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ABSTRACT

Due to tractable analysis and control, linear state-space models (LSSMs) provide
a fundamental mathematical tool for time-series data modeling in various disci-
plines. In particular, many LSSMs have sparse system matrices because inter-
actions among variables are limited or only a few significant relationships exist.
However, current learning algorithms for LSSMs lack the ability to learn sys-
tem matrices with the sparsity constraint due to the similarity transformation. To
address this issue, we impose sparsity-promoting priors on system matrices to bal-
ance modeling error and model complexity. By taking hidden states of LSSMs as
latent variables, we then explore the expectation–maximization (EM) algorithm to
derive a maximum a posteriori (MAP) estimate of both hidden states and system
matrices from noisy observations. Based on the Global Convergence Theorem,
we further demonstrate that the proposed learning algorithm yields a sequence
converging to a local maximum or saddle point of the joint posterior distribution.
Finally, experimental results on simulation and real-world problems illustrate that
the proposed algorithm can preserve the inherent topological structure among vari-
ables and significantly improve prediction accuracy over classical learning algo-
rithms.

1 INTRODUCTION

Linear state-space models (LSSMs) are fundamental mathematical tools for analyzing time-series
data with applications in robotics (Mamakoukas et al., 2019; 2020), systems biology (Jin et al.,
2020b; Pillonetto & Ljung, 2023), and natural language processing (Smith et al., 1999; Belanger &
Kakade, 2015). Generally, LSSMs describe time-series data {(ut,yt)}Tt=1 through the following
stochastic difference equation:

xt = Axt−1 +But + εt, (1)
yt = Cxt +Dut + ωt, (2)

where ut ∈ Rp is the input signal, yt ∈ Rm is the noisy observation, xt ∈ Rn is the hidden state,
A ∈ Rn×n, B ∈ Rn×p, C ∈ Rm×n, and D ∈ Rm×p are the unknown system matrices, and
εt ∼ N (0,R) and wt ∼ N (0,Q) are the diagonal process and measurement noise, respectively.
In addition, LSSMs are also widely used to approximate complex non-linear systems in industrial
processes given their relative simplicity (Yuan et al., 2017; Lusch et al., 2018). Due to a complete
rigorous theory available on LSSMs, learning them from noisy observations can enable us to make
tractable analysis and control of systems (Chen & Poor, 2022; Bakshi et al., 2023).

In this paper, we focus on learning LSSMs with sparse system matrices for two important reasons.
First, the learned LSSMs should include the minimally required parameters to explain time-series
data following the Occam’s razor principle, which favors explanations constructed with the smallest
possible set of elements. Additionally, many real-world systems indeed have a sparse topology, as
each state or measurement variable only depends on a few other state variables and inputs (Efroni
et al., 2022). For example, a gene only regulates the expression of a limited number of other genes
in gene regulatory networks (He et al., 2024b). In industry, communication systems usually have
a sparse topology to reduce energy consumption (Jin et al., 2020a;b). However, available learning
algorithms lack the ability to learn LSSMs with the sparsity constraint on system matrices due to the
similarity transformation.
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To learn LSSMs with sparse system matrices, we impose sparsity-promoting priors on them to bal-
ance model complexity and modeling error. Following the Bayes’ rule, we can combine the marginal
likelihood and prior functions to derive the joint posterior distribution of all the unknown variables.
However, directly maximizing such a posterior distribution to estimate system matrices is intractable
because the hidden states of LSSMs are unknown. To address this issue, we explore the expectation–
maximization (EM) algorithm to give an alternate maximum a posteriori (MAP) estimate of hidden
states and system matrices by taking hidden states as latent variables. In the expectation step, we use
the Rauch–Tung–Striebel (RTS) smoother to give a closed-form update rule for the hidden states.
In the maximization step, we leverage the block coordinate descent method to analytically update
the system matrices in turn. By alternately performing the expectation and maximization steps un-
til convergence, the proposed algorithm can determine the sparse system matrices of LSSMs from
noisy observations. In summary, the contributions of this paper are threefold:

• Leveraging sparsity-promoting techniques, we propose an algorithm to learn LSSMs with
sparse system matrices from noisy observations. Following the Global Convergence Theo-
rem (Luenberger et al., 1984), we also demonstrate that the proposed algorithm is guaran-
teed to converge to a local maximum or saddle point of the posterior distribution composed
of marginal likelihood and prior functions.

• Because available learning algorithms only learn LSSMs up to a similarity transformation,
the learned system matrices usually differ from the true ones in both numerical values and
topological structure. However, the proposed algorithm learns system matrices by bal-
ancing model complexity and modeling error. As a result, the learned system matrices can
preserve the inherent topological structure among variables, which is a significant improve-
ment over classical learning algorithms.

• Experimental results on simulation and real-world datasets demonstrate that the proposed
algorithm outperforms classical ones on learning LSSMs with sparse system matrices. In
addition, the learned system matrices of the proposed algorithm are more valuable for ex-
ploring the interaction laws of systems.

2 RELATED WORK

Least-squares minimization. Basically, least-squares minimization (LSM) learns unknown mod-
els by minimizing the sum of the squares of residuals (Faradonbeh et al., 2018; 2020; Modi et al.,
2024). Taking one-step prediction errors as the objective function in LSM, prediction error mini-
mization (PEM) is proposed to learn LSSMs via gradient-based optimization methods (Ljung, 2002;
Katayama et al., 2005). Given a symmetric transition matrix, Hazan et al. (2017) design an efficient
method for the online prediction of LSSMs by formulating system identification as an online PEM
problem. Recently, combining the Ho–Klamn (HK) algorithm with LSM, Oymak & Ozay (2019)
propose a method to learn system matrices of LSSMs with sample complexity analysis. However, it
is well known that LSM is sensitive to noise and cannot characterize the sparsity of system matri-
ces (Tibshirani, 1996; Martens, 2010).

Subspace state-space system identification. Subspace state-space system identification (4SID) al-
gorithms project data Hankel matrices onto certain subspaces to estimate the extended observability
matrix and hidden states using linear algebra tools (Larimore, 1990; Verahegen & Dewilde, 1992;
Van Overschee & De Moor, 1994; He et al., 2024a). Subsequently, system matrices can be recovered
from either the extended observability matrix or hidden states (Favoreel et al., 2000). Based on prin-
cipal component analysis, Wang & Qin (2002) present a new 4SID algorithm to learn LSSMs under
the errors-in-variables situation. By choosing different weighting matrices to perform the singular
value decomposition, Van Overschee & De Moor (2012) provide a geometric framework to unify
almost all classical 4SID methods. Further, Huang et al. (2016) present the Weight-Least-Square
method to learn stable LSSMs by multiplying the unstable component with a weight matrix. How-
ever, it is widely recognized that such algorithms generally cannot obtain accurate system matrices
as required (Martens, 2010; Qin, 2006).

Maximum likelihood estimation. Because the joint likelihood function of LSSMs involves hidden
states, the EM algorithm is employed to give the maximum likelihood estimation (MLE) of system
matrices (Shumway & Stoffer, 1982; Ghahramani & Hinton, 1996). Leveraging the EM algorithm,
the distribution of hidden states can be explicitly derived using the Kalman smoother based on the
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current estimate of system matrices. It then updates system matrices by maximizing the expected
log-likelihood with respect to the hidden states. To present a robust MLE for LSSMs, Gibson &
Ninness (2005) implement the expectation and maximization steps via the LR and Cholesky factori-
sation, respectively. To increase the efficiency of EM for learning LSSMs, Martens (2010) proposes
an approximate second-order statistics (ASOS) scheme to approximate the expectation step. Com-
bining EM and Lagrangian relaxation, Umenberger et al. (2018) use semidefinite programming to
optimize the tight bounds on the likelihood to learn LSSMs with model stability constraints. How-
ever, such learning algorithms lack the ability to deal with sparse system matrices.

Sparsity-promoting methods. By adding a penalty term on model parameters, sparsity-promoting
methods can balance model complexity and modeling error to learn systems from data (Brunton
et al., 2016). Leveraging the ℓ1 regularization term, Tibshirani (1996) proposes a method named
Lasso to estimate parameters in linear models. Further, reweighted ℓ1 minimization is proposed
to enhance sparsity (Wipf & Nagarajan, 2007; Candes et al., 2008). However, solving an ℓ1 mini-
mization problem is challenging due to its non-differentiability at the origin, and these methods also
require careful fine-tuning of hyperparameters. To address such issues, sparse Bayesian learning
(SBL) imposes sparsity-promoting priors on model parameters to enforce sparsity (Samanta et al.,
2022; Chakraborty et al., 2023). Subsequently, it maximizes the posterior distribution consisting
of the likelihood function and priors to estimate model parameters and hyperparameters (Tipping,
2001; Wipf & Rao, 2004). Recently, SBL has been applied to learn various systems from data,
with system states being measurable yet potentially corrupted by process noise (Pan et al., 2015;
Yuan et al., 2019; Wang et al., 2024). However, leveraging such sparsity-promoting methods to
learn LSSMs with sparse system matrices remains an elusive and challenging problem because
system states are unavailable and observed data are corrupted by both process and measurement
noise (Course & Nair, 2023).

3 METHODOLOGY

Due to the similarity transformation, LSSMs admit many equivalent representations with different
levels of sparsity, where the corresponding transformed system matrices are given by ΦAΦ−1, ΦB,
CΦ−1, and D, with Φ ∈ Rn×n being a nonsingular matrix. However, we focus on learning the
LSSMs with sparse system matrices that include minimally required parameters in accordance with
the Occam’s razor principle. Hence, we define the identifiability of LSSMs with sparse system ma-
trices to ensure that the resulting ambiguities can only be permutations and scaling, as is formalized
as follows.
Definition 3.1. (Identifiability) For LSSMs with nonzero system matrices A,B,C, and D, if any
nonsingular matrix Φ ∈ Rn×n satisfying

∥ΦAΦ−1∥0 = ∥A∥0, ∥ΦB∥0 = ∥B∥0, and ∥CΦ−1∥0 = ∥C∥0, (3)

must be a generalized permutation matrix, then such systems are said to be essentially identifiable,
up to permutation and scaling.

3.1 STUDENT’S t-DISTRIBUTION PRIOR

Here, we impose the Student’s t-distribution prior on the system matrices A,B,C, and D to pro-
mote model sparsity, because it can be sharply peaked at zero compared to other priors (Tipping,
2001). Generally, the Student’s t-distribution prior is implemented in a hierarchical way (Wang
et al., 2024; Zhou et al., 2021). It imposes a zero-mean Gaussian prior on the system matrices and
then adopts an Inverse-Gamma distribution on the unknown variance. For example, we can impose
the Student’s t-distribution prior onA to promote its sparsity as follows:

p(A | Γa) =

n∏
i=1

n∏
j=1

p (Aij | Γa,ij) =

n∏
i=1

n∏
j=1

1√
2πΓa,ij

exp

(
−
A2

ij

2Γa,ij

)
, (4)

p(Γa) =

n∏
i=1

n∏
j=1

ab00
Γ(a0)

Γ−a0−1
a,ij exp

(
− b0
Γa,ij

)
, (5)

where Γ(·) is the gamma function, andAij and Γa,ij are the ijth components ofA and Γa, respec-
tively. To generate non-informative hyperprior on Γa,ij , a0 and b0 are typically set to very small
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values (e.g., 10−6). In addition, Γb, Γc, Γd, Γb,ij , Γc,ij , and Γd,ij are defined in a similar man-
ner (see Appendix A). For the process noise R and measurement noise Q, we impose a uniform
distribution prior on them to derive a flat prior.

3.2 LOSS FUNCTION

Following the Bayes’ rule, we can combine the marginal likelihood and prior functions to derive the
joint posterior distribution of all the unknown variables as follows:

p(Θ | Y ) ∝ p(Y | Θ)︸ ︷︷ ︸
marginal likelihood

× p(Θ)︸ ︷︷ ︸
prior

, (6)

where Θ = {A,B,C,D,R,Q,Γa,Γb,Γc,Γd} is the set of unknown variables and Y =
[y1,y2, ...,yT ]. Because the system state xt is unobserved, it is hard to explicitly compute
p(Y | Θ). Hence, directly maximizing equation 6 to estimate Θ is generally intractable. To
tackle this problem, we explore the EM algorithm to iteratively improve equation 6 by regarding
xt as the latent variable. Instead of directly maximizing equation 6, the EM algorithm focuses on
improving the expected value of the log posterior function of Θ with respect to the state vector
X = [x1,x2, ...,xT ] as follows:

H(Θ | Θk) = EXk [log (p(Y ,X | Θ)p(Θ))], (7)

whereXk ∼ p
(
X | Y ,Θk

)
, andXk and Θk denote the estimates ofX and Θ at the kth iteration,

respectively. It is well-known that iteratively maximizing equation 7 is equivalent to iteratively
maximizing equation 6 (Little & Rubin, 2019).

3.3 EXPECTATION STEP: RAUCH–TUNG–STRIEBEL SMOOTHER

Because equation 7 involves p
(
X | Y ,Θk

)
, we first need to derive the conditional distribution ofxt

given Y and current Θk = {Ak,Bk,Ck,Dk,Rk,Qk,Γk
a,Γ

k
b ,Γ

k
c ,Γ

k
d}, which can be formulated

as a classical smoothing problem. For LSSMs, the RTS smoother provides a closed-form smoothing
solution for p

(
xt | Y ,Θk

)
.

Lemma 3.1. (RTS smoother Särkkä & Svensson (2023)) For LSSMs, the RTS smoother states that

p
(
xt | Y ,Θk

)
= N

(
mk

t ,P
k
t

)
, (8)

where t = 0, ..., T . Here,mk
t and P k

t are derived via the reverse-time recursions as follows:

mk
t = µk

t +Gk
t

(
mk

t+1 − µk
t+1

)
, (9)

P k
t = Σk

t +Gk
t

(
P k

t+1 −Σ
k

t+1

) (
Gk

t

)′
, (10)

where Gk
t = Σk

t

(
Ak
)′ (

Σ
k

t+1

)−1

. The quantities µk
t , µk

t , Σk
t , and Σ

k

t coupled in equation 9
and equation 10 are pre-computed using the Kalman filter as follows:

µk
t = Akµk

t−1 +B
kut, Σ

k

t = AkΣk
t−1

(
Ak
)′
+Rk, (11)

Kk
t = Σ

k

t

(
Ck
)′ (
CkΣ

k

t

(
Ck
)′
+Qk

)−1

, (12)

µk
t = µk

t +Kk
t

(
Yt −Ckµk

t −Dkut

)
, Σk

t =
(
In −Kk

t C
k
)
Σ

k

t , (13)

where In is an identity matrix of dimension n. Note that the reverse-time recursions of equation 9
and equation 10 start from the initial conditions mk

T = µk
T and P k

T = Σk
T , and the recursions of

equation 11–equation 13 start from the mean µk
0 and covariance Σk

0 of the initial state x0.

Besides p
(
xt | Y ,Θk

)
, we also need to derive the covariance matrix between the adjacent states

xt and xt−1 given Y and Θk to compute equation 7. To address this issue, the following lemma
gives necessary recursions.
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Lemma 3.2. (The lag-one covariance smoother Särkkä & Svensson (2023)) For LSSMs, the covari-
ance matrix P k

t,t−1 between the adjacent states xt and xt−1 given Y and Θk can be recursively
derived as follows:

P k
t,t−1 =

(
Σk

t +Gk
tP

k
t+1,t −Gk

tA
kΣk

t

) (
Gk

t−1

)′
(14)

with P k
T,T−1 =

(
In −Kk

TC
k
)
AkΣk

T−1.

Based on Lemmas 3.1 and 3.2, we are able to calculate the loss function in equation 7 as follows:

H
(
Θ | Θk

)
= H1 (A,B,R) +H2(C,D,Q) +H3(A,B,C,D,Γa,Γb,Γc,Γd), (15)

where
H1(A,B,R) = EXk [log p(X|A,B,R)], (16)
H2(C,D,Q) = EXk [log p(Y |X,C,D,Q)], (17)

H3(A,B,C,D,Γa,Γb,Γc,Γd) = EXk [log (p(A,Γa)p(B,Γb)p(C,Γc)p(D,Γd))]. (18)
Due to the limited space, the detailed derivation of equation 15 and explicit mathematical expres-
sions of H1(A,B,R), H2(C,D,Q), and H3(A,B,C,D,Γa,Γb,Γc,Γd) are given in Appendix
B.1.

3.4 MAXIMIZATION STEP: BLOCK COORDINATE DESCENT

Obviously, H
(
Θ | Θk

)
is a non-convex function and unknown variables are highly coupled. To

provide analytical update formulas, we leverage the block coordinate descent method to sequentially
optimize the model parameters.

Update procedures of A, B, C, and D. Due to the introduction of sparsity-promoting priors,
it is intractable to derive closed-form solutions for A, B, C, and D by setting the derivatives of
H
(
Θ | Θk

)
with respect to these variables to zero directly. To address this issue, we adopt a row-

wise update rule for A, B, C, and D. For example, the derivative of H
(
Θ | Θk

)
with respect to

the rth row ofA, denoted asAr, is as follows:
∂
(
H1(A,Bk,Rk) +H3(A,Bk,Ck,Dk,Γk

a,Γ
k
b ,Γ

k
c ,Γ

k
d)
)

∂Ar

=

T∑
t=1

(
Rk

rr

)−1
((
mk

t,r −Arm
k
t−1 −Bk

rut

) (
mk

t−1

)′
+
(
P k

t,t−1,r −ArP
k
t−1

))
−ArΓ

kd

a,r,

(19)

where Rk
rr is the rrth component of Rk, P k

t,t−1,r, mk
t,r, and Bk

r are the rth rows of P k
t,t−1, mk

t ,

and Bk, respectively. In particular, Γ
kd

a,r = diag[Γ
k

a,r] with Γ
k

a,r being the rth row of Γ
k

a. Set-
ting equation 19 to zero leads to the following update rule forAr at the kth iteration:

Ak+1
r =

(
T∑

t=1

((
mk

t,r −Bk
rut

) (
mk

t−1

)′
+ P k

t,t−1,r

))

×

(
T∑

t=1

(
P k

t−1 +m
k
t−1

(
mk

t−1

)′)
+Rk

rrΓ
kd

a,r

)−1

. (20)

The detailed derivation of equation 19 can be found in Appendix B.2. Similarly, we can update the
rth row ofB, C, andD at the kth iteration as follows:

Bk+1
r =

(
T∑

t=1

(
mk

t,r −Ak+1
r mk

t−1

)
u′
t

)(
T∑

t=1

utu
′
t +R

k
rrΓ

kd

b,r

)−1

, (21)

Ck+1
r =

(
T∑

t=1

(
yt,r −Dk

rut

) (
mk

t

)′)( T∑
t=1

(
P k

t +mk
t

(
mk

t

)′)
+Qk

rrΓ
kd

c,r

)−1

, (22)

Dk+1
r =

(
T∑

t=1

(
yt,r −Ck+1

r mk
t

)
u′
t

)(
T∑

t=1

utu
′
t +Q

k
rrΓ

kd

d,r

)−1

, (23)
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where yt,r is the rth component of yt, Qk
rr is the rrth component of Qk, and Γ

kd

b,r, Γ
kd

c,r, and Γ
kd

d,r

are defined as that of Γ
kd

a,r.

Update procedures ofR andQ. The derivative of H
(
Θ | Θk

)
with respect to the rrth component

ofR, denoted asRrr, is as follows (see Appendix B.3):

∂H1

(
Ak+1,Bk+1,R

)
∂Rrr

= − T

2Rrr
+

∑T
t=1

(
πk
t,r

)2
+
∑T

t=1 Π
k
t,rr

2R2
rr

, (24)

where

πk
t =mk

t −Ak+1mk
t−1 −Bk+1ut, (25)

Πk
t = P k

t −Ak+1P k
t,t−1 − P k

t,t−1

(
Ak+1

)′
+Ak+1P k

t−1

(
Ak+1

)′
(26)

with πk
t,r and Πk

t,rr being the rth and rrth components of πk
t and Πk

t , respectively. Setting equa-
tion 24 to zero yields the following update rule forRrr at the kth iteration:

Rk+1
rr =

∑T
t=1

(
πk
t,r

)2
+
∑T

t=1 Π
k
t,rr

T
. (27)

Similarly, we can update the rrth component ofQ, denoted asQrr, at the kth iteration as follows:

Qk+1
rr =

∑T
t=1

(
ψk

t,r

)2
+
∑T

t=1 Ψ
k
t,rr

T
, (28)

where

ψk
t = yt −Ck+1mk

t −Dk+1ut, Ψk
t = Ck+1P k

t

(
Ck+1

)′
(29)

with ψk
t,r and Ψk

t,rr being the rth and rrth components of ψk
t and Ψk

t , respectively.

Update procedures of Γa, Γb, Γc, and Γd. Because each component of Γa, Γb, Γc, and Γd is
independent of the others, we can update them individually. For example, we can calculate the
derivative of H

(
Θ | Θk

)
with respect to Γa,ij at the kth iteration as follows:

∂H3

(
Ak+1,Bk+1,Ck+1,Dk+1,Γa,Γ

k
b ,Γ

k
c ,Γ

k
d

)
∂Γa,ij

= −2a0 + 3

2Γa,ij
+

(
Ak+1

ij

)2
+ 2b0

2Γ2
a,ij

. (30)

Setting equation 30 to zero and solving for Γa,ij leads to:

Γk+1
a,ij =

(
Ak+1

ij

)2
+ 2b0

2a0 + 3
. (31)

Similarly, we can update each component of Γb, Γc, and Γd at the kth iteration as follows:

Γk+1
b,ij =

(
Bk+1

ij

)2
+ 2b0

2a0 + 3
, Γk+1

c,ij =

(
Ck+1

ij

)2
+ 2b0

2a0 + 3
, Γk+1

d,ij =

(
Dk+1

ij

)2
+ 2b0

2a0 + 3
. (32)

Finally, we summarize the procedure for learning LSSMs with sparse system matrices in Appendix
C.

3.5 GLOBAL CONVERGENCE ANALYSIS

Given Θk, the proposed learning algorithm presents the analytical mathematical expressions to de-
rive Θk+1. Hence, we can define the proposed algorithm as a point-to-point mapping A(·). Lever-
aging the Global Convergence Theorem (Luenberger et al., 1984), we can demonstrate that the
proposed algorithm is globally convergent.
Theorem 3.3. From any valid initialization point Θ0, the limit point of the sequence {Θk}∞k=1

generated via Θk+1 = A
(
Θk
)
is a local maximum (or saddle point) of equation 6.

Proof. See Appendix D.
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4 SIMILARITY TRANSFORMATION OF LSSMS

The similarity transformation provides an equivalent realization of original LSSMs by transforming
states into different coordinate systems. For LSSMs, it is an important mathematical operation
to analyze system properties like controllability, observability, and stability. Specifically, we can
transform the state vector xt into a new state vector xt through the relation xt = Φxt, where
Φ ∈ Rn×n is a nonsingular matrix. As such, we can derive an equivalent realization of the original
LSSMs as follows (see Appendix E):

xt = Axt−1 +But + εt, (33)

yt = Cxt +Dut + ωt, (34)

where

A = ΦAΦ−1, B = ΦB, C = CΦ−1, (35)

and εt ∼ N (0,ΦRΦ′). However, the similarity transformation makes it particularly difficult to
accurately learn system matrices. Given the input signals {ut}Tt=1, the transformed LSSMs can pro-
duce the same output data {yt}Tt=1 as the original LSSMs. Hence, classical learning algorithms for
LSSMs only learn the system matrices up to a similar transformation (Viberg, 1994). For LSSMs
with sparse system matrices, such a transformation changes not only the numerical values but, more
importantly, the topological structure of the system matrices, resulting in misinterpretation of intrin-
sic working mechanisms.

4.1 BENEFIT OF SPARSITY-PROMOTING PRIORS

Unlike classical learning algorithms, the proposed algorithm learns LSSMs with sparse system ma-
trices by adopting a sparsity-promoting prior to balance model complexity and modeling error.
Given the sparsity constraint of system matrices, the similarity transformation cannot be applied
using any arbitrary nonsingular matrix Φ. For the identifiable LSSMs, the nonsingular matrix is
restricted to be a generalized permutation matrix; otherwise, the transformed LSSMs will include
redundant parameters to describe the systems. For example, consider the LSSMs with sparse system
matrices as follows:

A =

[
0 0 0.8
0.8 0 0
0 0.8 0

]
, B =

[
2 0 0
0 2 0
0 0 2

]
, C =

[
2 0 0
0 0 2
0 2 0

]
, D =

[
0 2 0
0 0 2
2 0 0

]
. (36)

It is easy to verify that such a system is identifiable, as the rank of system matrices is equal to the
number of nonzero components. Hence, we can derive that the nonsingular matrix Φ must be one
of the following generalized permutation matrices:[

a 0 0
0 b 0
0 0 c

]
,

[
a 0 0
0 0 b
0 c 0

]
,

[
0 a 0
b 0 0
0 0 c

]
,

[
0 a 0
0 0 b
c 0 0

]
,

[
0 0 a
b 0 0
0 c 0

]
,

[
0 0 a
0 b 0
c 0 0

]
, (37)

where a, b, and c are arbitrary constants. As such, the transformed system matricesA,B, andC do
not introduce additional parameters to increase model complexity.

Note that applying the similarity transformation with a generalized permutation matrix to the original
state variables will scale their magnitudes and reorder them. However, it will scale the nonzero
components and permute the rows or columns of system matrices accordingly. Hence, an additional
advantage of the sparsity-promoting prior is its ability to preserve the inherent topological structure
among the variables. While the learned system matrices differ from the true ones in numerical
values, such a difference is only caused by the scaled definition of state variables, rather than a
failure to capture the underlying system dynamics.

5 EXPERIMENT

In this section, we validate the proposed algorithm on simulation and real-world datasets. In addi-
tion, we compare the proposed algorithm with classical ones mentioned previously to demonstrate

7
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Figure 1: Experimental results of all the algorithms on the 10-dimensional synthetic system. Com-
pared to the ground truth, only the proposed algorithm preserves the topological structure among the
variables with Φ ≈ 2I10. In addition, the proposed algorithm obtains the lowest MRE among all
the algorithms. Experimental results on the more complex non-diagonal and non-invertible cases
can be found in Appendix I.1 and Appendix I.2, respectively.

its superior performance, including LSM PEM, LSM HK, 4SID, and MLE. In all experiments, the
dataset is split into training and testing sets with a 2:1 ratio, where 66.7% of the data is used for
training and 33.3% for testing. Due to the lack of ground truth for real-world datasets, we use the
mean relative error (MRE) to evaluate the performance of all the algorithms defined as follows:
MRE =

∑T
t=1

∥yt−ŷt∥2
2

T∥yt∥2
2
, where {ŷt}Tt=1 is the sequence of data points generated by the learned

LSSMs in response to the same input signals. The experiments are conducted using MATLAB
2022b on the PC with an Apple M1 Pro chip with 10-core CPU and 32GB RAM. Experimental re-
sults on simulation and real-world problems illustrate that the proposed algorithm can preserve the
inherent topological structure among variables and significantly improve prediction accuracy over
the classical ones. However, because the closed-form updates entail the inversion of a large number
of matrices, the proposed algorithm involves high computational complexity (see Appendix F).

5.1 SYNTHETIC SYSTEMS

First, we test all the algorithms on a 10-dimensional synthetic system, indicating that each system
matrix has 100 unknown parameters. Specifically, we considerA to be an anti-diagonal matrix with
nonzero components equal to 0.8, and set B = C = D = 2I10 and R = Q = 0.81I10. Because
these system matrices are extremely sparse, accurately learning their topological structures is partic-
ularly challenging. To generate data points, the value of x0 is drawn from the Gaussian distribution
with the mean diag[I10] and an identity covariance matrix, and the input signal ut is drawn from the
uniform distribution on [0, 2]. As for algorithm implementation, we collect 2,100 data points and
set the initial value of A, B, C, D, R, and Q both to be I10. Because the iterative numerical op-
timization method rarely yields exact zeros, the learned parameters below the predefined threshold
are truncated to zero to accelerate convergence. The threshold selection procedure can be found in
Appendix G. To ensure a fair comparison, the learned parameters of all the other algorithms that fall
below this threshold are likewise set to zero.

Because the system matrices of the synthetic system are known, we can compare the learned system
matrices with real ones directly. Figure 1 shows the learned system matrices of all the algorithms,

8
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Table 1: Comparison results on the real-world industrial process systems
Dataset Ours LSM PEM LSM HK 4SID MLE

Evaporation system 14.93% 17.90% Inf 43.77% 20.14%
(249.14 s) (9.35 s) (18.45 s) (3.92 s) (152.34 s)

Glass furnace 23.63% 62.62% 31.21% 24.32% 30.21%
(45.62 s) (0.52 s) (6.20 s) (0.29 s) (33.36 s)

Steam generator 20.70% 22.70% 39.80% 29.26% 22.23%
(441.88 s) (4.94 s) (84.52 s) (0.58 s) (299.10 s)

together with the associated MRE and running time. Obviously, the learned system matrices of
classical algorithms are completely different with the original ones in both numerical values and
topological structures due to the similarity transformation, making it difficult for us to understand the
system. However, sparsity-promoting priors will restrict the nonsingular matrix Φ of the similarity
transformation to be a generalized permutation matrix for this system. By comparing the learnedB
andC of the proposed algorithm with real ones, we can derive Φ ≈ 2I10, which is indeed consistent
with the analysis in Section 4.1. Hence, the learned system matrices of the proposed algorithm
preserve the inherent topological structure among the variables, differing only in numerical values
due to the scaled definition of state variables.

We test the proposed algorithm on different initial values to demonstrate its robustness in Ap-
pendix H.1. We also conduct 20 independent trials to report the success rates of all the algorithms
in learning the topological structure of the system matrices and the average MRE in Appendix H.2;
experimental results illustrate that the proposed algorithm is stable across multiple runs.

In addition, we further demonstrate the effectiveness of the proposed algorithm on the non-diagonal
and non-invertible cases in Appendix I.1 and Appendix I.2, respectively.

5.2 INDUSTRIAL PROCESS SYSTEMS

Next, we validate the proposed algorithm on the real-world datasets obtained from the Database for
the Identification of Systems, which are standard datasets used for learning LSSMs (Zhu et al., 1994;
Martens, 2010). While underlying physical systems may be non-linear, the learned LSSMs can
provide a linear approximation of systems, enabling tractable analysis and control. To empirically
ensure the performance of all the algorithms, we prefer to select datasets that contain at least 1,000
sample points and have multi-dimensional inputs and outputs.

Evaporation System. In industry, multiple-stage evaporators are widely used to reduce the water
content of a product such as milk. The dataset is composed of 3-dimensional time-series with a
length of 6,305. The inputs consist of the feed flow, vapor flow to the first evaporator stage, and
cooling water flow to the condenser, while the outputs include the dry matter content, flow rate, and
temperature of the product.

Glass Furnace. The second dataset comes from the Philips glass furnace, which is used to melt
raw materials into glass. The glass furnace has two burners and one ventilator. Hence, the dataset
includes two heating inputs and one cooling input with a length of 1,247. In addition, we collect
three outputs from temperature sensors in a cross section of the furnace.

Steam Generator. The dataset comes from a boiler at Abbott Power Plant in Champaign IL, which
is a dual-fuel (oil and gas) combustion unit used for both heating and electricity generation. It
consists of four inputs (i.e., air flow rate, fuel flow rate, feedwater flow rate, and disturbance) and
four outputs (i.e., drum pressure, excess oxygen, drum water level, and steam flow) with a length of
9,600.

Table 1 displays the MRE between the predicted outputs of all the learned LSSMs and the real one,
and records the running time of each algorithm. Due to the lack of ground truth, the learned system
matrices of all the algorithms are not depicted for comparison. Because the proposed algorithm
obtains minimum MRE across all the datasets, experimental results demonstrate its superiority over
the classical ones in real-world applications. Note that the hidden states can be defined in different
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coordinate systems as discussed in Section 4. As a result, the learned system matrices of classical
algorithms may differ from the ground truth in both numerical values and topological structures.
However, the proposed algorithm learns the system matrices by balancing model complexity and
modeling error. Unlike classical algorithms, it will thus learn LSSMs with only the minimally
required parameters to explain the time-series data. In particular, if the real-world systems are
identifiable, the proposed algorithm preserves the topological structure among variables, which is
more valuable for exploring interaction laws of systems.

6 DISCUSSION

To learn the LSSMs with sparse system matrices, we impose sparsity-promoting priors on system
matrices to balance model complexity and modeling error. Following the MAP principle, we then
learn system matrices by exploring the EM algorithm to maximize the joint posterior distribution
composed of the priors and marginal likelihood function. Based on the Global Convergence The-
orem, we demonstrate that the sequence generated by the proposed algorithm converges to a local
maximum or saddle point of the posterior distribution. In addition, we explain why the sparsity-
promoting prior is capable of retaining the inherent topological structure of LSSMs, as the non-
singular matrix of the similarity transformation is limited to be a generalized permutation matrix.
Hence, the proposed algorithm is more useful for us to explore the interaction laws of LSSMs com-
pared to the classical ones.

There still remain some potential limitations associated with the proposed algorithm. First, the
similarity transformation may shrink many parameters in system matrices to very small values,
potentially leading to numerical errors. However, note that it is a common issue faced by all the
learning algorithms for LSSMs. The other limitation is that the proposed algorithm is hard to deal
with large-scale problems currently due to its high computational requirements. Hence, our future
work will focus on reducing computation time to make the proposed algorithm applicable to large-
scale settings. For instance, we can adopt the stochastic EM algorithm to reduce the computational
cost by using a mini-batch of data instead of the full batch during the expectation step (Chen et al.,
2018). In addition, we hope to explore how to ensure that the learned system matrices are exactly
the same as the true ones by imposing additional constraints on system matrices beyond the sparsity
constraint. Overall, we believe that the proposed algorithm sheds light on the learning of LSSMs
with sparse system matrices.

ETHICS STATEMENT

This paper presents theoretical research whose goal is to advance the field of Machine Learning.
Because it does not involve human participants, animals, sensitive personal data, or other foreseeable
ethical concerns outlined in the ICLR Code of Ethics, no specific ethical issues arise from this paper.

REPRODUCIBILITY STATEMENT

To ensure the reproducibility of this research, the main text and Appendix provide detailed theoreti-
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Wei Pan, Ye Yuan, Jorge Gonçalves, and Guy-Bart Stan. A sparse Bayesian approach to the identifi-
cation of nonlinear state-space systems. IEEE Transactions on Automatic Control, 61(1):182–187,
2015.

G Pillonetto and Lennart Ljung. Full Bayesian identification of linear dynamic systems using stable
kernels. Proceedings of the National Academy of Sciences, 120(18):e2218197120, 2023.

S Joe Qin. An overview of subspace identification. Computers & Chemical Engineering, 30:1502–
1513, 2006.

Srijata Samanta, Kshitij Khare, and George Michailidis. A generalized likelihood-based Bayesian
approach for scalable joint regression and covariance selection in high dimensions. Statistics and
Computing, 32(3):47, 2022.
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A SPARSITY-PROMOTING PRIOR

BesidesA, we also impose the sparsity-promoting priors onB, C, andD as follows:

p (B | Γb) =

n∏
i=1

p∏
j=1

p (Bij | Γb,ij) =

n∏
i=1

p∏
j=1

1√
2πΓb,ij

exp

(
−
B2

ij

2Γb,ij

)
, (38)

p (C | Γc) =

m∏
i=1

n∏
j=1

p (Cij | Γc,ij) =

m∏
i=1

n∏
j=1

1√
2πΓc,ij

exp

(
−
C2

ij

2Γc,ij

)
, (39)

p (D | Γd) =

m∏
i=1

p∏
j=1

p (Dij | Γd,ij) =

m∏
i=1

p∏
j=1

1√
2πΓd,ij

exp

(
−
D2

ij

2Γd,ij

)
, (40)

where Γb,ij ,Γc,ij , and Γd,ij are the ijth components of Γb,Γc, and Γd, respectively. To complete
the hierarchy, the Inverse-Gamma distribution prior is imposed on each component of Γb,Γc, and
Γd as follows:

p(Γb) =
n∏

i=1

p∏
j=1

ab00
Γ(a0)

Γ−a0−1
b,ij exp

(
− b0
Γb,ij

)
, (41)

p(Γc) =

m∏
i=1

n∏
j=1

ab00
Γ(a0)

Γ−a0−1
c,ij exp

(
− b0
Γc,ij

)
, (42)

p(Γd) =

m∏
i=1

p∏
j=1

ab00
Γ(a0)

Γ−a0−1
d,ij exp

(
− b0
Γd,ij

)
. (43)
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B DETAILED MATHEMATICAL DERIVATION

B.1 DERIVATION OF EQUATION 15

Given the conditional independence between the variables, we can derive

H
(
Θ | Θk

)
= EXk [log (p(Y ,X | Θ)p(Θ))]

= EXk [log (p(Y |X,Θ)p(X | Θ)p(Θ))]

= EXk [log (p(Y |X,C,D,Q)p(X | A,B,R)p(A,Γa,B,Γb,C,Γc,D,Γd))]

= EXk [log (p(Y |X,C,D,Q)p(X | A,B,R)p(A,Γa)p(B,Γb)p(C,Γc)p(D,Γd))]

= EXk [log p(X | A,B,R)]︸ ︷︷ ︸
H1(A,B,R)

+EXk [log p(Y |X,C,D,Q)]︸ ︷︷ ︸
H2(C,D,Q)

+ EXk [log (p(A,Γa)p(B,Γb)p(C,Γc)p(D,Γd))]︸ ︷︷ ︸
H3(A,B,C,D,Γa,Γb,Γc,Γd)

. (44)

Explicit mathematical expression of H1(A,B,R). Based on equation 1 and the chain rule in
probability, we can derive

p(X | A,B,R)

= p(x0)

T∏
t=1

p(xt | xt−1,A,B,R)

∝
T∏

t=1

| R |− 1
2 exp

(
− (xt −Axt−1 −But)

′R−1(xt −Axt−1 −But)

2

)
. (45)

Hence,

H1(A,B,R)

= EXk [log p(X | A,B,R)]

= EXk

[
−
T log | R | +

∑T
t=1(xt −Axt−1 −But)

′R−1(xt −Axt−1 −But)

2

]

= −
T log | R | +

∑T
t=1 EXk

[
(xt −Axt−1 −But)

′R−1(xt −Axt−1 −But)
]

2

= −
T log | R | +

∑T
t=1

(
mk

t −Amk
t−1 −But

)′
R−1

(
mk

t −Amk
t−1 −But

)
2

−
∑T

t=1

(
Tr
(
R−1P k

t

)
− Tr

(
R−1AP k

t,t−1

)
− Tr

(
A′R−1P k

t,t−1

)
+ Tr

(
A′R−1AP k

t−1

))
2

.

(46)

Explicit mathematical expression of H2(C,D,Q). Based on equation 2, we can derive

p(Y |X,C,D,Q)

=

T∏
t=1

p(yt | xt,C,D)

∝
T∏

t=1

| Q |− 1
2 exp

(
− (yt −Cxt −Dut)

′Q−1(yt −Cxt −Dut)

2

)
. (47)
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Hence,

H2(C,D,Q)

= EXk [log p(Y |X,C,D,Q)]

= −
EXk

[
T log | Q | +

∑T
t=1(yt −Cxt −Dut)

′Q−1(yt −Cxt −Dut)
]

2

= −
T log | Q | +

∑T
t=1 EXk

[
(yt −Cxt −Dut)

′Q−1(yt −Cxt −Dut)
]

2

= −
T log | Q | +

∑T
t=1

(
(yt −Cmk

t −Dut)
′Q−1(yt −Cmk

t −Dut) + Tr
(
C ′Q−1CP k

t

))
2

.

(48)

Explicit mathematical expression of H3(A,B,C,D,Γa,Γb,Γc,Γd). Based on the priors im-
posed on the system matrices and corresponding hyperparameters, we can derive:

p(A,Γa)p(B,Γb)p(C,Γc)p(D,Γd)

= p(A | Γa)p(Γa)p(B | Γb)p(Γb)p(C | Γc)p(Γc)p(D | Γd)p(Γd)

∝
n∏

i=1

n∏
j=1

Γ
− 2a0+3

2
a,ij exp

(
−
A2

ij + 2b0

2Γa,ij

)
×

n∏
i=1

p∏
j=1

Γ
− 2a0+3

2

b,ij exp

(
−
B2

ij + 2b0

2Γb,ij

)

×
m∏
i=1

n∏
j=1

Γ
− 2a0+3

2
c,ij exp

(
−
C2

ij + 2b0

2Γc,ij

)
×

m∏
i=1

p∏
j=1

Γ
− 2a0+3

2

d,ij exp

(
−
D2

ij + 2b0

2Γd,ij

)
. (49)

Hence, we have

H3(A,B,C,D,Γa,Γb,Γc,Γd)

= EXk [log (p(A,Γa)p(B,Γb)p(C,Γc)p(D,Γd))]

= EXk [log (p(A | Γa)p(Γa)p(B | Γb)p(Γb)p(C | Γc)p(Γc)p(D | Γd)p(Γd))]

= −
n∑

i=1

n∑
j=1

(
(2a0 + 3) log | Γa,ij |

2
+
A2

ij + 2b0

2Γa,ij

)

−
n∑

i=1

p∑
j=1

(
(2a0 + 3) log | Γb,ij |

2
+
B2

ij + 2b0

2Γb,ij

)

−
m∑
i=1

n∑
j=1

(
(2a0 + 3) log | Γc,ij |

2
+
C2

ij + 2b0

2Γc,ij

)

−
m∑
i=1

p∑
j=1

(
(2a0 + 3) log | Γd,ij |

2
+
D2

ij + 2b0

2Γd,ij

)
. (50)

B.2 DERIVATION OF EQUATION 19

Because H1 (A,B,R) and H3 (A,B,C,D,Γa,Γb,Γc,Γd) involve A, we can derive the term
related toAr at the kth iteration as follows:

H1

(
A,Bk,Rk

)
+H3

(
A,Bk,Ck,Dk,Γk

a,Γ
k
b ,Γ

k
c ,Γ

k
d

)
= −

∑T
t=1

∑n
r=1

(
Rk

rr

)−1
(

Tr
(
A′

rArP
k
t−1

)
− 2Ar

(
P k

t,t−1,r

)′)
+
∑n

r=1ArΓ
kd

a,rA
′
r

2

−
∑T

t=1

∑n
r=1

(
Rk

rr

)−1 (
mk

t,r −Arm
k
t−1 −Bk

rut

) (
mk

t,r −Arm
k
t−1 −Bk

rut

)′
2

+ c, (51)
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where c is the term independent of Ar. Hence, we can calculate the derivative of H(Θ | Θk) with
respect toAr as follows:

∂H(Θ | Θk)

∂Ar

=
∂H1

(
A,Bk,Rk

)
∂Ar

+
∂H3

(
A,Bk,Ck,Dk,Γk

a,Γ
k
b ,Γ

k
c ,Γ

k
d

)
∂Ar

=

T∑
t=1

(
Rk

rr

)−1
(
P k

t,t−1,r +
(
mk

t,r −Arm
k
t−1 −Bk

rut

) (
mk

t−1

)′ −ArP
k
t−1

)
−ArΓ

kd

a,r. (52)

Setting equation 52 to zero leads to

T∑
t=1

Ar

(
mk

t−1

(
mk

t−1

)′
+ P k

t−1

)
+ArR

k
rrΓ

kd

a,r =

T∑
t=1

(
P k

t,t−1,r +
(
mk

t,r −Bk
rut

) (
mk

t−1

)′)
.

(53)

Hence, we can updateAr at the kth iteration as follows:

Ak+1
r =

(
T∑

t=1

((
mk

t,r −Bk
rut

) (
mk

t−1

)′
+ P k

t,t−1,r

))

×

(
T∑

t=1

(
P k

t−1 +m
k
t−1

(
mk

t−1

)′)
+Rk

rrΓ
kd
a,r

)−1

. (54)

B.3 DERIVATION OF EQUATION 24

Given thatR is a diagonal matrix, we can re-express H1

(
Ak+1,Bk+1,R

)
as follows:

H1

(
Ak+1,Bk+1,R

)
= −

T
∑n

r=1 logRrr

2
−
∑n

r=1

∑T
t=1R

−1
rr

(
πk
t,r

)2
2

−
∑n

r=1

∑T
t=1R

−1
rr Π

k
t,rr

2
, (55)

where

πk
t =mk

t −Ak+1mk
t−1 −Bk+1ut, (56)

Πk
t = P k

t −Ak+1P k
t,t−1 − P k

t,t−1

(
Ak+1

)′
+Ak+1P k

t−1

(
Ak+1

)′
(57)

with πk
t,r and Πk

t,rr being the rth and rrth components of πk
t and Πk

t , respectively. Hence, we can
calculate the derivative of H(Θ | Θk) with respect toRrr as follows:

∂H(Θ | Θk)

∂Rrr
=

∂H1

(
Ak+1,Bk+1,R

)
∂Rrr

= − T

2Rrr
+

∑T
t=1

(
πk
t,r

)2
2R2

rr

+

∑T
t=1 Π

k
t,rr

2R2
rr

. (58)

Setting equation 58 to zero leads to the update rule forRrr at the kth iteration as follows:

Rk+1
rr =

∑T
t=1

(
πk
t,r

)2
+
∑T

t=1 Π
k
t,rr

T
. (59)
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C PSEUDOCODE FOR LEARNING LSSMS WITH SPARSE SYSTEM MATRICES

Algorithm 1 The proposed algorithm for learning LSSMs with sparse system matrices
Input: Time-series data {(ut,yt)}Tt=1, initial guess of Θ, and maximum number of iterations
kmax

for k = 1 to kmax do
for t = 1 to T do

Update the meanmk
t and covariance P k

t of xt via equation 9 and equation 10, respectively
Update the covariance P k

t,t−1 between xt and xt−1 via equation 14
end for
Update system matricesA,B, C, andD via equation 20–equation 23, respectively
Update noise covariance matricesR andQ via equation 27 and equation 28, respectively
Update hyperparameter matrices Γa, Γb, Γc, and Γd via equation 31 and equation 32, respec-
tively
if a stopping criterion is satisfied then

Break
end if

end for
Output: System matricesA,B,C, andD, noise covariance matricesR andQ

D PROOF OF THEOREM 3.3

Proof. To illustrate the global convergence of the proposed algorithm, we need to demonstrate that
it satisfies the three necessary conditions required by the Global Convergence Theorem (Luenberger
et al., 1984). For A(·) and Ω = {Θ : ∇Θp (Θ | Y ) = 0}, L (Θ) = −p (Θ | Y ) is a descent
function. For the point Θk in Ω, it is straightforward to conclude that L

(
Θk+1

)
≤ L

(
Θk
)

following the basic property of the EM algorithm. For the point Θk outside Ω, as H(Θ | Θk) is
continuous in both arguments, we have L

(
Θk+1

)
< L

(
Θk
)

(see Theorem 2 in Wu (1983)). Hence,
L (Θ) is a descent function for Ω and A(·). The sequence {Θk}∞k=1 is contained in a compact set.
If any component of Θ is unbounded, L (Θ) tends to infinity. Given L

(
Θk+1

)
≤ L

(
Θk
)
, there

must exists a compact set containing the sequence {Θk}∞k=1. The mapping A(·) is closed at points
outside Ω. Because the proposed algorithm updates Θk+1 from Θk via analytical mathematical
expressions, and all elementary functions involved are continuous, A(·) can thus be regarded as a
continuous function. In addition, A(·) is a point-to-point mapping. Hence, A(·) is closed at points
outside Ω (see Example 2 in Section 7.6 in Luenberger et al. (1984) ). The proof is completed.
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E EQUIVALENT REALIZATION OF LSSMS

Based on the transformed coordinates, we can derive

xt = Φxt = ΦAxt−1 +ΦBut +Φεt =
(
ΦAΦ−1

)
xt−1 + (ΦB)ut +Φεt, (60)

yt = Cxt +Dut + ωt =
(
CΦ−1

)
xt +Dut + ωt. (61)

Hence, we can derive an equivalent realization of the original LSSM as follows:

xt = Axt−1 +But + εt, (62)

yt = Cxt +Dut + ωt, (63)

where A = ΦAΦ−1, B = ΦB, C = CΦ−1, and εt = Φεt. Because εt ∼ N (0,R), we can
derive the mean of εt as follows:

E[εt] = E[Φεt] = ΦE[εt] = 0. (64)

In addition, the covariance of εt can be derived as follows:

E
[
(εt − E[εt]) (εt − E[εt])′

]
= E [Φεtε

′
tΦ

′] = ΦE[εtε′t]Φ′ = ΦRΦ′. (65)

Hence, we have εt ∼ N (0,ΦRΦ′).

F COMPUTATIONAL COMPLEXITY ANALYSIS

The high computational cost of the proposed algorithm primarily stems from the matrix inversion
operations involved in closed-form updates. In each iteration, the expectation step entails the inver-
sion of matrices of size n × n and m × m a total of T times following Lemma 3.1. Hence, the
computational complexity of the expectation step is mainly determined by O(Tn3 + Tm3). In the
maximization step, we derive row-wise update rules forA,B,C, andD to enable analytical update
formulas. To update each row of A,B,C, and D, we need to calculate the inverses of the n × n
and p× p matrices as shown in equation 20–equation 23. As a result, the computational complexity
of the maximization step is dominated by O((m + n)(n3 + p3)). Because the computational cost
of the proposed algorithm scales at least cubically with respect to one of m,n, and p, it is hard to
deal with the large-scale problems currently. Hence, our future work will explore how to mitigate
the computational bottleneck to make it more applicable.
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G THRESHOLD SELECTION

While the proposed algorithm is globally convergent, the generated sequence converges to a local
maximum or saddle point of the posterior distribution only in the limit of infinite sequence length.
Hence, many learned parameters in system matrices approach zero but never reach it exactly during
algorithm implementation. To achieve accurate topology recovery, it is necessary to set the learned
parameters below a predefined threshold to zero to avoid numerical errors. In particular, the learned
parameters corresponding to the true zero components in the system matrices are typically several
orders of magnitude smaller than those learned for the nonzero components. Hence, this pronounced
difference in magnitude provides a wide and stable range for selecting the threshold.

Specifically, the threshold can be selected by visualizing how the number of nonzero components in
learned system matrices, denoted as N , varies with the threshold. When the threshold is too small,
all components of learned system matrices remain nonzero, N is thus relatively large. As the thresh-
old increases, the learned parameters corresponding to the true zero components are gradually set
to zero, and N decreases accordingly. However, due to the pronounced difference in magnitude be-
tween the learned parameters corresponding to the true zero components and those corresponding to
the nonzero components, N remains stable over a certain range of threshold values. Once the thresh-
old exceeds this range, N begins to decrease again because some learned parameters corresponding
to true nonzero components are also set to zero. Therefore, the threshold can be safely selected
from this stable interval to ensure reliable topology recovery. For example, Figure 2 illustrates the
number of nonzero components in the learned system matrices under different threshold settings for
the synthetic system in Section 5.1. The orange markers indicate the threshold values at which the
proposed algorithm successfully learns the inherent topological structure among the variables, and
the MRE remains unchanged. As such, we set the threshold to 0.005 in the experiment.

Figure 2: The number of nonzero components in the learned system matrices across various thresh-
old settings. When the threshold lies within the interval marked by the orange dots, the proposed
algorithm can successfully recover the inherent topological structure among the variables, and the
MRE remains unchanged.
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H ADDITIONAL EXPERIMENTAL RESULTS ON THE SYNTHETIC SYSTEM

H.1 EXPERIMENTAL RESULTS UNDER DIFFERENT INITIAL VALUES

To assess the sensitivity of the proposed algorithm to initial values, we further evaluate its perfor-
mance on the synthetic system described in Section 5.1 by initializing the A,B,C, D, R, and Q
as aI10, where a varies from 0.6 to 1.4 in increments of 0.2.

Table 2 records whether the proposed algorithm successfully learns the topological structure of the
system matrices and MRE defined in the paper. As observed from the table, the experimental results
are consistent with those in Section 5.1 , indicating that the proposed algorithm is robust to initial
values. Remarkablely, even when the initial state transition matrix A is unstable (i.e., a > 1), the
proposed algorithm is still able to accurately learn the topological structure of the true system.

Table 2: Experimental results of the proposed algorithm on the 10-dimensional synthetic system
across different initial values

a 0.6 0.8 1 1.2 1.4

Success?
√ √ √ √ √

MRE 5.70% 5.70% 5.70% 5.70% 5.69%

H.2 EXPERIMENTAL RESULTS OF INDEPENDENT TRIALS

Here, we conduct 20 independent trials to demonstrate that the proposed algorithm is stable across
multiple runs. Specifically, we set the random seed to increase evenly from 1 to 20. Table 3 reports
the success rates of all the algorithms in learning the topological structure among the variables and
the average MRE. Compared to the classical algorithms, only the proposed algorithm successfully
learns the inherent topological structure among the variables in almost all cases. In addition, the
proposed algorithm can achieve a 100% success rate by slightly increasing the threshold below
which learned parameters are set to zero.

Table 3: Experimental results of all the algorithms on 20 independent trails
Method Ours LSM PEM LSM HK 4SID MLE

Success rate 95% 0 0 0 0
Average MRE 5.67% 19.63% 21.56% 20.37% 5.97%
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I EXPERIMENTAL RESULTS ON THE NON-DIAGONAL AND NON-INVERTIBLE
SYNTHETIC SYSTEMS

I.1 NON-DIAGONAL SYSTEM

Here, we further test the proposed algorithm on a non-diagonal system to illustrate its effectiveness.
To generate non-diagonal system matrices, we randomly set one component per row to 0.8 in A,
and to 2 in B, C, and D, with all other elements set to zero. Particularly, the nonzero elements
are deliberately placed to ensure that A,B, C, and D maintain full rank. All other experimental
settings remain the same as in Section 5.1.

Figure 3: Experimental results of all the algorithms on the non-diagonal systems.

Figure 3 records the experimental results of all the algorithms on the non-diagonal system. Due to
the similarity transformation as discussed in Section 4, the learnedA,B, andC of all the algorithms
differ in form from the ground truth. Unlike classical algorithms, however, the proposed algorithm
restricts the nonsingular matrix of the similarity transformation to be a generalized permutation
matrix. By comparing the learnedB andC with ground truth, we can derive the nonsingular matrix
as follows:

Φ ≈



0 0 0 2 0 0 0 0 0 0
0 0 0 0 0 0 2 0 0 0
0 2 0 0 0 0 0 0 0 0
0 0 2 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 2 0
2 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 2
0 0 0 0 2 0 0 0 0 0
0 0 0 0 0 0 0 2 0 0
0 0 0 0 0 2 0 0 0 0


. (66)

This implies that the discrepancy between the learned system matrices of the proposed algorithm
and ground truth stems from a different ordering and scaling of system states. Hence, it is easy
to check that the proposed algorithm still accurately captures the underlying system dynamics and
preserves the inherent topological structure among the variables.
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I.2 NON-INVERTIBLE SYSTEM

To evaluate the proposed algorithm on the non-invertible system, we replace the system matrix A
in the synthetic system of Section 5.1 with a singular matrix. Specifically, we first construct an anti-
diagonal matrix with all nonzero components set to 0.6, and then replace its seventh and eighth rows
with the following vector: [0 0 0.6 0.6 0 0 0 0 0 0]. As such, the seventh and eighth rows of A are
identical, making the matrix non-invertible. Besides, all other experimental settings remain the same
as in Section 5.1. Figure 4 reports the experimental results of all the algorithms on the non-invertible
system. Similarly, we can derive Φ ≈ 2I10 by comparing the learned system matrices B and C
with the ground truth. Hence, the proposed algorithm still successfully preserves the topological
structure of system matrices, and obtains the lowest MRE compared to the other algorithms.

Figure 4: Experimental results of all the algorithms on the non-invertible system.
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J THE USE OF LARGE LANGUAGE MODELS (LLMS)

In accordance with the ICLR policy on the use of large language models (LLMs), we declare that
LLMs are only employed as a writing assistant to polish the language of this paper. They do not
contribute to the research ideation, experimental design, data analysis, or interpretation of the results.

24


	Introduction
	Related work
	Methodology
	Student's t-distribution prior
	Loss function
	Expectation step: Rauch–Tung–Striebel smoother
	Maximization step: block coordinate descent 
	Global convergence analysis

	Similarity transformation of LSSMs
	Benefit of sparsity-promoting priors

	Experiment
	Synthetic systems 
	Industrial Process Systems

	Discussion
	Sparsity-promoting prior
	Detailed mathematical derivation
	Derivation of equation 15
	Derivation of  equation 19
	Derivation of  equation 24

	Pseudocode for learning LSSMs with sparse system matrices
	Proof of Theorem 3.3
	Equivalent realization of LSSMs
	Computational complexity analysis
	Threshold selection
	Additional experimental results on the synthetic system
	Experimental results under different initial values
	Experimental results of independent trials

	Experimental results on the non-diagonal and non-invertible synthetic systems 
	Non-diagonal system
	 non-invertible system 

	The use of Large language Models (LLMS) 

