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Abstract

Modeling molecular potential energy surface is of pivotal importance in science.
Graph Neural Networks have shown great success in this field. However, their
message passing schemes need special designs to capture geometric information
and fulfill symmetry requirement like rotation equivariance, leading to complicated
architectures. To avoid these designs, we introduce a novel local frame method
to molecule representation learning and analyze its expressivity. Projected onto a
frame, equivariant features like 3D coordinates are converted to invariant features,
so that we can capture geometric information with these projections and decouple
the symmetry requirement from GNN design. Theoretically, we prove that given
non-degenerate frames, even ordinary GNNs can encode molecules injectively
and reach maximum expressivity with coordinate projection and frame-frame
projection. In experiments, our model uses a simple ordinary GNN architecture
yet achieves state-of-the-art accuracy. The simpler architecture also leads to higher
scalability. Our model only takes about 30% inference time and 10% GPU memory
compared to the most efficient baselines.

1 Introduction

Prediction of molecular properties is widely used in fields such as material searching, drug designing,
and understanding chemical reactions [1]. Among properties, potential energy surface (PES) [2],
the relationship between the energy of a molecule and its geometry, is of pivotal importance as it
can determine the dynamics of molecular systems and many other properties. Many computational
chemistry methods have been developed for the prediction, but few can achieve both high precision
and scalability.

In recent years, machine learning (ML) methods have emerged, which are both accurate and efficient.
Graph Neural Networks (GNNs) are promising among these ML methods. They have improved con-
tinuously [3-10] and achieved state-of-the-art performance on many benchmark datasets. Compared
with popular GNNs used in other graph tasks [11], these models need special designs, as molecules
are more than a graph composed of merely nodes and edges. Atoms are in the continuous 3D space,
and the prediction targets like energy are sensitive to the coordinates of atoms. Therefore, GNNs for
molecules must include geometric information. Moreover, these models should keep the symmetry
of the target properties for generalization. For example, the energy prediction should be invariant to
the coordinate transformations in O(3) group, like rotation and reflection.

All existing methods can keep the invariance. Some models [4, 5, 8] use hand-crafted invariant
features like distance, angle, and dihedral angle as the input of GNN. Others use equivariant rep-
resentations, which change with the coordinate transformations. Among them, some [6, 9, 12] use
irreducible representations of the SO(3) group. The other models [7, 10] manually design functions
for equivariant and invariant representations. All these methods can keep invariance, but they vary
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Figure 1: An illustration of our model. One local frame is generated for each atom. Frames are used
to transform geometric information into invariant representations. Then an ordinary GNN is applied.

in performance. Therefore, expressivity analysis is necessary. However, the symmetry requirement
hinders the application of the existing theoretical framework for ordinary GNNs [13].

By using the local frame, we decouple the symmetry requirement. As shown in Figure 1, our
model, namely GNN-LF, first produces a frame (a set of bases of R? space) equivariant to O(3)
transformations. Then it projects the relative positions and frames of neighbor atoms on the frame
as the edge features. Therefore, an ordinary GNN with no special design for symmetry can work
on the graph with only invariant features. The expressivity of the GNN for molecules can also
be proved using a framework for ordinary GNNs [13]. As the GNN needs no special design for
symmetry, GNN-LF also has a simpler architecture and, thus, better scalability. Our model achieves
state-of-the-art performance on the MD17 and QM9 datasets. It also uses only 30% time and 10%
GPU memory than the fastest baseline on the PES task.

2 Preliminaries

Ordinary GNN. Message passing neural network (MPNN) [14] is a common framework of GNNs.
For each node, a message passing layer aggregates information from neighbors to update the node
representations. The k™ layer can be formulated as follows.

B = URRED, 37 MORED, e0) W
uEN(T})

where hg,k) is the representations of node v at the k™ layer, N (v) is the set of neighbors of v, hSP) is

the node v’s features, e,,, is the features of edge wv, and U (k)7 M) are some functions.

Xu et al. [13] provide a theoretical framework for the expressivity of ordinary GNNs. One message
passing layer can encode neighbor nodes injectively and then reaches maximum expressivity. With
several message passing layers, MPNN can learn the information of multi-hop neighbors.

Modeling PES. PES is the relationship between molecular energy and geometry. Given a molecule
with NV atoms, our model takes the kinds of atoms z € ZN and the 3D coordinates of atoms
7 € RV*3 as input to predict the energy £ € R of this molecule. It can also predict the force

FeRV3 = v

Equivariance. To formalized the symmetry requirement, we define equivariant and invariant func-
tions as in [15].

Definition 2.1. Given a function h : X — Y and a group G acting on X and Y as x. We say that h is

G-invariant: ifh(g*z)=h(z), Ve eX,g e G 2)
G-equivariant: if h(gxz) =g=*h(z), Ve €X,g€ G 3)

The energy is invariant to the permutation of atoms, coordinates’ translations, and coordinates’ or-
thogonal transformations (rotations and reflections). GNN naturally keeps the permutation invariance.
As the relative position 7;; = 7; — 7; € R**3, which is invariant to translation, is used as the input to
GNNS, the translation invariance can also be ensured. So we focus on orthogonal transformations.
Orthogonal transformations of coordinates form the group O(3) = {Q € R3*? | QQ* = I}, where
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I is the identity matrix. Representations are considered as functions of 2z and 7, so we can define
equivariant and invariant representations.

Definition 2.2. Representation s is called an invariant representation if s(z,7) = s(z,70’),Vo €
0(3),z € ZN |7 € RN*3. Representation ¥ is called an equivariant representation if 7(z, 7)o’ =
¥(z,70T),Yo € O(3),z € ZN, 7 € RN*3,

Invariant and equivariant representations are also called scalar and vector representations respectively
in some previous work [7].

Frame is a special kind of equivariant representation. Through our theoretical analysis, frame Eis

an orthogonal matrix in R3*3, EET = J. GNN-LF generates a frame E; € R3*3 for each node i.
We will discuss how to generate the frames in Section 5.

In Lemma 2.1, we introduce some basic operations of representations.
Lemma 2.1.

* Any function of invariant representation s will produce an invariant representation.

o Let s € RY denote an invariant representation, v € R *3 denote an equivariant representation.
We define s - © € RE*3 as a matrix whose (i, j)th element is s;U;;. When ¥ € RY*3, we first
broadcast it along the first dimension. Then the output is also an equivariant representation.

o Let ¥ € RI%3 denote an equivariant representation. E € R3*3 denotes an equivariant frame.
The projection of U to I, denoted as Py (V) := GET, is an invariant representation in RT *3. For
U, P is a bijective function. Its inverse PE? L convert an invariant representation s € R *3 to

an equivariant representation in RF %3, Pbgl(s) =sk.

. . — . . . — 4 . . . .
* Projection of T to a general equivariant representation 0" € RY" %3 is an invariant representation
. / — —s )
in REXE" Py (0) = '™,

Local Environment. Most PES models set a cutoff radius r. and encode the local environment of
each atom as defined in Definition 2.3.

Definition 2.3. Let r;; denote ||7i;||. The local environment of atom i is LE; = {(s;, 7j)|rij; < rc},
the set of invariant atom features s; (like atomic numbers) and relative positions 7s; of atoms j within
the sphere centered at © with cutoff distance r., where r. is usually a hyperparameter.

In this work, orthogonal transformation of a set/sequence means transforming each element in
the set/sequence. For example, an orthogonal transformation o will map {(s;, 7;)|ri; < rc} to

{(s5, 750" )|rij < e}

3 Related work

We classify existing ML models for PES into two classes: manual descriptors and GNNs. GNN-LF
outperforms the representative of each kind in experiments.

Manual Descriptor. These models first use manually designed functions with few learnable parame-
ters to convert one molecule to a descriptor vector and then feed the vector into some ordinary ML
models like kernel regression [16—18] and neural network [19-21] to produce the prediction. These
methods are more scalable and data-efficient than GNNs. However, due to the hard-coded descriptors,
they are less accurate and cannot process variable-size molecules or different kinds of atoms.

GNN. These GNNs mainly differ in the way to incorporate geometric information.

Invariant models use rotation-invariant geometric features only. Schutt et al. [3] and Schiitt et al. [4]
only consider the distance between atoms. Klicpera et al. [5] introduce angular features, and Gasteiger
et al. [8] further use dihedral angles. Similar to GNN-LF, the input of the GNN is invariant. However,
the features are largely hand-crafted and are not expressive enough, while our projections on frames
are learnable and provably expressive. Moreover, as some features are of multiple atoms (for example,
angle is a feature of three-atom tuple), the message passing scheme passes messages between node
tuples rather than nodes, while GNN-LF uses an ordinary GNN with lower time complexity.

Recent works have also utilized equivariant features, which will change as the input coordinates rotate.
Some [6, 9, 12, 22] are based on irreducible representations of the SO(3) group. Though having
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certain theoretical expressivity guarantees [23], these methods and analyses are based on polynomial
approximation. High-order tensors are needed to approximate complex functions like high-order
polynomials. However, in implementation, only low-order tensors are used, and these models’
empirical performance is not high. Other works [7, 10] model equivariant interactions in Cartesian
space using both invariant and equivariant representations. They achieve good empirical performance
but have no theoretical guarantees. Different sets of functions must be designed separately for
different input and output types (invariant or equivariant representations), so their architectures are
also complex. Our work adopts a completely different approach. We introduce O(3)-equivariant
frames and project all equivariant features on the frames. The expressivity can be proved using the
existing framework [13] and needs no high-order tensors.

Frame models. Some of existing methods [24, 25] designed for other tasks also use frame to
decouple the symmetry requirement. However, in conclusion, these methods differ significantly from
ours in task, theory, and method as follows.

* Most target properties of molecules are O(3)-equivariant or invariant (including energy and
force). Our model can fully describe symmetry, while existing "frame" models cannot. For
example, a molecule and its mirroring must have the same energy, and GNN-LF will produce
the same prediction while existing models cannot keep the invariance.

* Qur theoretical analysis removes group representation used in [23, 26].

« Existing models use some schemes not learnable to initialize frames and update them. GNN-LF
uses a learnable message passing scheme to produce frames and will not update them, leading
to simpler architecture and lower overhead.

The comparison is detailed in Appendix F.

4 How frames boost expressivity?

Though symmetry imposes constraints on our design, our primary focus is expressivity. Therefore,
we only discuss how the frame boosts expressivity in this section. Our methods, implementations,
and how our model keeps invariance will be detailed in Section 6 and Appendix J. We assume the
existence of frames in this section and will discuss it in Section 5. All proofs are in Appendix A.

4.1 Decoupling symmetry requirement

Though equivariant representations have been used for a long time, it is still unclear how to transform
them ideally. Existing methods [7, 10, 15, 27] either have no theoretical guarantee or tend to use too
many parameters. This section asks a fundamental question: can we use invariant representations
instead of equivariant ones and keep expressivity?

Given any frame E, the projection P (&) will contain all the information of the input equivariant
feature &, because the inverse projection function can resume & from projection, Plgl (Pz(7)) = 2.
Therefore, we can use Py and Pél to change the type (invariant or equivariant representation) of
input and output of any function without information loss.

Proposition 4.1. Given frame E and any equivariant function g, there exists a function § =
Pzogo Pb;l which takes invariant representations as input and outputs invariant representations,

where o is function composition. g can be expressed with §: g = Pb; logo Pg.

We can use a multilayer perceptron (MLP) to approximate the function g and thus achieving uni-
versal approximation for all O(3)-equivariant functions. Proposition 4.1 motivates us to transform
equivariant representations to projections in the beginning and then fully operate on the invariant
representation space. Invariant representations can also be transformed back to equivariant prediction
with inverse projection operation if necessary.

4.2 Projection boosts message passing layer

The previous section discusses how projection decouples the symmetry requirement. This section
shows that projections contain rich geometry information. Even ordinary GNNs can reach maximum
expressivity with projections on frames, while existing models with hand-crafted invariant features
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Figure 2: The green balls in the figure are the center atoms. We use balls with different colors to
represent different kinds of atoms. (a) SchNet cannot distinguish two local environments due to the
inability to capture angle. (b) DimeNet cannot distinguish two local environments with the same set
of angles. Blue lines form a regular icosahedron and help visualization. The center atom is at the
symmetrical center of the icosahedron. (c) Invariant models fail to pass the orientation information,
while the projection of frame vectors can solve this problem. For simplicity, we only show one vector
(orange) to represent the frame.

are not expressive enough. The discussion is composed of two parts. Coordinate projection boosts
the expressivity of one single message passing layer, and frame-frame projection boosts the whole
GNN composed of multiple message passing layers.

Note that in this section, we consider input x1, 2 (local environment or the whole molecule) as equal
if they can interconvert with some orthogonal transformation (3o € O(3), o(x1) = x2), because the
invariant representations and energy prediction are invariant under O(3) transformation. Therefore,
injective mapping and maximum expressivity mean that function can differentiate inputs unequal in
this sense.

Encoding local environment. Similar to that MPNN can encode neighbor nodes injectively on
the graph, GNN-LF can encode neighbor nodes injectively in 3D space. Other models can also be
analyzed from an encoding local environments perspective. GNNs for PES only collect messages
from atoms within the sphere of radius r., so one message passing layer of them is equivalent to
encoding the local environments in Definition 2.3. When mapping local environments injectively, a
single message passing layer reaches maximum expressivity.

Some popular models are under-expressive. For example, as shown in Figure 2a, SchNet [4] only
considers the distance between atoms and neglects the angular information, leading to the inability to
differentiate some simple local environments. Moreover, Figure 2b illustrates that though DimeNet [5]
adds angular information to message passing, its expressivity is still limited, which may be attributed
to the loss of high-order geometric information like dihedral angle.

In contrast, no information loss will happen when we use the coordinates projected on the frame.

Theorem 4.1. There exists a function x. Given a frame E; of the atom 1, x encodes the local
environment of atom i injectively into atom i’s embeddings.

N({(s5,735)lry < 7}) = p( S (Concatenate(Pg, (7). 5,)))- @

Tij<Tec

Theorem 4.1 shows that an ordinary message passing layer can encode local environments injectively
with coordinate projection as an edge feature.

Passing messages across local environments. In physics, interaction between distant atoms is
usually not negligible. Using one single message passing layer, which encodes atoms within cutoff
radius only, leads to loss of such interaction. When using multiple message passing layers, GNN can
pass messages between two distant atoms along a path of atoms and thus model the interaction.

However, passing messages in multiple steps may lead to loss of information. For example, in Fig-
ure 2¢, two molecules are different as a part of the molecule rotates. However, the local environment
will not change. So the node representations, the messages passed between nodes, and finally, the
energy prediction will not change while two molecules have different energy. This problem will
also happen in previous PES models [4, 5]. Loss of information in multi-step message passing is a
fundamental and challenging problem even for ordinary GNN [13].
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Nevertheless, the solution is simple in this special case. We can eliminate the information loss
by frame-frame projection, i.e., projecting E; (the frame of atom j) on E‘} (the frame of atom 7).
For example, in Figure 2c, as the molecule rotates, frame vectors also rotate, leading to frame-
frame projection change, so our model can differentiate them. We also prove the effectiveness of
frame-frame projection in theory.

Theorem 4.2. Let G denote the graph in which node i represents the atom i and edge ij exists iff
T35 < Te, where v is the cutoff radius. Assuming frames exist, if G is a connected graph whose
diameter is L, GNN with L message passing layers as follows can encode the whole molecule
{(s;,75;)|7 € {1,2,...,n}} injectively into the embedding of node 1.

X({(s5, 753, Ej)rij <re}) = p( Y ¥(Concatenate(Pg (i), Pg, (E}), 55))- ®)

i
Tij<Te

Theorem 4.2 shows that an ordinary GNN can encode the whole molecule injectively with coordinate
projection and frame-frame projection as edge features.

In conclusion, when frames exist, even ordinary GNN can encode molecule injectively and thus
reach maximum expressivity with coordinate projection and frame-frame projection.

5 How to build a frame?

We propose frame generation method after discussing how to use frames because generation method’s
connection to expressivity is less direct. Whatever frame generation method is used, GNN-LF can
keep expressivity as long as the frame does not degenerate. A frame degenerates iff it has less than
three linearly independent vectors. This section provides one feasible frame generation method.

A straightforward idea is produce frames using invariant features of each atom, like the atomic number.
However, function of invariant features must be invariant representations rather than equivariant
frames. Therefore, we consider producing the frame from the local environment of each atom, which
contains equivariant 3D coordinates. In Theorem 5.1, we prove that there exists a function mapping
the local environment to an O(3)-equivariant frame.

Theorem 5.1. There exists an O(3)-equivariant function g mapping the local environment LE; to an
equivariant representation in R3*3, The output forms a frame if Vo € O(3),0 # I,0(LE;) # LE;.

Proof is in Appendix A.5. Frames produced by the function in Theorem 5.1 will not degenerate if
local environments have no symmetry elements, like inversion centers, rotation axes, or mirror planes.

Building a frame for a symmetric local environment remains a problem in our current implementation
but will not seriously hamper our model. Firstly, our model can produce reasonable output even
with symmetric input and is provably more expressive than a widely used model SchNet [4] (see
Appendix G). Secondly, symmetric molecules are rare and form a zero-measure set. In our two
representative real-world datasets, less than 0.01% of molecules (about ten molecules in the whole
datasets of several hundred thousand molecules) are symmetric. Thirdly, symmetric geometry may
be captured with a degenerate frame. As shown in Figure 3a, water is a symmetric molecule. We can
use a frame with one vector to describe its geometry. Based on node identity features and relational
pooling [28], we also propose a scheme in Appendix H to completely solve the expressivity loss
caused by degeneration. However, for scalability, we do not use it in GNN-LF.

A message passing layer for frame generation. The existence of the frame generation function
is proved in Theorem 4.2. Here we demonstrate how to implement it. There exists a universal
framework for approximating O(3)-equivariant functions [15] which can be used to implement the
function in Theorem 5.1. For scalability, we use a simplified form of that framework which has
empirically good performance:

E; = Z gl(Tij»Sj)'r#, (6)

. Tij
JF#,Ti<re t

where ¢’ maps invariant features and distance to invariant weights and the entire framework reduces
to a message passing process. The derivation is detailed in Appendix B.

Local frame vs global frame. With the message passing framework in Equation 6, an individual
frame, called local frame, is produced for each atom. These local frames can also be summed to
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Figure 3: (a) The left part shows the symmetry of the water molecule, which has a rotation axis. Its
equivariant vectors must be parallel to the rotation axis. However, with a frame composed of only
one vector, its geometry can be described. The right part shows that with the projection of 77; on the
frame and the distance between two atoms, the angle 6 and the position of j atom can be determined.
(b) The left part is a molecule with central symmetry. Its global frame will be zero. However, when
selected as the center (green), the atom’s environment has no central symmetry.

produce a global frame.
E=YF. )
i=1

The global frame can replace local frames and keep the invariance of energy prediction. All previous
analysis will still be valid if the frame degeneration does not happen. However, the global frame is
more likely to degenerate than local frames. As shown in Figure 3b, the benzene molecule has central
symmetry and produces a zero global frame. However, when choosing each atom as the center, the
central symmetry is broken, and a non-zero local frame can be produced. We further formalize this
intuition and prove that the global frame is more likely to degenerate in Appendix 1.

In conclusion, we can generate local frames with a message passing layer.

6 GNN with local frame

We formally introduce our GNN with local frame (GNN-LF) model. The whole architecture is
detailed in Appendix C. The time and space complexity are O(NNn), where N is the number of atoms
in the molecule, and n is the maximum number of neighbor atoms of one atom.

Notations. Let F' denote the hidden dimension. We first convert the input features, coordinates

7 € RN*3 and atomic numbers z € NV, to a graph. The initial node feature s\ € R is an
embedding of the atomic number z;. Edge ij has two features: the edge weight w;; = cutoff(r;;)
(where cutoff means the cutoff function), and the radial basis expansion of the distance d?j = 1bf(r;;).
Edge weight w;; is not necessary for expressivity. However, to ensure that the energy prediction is a
smooth function of coordinates, messages passed among atoms must be scaled with w;; [19]. These
special functions are detailed in Appendix C.

Producing frame. The message passing scheme for producing local frames implements Equation (6).

o 0 Tij

Ei= Y wiy(fid))os) 2, ®)
JAiri<re Y

where f; is an MLP. Note that frame EZ € RFx3 in implementation is not restricted to have three

vectors. The number of vectors equals the hidden dimension. The frame in R¥*3 can be considered
as an ensemble of % frames in R®*3, so this design will not hamper the expressivity.

Coordinate projection is as follows,

1. =
di; = —7i Ef . ©)
TU

(e)

i

The projection in implementation is scaled by % to decouple the distance information in s
ij

Frame-frame projection. E’lE_"jT is a large matrix. Therefore, we only use the diagonal elements of
the projection. To keep the expressivity, we transform the frame with two ordinary linear layers.

d?, = diag(W1 E; Ef W). (10)
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Adding the projections to edge features, we get a graph with invariant features only.

GNN working on the invariant graph. The message passing scheme uses the form in Theorem 4.1.

Let the 52(1) denote the node representations produced by the I message passing layers. sl(-o) = ;.
1 -
sV =p( Y wilfaldy, iy d) s V), an
J#Ti<Te
where p is an MLP. We further use a filter decomposition design as follows.
f2(dy, dij, d2)) = g1(dY) © g2(di, d). (12)

The distance information d?j is easier to learn as it has been expanded with a set of bases, so a linear
layer g; is enough. In contrast, projections need a more expressive MLP g,.

Sharing filters. Generating different filters fa( (df;, dj;, d3;) for each message passing layer is time-
consuming. Therefore, we share filters between dlffierent layers. Experlmental results show that
sharing filters leads to minor performance loss and significant scalability gain.

Gaps between the implementation and expressivity analysis. Unlike the expressivity analysis
in section 4, GNN-LF in implementation uses an ensemble of frames instead of only one, takes a
different form of frame-frame projection, and does not constrain the generated frames to be orthogonal.
In conclusion, experimental results show that GNN-LF with a single frame for each node can still
achieve outstanding performance, and these implementation tricks are harmless to expressivity in
theory. The discussion is detailed in Appendix M.

7 Experiment

In this section, we compare GNN-LF with existing models and do an ablation analysis. Experimental
settings are detailed in Appendix D. The code is available at https://github. com/GraphPKU/
GNN-LF. We report the mean absolute error (MAE) on the test set (the lower, the better). All our
results are averaged over three random splits. Baselines’ results are from their papers. The best and
the second best results are shown in bold and underline respectively in tables.

7.1 Modeling PES

We first evaluate GNN-LF for modeling PES on the MD17 dataset [29], which consists of MD trajec-
tories of small organic molecules. GNN-LF is compared with a manual descriptor model: FCHL [18]
, invariant models: SchNet [4], DimeNet [5], GemNet [8], a model using irreducible representations:
NequlP [9], and models using equivariant representations: PaiNN [7] and TorchMD [10]. The results
are shown in Table 1. GNN-LF outperforms all the baselines on 9/16 targets and achieves the
second-best performance on other 6 targets. Our model leads to 10% lower loss on average than
GemNet, the best baseline. The outstanding performance verifies the effectiveness of the local frame
method for modeling PES. Moreover, our model also uses fewer parameters and only about 30%
time and 10% GPU memory compared with the baselines as shown in Appendix E.

7.2 Ablation study

We perform an ablation study to verify our model designs. The results are shown in Table 2.

On average, ablation of frame-frame projection (NoDir2) leads to 18% higher MAE, which verifies
the necessity of frame-frame projection. The column Global replaces the local frames with the global
frame, resulting in 100% higher loss, which verifies local frames’ advantages over global frame.
Ablation of filter decomposition (NoDecomp) leads to 10% higher loss, indicating the advantage of
separately processing distance and projections. Although using different filters for each message
passing layer (NoShare) uses much more computation time (1.67x) and parameters (3.55x%), it
only leads to 0.01% lower loss on average, illustrating that sharing filters does little harm to the
expressivity.

7.3 Other chemical properties

Though designed for PES, our model can also predict other properties directly. The QM9 dataset [30]
consists of 134k stable small organic molecules. The task is to use the atomic numbers and co-
ordinates to predict properties of these molecules. We compare our model with invariant models:
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Table 1: Results on the MD17 dataset. Units: energy (£) (kcal/mol) and forces (F) (kcal/mol//a\).

Molecule Target FCHL SchNet DimeNet GemNet PaiNN NequlP TorchMD GNN-LF

Aspirin E 0182 0.37 0.204 - 0.167 - 0.124 0.1342
F 0478 135 0499 0.2168 0.338 0.348 0.255 0.2018
Benzene & - 0.08 0.078 - - - 0.056 0.0686
F - 0.31 0.187  0.1453 - 0.187 0.201 0.1506
Ethanol E 0054 0.08 0.064 - 0.064 - 0.054 0.0520
F 0136 0.39 0.230  0.0853 0.224 0.208 0.116 0.0814
Malonaldehyde & 0081 0.13 0.104 - 0.091 - 0.079 0.0764
F 0245 0.66 0.383  0.1545 0.319 0.337 0.176 0.1259
Naphthalene & 0117 0.16 0.122 - 0.166 - 0.085 0.1136
F 0151 0.58 0.215 0.0553 0.077 0.097 0.060 0.0550
Salicylic acid & 0114 0.20 0.134 - 0.166 - 0.094 0.1081
F 0221 0.85 0.374  0.1048 0.195 0.238 0.135 0.1005
Toluene E 0098 0.12 0.102 - 0.095 - 0.074 0.0930
F 0203 0.57 0216  0.0600 0.094 0.101 0.066 0.0543
Uracil E 0104 0.14 0.115 - 0.106 - 0.096 0.1037
F 0105 0.56 0.301  0.0969 0.139 0.173 0.094 0.0751
average rank 393  6.63 5.38 2.00 436 525 2.25 1.75

Table 2: Ablation results on the MD17 dataset. Units: energy () (kcal/mol) and forces (F)
(kcal/mol/A).

Molecule Target GNN-LF NoDir2 Global NoDecomp GNN-LF Noshare

Aspirin & 0.1342 0.1499 0.2280 0.1411 0.1342 0.1364
F 0.2018 0.2909 0.6894  0.2622 0.2018 0.1979
Benzene & 0.0686 0.0716 0.0972  0.0688 0.0686 0.0713
F 0.1506 0.1583 0.3520 0.1499 0.1506 0.1507
Ethanol & 0.0520 0.0532 0.0556 0.0518 0.0533  0.0514
F 0.0814 0.1056 0.1465 0.0895 0.0814 0.0751
Malonaldehyde & 0.0764 0.0776 0.0923  0.0786 0.0764 0.0790
F 0.1259 0.1728 0.3194  0.1422 0.1259 0.1210
Naphthalene & 0.1136 0.1152 0.1276 0.1171 0.1136 0.1168
F 0.0550 0.0834 0.2069  0.0683 0.0550 0.0547
Salicylic acid £ 0.1081 0.1087 0.1224  0.1123 0.1081 0.1091
F 0.1048 0.1412 0.2890 0.1399 0.1048 0.1012
Toluene & 0.0930 0.0942 0.1000 0.0932 0.0930 0.0942
F 0.0543 0.0770 0.1659  0.0695 0.0543 0.0519
. & 0.1037 0.1069 0.1075 0.1053 0.1037 0.1042

Uracil F

0.0751 0.0964 0.1901  0.0825 0.0751 0.0754

SchNet [4], DimeNet++ [31], ComENet [32], a model using irreducible representations: Cor-
morant [6], SE(3)-Transformer [22], and models using equivariant representations: EGNN [33],
PaiNN [7] and TorchMD [10]. Results are shown in Table 3. Our model outperforms all other models
on 7/12 tasks and achieves the second-best performance on 4/5 left tasks, which illustrates that the
local frame method has the potential to be applied to other fields.

8 Conclusion

This paper proposes GNN-LF, a simple and effective molecular potential energy surface model.
It introduces a novel local frame method to decouple the symmetry requirement and capture rich
geometric information. In theory, we prove that even ordinary GNNs can reach maximum expressivity
with the local frame method. Furthermore, we propose ways to construct local frames. In experiments,
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Table 3: Results on the QM9 dataset. SE(3)-T is short for SE(3)-Transformer

Target  Unit  SchNet DimeNet++ ComENet Cormorant SE(3)-T PaiNN EGNN Torchmd GNN-LF

o D 0.033 0.0297 0.0245 0.038 0.051 0.012 0.029 0.002 0.013
o a} 0.235 0.0435 0.0452 0.085 0.142 0.045 0.071 0.01 0.0426

egomo meV 41 24.6 23.1 34 35 276 29 21.2 235
ecumo  meV 34 19.5 19.8 38 33 204 25 17.8 17.0
Ae meV 63 32.6 324 61 53 457 48 38 37.1
(R?) a? 0.073  0.331 0.259 0.961 - 0.066 0.106 0.015 0.037
ZPVE meV 1.7 1.21 1.2 2.027 - 1.28 155 212 1.19
Uy meV 14 6.32 6.59 22 - 585 11 6.24 5.30
U meV 19 6.28 6.82 21 - 583 12 6.3 5.24
H meV 14 6.53 6.86 21 - 598 12 6.48 5.48
G meV 14 7.56 7.98 20 - 735 12 7.64 6.84
C, cal/mol/K 0.033  0.023 0.024 0.026  0.054 0.024 0.031 0.026 0.022

our model outperforms all baselines in both scalability (using only 30% time and 10% GPU memory)
and accuracy (10% lower loss). Ablation study also verifies the effectiveness of our designs.

10
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A Proofs

Due to repulsive force, atoms cannot be too close to each other in stable molecules. Therefore, we
assume that there exist an upper bound N of the number of neighbor atoms.

A.1 Proof of Lemma 2.1

Proof. For all function g, invariant representation s, transformation o € O(3), g(s(z,70T)) = g(s).
Therefore, ¢(s) is an invariant representation.

For all invariant representation s, equivariant representation ¢/, and transformation o € O(3),

s(z,70") - 6(z, 70" ) = s(2,7) - (0(2,7)o") = (s(2,7) - U(z,7))o" (13)
Therefore, s - ¥ is an equivariant representation.

For all equivariant representations 7,
¥z, 70" )E(z, 70"\ = #(z, 7)o  0E(z,7)T = #(z,7F)E(z,7)T (14)
P is inversible because

P-(0)E =%ETE = 7. (15)

For all invariant representations s € R¥"*3,

s(z, 70" VE(z,70") = s(z,7)E(z, 7)o" . (16)

Similarly,
(2,700 ) (2,707 )T = ¥(z, 7)ot ot (2,7)T = 0(2,P)T (2, 7). (17
Therefore, projection on general equivariant representations can also produce invariant representation.
O

A.2  Proof of Proposition 4.1
Proof. Assume that s is an invariant representation.
9(s) = Pglg(PZ'(s))) (18)
= g(s(E(z 7)) ")E(= M. (19)

The representation §(s) can be written as a function of (z, 7). Then, we have

Vo € 0(3), §(s)(z,70") = g(s(E(z,70"))") E(z,70")" (20)

= g(s(E(2,7)")")o")oE(2,7) @1

= g(s(E(z,7))"))o" 0B (2, 7" (22)

= g(s(Ez. 7)) ) E(z 7" 23)

=9(s)(z,7). 24

Therefore, §(s) is also an invariant representation. O

13



Graph Neural Network with Local Frame for Molecular Potential Energy Surface

A.3 Proof of Theorem 4.1

We first prove that when the multiset of invariant features and coordinate projections equal, the
multiset of invariant features and coordinates are just distinguished from each other with an orthogonal
transformation.

Lemma A.l. Given two frames E,, Es, and two sets of atoms {(s14,7™:li = 1,2,...,n},
{(s2,4, 72,4 = 1,2,...,n}. If {(s1,4, Py (r11)|z =1,2,..,n} = {(s2,4, Pp (r22)| 1,2,...,n
there exists o € O(3), {(s1,;, 71,4t = 1,2, wyn} = {(32)1,7“2710 li=1,2,..,n}

Proof: As {(s1,i, Pg, (M,:)|i = 1,2, ....,n} = {(s2,4, Pg, ("2,:)|i = 1,2,...,n}, there exists permu-
tation 7 : {1,2,...,n} — {1,2,...,n}, so that

81,0 = 81.x(i), P, (7M.,1) = Pg, (T2.x(i)) (25)
S1i = S1.n(i)s FLiEL = Fon(i Ba (26)
S1,4 = 51,71-(1‘)77?1,11 = FQ,W(i)Egﬁl. (27)

As E, E are both orthogonal matrix, EX E; € O(3). Let o denotes EX E,

{(s1.6,714)i = 1,2, ...,n} = {(s2.4, 720" i = 1,2, ...,n}. (28)
O

According to [34], there exists p and ¢ so that

Z ¥ (Concatenate( Py (7i), 55))) (29)

Tij<Tec

encoding {(Pg, (%), )|ri; < rc} injectively. Let x denote this function. According to Lemma A.1,
X encodes local environments injectively when the difference caused by orthogonal transformation is
neglected.

A.4 Proof of Theorem 4.2

Notation: Given a molecule with atom coordinates 7* € R™ <3 and atomic features (like embedding of
atomic number) s € RV*F let G denote the undirected graph corresponding to the molecule. Node
i in G represents the atom ¢ in the molecule. G has edge ij iff r;; < r., where 7. is the cutoff radius.
Let d(G, 1, j) denote the shortest path distance between node 7 and j in graph G.

Note that a single layer defined in Equation 5 can still encode the local environment, as extra
frame-frame projection cannot lower the expressivity.

Lemma A.2. Given a frame E, with suitable functions p and 1), x defined in Equation 5 encodes the
local environment injectively.

Proof. According to Theorem 4.1, there exists p’ and 1)’ so that

p( Y w(Concatenate(Py (), Pg, (E;), s;)) (30)

Tij<Te

can encode local environment injectively. Let p equals to o/,

W(cat(Pg, (755), Py, (Ej), 5;)) = ¢/ (cat(Pg, (), 5;))- (31)
Then,
X5 7igs Elrig < re}) = o' (Y 0/ (cat(Pg (7). 55) (32)
Tij<Te
encodes local environment injectively. O

Now we begin to prove the Theorem 4.2.

14



Graph Neural Network with Local Frame for Molecular Potential Energy Surface

Proof. We use cat to represent concatenate throughout the proof. Let N (¢); denote {j|d(G,i,7) < l}.
The I message passing layer has the following form.

sV =p( S0 wilcat(Pg, (7ij), Py, (), s\ ™)), (33)
JEN1(3)

0
where sg ) =,

By enumeration on [, we prove that there exist p;, ¥; so that sl(-l) = p({cat(s;, Py, (7i;))|j € Ni(i)}).

We first define some auxiliary functions.

According to [34], there exists a multiset function ¢ mapping a multiset of invariant representations
to an invariant representation injectively. ¢ can have the following form

o({zili €T}) = Zw(m, (34)

where I is some finite index set. As ¢ is injective, it has an inverse function.

We define function m, m’, m” to extract invariant representation from concatenated node features.

m(cat(Pg, (i), Pg. (Bj),s\7)) = cat(s\”, Pz (7). (35)
m/(cat(s;, Py (735))) = s;. (36)
m” (cat(s;, Py, (7)) = Pg, (7ij)- 37)

Last but not least, there exist a function 7" transforming coordinate projections from one frame to
another frame.

T(Pg,(7), Pg, (E;), Py, (Fjx)) = Py, (Fiy) + Pg, (731) Pg,(E;) = Py, (Fir) (38)

l=1:lety; = -m, p; is identity mapping.
[ > 1: Assume for all I’ <[, s( )= = p({cat(s;, Pg, (735))|7 € Nuv(i)}).

1y has the following form.

wi(cat(Py, (7)), Pg, (E;), ")) = v(p(
{cat(m’(m»T(Pa(m), P (Ej),m"(@)|z € ¢~ s\ )}). (39)

i

Therefore

dilcat(Pg, (7i;), Py, (E;), s¢™)) = w(e({cat(sk, Pz, (7)) |k € Ni-1()}). (40)

Note 1/; transforms coordinate projection from an old frame to a new frame.

(1

Therefore, the input of p;, namely a; ), has the following form.

o’ = 3 wylcat(Pg, (7). P, (), s Y) @1)
JEN(3)

= > Y(p({cat(sk, P, (Fix)) [k € Ni_1(j)})) (42)
JEN (i)

= ¢e({e({cat(sk, Pz, (Tir)) [k € Ni—1(4)})]j € N(i)}) (43)

We can transform al(l) to a set of set of invariant representations with the following function.

(@) = {71 (s)ls € ™ (a")}. (44)

Therefore, n(agl)) = {{cat(sk, Pg, (7ix)) |k € Ni—1(j)}j € N(i)}

15
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We can use another function ¢ unions invariant representation sets in set S to a set of invariant
representation.

uS)=Js. (45)

ses
p1 has the following form.
p(a”) = poron(al). (46)
Therefore, the output is
pilay) = p({eat(si, Py, (7in) [k € Ni(i)}}) (47)

Therefore, Vi € N, there exists p;, ¢; so that sl(.l) = p({cat(s;, Pg, (7i5))]7 € Ni(i)}).

As L is the diameter of G, sEL) = sl(-l) = p({cat(s;, Pg (7ij)li € No(i)}) =
p({cat(s;, Pg (7i;))l7 € {1,2,...,n}}). As ¢ is an injective function, GNN with L message
passing layers defined in Equatlon 5 can encode the {(s;, P 7i;)[j € {1,2,...,n}} injectively to
SEL). According to Lemma A.1, this GNN encodes the whole molecule {(s;,7;)|j € {1,2,...,n}}
when the difference caused by orthogonal transformation is neglected. O

A.5 Proof of Theorem 5.1

Proof. (1) We first prove there exists an O(3)-equivariant function g mapping the local environment
LE; to a frame E; € R3*3. The frame has full rank if there does not exist o € O(3),0 # I,0(LE;) =
LFE;.
Let v denote a function mapping local environments to sets of vectors.

’y({(?:;j, Sj)‘?“ij < ’I“C}) = {Concatenate(sjf}j, ﬁj)|rij < ’I”c}, (48)

in which s; is reshaped as F' x 1, 7, is of shape 1 x 3. y is O(3)-equivariant. Therefore, we discuss
the aggregation function on a set of equivariant representation, denoted as {u;|i = 1,2,...,n,u; €

RFXS}.

Assume that V = {{i;|i = 1,2,...,n,@; € RE*3}|n =1,2,..., N}, where N is the upper bound of
the size of local environment, is the set of sets of equivariant messages in local environment.

An equivalence relation can be defined on V: vy € V,vy € V,v1 ~ wvg iff there exists o €
0O(3),0(v1) = ve. Let V= V/ ~ denote the quotient set. For each equivalence class [v] with no
symmetry, a representative v can be selected. We can define a function r : V' — {[v]|[v] € V, v €
[v],0 € O(3),0 # I,0(v) = v} — V as r([v]) = v mapping each equivalence class with no
symmetry to its representative. For a message set with no symmetry, the transformation from its
representative to it is also unique. Let h : V — {v|v € V,30 € O(3),0 # I,0(v) = v} — O(3).

h(v) = o,0(r([v])) = v.

Therefore, the function g can take the form as follows.

0
[0
0
h(v)

Therefore, g o 7 is the required function.

0 0

0 0| ifthereexistso € OB3),0# [,ov="wv
0 0

)T

otherwise

We further detail how to select the representative elements: We first define a linear order relation <;
inV.Ifvy, vy € V,|v1| < |v2], v1 <; v2. So we only consider the order relation between two sets of
the same size n.

We first define a function ¢ mapping message set to a sequence injectively.

gp({ui|i =1,2,...,n,u; € RFxg}) = [ﬂatten(u,r(i))ﬁ =1,2,...,n,

7 i a permutation sorting u; by lexicographical order]. (49)
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Forall vy, vs € V, |v1| = |va|, v1 <; vg iff po(v1) < p(v2) by lexicographical order. As the size of
local environent is bounded, the sequence is also of a finite length. Therefore, the lexicographical
order and thus the linear order relation <; are well-defined.

All permutations of {1, 2, ...,n} form a permutation set II,,.

Forall [v] € V,let r([v]) = arg min, ¢, 9(v'). Toillustrate the existence of such minimal sequence,
we reform it.

minv/é[v](p(vl) = TrEHm})relO(3) S(o,) (50)
= min min S(o,7), (51)

w€ll, 0€0(3)

where S(o, ) = [flatten(u.(;0”)|i = 1,2, ..., n]. Each element of this sequence is continuous to o.
We first fix the 7. As O(3) is a compact group, arg min,cqs) S(0, 7)1 exists. Let L1 = {olo €
0(3),S(0,m)1 = miny oy S(0',m)1} is still a compact set. Therefore, arg min,; S(0, 7)1
exists. Let Ly = {olo € L1,S(0,m)2 = minycr, S(0',m)2}. Similarly, L, Ly, ..., L3, can be
defined and they are non-empty set. Forall 01,09 € L3py, as S(o1,7m) < S(o0g,7) and S(0g,7) <
S(o01,m) by lexicographical order, S(02,7) = S(01,7) and thus o1(v) = o2(v). If v has no
symmetry, Vo € O(3),0 # I,0(v) # v, 01(v) = 02(v) = 01 = 02. Therefore, L3p,, contains a

unique element ol and min,eo(3) S(o, 7) is unique.

As TI,, is a finite set, if min,co(3) S(0, 7) exist for all 7 € II,,, minger, min,cos) S(o, 7) must
exist. Therefore the minimal sequence exists. As <; is a linear order, the minimal sequence is unique.
With the unique sequence, the unique representative can be determined.

(2) Then we prove there does not exist o € O(3),0 # I, o(LE;) = LE; if the frame has full rank.
The frame E is a function of local environment. If there exists

0 € 0(3),0(LE;) = LE;.
Then E(o(LE;)) = E(LE;)o" = E(LE;).

As E is an invertible matrix, o = I. Therefore, LFE; has no symmetry.

O
B Derivation of the message passing section for frame
The framework proposed by Villar et al. [15] is
hon ({7031, Mo, Mo, .., Mn }) = Zg(mija {M, oy Mun } — {Mi5}) - M5, (52)

j=1

where h,, is the aggregation function for n messages. ¢ is a O(3)-invariant functions. We can further
reform it.

B ({{Fbi1, i, ooy Tin }3) = D g4 (98" (Faig), ho oy ({101, iz o i } — {07045 1)) i
j=1

(33)
where gln) ) gén_l) are two O(3)-invariant functions. With this equation, we can recursively build n
message aggregation function h,, with h,,_1. Its universal approximation power has been proved in
[15].

However, as they can have varied numbers of neighbors, different nodes have to use different
aggregation functions, which is hard to implement. Therefore, we desert the recursive term h,, 1.

n

T ({{7hi1, iz, oo Tin }}) = Y g(0hs5) s (54)

Jj=1
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Figure 4: The architecture of GNN-LF. (a) The full architecture of GNN-LF contains four parts:
an embedding block, a geo2filter block, message passing (MP) layers, and an output module.
Embedding block consists of an embedding layer converting atomic numbers to learnable tensors
and a neighborhood embedding block proposed by Tholke and Fabritiis [10]. (b) The geo2filter
block builds a graph with the coordinates of atoms, passes messages to produce local frames, projects
equivariant features onto the frames, and uses edge invariant features to produce edge filters. (c)
A message passing layer filters atom representations with edge filters to produce messages and
aggregates these messages to update atom embeddings. (d) The projection block produces d*, d% and
concatenates them.

The message 17t;; can have the form Concatenate(1, s) - 7; in Theorem 4.1. As g is an invariant
function, we can further simplify Equation 54.

- . S Tij
o ({41701, iz, oo Mhin }}) = Zg’(rij,sj)r—f, (55

i=1 g

where ¢’ is a function mapping invariant representations to invariant representations.

C Archtecture of GNN-LF

The full architecture is shown in Figure 4.

Following Tholke and Fabritiis [10], we also use a neighborhood embedding block which aggregates
neighborhood information as the initial atom feature.

s\ = Emb, (z,) + > Emby(z) © f(dY)). (56)
Tij<Te
where Emb; and Emb, are two embedding layers and f is the filter function.

These special functions are proposed by previous methods [19, 35].

11 jus .
CutOff(T) — {2( -+ cos o )77‘ < (57)
0,7 >r.
b (rij) = e~ PP, (58)

where f31., pu, are coefficients of the k™ basis.
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For PES tasks, the output module is a sum pooling and a linear layer. Other invariant prediction
tasks can also use this module. However, on the QM9 dataset, we design special output modules
for two properties. For dipole moment 4, given node representations [s;|i = 1,2, ..., N| and atom
coordinates [7%; |t = 1,2, ..., N], our prediction is as follows.

= \Z — average; (g5 )75, (59)

where ¢; € R, the prediction of charge, is function of s;. We use a linear layer to convert s; to g;. As
the whole molecule is electroneutral, we use ¢; — average; (gj)-

For electronic spatial extent (R?), we make use of atom mass (known constants) [m;|i = 1,2, ..., N].
The output module is as follows.

7, = ZZ T (60)
i M
(R2) = |l = 7, (61)

where z; € R is an invariant representation feature of node 7. We also use a linear layer to convert s;
to x;.

Table 4: The training, inference time and the GPU memory consumption of random batches of
32 molecules (16 molecules for GemNet) from the MD17 dataset. The format is training time in
ms/inference time in ms/inference GPU memory comsumption in MB. N denotes the number of
atoms in the molecule, and n means an atom’s maximum number of neighbors.

DimeNet GemNet torchmd GNN-LF NoShare
number of parameters 21M 22M 13M  0.8M~1.3M 2.4M~5.3M
time complexity O(Nn?) O(Nn3) O(Nn) O(Nn) O(Nn)
aspirin 727/133/5790 2823/612/15980 188/32/2065 65/10/279 142/22/883
benzene 669/ 94/1831 2242/393/3761 478/33/918 29/ 8/95 40/11/213
ethanol 672/ 95/784 2256/344/1565 417/32/532 59/ 8/54 76/11/115

malonaldehyde 657/ 88/784 2237/355/1565 753/32/532 57/ 7/68 68/10/127
naphthalene 614/112/4470 2613/498/11661 265/32/1694 61/ 9/175  97/15/491
salicylic_acid 619/ 92/3489 2577/430/8182 239/34/1418 59/ 9/176  79/15/424

toluene 595/113/3148 2495/423/7153 896/45/1322 62/ 8/176  83/15/458
uracil 595/107/1782 2165/354/3735 118/32/907 66/ 8/99 87/14/302
average 643/104/2760 2426/426/6700 419/34/1174 57/ 9/140  84/14/377

Table 5: The inference time and the GPU memory consumption of random batches of 32 molecules
from the QM9 dataset and Uy target. The format is inference time in ms/inference GPU memory
comsumption in MB.

EGNN ComENet GNN-LF

number of parameters 0.75M 4.2M 1.7M
GPU memory 1105 356 329
inference time (ms) 4.2 11.9 6.6

D Experiment settings

Computing infrastructure. We leverage Pytorch for model development. Hyperparameter searching
and model training are conducted on an Nvidia A100 GPU. Inference times are calculated on an
Nvidia RTX 3090 GPU.
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Training process. For MD17/QM9 dataset, we set an upper bound (6000/1000) for the number of
epoches and use an early stop strategy which finishes training if the validation score does not increase
after 500/50 epoches. We utilize Adam optimizer and ReduceLROnPlateau learning rate scheduler to
optimize models.

Model hyperparameter tuning. Hyperparameters were selected to minimize 11 loss on the validation
sets. For MD17/QM9, we fix the initial Ir to 1le — 3/3e — 4, batch size to 16/64, hidden dimension
to 256. The cutoff radius is selected from [4, 12]. The number of message passing layer is selected
from [4, 8]. The dimension of rbf is selected from [32, 96]. Please refer to our code for the detailed
settings.

Dataset split. We randomly split the molecule set into train/validation/test sets. For MD17, the size
of the train and validation set are 950, 50 respectively. All remaining data is used for test. For QM9:
The sizes of randomly splited train/validation/test sets are 110000, 10000, 10831 respectively.

E Scalability

To assess the scalability of our model, we show the inference time of random MD17 batches of 32
molecules on an NVIDIA RTX 3090 GPU. The results are shown in Table 4. Note that GemNet
consumes too much memory, and only batches of 16 molecules can fit in the GPU. Our model only
takes 30% time and 12% space compared with the fastest baseline. Moreover, NoShare use 260%
more space and 67% more computation time than GNN-LF with filter sharing technique.

We also compare computational overhead on tasks other than PES in the QM9 dataset (see Table 5).
As we use the same model for different tasks in the QM9 dataset, models are only compared on U
task. GNN-LF achieves the lowest GPU memory consumption, competitive inference speed, and
model size.

F Existing methods using frame

Though some previous works [24-26, 33, 36] also use the term "frame" or designs similar to "frame",
they are very different methods from ours.

The primary motivation of our work is to get rid of equivariant representation for higher and provable
expressivity, simpler architecture, and better scalability. We only use equivariant representations in
the frame generation and projection process. After projection, all the remaining parts of our model
only operates on invariant representations. In contrast, existing works [24, 26, 33, 36] still use both
equivariant and invariant representations, resulting in extra complexity even after using frame. For
example, functions for equivariant and invariant representations still need to be defined separately, and
complex operation is needed to mix the information contained in the two kinds of representations. In
addition, our model can beat the representative methods of this kind in both accuracy and scalability
on potential energy surface prediction tasks.

Other than the different primary motivation, our model has an entirely different architecture from
existing ones.

1. Generating frame: ClofNet [26] and LoCS [25] produces a frame for each pair of nodes and
use some process not learnable to produce the frame. Both EGNN [33] and GMN [36] use
coordinate embeddings which are initialized with coordinates. Luo et al. [24] initializes the
frame with zero. Then these models use some schemes to update the frame. Our model uses
a novel message passing scheme to produce frames and will not update it, leading to simpler
architecture and low computation overhead.

2. Projection: Existing models [24, 26, 33, 36] only project equivariant features onto the frame,
while we also use frame-frame projection, which is verified to be critical both experimentally
and theoretically.

3. Message passing layer: Existing models [24-26, 33, 36] all use both invariant representation
and equivariant features and pass both invariant and equivariant messages, which needs to mix
invariant representations and equivariant representations, update invariant representations, and
update equivariant representations, while our model only uses invariant representations, resulting
in an entirely different and much simpler design with significantly higher scalability.
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4. Our designing tricks, including: message passing scheme to produce frame, filter decomposition,
and filter sharing, are not used in [24, 26, 33, 36]. Our experiments and ablation study verified
their effectiveness.

Furthermore, existing models use different groups to describe symmetry. Luo et al. [24], Kofinas
et al. [25], Du et al. [26] design SO(3)-equivariant model, while our model is O(3)-equivariant. We
emphasize that this is not a constraint of our model but a requirement of the task. As most target
properties of molecules are O(3)-equivariant (including energy and force we aim to predict), our
model can fully describe the symmetry.

Our theoretical analysis is also novel. Luo et al. [24], Satorras et al. [33], Huang et al. [36] have no
theoretical analysis of expressivity. Du et al. [26]’s analysis is primarily based on the framework of
Dym and Maron [37], which is further based on the polynomial approximation and the group repre-
sentation theory. The conclusion is that a model needs many message passing layers to approximate
high-order polynomials and achieve universality. Our theoretical analysis gets rid of polynomial and
group representation and provides a much simpler analysis. We also prove that one message passing
layer proposed in our paper are enough to be universal.

In summary, although also using “frame”, our work is significantly different to any existing work in
either method, theory, or task.

Gauge-equivariant CNNs Gauge-equivariance methods [38—40] have never been used in the po-
tential energy surface task. The methods seem similar to ours as they also project equivariant
representations onto some selected orientations. However, the differences are apparent.

1. Some of these methods are not strictly O(3)-equivariant. For example, the model of de Haan
et al. [39] is not strictly equivariant for angle # 27 /N, while our model (and all existing models
for potential enerby surface) is strictly O(3)-equivariant. Loss of O(3)-equivariance leads to
high sample complexity.

2. Building grid is infeasible for potential energy surface tasks as atoms can move in the whole
space. Moreover, the energy prediction must be a smooth function of the coordinates of atoms.
Therefore, the space should not be discretized. The model of Suk et al. [40] works on some
discrete grid and cannot be used for the molecular force field.

3. Even though Suk et al. [40] seem to achieve strict O(3)-equivariance with high complexity, it
only uses the tangent plane’s angle and loses some information. Only one angle relative to a
reference neighbor is used. Such an angle is expressive enough in a 2D tangent space because
the coordinate can be represented as (r cos 6, r sin #). However, for molecule in 3D space, such
an angle is not enough(the coordinates can be represented as (7 cos 0 sin ¢, r sin 0 sin ¢, r cos ¢).
The angles in tangent space only provide 6). In contrast, we use the projection on three frame
directions, so our model can fully capture the coordinates.

4. Gauge-equivariance methods all use some constained kernels, which needs careful designation.
Our model needs no specially designed kernel and can directly use the ordinary message
passing scheme. Such simple design leads to provable expressivity, simpler architecture, and low
time complexity. Our time complexity is O(/Nn), while the that of Suk et al. [40] is O(Nn?),
where NV is the number of atoms, n is the maximum node degree).

G Expressivity with symmetric input

We use the symbol in Equation 5 SchNet’s message can be formalized as follows.

X({(s5, 753, Ej)|rij <re}) = p( Y t(Concatenate(s;, 7;))- (62)

rij<Tec
In implementation, GNN-LF has the following form.

X({(s5, 75, Ej)lrij < re}) = p( Y w(Concatenate(Pg, (7;), Pg, (Ej), s5,735)).  (63)

7
Tij<Tec

Therefore, for all input molecules, GNN-LF is at least as expressive as SchNet.
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Theorem G.1. VL € N7, for all L layer SchNet, there exists a L layer GNN-LF produce the same
output for all input molecule.

Proof. Let the following equation denote the /™ layer SchNet.
X;({(s§l),ﬁj,ﬁj)\rij <r.}) = pj( Z w{(Concatenate(sgl_l),rij)). (64)

Tij<Te
Let p; = pj, wl(Concatenate(PEa(ﬂj),PE_(Ej),sj,rij)) = 1)j(Concatenate(s;,r;;)), which ne-
glects the projection input.

Let the [ layer of GNN-LF have the following form.
xl({(sgl),ﬁj,ﬁj)|rij <r.}) = pi( Z wl(Concatenate(sy_l),n-j)). (65)

Tij<Te

This GNN-LF produces the same output as the SchNet.

H How to overcome the frame degeneration problem.

As shown in Theorem 5.1, if the frame is O(3)-equivariant, no matter what scheme is used, the frame
will degenerate when the input molecule is symmetric. In other words, the projection degeneration
problem roots in the symmetry of molecule. Therefore, we try to break the symmetry by assigning
node identity features s’ to atoms. The i™ row of s’ is i. We concatenate s and s’ as the new node
feature § € RNY*(F+1) Let ) denote a function concatenating node feature s and node identity
features s’, n(s) = 3. Its inverse function removes the node identity 7!(3) = s.

In this section, we assume that the cutoff radius is large enough so that local environments cover
the whole molecule. Let [n] denote the sequence 1,2,...,n. Let s € RV*¥ denote the invariant
atomic features, ¥ € RN >3 denote the 3D coordinates of atoms, and 7, the i™ row of 7, denote the
coordinates of atom . Let ¥ — 7 denote an N x 3 matrix whose j® row is 7 — T;. We assume that
N > 1 throughout this section.

Now each atom in the molecule has a different feature. The frame generation is much simpler now.

Proposition H.1. With node identity features, there exists an O(3)-equivariant function mapping the
local environment LE; = {(5;,7;;)|j € [N]} to a frame E; € R3*3, and the first rank(E;) rows of
E; form an orthonormal basis of span({7;;|j € [N]}) while other rows are zero.

Proof. For node ¢, we can use the following procedure to produce a frame.

Initialize E; as an empty matrix. For j in [1, 2, 3, ..., n], if 7, is linearly independent to row vectors
in F;, add 7;; as a row vector of E;.

Therefore, when the procedure finishes, the row vectors of E form a maximal linearly independent
system of {7;]j € [N]}.

Then, we use the Gram-Schmidt process to orthonormalize the non-empty row vectors in E, and
then use zero to fill the empty rows in E to form a 3 x 3 matrix. Therefore, the first rank(E;) rows

of E; are orthonormal, and can linearly express all vector in {7; il7 € [N]}. In other words, the first
rank(E;) rows of E; form an orthonormal basis of span({775;|j € [N]}).

Note that 7, 0 are O(3)-equivariant vectors. Therefore, the frame produced with this scheme is
O(3)-equivariant. O

With the frame, GNN-LF has the universal approximation property.

Proposition H.2. Assuming that the node identity features are used, and the frame is produced by
the method in Proposition H.1. For all O(3)-invariant and translation-invariant functions f(s,7), f
can be written as a function of the embeddings of node 1 produced by one message passing layer

proposed in Theorem 4.1.
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Proof. Let e, € R3*3 denote a diagonal matrix whose first r diagonal elements are 1 and others are
0.

With node identity features and method in Proposition H.1, the first rank(Ei) rows of E; form
an orthonormal basis of span({7;;|j € [/N]}) while other rows are zero. Especial, all vectors in
{#1;]j € [IN]} can be written as linear combination of rows in E, T = Wi jﬁj. Therefore, the

projection operation Py : {;|j € [N]} — {(71;)ET|j € [N]} is injective, as

PEI (Flj)El = wljﬁlﬁfﬁl = wlje = E1 = wlel = Flj- (66)

According to the proof of Theorem 4.1, there exists injective function x so that node embeddings
z1 = X({3j, P, (71;)|7 € [N]}). Note that both E; and 2; are functions of LE;.

Let 7 denote a function (z1, Ey) = 7({(3;,71;)|j € [N]}), so that

Yo € O(3), (21, E10") = 7({(5;,71;0")|j € [N]}). (67)
Moreover, 7 is also an invertible function because
{(3;,7)l5 € [N} = {(s,pE1)|(s,p) € x " (21)}. (68)

Because the last column of § is the node identity feature, there exists an bijective function ¢ converting
set of features to matrix of features.

e({(55,7;)li € [N]}) = (s, =(F = 71)). (69)
Intuitively, it puts the features of atom with node identity 3 to the ™ row of feature matrix. Similarly,
¢ ({35, P, (Fy))lj € [N]}) = (s, —(7 — 7) ET). (70)

As f is a translation- and O(3)-invariant function,

f(s,7) = f(s,7=11) = f(s,—(7"=71)) = f(e({(5;,71;)]j € [N]})). (71)

Letg= fopor ! So .
g(Elazl) :f(svma (72)
Yo € 0(3)7g(E10T,21) = f(s,70") = f(s,7). (73)

Let extend(E;) € O(3) denote any matrix whose first rank(F;) rows equals to E;’s first rows.
Therefore,

f(s,7) = f(s,Fextend(El)T) = g(Elextend(El)T, z1) = g(emnk(ﬁl), z1) = g’(rank(El), 21).
(74)

Note that rank(E;) = rank(7 — 7) ) 1
is a selection function: u(z, —(7 — 7o)ELX) = —(7 — 7o)ET. Therefore, f(s,7) = ¢'(rank(z o
X H(21)),21) = ¢" (1)

= rank(Pg (¥ — 7)) = rank(z o ¢’ o x71(2;)), where ¢
/

For simplicity, let function ¥ denote GNN-LF with node identity features (including adding node
identity feature, generating frame, and a message passing layer proposed in Theorem 4.1), 1(z, 7) is
the embeddings of node 1.

Node identity features help avoiding expressivity loss caused by frame degeneration. However, GNN-
LF’s output is no longer permutation invariant. Therefore, we use the relational pooling method [28],
which introduces extra computation overhead and keeps the permutation invariance.

To illustrate this method, we first define some concepts. Function 7 : [n] — [n] is a permutation iff it
is bijective. All permutation on [n] forms the permutation group .S,,. We compute the output of all
possible atom permutations and average them, in order to keep permutation invariance. We define the
permutation of matrix here: for all matrix of shape N x m, V& € Sy, the i row of 7(M) equals to
the (7~ 1(7))™ row of M.
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Proposition H.3. For all O(3)-invariant, permutation-invariant and translation invariant function
f(s,7), there exists GNN-LF ) and some function g, with which - Y resy 9(W(m(s), m(7))) is

permutation invariant and equals to f(s,T).

Proof. Define a "frame" (defined in Definition 1 in [28]) F': V — 25, where V is the embedding
space. Yv € V, F(v) = S,. So the relational pooling of GNN-LF with node identity features
(go)r(s,™) = 31 X resy 9(¢(n(s)), m(F)). Note that the permutation operation 7 and O(3)

operation o commute: 7 (7o’ ) = 7 (7)o’ . According to Theorem 2 in [28], (g o )  is permutation
invariant.

According to Theorem 4 in [28], if there exist function g’ and v’ so that ¢’ o ¢}’ = f (the existence is
shown in Proposition H.2), there will also exist GNN-LF ¢ and function g, so that (g o ) p(s,7) =
O

f(s,7).

Therefore, we can completely solve the frame degeneration problem with the relational pooling trick
and node identity features. However, the time complexity is up to O(N!N?), so we only analyze this
method theoretically.

I Why is global frame more likely to degenerate than local frame?

Let [N] denote the sequence 1,2, ..., N. N is the number of atoms in the molecule.

We first consider when local frame degenerates. As shown in Theorem 5.1, the degeneration happens
if and only if the local environment is symmetric under some orthogonal transformations.

rank(E;) < 3¢ 3o € O(3),0 # 1, {(si, 707 )|rij < e} = {(s4,75)|rij <7} (I5)

The global frame has the following form,
N
=Y E. (76)
i=1

We first prove some properties of E function.

Proposition L1. E is an O(3)-equivariant, translation-invariant, and permutation-invariant function.

Proof. O(3)-equivariance: Yo € O(3), E, (s, 7o”) = E,(s, 7)o . Therefore,
N N
(s, 70" ZE 5,707 ) = (Z Ei(s, 7)o’ = E(s,7)o". a7
i=1 i=1

Translation-invariance: For all translation ¢ € R3, let 7+ { denote a matrix of shape N x 3 whose it

row is 7, + £, As E; is a function of 7 — Fi =7+t — (7 + 1), E;(2,7+t) = E;(z,7). Therefore,

N
sr—i—t ZE (s,7) sF) (78)

uMz
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Permutation-invariance: for all permutation 7 € Sy, 7(7); = 7(7)z-1(;)-

I
M=
&=

E(n(s), 7(7) i(m(s), (7)) (79)
2;1 )

= Z i({(m(5);, ()i — w(7);] 1w (7)i — (7)1 <re}) (80)
1;1 )

= ZEi({(SW—l(j), Fﬂ—l(i) — Fﬂ—l(j))|7’7r—1(i)7r—1(j) < Tc}) (81)
1;1 )

=D Eil{(ss7i = Tilrig <7e}) (82)

= E(s,7) (83)

[

Then we prove a sufficient condition for global frame degeneration.
Proposition L 2 rank(E < 3) ifthere exists t € R® and o € O(3),0 # I such that {(s;,7; — t)]i €
[N} = {(si, (7 — t)oT)|i € [N

Proof. As Eisa permutation invariant function,
E = E({(ss,7)li € [N]}). (84)

As E is a translation-invariant and O(3)-equivariant function,

E({(si, (7 = Do")li € [N]}) = E({(si, (7 —D)i € [N]})o" = E({(s:,7))li € [N]})o". (85)

Therefore, under the condition {(s;, 7 — t)|i € [N]} = {(si, (7; — )oT)|i € [N]}, we have

E({(si,7)li € [N]})o" = E({(si,7))li € [N]}), (86)
— E({(s0,7)li € INJ}(I — o) =0, 87)
Therefore, rank(E) 4 rank(I — 07) — 3 < 0. As I # o”, rank(I — o”) > 0, rank(E) < 3. O

The main difference between the degeneration conditions is the choice of origin. The local frame of
atom ¢ degenerates when the molecule is symmetric with atom 7 as the origin point, while the global
frame degenerates if the molecule is symmetric with any origin point. Therefore, the global frame is
more likely to degenerate.

Corollary 1.1. Assume the cutoff radius is large enough so that local environments contain all atoms.

If there exists i, rank(E;) < 3, then rank(E) < 3.

Proof. As rank(Ei) < 3,30 € 0(3),0 # I,{(s;,(7; — 7j)o")|5 € [N]} = {(s;,(Fi = 7))|j €

[V}
Therefore,
{(s5: =7 = 7)o" € [NT} = {(s5. —(7i — 7))|j € NI} (88)
= {(s;, (75 — 7)o" )|j € [N} = {(s;, 75 — 7))l € [N} (89)
Let i = 7, according to Proposition 1.2, rank(E ) < 3. O

Therefore, when the cutoff radius is large enough, the global frame will also degenerate if some local
frame degenerates.
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J How does GNN-LF keep O(3)-invariance.

The input of GNN-LF is atomic numbers z € ZN and 3D coordinates ¥ € RN >3, where N is the
number of atoms in our molecule. The energy prediction produced by GNN-LF should be O(3)-
equivariant. To formalize, Vo € O(3), GNN-LF(z, ) = GNN-LF(z, 7o®). For example, when the
input molecule rotates, the output of GNN-LF should not change.

We state the Definition 2.2 and Lemma 2.1 here again.

Definition J.1. _Representation s is called an invariant representation if s(z,7) = s(z,70"),Yo €
0(3),z € ZN 7 € RNV*3 - Representation ¥ is called an equivariant representation if ¥(z, 7)ol =
¥(z,707),Yo € 0(3),z € ZN |7 € RNVN*3,

Lemma J.1.

1. Any function of invariant representation s will produce an invariant representation.

2. Let s € RY denote an invariant representation, ¢ € R¥*3 denote an equivariant representation.
We define s - 7 € RF'™*3 as a matrix whose (i, j)th element is s;U;j. When © € RY*3, we first
broadcast it along the first dimension. Then the output is also an equivariant representation.

3. Let © € R¥*3 denote an equivariant representation. E € R3*® denotes an equivariant frame.
The projection of U to E, denoted as Py(v) := UET, is an invariant representation in R¥ %3, For
U, Py is a bijective function. Its inverse PEil convert an invariant representation s € R¥*3 to an

equivariant representation in RF %3, Pbgl(s) =sE.

4. Projection of U to a general equivariant representation ¥ € RE'*3 can also be defined. It

. . . . ’ ——f
produces an invariant representation in R¥*" | Py (7) = 65’7

As shown in Figure 1, GNN-LF first generates a frame for each atom and projects equivariant features
of neighbor atoms onto the frame. A graph with only invariant features is then produced. An ordinary
GNN is then used to process the graph and produce the output. We illustate them step by step.

Notations. The initial node feature of node ¢, z; € N, is an integer atomic number, which neural
network cannot process directly. So we first use an embedding layer to transform z; to float features
s; =58(z) € R, where F is the hidden dimension. According to the first point of Lemma J.1, s; is
an invariant representation.

7; € RY3, the 3D coordinates of atom 4, is an equivariant representation. 7;; = 7; — 7; € R*3 is
the position of atom ¢ relative to atom j.

Yo € 0(3),7;(2,70") = 0" — 70" = 7j(z, 7)o", (90)

so 75; is an equivariant representation. r;; denotes the distance between atom 4 and atom j. 7;; =
z /rU - € R. According to the fourth point of Lemma J.1, 7;7; 'T is an invariant representation.

According to the first point of Lemma J.1, 7;; =  /7;7L ; is thus an invariant representation.

Frame Generation. As shown in Equation 8, our frame has the following form.

Ei= > w(rij)(f(rij)QSj)ﬂjv o1

. Tij
JFETii<re &

where w(r;;) € R and f(r;;) € RF denotes two function of r;;, ® denotes Hadamard product.
wiﬂ (f(ri;) © s;) as a whole is a function of 7;; and s;, which are both invariant representations.
¥

According to the first point of Lemma J.1, w(r”) (f(ri;) ® s;) is an invariant representation € RY". -
denotes the scale operation described in the second point of Lemma J.1, so M( f(rij) © s4) - iy

is an equivariant representation. The frame of atom ¢, namely Ei € RF X3, is an equivariant
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Table 6: Mean average error on the MD17 dataset. Units: energy (£) (kcal/mol) , forces (F)
(kcal/mol/A).Tuned means GNN-LF with tuned cutoff radius. cf* means GNN-LF with cutoff *A.
Torchmd is the strongest baseline.

cf3.5 cf45 cf5.5 cf6.5 cf7.5 cf85 ¢f9.5 Tuned Torchmd

Aspirin £ 0.1544 09091 0.1378 0.1896 0.1322 0.1312 0.1312 0.1342 0.1240
F 03092 1.6694 0.2164 0.4170 0.1896 0.1954 0.1954 0.2018 0.2550
Benzene E 0.0686 0.0701 0.0696 0.0689 0.0690 0.0694 0.0697 0.0686 0.0560
F 0.1559 0.1490 0.1624 0.1489 0.1496 0.1492 0.1489 0.1506 0.2010

Ethanol £ 0.0516 0.0519 0.0523 0.0514 0.0514 0.0514 0.0514 0.0520 0.0540

F 0.0874 0.0885 0.0877 0.0798 0.0798 0.0798 0.0798 0.0814 0.1160
Malonaldehyde £ 0.0772 0.0780 0.0784 0.0744 0.0744 0.0747 0.0747 0.0764 0.0790
F 0.1622 0.1623 0.1631 0.1190 0.1128 0.1126 0.1126 0.1259 0.1760

Naphthalene £ 0.1153 0.1153 0.1590 0.1148 0.1124 0.1124 0.1124 0.1136 0.0850
F 0.0538 0.0538 0.1261 0.0506 0.0507 0.0507 0.0507 0.0550 0.0600

Salicylic £ 0.1110 0.1238 0.1082 0.1090 0.1077 0.1078 0.1085 0.1081 0.0940
F 0.1335 0.1525 0.1037 0.1019 0.1021 0.1014 0.1013 0.1005 0.1350

Toluene E 0.0947 0.1004 0.1601 0.0924 0.0924 0.0924 0.0924 0.0930 0.0740

F 0.0662 0.0664 0.2502 0.0518 0.0518 0.0518 0.0518 0.0543 0.0660

Uracil E 58.794 0.149 0.1037 0.2334 0.1038 0.1039 0.1037 0.1037 0.0960

F 17.0794 0.1106 0.077 0.4496 0.0842 0.0771 0.077 0.0751 0.0940

representation, because

B = 3 (U9 (s 08 - 7o”), ©2)
JF#i,ri<re Tij
(Y 9 (4 05) - Fig)o” = Bz ©3)
JF,ri<Te Tij

Projection. Projection is composed of two parts. As shown in Equation 9 and Equation 6.

1 - . L
dj; = 7(7“i.7EiT)d?j = diag(W1 E; E] W), (94)
ij

where Wy, Wy € RF*F are two learnable linear layers. According to the fourth point of lemma J.1,
d%j = 7;; BT are invariant representations. According to the fourth point of lemma J.1, E; ET are
invariant representations. dfj = diag(W E'Jﬁf W) is a function of Ej E'? , SO dfj are invariant
representations.

Graph Neural Network. We use an ordinary GNN to produce the energy prediction. The GNN

takes s; as the input node features and (r;;, dzlj7 d?j) as the input edge features.

GNN-LF(z,7) = GNN({s;]i = 1,2,.., N}, {(rij, dj;, di;)li = 1,2,..,N,j =1,2,...N}). (95)
As all inputs of GNN is invariant to O(3) operation, the energy prediction will also be O(3)-invariant.
Our GNN has an ordinary message passing scheme. The message from atom j to atom r is

mij = fa(rij, dij, di;) © s;, (96)
where f’ is a neural network, whose output € R¥'. The message combines the features of edge i, j
and node j. Each message passing layer will update the node feature s;.

si e si+g( Y miy), 97
JEN(9)
where g is a multi-layer perceptron, N () is the set of neighbor nodes of node i.

After some message passing processes, s; contains rich graph information. The energy prediction is

E=h()_si), (98)
i=1
where h is a multi-layer perceptron.
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Table 7: Results on MD17 with different splits. Units: energy (£) (kcal/mol) , forces (F)
(kcal/mol/A).

Molecule Target Our split DimeNet split

Aspirin £ 0.1342 0.1294
p F 0.2018 0.1902
Benzene £ 00080 e
F 0.1506 0.1477

& 0.052 0.051

Ethanol F 0.0814 0.078

£ 0.0764 0.074
Malonaldehyde F 0.1259 0.1147
E 0.1136 0.1138
Naphthalene F 0.055 0.0493
Salicylic acid & 0-1081 007
icylic act F 0.1005 0.097
Toluene £ 00 0.0195
F 0.0543 0.0499
Uracil & 0.1037 0.1033
F 0.0751 0.0763

K How cutoff radius affects performance

Instead of taking a physically motivated cutoff radius, we set it to be a hyperparameter and tune it.
Intensive hyperparameter tuning may prohibit GNN-LF from real-world applications. However, we
find that GNN-LF is robust to the cutoff radius and does not need a lot of tuning.

As shown in Table 6, when the cutoff radius is low, the accuracy is low and unstable. However, when
the cutoff radius is large enough, GNN-LF outperforms the strongest baseline torchmd and achieves
the performance of GNN-LF with a tuned cutoff radius.

L. Results with DimeNet split

Our baselines take slightly different dataset splits. For comparison, we use the same split as our
strongest baseline [10]. It is also the split with the fewest training and validation samples and, thus,
the most challenging setting. Other baselines may use slightly larger training and validation datasets.
For example, in the MD17 dataset, our split uses 950 training samples, while DimeNet uses 1000
training samples. With the split of DimeNet, the performance of GNN-LF increases by 0.5% on
average (see Table 7). So the differences in dataset split will not hamper our conclusion: GNN-LF
achieves state-of-the-art performance in PES tasks.

M Gap between GNN-LF’s implementation and expressivity analysis

There are three gaps between implementation and expressivity analysis. We clarify them as follows.

M.1 Frame ensemble

The theoretical expressivity can be ensured if the frame contains at least 3 vectors. So the choice of
F, the number of vectors in the frame, is mainly for implementation convenience. We set F'=hidden
dimension, so GNN-LF does not need an extra linear layer to change representations’ dimension
when producing frames.

We also do ablation study. Let 1-frame denote GNN-LF with a single frame. Though frame ensemble
contributes significant performance gain, GNN-LF with only one frame still achieves the second-best
performance among existing models.

The experimental results in MD17 dataset are shown in Table 8. Ablation of frame ensemble leads
to 10% test loss increase. However, the performance of 1-frame is still competitive, as 1-frame
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Figure 5: Visualization of frames in randomly selected molecules in MD17 dataset. Here frame
vectors are represented as lines rooted in atoms.

outperforms all baselines on 3/16 targets and achieves the second-best performance on 11/16 targets.
The outstanding performance of GNN-LF validates our expressivity analysis.

Though frame ensemble is not vital for performance, we always use it in GNN-LF. As GNN-LF
generates frames and projections only once, using frame ensembles will not lead to significant
computation overhead. In the setting of Table 4, both 1-frame and GNN-LF with frame ensemble
take 9 ms per inference iteration.

M.2 Orthogonality Constraint

Let f denote the target function. In expressivity analysis, we have shown that there exists parameter
w, GNN-LF with w can approximate f, and the frames produced by GNN-LF are orthogonal. Then
this conclusion = there exists parameter w, GNN-LF with w can approximate f

< GNN-LF without the constraint can approximate f Therefore, without the constraint, GNN-LF
can still maintain expressivity.

In other words, producing orthogonal frames is one particular solution to our task. By building a
specific solution, we prove the existence of the solution. In implementation, optimized GNN-LF

29



Graph Neural Network with Local Frame for Molecular Potential Energy Surface

Table 8: Results on the MD17 dataset. Units: energy (£) (kcal/mol) and forces (F) (kcal/mol//a\).
Molecule Target 1-frame DimeNet GemNet PaiNN TorchMD 1-frame GNN-LF

Aspirin 0.1474  0.204 - 0.1670 0.1240 0.1474 0.1342
0.2784  0.499  0.2168 0.3380 0.2550 0.2784 0.2018

Benzene 0.0692  0.078 - - 0.0560 0.0692 0.0686
0.1532 0.187  0.1453 - 0.2010  0.1532 0.1506

Ethanol 0.0525  0.064 - 0.0640 0.0540 0.0525 0.0520
0.0897 0.230  0.0853 0.2240 0.1160 0.0897 0.0814

Malonaldehyde 0.0789  0.104 - 0.0910 0.0790 0.0789 0.0764
0.1651  0.383  0.1545 0.3190 0.1760 0.1651 0.1259

Naphthalene 0.1138  0.122 - 0.1660 0.0850 0.1138 0.1136
0.0606 0.215  0.0553 0.0770 0.0600 0.0606 0.0550

0.1088  0.134 0.1660 0.0940 0.1088 0.1081

Salicylic acid 01290 0374  0.1268 0.1950 0.1350 0.1290 0.1005

Toluene 0.0997  0.102 - 0.0950 0.0740 0.0997 0.0939
4 0.0682 0.216  0.0600 0.0940 0.066 0.0682 0.0543
Uracil 0.1048  0.115 0.1060 0.096 0.1048 0.1037

HONHMH NN NN YN N

0.0944 0.301  0.0969 0.1390 0.094 0.0944 0.0751

may produce orthogonal frames, and it can also reach other solutions and thus does not produce
orthogonal frames.

As expressivity analysis only considers the existence of a solution and ignores how to reach the
solution, it is somehow counter-intuitive. However, the theoretical analysis is still helpful and
motivates the designs of GNN-LF.

Moreover, removal of orthogonal constraint does not result in frame degeneration. We visualize local
frames of atoms in Figure 5. In these molecules, frame vector directions are diverse. Therefore,
frames are not likely to degenerate, and frames in the same ensemble vary greatly rather than collapse
into a single frame.

M.3 Inplementation of frame-frame projection

In theory, frame-frame projection is E; Ef However, in implementation, we use diag(WW; E]@T Wi
(see Equation 10). This section explains the reason for the difference.
Directly using E‘;E']T leads to large computation overhead. E}E‘;T is a matrix € RF>* where F

is the hidden dimension, usually 256. Flattening E; E_’]T and transforming it to ' dimension needs
at least a linear layer with 16M parameters (ten times more than the total number of parameters of

GNN-LF in MD17 dataset), which is infeasible. Therefore, sampling elements in EEJT is a must.

Moreover, our sampling method will not hamper expressivity. In theory, frames with 3 vectors and
3 x 3 frame-frame projections are enough. Therefore, simply selecting a 3 x 3 diagonal block in

EET can fulfill the theoretical requirements. We use a learnable process to simulate this operation.

Now we explain the sampling method in GNN-LF. Note that we do not directly take the diagonals
of EZE]T Instead, we use diag(W; ElEJTWQT ), where Wy, Wy € RF*F are two learnable matrix

used to select elements. Appropriate W, W can select arbitrary F' elements in E_"lE'JT For example,
given

F F
Wi = Z Lia;, Wo = Z Lib;s (99)
i—1 i=1

where 1; ; denotes the matrix whose (4, j) elements is 1, other elements are 0,

diag(W1 EiET W) = (B ET )agn,li = 1,2, .., F). (100)
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