (x, y+, y−) as: {(

x, ŷ ⊕ [eos], ŷ ⊕ [refine]
)
, if ŷ = ycorrect(

x⊕ ŷ, [refine], [eos]
)
, if ŷ = ywrong

where ⊕ is the concatenation operator. Based on the proposed collection strategy, we generate a
preference dataset Dverify for training the intrinsic verification of the LLM.

To this end, we jointly optimize the supervised fine-tuning loss with the direct preference optimization
(DPO; Rafailov et al., 2023) loss. Specifically, for a given preference dataset D, the SFT and DPO
preference losses are defined as:

LSFT(D) := −E(x,y+)∼D logM(y+|x)

LPref(D) := −E(x,y+,y−)∼D

[
σ
(
r(x, y+)− r(x, y−)

)]
where r(x, y) = β log

M(y | x)
M0(y | x)

,

where β ∈ R+ is hyper-parameter controlling proximity to the base model M0 and σ is the logistic
function. It is worth noting that SFT loss only focuses on minimizing the negative log-likelihood of
the positive output. Then, our training objective for self-verification is as:

Lverify := LSFT(Dverify) + λ LPref(Dverify) (1)

where λ ∈ R+ is a loss balancing hyperparameter. Here, we denote the initial model M0 trained
with Lverify as M1, which is the output model of first curricula.

4

Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

Table 1: Accuracy (%) for ReVISE (Ours) and other baselines, including Few-shot CoT, SFT, RFT,
STAR+ trained models. We consider two math reasoning benchmarks, GSM8K (Cobbe et al., 2021)
and MATH-500 (Lightman et al., 2023). MATH-500 is a subset of the original MATH bench-
mark (Hendrycks et al., 2021). Maj@K indicates that majority voting for K samples, exceptionally
ReVISE used own weighted majority voting system as described in Section 3.3. The bold indicated
the best result within the group.

Llama-3.2-1B Llama-3.1-8B

GSM8K MATH-500 MATH-500

Methods Maj@1 Maj@3 Maj@5 Maj@1 Maj@3 Maj@5 Maj@1 Maj@3 Maj@5

Few-shot CoT 5.7 6.8 7.2 3.0 2.6 3.2 23.4 22.2 23.2
SFT (Brown et al., 2020a) 22.1 23.5 26.4 10.4 10.6 11.4 27.8 31.0 33.2
RFT (Yuan et al., 2023) 26.2 26.8 28.6 12.6 12.4 12.8 30.8 33.2 35.6
STaR+ (Zelikman et al., 2022) 26.2 27.1 29.9 11.4 13.1 13.4 30.4 31.8 32.8
ReVISE (Ours) 28.1 31.3 32.8 13.4 14.0 14.8 33.6 36.0 37.6

Stage 2: Learning to correct self-generations. We now describe how to train ReVISE to acquire
another core ability: self-correction. Similar to self-verification, we perform preference learning
using the same loss function. To this end, we aim to construct a new preference dataset, denoted as
Dcorrect. The core idea consists of two main components. First, the curriculum learning: we utilize
outputs generated by the model M1 and initialize stage 2 training from M1. Second, to learn how to
correct incorrect outputs, we repurpose the wrong reasoning paths ywrong used in stage 1 to construct
the dataset.

Concretely, we consider two possible cases: whether the initial response is correct ycorrect or incorrect
ywrong. If the initial response is correct ycorrect, we construct preference data as same as stage 1,
i.e., discouraging the generation of [refine] and encouraging [eos]. The key case is when the
initial response is incorrect ywrong. In this case, we need to have a positive preference sample that
refines the incorrect reasoning ywrong with the correct reasoning. To achieve this, we concatenate the
ground-truth label y to the response. Formally, the preference pairs are defined as:{(

x, ŷ ⊕ [eos], ŷ ⊕ [refine]
)
, if ŷ = ycorrect(

x⊕ ŷ, [refine]⊕ y, [eos]
)
, if ŷ = ywrong

where y is the ground-truth label. Using the self-correction preference dataset Dcorrect, we train the
final model M2 from M1 with the following correction loss:

Lcorrect := LSFT(Dcorrect) + λ LPref(Dcorrect). (2)

It is worth noting that stage 2 explicitly defines when and how refinements should be applied,
preventing overgeneration and improving response accuracy. By distinguishing between necessary
and unnecessary refinements, the model ensures efficient self-correction while simulating multi-step
reasoning for complex scenarios.

Furthermore, our dataset collection strategy shares similarities with recent backtracking methods in
that incorrect initial generations are utilized to create negative pairs (Zhang et al., 2024c). We also
observe that leveraging past failure trajectories aids in ultimately achieving successful reasoning. In
this regard, we believe that applying ReVISE to safety-critical applications, akin to backtracking, is
an interesting future direction, where our proposed curriculum learning and explicit self-verification
stage can contribute to developing safer models.

3.3 VERIFICATION CONFIDENCE-AWARE SAMPLING

We propose an inference method for models trained with ReVISE. The key idea is to calibrate the
standard sampling-based scoring approach using the self-verification confidence. Specifically, we
apply this method to majority voting, where N samples are generated, and the most frequent prediction
is selected. Unlike conventional approaches, our method explicitly accesses the self-verification
confidence, as our model not only generates an answer but also determines its correctness by producing
either an [eos] or [refine] token. This allows us to directly obtain the probability associated with
self-verification, enabling confidence-weighted aggregation for more reliable predictions.

5

Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

Concretely, given an input x, we generate N candidate answers Y = {y1, y2, . . . , yN} from the LLM
at stage 2, denoted as M for simplicity, where each yi is sampled as yi ∼ M(·|x). To refine the
selection process, we leverage the softmax probability of the verification (i.e., the probability of [eos]
token), denoted as follows:

ci = M([eos]|yi, x),
as a confidence score. Instead of selecting the most frequent prediction, we accumulate these scores
by summing the confidence values of identical answers, leading to the final prediction as follows:

y∗ = argmax
y∈Y

∑
i:yi=y

ci.

This approach calibrates the traditional majority voting method by weighting predictions based on
their model-derived confidence, showing effective scaling at test time.

4 EXPERIMENTS

We provide an empirical evaluation of ReVISE by investigating the following questions:

• Can ReVISE enhance reasoning performance? (Table 1)
• Can ReVISE improve performance further through test-time compute scaling? (Figures 5, 8)
• Can ReVISE do self-verify and self-refine? (Figures 3, 7)

Training setup. For the main experiment, we train ReVISE on Llama-3 models with 1B and 8B
parameters, which are not instruction-tuned. We avoid using instruction-tuned models to prevent
potential bias from exposure to the gold data of the tasks (Wang et al., 2024). For this reason, the
models were first supervised fine-tuned using the labeled dataset, followed by fine-tuning with each
respective method. For GSM8K (Cobbe et al., 2021), we train ReVISE using the original training
split. For MATH (Hendrycks et al., 2021), we train ReVISE using a 50k subset of MetaMath (Yu
et al., 2024), an augmented version of MATH, and use a 3k subset for the validation set, respectively.
Here, MetaMath was employed to mitigate the performance degradation caused by the limited size of
the original MATH.

Baselines. We compare our method against several baseline approaches: Supervised Fine-Tuning
(SFT), RFT(Yuan et al., 2023), and STaR+. In RFT, fine-tuning is performed on supervised fine-
tuning data D and correctly generated samples selected from k completions for each input in the
training set by a tuned model. Like RFT, STaR (Zelikman et al., 2022) trains on correctly generated
samples, including self-generated rationales given a hint (rationalization). However, unlike RFT,
STaR iteratively refines this process without relying on D. Since both ReVISE and RFT utilize
ground truth data D, we introduce an extended version of STaR that incorporates SFT data as a
baseline, referred to as STaR+. Essentially, STaR+ functions as a multi-iteration variant of RFT with
rationalization. We run STaR+ for three iterations, sampling k completions per iteration (GSM8K:
k = 10, MATH: k = 4, GSM240K: k = 1) with a temperature of 0.7 for both RFT and STaR+. We
initialize a model for each iteration from M0 that is supervised fine-tuned with D at each iteration
for STaR+to prevent overfitting.

Evaluation setup. We mainly report Majority Voting at N (Maj@N) as a sampling-based metric,
exceptionally ReVISE used verification confidence-aware majority voting as described in Section 3.3
(unless otherwise specified). We evaluate ReVISE and baselines on GSM8K (Cobbe et al., 2021) and
MATH-500 (Hendrycks et al., 2021), a widely used evaluation benchmark subset of MATH.

4.1 MAIN RESULTS

We first present the main result by comparing the math problem-solving performance with other
baselines. Here, we mainly compare with various fine-tuning schemes and show that ReVISE can be
jointly used with a test-time scaling method to improve the performance further.

As shown in Table 1, we present the reasoning and test-time scaling performance of ReVISE com-
pared to reasoning-enhancing fine-tuning baselines. Overall, ReVISE significantly and consistently
outperforms all prior fine-tuning methods. It is worth noting that for both GSM8K and MATH-500,
ReVISE achieves the highest Maj@1, indicating that ReVISE is already strong without the proposed

6

Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

SFT
RFT
Ours (Simple Maj.)

STAR+

Ours

Ac
cu

ra
cy

 (%
)

25

30

35

Number of sample (N)
1 2 4 8

(a) Llama-3.2-1B at GSM8K

Ac
cu

ra
cy

 (%
)

30

35

40

Number of sample (N)
1 2 4 8

(b) Llama-3.1-8B at MATH

Figure 2: Test-time scaling comparison between ReVISE (Ours) and baselines, including SFT, RFT,
STAR+, and majority voting for ReVISE (Ours (Simple Maj.)) at sampling sizes N ∈ {1, 2, 3, 4, 8}.
(a) Results for Llama-3.2-1B on the GSM8K dataset. (b) Results for Llama-3.2-8B on the MATH
dataset. ReVISE consistently outperforms baselines across all sample sizes and datasets.

sampling scheme. For instance, ReVISE attains 33.6% for Maj@1, significantly outperforming SFT
(30.4%) and few-shot CoT (23.4%) on MATH-500 with Llama-3.1-8B. In addition, with the proposed
confidence-aware majority voting, ReVISE marked a 4.0% gain after refinement and consistently
outperforms other baselines, under 5 sampled answers. These results demonstrate that ReVISE
enhances problem-solving accuracy and improves self-sampling abilities.

4.2 INFERENCE SCALABILITY OF REVISE

In this section, we evaluate the inference scalability of ReVISE. To this end, we visualize how the
test-time scaling improves as one samples more candidates. Specifically, we conduct experiments
using our method with different sample sizes N ∈ {2, 3, 4, 8} and compare with results of other
baselines using majority voting. As shown in Figure 2, ReVISE achieves significant and consistent
gain in all setups. For instance, ReVISE shows a large gap with the strongest baseline RFT, showing
3.3% of improvement in MATH-500 at N = 8. Furthermore, our method even benefits under limited
number of samples (N = 2), while majority voting does not show improvement. This is because
majority voting does not use confidence and, hence, can not benefit from small samples (e.g., if
all predictions are disjoint, the majority voting does not work). Finally, ReVISE shows scalable
improvements in all model configurations, ranging from relatively small 1B models to large 8B
models. Notably, ReVISE achieves a significant performance gain in the 8B model, suggesting strong
generalization capabilities.

4.3 ADDITIONAL ANALYSIS AND ABLATION

In this section, we provide a detailed analysis of ReVISE to validate the effect of each proposed
component. Unless otherwise specified, we use a Llama-3.2-1B trained on GSM8K across all methods
throughout this section.

Effectiveness of curriculum learning. We validate the effectiveness of the proposed curriculum
learning (in Figure 3). To this end, we train two types of models. First, the model trains without
curriculum by optimizing SFT LSFT and preference LPref loss by using all preference dataset at
once, i.e., Dcorrect. Second, we train the model only using the first verification loss, i.e., Dverify

(note that self-verification already enables the model to generate the answer but does not know how
to correct the generation). As shown in Figure 3a, the curriculum is indeed showing a significant
improvement over no curriculum baseline (even the model has used the same preference dataset);
two-stage curricula improve the performance from 22.6% to 28.1%.

To further investigate this phenomenon, we evaluate the self-verification accuracy of each method,
which measures the model’s ability to predict whether its own output is correct. In Figure 3b, we
report the verification accuracy in terms of the Area Under the Receiver Operating Characteristic
Curve (AUROC) for three models. Notably, the model without curriculum learning achieves an

7

Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

Ac
cu

ra
cy

 (%
)

10

15

20

25

30

w/o Cur. Stage 1 Stage 2

(a) Accuracy

AU
R

O
C

 (%
)

65

70

75

80

w/o Cur. Stage 1 Stage 2

(b) AUROC

Figure 3: Ablation study on curriculum learning in the aspect of (a) accuracy (%) and (b) AUROC
(%). The experiments are conducted using Llama-3.1-1B on the GSM8K dataset. The comparison
includes a model trained without curriculum learning (w/o Cur.), trained for only stage 1 (Stage 1),
and trained using the full two-stage curriculum learning approach (ReVISE) (Stage 2). (a) Accuracy
improves with curriculum learning by mitigating conflicts between competing objectives during early
training stages. (b) AUROC results demonstrate enhanced classification performance of corrected
and incorrect responses and effective transfer from Stage 1 to the final ReVISE model.

Table 2: Results on the GSM8K benchmark for ReVISE and baselines trained on Llama-3.2-1B
Instruct. Except for ReVISE, all methods underperform compared to the zero-shot CoT baselines.

Methods GSM8K GSM240K

Zero-shot CoT 48.6 48.6
SFT 41.9 54.8
RFT 44.0 50.9
ReVISE (Ours) 52.3 59.4

AUROC of 71%, while two-stage curriculum learning improves this to 76%. This suggests that
curriculum learning enhances self-verification, allowing the model to refine its predictions based on
more reliable verification signals. However, we observe that training at stage 2 slightly degrades
verification accuracy, indicating that the self-correction task Dcorrect is particularly challenging and
may lead to catastrophic forgetting (McCloskey & Cohen, 1989). Exploring optimization strategies
that improve self-verification and self-correction without compromising overall performance remains
an interesting direction for future work.

Ac
cu

ra
cy

 (%
)

10

20

30

w/o DPO w/ DPO

Figure 4: Ablation study on DPO loss, evalu-
ated on the GSM8K benchmark. Removing
DPO loss significantly reduces accuracy.

Effectiveness of preference learning. The role of
DPO loss in ReVISE is to guide the model to pre-
fer refining when the initial attempt is incorrect and
terminating otherwise. Additionally, in our DPO
objective, we applied SFT loss to the chosen se-
quence as introduced in Liu et al. (2024) which ap-
plied SFT loss to the selected sequence, LOurs :=
LSFT(D) + λ LPref(D), where λ is a constant. For
ReVISE, such SFT has two roles: to encourage the
model to generate correct answers and learn special
tokens. At the beginning of the training, the model
had zero-initialized knowledge about special tokens,
so SFT accelerated the model’s use of special tokens.
Specifically, ablation experiments without the DPO loss—where only the SFT loss is utilized—in
Figure 4 show that ReVISE without DPO demonstrates significantly lower performance −10.3%
compared to the full-trained ReVISE. This indicates that the DPO loss is critical in ReVISE for
effectively guiding the refinement process.

ReVISE on instruction-tuned models. While we have primally focused on pretrained model and
initialized M0 with the given supervised fine-tuning dataset D due to the possible data contamina-
tion, we also have conducted on experiment on Llama-3.2-1B-Instruct, an instruction-tuned model.

8

Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

Majority Voting
M(Answer)
M([eos]) (Ours)

Ac
cu

ra
cy

 (%
)

27

30

33

Number of samples (N)
1 2 4 8

Figure 5: Inference-time scaling comparison between ReVISE (M([eos]) (Ours)) and inference
metrics. For M(Answer) and M([eos]) (Ours), we have done weighted majority voting. ReVISE
consistently outperforms other inference metrics, and ReVISE’s sampling method using weighted
majority voting exceeds the performance of majority voting. Experiments are conducted using the
Llama-3.2-1B model.

Interestingly, as shown in Table 2, all fine-tuning methods, except for ReVISE, underperform the
zero-shot CoT baseline when training with GSM8K. This outcome aligns with the widely recognized
challenge that fine-tuning instruction-tuned models often leads to catastrophic forgetting, hindering
their ability to learn new information effectively. Meanwhile, ReVISE remains notably resistant
to this issue. We hypothesize that this advantage stems from how ReVISE utilizes the gold label
y—only incorporating it as a revised second-attempt completion rather than directly fine-tuning it. In
contrast, baselines such as SFT, RFT, and STaR+ rely on fine-tuning the base model on D, which
becomes problematic when the target model’s performance is already strong, as it struggles to gain
further improvements from D.

To mitigate forgetting, we also trained the model using GSM240K, a subset of MetaMath dataset
(Yu et al., 2024), which expands the original data about 30-fold by rephrasing questions and answers.
As shown in Table 2, while training with GSM240K improved the performance of the SFT baseline,
ReVISE still exhibited better performance. This result suggests that ReVISE can adapt to various
data characteristics, even in heavily augmented settings.

Incorrect
Correct

Fr
eq

ue
nc

y

M([eos]) - M([refine])
−1 0 1

Figure 6: Distribution histrogram of
M([eos])−M([refine]). 0 is the threshold
of ReVISE trigger intrinsically refine or not.
Experiments are conducted using the Llama-
3.2-1B model.

Analysis on the self-verification confidence of
ReVISE. We further analyze the confidence dis-
tribution in self-verification to assess whether the
model’s confidence is well aligned with actual cor-
rectness. To this end, we visualize the probability
gap between [eos] and [refine], simply defined as
M([eos]) − M([refine]). As shown in Figure 6,
incorrect responses tend to have lower [eos] probabil-
ities, whereas correct responses exhibit higher [eos]
probabilities. This demonstrates the model’s intrin-
sic ability to assess its own correctness. Moreover,
these results suggest that confidence serves as a reli-
able metric for calibrating the sampling score, further
validating the effectiveness of our confidence-aware
sampling method.

Ablation study on confidence-aware sampling. We explore the impact of different score calibrations
during inference by leveraging ReVISE’s self-verification mechanism to enable test-time compute-
scalable inference strategies (see 3.3). Specifically, we compare three scoring schemes for selecting
N-generated samples: (1) weighted majority voting using M([eos]|x), (2) unweighted majority
voting, and (3) scoring based on the model’s predicted answer likelihood. These calibration methods
govern both the selection of candidate answers and the evaluation of their validity.

As shown in Figure 5, M([eos]|x)-based (Ours) score consistently outperforms alternatives across
GSM8K benchmarks. For example, with eight sampled candidates, M([eos]|x)-based scoring
achieves an accuracy of 33.9%, compared to 33.2% (unweighted majority), and 32.7% (likelihood-

9

Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

Ac
cu

ra
cy

 (%
)

24

26

28

First Retry ReVISE

(a) GSM8K

Ac
cu

ra
cy

 (%
)

10

11

12

13

First Retry ReVISE

(b) MATH

Figure 7: Analysis of refinement capability of ReVISE. We compare the accuracy (%) on GSM8K
and MATH when using different decoding approaches. First stops at [refine], Retry re-generates
responses, while ReVISE refines its initial reasoning. The results show that ReVISE improves
accuracy, demonstrating its ability to refine rather than randomly re-generate responses. Experiments
are conducted using the Llama-3.2-1B model.

based). The trend persists across all tested sampling budgets, suggesting strong compatibility with
self-verification mechanisms. This consistent advantage implies M([eos]|x) better aligns with the
model’s intrinsic verification capability to distinguish correct reasoning paths. We carefully hypothe-
size that M([eos]|x) acts as a latent indicator of solution correctness, as premature termination often
correlates with reasoning errors.

Analysis on the refinement. We demonstrate that ReVISE refines its answers based on the initial
attempt rather than randomly generating a new completion. To evaluate this, we compare ReVISE
with two baselines: First and Retry. First terminates decoding at the [refine] token, while Retry
generates a new completion upon encountering [refine]. Specifically, Retry greedily decodes the first
attempt, and if [refine] appears, it samples a new completion with a temperature of 0.7 following
the prompt x. In contrast, both First and ReVISE greedily generate completions. As shown in Figure
7, ReVISE outperforms both First and Retry. This result highlights that ReVISE does not generate
new responses arbitrarily but instead meaningfully refines and improves upon its initial answer.

5 DISCUSSION AND CONCLUSION

In this paper, we introduce Refine via Intrinsic Self-Verification (ReVISE), a novel framework that
enables Large Language Models (LLMs) to perform self-verification and self-correction during
inference. Through a structured curriculum learning approach, we demonstrated how LLMs can
progressively learn to verify their reasoning and improve their outputs. Our results across various
reasoning benchmarks show that ReVISE significantly improves first-attempt accuracy while main-
taining efficiency. Furthermore, the self-verification mechanism and a confidence-aware decoding
strategy enhance model performance without introducing additional computational overhead.

REFERENCES

Maryam Amirizaniani, Elias Martin, Maryna Sivachenko, Afra Mashhadi, and Chirag Shah. Do llms
exhibit human-like reasoning? evaluating theory of mind in llms for open-ended responses. arXiv
preprint arXiv:2406.05659, 2024.

Gregor Bachmann and Vaishnavh Nagarajan. The pitfalls of next-token prediction. 2024.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. 2020a.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. 2020b.

10

Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

Huanqia Cai, Yijun Yang, and Zhifeng Li. System-2 mathematical reasoning via enriched instruction
tuning. arXiv preprint arXiv:2412.16964, 2024.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to solve
math word problems. arXiv preprint arXiv:2110.14168, 2021.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
arXiv preprint arXiv:2407.21783, 2024.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset. 2021.

Arian Hosseini, Xingdi Yuan, Nikolay Malkin, Aaron Courville, Alessandro Sordoni, and Rishabh
Agarwal. V-star: Training verifiers for self-taught reasoners. arXiv preprint arXiv:, 2024.

Jiaxin Huang, Shixiang Shane Gu, Le Hou, Yuexin Wu, Xuezhi Wang, Hongkun Yu, and Jiawei Han.
Large language models can self-improve. arXiv preprint arXiv:2210.11610, 2022.

Jie Huang, Xinyun Chen, Swaroop Mishra, Huaixiu Steven Zheng, Adams Wei Yu, Xinying Song,
and Denny Zhou. Large language models cannot self-correct reasoning yet. arXiv preprint
arXiv:2310.01798, 2023.

Jie Huang, Xinyun Chen, Swaroop Mishra, Huaixiu Steven Zheng, Adams Wei Yu, Xinying Song,
and Denny Zhou. Large language models cannot self-correct reasoning yet. 2024.

Aaron Jaech, Adam Kalai, Adam Lerer, Adam Richardson, Ahmed El-Kishky, Aiden Low, Alec
Helyar, Aleksander Madry, Alex Beutel, Alex Carney, et al. Openai o1 system card. arXiv preprint
arXiv:2412.16720, 2024.

Sehoon Kim, Karttikeya Mangalam, Suhong Moon, Jitendra Malik, Michael W Mahoney, Amir
Gholami, and Kurt Keutzer. Speculative decoding with big little decoder. 2024.

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yutaka Matsuo, and Yusuke Iwasawa. Large
language models are zero-shot reasoners. Advances in neural information processing systems, 35:
22199–22213, 2022.

Aviral Kumar, Vincent Zhuang, Rishabh Agarwal, Yi Su, John D Co-Reyes, Avi Singh, Kate Baumli,
Shariq Iqbal, Colton Bishop, Rebecca Roelofs, Lei M Zhang, Kay McKinney, Disha Shrivastava,
Cosmin Paduraru, George Tucker, Doina Precup, Feryal Behbahani, and Aleksandra Faust. Training
language models to self-correct via reinforcement learning. arXiv preprint arXiv:, 2024.

Yann LeCun. A path towards autonomous machine intelligence. Open Review, 2022.

Zhenwen Liang, Ye Liu, Tong Niu, Xiangliang Zhang, Yingbo Zhou, and Semih Yavuz. Improving
llm reasoning through scaling inference computation with collaborative verification. arXiv preprint
arXiv:2410.05318, 2024.

Hunter Lightman, Vineet Kosaraju, Yura Burda, Harri Edwards, Bowen Baker, Teddy Lee, Jan
Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let’s verify step by step. arXiv preprint
arXiv:2305.20050, 2023.

Zhihan Liu, Miao Lu, Shenao Zhang, Boyi Liu, Hongyi Guo, Yingxiang Yang, Jose Blanchet,
and Zhaoran Wang. Provably mitigating overoptimization in rlhf: Your sft loss is implicitly an
adversarial regularizer. arXiv preprint arXiv:2405.16436, 2024.

Scott C Lowe. System 2 reasoning capabilities are nigh. In The First Workshop on System-2
Reasoning at Scale, NeurIPS’24, 2024.

Liangchen Luo, Yinxiao Liu, Rosanne Liu, Samrat Phatale, Harsh Lara, Yunxuan Li, Lei Shu, Yun
Zhu, Lei Meng, Jiao Sun, et al. Improve mathematical reasoning in language models by automated
process supervision. arXiv preprint arXiv:2406.06592, 2024.

11

Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

Trung Quoc Luong, Xinbo Zhang, Zhanming Jie, Peng Sun, Xiaoran Jin, and Hang Li. Reft:
Reasoning with reinforced fine-tuning. arXiv preprint arXiv:2401.08967, 2024.

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler Hallinan, Luyu Gao, Sarah Wiegreffe, Uri
Alon, Nouha Dziri, Shrimai Prabhumoye, Yiming Yang, et al. Self-refine: Iterative refinement
with self-feedback. 2023.

Michael McCloskey and Neal J Cohen. Catastrophic interference in connectionist networks: The
sequential learning problem. The Psychology of Learning and Motivation, 1989.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Bellemare,
Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-level control
through deep reinforcement learning. nature, 518, 2015.

Yuxiao Qu, Tianjun Zhang, Naman Garg, and Aviral Kumar. Recursive introspection: Teaching
language model agents how to self-improve. arXiv preprint arXiv:, 2024.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and Chelsea
Finn. Direct preference optimization: Your language model is secretly a reward model. 2023.

Ramteja Sajja, Yusuf Sermet, Muhammed Cikmaz, David Cwiertny, and Ibrahim Demir. Artificial
intelligence-enabled intelligent assistant for personalized and adaptive learning in higher education.
Information, 15(10):596, 2024.

Noah Shinn, Federico Cassano, Ashwin Gopinath, Karthik Narasimhan, and Shunyu Yao. Reflexion:
Language agents with verbal reinforcement learning. Advances in Neural Information Processing
Systems, 36, 2024.

Charlie Snell, Jaehoon Lee, Kelvin Xu, and Aviral Kumar. Scaling llm test-time compute optimally
can be more effective than scaling model parameters. arXiv preprint arXiv:2408.03314, 2024.

Yifan Song, Da Yin, Xiang Yue, Jie Huang, Sujian Li, and Bill Yuchen Lin. Trial and error:
Exploration-based trajectory optimization for llm agents. arXiv preprint arXiv:2403.02502, 2024.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, Ed Chi, Sharan Narang, Aakanksha Chowdh-
ery, and Denny Zhou. Self-consistency improves chain of thought reasoning in language models.
arXiv preprint arXiv:2203.11171, 2022.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc V Le, Ed H Chi, Sharan Narang, Aakanksha
Chowdhery, and Denny Zhou. Self-consistency improves chain of thought reasoning in language
models. In The Eleventh International Conference on Learning Representations, 2024.

Jason Wei, Yi Tay, Rishi Bommasani, Colin Raffel, Barret Zoph, Sebastian Borgeaud, Dani Yogatama,
Maarten Bosma, Denny Zhou, Donald Metzler, et al. Emergent abilities of large language models.
arXiv preprint arXiv:2206.07682, 2022.

Chengxing Xie and Difan Zou. A human-like reasoning framework for multi-phases planning task
with large language models. arXiv preprint arXiv:2405.18208, 2024.

Haoyi Xiong, Jiang Bian, Yuchen Li, Xuhong Li, Mengnan Du, Shuaiqiang Wang, Dawei Yin, and
Sumi Helal. When search engine services meet large language models: visions and challenges.
IEEE Transactions on Services Computing, 2024.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Tom Griffiths, Yuan Cao, and Karthik Narasimhan.
Tree of thoughts: Deliberate problem solving with large language models. Advances in Neural
Information Processing Systems, 36, 2024.

Longhui Yu, Weisen Jiang, Han Shi, YU Jincheng, Zhengying Liu, Yu Zhang, James Kwok, Zhenguo
Li, Adrian Weller, and Weiyang Liu. Metamath: Bootstrap your own mathematical questions for
large language models. 2024.

Zheng Yuan, Hongyi Yuan, Chengpeng Li, Guanting Dong, Keming Lu, Chuanqi Tan, Chang Zhou,
and Jingren Zhou. Scaling relationship on learning mathematical reasoning with large language
models. arXiv preprint arXiv:2308.01825, 2023.

12

Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

Eric Zelikman, Yuhuai Wu, Jesse Mu, and Noah D. Goodman. Star: Bootstrapping reasoning with
reasoning. 2022.

Di Zhang, Xiaoshui Huang, Dongzhan Zhou, Yuqiang Li, and Wanli Ouyang. Accessing gpt-4 level
mathematical olympiad solutions via monte carlo tree self-refine with llama-3 8b. arXiv preprint
arXiv:2406.07394, 2024a.

Kechi Zhang, Jia Li, Ge Li, Xianjie Shi, and Zhi Jin. Codeagent: Enhancing code generation
with tool-integrated agent systems for real-world repo-level coding challenges. arXiv preprint
arXiv:2401.07339, 2024b.

Yiming Zhang, Jianfeng Chi, Hailey Nguyen, Kartikeya Upasani, Daniel M Bikel, Jason Weston, and
Eric Michael Smith. Backtracking improves generation safety. arXiv preprint arXiv:2409.14586,
2024c.

13

Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

A EXPERIMENTAL DETAILS

In this section, we describe the experimental details of Section 4, including ReVISE and the baselines.

Dataset details. In this section, we describe the dataset we used in training and evaluation. Also,
explain how we generated the additional datasets.

• Grade School Math 8K (GSM8K). The GSM8K dataset (Cobbe et al., 2021) consists of 8,790
high-quality grade-school math word problems. We used the provided train and test splits,
ensuring consistency across all experiments. The dataset serves as a benchmark for evaluating the
arithmetic and reasoning capabilities of language models.

• MATH. The MATH dataset (Hendrycks et al., 2021) is a challenging collection of problems
from high school mathematics competitions, covering diverse topics such as algebra, geometry,
calculus, and statistics. We utilized the original train and test splits, which include approximately
12,500 problems. Due to the dataset’s complexity, it effectively evaluates the model’s ability to
handle higher-level mathematical reasoning.

• MetaMath. MetaMath (Yu et al., 2024) is an augmented version of the MATH and GSM dataset,
designed to address the challenges posed by the limited size of the original dataset. We selected a
50k subset of MetaMath for training and sampled 3k problems for the validation set. MetaMath
includes additional examples generated using synthetic data augmentation techniques, such as
problem paraphrasing and structural variations, to enhance diversity and improve generalization.
This augmentation mitigates performance degradation associated with small datasets while
maintaining the original problem difficulty and format.

Training details of ReVISE We use AdamW optimizer with a learning rate lr ∈ {10−4, 10−5}
with 10% warm up and cosine decay and train it for one epoch. We trained with batch size 32 for
fine-tuning and 64 for preference tuning . For the λ constant for SFT loss, we used λ = 0.1. During
the training, for the data sampling phase, we sampled 10 times for each sample in GSM8K and 4
times for each sample in MATH.

Training model details. We mainly used the open-source Large Language Models (LLMs) from
Llama-family. Specifically we used meta-llama/Llama-3.2-1B, meta-llama/Llama-3.1-8B which are
not instruction-tuned and meta-llama/Llama-3.2-1B-Instruct, which is instruction-tuned. We used the
model checkpoint from huggingface library.

Evaluation details. Used lm-eval-harness for greedy decoding experiments and used our code to
evaluate models in sampling settings. Since the output depends on the evaluation batch size, we fixed
the batch size to 128 for a fair comparison.

• GSM8K. Used the test split as a benchmark dataset.

• MATH-500. The MATH-500 dataset is a curated collection of 500 MATH dataset. For our
experiments, we used Math-500 exclusively for evaluation purposes.

Resource details. For the main development we mainly use Intel(R) Xeon(R) Platinum 8480+ CPU
@ 790MHz and a 8 NVIDIA H100 GPUs. Additionally, we used NVIDIA RTX4090 GPUs for
evaluation.

Baseline details.

• SFT We fine-tuned the model using a language modeling loss, exploring learning rates from 1e−6

to 1e−4, with epochs ranging from 1 to 3 and a batch size of 32.

• RFT We sampled ten completions for GSM8K, one for GSM240K, and four for MATH-50K.
The model was trained for one epoch on the collected dataset with a fixed learning rate of 1e−5.

• STaR+ We sampled the same number of samples as in RFT. The outer loop was fixed to 3 for all
datasets, with one epoch per outer loop. Rationalization was performed with a hint, where the
answer was provided except for the rationale, which served as the hint. The learning rate was
fixed at 1e−5.

14

Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

B ADDITIONAL RESULTS

B.1 ITERATIVE REFINING SEQUENTIALLY AT TEST TIME.

Ac
cu

ra
cy

 (%
)

30

33

Number of Tries
1 2 3

(a) Llama-3.2-8B fine-tuned in MATH
and evaluated at MATH-500

Ac
cu

ra
cy

 (%
)

54

57

60

Number of Tries
1 2 3

(b) Llama-3.2-1B-instruct evaluated at
GSM8K

Figure 8: Accuracy improvements through iterative refinement. The plot shows the accuracy (%) at
GSM8K and MATH-500 of ReVISE across multiple rounds of iterative refinement (1, 2, and 3 tries).

Although ReVISE is trained to refine its output in a single, we explore its potential for iterative
refinement. Specifically, after generating the second attempt, we append it to the original prompt x
and treat it as the first-attempt output. This allows the model to either output [eos] to terminate the
sequence or generate a third attempt following the same process, effectively enabling multiple rounds
of refinement. As shown in Figure 8, in MATH-500, ReVISE trained on Llama-3.1-8B’s accuracy
consistently improves as the model iteratively refines its responses up to 3 times.

This observation suggests the potential for training a model explicitly designed for multi-round
iterative refinement to enhance the iterative refinement even more. By incorporating iterative refine-
ment directly into the training process, the model could learn to self-correct more effectively across
multiple rounds. We leave this direction as an exciting avenue for future work.

B.2 REVISE RESULTS EXAMPLE

B.2.1 REFINEMENT VIA INTRINSIC SELF-VERIFICATION EXAMPLE

GSM8K

GSM8K test sample ReVISE trained on Llama-3.2-1B

Question Mrs. Tatiana owns a grocery store that sells different fruits and vegetables,
which includes carrots. The price of carrots in the grocery store increases
by 5% of the original price every year. What would be the price of carrots
after three years if it was $120 initially? (Round to the nearest integer)
Let’s think step by step. Put your final answer at the end with ’The answer
is: .’

Initial Response The price of carrots increases by 5/100 * $120 = $6. So the price of carrots
after one year is 120+6 = $126. The price of carrots after two years is
126+6 = $132. The answer is: 132

Verify [refine]

Refined Response The price of carrots increases by 5/100*$120 = $6 per year.The price after
one year is $120 + $6 = $126 The price after two years is $126 + $6 = $132.
The price after three years is $132 + $6 = $138. The answer is: 138

Target Answer 138

15

Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

MATH

MATH test sample ReVISE trained on Llama-3.2-1B

Question Ten treeks weigh as much as three squigs and one goolee. Two treeks and
one goolee are equal in weight to one squig. The combined weight of how
many treeks equals the weight of one squig? Let’s think step by step. Put
your final answer at the end with ’The answer is: .’

Initial Response We can set up a system of equations to solve this problem. Let t be the
weight of one treek, s be the weight of one squig, and g be the weight of one
goolee. From the given information, we can write the following equations:
10t = 3s+ g 2t+ g = s We can solve this system of equations to find the
weight of one treek in terms of the weight of one squig. Multiplying the
second equation by 3, we get: 6t+ 3g = 3s Subtracting the first equation
from this equation, we get: 6t+3g−10t = 3s− (3s+ g) Simplifying, we
get: −4t + 3g = −g Adding 4t to both sides, we get: 3g = 4t Dividing
both sides by 3, we get: g = 4

3 t Substituting this into the second equation,
we get: 2t + 4

3 t = s Multiplying both sides by 3, we get: 6t + 4t = 3s
Combining like terms, we get: 10t = 3s Since we know that 10t = 3s+ g,
we can substitute g = 4

3 t into this equation: 10t = 3s + 4
3 t Multiplying

both sides by 3, we get: 30t = 9s+ 4t Subtracting 4t from both sides, we
get: 26t = 9s Dividing both sides by 9, we get: 26

9 t = s So, the weight
of one treek is equal to 9

26 times the weight of one squig. Therefore, the
combined weight of how many treeks equals the weight of one squig is 9

26 .

The answer is:
9

26

Verify [refine]

Refined Response Let t, s, and g represent the weights of one treek, one squig, and one
goolee, respectively. From the given information, we have the following
equations: 10t = 3s + g (Equation 1) 2t + g = s (Equation 2) We want
to find the weight of one treek in terms of the weight of one squig, so we
need to solve for t in terms of s. We can start by solving Equation 2 for
g in terms of t and s: g = s − 2t Substituting this into Equation 1, we
have: 10t = 3s+ (s− 2t) Simplifying, we get: 10t = 4s− 2t Combining
like terms, we have: 12t = 4s Dividing both sides by 4, we get: 3t = s
Therefore, the weight of one treek is equal to 1

3 of the weight of one squig.
The answer is: 3

Target Answer 3

B.2.2 STOP VIA INTRINSIC SELF-VERIFICATION EXAMPLE

GSM8K

GSM8K test sample ReVISE trained on Llama-3.2-1B

Question Jen is planning to sell her root crops. She has 6 yams which can be sold at
$1.5 each, 10 sweet potatoes that cost $2 each, and 4 carrots which cost
$1.25 each. If she sells everything, how much will she earn?

Initial Response Jen earns 6 x $1.5 = $9 for the yams. She earns 10 x $2 = $20 for the sweet
potatoes. She earns 4 x $1.25 = $5 for the carrots. Therefore, Jen earns $9
+ $20 + $5 = $34 in all. The answer is: 34

Verify [eos]

Target Answer 34

16

Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

MATH

MATH test sample ReVISE trained on Llama-3.2-1B

Question Evaluate (1 + 2i)6− 3i. Let’s think step by step. Put your final answer at
the end with ’The answer is:.’

Initial Response (1 + 2i)6 − 3i = 6 + 12i − 3i = 6 + 9i = 6 + 9i . The answer is:

6 + 9i .

Verify [eos]

Target Answer 6 + 9i

C THE FEW-SHOT PROMPT USED FOR EVALUATION

Few-shot prompt for GSM8K:

Given the following problem, reason and give a final answer to the
problem.↪→

Problem: There are 15 trees in the grove. Grove workers will plant trees
in the grove today. After they are done, there will be 21 trees. How
many trees did the grove workers plant today?

↪→
↪→
Your response should end with "The final answer is [answer]" where

[answer] is the response to the problem.↪→
There are 15 trees originally. Then there were 21 trees after some more

were planted. So there must have been 21 - 15 = 6. The final answer
is 6

↪→
↪→

Given the following problem, reason and give a final answer to the
problem.↪→

Problem: If there are 3 cars in the parking lot and 2 more cars arrive,
how many cars are in the parking lot?↪→

Your response should end with "The final answer is [answer]" where
[answer] is the response to the problem.↪→

There are originally 3 cars. 2 more cars arrive. 3 + 2 = 5. The final
answer is 5↪→

Given the following problem, reason and give a final answer to the
problem.↪→

Problem: Leah had 32 chocolates and her sister had 42. If they ate 35,
how many pieces do they have left in total?↪→

Your response should end with "The final answer is [answer]" where
[answer] is the response to the problem.↪→

Originally, Leah had 32 chocolates. Her sister had 42. So in total they
had 32 + 42 = 74. After eating 35, they had 74 - 35 = 39. The final
answer is 39

↪→
↪→

Given the following problem, reason and give a final answer to the
problem.↪→

Problem: Jason had 20 lollipops. He gave Denny some lollipops. Now Jason
has 12 lollipops. How many lollipops did Jason give to Denny?↪→

Your response should end with "The final answer is [answer]" where
[answer] is the response to the problem.↪→

Jason started with 20 lollipops. Then he had 12 after giving some to
Denny. So he gave Denny 20 - 12 = 8. The final answer is 8↪→

Given the following problem, reason and give a final answer to the
problem.↪→

Problem: Shawn has five toys. For Christmas, he got two toys each from
his mom and dad. How many toys does he have now?↪→

17

Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

Your response should end with "The final answer is [answer]" where
[answer] is the response to the problem.↪→

Shawn started with 5 toys. If he got 2 toys each from his mom and dad,
then that is 4 more toys. 5 + 4 = 9. The final answer is 9↪→

Given the following problem, reason and give a final answer to the
problem.↪→

Problem: There were nine computers in the server room. Five more
computers were installed each day, from monday to thursday. How many
computers are now in the server room?

↪→
↪→
Your response should end with "The final answer is [answer]" where

[answer] is the response to the problem.↪→
There were originally 9 computers. For each of 4 days, 5 more computers

were added. So 5 * 4 = 20 computers were added. 9 + 20 is 29. The
final answer is 29

↪→
↪→

Given the following problem, reason and give a final answer to the
problem.↪→

Problem: Michael had 58 golf balls. On tuesday, he lost 23 golf balls.
On wednesday, he lost 2 more. How many golf balls did he have at the
end of wednesday?

↪→
↪→
Your response should end with "The final answer is [answer]" where

[answer] is the response to the problem.↪→
Michael started with 58 golf balls. After losing 23 on tuesday, he had

58 - 23 = 35. After losing 2 more, he had 35 - 2 = 33 golf balls.
The final answer is 33

↪→
↪→

Given the following problem, reason and give a final answer to the
problem.↪→

Problem: Olivia has $23. She bought five bagels for $3 each. How much
money does she have left?↪→

Your response should end with "The final answer is [answer]" where
[answer] is the response to the problem.↪→

Olivia had 23 dollars. 5 bagels for 3 dollars each will be 5 x 3 = 15
dollars. So she has 23 - 15 dollars left. 23 - 15 is 8. The final
answer is 8

↪→
↪→

Given the following problem, reason and give a final answer to the
problem.↪→

Problem: Janet’s ducks lay 16 eggs per day. She eats three for breakfast
every morning and bakes muffins for her friends every day with four.
She sells the remainder at the farmers' market daily for $2 per
fresh duck egg. How much in dollars does she make every day at the
farmers' market?

↪→
↪→
↪→
↪→
Your response should end with "The final answer is [answer]" where

[answer] is the response to the problem.↪→

Few-shot prompt for MATH-500:

Problem: Find the domain of the expression \(
\frac{\sqrt{x-2}}{\sqrt{5-x}}. \)↪→

Answer: The expressions inside each square root must be non-negative.
Therefore, \(x-2 \geq 0 \), so \(x \geq 2 \), and \(5-x \geq 0
\), so \(x \leq 5 \). Also, the denominator cannot be equal to zero,
so \(5-x > 0 \), which gives \(x < 5 \). Therefore, the domain of
the expression is \(\boxed{\[2,5\)} \). The answer is
$\boxed{\[2,5\)}$.

↪→
↪→
↪→
↪→
↪→

Problem: If \(\det \mathbf{A} = 2 \) and \(\det \mathbf{B} = 12 \),
then find \(\det (\mathbf{A}\mathbf{B}) \).↪→

Answer: We have that \(\det (\mathbf{A}\mathbf{B}) = (\det
\mathbf{A})(\det \mathbf{B}) = (2)(12) = \boxed{24} \). The answer
is $\boxed{24}$.

↪→
↪→

18

Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

Problem: Terrell usually lifts two 20-pound weights 12 times. If he uses
two 15-pound weights instead, how many times must Terrell lift them
in order to lift the same total weight?

↪→
↪→
Answer: If Terrell lifts two 20-pound weights 12 times, he lifts a total

of \(2 \cdot 12 \cdot 20 = 480 \) pounds of weight. If he lifts two
15-pound weights instead for \(n \) times, he will lift a total of
\(2 \cdot 15 \cdot n = 30n \) pounds of weight. Equating this to
480 pounds, we can solve for \(n \)\: \[30n = 480 \\ \Rightarrow
\quad n = 480 / 30 = \boxed{16} \] The answer is $\boxed{16}$.

↪→
↪→
↪→
↪→
↪→

Problem: If the system of equations \[6x - 4y = a, \\ 6y - 9x = b, \]
has a solution \((x, y) \) where \(x \) and \(y \) are both
nonzero, find \(\frac{a}{b} \), assuming \(b \) is nonzero.

↪→
↪→
Answer: If we multiply the first equation by \(-\frac{3}{2} \), we

obtain \[6y - 9x = -\frac{3}{2}a. \] Since we also know that \(6y
- 9x = b \), we have \[-\frac{3}{2}a = b \Rightarrow \frac{a}{b} =
\boxed{-\frac{2}{3}}. \] The answer is $\boxed{-\frac{2}{3}}$.

↪→
↪→
↪→

Problem: If $2ˆ8=4ˆx$, what is the value of x?
Answer:

19

	Introduction
	Related Work
	Learning to Refine at Test-Time via Intrinsic Self-Verification
	Problem setup: Learning to Verify and Refine
	ReVISE: Refine via Intrinsic Self-Verification
	Verification Confidence-Aware Sampling

	Experiments
	Main Results
	Inference Scalability of ReVISE
	Additional Analysis and Ablation

	Discussion and Conclusion
	Experimental Details
	Additional Results
	Iterative refining sequentially at test time.
	ReVISE Results Example
	Refinement via intrinsic self-verification example
	Stop via intrinsic self-verification example

	The few-shot prompt used for evaluation

