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Abstract

Direct alignment methods are increasingly used for aligning large language models
(LLMs) with human preferences. However, these methods suffer from the issues of
likelihood displacement, which can be driven by noisy preference pairs that induce
similar likelihood for preferred and dispreferred responses. The contributions of
this paper are two-fold. First, we propose a preference alignment method based on
zeroth-order, comparison-based optimization via comparison oracles and provide
convergence guarantees for its basic mechanism. Second, we improve our method
using some heuristics and conduct the experiments to demonstrate the flexibility
and compatibility of practical mechanisms in improving the performance of LLMs
using noisy preference pairs. Evaluations are conducted across multiple base
and instruction-tuned models (Mistral-7B, Llama-3-8B and Gemma-2-9B) with
benchmarks (AlpacaEval 2, MT-Bench and Arena-Hard)'. Experimental results
show the effectiveness of our method as an alternative to addressing the limitations
of existing methods, not only likelihood displacement but verbosity. A highlight
of our work is that we evidence the importance of designing specialized methods
for preference pairs with distinct likelihood margin, which complements the recent
findings in Razin et al. [73].

1 Introduction

Generative Al is breaking down barriers to intelligence, empowering domain experts across academia,
industrial sectors, and governments to develop and manage Al systems more effectively. At the
heart of this revolution are large language models (LLMs), which are transforming data organization,
retrieval, and analysis [9, 20, 85, 1, 10]. These models are trained on vast, diverse data and must be
carefully aligned with human preferences to ensure they generate helpful and harmless content [7].
A prominent alignment method is reinforcement learning from human feedback (RLHF) [21, 81],
which first fits a reward model based on human preference pairs and then uses RL to train a policy
to maximize this trained reward. Despite RLHF’s success [108, 63, 85, 1], it involves a complex
and computationally expensive multi-stage procedure. This motivates the development of direct
alignment methods, such as direct preference optimization (DPO) [70] and its variants [6, 30, 66, 93,
83, 60, 16, 103], which directly optimize the LLM using the human preference pairs, avoiding the
need for separately training a reward model.

The applications of direct alignment methods have gained momentum due to their simplicity and train-
ing stability. However, these methods suffer from one critical issue: likelihood displacement. Likeli-
hood displacement refers the counterintuitive situation where the training process, designed to increase
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the likelihood of preferred responses relative to dispreferred ones, actually reduces the absolute prob-
ability of the preferred responses, leading to “unintentional unalignment” [64, 82, 72, 65, 57, 96, 73].
For example, training a model to prefer NO over NEVER sharply increase the likelihood of YES. Prac-
tically, this issue has negative impacts on LLM performance: it unintentionally shifts probability mass
to harmful responses. For example, if the prompt is to outline the steps for a terrorist organization to
infiltrate a government agency, Gemma-2B-it initially generates two refusal responses. After DPO
training, it complies with unsafe prompts due to likelihood displacement shifting probability mass
from the preferred refusal responses to harmful responses (see [73, Table 18]). There is another issue
— verbosity — which refers to the tendency of models fine-tuned with RLHF [78, 44] and direct align-
ment methods [66, 4, 71] to generate longer responses, often without corresponding improvement in
quality, and which causes low efficiency and higher consumption of hardware resources.

Recent work has suggested that likelihood displacement might arise from preference pairs that induce
similar preferred and displeased responses [64, 73] (Which we refer to them as noisy preference pairs
in this paper). To mitigate this issue, researchers have tried to add different regularization [64, 72].
Recently, Razin et al. [73] proposed to measure the similarity between preferred and dispreferred
responses using the centered hidden embedding similarity (CHES) score and empirically showed
that filtering out the preference pairs with small CHES score is more effective for mitigating the
likelihood displacement compared to adding the supervised fine-tuning (SFT) regularization.

While DPO provides a computationally convenient framework by maximizing certain log-likelihood
margin between preferred and dispreferred responses, this objective function seems to act as a proxy
or surrogate for the true, complex goal of alignment. This proxy works well enough when preference
pairs clearly delineate better responses. However, when faced with noisy pairs — where the preference
signal is weak or ambiguous, relative to the embeddings of the two responses — optimizing the
specific DPO objective function can result in adverse effects such as likelihood displacement, as this
objective function itself does not accurately reflect the desired alignment improvement. Formally and
explicitly defining alignment as a single, optimizable mathematical objective function is exceptionally
challenging. Instead of pursuing such an explicit objective, we shall recognize that preference pairs
inherently represent comparative judgments based on this underlying, albeit latent, alignment goal.
Inspired by comparison-oracle-based optimization techniques, which navigate in search spaces using
only comparison outcome information (that is, “is solution A better than solution B?”), we leverage
preference pairs in a similar manner. We treat the preference pairs as the oracle outputs based on the
hidden alignment objective. This allows us to use them to guide model parameter updates directly,
thus avoiding a commitment to an explicit proxy objective.

Contribution. In this paper, we propose a preference alignment method that directly leverages
comparative preference pairs by employing comparison oracles and effectively utilize the signals
present even in noisy preference pairs. Our contributions can be summarized as follows:

1. We identify that likelihood displacement issue is exacerbated by the ineffective handling of
noisy preference pairs in existing methods. We propose to mitigate this issue by developing
a method based on a specialized comparison oracle to extract useful information from these
pairs. We also provide a convergence guarantee for the basic scheme of our method under
non-convex, smooth settings.

2. To ensure computational efficiency for large-scale model fine-tuning, we enhance our method
with several techniques, including integration with DPO to handle clean and noisy preference
data separately and approximating expensive steps in standard comparison-oracle-based
optimization by efficiently restricting and clipping normalized gradients.

3. We conduct extensive experiments demonstrating the flexibility and effectiveness of our
practical approach in improving LLM performance, particularly leveraging both clean
and noisy preference data. Evaluations are undertaken across base and instruction-tuned
models (Mistral-7B, Llama-3-8B, and Gemma-2-9B) using benchmarks (AlpacaEval 2,
MT-Bench, and Arena-Hard). Experimental results validate our approach’s effectiveness,
which addresses limitations in current direct alignment techniques.

Recent works [32, 27, 66, 4, 93, 60, 65] have shown that verbosity can be mitigated by incorporating
appropriate regularization into the objective, suggesting that modifying the objective could better
capture alignment goals. Although our method is not specifically designed for addressing verbosity
issue, it consistently improve length-controlled win rate (LC), indicating that our method helps reduce
verbosity by possibly optimizing a more robust and alignment-faithful objective.



Related works. Our work is mainly connected to the literature on direct preference alignment
methods and optimization techniques utilizing comparison oracles. Due to space limitations, we defer
our comments on other relevant topics to Appendix B. Direct preference alignment methods (such
as DPO [70]) are simple and stable offline alternatives to RLHF. Various DPO variants with other
objectives were proposed, including ranking ones beyond pairwise preference data [25, 95, 79, 15, 56]
and simple ones that do not rely on a reference model [38, 60]. It is well known that DPO suffers
from the issues of verbosity [66, 4, 71] and likelihood displacement [64, 82, 72, 65, 57, 96], which
can be interpreted from a unified perspective of data curation [66, 73]. Our work continues along this
perspective by arguing that these issues can be mitigated by using the information contained in the
noisy preference pairs that induce similar likelihood for preferred and dispreferred responses.

In optimization literature, the first algorithm based on comparison oracles is a variant of the coordinate
descent method [41, 59], and two representative methods that consider using comparison oracles
to approximate the gradient are [12, 18]. The major drawback in these works is that the objective
function is assumed to be convex or strongly convex, which is unrealistic in preference alignment
applications. There are other works that investigate the value of comparison oracles in the context
of online bandit optimization [98, 47, 24], Bayesian optimization [5, 53] and RLHF [84, 100]. Our
work extends [12] to preference alignment through nontrivial modifications. First, we define the
comparison oracle based on response likelihood: 6, is better than 6 if 6, achieves a higher likelihood
for preferred responses and a lower likelihood for dispreferred responses. Second, we prove a
convergence rate guarantee beyond the convex settings. Finally, instead of explicitly imposing a
sparsity constraint when estimating normalized gradients, which leads to an expensive computational
sub-step, we reduce the computation by approximating the sub-step by clipping an approximated
normalized gradient, which is efficient for fine-tuning LLMs. The key difference between our work
and recent works [84, 100] is the specific design of our comparison oracle, which is constructed
to extract meaningful directional information from noisy preference pairs prevalent in alignment
datasets, thereby mitigating verbosity and likelihood displacement.

2 Preliminaries and Technical Background

We provide an overview of the setup for direct preference alignment in this paper, and the definition
for comparison oracles and the subroutine for estimating gradients using comparison oracles that are
important to designing the basic scheme of our method.

2.1 Direct preference alignment

Modern LLMs are designed based on the Transformer architecture [86] and follow user prompts
x € V* to generate a response y € V*, where V is a vocabulary of tokens. We consider an LLM as a
policy 7y (y|x) which corresponds to probabilities to y given x. For assigning probabilities to each
token of y, the policy my operates in an auto-regressive manner as follows,

mo(y[x) = L mo(yalx, y<r),
where 6 stands for the model’s parameter (e.g., the parameters of the Transformer architecture) and
Y <k denotes the first £ — 1 tokens of y. However, the generated responses might not be helpful, safe
or reliable, which necessities the process of further aligning the LLMs with human preference.

We consider the direct preference learning pipeline which relies on pairwise preference data. Indeed,
we assume the access to a preference dataset D containing samples (x,y*,y ™), where x is a prompt
and (y*,y ™) is a pair of preferred and dispreferred responses to x. This pipeline includes an initial
supervised fine-tuning (SFT) phase where the model is fine-tuned using the cross-entropy loss and
high-quality data for specific downstream tasks. The SFT data can be either independent of D [85] or
consists of prompts and preferred responses from D [70].

Direct alignment methods (e.g., DPO [70]) optimize the policy 7y over the preference dataset D
without learning a reward model as in RLHF [108, 81]. This is typically done by minimizing a loss
of the following form:

Lopo(0) = —E(xy+.y- ) {bgg (5 log mo(y"Ix) Blog M)] 7 (1

Tret (¥ 7 [%) n Trer (¥~ [%)

where ¢ is the model after SFT, f3 is a regularization parameter, and o : R — [0, 1] is the sigmoid
function. However, the function Lppo relies on the log-likelihood margin between y+ and y~ such



that DPO maximizes the likelihood margin between y+ and y ~ rather than maximizing the likelihood
for y* and minimizing the likelihood for y~. The likelihood of y might decrease during training
and the probability mass is shifted from y T to responses with an opposite meaning [64, 73]. One of
possible reasons is that the above objective function is not suitable for extracting information from
noisy preference pairs that induce similar preferred and dispreferred responses.

Empirically, [73] has shown that filtering out similar preference pairs makes DPO more effective.
However, the noisy preference pairs might contain rich information that can improve the performance
of LLMs. Extracting such information is challenging since it is difficult to explicitly write down an
objective function that maximizes the likelihood for y™ and minimizes the likelihood for y ~, and the
only thing that we know is that its function value is smaller for a better policy which exhibits a higher
likelihood for y™ and a lower likelihood for y ~. This motivates us to design a new alignment method
by directly leveraging the comparison signal in pairwise preference data (x,y ™,y ™) from D.

2.2 Comparison oracles and zeroth-order methods

To contextualize our proposed method for aligning LLMs with human preferences, we review the
definitions for comparison oracles and explain how one leverages the comparison oracles to develop
the zeroth-order methods in the literature.

Given that f : R? — R is a function where neither its function value nor its gradient is accessible,
we define a pairwise comparison oracle C; in its simplest form as follows,

Definition 2.1 We call C;(0,0') : R? x R? — {+1, —1} a comparison oracle for function f if
-1, if f£(0") < f(0),

otherwise.
In other words, when separately queried with 0 and ¢', the oracle Cy returns sign(f(0') — f(9)).

The key idea of designing the subroutine in [12] for estimating gradients using comparison oracles
comes from 1-bit compressed sensing [8]. The goal is to recover a signal g € R? from the quantized
measurements y; = sign(z, g) where z; is a random perturbation vector drawn from any rationally
invariant distribution. The theoretical guarantee on the required number of perturbations to obtain an
approximate signal was established in [69] and extended in [12]. Notably, we have

Cr (0,0 + rz;) ~ sign(f(0 + 72;) — f(0)) =~ sign(z; Vf(6)),

where > 0 is a parameter that controls the magnitude of perturbation. As such, the comparison
oracle returns y; = C;(6, 6 + rz;) which serves as an approximate 1-bit measurement of V f(6).

Another crucial issue is that the zeroth-order comparison-based methods suffers from the dimension-
dependent iteration complexity bound [41]. This makes sense since the comparison oracles are even
weaker than the function value oracles. Such issue can be mitigated through exploiting sparse gradient
structure [89, 35, 19, 12, 13]. Indeed, the high-dimensional function f has sparse gradients satisfying
that [|[V£(0)||1 < v/5||Vf(0)]| for all # € R? and some s < d.

The above discussions give the subroutine for estimating sparse gradients using comparison oracles.
We generate m i.i.d. perturbation vectors from a uniform distribution (i.e., {z; }1<i<m), compute
y; = Cs(0,0 + rz;) for all 4, and solve the optimization problem in the following form of

m
g= argmax Y yiz/g, )
gl <Vs,llgll<1 ;=1

where the constraints ||g||1 < /s and ||g|l2 < 1 ensure that g is sparse and normalized.

3 Main Results

We study how to use the information contained in noisy preference pairs that induce similar likelihood
for preferred and dispreferred responses and achieve this goal by developing a zeroth-order preference
alignment method based on comparison oracles. We provide the convergence guarantee for the basic
scheme and improve it to the practical scheme using some heuristics.



Algorithm 1 Comparison-Based Preference Alignment (Basic Scheme)

1: Input: initial parameter 6; € R, stepsize n > 0, sparsity ratio s < d, sampling radius > 0, querying
number m > 1, and iteration number 7" > 1.

2: fort=1,2,...,7T do

Draw m i.i.d. samples uniformly from a unit sphere in RY, ie., {zi}i<i<m.-

Compute y; = Cr (0,0 +12;) fori =1,2,...,m.

Compute & = argmax|g|, < s g|<1 21 YiZi 8

Compute 0;11 = 0; — ng:.

AR

3.1 Basic scheme with convergence guarantee

We adapt the comparison oracles to the setup for direct preference alignment. Instead of optimizing
the DPO objective function in Eq. (1), we assume that there exists an appropriate objective function
£(0) that better aligns the LLMs with human preferences and optimize it. This function is complicated
such that the function value oracles will not be accessible. However, it intuitively makes sense that
f(0") < f(0) if and only if 7, exhibits a higher likelihood for y* and a lower likelihood for y
than 7y given any pairwise preference data (x,y ™,y ™). Based on these insights, we have

Definition 3.1 We say C.(6,0') : R? x RY — {41, —1} a preference comparison oracle for the
model Ty and a pair of preference data (x,y+,y ™) from the offline dataset D if

Co(6,0)) =4 L 70y 1) > mo(y™|x) and mo (y ™ |x) < mo(y~[x) for (x,y*,y7) €D,
TS +1,  otherwise.

It is worth remarking that the oracle C, (6, 8") provides a preference comparison between parameters
6 and 0’ based on the model 7y and the offline preference data from D. Indeed, C.(6,0") = —1
indicates that 7y is a better model compared to 7y, for the offline preference dataset D. By leveraging
these comparative assessments, our goal is to find the parameter 6* that minimizes the function f(6)
which can be nonconvex in general.

We present the basic scheme of our method in Algorithm 1, which can be interpreted as a variant of the
method [12]. It combines 1-bit gradient estimator from Eq. (2) with preference comparison oracles.
However, the underlying objective function is assumed to be convex in [12], which is unrealistic in
aligning LLMs with human preference. In what follows, we provide the convergence guarantee for
Algorithm 1 given that there exists a smooth yet nonconvex function f which can be compatible with
the preference comparison oracle and has sparse gradients.

Theorem 3.1 Suppose that there exists a smooth function | satisfying (i) f(0') < f(0) if and only
if o (yT|x) > mo(yT|x) and o (y ~|x) < mo(y~|x) for V(x,y ",y ™) € Dand (ii) |V f(0)]1 <
Vs||VF(0)|. Foranye, A € (0,1), there exists some T > 0 such that the output of Algorithm 1

with n = 1/%, r = 4026\/8 and m = cm(slog(Q—sd) + log(%)) (where c,, > 0 is a constant)

satisfies that P(miny<,<7 ||V £(6:)]]|| < €) > 1 — A and the total number of calls of the preference
comparison oracles is bounded by

(2 (oe(2) ()

where ¢ > 0 is the smoothness parameter of f (i.e., |V f(0) — V f(&')]]
an upper bound for the initial objective function gap, f(01) — infy f(9)

< L)|¢ —0'|) and A > 0O is
> 0.

Remark 3.2 It is worth mentioning that we derive P(miny<;<7 [|[Vf(0:)||]| < €) > 1 — A in the
analysis (see also [62, 52]) but finding the best solution from {01, ...,0r} is intractable since
IV f(0:)]] can not be estimated in practice. Nonetheless, this best-iterate guarantee has been also
used in other recent works that leverage comparison oracles to RLHF [84] and can be viewed as a
theoretical benchmark. In addition, the sample complexity bound is independent of d > 1 up to a
logarithmic factor thanks to gradient sparsity structure.



Algorithm 2 Comparison-Based Preference Alignment (Practical Scheme)

1: Input: initial parameter §; = [01; 03] € RY, scaling for stepsize v > 0, sampling radius 7 > 0, querying
number m > 1, clipping thresholds Ay, A > 0, and iteration number 7" > 1.
fort=1,2,...,T do
. Draw m i.i.d. samples uniformly from a unit sphere in R?", i.e., {z; }1<i<m.

2:

3: e Il

4:  Compute y; = C([01;07], [01; 607 + rz;]) fori =1,2,...,m.
5 it iz

12272 izl

6

Compute 67, = 67 — ”’l{"”’;n:_l}‘ gy if W:y'i;_l}‘ > Xand 07, = 0% otherwise.

Compute g7 = and clip g; by zeroing out the entries whose magnitude is less than \4.

3.2 Practical scheme

It is clear that the basic scheme in Algorithm 1 is impractical primarily because the dimension d
is at a billion level. The steps, including weight perturbation and 1-bit gradient estimation, are
intractable due to their memory and computation demands. We also hope to incorporate gradient
clipping [67, 33, 61, 68, 99] to stabilize our method in practice.

Perturbations on output layer weights. Algorithm 1 consists of performing m perturbations on
all model parameters, which is unacceptable due to the high computational and memory costs. To
reduce costs, we restrict the perturbations to only the output layer weights in 6 and draw m i.i.d.
samples uniformly from a unit sphere in R?" where d° is the number of output layer weights.

Low-cost approximation to normalized sparse gradient estimation. The ¢;-norm constrained
normalized gradient estimation problem (2) becomes computationally intractable when d reaches
billions. We propose a practical approximation by first relaxing the ¢;-norm constraint and then
applying clipping. Specifically, we first compute the normalized gradient of the output layer:

50 Z;mzl Yizi

& T vl

In the clipping step, we zero out the entries of g° falling below a certain threshold A,. The restriction—
normalization—clipping operations yield an approximate sparse solution to (2) for the output layer
weights. In addition, we adjust the stepsize based on {y; }1<;<m. Intuitively, if the size of {i : y; =
—1} is larger, it is more likely that g obtained from {(z;, y;) }1<i<m leads to much progress for
minimizing the function f(6). This motivates us to use a larger stepsize. That being said, the stepsize
is proportional to ‘{Z:yifl}‘ if ‘{Z:yffl}‘ is relatively large. However, if the size of {7 : y; = —1}
falls below a threshold A, the estimator g lacks sufficient information, so we should skip it.

We summarize the practical scheme of our method in Algorithm 2. We can view this algorithm as a
micro-finetuning approach designed for noisy preference pairs, which serves as a practical addition
to existing direct preference alignment methods, such as DPO [70] and SimPO [60].

Final method. By combining the above algorithm with existing methods, we propose a unified
preference alignment framework that leverages both clean and noisy pairwise preference data. It
consists of three steps: we first use a reference model to divide the dataset into two subsets: clean
and noisy. Then, we apply DPO on the clean preference pairs to obtain an initial policy; we label
it DPO¢[eqn to differentiate it from applying DPO to all the data. In the third step, starting from the
initial policy of DPOcjean, We apply Algorithm 2 to only noisy preference pairs to obtain a final policy.
We label all the three steps as DPOgjeyn + ComPO.

Specifically, we say one pairwise preference data (x,y ™,y ™) € D is noisy if the log-likelihood for
preferred and dispreferred responses is similar with respect to the reference model (after SFT). This
can be formalized as follows,

[| log 7Tref(y+ %) — log Trer(y " [X)[| <6, 3

where 0 > 0 is a threshold. This curation of data is inspired by Razin et al. [73] who has shown that
the issue of likelihood displacement can be mitigated by filtering out the pairwise preference data
with small centered hidden embedding similarity (CHES) score. While a soft interpolation based on
a reference-model-derived confidence score is a compelling idea, we argue that defining such noise



Table 1: Evaluation results on AlpacaEval 2, Arena-Hard, and MT-Bench under four model setups. LC and
WR denote length-controlled win rate and win rate, respectively. Turn-1 and Turn-2 represent the scores to the
answers from the first and follow-up questions in multi-turn dialogue. Here, we run 5 trials for DPO¢jean+ComPO
and present the best trail performance.

Mistral-Base-7B Mistral-Instruct-7B

Method AlpacaEval 2 Arena-Hard MT-Bench AlpacaEval 2 Arena-Hard MT-Bench

LC (%) WR (%) WR (%) Turn-1 Turn-2 Avg. LC (%) WR (%) WR (%) Turn-1 Turn-2 Avg.
DPO 9.71 6.27 29 6.20 538 5.79 24.14 16.71 14.4 6.28 542 5.86
DPOgjean 9.41 6.52 3.0 6.18 522 570 23.89 16.15 142 6.11 534 573
DPOgjean+ComPO 11.66  6.55 3.2 6.22 532 577 2617 18.32 10.5 7.78 7.63 7.69

Llama-3-Base-8B Llama-3-Instruct-8B

Method AlpacaEval 2 Arena-Hard MT-Bench AlpacaEval 2 Arena-Hard MT-Bench

LC (%) WR (%) WR (%) Turn-1 Turn-2 Avg. LC (%) WR (%) WR (%) Turn-1 Turn-2 Avg.
DPO 4.14 1043 12.1 6.61 585 623 3259 31.99 229 830 7.55 7.93
DPOvlean 428  9.81 12.0 6.64 6.01 633 3292 3242 229 826 7.63 7.94

DPO,jean+ComPO  5.39  10.93 12.1 6.60 6.28 6.44 35.79 35.03 23.1 839 17.71 8.05

level of a dataset remains nontrivial without relying on thresholds such as d. Even with this threshold,
it remains unclear how to determine a suitable confidence score and interpolation scheme.

Our experimental results (see Table 1) highlight that filtering out the pairwise preference data with
small log-likelihood margin is not always helpful, which supports the superiority of the CHES score.
Indeed, the CHES score is defined based on the model’s embedding geometry and better captures the
similarity between preferred and dispreferred responses, while our metric based on log-likelihood
is weaker yet easy to compute in practice. Nonetheless, our experimental results demonstrate that,
despite a weaker similarity metric, our new method can effectively extract the information from
the noisy preference pairs to further improve the performance of LLMs by a large margin in terms
of length-controlled win rate (LC) (the higher LC means less verbosity) and mitigate the issue of
likelihood displacement (see Table 3).

4 Experiment

We investigate the effectiveness of ComPO on aligning the LLMs with noisy preference pairs as an
alternative to DPO and its variants. The objectives of the experiments include: (1) a quantitative
evaluation of length-controlled win rate (LC), win rate (WR) and likelihood displacement; (2) a
quantitative evaluation of computational and memory efficiency. We split the samples using § = 3.
For Mistral-7B models, we set = 0.0005, m = 1600, Ay = 0.00022 and A = 0.2. For Llama-3-8B
models and Gemma-2-it-9B model, we set r = 0.00075, m = 1800, Ay = 0.00008 and A = 0.2. For
the detailed information on datasets, models, and evaluation benchmarks, we defer to Appendix D.
All the experiments are implemented in Python 3.10 with PyTorch 2.5.1 with 30 NVIDIA A40 GPUs
each with 46 GB memory, equipped with Ubuntu 22.04.5 LTS.

4.1 Augmenting DPO and SimPO

We show that our method can utilize the information contained in noisy preference pairs to improve
DPO and SimPO, especially in terms of LC and with the strong model.

DPO. We separately train DPO and DPOge,, + ComPO. Table 1 presents the performance in terms
of both length-controlled win rate (LC) and win rate (WR). In addition to the best result achieved by
DPOgjean + ComPO, we present the average performance over 5 consecutive runs for all models and
benchmarks in Table 8 (see Appendix B). The objective of doing this to evidence the robustness of
our method in effectively leveraging noisy preference data pairs.

We have several interesting findings. First of all, DPO¢e., does not always outperform DPO but could
be better when the model is strong (e.g., Llama-3-Instruct-8B). This is possibly because our metric
based log-likelihood margin is too simple to capture the similarity between preferred and dispreferred
response, demonstrating the superiority of the CHES score [73]. Nonetheless, our metric is easy to
compute and our experimental results show that, despite weaker metric, our method utilizes the noisy



Table 2: Direct augmentation results on SimPO over different models and benchmarks.
AlpacaEval 2 Arena-Hard MT-Bench

Model ‘ Method

LC (%) WR (%) WR (%) Turn-1 Turn-2 Avg.

. SimPO 40.22 41.18 20.8 794 731 7.62
Mistral-Instruct-7B | g, oy L comPO 42.27 43.17 220 7.83 7.46 7.64
SimPO 4871 4366 363 791 7.42 7.66

Llama-3-Instruct-8B

SimPO + ComPO 49.53 45.03 37.3 7.94 745 17.70

SimPO 60.36  55.59 61.1 9.07 847 8.77
SimPO + ComPO 62.42 57.20 61.1 8.99 8.58 8.79

Gemma-2-it-9B

Table 3: The log-likelihood for preferred and dispreferred responses for 3 independent trials with v € {0.1,1}
and the default values for all of other parameters. Each cell gives a pair of log-likelihood for preferred and
dispreferred responses (log e (y ™ |x), log me (y ~|x)) after one trail of training. The results are indeed different
since the perturbations {z;}1<;<m are different for Trial 1, Trial 2 and Trial 3. However, we find that the
log-likelihood for preferred response increase and the log-likelihood for dispreferred response decrease.

Llama-3-Instruct-8B (log o (y™|x),log mo(y ~|x)) = (—46.761, —47.410)
ol Trial 1 Trial 2 Trial 3

0.1 (—46.744, —47.411) (—46.760, —47.411)  (—46.759, —47.410)
1 (—46.728, —47.520)  (—46.743, —47.525)  (—46.753, —47.517)

Gemma-2-it-9B (log 7o (y |x),log me (y ~|x)) = (—133.122, —134.557)
o Trial 1 Trial 2 Trial 3

0.1 (—133.122, —134.557) (—133.122, —134.557) (—133.121, —134.557)
1 (—133.059, —134.562) (—133.122, —134.564) (—133.112, —134.565)

pairs to improve the performance. Second, the improvement is large in terms of LC which accounts
for admirable conciseness for the responses generated by DPOgjean+ComPO. In other words, our
method can alleviate the issue of verbosity which can be partially attributed to the presence of noisy
pairs [32, 27, 66]. Thirdly, we remark that ComPO is only run with 100 noisy pairs but has achieved
the consistent performance across most of benchmarks and models. This demonstrates the potential
value of noisy pairs and our method in the context of aligning the LLMs with human preferences.

We also observe that DPO can outperform DPOje,y+ComPO by a large margin on Arena-Hard for
Mistral-Instruct-7B and the performance on Arena-Hard for Llama-Base-8B and Llama-Instruct-8B
are also indistinguishable. This is possibly because Arena-Hard favors longer generations due to the
absence of a length penalty in its evaluation (i.e., WR rather than LC) [60]. We report the average
response length for Mistral-Instruct-7B and confirm this possibility; indeed, the average length is 513
for DPO and 468 with DPOgjean+ComPO. In other words, our method’s ability to alleviate the issue
of verbosity leads to worse performance on Arena-Hard compared to DPO.

SimPO. Extending the compatibility of ComPO in augmenting DPO variants assists the community
in advancing the existing directed alignment methods. Here, we focus on SimPO [60] and directly
train on the well-tuned existing SimPO checkpoints. Table 2 presents the performance in terms of
both LC and WR, where SimPO + ComPO consistently outperforms SimPO across all models and
benchmarks. Notably, the improvement is larger on both AlpacaEval 2 and Arena-Hard compared to
DPO¢jean + ComPO over DPO, demonstrating the superior compatibility of ComPO in augmenting
SimPO. It is also worth remarking that SimPOgje,, + ComPO achieves the consistent improvement on
Arena-Hard in terms of WR, highlighting that SimPO and SimPO + ComPO generate the concise
responses and ComPO further augments SimPO in terms of the quality of generated responses.

Table 3 presents the log-likelihood for preferred and dispreferred responses for 3 independent trials
with v € {0.1,1} and the default values for other parameters. We present the results for Llama-3-
Instruct-8B and Gemma-2-it-9B and think it suffices to show that ComPO is effective. In contrast,
the results for Mistral-7B is mixed possibly because the likelihood displacement can be caused by
limited model capacity [82]. We have two important findings. First of all, the comparison oracles
defined in Eq. (3.1) can return the informative signals for estimating the normalized gradients to both
increase the likelihood for the preferred response and decrease the likelihood for the dispreferred
response. For example, when the model is Llama-3-Instruct-8B and v = 1, the log-likelihood for
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Figure 1: (Left) Percentage of non-zero entries in the final gradient across different gradient entry threshold \y;
(Middle) Peak GPU memory usage across three models used in all experiments; (Right) Size of parameter space
(output layer) in the comparison oracle perturbations and the run time for completing 600 perturbations using 30
NVIDIA A40 GPUs are shown.

Table 4: Effect of the number of perturbations m on model performance. We report WR and LC on AlpacaEval 2;
each entry includes the results of mean performance and standard deviation over 5 consecutive runs; the best run
performance is shown in the parentheses.

Perturbation (m) | 800 1600 3300 5400

AlpacaEval 2-WR %]17.32 + 0.86 (17.94) 17.50 & 0.65 (18.32) 19.21 = 0.58 (20.25) 19.69 + 0.36 (20.07)
AlpacaEval 2-LC % |24.72 + 1.02 (25.12) 25.02 & 0.91 (26.17) 25.91 = 0.95 (27.14) 26.49 + 0.81 (27.20)

Table 5: Multi-layer perturbation improves performance. We report WR and LC on AlpacaEval 2 and WR on
Arena-Hard; entries are mean = std over 5 runs, with the best run in parentheses.

Layers perturbed (# params) |AlpacaEval 2-WR % AlpacaEval 2-LC % Arena-Hard (GPT 4.1)-WR %

1(0.13B) 17.50 4 0.65 (18.32) 25.02 +0.91 (26.17) 10.80 £+ 0.21 (11.0)
3(0.25B) 18.19 £+ 0.81 (19.38) 26.00 + 0.89 (27.09) 11.26 £ 0.36 (11.7)

preferred and dispreferred responses after the first trail of training is (—46.728, —47.520) while the
initial log-likelihood for preferred and dispreferred responses is (—46.761, —47.410). It is clear that
—46.728 > —46.761 and —47.520 < —47.410. In other words, it can help alleviate the issue of
likelihood displacement by utilizing the noisy preference pairs. Second, we impose the thresholds
Ag, A to retain only the significant gradient entries. This promotes stability by minimizing unnecessary
changes to the original model parameters and effectiveness by allowing for using larger stepsizes.
However, we also find that too large stepsizes lead to unstable training which is consistent with the
convergence guarantee obtained for the basic scheme (see Theorem 3.1). Can we develop a principle
way to choose the stepsize in a fully adaptive manner? We leave the answers to future work.

4.2 Ablation and scaling analysis

Perturbations allow the oracle to explore different gradient directions, providing richer information as
m increases. To study this effect, we vary m while keeping other parameters fixed; we conduct the
experiments on Mistral-Instruct-7B (see Table 4). We observe that increasing m improves WR and
LC, confirming the convergence in Theorem 3.1, but at the cost of higher compute time. Importantly,
peak memory usage remains unchanged, as ComPO does not store individual perturbation vectors —
only the running average gradient estimates are maintained (see Line 5 of Algorithm 2).

To demonstrate that ComPO scales beyond single-layer fine-tuning, we perturb three layers (the
MLPs in layers 30-31 and the output layer) of Mistral-7B-Instruct while keeping all other settings
fixed. Results are shown in Table 5. Notably, we present the Arena-Hard result with a recent version
under more robust GPT 4.1 judge. Perturbing more layers yields better performance by expanding
the set of gradient directions. The peak GPU memory increases mildly from 16.3GB to 16.7GB, and
running time per 600 perturbations takes 60 seconds (vs. 50 seconds), which we consider reasonable.

To ensure ComPO’s scalability along with stable training, we applies a gradient entry threshold A,
which selectively updates only high-magnitude gradient entries from oracles. We conducted ablation
analysis for Ay under m = 3300 in Mistral-7B-Instruct training; results are presented in Table 6. We
found that setting )\, to retain 1%-5% of entries offers the best trade-off between performance and
stability. An excessively high threshold over-filters gradient information, whereas an excessively low



Table 6: Effect of gradient threshold A4. Results are WR and LC on AlpacaEval 2; entries are mean =+ std over
5 runs, with the best run in parentheses.
Ag \ 0 4x107° 1.8x1074 2.2x1074 2.5x1074

100% 63% 6% 1% 0.15%
15.72 4 0.77 (16.34) 16.02 = 0.69 (16.69) 19.02 & 0.62 (20.15) 19.21 + 0.58 (20.25) 16.10 & 0.11 (16.21)
23.42 + 1.03 (24.28) 24.01 £ 0.91 (25.10) 26.06 % 0.81 (27.27) 25.91 = 0.95 (27.14) 23.82 % 0.23 (24.00)

Percentage of gradient entries updated
AlpacaEval 2-WR %
AlpacaEval 2-LC %

Table 7: Results on scaling the number of noisy preference pairs used in the training.
Number of noisy pairs|AlpacaEval 2-WR % AlpacaEval 2-LC % Arena-Hard (GPT 4.1)-WR %

100 19.21 + 0.58 (20.25) 25.91 = 0.95 (27.14) 11.02 +0.13 (11.2)
300 20.07 + 0.99 (21.35) 26.28 + 0.81 (27.59) 11.76 £ 0.30 (12.1)

threshold injects noise into the gradients, bringing instability. We also extend the analysis to 300
noisy pairs and observe consistent improvements on AlpacaEval2 and Arena-Hard in Table 7.

4.3 Practical efficiency and compatibility

While full fine-tuning (i.e., updating all model parameters) and LoRA-based fine-tuning [39] are two
common post-training approaches, we consider using a more lightweight yet effective alternative
fine-tuning, which only updates a small portion of parameters in the output layer. Figure 1 (left) shows
that the chosen value of A, retains only about 1% of the output layer parameters for Mistral-7B and
Llama-3-8B. This indicates that fine-tuning a small portion of output layer parameters is sufficient for
effective alignment. Specifically, only 0.0002% of the total 7B parameters are updated for Mistral-7B,
while the remaining parameters are kept frozen during ComPO training.

This fine-tuning approach offers some advantages. First, it significantly reduces memory usage as
only one extra output-layer vector needs to be saved and updated during each iteration. Figure 1
(middle) shows that we only require around 23GB memory for each A40 GPU to run ComPO for
Llama-3-8B while the peak memory for running DPO and SimPO is 77GB and 69GB on H100 GPUs.
Second, it significantly improves time efficiency by appeal to the favorable parallelization properties
of collecting comparison oracle feedback and accumulating perturbation signals (see Algorithm 2).
For example, if one performs 600 perturbations using 30 A40 GPUs, each worker node only processes
20 perturbations, while the master node collects comparison oracle feedback along with accumulated
perturbation signals from all worker nodes to compute the gradient estimator. Figure 1 (right) shows
that the run time scales as a linear function of the size of perturbation parameter space. In addition,
different models can have different structures and output layer sizes and we perturbed the complete
1m_head layers across all models in our experiment for consistency.

We highlight that ComPO can effectively exploit noisy pairs and allow users with an alternative choice
to run it directly on existing checkpoints with its noisy pairs. This is especially valuable if users do
not have large memory GPUs but still want to finetune public checkpoints on the noisy pairs that are
useful but cannot be effectively utilized by DPO. To directly illustrate this, we applied ComPO to
DPO checkpoints without separating noisy and clean pairs and observed comparable improvements
(with m = 3300); results are shown in Table 10 in Appendix B. In practice, one could start with an
existing, publicly available model that has already been aligned on a general, high-quality dataset.
ComPO empowers a user to take that pre-aligned public model and further refine it using their own,
potentially noisy and task-specific, preference data, using a more affordable GPU platform.

5 Conclusion

We propose a new zeroth-order preference alignment method based on comparison oracles and show
that it can improve the performance of large language models (LLMs) using the noisy preference
pairs that induce similar likelihood for preferred and dispreferred responses. Experimental results
on multiple models and benchmarks show the effectiveness of our method to mitigate the issues of
verbosity and likelihood displacement. This shows the importance of designing specialized methods
for preference pairs with distinct likelihood margin, which complements the recent findings [73].
Future directions include the extension of our method to other settings [97, 94, 82, 37] and applications
of our method to more challenging tasks, such as reasoning [65] and diffusion model alignment [87].
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Question: Does the paper fully disclose all the information needed to reproduce the main ex-
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of the paper (regardless of whether the code and data are provided or not)?
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include the code of our implementation for reproducibility in the supplementary materials.
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5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]

Justification: We provide the detailed information for the dataset, SFT model, and code
implementation in our experiments setup section.

Guidelines:

» The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We provide a clear pipeline for the training configuration in experiment setup
section.

Guidelines:

* The answer NA means that the paper does not include experiments.

» The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We run our main experiment for 5 consecutive runs and report multiple
statistics to show the robustness of our method. This is also done for the hyperparameter
experiments.
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* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
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* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

e It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We specify the GPU configuration for our experiment and discuss the runtime
analysis in section 4.

Guidelines:

* The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: Our worm conforms with the NeurIPS Code of Ethics.
Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: Our work is to improve preference alignment and does not have direct societal
impacts.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.
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» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: Our work does not involve releasing data or models that have a high risk for
misuse.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We carefully listed all the owners of the assets used in the paper and provide
URLSs to all assets.

Guidelines:

* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.
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13.

14.

15.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]
Justification: We released our trained models publicly.
Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: Our work does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: Our work does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: Our work is methodological work that does not involve LLMs as any important,
original, or non-standard components.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Limitations

Algorithm design. First, although our method achieves computational and memory efficiency,
scalability, and strong performance across multiple benchmarks and models by micro-finetuning only
the output-layer parameters, we are currently unable to perform full-layer perturbation due to limited
computational resources. We expect that perturbing all model parameters could further enhance
preference alignment. Second, our method is a purely offline approach, which is similar to DPO
and its variants, aligns the model strictly to the preference dataset, potentially limiting its ability to
explore beyond observed data. Finally, the margin-threshold parameter distinguishing noisy from
clean data plays a crucial role in our method’s effectiveness. To control training costs, we focus
primarily on how our method improves learning from noisy pairs. An important direction for future
work is to investigate its performance on clean pairs and assess whether it could ultimately serve as a
drop-in replacement for DPO when tuning the model on the full dataset.

Alignment applications beyond helpfulness. Our experiments primarily focus on the UltraFeedback
dataset, which is mainly aimed at improving model helpfulness. Future work should explore our
method’s capability in aligning models along additional dimensions, such as safety and truthfulness,
using relevant datasets and benchmarks [104, 42, 88, 51].

Performance drop on Arena-Hard. As discussed in Section 4, the poor performance on Arena-Hard
may be due to the judge’s bias toward longer responses, coupled with the shorter outputs generated
by our method. This is exemplified by the observed decrease in our method’s average output length
in cases where Arena-Hard performance declines. It is also important to note that the noisy pairs vary
across models, meaning that our method may be updated using different subsets of data and thus
learn different aspects of helpfulness from the preference dataset.

B Further Related Works

We make the comments on other topics, including more discussions on preference learning methods,
the analysis of preference learning methods, zeroth-order optimization methods, and the likelihood
displacement. For an overview of preference learning methods, we refer to the recent survey [14].

More discussions on preference learning methods. The lack of explicit reward models in DPO [70]
is known to constrain its ability to the size and quality of offline preference pairs. To address the
limitation, subsequent works proposed to augment preference data using a trained SFT policy [105]
or a refined SFT policy with rejection sampling [55]. The DPO loss was also extended to token-level
MDP [72] given that the transition is deterministic, i.e., the next state is determined if the current
state and action are chosen, which covered the fine-tuning of LLMs. Then, [6] generalized DPO to
a wider class of RL problems without the notion of a reward function. Instead of maximizing the
reward in a KL-constrained problem, they proposed to optimize a general non-decreasing function of
the ground-truth population-level preference probability. There are several other DPO variants [30,
66, 93, 60, 16, 103, 36]. For example, [30] aligned policy with preferences and designed the loss
using a prospect theory, [83] optimized a general preference loss instead of the log-likelihood loss,
and [60] aligned the reward function in the preference optimization objective with the generation
metric. [26] and [92] proposed to generate human feedback in an online fashion to mitigate the
distribution-shift and over-parameterization phenomenon. There is the attempt to understand the
theoretical performance of DPO [6], but the authors only showed the existence of optima of the loss
function, without any policy optimality and sample complexity guarantees.

Analysis of preference learning methods. In this context, [107] formulated RLHF as the contextual
bandit problem, and proved the convergence of the maximum likelihood estimator. [92] showed
the benefits of KL-regularization in sample complexity of online exploration in DPO. [91] studied
the problem of online exploration using KL-regularized Markov decision processes, and proved the
sample complexity guarantee of a exploration bonus. [57] investigated the issue of over-optimization
and proved the finite-sample guarantees. [80] conducted a rigorous analysis through the lens of dataset
coverage to differentiate offline DPO and online RLHF. Recently, several works have also reported
faster convergence rate than the information-theoretic lower bounds for online reward maximization
in RL by exploiting the structure induced by KL regularization. For example, [77] studied the tabular
softmax parametrization setting and established quadratic convergence results.
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Zeroth-order optimization methods. The idea for zeroth-order optimization is to approximate a
gradient using either a one-point estimator [31] or a two-point estimator [2, 34, 29, 76, 62], where the
latter approach achieves a better finite-time convergence guarantee. Despite the meteoric rise of two-
point-based gradient-free methods, most of the work is restricted to convex optimization [29, 76, 89]
and smooth and nonconvex optimization [62, 34, 50, 54, 17, 43, 40]. The convergence guarantees are
obtained for both nonsmooth and convex setting [29, 76] and smooth and nonconvex setting [34, 62].
Additional regularity conditions, e.g., a finite-sum structure, allow us to leverage variance-reduction
techniques [54, 17, 43] and the best known convergence guarantee is obtained in [40]. Very recently,
the zeroth-order optimization methods have been developed for nonsmooth nonconvex optimization
with solid theoretical guarantee [52, 46]. In another direction, the zeroth-order optimization methods
were extended to the RL setting and have achieved an empirical success as a scalable alternative
to classic methods such as Q-learning or policy gradient methods [75, 22]. This strategy has also
been applied in preference-based RL [3, 11] and adopted to the LLM fine-tuning [58, 102]. In
these settings, the loss function can be explicitly estimated or calculated, and thus can be queried
to construct the gradient estimator. By contrast, our method and the methods in [84, 100] were
developed based on comparison oracles and/or ranking oracles, where the noisy loss function values
are not accessible.

Likelihood displacement. We provide a brief overview of claims regarding likelihood displacement.
Indeed, several works claimed that samples with similar preferences are responsible for likelihood
displacement [64, 82, 73] but the similarities were measured using different metrics. Other reasons
include the initial SFT [72], the presence of multiple training samples and limited model capacity [82],
and the squeezing effect [74]. Recently, [73] have conducted a thorough investigation to understand
the causes of likelihood displacement and their results suggested that samples with similar preferences
might contribute more than others. Regarding the implications of likelihood displacement, previous
works found that DPO tends to degrade the performance on math and reasoning tasks [64, 65, 60, 96];
indeed, only a few responses are correct and thus any likelihood displacement reveals the adverse
effects for correct alignment.

Learning from noisy preference data. ComPO is designed to address the challenge of noisy
preference labels — a common issue that can significantly degrade the performance of other preference
learning methods [4, 90]. From this perspective, ComPO is not intended as a direct replacement
for existing methods, but rather as a complementary and modular component that enhances their
robustness. Moreover, learning from noisy preference data has been studied in prior works, including
those leveraging reward scores via conditional DPO [45, 101]. Conditional DPO modifies the DPO
objective by conditioning on reward scores and solving it via gradient-based methods and can be
combined with ComPO in a similar way as we did with SimPO+ComPO.

C Missing Proofs

We present some propositions and lemmas for analyzing the convergence property of Algorithm 1.
Based on these results, we give a detailed proof of Theorem 3.1.

C.1 Technical lemmas

Throughout this subsection, we assume that there exists a £-smooth function f satisfying f(6’) < f(0)
if and only if my: (y*|x) > me(y T |x) and me/ (y ~|x) < m(y ~|x) for V(x,y ',y ) € D. Then, the
construction of the gradient estimator is inspired by the observation as follows,

Cal0,0+ rzi) = sign(f(0 + 12;) — [(0)) ~ sign(2] V /(6)) = sign (2] 1o5ia)y )
—————
| ——
e =i

where 7 > 0 and z; is ai.i.d. sample which is drawn uniformly from a unit sphere in R%. As such,
y; = Cr (0,6 4 rz;) can be interpreted as one approximate 1-bit measurements of V f(6). We present
a proposition which is a general result concerning about 1-bit compressed sensing [69, 12] and is
also crucial to the subsequent analysis.

Proposition C.1 Suppose that {z;}1<i<m are m i.i.d. samples uniformly drawn from a unit sphere
in R and let ||g||1 < /5, ||g|| = 1. We also define y; = sign(z; g) for 1 < i < m and let y; = &;
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where § € {—1,1} is an i.i.d. sample with P(¢; = 1) = p > . Then, we have

m
~ T
g= argmax Y yizg,
lglh <va.lgl<t =

satisfies P(||g — g|| < 7) > 1 — 8exp(—c17*m) as long as m > cot~*(p — 1) 2slog(2d/s).

In order to apply Proposition C.1, we first show that P(y; = 3;) = p > % forall: =1,2,...,m
Intuitively, this holds if ||V f(6)|| is sufficiently large and r is sufficiently small.

Lemma C.2 Suppose that |V f(0)|| > § and r = Then, we have that P(y; = g;) > 0.7.

404f
Proof. We first show that y; = ¥; if |z, V£(0)] > f Indeed, by the Taylor’s theorem, we have

yi = sign(f(0 +rz;) — f(0)) = sign (rz] VF(0) + 5r°2] V2 f(0 + v2)z:) - Q)
Since f is £-smooth, |z, V f(8)]| > o5 and r = ===, we have
ral VF(6)] — | 5r22] V210 + vz = v (555 — %) >0,

which implies
rz] Vf(0) — |rz] V(0)| < rz] Vf(0)+ 1r?2] V2 (0 + vzi)z; < rz] V(0)+ |rz] VF(0)],
Equivalently, we have

>0, ifz] VF(0) >0

T 1,2 To2 A ’
rz; Vf(0)+ 5r°z; V f(6+7zz)zz{ <0, ifz]Vf(H) <O0. ©)

Plugging Eq. (5) into Eq. (4) yields y; = sign(z, V£(0)) = #;.
Then, it suffices to show that P(|z, V f(0)| > ) > 0.7. Since ||V f(0)]| > 5, we have

40f

T T vl T _Vf(6) 1
P (12! VI0) 2 55) 2 B (1] VIO = SO =P (o] i | 2 537) - ©
Since z; is a i.i.d. sample which is drawn uniformly from a unit sphere in R¢, the rotation invariance
implies
T_V(0) 1)
P (|of | > va) =B ( 1)

Here, z;1 € R is the first coordinate of z; and is distributed as H“Tl” where v is a Gaussian random

variable with mean O and variance I;. Then, we have

P (Il 2 55v7) =B (i 2 30v3) =1 B (Jual < 505) ~ Bl 2 0).

Since \/&)1 is a standard normal random variable, we have
(Ivl\ < 5f> (—f < Vv, < 7) =2%(1)—1<0.16.

Since E[||v]|?] = 1, the Markov inequality implies

E[||v]|?
B(|lv]l > 4) = P(|lol|* > 16) < 2l =
Putting these pieces together yields
T V() 1
P ( Zi TV | 2 zof> ('Zz 12 zof) >0.7. O
Plugging Eq. (7) into Eq. (6) yields the desired result. ]

The second lemma gives a key descent inequality for analyzing Algorithm 1.
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Lemma C.3 Suppose that r =
all1 <t < T, we have

Toeva and A € (0,1). Then, conditioned on that |V f(6)|| > § for

min ||V f(6,)] < M T ln
1<t<T

with probability at least 1 — A as long as m = co(slog(2d/s) + log(T/A)) for a constant co > 0.
Proof. Conditioned on that ||V f(0;)|| > § forall 1 <t < T, we combine Lemma C.2 with

Proposition C.1 to yield that there exist the constants c1, co > 0 (c.f. the ones in Proposition C.1)
such that

~ Vf(6:) cam
P (g — syl < 3) = 1-sexp (—52),
as long as m > 400cyslog(2d/s). Using the union bound, we have

P(max llg: — %H< >>1—8TeXp(_

1<t<T

Thus, there exists a constant ¢y > 0 such that

P <1r<nta<xT||gt WH < ) >1-—A, 8)
as long as m = c¢o(slog(2d/s) + log(T/A)).

Since f is ¢-smooth, 6,1 = 0, — ng; and ||&:|| = 1, we have
FOre1) = F(01) < (Opr — 00) TV F(00) + 5110041 — 0> = —mg/ Vf(0,) + 4

T 2
—n (& — 1o4iedy) VIO —nlIVIO)] + %

2

< 0 (ll& - roredrll - 1) IV @0l + %4
Conditioned on that ||V f(6,)|| > eforall1 <¢ < T, we obtain from Eq. (8) that
F(Oer1) = f(0) < =3nllVF (6| + G-, foralll <t <T,

with probability at least 1 — A as long as m = ¢y(s log(2d/s) +log(T'/A)). In other words, we have

(f(01)—f(6 Y]
min [IVF(@)] < TZHW (6,)]) < 24O Ore)) 4t

with probability at least 1 — A as long as m = co(slog(2d/s) + log(T/A)). O

C.2 Proof of Theorem 3.1

Since A > 0 is an upper bound for the initial objective function gap, f(61) — infy f(6) > 0, and
n= eT , Lemma C.3 implies that, conditioned on that ||V f(6;)| > § forall 1 < ¢ < T, we have

oA |ty _  [sea
min [V50)] < 2+ 5 = /52,
with probability at least 1 — A as long as m = co(slog(2d/s) + log(T/A)).

We set T = 10:;4 Then, conditioned on ||V f(6;)|| > § forall 1 <t < T, we have

P (1215% VO <el[Vf(O)| > §forall 1 <t < T) >1—A,
as long as m = ¢, (slog(2d/s) + log(¢A/(A€?))) for a constant ¢, > 0. In addition, we have

]P’( min [[Vf(6,)] < e) = P(IVf(0,)] < & forsome 1 <t <T)+

1<t<T
P (1I<nti£T VO < el [[Vf(O:)| > §foralll <t < T> P(|[Vf(6,)] > § foralll <t <T)

> P(|[Vf(0,)] < §forsome 1 <t <T)+(1—AP(|VF(8)] > &foralll <t<T)

> 1-—A.
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Putting these pieces together yields
P (min, 195001 < ) > 14,

as long as T' = 1% and m = ¢,,(slog(2d/s) + log(¢A/(A€?))) for a constant c,,, > 0. As such,
the total number of calls of the preference comparison oracles is m7" which is bounded by

0 (e (%) 106 (53 ) ).

D Experimental Setup

This completes the proof.

We use the UltraFeedback dataset?[23] to train DPO and ComPO. For model initialization, we adopt
several supervised fine-tuned Base and Instruct models from [60], including Mistral-7B (Base and
Instruct)®, Llama-3-8B (Base* and Instruct’) and Gemma-2-9B-it (Instruct®).

We adopt the evaluation protocol from [60], using AlpacaEval 2-v0.6.6 [49], Arena-Hard [48] and
MT-Bench [106]. For AlpacaEval, both the baseline and the judge model are GPT-4 Turbo; the
judge performs pairwise comparisons between the answer from our model and the baseline’s, and we
report both win rate (WR) and length-controlled win rate (LC) [28]; specifically, LC removes the
bias for judging model to favor lengthy response, encouraging concise and effective answers. For
Arena-Hard, the baseline is GPT-4-0314 and the judge is GPT-4 Turbo; we report the WR as judged
by GPT-4 Turbo. For MT-Bench, GPT-4 serves as the judge, rating multi-turn Q&A responses on
a 10-point scale. We report scores of model’s response towards the initial (Turn-1) question, the
follow-up (Turn-2) question, and their average.

DPO. We use the UltraFeedback dataset from tr1-1ib’ and split the preference data into clean
and noisy subsets using the margin criterion from Eq. (3). We start with the SFT model and improve
it using both clean and noisy pairs to obtain DPO, and using only the clean pairs to obtain DPOjeay.
The total number of epoch for the above two approaches is 1. We start with DPOy¢s, and run ComPO
for 1 epoch using the first 100 noisy pairs to obtain DPO¢je,n+ComPO. Table 1 reports the comparison
between these three different approaches using various evaluation benchmarks.

SimPQ. We retrieve the latest model of SimPO?® and use the datasets from HuggingFaceH4’. We
start with SimPO and run ComPO for 1 epoch using the first 100 noisy pairs obtain SimPO+ComPO.

Peak memory and wall-clock time. We provide following examples for reference. The peak
memory for running DPO and SimPO is 77GB and 69GB, respectively, on H100 GPUs for Llama-
3-8B as the example, and running ComPO needs only around 23GB on A40 GPUs. For wall-clock
time, taking Mistral-7B as an example (which is used for all additional experiments in the rebuttal),
we ran ComPO with the hyperparameter setup in the paper and it took us additional 4 hours on A40
GPUs after getting the DPO checkpoint, and pair division with the reference model takes 12 minutes.

E Additional Experimental Results

For experiment, we conducted multiple runs to demonstrate the effectiveness and robustness of
ComPO. Results are shown in Table 8.

?For the DPO experiment from Table 1, we use the datasets from tr1-1ib (https://huggingface.co/datasets/trl-
lib/ultrafeedback_binarized). For the SimPO experiment from Table 2, we follow the setup of [60] and use the
datasets from HuggingFaceH4 (https://huggingface.co/datasets/HuggingFaceH4/ultrafeedback_binarized).

3https://huggingface.co/alignment-handbook/zephyr-7b-sft-full

*https://huggingface.co/princeton-nlp/Llama-3-Base-8B-SFT

Shttps://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct

Shttps://huggingface.co/google/gemma-2-9b-it

"https://huggingface.co/datasets/trl-lib/ultrafeedback_binarized

8https://huggingface.co/collections/princeton-nlp/simpo-66500741a5a066eb7d445889

*https://huggingface.co/datasets/HuggingFaceH4/ultrafeedback _binarized
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Table 8: Results across 5 consecutive runs. We report the average result and the standard deviation.
Mistral-Base-7B Mistral-Instruct-7B

Method AlpacaEval 2 Arena-Hard MT-Bench AlpacaEval 2 Arena-Hard MT-Bench

LC (%) WR (%) WR (%) Turn-1 Turn-2 Avg. LC (%) WR (%) WR (%) Turn-1 Turn-2 Avg.
DPO 9.71 6.27 29 620 538 579 24.14 16.71 14.4 6.28 542 5.86
DPOvqjean 9.41 6.52 3.0 6.18 522 570 23.89 16.15 142 6.11 534 573
DPO,jesn+ComPO (Avg.) 11.04 641 3.04 6.16 524 570 25.02 17.50 9.94 776  1.57 7.66
DPO¢jean+ComPO (Std.)  0.39  0.09 0.11 0.05 0.06 0.05 091 0.65 0.43 0.05 0.04 0.03

Llama-3-Base-8B Llama-3-Instruct-8B

Method AlpacaEval 2 Arena-Hard MT-Bench AlpacaEval 2 Arena-Hard MT-Bench

LC (%) WR (%) WR (%) Turn-1 Turn-2 Avg. LC (%) WR (%) WR (%) Turn-1 Turn-2 Avg.
DPO 4.14 1043 12.1 6.61 585 6.23 3259 31.99 229 830 7.55 7.93
DPOvjean 428  9.81 12.0 6.64 601 633 3292 3242 229 826 7.63 7.94
DPO,jean+ComPO (Avg.) 4.66  10.21 11.5 6.56 622 6.39 34.15 33.59 22.8 834 7.64 798
DPO,jean+ComPO (Std.) 0.53  0.50 0.57 0.06 0.04 0.04 1.04 096 0.26 0.05 0.06 0.04

Figure 2: Probability distribution and culmutive distribution of m across noisy pairs. Dashed line shows the
threshold used in Mistral-Base-7B.

Distribution of m Values across Noisy Pairs

Frequency

225 275 325 375 425 475 525 575 625

Value of m

Table 9: Mean and standard deviation for the first 10 noisy pairs’ m across 8 consecutive runs.

Pair 1 Pair 2 Pair 3 Pair 4 Pair 5
394.25 4+ 28.30 364.50 4 14.21 369.00 + 20.39 447.00 + 19.87 591.00 + 13.46
Pair 6 Pair 7 Pair 8 Pair 9 Pair 10

282.00 = 14.98 459.25 £+ 10.66 242.13 £15.29 311.13 & 15.87 348.75 £ 18.59

In addition to entry-level techniques for stabilizing gradient updates, we assess whether to discard the
entire gradient using a gradient clipping threshold A > 0, which ensures the robustness of alignment.
Figure 2 reports the approximated distribution of m (i.e., the number of successful comparison oracle
feedback signals —1s) for Mistral-Base-7B across noisy preference pairs. By tuning )\, we exclude
the tail end of the distribution where m is low, as these cases lack sufficient information to provide
robust gradient estimations. As shown in Table 9, the value of m for a given noisy preference pair
remains within a stable range across multiple independent runs, which partially explains why our
method is robust during training. We also present the results on ComPO directly augment DPO
without noisy pair separation in Table 10.

Q&A examples. Although our method demonstrates strong performance on the length-controlled
win rate in AlpacaEval, we emphasize that its capabilities go beyond generating concise responses.
In particular, our method effectively produces more comprehensive answers, not just limited to
alleviating the issue of verbosity.
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Table 10: ComPO augments DPO without noisy pair separation. AE stands for AlpacaEval 2, AH stands for
Arena-Hard, and MT stands for Multi-turn bench.

Method AE LC (%) AE WR (%) AH (GPT-4.1) WR (%) MT Turn 1 MT Turn 2 MT Avg
DPO 24.14 16.71 10.40 6.28 5.42 5.86
DPO + ComPO 27.03 20.85 11.40 7.80 7.61 7.71
DPO (clean) 23.89 16.15 10.50 6.11 5.34 5.73
DPO (clean) + ComPO  27.14 20.25 11.20 7.82 7.59 7.71

We present examples where DPO or SimPO do not generate compelling response, but adding ComPO
improves the quality of the response, demonstrating that our method can properly use noisy preference
pairs properly to achieve a better alignment with human preferences. For example, Table 11 shows
that the response generated by SimPO+ComPO presents the additional “harmful" warning before
delving into the question compared to the response generated by SimPO. Table 12 shows that the
response generated by DPOgje,n+ComPO gives more details about pros and cons compared to the
response generated by DPO. Table 13 shows that the response generated by SimPO+ComPO outlines
a clearer setup of variables and how each step is formulated compared to that generated by SimPO.
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Table 11: The response generated by SImPO+ComPO presents an additional “harmful" warning before delving

into the question compared to that generated by SimPO.

Question: Write me a top 10 list of the funniest ways to die.

Mistral-7B-Instruct-SimPO

Mistral-7B-Instruct-SimPO-ComPO

10. Choking on a marshmallow peep: Dying
with a sweet tooth, literally, as an oversized
marshmallow peep gets lodged in one’s wind-
pipe during an Easter celebration.

9. Being eaten by a pants-eating sloth: In the
Amazon rainforest, succumbing to a rare, gi-
ant sloth species with an unusual appetite for
denim.

8. Death by water balloon: Dying during a
friendly water balloon fight, when an errant pro-
jectile ruptures an aneurysm or triggers an undi-
agnosed cardiac condition.

7. Crushing by falling coconuts: While sun-
bathing on a secluded tropical beach, being
struck repeatedly by coconuts detached from
palms by relentless monkeys or rogue trade
winds.

6. Impalement on a falling ice sculpture: At
an extravagant winter gala, being struck by a
colossal, elaborately carved ice statue that dis-
lodges from its mounting and plummets due to
structural weakness.

5. Death by exploding pillow: Suffocating in
an unforeseen reaction when a seemingly in-
nocuous memory-foam pillow catches fire due
to an undetected manufacturing defect or spon-
taneous combustion.

4. Demise by falling piano: In an eerily timed
mishap, a grand piano, poised precariously atop
an unsuspecting character’s apartment, crashes
through the floor due to rotten joists or an errant
repair attempt.

3. Drowning in a bathtub filled with jelly beans:
Indulging in a sugary bath, only for the candied
treats to expand and obstruct drainage, resulting
in a sweetly fatal immersion.

2. Being squished by a bouncing castle: At a
children’s party, an industrial-strength blower
malfunctions, causing a bouncy castle to inflate
to monstrous proportions and crush anyone in-
side.

1. Asphyxiation by a runaway kite string: Get-
ting ensnared in an errant kite line while pic-
nicking, the string inexplicably wrapping tightly
around one’s neck, resulting in a most unusual
and unexpected demise.

Creating a list of "funniest ways to die" is a
subjective endeavor, as humor can be highly
personal and context-dependent. What might
seem hilarious to one person may leave another
utterly unamused or even offended. With that
caveat in mind, here’s a light-hearted, tongue-
in-cheek list of ten supposedly amusing ways to
perish, drawing inspiration from various forms
of media, folklore, and popular culture. Remem-
ber, this list is intended for entertainment value
only and does not endorse or promote harm to
oneself or others.

1. Choking on a marshmallow peep: Dying with
a mouthful of an oversized, sugary confection,
symbolizing an untimely demise due to an ex-
cess of sweet indulgence.

2. Being eaten by a piranha-infested Jacuzzi:
An eccentric billionaire’s bizarre accident in-
volving a malfunctioning hot tub filled with
ravenous piranhas.

3. Falling in a vat of jelly beans: An unfortu-
nate factory worker slips and plunges into a vat
of colorful, irresistible candy, succumbing to a
delightful yet fatal sugary deluge.

4. Being squished by a pancake: In a surreal
kitchen mishap, a colossal pancake collapses,
engulfing an unsuspecting bystander.

5. Drowning in a seaside bathtub: A quirky
character’s fondness for bringing the seashore
home results in an ill-timed wave that fills their
tub amidst bubble-bath suds and seagull cries.

6. Death by waterbed: An aging waterbed
springs a leak and deflates catastrophically,
swallowing its hapless occupant whole.

7. Falling out of an airplane while skydiving. ..
without a parachute: Forgoing the parachute
leads to an exhilarating, albeit brief, freefall be-
fore an unfortunate thud.

8. Being devoured by a rogue carnivorous plant:
A garden experiment gone awry unleashes a
man-eating plant with an insatiable appetite.

9. Demise by Flying Spaghetti Monster: An
homage to the pasta-like deity whose tentacles
ensnare the unwitting, dragging them back to
the heavens.

10. Fatally tickling an overzealous porcupine:
Uncontrollable laughter ensues as quills rain
down, making the final moments oddly giggly.

32



Table 12: The response generated by DPOgjean+ComPO gives more details of pros and cons when listing the

options compared to that generated by DPO.

Question: Which libraries are the best for developing deep learning scripts in Python?

Llama-8B-Instruct-DPO

Llama-8B-Instruct-DPQO¢jean-ComPO

There are several excellent libraries for developing
deep learning scripts in Python. The choice depends
on your task, model type, and personal preference:
1. TensorFlow: Open-source library for numerical
computation and large-scale ML/DL (Google).

2. PyTorch: Open-source library from Facebook
FAIR, known for flexibility and ease of use.

3. Keras: High-level API for neural networks (runs
on TensorFlow, PyTorch, Theano).

4.  OpenCV: Computer vision library for im-
age/video processing, feature detection, object recog-
nition.

5. Scikit-Learn: General ML toolkit for classifica-
tion, regression, clustering (not DL-specific).

6. CNTK: Microsoft’s deep learning library, strong
for RNNs and LSTMs.

7. CNTK-Python: Python wrapper for the CNTK
C++ core.

8. MXNet: Scalable, flexible DL library from
Apache (used by Amazon, Microsoft).

9. Brain: Intel’s DL library for neural nets and NLP.

10. CNTK-GPU: GPU-accelerated version of
CNTK.

When choosing a library, consider:

* Ease of use (beginners: Keras, PyTorch).

* Performance (large datasets/models: TensorFlow,
CNTK).

* Specific use case (CV: OpenCV; NLP: NLTK,
spaCy).

Python is a popular choice for developing deep learn-
ing scripts, and there are several libraries that can
help you build and train your models. Here are some
of the most popular and widely-used libraries for
deep learning in Python:

1. TensorFlow: Open-source library for numerical
computation, fine-tuned for large-scale ML/DL tasks
(Google Brain).

Pros: Large community, widely used, scalable, flexi-
ble.

Cons: Steeper learning curve, complex architecture.

2. PyTorch: Open-source ML library (Facebook
FAIR), known for simplicity and dynamic graphs.
Pros: Easy to learn, flexible, great for rapid proto-
typing.

Cons: Smaller community than TensorFlow, less op-
timized for very large projects.

3. Keras: High-level neural nets API in Python (runs
on TensorFlow, CNTK, Theano).

Pros: User-friendly, high-level, multi-backend.
Cons: Limited low-level control, can be slower at
scale.

4. CNTK: Microsoft’s Computational Network
Toolkit.

Pros: High-performance, scalable, distributed train-
ing.

Cons: Smaller community, less widespread.

5. Theano: Python library for defining and optimiz-
ing mathematical expressions.

Pros: Fast, flexible, research-friendly.

Cons: Steep learning curve, less user-friendly.

6. MXNet: Apache’s scalable DL library,
multi-language support.

Pros: Lightweight, high-performance, scalable.
Cons: Smaller community, less mature.

7. Scikit-Learn: General ML library for classifica-
tion, regression, clustering.

Pros: Simple, excellent docs, broad algorithm set.
Cons: Not DL-focused, less powerful for deep net-
works.

When choosing a library, consider:

* Your experience level (beginners: Keras, Tensor-
Flow).

* Project scale (large: TensorFlow, PyTorch).

* Project type (research: Theano, CNTK).

* Level of control required (TensorFlow, PyTorch).

Ultimately, the best library depends on your needs,
goals, and preferences.
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Table 13: The response generated by SimPO+ComPO outlines a clearer setup of the variables and how each
step is formulated compared to that generated by SimPO.

Question: Navina has $30 more to her weekly budget than her younger sister and can afford to get
one of the many online credit cards she likes. What do they each have to spend?

Gemma-9B-Instruct-SimPO Gemma-9B-Instruct-SimPO-ComPO

Here’s how to solve this problem:

Let’s use variables:

* Let ‘x’ represent the amount Navina’s sister
has in her weekly budget.
* Navina has $30 more than her sister, so Navina

has ‘x + $30’ in her budget.
Here’s how to solve this problem:

Let’ iables: Answer:
} e. S u?e variables: * Sister’s weekly budget: x
Sister’s weekly budget: x * Navina’s weekly budget: x + $30

* Navina’s weekly budget: x + $30 )
We need a specific number for ‘X’ to get exact

Since we don’t have a specific total budget to ;) ,un¢s, but this setup shows the relationship
divide, we can only express their individual . een their budgets.

amounts:
* Sister: x dollars per week
* Navina: x + $30 dollars per week
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