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Abstract

Large Language Models (LLMs) have achieved001
impressive performance through Supervised002
Fine-tuning (SFT) on diverse instructional003
datasets. When training on multiple capa-004
bilities simultaneously, the optimal data mix-005
ture proportions remain underexplored. In006
this work, we propose IDEAL, an Influence-007
based Data Equilibrium Adaptation framework,008
which aims to optimize the mixture propor-009
tions of distinct SFT datasets based on their010
task-specific performance. IDEAL employs a011
machine learning-driven approach based on in-012
fluence function to iteratively refine the data013
allocation strategy, prioritizing datasets that en-014
hance target capabilities. Experiments across015
different capabilities demonstrate that IDEAL016
significantly outperforms conventional uniform017
data allocation strategies, achieving strong im-018
provements across diverse tasks.019

1 Introduction020

Recent advancements in Large Language Models021

(LLMs) have demonstrated their remarkable ability022

to master diverse capabilities (Dong et al., 2023;023

Zhang et al., 2024b; Hu et al., 2023; Mecklenburg024

et al., 2024) through Supervised Fine-Tuning (SFT)025

on instruction-aligned datasets (Liu et al., 2023;026

Lu et al., 2023; Agarwal et al., 2024; Wang et al.,027

2023). However, a critical challenge persists when028

harmonizing diverse capabilities during SFT: the029

optimal mixture proportions of these domains is030

poorly understood. While heuristic solutions such031

as manual data reweighting or rule-based curricu-032

lum learning (Bengio et al., 2009) exist, they suffer033

from scalability limitations and suboptimal task034

balance. Prior attempts to automate data alloca-035

tion, including pretraining-centric methods (Xie036

et al., 2024; Ye et al., 2024), fail to address the037

unique dynamics of SFT—where data-task align-038

ment directly governs cross-domain interference.039

Consequently, a principled framework for resolv-040

Figure 1: IDEAL adjusts data proportions to optimize
model performance, leading to a decrease in loss.

ing data conflicts in multi-capability SFT remains 041

an open problem. 042

To bridge this gap, we propose IDEAL 043

(Influence-based Data Equilibrium Adaptation 044

Learning), a novel framework that dynamically 045

aligns SFT data mixtures with model capabilities. 046

IDEAL employs the influence function (Koh and 047

Liang, 2017)—a second-order optimization tool 048

to optimize the data mix ratios. Unlike previous 049

works use influence function for data sample se- 050

lection (Xia et al., 2024; Zhang et al., 2024a), we 051

instead employ influence function for dataset capa- 052

bility measurement to optimize the data mix ratios. 053

By iteratively refining dataset proportions based 054

on IDEAL, it prioritizes data subsets that syner- 055

gistically enhance target capabilities. This model- 056

aware mechanism adapts to the LLM’s evolving 057

training dynamics, ensuring equilibrium between 058

data efficiency and task balancing. Crucially, our 059

framework operates without costly hyperparame- 060

ter sweeps, enabling scalable multi-capability SFT 061

with theoretical guarantees. 062

Extensive experiments validate IDEAL’s effec- 063

tiveness across diverse capability combinations. On 064

BigBench Hard, GSM8K, HumanEval and IFEval, 065

IDEAL outperforms uniform data blending by 9% 066

on average. Further studies demonstrate the robust- 067

ness of IDEAL by again improving on other initial 068

seed data scale. These results establish our IDEAL 069
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as a critical lever for training generalist LLMs.070

2 Related Works071

Data Mixing. Data mixing optimizes training data072

distributions to enhance multi-task performance.073

Traditional approaches rely on token ratios (Tou-074

vron et al., 2023; Liu et al., 2025) or quality-driven075

selection (Parmar et al., 2024; Chung et al., 2023;076

Engstrom et al., 2024; Xia et al., 2024; Kang077

et al., 2024). Recent learning-based methods for078

LLMs optimize domain weights via proxy models:079

DoReMi (Xie et al., 2024) uses distributionally ro-080

bust optimization on a small proxy model, while081

DOGE (Fan et al., 2023) extends this to domain-082

specific re-weighting. Others derive empirical laws083

from large-scale experiments, such as the mixing084

proportion law in (Ye et al., 2024). However, these085

methods require costly global weight searches and086

often disregard the continuity of data distributions.087

Our work addresses these gaps by gradient-guided088

iterative refinement, enabling efficient adaptation.089

Influence Function. The Influence Function (Ham-090

pel, 1974) provides interpretable connections be-091

tween training data and model behavior. Recent092

work extends it to analyze LLMs: Koh et al. (Koh093

and Liang, 2017) formalize its role in linking094

datasets to performance, while gradient-based ap-095

proximations (Xia et al., 2024; Yu et al., 2024) en-096

able data selection via influence scores despite com-097

putational challenges (Grosse et al., 2023). Build-098

ing on these insights, we propose an efficient influ-099

ence estimator for SFT, optimizing domain weight100

allocation by quantifying how training proportions101

affect multi-task generalization.102

3 Methodology103

3.1 Problem Formulation104

To enhance the capabilities of the base model M0105

within specific domains, we develop corresponding106

high-quality training datasets D1, . . . ,Dn. When107

integrating these diverse datasets for training, chal-108

lenges such as data distribution shifts inevitably109

arise. These shifts can significantly affect the effec-110

tiveness of the model training process. To mitigate111

the data shift, our objective is to determine an opti-112

mal mixing ratio for the training datasets.113

In a common learning approach, the objective is114

to minimize the training cost function:115

θ∗ = argmin
θ
L(Dt, θ) = argmin

θ

1

N

∑
zi∈Dt

L(zi, θ),116

where θ is the parameter of the model and Dtr = 117

[D1, . . . ,Dn] represents the whole training dataset. 118

Let N be the total number of training samples 119

N = |Dtr| = |D1| + · · · + |Dn| = t1 + · · · + tn, 120

where t1, . . . , tn represent the numbers of training 121

samples in datasets D1, ...,Dn, respectively. In an 122

ideal scenario, an optimal solution θ∗ can be found 123

via effective optimization techniques. Inspired by 124

the findings in (Muennighoff et al., 2023), which 125

shows that conducting fewer than 4 training epochs 126

can enhance the model’s performance to a degree 127

comparable to using new data, we train for only 128

1 epoch while simultaneously utilizing downsam- 129

pling and upsampling techniques to adjust the quan- 130

tities of different training datasets. As a result, we 131

model the problem in the following manner: 132

θ∗ = argmin
θ

∑
zi∈Dtr

L(zi, θ) +
∑n

j=1 βj

∑
zi∈Dj

L(zi, θ)
N +

∑n
j=1 βjtj

.

(1)
133

In this formulation, we use β = (β1, . . . , βn) to 134

control the size of the corresponding training data 135

set. Initially, we utilize the entire training dataset 136

to fine-tune the model M0 into M1. Our objective 137

is to understand the impact of β on the model’s 138

performance on the validation set Dref . By apply- 139

ing the chain rule, we can determine the impact 140

of a specific βm ∈ {β1, . . . , βn} on the model’s 141

performance on the validation set Dref : 142

∂L(Dref , θ
∗)

∂βm
=

∂L(Dref , θ
∗)

∂θ∗
∂θ∗

∂βm
. (2) 143

Lemma 1 The impact of a specific βm on the op- 144

timal model parameters θ∗ trained on the training 145

set Dt can be explicitly expressed as (3). 146

As mentioned before, we initialize the β = 147

(0, . . . , 0), we can get the influence of βm on the 148

validation set Dref according to the (2): 149

∂L(Dref , θ
∗)

∂βm
= −∇L(Dref , θ

∗)· ∑
zi∈Dtr

∇2L(zi, θ∗)

−1

∇L(Dm, θ∗),

(4)

150

which is equal to the influence function equation. 151

3.2 Efficient Calculation 152

Evaluating the Gauss-Newton Hessian in the con- 153

text of (4) presents a formidable challenge. Cur- 154

rently, it is computationally infeasible to directly 155

calculate the inverse of the Hessian matrix for the 156
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∂θ∗

∂βm
= −

 ∑
zi∈Dtr

∇2L(zi, θ∗) +
n∑

j=1

βj∇2L(Dj , θ
∗)

−1

∇L(Dm, θ∗). (3)

entire set of parameters. According to K-FAC the-157

ory (Martens and Grosse, 2015; Ueno et al., 2020;158

Zhang et al., 2024a), we use the kronecker product159

to accelerate the iHVP computation. During the160

intermediate state of the calculation, we will ob-161

tain Λ, which captures the variances of the pseudo-162

gradient projected onto each eigenvector of the163

K-FAC approximation. We then identify the ‘im-164

portant’ MLP layers by choosing those with lower165

variances, as these layers exhibit enhanced stability.166

Reducing the number of calculation layers can sig-167

nificantly alleviate the storage pressure. However,168

it will also lead to a relatively small magnitude of169

the final result. To address the above issue, we170

introduce a dynamic scaling vector γ, which lin-171

early scales the maximum and minimum absolute172

value in the calculated β to a predefined value range173

[m,n] , 0 < m < n < 1. We update the β values174

as shown in (5):175

αi =
∂L(Dref , θ

∗)

∂βi
, β = −γ ⊙ α,

γi =sgn(αi)

[
m+

(n−m)(αi −min(α))
max(α)−min(α)

]
.

(5)176

3.3 IDEAL Algorithm177

The complete pipeline of our method shown in178

Algorithm 1. First, we mix all the datasets into179

Dtr. Based on the base model, we train the M1180

model and test it on various benchmarks to identify181

the weak area Dref . We adjust the ratio of the182

training set after calculating the β sequence for183

Dref . Finally, we train the M2 model on the base184

model using the newly adjusted training set. If185

further improvement is desired, the above steps can186

be iterated to get M3, . . . ,MT based on the new187

training set until all the model’s capabilities meet188

the expected standards.189

Algorithm 1 IDEAL Algorithm
Require: Initial model M0, initial training set Dtr =

[D1, ...,Dn], maximum iterations T (or stop criteria).
1: for i = 1 to T do
2: TrainM0 on Dtr until optimal, resulting inMi;
3: Test the performance ofMi;
4: Compute β following (5);
5: Update training set: Dtr ← Dtr +

∑n
j=1 βjDj

6: if stopping criteria met then
7: break
8: end if
9: end for

GSM8K HumanEval BBH IFEval Total

D1 10,000 5,374 6,511 2,000 23,885

D2 4,266 3,768 2,430 4,591 15,055

Table 1: Initial Dataset Statistics.

4 Experiments 190

4.1 Experiment Setup 191

Training Setting. We choose the LLama3.1- 192

8B(Grattafiori et al., 2024) as our base model M0 193

to adopt full fine-tuning. All models/settings train 194

for 1 epoch. For a fair comparison, each experiment 195

is repeated for 5 runs to report average performance. 196

Other settings can be found in Appendix A.1. 197

Dataset Preparetion. We select reasoning, mathe- 198

matics, coding, and instruction-following domains 199

and evaluate on BigBench Hard(BBH)(Suzgun 200

et al., 2022), GSM8K(Cobbe et al., 2021), Hu- 201

manEval(Chen et al., 2021), and IFEval(Zhou et al., 202

2023) benchmarks. The detailed dataset informa- 203

tion is provided in Appendix A.1. To explore the 204

impact of different state of initial data, we ran- 205

domly generated two initial training data sets: D1 206

and D2 presented in Table 1. 207

Baseline. We compare the performance of our 208

IDEAL with other data training strategies as fol- 209

lows. (1) Specific SFT, which only uses a spe- 210

cific domain training data for SFT. (2) Joint SFT, 211

where the different capability data directly com- 212

bined. (3) Random, we randomly sample different 213

data scales for each capability. (4) DoReMi (Xie 214

et al., 2024), which uses the group distributionally 215

robust optimization (Group DRO) steps to gener- 216

ate new domain weights. (5) DOGE (Fan et al., 217

2023), which determines the data proportions be- 218

tween domains by minimizing the discrepancy in 219

backpropagation gradients. For our IDEAL, we set 220

the parameter [m,n] as [0.05, 0.15]. In order to ac- 221

celerate calculation speed, we sample the training 222

set with a sample factor σ = 0.5. 223

4.2 Main Results 224

Suboptimial initial data distribution. Joint 225

SFT and random baselines underperform specific 226

SFT across all benchmarks. While random sam- 227

pling occasionally improves coding tasks (e.g., Hu- 228

manEval), it fails to generalize to other domains. 229

Iterative re-weighting methods enhance the 230
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(b) Models’ performance after SFT on D2
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Table 2: Performance comparison of different baselines.

Benchmark GSM8K HumanEval BigBench Hard IFEval

Methods Dataset Acc Size Pass@1 Size Average Size Average Size

Base - 56.41 - 27.44 - 62.13 - 12.22 -

Specific SFT

GSM8K 65.81 10,000 0.00 0 35.94 0 22.54 0
HumanEval 48.14 0 37.20 5,374 2.99 0 19.66 0

BBH 61.87 0 7.32 0 60.19 6,511 26.70 0
IFEval 57.39 0 46.95 0 61.87 0 22.47 2,000

Joint SFT D1 66.62 10,000 41.26 5,374 72.92 6,511 38.36 2,000

Random - 63.84 3,514 43.90 7,418 75.11 11,420 39.70 3,061
- 63.23 1,752 40.85 9,349 74.56 12,412 38.21 1,900

DoReMi D1
1(DoReMi) 65.96 5,000 41.63 8,061 73.44 9,766 34.26 1,057

D1
2(DoReMi) 64.82 5,323 43.90 1,2091 73.79 4,883 38.16 1,585

DOGE D1
1(DOGE) 64.82 1,1568 40.02 8,061 74.99 3,255 39.02 1,000

D1
2(DOGE) 67.10 9,665 42.24 12,091 73.59 1,627 30.53 500

IDEAL D1
1(IDEAL) 68.01 9,492 44.51 6,180 72.82 6,876 39.78 2,100

D1
2(IDEAL) 67.55 9,017 50.61 7,107 74.29 7,348 39.03 1,942

model’s specific benchmark score. Methods231

like DoReMi and DOGE optimize data distribu-232

tions through multi-step evolution chains (e.g.,233

D1 → D1
1 → D1

2), yet their aggressive distribution234

shifts cause performance variance across bench-235

marks despite minor HumanEval gains. As shown236

in Table 2, both methods have a slight improvement237

in HumanEval, but there are large variance fluctua-238

tions in the model’s scores on other benchmarks.239

IDEAL achieves optimal balance in 2 iterations.240

By incrementally refining data ratios, IDEAL sur-241

passes Joint SFT on all metrics and stabilizes per-242

formance across benchmarks, notably achieving243

HumanEval improvements without compromising244

other tasks—fulfilling efficiency and stability re-245

quirements.246

5 Sensitivity Study247

5.1 Sensitivity to the Selection of γ.248

As shown in Lemma 1, the value of β is essentially249

a small perturbation around 0. The dynamic scaling250

vector γ plays a vital role in determining the magni-251

tude of the adjustment of β. To explore the optimal252

range for β, we carry out experiments on three253

different settings for the range of γ: [0.01, 0.1],254

[0.05, 0.15], and [0.1, 0.3]. Training results on D1, 255

D2 are shown in Figure 2a,2b, respectively. 256

The range of β should be neither too large nor 257

too small. When β is constrained to [0.01, 0.1], 258

limited adjustments yield marginal performance 259

gains due to insufficient data proportion changes. 260

Conversely, a broader range [0.1, 0.3] induces un- 261

stable capability fluctuations as drastic data shifts 262

deviate from the original distribution. The optimal 263

range [0.05, 0.15] balances moderate data adjust- 264

ments with distribution integrity, enabling comple- 265

mentary cross-domain learning while sustaining 266

multi-task stability—achieving the highest average 267

performance through controlled yet impactful pro- 268

portion updates. 269

5.2 Dependence on Initial Data Distribution. 270

Another important aspect to assess the robustness 271

of the IDEAL algorithm is its dependence on the 272

initial data distribution. We conduct experiments 273

using D1 and D2 as two distinct initial data distribu- 274

tions. The experimental results, as shown in Figure 275

2a,2b, indicate that regardless of the initial data 276

distribution, the IDEAL algorithm are able to sig- 277

nificantly enhance the model’s multi-capabilities. 278

Both settings achieve an obvious improvement in 279

HumanEval benchmark, suggesting that the IDEAL 280

algorithm is robust to different initial data distri- 281

butions and can adaptively optimize the training 282

dataset proportions to achieve performance gains. 283

6 Conclusion 284

We propose an influence-based data equilibrium 285

adaptation, IDEAL, which effectively optimizes 286

dataset proportions for SFT. Our approach offers a 287

scalable solution for multi-capability SFT, ensuring 288

performance enhancement for LLM. 289
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Limitations290

Our approach uses approximation approaches due291

to the large parameter size of LLMs, which can292

create a gap between theoretical estimates and ex-293

perimental results. We further analyze it in Ap-294

pendixA.3. Additionally, the method relies on295

high-quality training datasets. If dataset quality is296

unverified, data generation or filtering techniques297

might be more beneficial for improving model per-298

formance.299
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A Appendix 441

A.1 Dataset and Training Information 442

Reasoning: We selected BigBench Hard(BBH) as 443

the benchmark to evaluate the reasoning capabil- 444

ities of our model. BBH is a widely recognized 445

benchmark designed to test a model’s ability to han- 446

dle complex and diverse reasoning tasks, making 447

it an ideal choice for assessing the comprehensive 448

reasoning skills of our model. To further enhance 449

the quality of the training dataset, we utilized the 450

official BBH dataset as a foundation and employed 451

GPT-4(OpenAI et al., 2024) to regenerate the cor- 452

responding answers. This process allowed us to 453

refine and improve the quality of the dataset, en- 454

suring that the training examples are both accurate 455

and high-quality. 456

Mathematics: We selected GSM8K as the bench- 457

mark to evaluate the mathematical reasoning ca- 458

pabilities of our model. GSM8K is a highly re- 459

garded dataset specifically designed to test models 460

on a wide range of math problems, including arith- 461

metic, algebra, and word problems. By covering 462

diverse mathematical scenarios, GSM8K serves 463

as a comprehensive tool for evaluating both the 464

precision and depth of our model’s mathematical 465

understanding. We started with the official GSM8K 466

dataset and leveraged GPT-4 to regenerate the cor- 467

responding chain-of-thought (CoT) solutions. This 468

approach allowed us to refine the reasoning steps 469

and enhance the clarity and accuracy of the solu- 470

tions. 471

Coding: We chose HumanEval as the benchmark 472

to assess the coding capabilities of our model. Hu- 473

manEval is a well-known dataset specifically de- 474

signed to evaluate a model’s ability to understand, 475

generate, and execute code. It provides a set of pro- 476

gramming tasks that require not only syntactic cor- 477

rectness but also semantic understanding, logical 478

reasoning, and problem-solving skills. However, 479

due to the lack of an official training dataset for 480

HumanEval, we constructed a high-quality training 481

set by randomly sampling 5,000 examples from 482

the Tulu-Code dataset(Ge et al., 2024) and com- 483

bining them with the Mostly Basic Python prob- 484

lems(MBPP)(Austin et al., 2021) training set. 485

Instruction-following: We selected IFEval as the 486

benchmark to evaluate our model’s instruction- 487

following abilities. IFEval is designed to test a 488

model’s capacity to understand and execute diverse 489

instructions, making it ideal for assessing align- 490

ment with user intent across various scenarios. Due 491
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to the limited size of the official IFEval training set,492

we enhanced it by sampling additional data from493

WizardLM Evol-Instruct data(Xu et al., 2023). This494

combination created a richer and more diverse train-495

ing set, enabling our model to better generalize and496

excel in instruction-following tasks.497

Training Details: In all fine-tuning training ex-498

periments, we set the batch size to 256 and the499

maximum learning rate as 2× 10−5 with a cosine500

decay schedule. We train the base model on the501

training dataset for 1 epoch on 8 A100 GPUs and502

evaluate the result by using OpenCompass plat-503

form(Contributors, 2023).504

Evaluation Metric. For GSM8K, we adopt the505

‘accuracy’ metric. For the HumanEval benchmark,506

we use the ‘pass@1’ metric to evaluate the prob-507

ability that the code generated by the model in508

a single attempt successfully compiles. For the509

BBH benchmark, we consider the naive average510

metric to evaluate the average score of the model511

across multiple test capabilities in BBH. In IFEval,512

we adopt four metrics, namely prompt-level-strict-513

acc(P-s-acc), Inst-level-strict-acc(I-s-acc), prompt-514

level-loose-acc(P-l-acc), and Inst-level-loose-acc(I-515

l-acc), to comprehensively evaluate the model’s516

capabilities in detail. The P-s-acc metric assesses517

the accuracy of the model’s responses at the prompt518

level with strict criteria, while the I-s-acc evaluates519

the accuracy at the instance level with strict stan-520

dards. On the other hand, the P-l-acc and I-l-acc use521

more relaxed criteria for evaluation at the prompt522

and instance levels respectively. After obtaining523

these four values, we calculate their average to en-524

able quick comparison among different models or525

experimental results, which provides a straightfor-526

ward way to gauge the overall performance of the527

model in a more comprehensive manner.528

A.2 Proof of Lemma 1529

Proof 1 Since we assume in (1) that the model is530

trained to optimality on the training set Dtr, we531

can obtain the following:532

∑
zi∈Dtr

∇θL(zi, θ∗) +
n∑

j=1

βj∇θL(Dj , θ
∗) = 0. (6)533

We assume that there is a small perturbation534

error ϵ in βm, and we denote βm → βm + ϵ. Cor-535

respondingly, θ∗ will also change: θ∗ → θ∗ +∆θ,536

the (6) transforms to: 537

∑
zi∈Dtr

∇θL(zi, θ∗ +∆θ) +

n∑
j=1

βj∇θL(Dj , θ
∗ +∆θ)

+ ϵ∇θL(Dm, θ∗ +∆θ) = 0.
(7)

538

Combined with the Taylor expansion, we can obtain 539

the following: 540

∑
zi∈Dtr

∇2
θL(zi, θ∗)∆θ +

n∑
j=1

βj∇2
θL(Dj , θ

∗)∆θ

+ ϵ∇θL(Dm, θ∗) = 0.

(8) 541

By using ∆θ = ∂θ∗

∂βm
ϵ, we can get: 542

∑
zi∈Dtr

∇2L(zi, θ∗)
∂θ∗

∂βm
+

n∑
j=1

βj∇2L(Dj , θ
∗)

∂θ∗

∂βm

+∇L(Dm, θ∗) = 0,

(9) 543

which implies (3). 544

A.3 Estimation Error Analysis 545

In the process of implementing the IDEAL method, 546

several factors may lead to estimation inaccura- 547

cies, which can potentially affect the overall perfor- 548

mance and reliability of the proposed approach. 549

Sub-optimality in Model Training. The IDEAL 550

method assumes that the model is trained to opti- 551

mality on the training set Dtr as per Equation (3.1). 552

However, in practical scenarios, to prevent over- 553

fitting, models are typically not trained to reach 554

the globally optimal parameters. Instead, a balance 555

is struck to obtain sub-optimal parameters that en- 556

sure good generalization across different domains. 557

When the model is not trained to its full potential, 558

the gradients and Hessian-related calculations used 559

in our method, such as those in Lemma 1 for calcu- 560

lating ∂θ∗

∂βm
, may not accurately represent the true 561

behavior of the model at its optimal state. This 562

deviation from the ideal training condition can in- 563

troduce errors in the determination of the optimal 564

mixing ratio β for the training datasets. 565

Methodological Errors from K-FAC for Hes- 566

sian Matrix Computation. To enable efficient 567

calculation of the influence function, we rely on 568

the K-FAC theory to decompose the Hessian ma- 569

trix. As described in Section 3.2, we approximate 570

the Hessian matrix H by decomposing it into a 571

block-diagonal form according to different MLP 572

layers. While this approximation significantly ac- 573

celerates the inversion of the second-order gradient 574

matrix, it inevitably introduces methodological er- 575

rors. The block-diagonal approximation, where 576
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Hl ≈ E(xlxl⊤) ⊗ E(δlδl⊤), simplifies the com-577

plex structure of the true Hessian matrix. However,578

this simplification means that the calculated influ-579

ence function may deviate from the exact value.580

When inverting the approximated Hessian matrix581

to calculate ∂θ∗

∂βm
in Equation (3), these errors can582

propagate through the subsequent calculations of583
∂L(Dref ,θ

∗)
∂βm

in Equation (4).584

Experimental Errors due to Random Sampling585

for Accelerated Computation. To expedite the586

computational process, we resort to random sam-587

pling from the training set. Although the law of588

large numbers assures that the mean of a large num-589

ber of independent and identically distributed ran-590

dom samples converges to the expected value of the591

population, there is still a possibility of introducing592

random biases. In our method, when calculating593

expectations such as those in the decomposition594

of the Hessian matrix, the use of sampled data in-595

stead of the entire dataset can lead to errors. These596

random biases potentially result in inaccurate final597

results.598
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