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ABSTRACT

Accurately estimating the future impact of scientific work is essential for under-
standing research dynamics and guiding funding, hiring, and policy decisions.
Despite growing interest, two challenges still remain unresolved: (i) the hetero-
geneous, multi-scale factors of scientific impact, spanning short-term citations
to long-term disciplinary influence, and (ii) current methods fail to fully cap-
ture domain-specific expertise, which could be better leveraged through the rich
knowledge embedded in large language models (LLMs). To address these chal-
lenges, we introduce a unified framework that couples heterogeneous graph neural
networks with frozen LLM backbones to predict scientific impact, specifically ci-
tation counts at yearly and monthly horizons. Our method trains only lightweight
prefix-tuning token embeddings from graph features, enabling scalable learning
while retaining strong semantic representations. To enable comprehensive train-
ing and evaluation, we provide a large-scale and multi-temporal benchmark with
rich metadata, multiple impact indicators, and accompanying tools for future re-
search. Experimental results show that our approach consistently surpasses both
traditional and LLM-only baselines, reducing error by over 25% for yearly pre-
diction and 18% for monthly prediction. Interestingly, we also find that directly
fine-tuning LLMs on this task can induce bias, whereas using their hidden repre-
sentations as enhanced features yields superior performance. All datasets, tools
and code will be released on GitHub.

1 INTRODUCTION

Understanding and predicting the impact of scientific research has long been a central pursuit in the
science of science literature (Bai et al., 2020b; Xu et al., 2022; Xia et al., 2023). Accurate modeling
of scientific impact is not only of theoretical interest. It also provides the foundation for many prac-
tical applications, such as identifying high-potential research, optimizing funding allocation, and
informing institutional evaluation (Zhang & Wu, 2024). Despite its importance, reliable prediction
of scientific influence remains an open challenge. Scientific impact is inherently complex because
it is simultaneously multi-scale, heterogeneous, and dynamic (Wu et al., 2019; Iqbal et al., 2020;
Giovanni et al., 2020; Xu et al., 2022; Dong et al., 2016; Gebhart & Funk, 2023).

Impact may appear immediately through early citations or social media attention, but it may also
unfold slowly over decades, shaping entire disciplines and even affecting non-academic domains
(Tahamtan & Bornmann, 2020; Abramo et al., 2024). Predictive models must therefore account for
signals at multiple timescales and accommodate diverse drivers of influence, ranging from scientific
factors such as novelty, topicality, and methodological rigor to non-scientific factors such as author
reputation, affiliation, and domain-specific citation practices (Xing et al., 2024; Zhao et al., 2025).

To capture multiple factors, early work modeled impact with handcrafted features and conventional
classifiers, leveraging signals such as first-year citations, author h-index, and venue prestige (Ibáñez
et al., 2009; Yang & Han, 2023), but these approaches fall short in capturing the nonlinear, context-
dependent dynamics of influence. Subsequent research introduced temporal models (Wang et al.,
2013), citation-trajectory analyses (Jiang et al., 2021), and deep neural networks that learn sequential
growth patterns (He et al., 2023b). More recently, graph neural networks (GNNs) have advanced the
field by capturing interdependencies among authors, venues, affiliations, and papers, underscoring
the value of structural signals for long-term impact (Xue et al., 2024). Given the strong performance
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of large language models (LLMs) across diverse tasks, a promising next step is to fuse graph-based
structure with the semantic representations learned by LLMs.

Domain-adapted pre-trained models such as SciBERT (Beltagy et al., 2019a) and SPECTER (Cohan
et al., 2020) capture semantic cues related to novelty, interdisciplinarity, and methodological rigor.
Recent studies further show that LLMs can forecast long-term scientific impact directly from text,
without relying on citation or network information (Zhao et al., 2025; de Winter, 2024). Overall,
these findings highlight the predictive power of textual content, yet also reveal a persistent gap:
most approaches emphasize either structural dependencies or textual semantics in isolation, and
only a few explore their integration across temporal scales.

However, this lack of integration limits progress towards a comprehensive modeling of scientific
impact. Predictive frameworks should combine the semantic richness of textual representations with
the structural and temporal context captured by scholarly networks. By doing so can we capture the
full spectrum of factors that shape scientific influence. Therefore, in this work, we aim to close
this gap by addressing two research questions: RQ1: What are effective strategies for incorporating
LLMs into heterogeneous network-based models of multi-scale scientific impact? RQ2: How do
scientific factors (e.g., content, topic, novelty) and non-scientific factors (e.g., author reputation,
institutional affiliation, venue prestige) jointly influence the prediction of research impact?

To address these questions, we present a unified framework that integrates heterogeneous graph
neural networks with pretrained LLMs. As a first step, we examine applying LLMs directly to
temporal sequence prediction and prove that they are prone to exploiting dataset-level numeric priors
rather than modeling substantive scientific factors. Motivated by this, we introduce a prefix-tuning
strategy that uses LLMs as feature extractors to encode research topics and domain knowledge.
The resulting model captures both structural dependencies in scholarly knowledge graphs and the
semantic information contained in research texts.

To enable comprehensive evaluation, we constructed a million-scale benchmark that integrates meta-
data, multiple impact indicators, and citation graphs spanning ten disciplines. In addition, our bench-
mark supports automated subset extraction via reusable tools, incorporates denoising pipelines and
includes multimodal content. In summary, the contributions are as follows:

• Large-scale multi-temporal benchmark and tools. We construct a million-scale bench-
mark spanning ten disciplines that integrates rich metadata, multiple impact indicators, and
citation graphs to support short- and long-term training and evaluation.

• Unified structure–semantics–time modeling. We propose a unified framework that fuses
heterogeneous scholarly graphs with LLM-derived textual representations to jointly model
author–institution–venue–paper dependencies, semantic signals, and temporal dynamics.

• Analysis and empirical insights. We disentangle and quantify the roles of scientific and
non-scientific factors—such as topical novelty, interdisciplinarity, and reputational sig-
nals—in shaping impact, yielding actionable insights into scholarly dynamics.

2 RELATED WORK

Predicting Scientific Impact. Evaluating and predicting scientific impact has long relied on cita-
tion counts as a proxy for influence (Fu & Aliferis, 2008; Vincent & Yves, 2009; Bai et al., 2020a).
Traditional bibliometrics like the h-index reflect established rather than future impact, prompting
interest in article impact prediction based on early signals (Yang & Han, 2023; Lahatte & Turck-
heim, 2024; Vital Jr et al., 2024). Initial methods used handcrafted features—author reputation,
venue rank, early citations—with regression or classification models, but struggled to capture the
complexity of impact dynamics (Ibáñez et al., 2009). More recent approaches adopt data-driven and
network-aware models, including temporal models that simulate citation growth via paper “fitness”
and decay (Wang et al., 2013; Tonta & Akbulut, 2019; Correa et al., 2020). Jiang et al. (2021)
proposed HINTS, an end-to-end model predicting citation time series from publication time using
pre-publication metadata and bibliographic networks, effectively addressing the cold-start problem
and outperforming models dependent on years of citation data. Xue et al. (2024) introduced a GNN-
based framework leveraging dynamic citation graphs and auxiliary tasks to yield interpretable and
accurate predictions across paper lifespans and disciplines. These developments highlight the value
of modeling scientific impact as a multifactorial process rather than a singular metric.
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1. Source Data Collection 2. Citation Processing 3. Meta Information 4. Integration and Split
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Figure 1: The construction pipeline of our dataset, including four main steps: (1) Crawl raw data
from three sources; (2) extract sampled papers and citation graphs; (3) balance the dataset distribu-
tion and clean noisy fields; and (4) collect multi-grained labels and perform dataset split.

Heterogeneous Scholarly Networks Scholarly impact features are effectively modeled as hetero-
geneous information networks (HIN), where nodes (e.g., papers, authors, venues) and edges (e.g.,
citations, co-authorship) represent diverse entities and relations (Geng et al., 2022; He et al., 2023a;
Abramo et al., 2021). Meta-path analysis enabled early relation-specific influence measures (Sun
et al., 2011; Zhao et al., 2024a), followed by ranking methods that integrated content, venue, and
publication networks (Tang et al., 2008). More recent work uses temporal GNNs and embedding
alignment to track evolving influence and predict impact by embedding papers into historical net-
work contexts Saier et al. (2021); Hirako et al. (2023); Holm et al. (2021). Advanced models apply
relational GNNs with attention and temporal encoders to weigh author, venue, and content signals
differently over time. HIN-based methods have also addressed collaboration prediction, topic emer-
gence, and prestige estimation, confirming their strength for multi-scale scientific impact analysis
Zhao et al. (2024b); de Winter (2024); Arts et al. (2024); Jin et al. (2024). These models capture
network structure and temporal context but underutilize the semantic richness of texts.

LLMs for Scientific Understanding. With the fast development of LLMs, researchers are in-
creasingly exploring their ability to predict scientific impact from textual content alone Cohan et al.
(2020); Geng et al. (2023); He et al. (2023a). Early efforts used simple representations like TF-
IDF, but newer models leverage transformers trained on scientific corpora. SciBERT (Beltagy et al.,
2019b) improved classification and recommendation by capturing domain-specific language, while
SPECTER (Cohan et al., 2020) showed that content-based embeddings correlate with scholarly
relevance. Zhao et al. (2025) proposed “From Words to Worth,” a content-only LLM framework
predicting impact from titles and abstracts in a double-blind fashion, achieving state-of-the-art per-
formance using a field- and time-normalized metric, TNCSISP . Similarly, Vital Jr et al. (2024)
showed GPT-based abstract embeddings could effectively identify highly cited papers, and even TF-
IDF performed competitively, underscoring the role of topical relevance. de Winter (2024) found
ChatGPT-4’s qualitative scores on novelty, clarity, and engagement significantly correlated with later
citations and Altmetric scores, suggesting LLMs can evaluate intangible manuscript qualities linked
to impact. These studies show that LLMs excel at capturing intrinsic semantic merit and can com-
plement or even rival traditional metadata-driven models. Combining LLM-derived content features
with graph-based signals promises a holistic, multi-scale approach to modeling scientific influence.

3 DATASET CONSTRUCTION

To facilitate systematic research on scientific impact prediction, we introduce a new large-scale
dataset together with open-source tools for automated data collection, cleaning, and formatting. Our
goal is to provide a benchmark that is not only comprehensive and multi-temporal, but also easy to
reproduce and extend for future studies. Figure 1 illustrates the complete construction pipeline.

Dataset Construction. Our dataset integrates three complementary sources to capture the textual,
structural, and temporal dimensions of scientific publications. arXiv provides large-scale metadata

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

(titles, authors, affiliations, abstracts, publication dates), ar5iv supplies HTML-converted papers
for structured extraction of full text and multimodal elements (e.g., figures, tables), and Semantic
Scholar offers citation data with accurate temporal stamps. From these sources, we sample 1.5M
papers across disciplines, extract references and citation subgraphs, and remove entries with incom-
plete or misindexed timestamps. To reduce noise in the metadata (e.g., venues, affiliations), we apply
Qwen3-8B for filtering and normalization, and perform stratified sampling to balance disciplinary
distributions (details in Appendix). The final release provides cleaned metadata, citation graphs,
and modular tools for parsing, cleaning, and formatting, enabling reproducible construction of both
large-scale and multi-temporal subsets.

Table 1: Dataset splits and graph statistics. Affiliation∗ and
Venue∗ fields are normalized using LLM-based cleaning.

Train Valid Test Prev. Test Fresh

# Papers 210,519 100,796 133,432 199,641

Cite Author Affiliation∗ Venue∗

# Nodes – 825,548 16,787 13,393

# Edges 16,751,419 2,232,276 3,618,802 190,597

Dataset Split. Citation-based pre-
diction tasks are typically formulated
in one of three ways: (i) forecasting
citations at a single future time point
(e.g., HINTS (Jiang et al., 2021)),
(ii) splitting data chronologically to
predict multi-step future trajectories
(Xue et al., 2024) and (iii) focusing
on only content and treating every
paper as newborn ones (Zhao et al.,
2024a). Following their choices, we
index both 5-month and 5-year citation counts upon publication as prediction targets. We partition
the dataset by publication year into training, validation, and test splits, and ensure no paper overlap
in training and testing. To stress-test generalization, the test set is further divided into a previous
test split (temporally close to training) and a fresh test split (strictly forward-looking). The resulting
dataset contains 1,081,339 focal papers, with a total of 4,738,195 referenced papers, spanning ten
disciplines. Table 1 provides a detailed statistics of our constructed dataset.

Table 2: Comparison of popular impact pre-
diction paper datasets and databases. Abbre-
viations: Gran. = multi-grained labels, Dom.
= multi-domain coverage.

Dataset Year Gran. Dom. Tools #Papers

APS – ✗ ✗ ✗ 0.45M
Pubmed 2003 ✗ ✗ ✗ 1.10M
DBLP 2008 ✗ ✗ ✗ 1.80M
S2AG 2022 ✓ ✓ ✗ 205M
Aminer 2023 ✗ ✗ ✗ 5.25M
Bio-Sci 2023 ✗ ✓ ✗ 0.03M

Ours 2025 ✓ ✓ ✓ 1.08M

Comparison with Existing Datasets. Table 2 sit-
uates our benchmark in the landscape of scientific
paper datasets. Existing resources each contribute
valuable aspects: APS Bai et al. (2019) and DBLP
Zhu & Ban (2018) provide structured networks but
lack multimodality; PubMed Fu & Aliferis (2008)
offers scale but limited label granularity; S2AG 1

achieves massive coverage but with sparse annota-
tions; Aminer 2 and Bio-Sci Zhang et al. (2023)
capture recent slices but often full content. Our
dataset is the first to unify multi-grained impact la-
bels, multi-domain coverage, multimodal content,
and built-in processing tools within a single re-
source. With over one million papers, it strikes a
balance between scale and usability, enabling both
large-scale training and varied temporal analysis.

4 METHODOLOGY

In general, citation impact prediction has been approached from two directions. Graph-based meth-
ods (Jiang et al., 2021; Xue et al., 2024) (Figure 2(a)) encode papers and metadata as a heterogeneous
graph, learning structural and textual features via GNNs before regression, but struggle with seman-
tics and temporal dynamics. LLM-based methods (Zhao et al., 2024a) (Figure 2(b)) leverage large
language models with lightweight tuning (e.g., LoRA) to capture rich text semantics, yet overlook
graph and time signals. Our LLM4Impact predictor framework (Figure 2(c)) unifies both by in-
jecting graph and temporal embeddings as prefix tokens into LLM prompts, enabling multi-feature
fusion for accurate citation forecasting. Below, we elaborate on our framework details.

1https://www.semanticscholar.org/
2https://www.kaggle.com/datasets/kmader/aminer-academic-citation-dataset
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Figure 2: Overview of main scientific impact prediction framework: (a) graph baseline using a
GNN with a separate text encoder for graph and semantic features; (b) LLM-only baseline focusing
on semantic representations; (c) our proposed model that jointly and equally models heterogeneous
graph structure, semantic text, and temporal signals with LLMs features.

4.1 TASK FORMULATION

We formalize the problem of scientific impact prediction as a heterogeneous graph learning task
with temporal forecasting. Let the heterogeneous graph be denoted as G = ⟨N,E⟩ where N is
the set of nodes and E is the set of edges. The node set N consists of seven types of entities:
papers, references, authors, institutions, venues, category, and publication dates. The edge set
E captures five types of relations, including has author, has affiliation, published in(venue),
cites, published at(time). We treat all papers as newborn, i.e., the citation graph excludes existing
citation counts for each query paper. Given a target paper p ∈ N , our objective is to predict its future
citation across multiple temporal horizons. Specifically, the prediction target is defined as

Yp = {y1p, y2p, . . . , yLp },

where ylp denotes the predicted citation count of paper p under temporal scale l. In this work, we set
L = 5, corresponding to both yearly and monthly citation scales over the future time scale. Formally,
the task can be expressed as learning a mapping function

f : (G, p) 7→ Yp,

which leverages heterogeneous graph structure, semantic text, and temporal signals to estimate the
long-term scientific impact of the paper.

4.2 INITIALIZATION

We begin by constructing semantic and temporal representations for each academic paper Pi. For
semantics, we leverage SciBERT ΦSciBERT (·) to encode the title Ti and abstract Ai, yielding an
initial semantic embedding:

e(i)sem = ΦSciBERT (Ti, Ai).

This embedding is jointly used in two roles: (i) as the input to the paper semantic predictor, and (ii)
as the initialization of paper nodes in the citation graph. For other node types (authors, venues, and
institutions), embeddings are initialized by aggregating the semantic embeddings of their neighbor-
ing paper nodes, ensuring that every node representation is grounded in paper semantics.

To incorporate temporal signals, we encode the publication timestamp Yi of Pi using pretrained
FastText model (Bojanowski et al., 2017) ΦFT (·), obtaining a dense temporal embedding:

e
(i)
time = ΦFT (Yi).

5
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This embedding captures periodic and continuous time semantics and serves as the initialization of
the time feature for each paper.

4.3 GRAPH-BASED FEATURE EXTRACTION

The scientific ecosystem is inherently relational, with citations, co-authorships, and venues shaping
the trajectory of research impact. We model this ecosystem as the heterogeneous graph G and for
each feature type, a feature projector Pfeat(·) maps raw node embeddings into a common latent
space. Subsequently, four-layers of Graph Convolutional Network (GCN) encoders Genc(·) refine
these projected embeddings by propagating structural signals:

h
(i)
feat = Genc

(
Pfeat(e

(i)
feat)

)
.

where e
(i)
feat denotes the paper initial embeddings. The processed heterogeneous features across

different types of nodes are then organized into a feature sequence H(i) = {h(i)
feat} and concatenated

with the projected temporal embedding h
(i)
time. A cross-feature attention mechanism A(·) models

inter-feature dependencies, producing attended representations H′(i). This design allows the model
to dynamically highlight the most informative feature types for each paper, while down-weighting
less relevant signals. Then, we apply global average pooling followed by a feature fusion network
F(·) to yield the final graph features:

e
(i)
graph = F

(
Pool

(
A(H(i))

))
.

Finally, we feed the graph features e
(i)
graph into five MLP layers, each dedicated to regressing the

citation count within a specific future time scale L. To ensure numerical stability and constrain the
prediction range, we apply a logarithmic transformation to the citation numbers before regression.

4.4 LLMS INTEGRATION

While graph embeddings capture relational and structural influence, understanding the future poten-
tial of a paper requires reasoning over semantic content and latent topics. To this end, we integrate
LLMs with the graph encoder. Specifically, we employ a prefix-tuning strategy to inject graph-
derived signals into the LLM. The graph embedding e

(i)
graph is projected into the LLM hidden space:

p
(i)
graph = Pgraph(e

(i)
graph),

and transformed into a sequence of prefix tokens P(i) ∈ RLp×dLLM , where Lp is the prefix length.
These prefix tokens are concatenated with the LLM’s input sequence embeddings (title and abstract,
and also task prompt), effectively conditioning the LLM on structural knowledge.

The combined input is processed through the LLM’s transformer layers, producing a mixed repre-
sentation h

(i)
LLM that encodes both semantic understanding and structural context:

h
(i)
LLM = ΦLLM

(
[P

(i)
graph∥(Ti, Ai)]

)
.

This design balances efficiency and effectiveness: prefix-tuning avoids fine-tuning the entire LLM
while enabling task-specific adaptation. The final hidden representation h

(i)
LLM is then passed

through lightweight adapters and MLP heads for impact prediction.

4.5 TRAINING

During training, we obtain predictions from the three feature types and then average their outputs to
produce the final citation sequence prediction. Given y(i) as ground-truth citation sequence of paper
Pi, our training loss is to minimize all sequence differences:

LMSE =
1

N

N∑
i=1

∥∥∥ŷ(i) − y(i)
∥∥∥2
2
,

6
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Table 3: Comparison of citation prediction models across yearly windows. * denotes LLMs are
finetuned or evaluated on 10% ratio of dataset while keep reporting stable results. Please refer to
Appendix E for scaling laws on dataset size. ft denotes LoRA fine-tuning.

Model Previous (RMSLE ↓) Fresh (RMSLE ↓)
Year 1 Year 2 Year 3 Year 4 Year 5 Avg. Year 1 Year 2 Year 3 Year 4 Year 5 Avg.

Traditional
SciBert 0.8278 0.9615 1.0499 1.1152 1.1639 1.0306 0.9614 1.0944 1.1743 1.2270 1.2541 1.1471
Qwen-Embed. 0.8830 1.0459 1.1497 1.2240 1.2790 1.1251 1.0407 1.2190 1.3110 1.3762 1.3960 1.2752
HINTS 1.0811 1.1602 1.2232 1.3180 1.3927 1.2534 1.0301 1.1844 1.2529 1.3483 1.4266 1.2485
NAIP 0.9894 0.9888 1.4546 1.8141 1.5828 1.3932 0.8652 0.9038 1.3458 1.6541 1.5495 1.2918

LLMs-based
*Llama-3B 0.8833 1.0170 1.1311 1.2064 1.2680 1.1012 1.0563 1.2884 1.3775 1.4268 1.5032 1.3304
*Qwen-4B 0.9597 1.1893 1.3701 1.5098 1.6197 1.3297 1.1650 1.3052 1.3809 1.4369 1.4718 1.3519
*Qwen-4B(ft) 0.9616 1.2371 1.4535 1.6127 1.7463 1.4022 1.1899 1.5586 1.7601 1.8911 1.9862 1.6772
*Qwen-8B 1.5001 1.8924 2.1054 2.2623 2.4476 2.0416 1.5458 2.0021 2.2427 2.3836 2.5070 2.1362

Ours 0.6772 0.6932 0.7809 0.8022 0.9177 0.7719 0.7170 0.7426 0.7892 0.8302 0.9514 0.7745

Table 4: Comparison of monthly citation prediction results. LLMs often overlook the monthly set-
ting specified in the prompt, leading to consistently worse performance compared to other baselines.

Model Previous (RMSLE ↓) Fresh (RMSLE ↓)
Mon. 1 Mon. 2 Mon. 3 Mon. 4 Mon. 5 Avg. Mon. 1 Mon. 2 Mon. 3 Mon. 4 Mon. 5 Avg.

Traditional
SciBert 0.2091 0.2793 0.3369 0.3879 0.4332 0.3386 0.2266 0.3141 0.3885 0.4536 0.5135 0.3925
Qwen3-Embed. 0.2107 0.2811 0.3403 0.3939 0.4404 0.3430 0.2283 0.3145 0.3905 0.4623 0.5232 0.3978
HINTS 0.5111 0.6448 0.6842 0.7204 0.7311 0.6562 0.5452 0.5661 0.6154 0.6577 0.7200 0.6209
NAIP 0.4026 0.4773 0.9666 1.3654 0.9094 0.7915 0.3032 0.4036 0.8110 1.1097 1.0898 0.7098

LLMs-based
*Llama-3B 0.6568 1.0175 1.2422 1.4531 1.6029 1.1945 0.6669 0.9927 1.2825 1.4835 1.5942 1.2040
*Qwen-4B 0.8741 0.9800 1.0861 1.1707 1.2221 1.0666 1.1650 1.3052 1.3809 1.4369 1.4718 1.3519
*Qwen-4B (ft) 0.2334 0.2913 0.3690 0.4217 0.4744 0.3579 1.4683 1.8955 2.1140 2.2625 2.3635 2.0207
*Qwen-8B 0.3470 0.4880 0.5705 0.5947 0.6128 0.5226 0.1478 0.3470 0.4186 0.6512 0.7898 0.4709

Ours 0.1845 0.1861 0.2128 0.2226 0.4539 0.2520 0.2117 0.2468 0.2396 0.2831 0.4673 0.2897

5 EXPERIMENT AND ANALYSIS

5.1 EXPERIMENT SETTING

Baselines We compare our approach against four representative baselines. SciBERT is a pre-
trained model specialized for scientific text, capturing content-based features. Qwen-Embed. is the
newest encoder model that captures more accurate semantic representations (Zhang et al., 2025).
HINTS (Jiang et al., 2021) models dynamic heterogeneous information networks for citation time
series prediction. NAIP (Zhao et al., 2024a) is a state-of-the-art method that integrates LLMs for the
prediction of direct impact. To further explore LLM usage, we additionally prompt and fine-tune
several LLMs on this task, including Llama3.2-3B (Dubey et al., 2024), Qwen-4B, and Qwen-8B
(Yang et al., 2025). Due to the large scale of our dataset, we exclude models with more than 8B.

Evaluation Metrics We evaluate model performance using two common metrics. RMSLE (Root
Mean Squared Logarithmic Error) is a regression metric suitable for highly skewed count data such
as citations, penalizing relative errors. NDCG@20 (Normalized Discounted Cumulative Gain at 20)
is a ranking metric that assesses the quality of predicted top-20 citation lists, giving higher weight
to correctly ranked items at the top. We provide NDCG@20 results in Appendix B.

5.2 MAIN RESULTS AND LLM INTEGRATION (RQ1)

Tables 3 and 4 detail the superior performance of our proposed framework across all yearly and
monthly citation prediction windows for both previous and fresh test sets.

Overall results. Our method consistently outperforms both traditional baselines (e.g., SciBERT,
HINTS, NAIP) and LLMs (LLaMA-3B, Qwen-4B/8B in zero-shot and finetuned settings) in citation
prediction. On the Previous set, it achieves substantially lower average RMSLE, demonstrating that
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task-specific design yields the most significant error reduction for yearly prediction. On the Fresh
set, our approach maintains the best performance, highlighting stronger robustness to distribution
shifts. Monthly-level prediction further exhibits lower errors than yearly-level prediction, demon-
strating that finer temporal granularity is easier to model; yet our method consistently achieves the
lowest RMSLE across both Previous and Fresh sets, confirming its advantage at fine-grained tempo-
ral scales. The degradation of baselines on the Fresh set reflects pronounced distribution shift, while
our method shows the smallest increase in mean RMSLE, indicating superior out-of-distribution and
temporal extrapolation robustness. We also note a natural trend that papers closer to the present tend
to have higher average citations, inherently producing a distribution shift relative to the training set;
a visualization of this distribution is provided in Appendix A.

LLMs integration. Across two test sets, LoRA finetuning is worse than our method in both tem-
poral scales and sometimes even underperforms the corresponding zeroshot prompts, implying that
lightweight finetuning struggles to encode temporal and cumulative-citation structure and may in-
troduce overfitting or prompt misalignment. These observations align with recent evidence in se-
quence or time-series modeling Tan et al. (2024): general-purpose LLMs are better leveraged as
text encoders for hidden-state capture, while temporal reasoning and prediction should be delegated
to task-specialized architectures and feature engineering (e.g., graph structure and historical trajec-
tory statistics), validating the design choice in our framework. In addition, we plot the prediction
distribution of LLMs in zero-shot and LoRA finetuning setting in Figure 3(b). We can infer that
for temporal task modeling, fine-tuning LLMs tends to overfit training-specific values and ignore
growth patterns, leading to underestimation, whereas graph-based and historical trajectory methods
are better suited for cumulative citation prediction.

(a) Pruning Control (b) LLMs Prediction distribution

Figure 3: Finetuning Comparison of LLMs after two thousand samples iteration, on year level.

(a) Previous vs. Fresh (b) Cross-domain

Figure 4: Control experiment and cross-domain experiment. (a) RMSLE comparison between pre-
vious and fresh test sets across scientific domains shows consistently higher errors on fresh data, es-
pecially in machine learning and language. (b) Cross-domain evaluation, where models are trained
on one domain and tested on all, highlights substantial performance drops under domain shift.
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5.3 SCIENTIFIC FACTORS (RQ2).

To assess the contribution of different graph attributes, we performed ablation experiments by pro-
gressively pruning three types of nodes: highly cited references (Citation > 20), venue information
(Venue not None), and large institutions (Institution > 1000) at 10%, 20%, 40%, and 100% in the
test set. The results (Figure 3(a)) show that model performance consistently degrades as pruning
increases, with reference nodes having the largest impact, as full removal raises RMSLE above 1.0.
Venue and institution nodes also contribute to performance, but to a lesser extent, indicating that
direct reference links are the most critical features for accurate scientific impact prediction, while
venue and institution provide complementary contextual information.

We further conducted cross-disciplinary knowledge transfer experiments as shown in Figure4(b),
training models on a source discipline and evaluating them across multiple target disciplines. Re-
sults indicate that models trained on Mathematics are the most robust, achieving the lowest or near-
lowest MSLE across most target disciplines; models trained on Physics generalize the worst, ex-
hibiting the highest errors universally. Besides, the relative difficulty across target disciplines is
consistent: Physics and Biology exhibit higher MSLE, suggesting noisier or more heterogeneous
citation growth, while Statistics and Mathematics remain comparatively stable.

5.4 MORE ANLAYSIS AND DISCUSSION

Table 5: Comparison of RMSE scores between
two impact measurement method along with their
correlation scores Cor. (all are statistically signifi-
cant). C log means using log citation number and
C TNCSI means using TNCSI score.

Metric Year 1 Year 2 Year 3 Year 4 Year 5 Avg

Previous
C log 0.6772 0.6932 0.7809 0.8022 0.9177 0.7719

C TNCSI 0.2016 0.2211 0.2291 0.2327 0.2352 0.2239

Cor. 0.7900 0.8061 0.8062 0.8119 0.8135 0.8055

Fresh
C log 0.7170 0.7426 0.7892 0.8302 0.9514 0.7745

C TNCSI 0.2316 0.2441 0.2556 0.2556 0.2532 0.2480

Cor. 0.8004 0.8128 0.8095 0.8136 0.8128 0.8098

Other Metrics. We further investigated the
impact of alternative metrics on model evalu-
ation. Following prior work, we extended our
prediction target to Topic Normalized Citation
Success Index(TNCSI) (Zhao et al., 2024c),
which normalizes citation counts relative to the
citation distribution of publications in the same
field, thereby mitigating cross-disciplinary cita-
tion bias. Table 5 presents the rmse scores via
using both raw citation counts and the TNCSI
metric, and their spearman correlation coeffi-
cients (Spearman, 1961). We observe that de-
spite differences in relative scores, the corre-
sponding predictions exhibit a strong positive
correlation. Moreover, we find that the fresh
test set continues to pose greater challenges
compared to the previous one.

Domain Differences. Figure 4(a) visualizes the error distribution across disciplines, revealing sub-
stantial performance gaps between fields. Moreover, performance does not exhibit a simple positive
correlation with the number of training samples; for instance, Physics has the largest number of
training samples (see Appendix A) but does not achieve the best performance, indicating that task
difficulty and distribution shift primarily drive the observed differences.

6 CONCLUSION

This work tackles the challenging problem of forecasting scientific impact across multiple tem-
poral horizons and heterogeneous data sources. We introduce a unified framework that integrates
heterogeneous graph neural networks with LLMs, supported by a large-scale and multi-temporal
benchmark dataset tailored for comprehensive and fine-grained evaluation. Through extensive em-
pirical analysis, our approach consistently outperforms existing methods, achieving state-of-the-art
performance across both yearly and monthly prediction horizons, evaluated on both Previous and
Fresh test subsets. These findings highlight the importance of jointly modeling structural dependen-
cies captured by heterogeneous graphs and rich semantic information encoded in textual content for
reliable and generalizable impact prediction. Future work could explore deeper integration of mul-
timodal data and adaptive model architectures to further incorporate more domain specific factors,
such as reproducibility in computer science and scalable investigation in sociological research.
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A DATASET CONSTRUCTION AND STATISTICS

A.1 METADATA STATISTICS

The distribution of our dataset is illustrated in Figure 5. The left panel shows the sampling and
partitioning across different disciplines. Following the proportions of the real-world distribution, we
sample accordingly, resulting in uniformly distributed subsets without noticeable anomalies.

Figure 5b further depicts the number of publications from 1983 to 2019, which exhibits a rapid
year-by-year increase. In particular, the growth becomes exponential after 2010, with the annual
publication volume surpassing seventy thousand papers in 2019.

A.2 SPLIT SET DISTRIBUTION

In addition, we visualize the distribution of the golden citation subset in Figure 6. Overall, the cita-
tion trajectories across different datasets are similar. However, the Fresh set demonstrates substan-
tially higher average citation counts compared to other categories. This gap is especially pronounced
in the yearly distribution, where the Fresh set grows more rapidly, while the monthly distribution
exhibits relatively lower overall citation values.

B NDCG AND TNCSI CALCULATION

B.1 NDCG ANALYSIS

We report the evaluation results using the NDCG@20 metric, as shown in Table 6 (Järvelin &
Kekäläinen, 2002). Compared with the RMSLE metric, the conclusions drawn from NDCG@20
appear to be more stochastic. For instance, the metric does not necessarily show a consistent decline
in performance as the interval length increases. This indicates that the loss function employed in our
task is only effective for optimizing regression objectives, but not well-suited for ranking tasks.
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(a) Paper distributions among categories. (b) Paper number distribution among years.

Figure 5: Dataset statistics: distributions of papers by research categories and publication years.

(a) Citation distribution among years. (b) Citation distribution among months

Figure 6: Distributional statistics of the three datasets. The results demonstrate that their citation
dynamics are positively correlated and exhibit similar temporal trends, supporting the comparability
of evaluation across datasets.We show that the distributions across categories in our dataset
are similar, enabling the model to learn and predict effectively; citation counts for fresh test
papers are higher than for previous ones, while the average citation values at the month level
are lower.

B.2 TNCSI

TNCSI (Topic Normalized Citation Success Index) is a metric designed to evaluate the citation
impact of articles by comparing them within the same research field, providing a normalized score
between 0 and 1 that indicates the likelihood an article’s impact surpasses that of its peers. Unlike
traditional citation counts, TNCSI normalizes across fields but originally focused on review papers
and cumulative citations, limiting its suitability for comparing newly published or regular research
articles. The fomulation is as follows:

Table 6: NDCG@5 scores of citation prediction models across yearly windows (Previous vs. Fresh).

Model Previous (NDCG@20) ↑ Fresh (NDCG@20) ↑
Year 1 Year 2 Year 3 Year 4 Year 5 Avg. Year 1 Year 2 Year 3 Year 4 Year 5 Avg.

SciBert 0.3668 0.3255 0.4330 0.4609 0.5374 0.5374 0.2844 0.3965 0.3999 0.4075 0.2982 0.2958
Qwen-Embed. 0.1721 0.2141 0.2929 0.3111 0.2586 0.2586 0.1965 0.2374 0.2576 0.2683 0.2739 0.2717
HINTS 0.1431 0.2698 0.3287 0.3174 0.3847 0.2891 0.1290 0.1824 0.2159 0.1597 0.2705 0.1915
NAIP 0.3173 0.5067 0.3695 0.7059 0.4285 0.3475 0.3134 0.4217 0.5705 0.4554 0.4402 0.3636

*Qwen-4B 0.5933 0.7498 0.7789 0.7769 0.7840 0.7366 – – – – – –
*Qwen-4B(ft) 0.8709 0.9905 0.9851 0.9806 0.9715 0.9597 – – – – – –

Ours 0.6963 0.7021 0.6822 0.7132 0.7392 0.7066 0.6638 0.6367 0.6313 0.6159 0.6764 0.6393
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TNCSI =

∫ cites

0

λe−λx, dx, x ≥ 0. (1)

C TRAINING PARAMETERS

We trained our model on one single H100 or A100 GPU. We configure our hybrid model with a
GCN-based graph encoder (3 layers, hidden size 256, 8 heads, dropout 0.1), a Qwen-based LLM
backbone (Qwen/Qwen3-0.6B by default, with adapters of dimension 64), and a learnable prefix
embedding of length 10 and dimension 512. The prediction head is a multi-layer perceptron with
hidden sizes [512, 256, 128], attention enabled, and regression as the default prediction type. Train-
ing is performed with a batch size of 16, learning rate of 2 × 10−5, weight decay of 0.01, warmup
ratio of 0.1, for up to 20 epochs with early stopping (patience 5, δ = 10−4). Input sequences are
truncated at 512 tokens, with at most 10 authors and 5 institutions retained. For completeness, the
full set of hyperparameters and configuration files will be available in our released code repository.

D THE USE OF LARGE LANGUAGE MODELS

Large language models are used in our early-stage writing for wording and grammar checking, as
well as searching for missing literature. LLMs are not involved in the later iterations of the paper
writing. Therefore, we do not consider LLMs as significant contributors to this paper.

E LLMS INTEGRATION AND DETAILS

In this project, LLMs primarily serve three roles. First, they are employed for denoising the data,
for which we directly utilized Qwen-4B. Second, we fine-tuned LLMs to predict citation sequences
at the text level; however, the performance was adversely affected by noise. Finally, we integrated
graph features to fine-tune prefix tokens, which constitutes the core innovation of our work.

Below, we also provide our used prompt template, including LLMs task prompt when doing prefix-
tuning, data cleaning when doing data collection.

E.1 LLMS LORA FINETUNING

Furthermore, we attempted direct fine-tuning of LLMs at the text level. Although the training pro-
cess converges (as shown in Figure 6), the performance is inferior compared to zero-shot and other
baselines. An analysis of the erroneous cases further reveals that, after fine-tuning, LLMs exhibit a
tendency to predict smaller values, likely as a conservative strategy. Figure 7b demonstrates that our
sampling strategy yields stable experimental results.

(a) Training loss of LLMs (ft) in Table 3 and 4. (b) Paper number distribution among years.

Figure 7: The loss curve of training LLMs and evaluation scaling laws along with sample numbers.
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E.2 PROMPT

The prompt of LLMs to predict future citation counts.

You are a scientometrics analyst. Task: Predict the future citation count of a paper within the specified
horizon.

• Base your prediction ONLY on the provided metadata and abstract.

• Assume today’s date is: {timestamps}.

• The prediction target is the total citations in future 1,2,3,4,5 years after publication (C5).

• Output a single line of five non-negative integers separated by commas.

• Return ONLY the numbers. No extra text or explanation.

• If information is missing, make a best estimate without adding new facts.

Paper Metadata:
Title: {title}
Authors: {author list}
Institutions: {institutions}
Venue: {venue}
Field(s): {fields}
Abstract: {abstract}

Example Output:
1, 2, 3, 4, 5
Generation Output:
Please predict the five citation numbers accordingly.

The prompt of LLMs to normalize noisy affiliations.

You are given a list of affiliation strings. Some are valid institutions, some are duplicated, and some
are meaningless. Please normalize them as follows:

• If the string is a valid institution name but with formatting issues, fix it (e.g., remove extra
punctuation, unify into “Institution Name”).

• If the string is a duplicate of another name, map it to the same corrected name.

• If the string is not an institution name (number, meaningless), map it to “unknown”.

• Return the result strictly as a JSON dictionary, where each original string is mapped to its
corrected normalized name.

Example Input:
[“University of California, Los Angeles”, “University of California, Los Angeles”, “01
Collaboration”]

Example Output:

{
” U n i v e r s i t y o f C a l i f o r n i a , Los Ange les ” : ” U n i v e r s i t y o f

C a l i f o r n i a ” ,
”01 C o l l a b o r a t i o n ” : ” unknown ”

}

Generation Output:
Please normalize the following affiliation list accordingly.
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The prompt of LLMs to normalize noisy venues.

You are given a list of venue strings. Some are valid venues, some are duplicated, and some are
meaningless. Please normalize them as follows:

• If the string is a valid venue name but with formatting issues, fix it (e.g., remove extra
punctuation, use proper title case like “Venue Name”).

• Remove any explicit year tokens (e.g., “2015”, “2014”).

• Remove edition indicators such as ordinal numbers or words (e.g., “1st”, “2nd”, “Third”,
“Fourth”).

• If the venue contains a trailing parenthetical acronym/abbreviation like “(ICAC3N)”,
“(HPEC)”, “(IVAPP)” that is all caps/digits/hyphen and ≤10 chars, drop that parenthetical
part. Keep descriptive tracks in parentheses (e.g., “(Emerging Technologies)”) as is.

• If both a full spelled-out name and an acronym appear together, keep only the full spelled-out
name and drop the acronym.

• If the string is a duplicate of another (after normalization), map it to the same corrected
name.

• If the string is not a venue name (pure number or meaningless), map it to “unknown”.

• Return the result strictly as a JSON dictionary, where each original string is mapped to its
corrected normalized name. Do not include comments or extra text.

Example Input:
[“Journal of Machine Learning Research”, “2015 IEEE International Conference on Web Services”,
“4th International Conference on X (ICACX)”, “01 Collaboration”]

Example Output:

{
” J o u r n a l o f Machine L e a r n i n g R e s e a r c h ” : ” J o u r n a l o f Machine

L e a r n i n g R e s e a r c h ” ,
”2015 IEEE I n t e r n a t i o n a l C o n f e r e n c e on Web S e r v i c e s ” : ” IEEE

I n t e r n a t i o n a l C o n f e r e n c e on Web S e r v i c e s ” ,
”4 t h I n t e r n a t i o n a l C o n f e r e n c e on X (ICACX) ” : ” I n t e r n a t i o n a l

C o n f e r e n c e on X” ,
”01 C o l l a b o r a t i o n ” : ” unknown ”

}

Generation Output:
Please normalize the following venue list accordingly.
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