
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

LEARNING LINEAR STATE-SPACE MODELS WITH
SPARSE SYSTEM MATRICES

Anonymous authors
Paper under double-blind review

ABSTRACT

Due to tractable analysis and control, linear state-space models (LSSMs) provide
a fundamental mathematical tool for time-series data modeling in various disci-
plines. In particular, many LSSMs have sparse system matrices because inter-
actions among variables are limited or only a few significant relationships exist.
However, current learning algorithms for LSSMs lack the ability to learn sys-
tem matrices with the sparsity constraint due to the similarity transformation. To
address this issue, we impose sparsity-promoting priors on system matrices to bal-
ance modeling error and model complexity. By taking hidden states of LSSMs as
latent variables, we then explore the expectation–maximization (EM) algorithm to
derive a maximum a posteriori (MAP) estimate of both hidden states and system
matrices from noisy observations. Based on the Global Convergence Theorem,
we further demonstrate that the proposed learning algorithm yields a sequence
converging to a local maximum or saddle point of the joint posterior distribution.
Finally, experimental results on simulation and real-world problems illustrate that
the proposed algorithm can preserve the inherent topological structure among vari-
ables and significantly improve prediction accuracy over classical learning algo-
rithms.

1 INTRODUCTION

Linear state-space models (LSSMs) are fundamental mathematical tools for analyzing time-series
data with applications in robotics (Mamakoukas et al., 2019; 2020), systems biology (Jin et al.,
2020b; Pillonetto & Ljung, 2023), and natural language processing (Smith et al., 1999; Belanger &
Kakade, 2015). Generally, LSSMs describe time-series data {(ut,yt)}Tt=1 through the following
stochastic difference equation:

xt = Axt−1 +But + εt, (1)
yt = Cxt +Dut + ωt, (2)

where ut ∈ Rp is the input signal, yt ∈ Rm is the noisy observation, xt ∈ Rn is the hidden state,
A ∈ Rn×n, B ∈ Rn×p, C ∈ Rm×n, and D ∈ Rm×p are the unknown system matrices, and
εt ∼ N (0,R) and wt ∼ N (0,Q) are the diagonal process and measurement noise, respectively.
In addition, LSSMs are also widely used to approximate complex non-linear systems in industrial
processes given their relative simplicity (Yuan et al., 2017; Lusch et al., 2018). Due to a complete
rigorous theory available on LSSMs, learning them from noisy observations can enable us to make
tractable analysis and control of systems (Chen & Poor, 2022; Bakshi et al., 2023).

In this paper, we focus on learning LSSMs with sparse system matrices for two important reasons.
First, the learned LSSMs should include the minimally required parameters to explain time-series
data following the Occam’s razor principle, which favors explanations constructed with the smallest
possible set of elements. Additionally, many real-world systems indeed have a sparse topology, as
each state or measurement variable only depends on a few other state variables and inputs (Efroni
et al., 2022). For example, a gene only regulates the expression of a limited number of other genes
in gene regulatory networks (He et al., 2024b). In industry, communication systems usually have
a sparse topology to reduce energy consumption (Jin et al., 2020a;b). However, available learning
algorithms lack the ability to learn LSSMs with the sparsity constraint on system matrices due to the
similarity transformation.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

To learn LSSMs with sparse system matrices, we impose sparsity-promoting priors on them to bal-
ance model complexity and modeling error. Following the Bayes’ rule, we can combine the marginal
likelihood and prior functions to derive the joint posterior distribution of all the unknown variables.
However, directly maximizing such a posterior distribution to estimate system matrices is intractable
because the hidden states of LSSMs are unknown. To address this issue, we explore the expectation–
maximization (EM) algorithm to give an alternate maximum a posteriori (MAP) estimate of hidden
states and system matrices by taking hidden states as latent variables. In the expectation step, we use
the Rauch–Tung–Striebel (RTS) smoother to give a closed-form update rule for the hidden states.
In the maximization step, we leverage the block coordinate descent method to analytically update
the system matrices in turn. By alternately performing the expectation and maximization steps un-
til convergence, the proposed algorithm can determine the sparse system matrices of LSSMs from
noisy observations. In summary, the contributions of this paper are threefold:

• Leveraging sparsity-promoting techniques, we propose an algorithm to learn LSSMs with
sparse system matrices from noisy observations. Following the Global Convergence Theo-
rem (Luenberger et al., 1984), we also demonstrate that the proposed algorithm is guaran-
teed to converge to a local maximum or saddle point of the posterior distribution composed
of marginal likelihood and prior functions.

• Because available learning algorithms only learn LSSMs up to a similarity transformation,
the learned system matrices usually differ from the true ones in both numerical values and
topological structure. However, the proposed algorithm learns system matrices by bal-
ancing model complexity and modeling error. As a result, the learned system matrices can
preserve the inherent topological structure among variables, which is a significant improve-
ment over classical learning algorithms.

• Experimental results on simulation and real-world datasets demonstrate that the proposed
algorithm outperforms classical ones on learning LSSMs with sparse system matrices. In
addition, the learned system matrices of the proposed algorithm are more valuable for ex-
ploring the interaction laws of systems.

2 RELATED WORK

Least-squares minimization. Basically, least-squares minimization (LSM) learns unknown mod-
els by minimizing the sum of the squares of residuals (Faradonbeh et al., 2018; 2020; Modi et al.,
2024). Taking one-step prediction errors as the objective function in LSM, prediction error mini-
mization (PEM) is proposed to learn LSSMs via gradient-based optimization methods (Ljung, 2002;
Katayama et al., 2005). Given a symmetric transition matrix, Hazan et al. (2017) design an efficient
method for the online prediction of LSSMs by formulating system identification as an online PEM
problem. Recently, combining the Ho–Klamn (HK) algorithm with LSM, Oymak & Ozay (2019)
propose a method to learn system matrices of LSSMs with sample complexity analysis. However, it
is well known that LSM is sensitive to noise and cannot characterize the sparsity of system matri-
ces (Tibshirani, 1996; Martens, 2010).

Subspace state-space system identification. Subspace state-space system identification (4SID) al-
gorithms project data Hankel matrices onto certain subspaces to estimate the extended observability
matrix and hidden states using linear algebra tools (Larimore, 1990; Verahegen & Dewilde, 1992;
Van Overschee & De Moor, 1994; He et al., 2024a). Subsequently, system matrices can be recovered
from either the extended observability matrix or hidden states (Favoreel et al., 2000). Based on prin-
cipal component analysis, Wang & Qin (2002) present a new 4SID algorithm to learn LSSMs under
the errors-in-variables situation. By choosing different weighting matrices to perform the singular
value decomposition, Van Overschee & De Moor (2012) provide a geometric framework to unify
almost all classical 4SID methods. Further, Huang et al. (2016) present the Weight-Least-Square
method to learn stable LSSMs by multiplying the unstable component with a weight matrix. How-
ever, it is widely recognized that such algorithms generally cannot obtain accurate system matrices
as required (Martens, 2010; Qin, 2006).

Maximum likelihood estimation. Because the joint likelihood function of LSSMs involves hidden
states, the EM algorithm is employed to give the maximum likelihood estimation (MLE) of system
matrices (Shumway & Stoffer, 1982; Ghahramani & Hinton, 1996). Leveraging the EM algorithm,
the distribution of hidden states can be explicitly derived using the Kalman smoother based on the

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

current estimate of system matrices. It then updates system matrices by maximizing the expected
log-likelihood with respect to the hidden states. To present a robust MLE for LSSMs, Gibson &
Ninness (2005) implement the expectation and maximization steps via the LR and Cholesky factori-
sation, respectively. To increase the efficiency of EM for learning LSSMs, Martens (2010) proposes
an approximate second-order statistics (ASOS) scheme to approximate the expectation step. Com-
bining EM and Lagrangian relaxation, Umenberger et al. (2018) use semidefinite programming to
optimize the tight bounds on the likelihood to learn LSSMs with model stability constraints. How-
ever, such learning algorithms lack the ability to deal with sparse system matrices.

Sparsity-promoting methods. By adding a penalty term on model parameters, sparsity-promoting
methods can balance model complexity and modeling error to learn systems from data (Brunton
et al., 2016). Leveraging the ℓ1 regularization term, Tibshirani (1996) proposes a method named
Lasso to estimate parameters in linear models. Further, reweighted ℓ1 minimization is proposed
to enhance sparsity (Wipf & Nagarajan, 2007; Candes et al., 2008). However, solving an ℓ1 mini-
mization problem is challenging due to its non-differentiability at the origin, and these methods also
require careful fine-tuning of hyperparameters. To address such issues, sparse Bayesian learning
(SBL) imposes sparsity-promoting priors on model parameters to enforce sparsity (Samanta et al.,
2022; Chakraborty et al., 2023). Subsequently, it maximizes the posterior distribution consisting
of the likelihood function and priors to estimate model parameters and hyperparameters (Tipping,
2001; Wipf & Rao, 2004). Recently, SBL has been applied to learn various systems from data,
with system states being measurable yet potentially corrupted by process noise (Pan et al., 2015;
Yuan et al., 2019; Wang et al., 2024). However, leveraging such sparsity-promoting methods to
learn LSSMs with sparse system matrices remains an elusive and challenging problem because
system states are unavailable and observed data are corrupted by both process and measurement
noise (Course & Nair, 2023).

3 METHODOLOGY

Due to the similarity transformation, LSSMs admit many equivalent representations with different
levels of sparsity, where the corresponding transformed system matrices are given by ΦAΦ−1, ΦB,
CΦ−1, and D, with Φ ∈ Rn×n being a nonsingular matrix. However, we focus on learning the
LSSMs with sparse system matrices that include minimally required parameters in accordance with
the Occam’s razor principle. Hence, we define the identifiability of LSSMs with sparse system ma-
trices to ensure that the resulting ambiguities can only be permutations and scaling, as is formalized
as follows.
Definition 3.1. (Identifiability) For LSSMs with nonzero system matrices A,B,C, and D, if any
nonsingular matrix Φ ∈ Rn×n satisfying

∥ΦAΦ−1∥0 = ∥A∥0, ∥ΦB∥0 = ∥B∥0, and ∥CΦ−1∥0 = ∥C∥0, (3)

must be a generalized permutation matrix, then such systems are said to be essentially identifiable,
up to permutation and scaling.

3.1 STUDENT’S t-DISTRIBUTION PRIOR

Here, we impose the Student’s t-distribution prior on the system matrices A,B,C, and D to pro-
mote model sparsity, because it can be sharply peaked at zero compared to other priors (Tipping,
2001). Generally, the Student’s t-distribution prior is implemented in a hierarchical way (Wang
et al., 2024; Zhou et al., 2021). It imposes a zero-mean Gaussian prior on the system matrices and
then adopts an Inverse-Gamma distribution on the unknown variance. For example, we can impose
the Student’s t-distribution prior onA to promote its sparsity as follows:

p(A | Γa) =

n∏
i=1

n∏
j=1

p (Aij | Γa,ij) =

n∏
i=1

n∏
j=1

1√
2πΓa,ij

exp

(
−
A2

ij

2Γa,ij

)
, (4)

p(Γa) =

n∏
i=1

n∏
j=1

ab00
Γ(a0)

Γ−a0−1
a,ij exp

(
− b0
Γa,ij

)
, (5)

where Γ(·) is the gamma function, andAij and Γa,ij are the ijth components ofA and Γa, respec-
tively. To generate non-informative hyperprior on Γa,ij , a0 and b0 are typically set to very small

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

values (e.g., 10−6). In addition, Γb, Γc, Γd, Γb,ij , Γc,ij , and Γd,ij are defined in a similar man-
ner (see Appendix A). For the process noise R and measurement noise Q, we impose a uniform
distribution prior on them to derive a flat prior.

3.2 LOSS FUNCTION

Following the Bayes’ rule, we can combine the marginal likelihood and prior functions to derive the
joint posterior distribution of all the unknown variables as follows:

p(Θ | Y) ∝ p(Y | Θ)︸ ︷︷ ︸
marginal likelihood

× p(Θ)︸ ︷︷ ︸
prior

, (6)

where Θ = {A,B,C,D,R,Q,Γa,Γb,Γc,Γd} is the set of unknown variables and Y =
[y1,y2, ...,yT]. Because the system state xt is unobserved, it is hard to explicitly compute
p(Y | Θ). Hence, directly maximizing equation 6 to estimate Θ is generally intractable. To
tackle this problem, we explore the EM algorithm to iteratively improve equation 6 by regarding
xt as the latent variable. Instead of directly maximizing equation 6, the EM algorithm focuses on
improving the expected value of the log posterior function of Θ with respect to the state vector
X = [x1,x2, ...,xT] as follows:

H(Θ | Θk) = EXk [log (p(Y ,X | Θ)p(Θ))], (7)

whereXk ∼ p
(
X | Y ,Θk

)
, andXk and Θk denote the estimates ofX and Θ at the kth iteration,

respectively. It is well-known that iteratively maximizing equation 7 is equivalent to iteratively
maximizing equation 6 (Little & Rubin, 2019).

3.3 EXPECTATION STEP: RAUCH–TUNG–STRIEBEL SMOOTHER

Because equation 7 involves p
(
X | Y ,Θk

)
, we first need to derive the conditional distribution ofxt

given Y and current Θk = {Ak,Bk,Ck,Dk,Rk,Qk,Γk
a,Γ

k
b ,Γ

k
c ,Γ

k
d}, which can be formulated

as a classical smoothing problem. For LSSMs, the RTS smoother provides a closed-form smoothing
solution for p

(
xt | Y ,Θk

)
.

Lemma 3.1. (RTS smoother Särkkä & Svensson (2023)) For LSSMs, the RTS smoother states that

p
(
xt | Y ,Θk

)
= N

(
mk

t ,P
k
t

)
, (8)

where t = 0, ..., T . Here,mk
t and P k

t are derived via the reverse-time recursions as follows:

mk
t = µk

t +Gk
t

(
mk

t+1 − µk
t+1

)
, (9)

P k
t = Σk

t +Gk
t

(
P k

t+1 −Σ
k

t+1

) (
Gk

t

)′
, (10)

where Gk
t = Σk

t

(
Ak
)′ (

Σ
k

t+1

)−1

. The quantities µk
t , µk

t , Σk
t , and Σ

k

t coupled in equation 9
and equation 10 are pre-computed using the Kalman filter as follows:

µk
t = Akµk

t−1 +B
kut, Σ

k

t = AkΣk
t−1

(
Ak
)′
+Rk, (11)

Kk
t = Σ

k

t

(
Ck
)′ (
CkΣ

k

t

(
Ck
)′
+Qk

)−1

, (12)

µk
t = µk

t +Kk
t

(
Yt −Ckµk

t −Dkut

)
, Σk

t =
(
In −Kk

t C
k
)
Σ

k

t , (13)

where In is an identity matrix of dimension n. Note that the reverse-time recursions of equation 9
and equation 10 start from the initial conditions mk

T = µk
T and P k

T = Σk
T , and the recursions of

equation 11–equation 13 start from the mean µk
0 and covariance Σk

0 of the initial state x0.

Besides p
(
xt | Y ,Θk

)
, we also need to derive the covariance matrix between the adjacent states

xt and xt−1 given Y and Θk to compute equation 7. To address this issue, the following lemma
gives necessary recursions.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Lemma 3.2. (The lag-one covariance smoother Särkkä & Svensson (2023)) For LSSMs, the covari-
ance matrix P k

t,t−1 between the adjacent states xt and xt−1 given Y and Θk can be recursively
derived as follows:

P k
t,t−1 =

(
Σk

t +Gk
tP

k
t+1,t −Gk

tA
kΣk

t

) (
Gk

t−1

)′
(14)

with P k
T,T−1 =

(
In −Kk

TC
k
)
AkΣk

T−1.

Based on Lemmas 3.1 and 3.2, we are able to calculate the loss function in equation 7 as follows:

H
(
Θ | Θk

)
= H1 (A,B,R) +H2(C,D,Q) +H3(A,B,C,D,Γa,Γb,Γc,Γd), (15)

where
H1(A,B,R) = EXk [log p(X|A,B,R)], (16)
H2(C,D,Q) = EXk [log p(Y |X,C,D,Q)], (17)

H3(A,B,C,D,Γa,Γb,Γc,Γd) = EXk [log (p(A,Γa)p(B,Γb)p(C,Γc)p(D,Γd))]. (18)
Due to the limited space, the detailed derivation of equation 15 and explicit mathematical expres-
sions of H1(A,B,R), H2(C,D,Q), and H3(A,B,C,D,Γa,Γb,Γc,Γd) are given in Appendix
B.1.

3.4 MAXIMIZATION STEP: BLOCK COORDINATE DESCENT

Obviously, H
(
Θ | Θk

)
is a non-convex function and unknown variables are highly coupled. To

provide analytical update formulas, we leverage the block coordinate descent method to sequentially
optimize the model parameters.

Update procedures of A, B, C, and D. Due to the introduction of sparsity-promoting priors,
it is intractable to derive closed-form solutions for A, B, C, and D by setting the derivatives of
H
(
Θ | Θk

)
with respect to these variables to zero directly. To address this issue, we adopt a row-

wise update rule for A, B, C, and D. For example, the derivative of H
(
Θ | Θk

)
with respect to

the rth row ofA, denoted asAr, is as follows:
∂
(
H1(A,Bk,Rk) +H3(A,Bk,Ck,Dk,Γk

a,Γ
k
b ,Γ

k
c ,Γ

k
d)
)

∂Ar

=

T∑
t=1

(
Rk

rr

)−1
((
mk

t,r −Arm
k
t−1 −Bk

rut

) (
mk

t−1

)′
+
(
P k

t,t−1,r −ArP
k
t−1

))
−ArΓ

kd

a,r,

(19)

where Rk
rr is the rrth component of Rk, P k

t,t−1,r, mk
t,r, and Bk

r are the rth rows of P k
t,t−1, mk

t ,

and Bk, respectively. In particular, Γ
kd

a,r = diag[Γ
k

a,r] with Γ
k

a,r being the rth row of Γ
k

a. Set-
ting equation 19 to zero leads to the following update rule forAr at the kth iteration:

Ak+1
r =

(
T∑

t=1

((
mk

t,r −Bk
rut

) (
mk

t−1

)′
+ P k

t,t−1,r

))

×

(
T∑

t=1

(
P k

t−1 +m
k
t−1

(
mk

t−1

)′)
+Rk

rrΓ
kd

a,r

)−1

. (20)

The detailed derivation of equation 19 can be found in Appendix B.2. Similarly, we can update the
rth row ofB, C, andD at the kth iteration as follows:

Bk+1
r =

(
T∑

t=1

(
mk

t,r −Ak+1
r mk

t−1

)
u′
t

)(
T∑

t=1

utu
′
t +R

k
rrΓ

kd

b,r

)−1

, (21)

Ck+1
r =

(
T∑

t=1

(
yt,r −Dk

rut

) (
mk

t

)′)(T∑
t=1

(
P k

t +mk
t

(
mk

t

)′)
+Qk

rrΓ
kd

c,r

)−1

, (22)

Dk+1
r =

(
T∑

t=1

(
yt,r −Ck+1

r mk
t

)
u′
t

)(
T∑

t=1

utu
′
t +Q

k
rrΓ

kd

d,r

)−1

, (23)

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

where yt,r is the rth component of yt, Qk
rr is the rrth component of Qk, and Γ

kd

b,r, Γ
kd

c,r, and Γ
kd

d,r

are defined as that of Γ
kd

a,r.

Update procedures ofR andQ. The derivative of H
(
Θ | Θk

)
with respect to the rrth component

ofR, denoted asRrr, is as follows (see Appendix B.3):

∂H1

(
Ak+1,Bk+1,R

)
∂Rrr

= − T

2Rrr
+

∑T
t=1

(
πk
t,r

)2
+
∑T

t=1 Π
k
t,rr

2R2
rr

, (24)

where

πk
t =mk

t −Ak+1mk
t−1 −Bk+1ut, (25)

Πk
t = P k

t −Ak+1P k
t,t−1 − P k

t,t−1

(
Ak+1

)′
+Ak+1P k

t−1

(
Ak+1

)′
(26)

with πk
t,r and Πk

t,rr being the rth and rrth components of πk
t and Πk

t , respectively. Setting equa-
tion 24 to zero yields the following update rule forRrr at the kth iteration:

Rk+1
rr =

∑T
t=1

(
πk
t,r

)2
+
∑T

t=1 Π
k
t,rr

T
. (27)

Similarly, we can update the rrth component ofQ, denoted asQrr, at the kth iteration as follows:

Qk+1
rr =

∑T
t=1

(
ψk

t,r

)2
+
∑T

t=1 Ψ
k
t,rr

T
, (28)

where

ψk
t = yt −Ck+1mk

t −Dk+1ut, Ψk
t = Ck+1P k

t

(
Ck+1

)′
(29)

with ψk
t,r and Ψk

t,rr being the rth and rrth components of ψk
t and Ψk

t , respectively.

Update procedures of Γa, Γb, Γc, and Γd. Because each component of Γa, Γb, Γc, and Γd is
independent of the others, we can update them individually. For example, we can calculate the
derivative of H

(
Θ | Θk

)
with respect to Γa,ij at the kth iteration as follows:

∂H3

(
Ak+1,Bk+1,Ck+1,Dk+1,Γa,Γ

k
b ,Γ

k
c ,Γ

k
d

)
∂Γa,ij

= −2a0 + 3

2Γa,ij
+

(
Ak+1

ij

)2
+ 2b0

2Γ2
a,ij

. (30)

Setting equation 30 to zero and solving for Γa,ij leads to:

Γk+1
a,ij =

(
Ak+1

ij

)2
+ 2b0

2a0 + 3
. (31)

Similarly, we can update each component of Γb, Γc, and Γd at the kth iteration as follows:

Γk+1
b,ij =

(
Bk+1

ij

)2
+ 2b0

2a0 + 3
, Γk+1

c,ij =

(
Ck+1

ij

)2
+ 2b0

2a0 + 3
, Γk+1

d,ij =

(
Dk+1

ij

)2
+ 2b0

2a0 + 3
. (32)

Finally, we summarize the procedure for learning LSSMs with sparse system matrices in Appendix
C.

3.5 GLOBAL CONVERGENCE ANALYSIS

Given Θk, the proposed learning algorithm presents the analytical mathematical expressions to de-
rive Θk+1. Hence, we can define the proposed algorithm as a point-to-point mapping A(·). Lever-
aging the Global Convergence Theorem (Luenberger et al., 1984), we can demonstrate that the
proposed algorithm is globally convergent.
Theorem 3.3. From any valid initialization point Θ0, the limit point of the sequence {Θk}∞k=1

generated via Θk+1 = A
(
Θk
)
is a local maximum (or saddle point) of equation 6.

Proof. See Appendix D.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

4 SIMILARITY TRANSFORMATION OF LSSMS

The similarity transformation provides an equivalent realization of original LSSMs by transforming
states into different coordinate systems. For LSSMs, it is an important mathematical operation
to analyze system properties like controllability, observability, and stability. Specifically, we can
transform the state vector xt into a new state vector xt through the relation xt = Φxt, where
Φ ∈ Rn×n is a nonsingular matrix. As such, we can derive an equivalent realization of the original
LSSMs as follows (see Appendix E):

xt = Axt−1 +But + εt, (33)

yt = Cxt +Dut + ωt, (34)

where

A = ΦAΦ−1, B = ΦB, C = CΦ−1, (35)

and εt ∼ N (0,ΦRΦ′). However, the similarity transformation makes it particularly difficult to
accurately learn system matrices. Given the input signals {ut}Tt=1, the transformed LSSMs can pro-
duce the same output data {yt}Tt=1 as the original LSSMs. Hence, classical learning algorithms for
LSSMs only learn the system matrices up to a similar transformation (Viberg, 1994). For LSSMs
with sparse system matrices, such a transformation changes not only the numerical values but, more
importantly, the topological structure of the system matrices, resulting in misinterpretation of intrin-
sic working mechanisms.

4.1 BENEFIT OF SPARSITY-PROMOTING PRIORS

Unlike classical learning algorithms, the proposed algorithm learns LSSMs with sparse system ma-
trices by adopting a sparsity-promoting prior to balance model complexity and modeling error.
Given the sparsity constraint of system matrices, the similarity transformation cannot be applied
using any arbitrary nonsingular matrix Φ. For the identifiable LSSMs, the nonsingular matrix is
restricted to be a generalized permutation matrix; otherwise, the transformed LSSMs will include
redundant parameters to describe the systems. For example, consider the LSSMs with sparse system
matrices as follows:

A =

[
0 0 0.8
0.8 0 0
0 0.8 0

]
, B =

[
2 0 0
0 2 0
0 0 2

]
, C =

[
2 0 0
0 0 2
0 2 0

]
, D =

[
0 2 0
0 0 2
2 0 0

]
. (36)

It is easy to verify that such a system is identifiable, as the rank of system matrices is equal to the
number of nonzero components. Hence, we can derive that the nonsingular matrix Φ must be one
of the following generalized permutation matrices:[

a 0 0
0 b 0
0 0 c

]
,

[
a 0 0
0 0 b
0 c 0

]
,

[
0 a 0
b 0 0
0 0 c

]
,

[
0 a 0
0 0 b
c 0 0

]
,

[
0 0 a
b 0 0
0 c 0

]
,

[
0 0 a
0 b 0
c 0 0

]
, (37)

where a, b, and c are arbitrary constants. As such, the transformed system matricesA,B, andC do
not introduce additional parameters to increase model complexity.

Note that applying the similarity transformation with a generalized permutation matrix to the original
state variables will scale their magnitudes and reorder them. However, it will scale the nonzero
components and permute the rows or columns of system matrices accordingly. Hence, an additional
advantage of the sparsity-promoting prior is its ability to preserve the inherent topological structure
among the variables. While the learned system matrices differ from the true ones in numerical
values, such a difference is only caused by the scaled definition of state variables, rather than a
failure to capture the underlying system dynamics.

5 EXPERIMENT

In this section, we validate the proposed algorithm on simulation and real-world datasets. In addi-
tion, we compare the proposed algorithm with classical ones mentioned previously to demonstrate

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Figure 1: Experimental results of all the algorithms on the 10-dimensional synthetic system. Com-
pared to the ground truth, only the proposed algorithm preserves the topological structure among the
variables with Φ ≈ 2I10. In addition, the proposed algorithm obtains the lowest MRE among all
the algorithms. Experimental results on the more complex non-diagonal and non-invertible cases
can be found in Appendix I.1 and Appendix I.2, respectively.

its superior performance, including LSM PEM, LSM HK, 4SID, and MLE. In all experiments, the
dataset is split into training and testing sets with a 2:1 ratio, where 66.7% of the data is used for
training and 33.3% for testing. Due to the lack of ground truth for real-world datasets, we use the
mean relative error (MRE) to evaluate the performance of all the algorithms defined as follows:
MRE =

∑T
t=1

∥yt−ŷt∥2
2

T∥yt∥2
2
, where {ŷt}Tt=1 is the sequence of data points generated by the learned

LSSMs in response to the same input signals. The experiments are conducted using MATLAB
2022b on the PC with an Apple M1 Pro chip with 10-core CPU and 32GB RAM. Experimental re-
sults on simulation and real-world problems illustrate that the proposed algorithm can preserve the
inherent topological structure among variables and significantly improve prediction accuracy over
the classical ones. However, because the closed-form updates entail the inversion of a large number
of matrices, the proposed algorithm involves high computational complexity (see Appendix F).

5.1 SYNTHETIC SYSTEMS

First, we test all the algorithms on a 10-dimensional synthetic system, indicating that each system
matrix has 100 unknown parameters. Specifically, we considerA to be an anti-diagonal matrix with
nonzero components equal to 0.8, and set B = C = D = 2I10 and R = Q = 0.81I10. Because
these system matrices are extremely sparse, accurately learning their topological structures is partic-
ularly challenging. To generate data points, the value of x0 is drawn from the Gaussian distribution
with the mean diag[I10] and an identity covariance matrix, and the input signal ut is drawn from the
uniform distribution on [0, 2]. As for algorithm implementation, we collect 2,100 data points and
set the initial value of A, B, C, D, R, and Q both to be I10. Because the iterative numerical op-
timization method rarely yields exact zeros, the learned parameters below the predefined threshold
are truncated to zero to accelerate convergence. The threshold selection procedure can be found in
Appendix G. To ensure a fair comparison, the learned parameters of all the other algorithms that fall
below this threshold are likewise set to zero.

Because the system matrices of the synthetic system are known, we can compare the learned system
matrices with real ones directly. Figure 1 shows the learned system matrices of all the algorithms,

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 1: Comparison results on the real-world industrial process systems
Dataset Ours LSM PEM LSM HK 4SID MLE

Evaporation system 14.93% 17.90% Inf 43.77% 20.14%
(249.14 s) (9.35 s) (18.45 s) (3.92 s) (152.34 s)

Glass furnace 23.63% 62.62% 31.21% 24.32% 30.21%
(45.62 s) (0.52 s) (6.20 s) (0.29 s) (33.36 s)

Steam generator 20.70% 22.70% 39.80% 29.26% 22.23%
(441.88 s) (4.94 s) (84.52 s) (0.58 s) (299.10 s)

together with the associated MRE and running time. Obviously, the learned system matrices of
classical algorithms are completely different with the original ones in both numerical values and
topological structures due to the similarity transformation, making it difficult for us to understand the
system. However, sparsity-promoting priors will restrict the nonsingular matrix Φ of the similarity
transformation to be a generalized permutation matrix for this system. By comparing the learnedB
andC of the proposed algorithm with real ones, we can derive Φ ≈ 2I10, which is indeed consistent
with the analysis in Section 4.1. Hence, the learned system matrices of the proposed algorithm
preserve the inherent topological structure among the variables, differing only in numerical values
due to the scaled definition of state variables.

We test the proposed algorithm on different initial values to demonstrate its robustness in Ap-
pendix H.1. We also conduct 20 independent trials to report the success rates of all the algorithms
in learning the topological structure of the system matrices and the average MRE in Appendix H.2;
experimental results illustrate that the proposed algorithm is stable across multiple runs.

In addition, we further demonstrate the effectiveness of the proposed algorithm on the non-diagonal
and non-invertible cases in Appendix I.1 and Appendix I.2, respectively.

5.2 INDUSTRIAL PROCESS SYSTEMS

Next, we validate the proposed algorithm on the real-world datasets obtained from the Database for
the Identification of Systems, which are standard datasets used for learning LSSMs (Zhu et al., 1994;
Martens, 2010). While underlying physical systems may be non-linear, the learned LSSMs can
provide a linear approximation of systems, enabling tractable analysis and control. To empirically
ensure the performance of all the algorithms, we prefer to select datasets that contain at least 1,000
sample points and have multi-dimensional inputs and outputs.

Evaporation System. In industry, multiple-stage evaporators are widely used to reduce the water
content of a product such as milk. The dataset is composed of 3-dimensional time-series with a
length of 6,305. The inputs consist of the feed flow, vapor flow to the first evaporator stage, and
cooling water flow to the condenser, while the outputs include the dry matter content, flow rate, and
temperature of the product.

Glass Furnace. The second dataset comes from the Philips glass furnace, which is used to melt
raw materials into glass. The glass furnace has two burners and one ventilator. Hence, the dataset
includes two heating inputs and one cooling input with a length of 1,247. In addition, we collect
three outputs from temperature sensors in a cross section of the furnace.

Steam Generator. The dataset comes from a boiler at Abbott Power Plant in Champaign IL, which
is a dual-fuel (oil and gas) combustion unit used for both heating and electricity generation. It
consists of four inputs (i.e., air flow rate, fuel flow rate, feedwater flow rate, and disturbance) and
four outputs (i.e., drum pressure, excess oxygen, drum water level, and steam flow) with a length of
9,600.

Table 1 displays the MRE between the predicted outputs of all the learned LSSMs and the real one,
and records the running time of each algorithm. Due to the lack of ground truth, the learned system
matrices of all the algorithms are not depicted for comparison. Because the proposed algorithm
obtains minimum MRE across all the datasets, experimental results demonstrate its superiority over
the classical ones in real-world applications. Note that the hidden states can be defined in different

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

coordinate systems as discussed in Section 4. As a result, the learned system matrices of classical
algorithms may differ from the ground truth in both numerical values and topological structures.
However, the proposed algorithm learns the system matrices by balancing model complexity and
modeling error. Unlike classical algorithms, it will thus learn LSSMs with only the minimally
required parameters to explain the time-series data. In particular, if the real-world systems are
identifiable, the proposed algorithm preserves the topological structure among variables, which is
more valuable for exploring interaction laws of systems.

6 DISCUSSION

To learn the LSSMs with sparse system matrices, we impose sparsity-promoting priors on system
matrices to balance model complexity and modeling error. Following the MAP principle, we then
learn system matrices by exploring the EM algorithm to maximize the joint posterior distribution
composed of the priors and marginal likelihood function. Based on the Global Convergence The-
orem, we demonstrate that the sequence generated by the proposed algorithm converges to a local
maximum or saddle point of the posterior distribution. In addition, we explain why the sparsity-
promoting prior is capable of retaining the inherent topological structure of LSSMs, as the non-
singular matrix of the similarity transformation is limited to be a generalized permutation matrix.
Hence, the proposed algorithm is more useful for us to explore the interaction laws of LSSMs com-
pared to the classical ones.

There still remain some potential limitations associated with the proposed algorithm. First, the
similarity transformation may shrink many parameters in system matrices to very small values,
potentially leading to numerical errors. However, note that it is a common issue faced by all the
learning algorithms for LSSMs. The other limitation is that the proposed algorithm is hard to deal
with large-scale problems currently due to its high computational requirements. Hence, our future
work will focus on reducing computation time to make the proposed algorithm applicable to large-
scale settings. For instance, we can adopt the stochastic EM algorithm to reduce the computational
cost by using a mini-batch of data instead of the full batch during the expectation step (Chen et al.,
2018). In addition, we hope to explore how to ensure that the learned system matrices are exactly
the same as the true ones by imposing additional constraints on system matrices beyond the sparsity
constraint. Overall, we believe that the proposed algorithm sheds light on the learning of LSSMs
with sparse system matrices.

ETHICS STATEMENT

This paper presents theoretical research whose goal is to advance the field of Machine Learning.
Because it does not involve human participants, animals, sensitive personal data, or other foreseeable
ethical concerns outlined in the ICLR Code of Ethics, no specific ethical issues arise from this paper.

REPRODUCIBILITY STATEMENT

To ensure the reproducibility of this research, the main text and Appendix provide detailed theoreti-
cal derivations and proofs of the proposed algorithm, and the complete source code is included in the
supplementary material to enable independent verification. Moreover, the real-world datasets used
in our experiments are publicly available at https://homes.esat.kuleuven.be/˜smc/
daisy/.

REFERENCES

Ainesh Bakshi, Allen Liu, Ankur Moitra, and Morris Yau. Tensor decompositions meet control
theory: learning general mixtures of linear dynamical systems. In International Conference on
Machine Learning, pp. 1549–1563. PMLR, 2023.

David Belanger and Sham Kakade. A linear dynamical system model for text. In International
Conference on Machine Learning, pp. 833–842. PMLR, 2015.

10

https://homes.esat.kuleuven.be/~smc/daisy/
https://homes.esat.kuleuven.be/~smc/daisy/

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Steven L Brunton, Joshua L Proctor, and J Nathan Kutz. Discovering governing equations from data
by sparse identification of nonlinear dynamical systems. Proceedings of the National Academy of
Sciences, 113(15):3932–3937, 2016.

Emmanuel J Candes, Michael B Wakin, and Stephen P Boyd. Enhancing sparsity by reweighted ℓ1
minimization. Journal of Fourier Analysis and Applications, 14:877–905, 2008.

Nilanjana Chakraborty, Kshitij Khare, and George Michailidis. A Bayesian framework for sparse
estimation in high-dimensional mixed frequency vector autoregressive models. Statistica Sinica,
33:1629–1652, 2023.

Jianfei Chen, Jun Zhu, Yee Whye Teh, and Tong Zhang. Stochastic expectation maximization with
variance reduction. In Advances in Neural Information Processing Systems, volume 31, 2018.

Yanxi Chen and H Vincent Poor. Learning mixtures of linear dynamical systems. In International
Conference on Machine Learning, pp. 3507–3557. PMLR, 2022.

Kevin Course and Prasanth B Nair. State estimation of a physical system with unknown governing
equations. Nature, 622(7982):261–267, 2023.

Yonathan Efroni, Sham Kakade, Akshay Krishnamurthy, and Cyril Zhang. Sparsity in partially
controllable linear systems. In International Conference on Machine Learning, pp. 5851–5860.
PMLR, 2022.

Mohamad Kazem Shirani Faradonbeh, Ambuj Tewari, and George Michailidis. Finite time identifi-
cation in unstable linear systems. Automatica, 96:342–353, 2018.

Mohamad Kazem Shirani Faradonbeh, Ambuj Tewari, and George Michailidis. Optimism-based
adaptive regulation of linear-quadratic systems. IEEE Transactions on Automatic Control, 66(4):
1802–1808, 2020.

Wouter Favoreel, Bart De Moor, and Peter Van Overschee. Subspace state space system identifica-
tion for industrial processes. Journal of Process Control, 10(2-3):149–155, 2000.

Zoubin Ghahramani and Geoffrey E Hinton. Parameter estimation for linear dynamical systems.
1996.

Stuart Gibson and Brett Ninness. Robust maximum-likelihood estimation of multivariable dynamic
systems. Automatica, 41(10):1667–1682, 2005.

Elad Hazan, Singh Karan, and Zhang Cyril. Learning linear dynamical systems via spectral filtering.
In Advances in Neural Information Processing Systems, volume 30, 2017.

Jiabao He, Ingvar Ziemann, Cristian R Rojas, and Håkan Hjalmarsson. Finite sample analysis for
a class of subspace identification methods. In IEEE Conference on Decision and Control, pp.
2970–2976. IEEE, 2024a.

Xin He, Yasen Wang, and Junyang Jin. Bayesian inference and optimisation of stochastic dynamical
networks. International Journal of Systems Science, pp. 1–15, 2024b.

Wenbing Huang, Lele Cao, Fuchun Sun, Deli Zhao, Huaping Liu, and Shanshan Yu. Learning
stable linear dynamical systems with the weighted least square method. In International Joint
Conferences on Artificial Intelligence, pp. 1599–1605, 2016.

Junyang Jin, Ye Yuan, and Jorge Gonçalves. A full Bayesian approach to sparse network inference
using heterogeneous datasets. IEEE Transactions on Automatic Control, 66(7):3282–3288, 2020a.

Junyang Jin, Ye Yuan, and Jorge Gonçalves. High precision variational Bayesian inference of sparse
linear networks. Automatica, 118:109017, 2020b.

Tohru Katayama et al. Subspace methods for system identification, volume 1. Springer, 2005.

Wallace E Larimore. Canonical variate analysis in identification, filtering, and adaptive control. In
IEEE Conference on Decision and Control, pp. 596–604. IEEE, 1990.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Roderick JA Little and Donald B Rubin. Statistical analysis with missing data, volume 793. John
Wiley & Sons, 2019.

Lennart Ljung. Prediction error estimation methods. Circuits, Systems and Signal Processing, 21:
11–21, 2002.

David G Luenberger, Yinyu Ye, et al. Linear and nonlinear programming, volume 2. Springer,
1984.

Bethany Lusch, J Nathan Kutz, and Steven L Brunton. Deep learning for universal linear embeddings
of nonlinear dynamics. Nature Communications, 9(1):4950, 2018.

Giorgos Mamakoukas, Maria Castano, Xiaobo Tan, and Todd Murphey. Local Koopman operators
for data-driven control of robotic systems. In Robotics: Science and Systems, 2019.

Giorgos Mamakoukas, Orest Xherija, and Todd Murphey. Memory-efficient learning of stable linear
dynamical systems for prediction and control. In Advances in Neural Information Processing
Systems, pp. 13527–13538, 2020.

James Martens. Learning the linear dynamical system with ASOS. In International Conference on
Machine Learning, pp. 743–750. Citeseer, 2010.

Aditya Modi, Mohamad Kazem Shirani Faradonbeh, Ambuj Tewari, and George Michailidis. Joint
learning of linear time-invariant dynamical systems. Automatica, 164:111635, 2024.

Samet Oymak and Necmiye Ozay. Non-asymptotic identification of lti systems from a single trajec-
tory. In American Control Conference, pp. 5655–5661. IEEE, 2019.

Wei Pan, Ye Yuan, Jorge Gonçalves, and Guy-Bart Stan. A sparse Bayesian approach to the identifi-
cation of nonlinear state-space systems. IEEE Transactions on Automatic Control, 61(1):182–187,
2015.

G Pillonetto and Lennart Ljung. Full Bayesian identification of linear dynamic systems using stable
kernels. Proceedings of the National Academy of Sciences, 120(18):e2218197120, 2023.

S Joe Qin. An overview of subspace identification. Computers & Chemical Engineering, 30:1502–
1513, 2006.

Srijata Samanta, Kshitij Khare, and George Michailidis. A generalized likelihood-based Bayesian
approach for scalable joint regression and covariance selection in high dimensions. Statistics and
Computing, 32(3):47, 2022.

Simo Särkkä and Lennart Svensson. Bayesian filtering and smoothing, volume 17. Cambridge
University Press, 2023.

Robert H Shumway and David S Stoffer. An approach to time series smoothing and forecasting
using the EM algorithm. Journal of Time Series Analysis, 3(4):253–264, 1982.

Gavin Smith, João de Freitas, Tony Robinson, and Mahesan Niranjan. Speech modelling using
subspace and EM techniques. In Advances in Neural Information Processing Systems, volume 12,
1999.

Robert Tibshirani. Regression shrinkage and selection via the Lasso. Journal of the Royal Statistical
Society Series B: Statistical Methodology, 58(1):267–288, 1996.

Michael E Tipping. Sparse Bayesian learning and the relevance vector machine. Journal of Machine
Learning Research, 1:211–244, 2001.

Jack Umenberger, Johan Wågberg, Ian R Manchester, and Thomas B Schön. Maximum likelihood
identification of stable linear dynamical systems. Automatica, 96:280–292, 2018.

Peter Van Overschee and Bart De Moor. N4SID: Subspace algorithms for the identification of
combined deterministic-stochastic systems. Automatica, 30(1):75–93, 1994.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Peter Van Overschee and BL De Moor. Subspace identification for linear systems: The-
ory—Implementation—Applications. Springer Science & Business Media, 2012.

M Verahegen and Patrick Dewilde. Subspace model identification. Part i: The output-error state-
space model identification class of algorithm. Internation Journal of Control, 56:1187–1210,
1992.

Mats Viberg. Subspace methods in system identification. IFAC Proceedings Volumes, 27(8):1–12,
1994.

Jin Wang and S Joe Qin. A new subspace identification approach based on principal component
analysis. Journal of Process Control, 12(8):841–855, 2002.

Yasen Wang, Junlin Li, Zuogong Yue, and Ye Yuan. An iterative Min-Min optimization method for
sparse Bayesian learning. In International Conference on Machine Learning, volume 235, pp.
50859–50873, 2024.

David Wipf and Srikantan Nagarajan. A new view of automatic relevance determination. In Ad-
vances in Neural Information Processing Systems, volume 20, 2007.

David P Wipf and Bhaskar D Rao. Sparse Bayesian learning for basis selection. IEEE Transactions
on Signal Processing, 52(8):2153–2164, 2004.

CF Jeff Wu. On the convergence properties of the EM algorithm. The Annals of Statistics, pp.
95–103, 1983.

Xiaofeng Yuan, Yalin Wang, Chunhua Yang, Zhiqiang Ge, Zhihuan Song, and Weihua Gui.
Weighted linear dynamic system for feature representation and soft sensor application in nonlin-
ear dynamic industrial processes. IEEE Transactions on Industrial Electronics, 65(2):1508–1517,
2017.

Ye Yuan, Xiuchuan Tang, Wei Zhou, Wei Pan, Xiuting Li, Hai-Tao Zhang, Han Ding, and Jorge
Goncalves. Data driven discovery of cyber physical systems. Nature Communications, 10(1):
4894, 2019.

Wei Zhou, Hai-Tao Zhang, and Jun Wang. An efficient sparse Bayesian learning algorithm based on
Gaussian-scale mixtures. IEEE Transactions on Neural Networks and Learning Systems, 33(7):
3065–3078, 2021.

Yucai Zhu, Peter Van Overschee, Ban de Moor, and Lennan Ljung. Comparison of three classes of
identification methods. IFAC Proceedings Volumes, 27(8):169–174, 1994.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A SPARSITY-PROMOTING PRIOR

BesidesA, we also impose the sparsity-promoting priors onB, C, andD as follows:

p (B | Γb) =

n∏
i=1

p∏
j=1

p (Bij | Γb,ij) =

n∏
i=1

p∏
j=1

1√
2πΓb,ij

exp

(
−
B2

ij

2Γb,ij

)
, (38)

p (C | Γc) =

m∏
i=1

n∏
j=1

p (Cij | Γc,ij) =

m∏
i=1

n∏
j=1

1√
2πΓc,ij

exp

(
−
C2

ij

2Γc,ij

)
, (39)

p (D | Γd) =

m∏
i=1

p∏
j=1

p (Dij | Γd,ij) =

m∏
i=1

p∏
j=1

1√
2πΓd,ij

exp

(
−
D2

ij

2Γd,ij

)
, (40)

where Γb,ij ,Γc,ij , and Γd,ij are the ijth components of Γb,Γc, and Γd, respectively. To complete
the hierarchy, the Inverse-Gamma distribution prior is imposed on each component of Γb,Γc, and
Γd as follows:

p(Γb) =
n∏

i=1

p∏
j=1

ab00
Γ(a0)

Γ−a0−1
b,ij exp

(
− b0
Γb,ij

)
, (41)

p(Γc) =

m∏
i=1

n∏
j=1

ab00
Γ(a0)

Γ−a0−1
c,ij exp

(
− b0
Γc,ij

)
, (42)

p(Γd) =

m∏
i=1

p∏
j=1

ab00
Γ(a0)

Γ−a0−1
d,ij exp

(
− b0
Γd,ij

)
. (43)

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

B DETAILED MATHEMATICAL DERIVATION

B.1 DERIVATION OF EQUATION 15

Given the conditional independence between the variables, we can derive

H
(
Θ | Θk

)
= EXk [log (p(Y ,X | Θ)p(Θ))]

= EXk [log (p(Y |X,Θ)p(X | Θ)p(Θ))]

= EXk [log (p(Y |X,C,D,Q)p(X | A,B,R)p(A,Γa,B,Γb,C,Γc,D,Γd))]

= EXk [log (p(Y |X,C,D,Q)p(X | A,B,R)p(A,Γa)p(B,Γb)p(C,Γc)p(D,Γd))]

= EXk [log p(X | A,B,R)]︸ ︷︷ ︸
H1(A,B,R)

+EXk [log p(Y |X,C,D,Q)]︸ ︷︷ ︸
H2(C,D,Q)

+ EXk [log (p(A,Γa)p(B,Γb)p(C,Γc)p(D,Γd))]︸ ︷︷ ︸
H3(A,B,C,D,Γa,Γb,Γc,Γd)

. (44)

Explicit mathematical expression of H1(A,B,R). Based on equation 1 and the chain rule in
probability, we can derive

p(X | A,B,R)

= p(x0)

T∏
t=1

p(xt | xt−1,A,B,R)

∝
T∏

t=1

| R |− 1
2 exp

(
− (xt −Axt−1 −But)

′R−1(xt −Axt−1 −But)

2

)
. (45)

Hence,

H1(A,B,R)

= EXk [log p(X | A,B,R)]

= EXk

[
−
T log | R | +

∑T
t=1(xt −Axt−1 −But)

′R−1(xt −Axt−1 −But)

2

]

= −
T log | R | +

∑T
t=1 EXk

[
(xt −Axt−1 −But)

′R−1(xt −Axt−1 −But)
]

2

= −
T log | R | +

∑T
t=1

(
mk

t −Amk
t−1 −But

)′
R−1

(
mk

t −Amk
t−1 −But

)
2

−
∑T

t=1

(
Tr
(
R−1P k

t

)
− Tr

(
R−1AP k

t,t−1

)
− Tr

(
A′R−1P k

t,t−1

)
+ Tr

(
A′R−1AP k

t−1

))
2

.

(46)

Explicit mathematical expression of H2(C,D,Q). Based on equation 2, we can derive

p(Y |X,C,D,Q)

=

T∏
t=1

p(yt | xt,C,D)

∝
T∏

t=1

| Q |− 1
2 exp

(
− (yt −Cxt −Dut)

′Q−1(yt −Cxt −Dut)

2

)
. (47)

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Hence,

H2(C,D,Q)

= EXk [log p(Y |X,C,D,Q)]

= −
EXk

[
T log | Q | +

∑T
t=1(yt −Cxt −Dut)

′Q−1(yt −Cxt −Dut)
]

2

= −
T log | Q | +

∑T
t=1 EXk

[
(yt −Cxt −Dut)

′Q−1(yt −Cxt −Dut)
]

2

= −
T log | Q | +

∑T
t=1

(
(yt −Cmk

t −Dut)
′Q−1(yt −Cmk

t −Dut) + Tr
(
C ′Q−1CP k

t

))
2

.

(48)

Explicit mathematical expression of H3(A,B,C,D,Γa,Γb,Γc,Γd). Based on the priors im-
posed on the system matrices and corresponding hyperparameters, we can derive:

p(A,Γa)p(B,Γb)p(C,Γc)p(D,Γd)

= p(A | Γa)p(Γa)p(B | Γb)p(Γb)p(C | Γc)p(Γc)p(D | Γd)p(Γd)

∝
n∏

i=1

n∏
j=1

Γ
− 2a0+3

2
a,ij exp

(
−
A2

ij + 2b0

2Γa,ij

)
×

n∏
i=1

p∏
j=1

Γ
− 2a0+3

2

b,ij exp

(
−
B2

ij + 2b0

2Γb,ij

)

×
m∏
i=1

n∏
j=1

Γ
− 2a0+3

2
c,ij exp

(
−
C2

ij + 2b0

2Γc,ij

)
×

m∏
i=1

p∏
j=1

Γ
− 2a0+3

2

d,ij exp

(
−
D2

ij + 2b0

2Γd,ij

)
. (49)

Hence, we have

H3(A,B,C,D,Γa,Γb,Γc,Γd)

= EXk [log (p(A,Γa)p(B,Γb)p(C,Γc)p(D,Γd))]

= EXk [log (p(A | Γa)p(Γa)p(B | Γb)p(Γb)p(C | Γc)p(Γc)p(D | Γd)p(Γd))]

= −
n∑

i=1

n∑
j=1

(
(2a0 + 3) log | Γa,ij |

2
+
A2

ij + 2b0

2Γa,ij

)

−
n∑

i=1

p∑
j=1

(
(2a0 + 3) log | Γb,ij |

2
+
B2

ij + 2b0

2Γb,ij

)

−
m∑
i=1

n∑
j=1

(
(2a0 + 3) log | Γc,ij |

2
+
C2

ij + 2b0

2Γc,ij

)

−
m∑
i=1

p∑
j=1

(
(2a0 + 3) log | Γd,ij |

2
+
D2

ij + 2b0

2Γd,ij

)
. (50)

B.2 DERIVATION OF EQUATION 19

Because H1 (A,B,R) and H3 (A,B,C,D,Γa,Γb,Γc,Γd) involve A, we can derive the term
related toAr at the kth iteration as follows:

H1

(
A,Bk,Rk

)
+H3

(
A,Bk,Ck,Dk,Γk

a,Γ
k
b ,Γ

k
c ,Γ

k
d

)
= −

∑T
t=1

∑n
r=1

(
Rk

rr

)−1
(

Tr
(
A′

rArP
k
t−1

)
− 2Ar

(
P k

t,t−1,r

)′)
+
∑n

r=1ArΓ
kd

a,rA
′
r

2

−
∑T

t=1

∑n
r=1

(
Rk

rr

)−1 (
mk

t,r −Arm
k
t−1 −Bk

rut

) (
mk

t,r −Arm
k
t−1 −Bk

rut

)′
2

+ c, (51)

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

where c is the term independent of Ar. Hence, we can calculate the derivative of H(Θ | Θk) with
respect toAr as follows:

∂H(Θ | Θk)

∂Ar

=
∂H1

(
A,Bk,Rk

)
∂Ar

+
∂H3

(
A,Bk,Ck,Dk,Γk

a,Γ
k
b ,Γ

k
c ,Γ

k
d

)
∂Ar

=

T∑
t=1

(
Rk

rr

)−1
(
P k

t,t−1,r +
(
mk

t,r −Arm
k
t−1 −Bk

rut

) (
mk

t−1

)′ −ArP
k
t−1

)
−ArΓ

kd

a,r. (52)

Setting equation 52 to zero leads to

T∑
t=1

Ar

(
mk

t−1

(
mk

t−1

)′
+ P k

t−1

)
+ArR

k
rrΓ

kd

a,r =

T∑
t=1

(
P k

t,t−1,r +
(
mk

t,r −Bk
rut

) (
mk

t−1

)′)
.

(53)

Hence, we can updateAr at the kth iteration as follows:

Ak+1
r =

(
T∑

t=1

((
mk

t,r −Bk
rut

) (
mk

t−1

)′
+ P k

t,t−1,r

))

×

(
T∑

t=1

(
P k

t−1 +m
k
t−1

(
mk

t−1

)′)
+Rk

rrΓ
kd
a,r

)−1

. (54)

B.3 DERIVATION OF EQUATION 24

Given thatR is a diagonal matrix, we can re-express H1

(
Ak+1,Bk+1,R

)
as follows:

H1

(
Ak+1,Bk+1,R

)
= −

T
∑n

r=1 logRrr

2
−
∑n

r=1

∑T
t=1R

−1
rr

(
πk
t,r

)2
2

−
∑n

r=1

∑T
t=1R

−1
rr Π

k
t,rr

2
, (55)

where

πk
t =mk

t −Ak+1mk
t−1 −Bk+1ut, (56)

Πk
t = P k

t −Ak+1P k
t,t−1 − P k

t,t−1

(
Ak+1

)′
+Ak+1P k

t−1

(
Ak+1

)′
(57)

with πk
t,r and Πk

t,rr being the rth and rrth components of πk
t and Πk

t , respectively. Hence, we can
calculate the derivative of H(Θ | Θk) with respect toRrr as follows:

∂H(Θ | Θk)

∂Rrr
=

∂H1

(
Ak+1,Bk+1,R

)
∂Rrr

= − T

2Rrr
+

∑T
t=1

(
πk
t,r

)2
2R2

rr

+

∑T
t=1 Π

k
t,rr

2R2
rr

. (58)

Setting equation 58 to zero leads to the update rule forRrr at the kth iteration as follows:

Rk+1
rr =

∑T
t=1

(
πk
t,r

)2
+
∑T

t=1 Π
k
t,rr

T
. (59)

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

C PSEUDOCODE FOR LEARNING LSSMS WITH SPARSE SYSTEM MATRICES

Algorithm 1 The proposed algorithm for learning LSSMs with sparse system matrices
Input: Time-series data {(ut,yt)}Tt=1, initial guess of Θ, and maximum number of iterations
kmax

for k = 1 to kmax do
for t = 1 to T do

Update the meanmk
t and covariance P k

t of xt via equation 9 and equation 10, respectively
Update the covariance P k

t,t−1 between xt and xt−1 via equation 14
end for
Update system matricesA,B, C, andD via equation 20–equation 23, respectively
Update noise covariance matricesR andQ via equation 27 and equation 28, respectively
Update hyperparameter matrices Γa, Γb, Γc, and Γd via equation 31 and equation 32, respec-
tively
if a stopping criterion is satisfied then

Break
end if

end for
Output: System matricesA,B,C, andD, noise covariance matricesR andQ

D PROOF OF THEOREM 3.3

Proof. To illustrate the global convergence of the proposed algorithm, we need to demonstrate that
it satisfies the three necessary conditions required by the Global Convergence Theorem (Luenberger
et al., 1984). For A(·) and Ω = {Θ : ∇Θp (Θ | Y) = 0}, L (Θ) = −p (Θ | Y) is a descent
function. For the point Θk in Ω, it is straightforward to conclude that L

(
Θk+1

)
≤ L

(
Θk
)

following the basic property of the EM algorithm. For the point Θk outside Ω, as H(Θ | Θk) is
continuous in both arguments, we have L

(
Θk+1

)
< L

(
Θk
)

(see Theorem 2 in Wu (1983)). Hence,
L (Θ) is a descent function for Ω and A(·). The sequence {Θk}∞k=1 is contained in a compact set.
If any component of Θ is unbounded, L (Θ) tends to infinity. Given L

(
Θk+1

)
≤ L

(
Θk
)
, there

must exists a compact set containing the sequence {Θk}∞k=1. The mapping A(·) is closed at points
outside Ω. Because the proposed algorithm updates Θk+1 from Θk via analytical mathematical
expressions, and all elementary functions involved are continuous, A(·) can thus be regarded as a
continuous function. In addition, A(·) is a point-to-point mapping. Hence, A(·) is closed at points
outside Ω (see Example 2 in Section 7.6 in Luenberger et al. (1984)). The proof is completed.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

E EQUIVALENT REALIZATION OF LSSMS

Based on the transformed coordinates, we can derive

xt = Φxt = ΦAxt−1 +ΦBut +Φεt =
(
ΦAΦ−1

)
xt−1 + (ΦB)ut +Φεt, (60)

yt = Cxt +Dut + ωt =
(
CΦ−1

)
xt +Dut + ωt. (61)

Hence, we can derive an equivalent realization of the original LSSM as follows:

xt = Axt−1 +But + εt, (62)

yt = Cxt +Dut + ωt, (63)

where A = ΦAΦ−1, B = ΦB, C = CΦ−1, and εt = Φεt. Because εt ∼ N (0,R), we can
derive the mean of εt as follows:

E[εt] = E[Φεt] = ΦE[εt] = 0. (64)

In addition, the covariance of εt can be derived as follows:

E
[
(εt − E[εt]) (εt − E[εt])′

]
= E [Φεtε

′
tΦ

′] = ΦE[εtε′t]Φ′ = ΦRΦ′. (65)

Hence, we have εt ∼ N (0,ΦRΦ′).

F COMPUTATIONAL COMPLEXITY ANALYSIS

The high computational cost of the proposed algorithm primarily stems from the matrix inversion
operations involved in closed-form updates. In each iteration, the expectation step entails the inver-
sion of matrices of size n × n and m × m a total of T times following Lemma 3.1. Hence, the
computational complexity of the expectation step is mainly determined by O(Tn3 + Tm3). In the
maximization step, we derive row-wise update rules forA,B,C, andD to enable analytical update
formulas. To update each row of A,B,C, and D, we need to calculate the inverses of the n × n
and p× p matrices as shown in equation 20–equation 23. As a result, the computational complexity
of the maximization step is dominated by O((m + n)(n3 + p3)). Because the computational cost
of the proposed algorithm scales at least cubically with respect to one of m,n, and p, it is hard to
deal with the large-scale problems currently. Hence, our future work will explore how to mitigate
the computational bottleneck to make it more applicable.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

G THRESHOLD SELECTION

While the proposed algorithm is globally convergent, the generated sequence converges to a local
maximum or saddle point of the posterior distribution only in the limit of infinite sequence length.
Hence, many learned parameters in system matrices approach zero but never reach it exactly during
algorithm implementation. To achieve accurate topology recovery, it is necessary to set the learned
parameters below a predefined threshold to zero to avoid numerical errors. In particular, the learned
parameters corresponding to the true zero components in the system matrices are typically several
orders of magnitude smaller than those learned for the nonzero components. Hence, this pronounced
difference in magnitude provides a wide and stable range for selecting the threshold.

Specifically, the threshold can be selected by visualizing how the number of nonzero components in
learned system matrices, denoted as N , varies with the threshold. When the threshold is too small,
all components of learned system matrices remain nonzero, N is thus relatively large. As the thresh-
old increases, the learned parameters corresponding to the true zero components are gradually set
to zero, and N decreases accordingly. However, due to the pronounced difference in magnitude be-
tween the learned parameters corresponding to the true zero components and those corresponding to
the nonzero components, N remains stable over a certain range of threshold values. Once the thresh-
old exceeds this range, N begins to decrease again because some learned parameters corresponding
to true nonzero components are also set to zero. Therefore, the threshold can be safely selected
from this stable interval to ensure reliable topology recovery. For example, Figure 2 illustrates the
number of nonzero components in the learned system matrices under different threshold settings for
the synthetic system in Section 5.1. The orange markers indicate the threshold values at which the
proposed algorithm successfully learns the inherent topological structure among the variables, and
the MRE remains unchanged. As such, we set the threshold to 0.005 in the experiment.

Figure 2: The number of nonzero components in the learned system matrices across various thresh-
old settings. When the threshold lies within the interval marked by the orange dots, the proposed
algorithm can successfully recover the inherent topological structure among the variables, and the
MRE remains unchanged.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

H ADDITIONAL EXPERIMENTAL RESULTS ON THE SYNTHETIC SYSTEM

H.1 EXPERIMENTAL RESULTS UNDER DIFFERENT INITIAL VALUES

To assess the sensitivity of the proposed algorithm to initial values, we further evaluate its perfor-
mance on the synthetic system described in Section 5.1 by initializing the A,B,C, D, R, and Q
as aI10, where a varies from 0.6 to 1.4 in increments of 0.2.

Table 2 records whether the proposed algorithm successfully learns the topological structure of the
system matrices and MRE defined in the paper. As observed from the table, the experimental results
are consistent with those in Section 5.1 , indicating that the proposed algorithm is robust to initial
values. Remarkablely, even when the initial state transition matrix A is unstable (i.e., a > 1), the
proposed algorithm is still able to accurately learn the topological structure of the true system.

Table 2: Experimental results of the proposed algorithm on the 10-dimensional synthetic system
across different initial values

a 0.6 0.8 1 1.2 1.4

Success?
√ √ √ √ √

MRE 5.70% 5.70% 5.70% 5.70% 5.69%

H.2 EXPERIMENTAL RESULTS OF INDEPENDENT TRIALS

Here, we conduct 20 independent trials to demonstrate that the proposed algorithm is stable across
multiple runs. Specifically, we set the random seed to increase evenly from 1 to 20. Table 3 reports
the success rates of all the algorithms in learning the topological structure among the variables and
the average MRE. Compared to the classical algorithms, only the proposed algorithm successfully
learns the inherent topological structure among the variables in almost all cases. In addition, the
proposed algorithm can achieve a 100% success rate by slightly increasing the threshold below
which learned parameters are set to zero.

Table 3: Experimental results of all the algorithms on 20 independent trails
Method Ours LSM PEM LSM HK 4SID MLE

Success rate 95% 0 0 0 0
Average MRE 5.67% 19.63% 21.56% 20.37% 5.97%

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

I EXPERIMENTAL RESULTS ON THE NON-DIAGONAL AND NON-INVERTIBLE
SYNTHETIC SYSTEMS

I.1 NON-DIAGONAL SYSTEM

Here, we further test the proposed algorithm on a non-diagonal system to illustrate its effectiveness.
To generate non-diagonal system matrices, we randomly set one component per row to 0.8 in A,
and to 2 in B, C, and D, with all other elements set to zero. Particularly, the nonzero elements
are deliberately placed to ensure that A,B, C, and D maintain full rank. All other experimental
settings remain the same as in Section 5.1.

Figure 3: Experimental results of all the algorithms on the non-diagonal systems.

Figure 3 records the experimental results of all the algorithms on the non-diagonal system. Due to
the similarity transformation as discussed in Section 4, the learnedA,B, andC of all the algorithms
differ in form from the ground truth. Unlike classical algorithms, however, the proposed algorithm
restricts the nonsingular matrix of the similarity transformation to be a generalized permutation
matrix. By comparing the learnedB andC with ground truth, we can derive the nonsingular matrix
as follows:

Φ ≈



0 0 0 2 0 0 0 0 0 0
0 0 0 0 0 0 2 0 0 0
0 2 0 0 0 0 0 0 0 0
0 0 2 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 2 0
2 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 2
0 0 0 0 2 0 0 0 0 0
0 0 0 0 0 0 0 2 0 0
0 0 0 0 0 2 0 0 0 0


. (66)

This implies that the discrepancy between the learned system matrices of the proposed algorithm
and ground truth stems from a different ordering and scaling of system states. Hence, it is easy
to check that the proposed algorithm still accurately captures the underlying system dynamics and
preserves the inherent topological structure among the variables.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

I.2 NON-INVERTIBLE SYSTEM

To evaluate the proposed algorithm on the non-invertible system, we replace the system matrix A
in the synthetic system of Section 5.1 with a singular matrix. Specifically, we first construct an anti-
diagonal matrix with all nonzero components set to 0.6, and then replace its seventh and eighth rows
with the following vector: [0 0 0.6 0.6 0 0 0 0 0 0]. As such, the seventh and eighth rows of A are
identical, making the matrix non-invertible. Besides, all other experimental settings remain the same
as in Section 5.1. Figure 4 reports the experimental results of all the algorithms on the non-invertible
system. Similarly, we can derive Φ ≈ 2I10 by comparing the learned system matrices B and C
with the ground truth. Hence, the proposed algorithm still successfully preserves the topological
structure of system matrices, and obtains the lowest MRE compared to the other algorithms.

Figure 4: Experimental results of all the algorithms on the non-invertible system.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

J THE USE OF LARGE LANGUAGE MODELS (LLMS)

In accordance with the ICLR policy on the use of large language models (LLMs), we declare that
LLMs are only employed as a writing assistant to polish the language of this paper. They do not
contribute to the research ideation, experimental design, data analysis, or interpretation of the results.

24

	Introduction
	Related work
	Methodology
	Student's t-distribution prior
	Loss function
	Expectation step: Rauch–Tung–Striebel smoother
	Maximization step: block coordinate descent
	Global convergence analysis

	Similarity transformation of LSSMs
	Benefit of sparsity-promoting priors

	Experiment
	Synthetic systems
	Industrial Process Systems

	Discussion
	Sparsity-promoting prior
	Detailed mathematical derivation
	Derivation of equation 15
	Derivation of equation 19
	Derivation of equation 24

	Pseudocode for learning LSSMs with sparse system matrices
	Proof of Theorem 3.3
	Equivalent realization of LSSMs
	Computational complexity analysis
	Threshold selection
	Additional experimental results on the synthetic system
	Experimental results under different initial values
	Experimental results of independent trials

	Experimental results on the non-diagonal and non-invertible synthetic systems
	Non-diagonal system
	 non-invertible system

	The use of Large language Models (LLMS)

