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Abstract

Large Language Models (LLMs) have achieved
impressive performance through Supervised
Fine-tuning (SFT) on diverse instructional
datasets. When training on multiple capa-
bilities simultaneously, the optimal data mix-
ture proportions remain underexplored. In
this work, we propose IDEAL, an Influence-
based Data Equilibrium Adaptation framework,
which aims to optimize the mixture propor-
tions of distinct SFT datasets based on their
task-specific performance. IDEAL employs a
machine learning-driven approach based on in-
fluence function to iteratively refine the data
allocation strategy, prioritizing datasets that en-
hance target capabilities. Experiments across
different capabilities demonstrate that IDEAL
significantly outperforms conventional uniform
data allocation strategies, achieving strong im-
provements across diverse tasks.

1 Introduction

Recent advancements in Large Language Models
(LLMs) have demonstrated their remarkable ability
to master diverse capabilities (Dong et al., 2023;
Zhang et al., 2024b; Hu et al., 2023; Mecklenburg
et al., 2024) through Supervised Fine-Tuning (SFT)
on instruction-aligned datasets (Liu et al., 2023;
Luetal., 2023; Agarwal et al., 2024; Wang et al.,
2023). However, a critical challenge persists when
harmonizing diverse capabilities during SFT: the
optimal mixture proportions of these domains is
poorly understood. While heuristic solutions such
as manual data reweighting or rule-based curricu-
lum learning (Bengio et al., 2009) exist, they suffer
from scalability limitations and suboptimal task
balance. Prior attempts to automate data alloca-
tion, including pretraining-centric methods (Xie
et al., 2024; Ye et al., 2024), fail to address the
unique dynamics of SFT—where data-task align-
ment directly governs cross-domain interference.
Consequently, a principled framework for resolv-

Figure 1: IDEAL adjusts data proportions to optimize
model performance, leading to a decrease in loss.

ing data conflicts in multi-capability SFT remains
an open problem.

To bridge this gap, we propose IDEAL
(Influence-based Data Equilibrium Adaptation
Learning), a novel framework that dynamically
aligns SFT data mixtures with model capabilities.
IDEAL employs the influence function (Koh and
Liang, 2017)—a second-order optimization tool
to optimize the data mix ratios. Unlike previous
works use influence function for data sample se-
lection (Xia et al., 2024; Zhang et al., 2024a), we
instead employ influence function for dataset capa-
bility measurement to optimize the data mix ratios.
By iteratively refining dataset proportions based
on IDEAL, it prioritizes data subsets that syner-
gistically enhance target capabilities. This model-
aware mechanism adapts to the LLM’s evolving
training dynamics, ensuring equilibrium between
data efficiency and task balancing. Crucially, our
framework operates without costly hyperparame-
ter sweeps, enabling scalable multi-capability SFT
with theoretical guarantees.

Extensive experiments validate IDEAL’s effec-
tiveness across diverse capability combinations. On
BigBench Hard, GSM8K, HumanEval and IFEval,
IDEAL outperforms uniform data blending by 9%
on average. Further studies demonstrate the robust-
ness of IDEAL by again improving on other initial
seed data scale. These results establish our IDEAL



as a critical lever for training generalist LLMs.

2 Related Works

Data Mixing. Data mixing optimizes training data
distributions to enhance multi-task performance.
Traditional approaches rely on token ratios (Tou-
vron et al., 2023; Liu et al., 2025) or quality-driven
selection (Parmar et al., 2024; Chung et al., 2023;
Engstrom et al., 2024; Xia et al., 2024; Kang
et al., 2024). Recent learning-based methods for
LLMs optimize domain weights via proxy models:
DoReMi (Xie et al., 2024) uses distributionally ro-
bust optimization on a small proxy model, while
DOGE (Fan et al., 2023) extends this to domain-
specific re-weighting. Others derive empirical laws
from large-scale experiments, such as the mixing
proportion law in (Ye et al., 2024). However, these
methods require costly global weight searches and
often disregard the continuity of data distributions.
Our work addresses these gaps by gradient-guided
iterative refinement, enabling efficient adaptation.
Influence Function. The Influence Function (Ham-
pel, 1974) provides interpretable connections be-
tween training data and model behavior. Recent
work extends it to analyze LLMs: Koh et al. (Koh
and Liang, 2017) formalize its role in linking
datasets to performance, while gradient-based ap-
proximations (Xia et al., 2024; Yu et al., 2024) en-
able data selection via influence scores despite com-
putational challenges (Grosse et al., 2023). Build-
ing on these insights, we propose an efficient influ-
ence estimator for SFT, optimizing domain weight
allocation by quantifying how training proportions
affect multi-task generalization.

3 Methodology

3.1 Problem Formulation

To enhance the capabilities of the base model M
within specific domains, we develop corresponding
high-quality training datasets Dy, ..., D,. When
integrating these diverse datasets for training, chal-
lenges such as data distribution shifts inevitably
arise. These shifts can significantly affect the effec-
tiveness of the model training process. To mitigate
the data shift, our objective is to determine an opti-
mal mixing ratio for the training datasets.

In a common learning approach, the objective is
to minimize the training cost function:
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where 6 is the parameter of the model and Dy, =
[D1, ..., D,] represents the whole training dataset.
Let NV be the total number of training samples
N = |Dy| = D1+ -+ [Dp| = t1 + - - - + tn,
where t1, ..., t, represent the numbers of training
samples in datasets Dy, ..., D, respectively. In an
ideal scenario, an optimal solution #* can be found
via effective optimization techniques. Inspired by
the findings in (Muennighoff et al., 2023), which
shows that conducting fewer than 4 training epochs
can enhance the model’s performance to a degree
comparable to using new data, we train for only
1 epoch while simultaneously utilizing downsam-
pling and upsampling techniques to adjust the quan-
tities of different training datasets. As a result, we
model the problem in the following manner:
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In this formulation, we use 5 = (f1,...,5,) to
control the size of the corresponding training data
set. Initially, we utilize the entire training dataset
to fine-tune the model My into M. Our objective
is to understand the impact of S on the model’s
performance on the validation set D,..¢. By apply-
ing the chain rule, we can determine the impact
of a specific 5, € {f1,...,n} on the model’s
performance on the validation set D, :
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Lemma 1 The impact of a specific 5, on the op-
timal model parameters 0* trained on the training
set Dy can be explicitly expressed as (3).

As mentioned before, we initialize the § =
(0,...,0), we can get the influence of [, on the
validation set D,y according to the (2):
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which is equal to the influence function equation.

3.2 Efficient Calculation

Evaluating the Gauss-Newton Hessian in the con-
text of (4) presents a formidable challenge. Cur-
rently, it is computationally infeasible to directly
calculate the inverse of the Hessian matrix for the
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entire set of parameters. According to K-FAC the-
ory (Martens and Grosse, 2015; Ueno et al., 2020;
Zhang et al., 2024a), we use the kronecker product
to accelerate the iHVP computation. During the
intermediate state of the calculation, we will ob-
tain A, which captures the variances of the pseudo-
gradient projected onto each eigenvector of the
K-FAC approximation. We then identify the ‘im-
portant’ MLP layers by choosing those with lower
variances, as these layers exhibit enhanced stability.
Reducing the number of calculation layers can sig-
nificantly alleviate the storage pressure. However,
it will also lead to a relatively small magnitude of
the final result. To address the above issue, we
introduce a dynamic scaling vector ~y, which lin-
early scales the maximum and minimum absolute
value in the calculated S to a predefined value range
[m,n],0 < m < n < 1. We update the 3 values
as shown in (5):
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3.3 IDEAL Algorithm

The complete pipeline of our method shown in
Algorithm 1. First, we mix all the datasets into
D;,. Based on the base model, we train the M,
model and test it on various benchmarks to identify
the weak area D,.y. We adjust the ratio of the
training set after calculating the 5 sequence for
D, .. Finally, we train the M3 model on the base
model using the newly adjusted training set. If
further improvement is desired, the above steps can
be iterated to get M3, ..., M based on the new
training set until all the model’s capabilities meet
the expected standards.

Algorithm 1 IDEAL Algorithm

Require: Initial model My, initial training set D, =
[Dy, ..., Dy), maximum iterations 7" (or stop criteria).
1: fori =1toT do
: Train Mg on Dy, until optimal, resulting in M;

2
3 Test the performance of M;;

4 Compute S following (5);

5: Update training set: Dy, < Dy + Z?Zl B;D;
6:  if stopping criteria met then

7: break

8: end if

9: end for
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| GSM8K | HumanEval | BBH | IFEval | Total
D] 10000 | 5374 | 6511 2,000 | 23,885
D?| 4266 | 3,768 | 2430 | 4591 | 15,055

Table 1: Initial Dataset Statistics.
4 Experiments

4.1 Experiment Setup

Training Setting. We choose the LLama3.1-
8B(Grattafiori et al., 2024) as our base model M
to adopt full fine-tuning. All models/settings train
for 1 epoch. For a fair comparison, each experiment
is repeated for 5 runs to report average performance.
Other settings can be found in Appendix A.1.
Dataset Preparetion. We select reasoning, mathe-
matics, coding, and instruction-following domains
and evaluate on BigBench Hard(BBH)(Suzgun
et al., 2022), GSM8K(Cobbe et al., 2021), Hu-
manEval(Chen et al., 2021), and IFEval(Zhou et al.,
2023) benchmarks. The detailed dataset informa-
tion is provided in Appendix A.1. To explore the
impact of different state of initial data, we ran-
domly generated two initial training data sets: D'
and D? presented in Table 1.

Baseline. We compare the performance of our
IDEAL with other data training strategies as fol-
lows. (1) Specific SFT, which only uses a spe-
cific domain training data for SFT. (2) Joint SFT,
where the different capability data directly com-
bined. (3) Random, we randomly sample different
data scales for each capability. (4) DoReMi (Xie
et al., 2024), which uses the group distributionally
robust optimization (Group DRO) steps to gener-
ate new domain weights. (5) DOGE (Fan et al.,
2023), which determines the data proportions be-
tween domains by minimizing the discrepancy in
backpropagation gradients. For our IDEAL, we set
the parameter [m, n] as [0.05, 0.15]. In order to ac-
celerate calculation speed, we sample the training
set with a sample factor o = 0.5.

4.2 Main Results

Suboptimial initial data distribution. Joint
SFT and random baselines underperform specific
SFT across all benchmarks. While random sam-
pling occasionally improves coding tasks (e.g., Hu-
manEval), it fails to generalize to other domains.

Iterative re-weighting methods enhance the



Bm Joint SFT
IDEAL, [0.1,0.3]

m IDEAL, [0.5,0.15]

B IDEAL, [0.01,0.1]

m Joint SFT
IDEAL, [0.1,0.3]

m IDEAL, [0.5,0.15]

B IDEAL, [0.01,0.1]

(a) Models’ performance after SFT on D1 with different
3 ranges.

Table 2: Performance comparison of different baselines.

Benchmark ‘ GSMSK HumanEval BigBench Hard IFEval

Methods Dataset | Acc  Size | Pass@l Size | Average Size | Average Size

Base - | 56.41 | 2744 -] 6213 -] 2
GSM8K | 65.81 10,000 | 0.00 0 35.94 0 254 0
Specific ST HumanEval | 48.14 0 37.20 5374 2.99 0 19.66 0
P BBH | 6187 0 732 0 60.19 6511 | 2670 0
IFEval | 5739 0 46.95 0 61.87 0 2247 2,000
Joint SFT D! 16662 10000| 4126 5374 | 7292 6511 | 3836 2,000
Rand 63.84 3514 43.90 7418 75.11 11,420 | 39.70 3,061
andom - 6323 1752 | 4085 9349 | 7456 12412| 3821 1,900
DoReMi Dl porewy | 6396 5000 | 4163 8061 | 7344 9766 | 3426 1,057
Doy | 6482 5323 | 4390 12091 | 7379 4883 | 3816 1585
1
DOGE Dipoos) | 6482 LISGE| 4002 8061 | 7499 3255 | 3902 1000
Dlpogry | 6710 9.665 | 4224 12,091 | 7359 1627 | 3053 500
1
IDEAL D Loean) 6801 9492 | 4451 6180 | 7282 6876 | 3978 2,100
Lapary | 6755 9017 | S0.61 7,107 | 7429 7348 | 39.03 1942
N .
model’s specific benchmark score. Methods

like DoReMi and DOGE optimize data distribu-
tions through multi-step evolution chains (e.g.,
D! — Di — D)), yet their aggressive distribution
shifts cause performance variance across bench-
marks despite minor HumanEval gains. As shown
in Table 2, both methods have a slight improvement
in HumanEval, but there are large variance fluctua-
tions in the model’s scores on other benchmarks.
IDEAL achieves optimal balance in 2 iterations.
By incrementally refining data ratios, IDEAL sur-
passes Joint SFT on all metrics and stabilizes per-
formance across benchmarks, notably achieving
HumanEval improvements without compromising
other tasks—fulfilling efficiency and stability re-
quirements.

5 Sensitivity Study

5.1 Sensitivity to the Selection of .

As shown in Lemma 1, the value of (3 is essentially
a small perturbation around 0. The dynamic scaling
vector -y plays a vital role in determining the magni-
tude of the adjustment of 5. To explore the optimal
range for 3, we carry out experiments on three
different settings for the range of ~: [0.01,0.1],

(b) Models’ performance after SFT on D? with different
[3 ranges.

[0.05,0.15], and [0.1, 0.3]. Training results on D*,
D? are shown in Figure 2a,2b, respectively.

The range of 3 should be neither too large nor
too small. When [ is constrained to [0.01, 0.1],
limited adjustments yield marginal performance
gains due to insufficient data proportion changes.
Conversely, a broader range [0.1, 0.3] induces un-
stable capability fluctuations as drastic data shifts
deviate from the original distribution. The optimal
range [0.05, 0.15] balances moderate data adjust-
ments with distribution integrity, enabling comple-
mentary cross-domain learning while sustaining
multi-task stability—achieving the highest average
performance through controlled yet impactful pro-
portion updates.

5.2 Dependence on Initial Data Distribution.

Another important aspect to assess the robustness
of the IDEAL algorithm is its dependence on the
initial data distribution. We conduct experiments
using D! and D? as two distinct initial data distribu-
tions. The experimental results, as shown in Figure
2a,2b, indicate that regardless of the initial data
distribution, the IDEAL algorithm are able to sig-
nificantly enhance the model’s multi-capabilities.
Both settings achieve an obvious improvement in
HumanEval benchmark, suggesting that the IDEAL
algorithm is robust to different initial data distri-
butions and can adaptively optimize the training
dataset proportions to achieve performance gains.

6 Conclusion

We propose an influence-based data equilibrium
adaptation, IDEAL, which effectively optimizes
dataset proportions for SFT. Our approach offers a
scalable solution for multi-capability SFT, ensuring
performance enhancement for LLM.



Limitations

Our approach uses approximation approaches due
to the large parameter size of LLMs, which can
create a gap between theoretical estimates and ex-
perimental results. We further analyze it in Ap-
pendixA.3. Additionally, the method relies on
high-quality training datasets. If dataset quality is
unverified, data generation or filtering techniques
might be more beneficial for improving model per-
formance.

References

Ishika Agarwal, Krishna Killamsetty, and Lucian
et al. Popa. 2024. Delift: Data efficient lan-
guage model instruction fine tuning. arXiv preprint
arXiv:2411.04425.

Jacob Austin, Augustus Odena, and Maxwell Nye et al.
2021. Program synthesis with large language models.
Preprint, arXiv:2108.07732.

Yoshua Bengio, Jérome Louradour, Ronan Collobert,
and Jason Weston. 2009. Curriculum learning. In
Proceedings of the 26th annual international confer-
ence on machine learning, pages 41-48.

Mark Chen, Jerry Tworek, and Heewoo Jun et al. 2021.
Evaluating large language models trained on code.

Hyung Won Chung, Noah Constant, and Xavier et al.
Garcia. 2023. Unimax: Fairer and more effective
language sampling for large-scale multilingual pre-
training. arXiv preprint arXiv:2304.09151.

Karl Cobbe, Vineet Kosaraju, and Mohammad et al.
Bavarian. 2021. Training verifiers to solve math word
problems. arXiv preprint arXiv:2110.14168.

OpenCompass Contributors. 2023. Opencompass:
A universal evaluation platform for foundation
models. https://github.com/open-compass/
opencompass.

Guanting Dong, Hongyi Yuan, and Keming et al. Lu.
2023. How abilities in large language models are
affected by supervised fine-tuning data composition.
arXiv preprint arXiv:2310.05492.

Logan Engstrom, Axel Feldmann, and Aleksander
Madry. 2024. Dsdm: Model-aware dataset selection
with datamodels. arXiv preprint arXiv:2401.12926.

Simin Fan, Matteo Pagliardini, and Martin Jaggi. 2023.
Doge: Domain reweighting with generalization esti-
mation. arXiv preprint arXiv:2310.15393.

Tao Ge, Xin Chan, and Xiaoyang et al. Wang. 2024.
Scaling synthetic data creation with 1,000,000,000
personas. arXiv preprint arXiv:2406.20094.

Aaron Grattafiori, Abhimanyu Dubey, and Abhi-
nav Jauhri et al. 2024. The llama 3 herd of models.
Preprint, arXiv:2407.21783.

Roger Grosse, Juhan Bae, and Cem et al. Anil.
2023. Studying large language model general-
ization with influence functions. arXiv preprint
arXiv:2308.03296.

Frank R Hampel. 1974. The influence curve and its
role in robust estimation. Journal of the american
statistical association, 69(346):383-393.

Linmei Hu, Zeyi Liu, and Ziwang et al. Zhao. 2023. A
survey of knowledge enhanced pre-trained language
models. IEEE Transactions on Knowledge and Data
Engineering.

Feiyang Kang, Hoang Anh Just, and Yifan et al. Sun.
2024. Get more for less: Principled data selection
for warming up fine-tuning in llms. arXiv preprint
arXiv:2405.02774.

Pang Wei Koh and Percy Liang. 2017. Understanding
black-box predictions via influence functions. In

International conference on machine learning, pages
1885-1894. PMLR.

Qian Liu, Xiaosen Zheng, and Niklas Muennighoff
et al. 2025. Regmix: Data mixture as regres-
sion for language model pre-training. Preprint,
arXiv:2407.01492.

Wei Liu, Weihao Zeng, and Keqing et al. He. 2023.
What makes good data for alignment? a comprehen-
sive study of automatic data selection in instruction
tuning. arXiv preprint arXiv:2312.15685.

Keming Lu, Hongyi Yuan, and Zheng et al. Yuan. 2023.
#instag: Instruction tagging for analyzing supervised
fine-tuning of large language models. In The Twelfth
International Conference on Learning Representa-
tions.

James Martens and Roger Grosse. 2015. Optimizing
neural networks with kronecker-factored approxi-
mate curvature. In International conference on ma-

chine learning, pages 2408-2417. PMLR.

Nick Mecklenburg, Yiyou Lin, and Xiaoxiao et al. Li.
2024. Injecting new knowledge into large language
models via supervised fine-tuning. arXiv preprint
arXiv:2404.00213.

Niklas Muennighoff, Alexander Rush, and Boaz et al.
Barak. 2023. Scaling data-constrained language mod-
els. Advances in Neural Information Processing Sys-

tems, 36:50358-50376.

OpenAl, Josh Achiam, and Steven Adler et al. 2024.
Gpt-4 technical report. Preprint, arXiv:2303.08774.

Jupinder Parmar, Shrimai Prabhumoye, and Joseph et al.
Jennings. 2024. Data, data everywhere: A guide
for pretraining dataset construction. arXiv preprint
arXiv:2407.06380.


https://arxiv.org/abs/2108.07732
https://arxiv.org/abs/2107.03374
https://github.com/open-compass/opencompass
https://github.com/open-compass/opencompass
https://github.com/open-compass/opencompass
https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2407.01492
https://arxiv.org/abs/2407.01492
https://arxiv.org/abs/2407.01492
https://arxiv.org/abs/2303.08774

Mirac Suzgun, Nathan Scales, and Nathanael et al.
Schérli. 2022. Challenging big-bench tasks and
whether chain-of-thought can solve them. arXiv
preprint arXiv:2210.09261.

Hugo Touvron, Thibaut Lavril, and Gautier et al. Izac-
ard. 2023. Llama: Open and efficient foundation
language models. arXiv preprint arXiv:2302.13971.

Yuichiro Ueno, Kazuki Osawa, and Yohei et al. Tsuji.
2020. Rich information is affordable: A system-
atic performance analysis of second-order optimiza-
tion using k-fac. In Proceedings of the 26th ACM
SIGKDD International Conference on Knowledge
Discovery & Data Mining, pages 2145-2153.

Yufei Wang, Wanjun Zhong, and Liangyou et al. Li.
2023. Aligning large language models with human:
A survey. arXiv preprint arXiv:2307.12966.

Mengzhou Xia, Sadhika Malladi, and Suchin et al.
Gururangan. 2024. Less: Selecting influential
data for targeted instruction tuning. arXiv preprint
arXiv:2402.04333.

Sang Michael Xie, Hieu Pham, Xuanyi Dong, Nan Du,
Hanxiao Liu, Yifeng Lu, Percy S Liang, Quoc V
Le, Tengyu Ma, and Adams Wei Yu. 2024. Doremi:
Optimizing data mixtures speeds up language model
pretraining. Advances in Neural Information Pro-
cessing Systems, 36.

Can Xu, Qingfeng Sun, and Kai et al. Zheng. 2023.
Wizardlm: Empowering large language models
to follow complex instructions. arXiv preprint
arXiv:2304.12244.

Jiasheng Ye, Peiju Liu, Tianxiang Sun, Yunhua Zhou,
Jun Zhan, and Xipeng Qiu. 2024. Data mix-
ing laws: Optimizing data mixtures by predicting
language modeling performance. arXiv preprint
arXiv:2403.16952.

Zichun Yu, Spandan Das, and Chenyan Xiong. 2024.
Mates: Model-aware data selection for efficient pre-
training with data influence models. arXiv preprint
arXiv:2406.06046.

Chi Zhang, Huaping Zhong, and Kuan et al. Zhang.
2024a. Harnessing diversity for important data se-
lection in pretraining large language models. arXiv
preprint arXiv:2409.16986.

Hengyuan Zhang, Yanru Wu, and Dawei et al. Li. 2024b.
Balancing speciality and versatility: a coarse to fine
framework for supervised fine-tuning large language
model. arXiv preprint arXiv:2404.10306.

Jeffrey Zhou, Tianjian Lu, and Swaroop Mishra et al.
2023. Instruction-following evaluation for large lan-
guage models. Preprint, arXiv:2311.07911.

A Appendix

A.1 Dataset and Training Information

Reasoning: We selected BigBench Hard(BBH) as
the benchmark to evaluate the reasoning capabil-
ities of our model. BBH is a widely recognized
benchmark designed to test a model’s ability to han-
dle complex and diverse reasoning tasks, making
it an ideal choice for assessing the comprehensive
reasoning skills of our model. To further enhance
the quality of the training dataset, we utilized the
official BBH dataset as a foundation and employed
GPT-4(OpenAl et al., 2024) to regenerate the cor-
responding answers. This process allowed us to
refine and improve the quality of the dataset, en-
suring that the training examples are both accurate
and high-quality.

Mathematics: We selected GSM8K as the bench-
mark to evaluate the mathematical reasoning ca-
pabilities of our model. GSMSK is a highly re-
garded dataset specifically designed to test models
on a wide range of math problems, including arith-
metic, algebra, and word problems. By covering
diverse mathematical scenarios, GSMS8K serves
as a comprehensive tool for evaluating both the
precision and depth of our model’s mathematical
understanding. We started with the official GSM8K
dataset and leveraged GPT-4 to regenerate the cor-
responding chain-of-thought (CoT) solutions. This
approach allowed us to refine the reasoning steps
and enhance the clarity and accuracy of the solu-
tions.

Coding: We chose HumanEval as the benchmark
to assess the coding capabilities of our model. Hu-
manEval is a well-known dataset specifically de-
signed to evaluate a model’s ability to understand,
generate, and execute code. It provides a set of pro-
gramming tasks that require not only syntactic cor-
rectness but also semantic understanding, logical
reasoning, and problem-solving skills. However,
due to the lack of an official training dataset for
HumanEval, we constructed a high-quality training
set by randomly sampling 5,000 examples from
the Tulu-Code dataset(Ge et al., 2024) and com-
bining them with the Mostly Basic Python prob-
lems(MBPP)(Austin et al., 2021) training set.
Instruction-following: We selected IFEval as the
benchmark to evaluate our model’s instruction-
following abilities. IFEval is designed to test a
model’s capacity to understand and execute diverse
instructions, making it ideal for assessing align-
ment with user intent across various scenarios. Due
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to the limited size of the official IFEval training set,
we enhanced it by sampling additional data from
WizardLM Evol-Instruct data(Xu et al., 2023). This
combination created a richer and more diverse train-
ing set, enabling our model to better generalize and
excel in instruction-following tasks.

Training Details: In all fine-tuning training ex-
periments, we set the batch size to 256 and the
maximum learning rate as 2 x 10> with a cosine
decay schedule. We train the base model on the
training dataset for 1 epoch on 8 A100 GPUs and
evaluate the result by using OpenCompass plat-
form(Contributors, 2023).

Evaluation Metric. For GSMS8K, we adopt the
‘accuracy’ metric. For the HumanEval benchmark,
we use the ‘pass@1’ metric to evaluate the prob-
ability that the code generated by the model in
a single attempt successfully compiles. For the
BBH benchmark, we consider the naive average
metric to evaluate the average score of the model
across multiple test capabilities in BBH. In IFEval,
we adopt four metrics, namely prompt-level-strict-
acc(P-s-acc), Inst-level-strict-acc(I-s-acc), prompt-
level-loose-acc(P-1-acc), and Inst-level-loose-acc(I-
l-acc), to comprehensively evaluate the model’s
capabilities in detail. The P-s-acc metric assesses
the accuracy of the model’s responses at the prompt
level with strict criteria, while the I-s-acc evaluates
the accuracy at the instance level with strict stan-
dards. On the other hand, the P-1-acc and I-1-acc use
more relaxed criteria for evaluation at the prompt
and instance levels respectively. After obtaining
these four values, we calculate their average to en-
able quick comparison among different models or
experimental results, which provides a straightfor-
ward way to gauge the overall performance of the
model in a more comprehensive manner.

A.2 Proof of Lemma 1

Proof 1 Since we assume in (1) that the model is
trained to optimality on the training set Dy,, we
can obtain the following:

> VeL(2,07)+ Y BiVeL(D;,07) =0.  (6)

2;EDtr Jj=1

We assume that there is a small perturbation
error € in By,, and we denote B, — B + €. Cor-
respondingly, 0* will also change: 6* — 6* + A0,

the (6) transforms to:

> VoL(zi, 0"+ A0) + > B VoL(D;,0" + AD)

2; €D¢r Jj=1
+ eVoL(Dm, 0" + AB) = 0.
@)

Combined with the Taylor expansion, we can obtain
the following:

> VoL(z:,07)A0+ Y B V5L(D;,07)A0
- = ®)
+ 6V9£(Dm,9*) =0.

By using Af = 59’%6, we can get:

06* u 50*
V2L(2,07)—— + V2L(D;, 0"

2; €Dty j=

+ VL(Dm,0") =0,

which implies (3).

A.3 Estimation Error Analysis

In the process of implementing the IDEAL method,
several factors may lead to estimation inaccura-
cies, which can potentially affect the overall perfor-
mance and reliability of the proposed approach.
Sub-optimality in Model Training. The IDEAL
method assumes that the model is trained to opti-
mality on the training set Dy, as per Equation (3.1).
However, in practical scenarios, to prevent over-
fitting, models are typically not trained to reach
the globally optimal parameters. Instead, a balance
is struck to obtain sub-optimal parameters that en-
sure good generalization across different domains.
When the model is not trained to its full potential,
the gradients and Hessian-related calculations used
in our method, such as those in Lemma 1 for calcu-
lating %, may not accurately represent the true
behavior of the model at its optimal state. This
deviation from the ideal training condition can in-
troduce errors in the determination of the optimal
mixing ratio [ for the training datasets.
Methodological Errors from K-FAC for Hes-
sian Matrix Computation. To enable efficient
calculation of the influence function, we rely on
the K-FAC theory to decompose the Hessian ma-
trix. As described in Section 3.2, we approximate
the Hessian matrix H by decomposing it into a
block-diagonal form according to different MLP
layers. While this approximation significantly ac-
celerates the inversion of the second-order gradient
matrix, it inevitably introduces methodological er-
rors. The block-diagonal approximation, where



H ~ E(xlxﬂ) ® E(élélT), simplifies the com-
plex structure of the true Hessian matrix. However,
this simplification means that the calculated influ-
ence function may deviate from the exact value.
When inverting the approximated Hessian matrix
to calculate g’% in Equation (3), these errors can
propagate through the subsequent calculations of
2EBrer %) iy Equation (4).

Experimental Errors due to Random Sampling
for Accelerated Computation. To expedite the
computational process, we resort to random sam-
pling from the training set. Although the law of
large numbers assures that the mean of a large num-
ber of independent and identically distributed ran-
dom samples converges to the expected value of the
population, there is still a possibility of introducing
random biases. In our method, when calculating
expectations such as those in the decomposition
of the Hessian matrix, the use of sampled data in-
stead of the entire dataset can lead to errors. These
random biases potentially result in inaccurate final
results.
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