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Abstract
In this paper, we present a new method for few-
sample supervised feature selection (FS). Our
method first learns the manifold of the feature
space of each class using kernels capturing multi-
feature associations. Then, based on Rieman-
nian geometry, a composite kernel is computed,
extracting the differences between the learned
feature associations. Finally, a FS score based
on spectral analysis is proposed. Considering
multi-feature associations makes our method mul-
tivariate by design. This in turn allows for
the extraction of the hidden manifold underly-
ing the features and avoids overfitting, facilitat-
ing few-sample FS. We showcase the efficacy
of our method on illustrative examples and sev-
eral benchmarks, where our method demonstrates
higher accuracy in selecting the informative fea-
tures compared to competing methods. In addi-
tion, we show that our FS leads to improved clas-
sification and better generalization when applied
to test data.

1. Introduction
Feature selection (FS) plays a vital role in facilitating ef-
fective and efficient learning in problems involving high-
dimensional data (Bolón-Canedo et al., 2022; Hastie et al.,
2009; Duda et al., 2006). By selecting the relevant fea-
tures, FS methods, in effect, reduce the dimension of the
data, which has been shown useful in improving learning,
especially in terms of generalization and noise reduction
(Remeseiro & Bolon-Canedo, 2019). In contrast to fea-
ture extraction (FE), in which the whole feature space is
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projected into a lower dimension space, FS eliminates irrel-
evant and redundant features and preserves interpretability
(Hira & Gillies, 2015; Alelyani et al., 2018). This character-
istic of FS has a significant societal impact since it enhances
the explainability of AI models.

In the literature, there are three main approaches for FS: (i)
wrapper, (ii) embedded, and (iii) filter (Tang et al., 2014;
Alelyani et al., 2018). In the wrapper approach, the clas-
sifier performance plays an integral role in the feature se-
lection. Concretely, the performance of a specific classifier
is maximized by searching for the best subset of features.
Since examining all possible subsets is an NP-hard problem,
a suboptimal search is often applied. Still, this approach is
considered computationally heavy for problems with large
feature spaces (Hira & Gillies, 2015; Alelyani et al., 2018).

The embedded approach mitigates the wrapper limitations
by incorporating the feature selection in the model training,
and thus, avoids multiple optimization processes. Conse-
quently, embedded methods are considered computationally
feasible and often preserve the advantages of the wrapper
approach. However, both wrapper and embedded methods
are prone to overfitting because the selection is part of the
training (Brown et al., 2012; Bolón-Canedo et al., 2013;
Venkatesh & Anuradha, 2019).

In the filter approach, each feature is ranked according
to particular criteria independent of the model learning.
The various ranking techniques aim to identify the features
that best discriminate between the different classes. Then,
highly-ranked features are selected and utilized in down-
stream learning tasks. This approach is computationally
efficient and scalable for high-dimensional data. In addition,
the classifier performance is not controlled during the FS,
mitigating overfitting and enhancing generalization capa-
bilities (Jain & Singh, 2018). Existing filter FS methods
consider each feature independently and ignore the underly-
ing feature structure (Bolón-Canedo et al., 2015; Li et al.,
2017). However, multivariate information could be particu-
larly important for feature selection due to various feature
interactions in many real-world applications (Li et al., 2017).

In this work, we propose a filter FS method that identi-
fies the meaningful features by comparing the underlying
geometry of the feature spaces of different classes in a su-
pervised setting. First, the feature manifold of each class
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is learned using a symmetric kernel. Then, based on the
Riemannian geometry of the obtained kernels (Pennec et al.,
2006; Bhatia, 2009), we build a composite symmetric ker-
nel that captures the differences between the geometries
underlying the feature spaces (Shnitzer et al., 2022; 2019).
Specifically, we apply spectral analysis to the composite
kernel and propose a score that reveals discriminative fea-
tures. We note that to the best of our knowledge, our work is
the first filter FS method to combine feature selection with
manifold learning applied to the feature space rather than
the typical sample space. This allows us to naturally take
into account multivariate information, which is lacking in
existing univariate filter FS methods.

The proposed method, which we term ManiFeSt (Manifold-
based Feature Selection), is theoretically grounded and
tested on several benchmark datasets. We show empirically
that ManiFeSt improves the identification of informative
features compared to other filter FS methods. Using kernels
to capture multi-feature associations, and particularly, their
spectral analysis, makes ManiFeSt multivariate by design.
We posit that such multivariate information enhances the
ability to identify the optimal subset of features, leading
to improved performance and generalization capabilities,
as demonstrated in various experiments. In addition, these
properties facilitate few-sample FS, i.e., identifying informa-
tive features with only a few labeled samples. In univariate
methods, identifying the discriminative features is based
only on differences in feature values between classes. When
only a small number of samples is available, this procedure
becomes very sensitive to noise. In contrast, the feature
associations are less sensitive to small sample size, as they
are governed by the (large) feature space rather than by the
(small) sample size. Indeed, we empirically show that Mani-
FeSt is superior compared to competing univariate methods
when the sample size is small.

Our main contributions are as follows. (i) We present a new
approach for FS from a multivariate standpoint, exploiting
the geometry underlying the features. We show that con-
sidering multi-feature associations, rather than a univariate
perspective based on single features, is useful for identifying
the features with high discriminative capabilities. (ii) We
employ a new methodology for feature manifold learning
that combines classical manifold learning with the Rieman-
nian geometry of matrix spaces. (iii) We propose a new
algorithm for supervised FS. Our algorithm demonstrates
high performance, specifically, improved generalization ca-
pabilities, promoting accurate few-sample FS.

2. Related Work
Classical filter methods use statistical tests to rank the fea-
tures. One of the most straightforward methods is based on
computing the Pearson’s correlation of each feature with

the class label (Battiti, 1994). The ANOVA F-value (Kao &
Green, 2008), the t-test (Davis & Sampson, 1986), and the
Fisher score (Duda et al., 2006) are similarly used for select-
ing discriminative features. Other scoring techniques, such
as information gain (IG) (Vergara & Estévez, 2014; Ross,
2014) and Gini-index (Shang et al., 2007), select features
that maximize the purity of each class.

In addition to statistical methods, a fast-growing class of fil-
ter methods rely on geometric considerations. One popular
method is the Laplacian score (He et al., 2005; Zhao & Liu,
2007; Lindenbaum et al., 2021), which attempts to evaluate
the importance of each feature using a graph-Laplacian that
is constructed from the samples. Similarly to the Laplacian
score, most of the geometric FS methods consider the ge-
ometry underlying the samples. One exception is Relief
(Kira & Rendell, 1992) (including its popular extensions
(Kononenko, 1994; Robnik-Šikonja & Kononenko, 2003)),
in which the score increases or decreases according to the
differences between the values of the feature and its nearest
neighbors. In contrast to Relief-based methods, our method
captures multi-feature associations using kernels, and there-
fore, it is not limited to nearest neighbors local geometry.

Most existing filter FS methods are univariate, i.e., they
consider each feature separately and do not account for
multi-feature associations (Bolón-Canedo et al., 2015; Shah
& Patel, 2016; Jain & Singh, 2018). Thus, the ability to
identify the optimal feature subset may be limited (Li et al.,
2017), leading to degraded performance. To mitigate this
limitation, mRMR (Minimum Redundancy and Maximum
Relevance) (Ding & Peng, 2005; Zhao et al., 2019) and
CFS (Correlation-based Feature Selection) (Hall, 1999) al-
gorithms assume that highly correlated features do not con-
tribute to the model and attempt to control feature redun-
dancy. The key idea is to balance between two measures:
a relevance measure and a redundancy measure. While
mRMR and CFS algorithms may consider feature associa-
tions to avoid selecting highly correlated features, thereby
controlling the redundancy in a multivariate manner, the
relevance measure is univariate. Two notable exceptions
are methods that use the trace ratio (Nie et al., 2008) and
the generalized fisher score (Gu et al., 2011) as relevance
metrics, which are computed based on a subset of features.
However, both methods involve optimization that requires
more resources than standard FS filter methods.

Traditional geometric FS methods such as the Laplacian
score (He et al., 2005), SPEC (Zhao & Liu, 2007), and
Relief (Robnik-Šikonja & Kononenko, 2003) evaluate the
importance of the features based on the sample space. In the
Laplacian score and SPEC, the constructed kernel reflects
the sample associations, and in Relief, the nearest neighbors
are determined based on the geometry of the samples. In
contrast, our method is applied to the feature space rather
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than the sample space. Consequently, our method is multi-
variate, designed to capture complex structures underlying
the feature space, leading to improved generalization and
consistency.

One concurrent work, DiSC (Sristi et al., 2022), takes a
similar approach of examining differences between feature
associations through kernels in the feature space. However,
DiSC is a feature extraction technique, which constructs
meta-features and identifies groups of features, whereas
our method is a feature selection technique, allowing the
choice of the feature subset size. Moreover, DiSC identifies
groups of discriminative features with no score measure
within these groups, which may result in very large feature
spaces since the number of highlighted features cannot be
controlled. We revisit DiSC in Appendix C.

The FS problem shares similarities with the two-sample
test (Lehmann et al., 2005), which focuses on determining
whether two distributions (classes) are identical or not. FS
goes beyond this binary assessment and provides a more de-
tailed understanding of the differences. While interpretable
methods like (Jitkrittum et al., 2016) and (Lopez-Paz &
Oquab, 2017) offer insights into the regions of difference,
they do not provide explicit scores for individual samples.
Recent approaches (Kim et al., 2019; Cazáis & Lhéritier,
2015; Landa et al., 2020) employ a refined task termed
local two-sample testing to identify the regions of differ-
ence. However, it is crucial to differentiate between the
two-sample test that identifies specific samples and the FS
problem that seeks specific features. This distinction is
important because, in the two-sample test, samples are as-
sumed to be i.i.d., while in the feature selection problem, the
features may exhibit multivariate relations. Indeed, our ap-
proach inherently accounts for these intricate relationships.

3. ManiFeSt - Manifold-based Feature
Selection

The proposed algorithm for feature selection consists of
three stages. First, a feature space representation is con-
structed for each class using a kernel. Then, we build a
composite kernel that is specifically-designed to capture the
difference between the classes. Finally, to reveal the signifi-
cant features, we apply spectral analysis to the composite
kernel and propose a FS score.

3.1. Feature Manifold Learning

Consider a dataset X ∈ RN×d with N samples and d
features consisting of two classes. In order to capture
differences in the feature associations between the two
classes, we propose to learn the underlying geometry of
the feature space of each class using a kernel. For this
purpose, according to the class labels, the dataset is di-

vided into two subsets X(1) = [x
(1)
1 , · · · ,x(1)

d ] ∈ RN1×d

and X(2) = [x
(2)
1 , · · · ,x(2)

d ] ∈ RN2×d, where x
(ℓ)
i ∈ RNℓ

denotes the ith feature in the ℓth class, N1 and N2 denote the
number of samples in the first and second class, respectively,
and N=N1+N2.

For each class ℓ = 1, 2, a radial basis function (RBF) kernel
Kℓ ∈ Rd×d is constructed as follows:

Kℓ[i, j] = e
−
∥∥∥x(ℓ)

i −x
(ℓ)
j

∥∥∥2
/2σ2

ℓ , i, j = 1, . . . , d (1)

where σℓ is a scale factor, typically set to the median of the
Euclidean distances up to some scalar.

Using kernels is common practice in nonlinear dimension
reduction and manifold learning methods (Schölkopf et al.,
1997; Tenenbaum et al., 2000; Roweis & Saul, 2000; Belkin
& Niyogi, 2003; Coifman & Lafon, 2006). From the stand-
point of this approach, the features are viewed as nodes of
an undirected weighted graph and the kernel prescribes the
weights of the edges connecting the nodes (features). This
graph is considered a discrete approximation of the continu-
ous manifold, on which the features reside. Importantly, in
contrast to classical manifold learning methods (Tenenbaum
et al., 2000; Roweis & Saul, 2000; Belkin & Niyogi, 2003;
Coifman & Lafon, 2006), which typically attempt to learn
the manifold underlying the samples, our method learns
the manifold underlying the features, capturing information
on the feature associations, and thus, making our approach
multivariate. This viewpoint is tightly related to graph sig-
nal processing (Shuman et al., 2013; Sandryhaila & Moura,
2013), where graphs, whose nodes are the features of the
signals, are similarly computed.

One important property of RBF kernels is that they are
symmetric positive semi-definite (SPSD) matrices, a fact
that we will exploit next. To simplify the exposition, we
will assume here that they are strictly positive (SPD), and
address the general case of SPSD matrices in Appendix B.
We note that our method is not limited to RBF kernels, and
other SPSD kernels could be used instead.

3.2. Operator Composition on the SPD Manifold

One way to extract the differences between the feature
spaces through their kernel representation is to simply sub-
tract the kernels K1−K2. Although natural, applying such
a linear operation violates the SPD geometry of the kernels
and in fact assumes that the kernels live in a linear (vec-
tor) space. In order to “respect” and exploit the underlying
Riemannian SPD geometry, we propose to implement the
following two-step procedure in a Riemannian manner. We
first find the midpoint M=(K1+K2)/2, and then, we com-
pute the differences M−K1 or M−K2. The Riemannian
counterparts of the above Euclidean additions and subtrac-
tions are described next. See Appendix A for background
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Figure 1. Illustration of the definitions of the operators M and D.

on the Riemannian geometry of SPD and SPSD matrices.

Firstly, we compute the mid-point M on the geodesic path
connecting K1 and K2 (Katz et al., 2020) (which coincides
with the Riemannian mean (Pennec et al., 2006)):

M=γK1→K2(
1
2 )=K

1/2
1

(
K

−1/2
1 K2K

−1/2
1

)1/2

K
1/2
1 .

(2)
Second, to compute the differences, the two kernels are
projected onto the tangent space to the SPD manifold at the
mid-point M . By definition, this is given by the logarithmic
map of K1 at M :

D=LogM(K1)=M1/2 log
(
M−1/2K1M

−1/2
)
M1/2.

(3)
Note that since LogM (K2) = −LogM (K1), one projec-
tion is sufficient. In Fig. 1, we present an illustration of the
construction of the two kernels M and D.

Details on the implementation using SPSD geometry appear
in Appendix B.

3.3. Proposed Feature Score

The proposed FS score relies on the spectral analysis of
the composite kernel D. Let λ(D)

i and ϕ
(D)
i ∈ Rd be the

eigenvalues and eigenvectors of D, respectively. Note that
D is symmetric, and therefore, its eigenvalues are real and
its eigenvectors form an orthonormal basis.

The proposed FS score r ∈ Rd is given by

r =

d∑
i=1

|λ(D)
i | · (ϕ(D)

i ⊙ ϕ
(D)
i ) (4)

where ⊙ is the Hadamard (element-wise) product and r(j)
is the score of feature j. In words, the magnitude of the
eigenvectors is weighted by the eigenvalues and summed
over to form the ManiFeSt score. Note that this score is
multivariate from two perspectives. First, the kernels cap-
ture the pairwise associations of each feature with all other
features. Second, due to the spectral decomposition of the
difference operator, higher-order associations are captured
as well by the eigenvectors ϕ

(D)
i ∈ Rd, thus providing

richer multivariate information.

Our score is related to several previous frameworks that ex-
tract new representations (signatures) of data using SPD and
SPSD kernels. Two notable signatures, defined for shape
analysis tasks, are the heat kernel signature (Sun et al., 2009)
and the wave kernel signature (Aubry et al., 2011), both are
of the form

∑
i f(µi)ϕ

2
i (x), where µi and ϕi are the eigen-

values and eigenvectors of the Laplace-Beltrami operator
and x is a point on the shape. In another recent work (Cheng
& Mishne, 2020), such a score was shown to facilitate sepa-
ration of clustered samples from background. Inspired by
these signatures, our score relies on the eigenpairs of the
operator D, defined in Eq. (3) as the Riemannian difference
between the kernels representing the feature spaces of the
two classes, K1 and K2. While our score resembles classi-
cal kernel signatures, it has two important distinctions. (i)
To the best of our knowledge, such kernel signatures have
not been used in the context of feature selection in the past.
(ii) Perhaps more importantly, the kernel we use (the differ-
ence operator D) is significantly different than the kernels
typically used in the kernel signatures.

ManiFeSt is summarized in Algorithm 1. For simplicity,
here we described an algorithm for binary classification
problems. A natural geometric extension to multi-class
problems is detailed in Appendix C, along with an example
depicting the properties of the multi-class ManiFeSt.

Algorithm 1 ManiFeSt Score

Input: Dataset with two classes X(1) and X(2)

Output: FS score r

1: Construct kernels K1 and K2 ▷ According to (1)
2: Build the mean operator M ▷ According to (2)
3: Build the difference operator D ▷ According to (3)
4: Apply eigendecomposition to D
5: Compute the FS score r ▷ According to (4)

3.4. Illustrative Example

We illustrate our approach using MNIST (Deng, 2012). We
generate two sets consisting of 1500 images of 4 and 1500
images of 9. In this example, the pixels are viewed as fea-
tures, and we aim to identify pixels that bear discriminative
information on 4 and 9. We apply Algorithm 1 and present
the results in Fig. 2. Note that the kernel construction ap-
proach in this example is not invariant to image transfor-
mations such as rotation, due to the Euclidean distance in
(1). To accommodate invariance to various transformations
in more complicated image datasets, the Euclidean metric
in the kernel construction can be replaced by other metrics,
e.g., by first embedding the data in some invariant space.

We see in Fig. 2(left) that the two leading eigenvectors of
the mid-point kernel, M , correspond to the common back-
ground and to the common structure of both digits, 4 and
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9. In Fig. 2(middle), we see that the leading eigenvectors
of the composite difference kernel, D, indeed capture the
main conceptual differences between the two digits. These
differences include the gap at the top of the digit 4, the tilt
differences in the digits’ legs, and the differences between
the round upper part of 9 and the square upper part of 4. As
shown in Fig. 2(right), the ManiFeSt score, which weighs
the eigenvectors by their respective eigenvalues, provides
a consolidated measure of the discriminative pixels. In Ap-
pendix D.2.1, we present an additional illustrative example.

4. Theoretical Foundation
We begin with a characterization of the spectrum of D.
Each kernel, Kℓ, captures intrinsic feature associations
that characterize the samples in each class. The eigenvec-
tors of these kernels can be used as new representations
for the feature spaces, extracting intra-class similarities
between features. For each kernel, Kℓ, the most domi-
nant components of these feature associations are captured
by eigenvectors that correspond to the largest eigenvalues.
The motivation for our score then comes from the spec-
tral properties of the difference operator, D, which were
recently analyzed in (Shnitzer et al., 2022). This work
proved that the leading eigenvectors of D (corresponding
to the largest eigenvalues in absolute value) are related to
similar eigenvectors of K1 and K2 that correspond to sig-
nificantly different eigenvalues. Specifically, it was shown
that the eigenvalues of D that correspond to eigenvectors
that are (approximately) shared by K1 and K2, are equal to
λ(D) = 1

2

√
λ(K1)λ(K2)

(
log(λ(K1))− log(λ(K2))

)
. The

term
√
λ(K1)λ(K2) implies that λ(D) is dominant only if

both λ(K1) and λ(K2) are dominant. In addition, the term(
log(λ(K1))− log(λ(K2))

)
indicates that λ(D) is dominant

only if λ(K1) ≫ λ(K2) or λ(K2) ≫ λ(K1). Therefore, in
the context of our work, the operator D emphasizes compo-
nents representing feature associations that are (i) dominant,
and (ii) significantly different in the two classes.

Here, we show that high absolute values in eigenvectors
of D with large eigenvalues (in absolute value), represent
features with significantly different associations between
the two classes. Therefore, the eigenvalue weighting in the
ManiFeSt score (4) ensures that discriminative features will
get high scores.
Proposition 1. Assume that ϕ is a shared eigenvector of
K1 and K2 with respective eigenvalues λ(K1) and λ(K2).
Then ϕ is an eigenvector of D with an eigenvalue λ(D)=√
λ(K1)λ(K2)

(
log λ(K1)−log λ(K2)

)
that satisfies:∣∣∣λ(D)

∣∣∣ ≤ 2

d∑
i,j=1

|K1[i, j]−K2[i, j]||ϕ(i)||ϕ(j)| (5)

where Kℓ[i, j] = e−∥x(ℓ)
i −x

(ℓ)
j ∥2/2σ2

, and x
(ℓ)
i and x

(ℓ)
j are

vectors containing the values of features i and j, respec-
tively, from all the samples in class ℓ = 1, 2.

This bound implies that if λ(D) is large, there must
exist pairs of features i0 and j0 that significantly con-
tribute to the sum in the right-hand side by satisfying: (i)
|ϕ(i0)| and |ϕ(j0)| are large, and (ii) e−∥x(1)

i −x
(1)
j ∥2/2σ2

−
e−∥x(2)

i −x
(2)
j ∥2/2σ2

is large, implying on a significant differ-
ence of the feature associations between the two classes. In
other words, this derivation indicates that a feature i that is
discriminative in a multivariate sense, i.e., a feature whose
associations with other features are significantly different be-
tween the two classes, is represented by a high value |ϕ(i)|
in eigenvectors corresponding to large eigenvalues, |λ(D)|.
Observing the expression in (4), it is evident that features i
with high values of |ϕ(i)| in eigenvectors corresponding to
large |λ(D)| are assigned high ManiFeSt scores.

The proof of Proposition 1 appears in Appendix E, along
with more general result for approximately shared eigenvec-
tors in Proposition 2.

Additional motivation for using D to recover differences be-
tween the feature spaces can be demonstrated through small
perturbations of the kernels, as shown in (Shnitzer et al.,
2022, Proposition 3) and repeated here for completeness.

Proposition 3. Assume K2 = K1 + E such that
∥EK−1

1 ∥ < 1, then D ≈ − 1
2 (K2 −K1)

(
K−1

1 K2

)1/2
.

This result shows that D is related to the differences be-
tween the graph kernels factored by a term related to the
Riemannian metric of the space of SPD matrices. More in-
tuitively, the definition of D as the logarithmic map, which
maps a point from the manifold to the tangent space, is the
Riemannian counterpart of subtraction in a linear space. The
proof of Proposition 3 appears in Appendix E.

To conclude this section, we summarize the main results
concerning the properties of D and the ManiFeSt score:

• The eigenvalue structure of D (Propositions 1 and 2) and
the characterization of D (Proposition 3) indicate that
feature relations that are dominant only in one feature
graph, represented by K1 or K2, will be captured by
an eigenvector with a large eigenvalue in D. Therefore,
the leading eigenvectors of D highlight the differences
between the feature graphs.

• Proposition 1 demonstrates that the eigenvalues of D
are bounded from above by the differences between the
feature graph kernels and the eigenvector values. This
strengthens the claim that the largest eigenvalues of D (in
absolute values) correspond to eigenvectors that highlight
features which are differently connected in the feature
graphs of the classes. This provides additional motivation
for the feature score that is weighted by these eigenvalues.
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Figure 2. Illustration of the proposed approach and the resulting ManiFeSt score for digit recognition.

5. Experiments
We demonstrate the performance of ManiFeSt on synthetic
and real datasets and compare it to commonly-used FS meth-
ods. In all experiments, the data is split to train and test sets
with nested cross-validation. All competing FS methods
are tuned to achieve best results on the train set. Additional
implementation details and results are in Appendix D.

5.1. XOR-100 Problem

Following (Kim et al., 2010; Bolón-Canedo et al., 2011;
Yamada et al., 2020), we generate a synthetic XOR dataset
consisting of d = 100 binary features and N = 50 instances.
Each feature is sampled from a Bernoulli distribution, and
each instance is associated with a label given by y = f1⊕f5,
where ⊕ is the XOR operation and fi is the ith feature. Thus,
only two features, f1 and f5, are relevant for the class label.

This seemingly simple problem is in fact challenging, espe-
cially for existing univariate filter FS methods that consider
each feature independently and ignore the inherent feature
structure (Bolón-Canedo et al., 2015; Li et al., 2017).

In Fig. 3, we present the normalized feature score obtained
by the tested FS methods averaged over 200 Monte-Carlo
iterations of data generation. The green circles denote the
average score, while the red dashes indicate the standard
deviation. In each iteration, the two features with maximal
scores are selected, and the average number of correct selec-

tions for each method is denoted in parentheses. The results
indicate that ManiFeSt perfectly identifies the multivariate
behavior of f1 and f5, whereas all other compared methods,
except for ReliefF, fail.

We note that this XOR-100 problem is a multivariate prob-
lem, because the XOR result depends on f1 and f5. Never-
theless, we see that ReliefF, which is arguably a univariate
method (Jović et al., 2015), identifies the relevant features.
Although ReliefF examines each feature separately, it con-
siders neighboring samples, which evidently provide suffi-
cient multivariate information to correctly detect the features
in this example. Still, ManiFeSt, which is multivariate by
design, outperforms ReliefF obtaining perfect identification
of the two relevant features relative to 0.8 of ReliefF.

5.2. Madelon

We test ManiFeSt on the Madelon synthetic dataset (Guyon
et al., 2008) from the NIPS 2003 feature selection challenge.
Based on a 5-dimensional hypercube embedded in R5, the
Madelon dataset consists of 2600 points grouped into 32
clusters. Each cluster is normally distributed and centered
at one of the hypercube vertices. The clusters are randomly
assigned to one of two classes. Each point is a vector of
500 features, where only 20 are relevant: 5 correspond to
the coordinates of the hypercube, and 15 are random linear
combinations of them. The remaining features are noise.
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Figure 3. Feature ranking for the XOR-100 problem. Green dots
denote the average score, and red lines indicate the standard devia-
tion. The average number of correct FS is denoted in parentheses.

Figure 4. Classification accuracy as a function of the feature num-
ber on the Madelon dataset. Lines denote the average test accuracy,
and the shaded area denote the standard deviation.

The data is divided into train and test sets with a 10-fold
cross-validation. We consider two cases. In the first case,
the FS is based on the whole train set (2340 points). In
the second case, the FS is based on only 5 percent of the
train set (117 points). Since no ground-truth is available for
the relevant features, for evaluation, an SVM classifier is
optimized using the entire train set in both cases.

Fig. 4 shows the classification accuracy obtained based on
different subsets of features by the tested methods. The
curves indicate the average test accuracy, and the shaded
area represents the standard deviation. We see based on the
red curves that all the methods identify relevant features
when the assessment of the FS score is based on the entire
train set. Note that selecting too few or too many features
may lead to poor classification. The best average test ac-
curacy is 90.73% and is achieved by both ManiFeSt and
ReliefF (which obtained the best result in the NIPS 2003
challenge (Guyon et al., 2007)).

Furthermore, when the FS is based on a reduced number of
samples, all the methods but ManiFeSt fail to capture the
relevant features, as demonstrated by the blue curves. In con-
trast, the classification obtained by ManiFeSt is unaffected,
showing a remarkable robustness to reduction in sample
size, thus suggesting good generalization capabilities.

Figure 5. Max test classification accuracy as a function of the FS
sample size on the Madelon dataset.

We further explore the effect of the sample size on the per-
formance of ManiFeSt. Fig. 5 shows the obtained maximum
classification accuracy versus the sample size (in log scale).
We see that all the methods but ManiFeSt suffer from se-
vere degradation when the sample size is reduced, and fail
completely for sample size that is less than 10 percent (234
samples). Conversely, ManiFeSt demonstrates robustness
to the sample size and even performs well when the sample
size consists of only 1 percent of the samples (23 samples).

5.3. Clusters on a Hypercube

We simulate a variant of the Madelon dataset (Guyon, 2003)
using the scikit-learn function make classification(). We
consider this variant because here the ground truth is avail-
able, whereas the Madelon dataset lacks information on the
relevant features. See more details on the dataset generation
in Appendix D.1.

We generate 2000 samples consisting of 200 features with
10 relevant features and split the dataset into train and test
sets with 1500 and 500 samples, respectively. For FS, we
use only 50 samples from the train set to emphasize the
effectiveness of ManiFeSt with only a few labeled samples.
We select the top 10 features according to each FS method,
and an SVM is optimized using the entire train set with
the selected features. We repeat this procedure using 50
cross-validation iterations.

Fig. 6(a) presents the number of correct selections obtained
by the tested FS methods. The median and average values
are denoted by red lines and circles. The boundaries of
the box indicate the 25th and 75th percentiles. We see that
ManiFeSt outperforms the competing methods by a large
margin using a relatively small number of samples.

Fig. 6(b) shows the t-SNE visualization (Van der Maaten &
Hinton, 2008) for a single realization of the test samples us-
ing all the features (left), top 10 features selected by ReliefF
(middle), and top 10 features selected by ManiFeSt (right).
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Figure 6. Results on the simulated variant of the Madelon dataset.
(a) Boxplot of the number of correct selections indicating the 25th

and the 75th percentiles. The median and average are denoted by
red lines and circles, respectively. (b) t-SNE visualization of the
test samples using all the features (left), top 10 features selected by
ReliefF (middle), and top 10 features selected by ManiFeSt (right).

The color (red and green) denotes the (hidden) class label.
Both FS methods lead to a better class separation, while
the separation using ManiFeSt is more pronounced. We
report that ManiFeSt yields 9 (out of 10) correct selections,
whereas ReliefF only 6. In addition, the average accuracy
on the selected features is depicted in parentheses, further
demonstrating the advantage of ManiFeSt over ReliefF.

5.4. Colon Cancer Gene Expression

Figure 7. Accuracy as a function of the number of features on the
colon cancer gene expression dataset. The dashed and solid lines
represent the average test and validation accuracy, respectively.

We test a dataset of colon cancer gene expression samples
(Alon et al., 1999), which is relatively small, typical to the
biological domain. The dataset consists of the expression
levels of 2000 genes (features) in 62 tissues (samples), of
which 22 are normal, and 40 are of colon cancer. The
samples are split to 90% train and 10% test sets. Results are
averaged over 50 cross-validation iterations.

Fig. 7(a) shows the average classification accuracy for differ-
ent subsets of features. The solid and dashed lines represent
the average validation and test accuracy, respectively. Mani-
FeSt achieves the best test accuracy of 87.10%, whereas the
test accuracy of competing methods is 86.45% or below.

Even though generalization can be improved by applying
FS, the FS itself is still prone to overfitting. Indeed, from
the gap between the validation and test accuracy, we see that
ManiFeSt generalizes well compared to all other competing
methods. To further test the generalization capabilities of
ManiFeSt, in Appendix D.2.2, we present the generalization
error obtained by ManiFeSt for three different kernel scales,
i.e., σℓ in Eq. (1). The results imply that the larger the scale
is, i.e., the more feature associations are captured by the ker-
nel, the smaller the generalization error becomes. This may
suggest that considering the associations between the fea-
tures enhances generalization, in contrast to the competing
methods that only consider univariate feature properties.

While ManiFeSt exhibits enhanced generalization capabil-
ities, its maximal performance is achieved by using more
features (200 compared to 40). Our empirical examina-
tion revealed that ManiFeSt selects some irrelevant features
because it analyzes feature associations rather than each fea-
ture separately. Therefore, ManiFeSt might identify features
without any discriminative capabilities, through their con-
nections to other relevant and discriminative features (see
Appendix D.2.3). Yet, despite the selection of irrelevant
features, ManiFeSt facilitates the best test accuracy.

To alleviate the selection of irrelevant features, we propose
combining classical univariate criteria with our multivari-
ate score of ManiFeSt (4). In Fig. 7(b), we present the
results obtained when combining ManiFeSt with ReliefF
by summing their normalized feature scores. We see that
this simple combination results in improved performance.
Now, the maximal accuracy is 89.03%, and it is obtained by
selecting only 40 features. This result calls for further re-
search, exploring systematic ways to combine the multivari-
ate standpoint of ManiFeSt with univariate considerations.

The enhanced generalization capabilities are demonstrated
here only with respect to filter methods since embedded
and wrapper methods typically suffer from large general-
ization errors when applied to small datasets (Brown et al.,
2012; Bolón-Canedo et al., 2013; Venkatesh & Anuradha,
2019). To support this claim, we report that a recent em-
bedded method applied to the colon dataset obtained test
accuracy of 83.85% (Yang et al., 2022), outperforming vari-
ous other embedded methods. By using the same train-test
split scheme (49/13) as in (Yang et al., 2022), ManiFeSt
achieves test accuracy of 85.38% with 400 features. The
combination with ReliefF obtains 84% accuracy with 80
features. See more comparisons in Appendix D.2.2. We
note that filter methods are usually used as preprocessing
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Table 1. Comparison of error, standard deviation, and number of features used for various filter FS methods on benchmark datasets.
Datasets

Methods (# Features \# Samples) Gisette (5000 \7000) Colon (2000 \62) Prostate (5966 \102)

All features baseline 1.96± 0.57 17.74± 13.69 8.82± 9.23
Gini Index 1.41± 0.45 (700) 15.16± 12.23 (20) 5.88± 7.32 (119)
ANOVA 1.34± 0.47 (800) 14.52± 10.43 (16) 5.88± 6.88 (357)
Pearson 1.34± 0.47 (800) 14.52± 10.43 (16) 5.88± 6.88 (357)
T-test 1.34± 0.47 (800) 16.13± 12.56 (80) 5.56± 7.31 (715)
Fisher 1.34± 0.47 (800) 14.52± 10.43 (16) 5.88± 6.88 (357)
IG 1.40± 0.50 (800) 13.87± 11.58 (40) 6.21± 7.30 (20)
Laplacian 1.39± 0.40 (1500) 14.19± 10.51 (18) 6.21± 6.83 (8)
ReliefF 1.39± 0.44 (1500) 13.23± 11.70 (20) 5.56± 8.52 (1073)
ManiFeSt (ours) 1.29± 0.50 (700) 12.90± 12.71 (200) 5.23± 7.82 (119)
ManiFeSt + ReliefF (ours) 1.16± 0.27 (600) 10.97± 10.96 (40) 5.23± 6.94 (238)

for wrapper and embedded methods (Alshamlan et al., 2015;
Shaban et al., 2020; Peng et al., 2010). In such an approach,
ManiFeSt may provide explainable prepossessing without
eliminating multivariate structures unlike existing filters.

5.5. Additional Results

We compare our approach with different FS methods on
two additional datasets, Gisette and Prostate (see dataset
details in Appendix D.1). We summarize the results, along
with the colon cancer dataset, in Table 1. This table depicts
that ManiFeSt obtains the lowest classification errors for all
datasets. Furthermore, the combination of our multivariate
approach with a classical univariate criteria (ManiFeSt +
ReliefF) achieves best results with a few features compared
to all other competing methods.

6. Limitations and Future Directions
Our method has several limitations; we outline them and pro-
pose possible remedies. First, as demonstrated empirically,
analyzing multivariate associations rather than univariate,
may lead to selection of irrelevant features. In future work,
we will investigate combinations of (classical) univariate
criteria and ManiFeSt, making systematic and precise the
presented ad hoc combination of ReliefF and ManiFeSt. A
similar approach can also aid in reducing feature redundan-
cies, which our method currently does not account for.

Second, as a kernel method, ManiFeSt cannot be applied to
very large feature spaces (of an order of magnitude > 10K),
though our algorithm can handle data with thousands of fea-
tures. Combined with the ability to perform well with only
few samples, our method applies to a broad range of real-
world problems as demonstrated on multiple data sets in the
paper, including the prostate data set with 5966 features. In
addition, most of these results were obtained on a standard
personal computer without GPUs. According to a recent

work (Fawzi & Goulbourne, 2021), using GPUs could allow
for a faster computation of the eigenvalue decomposition
required by ManiFeSt. Therefore, using high performance
computing resources will allow us to handle even larger fea-
ture spaces. While in the past saving computing resources
was a primary goal in applying FS, today high-end compu-
tational resources are available, and the main goal of FS is
to prevent overfitting in high-dimensional data.

7. Conclusions
In this work, we propose a theoretically grounded supervised
FS method. The proposed method, which is termed Man-
iFeSt, identifies discriminative features by comparing the
multi-feature associations of each class. To this end, Mani-
FeSt employs a geometric approach that combines manifold
learning and Riemannian geometry. In contrast to common
FS filter methods, our method learns the geometry in the fea-
ture space underlying the multi-feature associations rather
than applying a univariate analysis. We demonstrate that our
multivariate approach reveals various data structures and
facilitates improved generalization and consistency for FS
in small datasets, outperforming competing FS methods.
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A. Background on Riemannian Geometry
A.1. Riemannian Manifold of SPD Matrices

Let Sd denote the set of the symmetric matrices in Rd×d. K ∈ Sd is an SPD matrix if all its eigenvalues are strictly positive.
We denote the set of d×d SPD matrices as Pd. The tangent space at K ∈ Pd is the space of symmetric matrices and is
denoted by TKPd. When the tangent space is endowed with a proper metric the space of SPD matrices forms a differential
Riemannian manifold (Moakher, 2005). Various metrics have been proposed in the literature (Arsigny et al., 2007; Bhatia
et al., 2019; Lin, 2019; Malago et al., 2018; Pennec et al., 2006), of which the affine invariant metric (Pennec et al., 2006)
and the log-Euclidean metric (Arsigny et al., 2007) are arguably the most widely used, both allow formal definitions of
geometric notions such as the geodesic path on the manifold. We focus here on the affine invariant metric, defined for
S1,S2 ∈ TKPd as follows:

⟨S1,S2⟩K =
〈
K−1/2S1K

−1/2,K−1/2S2K
−1/2

〉
(6)

where ⟨A1,A2⟩ = Tr
(
AT

1 A2

)
is the standard Euclidean inner product. Based on this metric, the unique geodesic path on

the SPD manifold connecting two matrices K1,K2 ∈ Pd is given by:

γP
K1→K2

(t) = K
1/2
1

(
K

−1/2
1 K2K

−1/2
1

)t

K
1/2
1 (7)

where 0 ≤ t ≤ 1. It holds that γP
K1→K2

(0) = K1 and γP
K1→K2

(1) = K2.

The projection of a point (symmetric matrix) in the tangent space S ∈ TKPd to the SPD manifold is given by the following
exponential map:

ExpK(S) = K1/2 exp
(
K−1/2SK−1/2

)
K1/2 (8)

where the result K̃ = ExpK(S) ∈ Pd is an SPD matrix.

The inverse projection of K̃ ∈ Pd to the tangent space is given by the following logarithmic map:

LogK(K̃) = K1/2 log
(
K−1/2K̃K−1/2

)
K1/2 (9)

where the result LogK(K̃) ∈ TKPd is a symmetric matrix in the tangent space.

Further details on the SPD manifold are provided in (Bhatia, 2009; Pennec et al., 2006).

A.2. Riemannian Manifold of SPSD Matrices

To mitigate the requirement for full rank SPD matrices, several Riemannian geometries have been proposed for symmetric
positive semi-definite matrices (SPSD) (Bonnabel & Sepulchre, 2010; Massart & Absil, 2020; Vandereycken et al., 2009;
2013). We focus on the one proposed in (Bonnabel & Sepulchre, 2010), which generalizes the affine-invariant geometry
(presented in Appendix A.1), forming the basis of our method. This SPSD geometry coincides with the SPD affine-invariant
metric, when restricted to SPD matrices.

Let S+
d,k denote the set of SPSD matrices of size d × d and fixed rank k < d. Any K ∈ S+

d,k can be represented by
K = GPGT , where P ∈ Pk is a k×k SPD matrix, G ∈ Vd,k, and Vd,k denotes the set of d×k matrices with orthonormal
columns. This representation of K can be obtained by its eigenvalue decomposition for example. This representation implies
that SPSD matrices can be represented by the pair (G,P ), which is termed the structure space representation. Note that the
structure space representation is unique up to orthogonal transformations, O ∈ Ok, i.e., K ∼=

(
GO,OTPO

)
. It follows

that the space S+
d,k has a quotient manifold representation, S+

d,k
∼= (Vd,k × Pk) /Ok. The structure space representation pair

is thus composed of SPD matrices P ∈ Pk, whose space forms a Riemannian manifold with the affine-invariant metric (6),
and matrices G ∈ Gd,k, where Gd,k denotes the set of k-dimensional subspaces of Rd. The set Gd,k forms the Grassmann
manifold with an appropriate inner product on its tangent space TGGd,k = {∆ = G⊥B | B ∈ R(d−k)×k}, given by
⟨∆1,∆2⟩G = ⟨B1,B2⟩, where G⊥ ∈ Vd,d−k is the orthogonal complement of G. To define the geodesic path between
two points, G1 and G2, on the Grassmann manifold, let GT

2 G1 = O2ΣOT
1 denote the singular value decomposition

(SVD), where O1,O2 ∈ Rk×k, Σ is a diagonal matrix with σi = cos θi on its diagonal, and θi denote the principal angles
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between the two subspaces represented by G1 and G2. Assuming maxi θi ≤ π/2, the closed-form for the geodesic path is
then given by:

γG
G1→G2

(t) = G1O1 cos (Θt) +X sin (Θt) (10)

where Θ = diag(θ1, . . . , θk), θi = arccosσi, and X =
(
I −G1G

T
1

)
G2O2 (sinΘ)

†, where ()† denotes the pseudo-
inverse.

Following the structure space representation of S+
d,k, its tangent space is defined in (Bonnabel & Sepulchre, 2010) by

T(G,P )S+
d,k = {(∆,S) : ∆ ∈ TGGd,k,S ∈ TPPk}, and the inner product on the tangent space is given by the sum of the

inner products on the two components:

⟨(∆1,S1), (∆2,S2)⟩(G,P ) = ⟨∆1,∆2⟩G +m ⟨S1,S2⟩P (11)

for m > 0, where (∆ℓ,Sℓ) ∈ T(G,P )S+
d,k, and ⟨S1,S2⟩P is defined as in (6). There is no closed-form expression for the

geodesic path connecting two points on S+
d,k, however, the following approximation is proposed in (Bonnabel & Sepulchre,

2010):
γ̃K1→K2(t) = γG

G1→G2
(t)γP

P 1→P 2
(t)(γG

G1→G2
(t))T (12)

where Kℓ
∼= (Gℓ,P ℓ), Kℓ ∈ S+

d,k, P ℓ = OT
ℓ G

T
ℓ KℓGℓOℓ due to the non-uniqueness of the decomposition (up to

orthogonal transformations), γP
P 1→P 2

(t) is defined by (7) and γG
G1→G2

(t) is defined by (10).

B. Difference Operator for SPSD Matrices
Following (Shnitzer et al., 2022), and based on the approximation of the geodesic path in (12), we define the mean and
difference operators for two SPSD matrices, K1 and K2, whose structure space representation is given by Kℓ

∼= (Gℓ,P ℓ)
where Gℓ ∈ Vd,k and P ℓ ∈ Pk. Define GT

2 G1 = O2ΣOT
1 as the SVD of GT

2 G1 and set P ℓ = OT
ℓ G

T
ℓ KℓGℓOℓ, ℓ = 1, 2.

The mean operator is then defined analogously to (2) as the mid-point of γ̃K1→K2(t):

M̃ = γ̃K1→K2
(0.5) = γG

G1→G2
(0.5)γP

P 1→P 2
(0.5)(γG

G1→G2
(0.5))T (13)

Denote the structure space representation of the mean operator by M̃ ∼= (GM ,PM ) and define GT
1 GM = Õ1Σ̃OT

M as

the SVD of GT
1 GM . Set PM = OT

MGT
MM̃GMOM , and P̃ 1 = Õ

T

1 G
T
1 K1G1Õ1. The SPSD difference operator is

defined by:
D̃ = γG

GM→G1
(1)LogPM

(P̃ 1)(γ
G
GM→G1

(1))T (14)

where the logarithmic map on the SPD manifold is defined in (9) and the geodesic path on the Grassmann manifold is
defined in (10).

The computation of M̃ and D̃, as well as the resulting ManiFeSt score for the SPSD case, are summarized in Algorithm 2.

C. Multi-class ManiFeSt Extension
In the main body of the paper we have focused on binary classification problems, since it is the standard stepping-stone
for multi-class feature selection (Izetta et al., 2017). We now detail a natural geometric extension of our approach to the
multi-class setting, along with a demonstration on MNIST. This extension generally follows the same steps as in Algorithm
1, where we first compute the geometric mean of the kernels, representing the feature space of each class. Second, we
compute the difference operators between each class-kernel and the mean, and third, the overall score for each feature is
constructed by aggregating the feature scores of the difference operators from all classes.

Concretely, to compute the ManiFeSt score for multi-class datasets, we first construct a kernel Kℓ ∈ Rd×d, ℓ = 1, . . . , C, for
samples from each class according to (1), where C is the number of classes in the dataset and d denotes the number of features.
The geometric mean of all kernels is then computed according to M = argminK

∑C
ℓ=1

∥∥log (K−1Kℓ

)∥∥2
F

(Moakher,
2005) using an iterative procedure proposed in (Barachant et al., 2013, Algorithm 1). Note that such an iterative algorithm is
required in the multi-class setting since only the geometric mean of two SPD matrices has a closed form expression, as in
(2). We then compute the differences between the mean and the kernel of each class according to Dℓ = LogM (Kℓ) from
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Algorithm 2 ManiFeSt Score for SPSD Matrices

Input: Dataset with two classes X(1) and X(2)

Output: FS score r (SPSD case)
1: Construct kernels K1 and K2 for the two datasets ▷ According to (1)
2: Set k = min{rank(K1), rank(K2)}
3: Define Kℓ = GℓP ℓGℓ and P ℓ = OT

ℓ G
T
ℓ KℓGℓOℓ

where GT
2 G1 = O2ΣO1

4: Compute γG
G1→G2

(0.5) ▷ According to (10)
5: Compute γP

P 1→P 2
(0.5) ▷ According to (7)

6: Build the mean operator M̃ ▷ According to (13)

7: Define M̃ = GMPMGM , PM = OT
MGT

MMGMOM and P̃ 1 = Õ
T

1 G
T
1 K1G1Õ1

where GT
1 GM = Õ1Σ̃OM

8: Compute LogPM
(P̃ 1) ▷ According to (9)

9: Compute γG
GM→G1

(1) ▷ According to (10)
10: Build the difference operator D̃ ▷ According to (14)
11: Apply eigenvalue decomposition to D̃ and compute the FS score r ▷ According to (4)

(3). The jth feature score is defined by r(j) = max{r1(j), . . . , rC(j)}, where rℓ =
∑d

i=1 |λ
(Dℓ)
i | · (ϕ(Dℓ)

i ⊙ ϕ
(Dℓ)
i ),

ℓ = 1, . . . , C.

In the multi-class scenario, the scores could be merged using summation instead of the maximum. We note that using the
maximum over the feature scores of the different classes highlights class-specific features, whereas summation emphasizes
discriminative features that are shared across classes. Both approaches have their own strengths and weaknesses, and it
is indeed important to evaluate the performance of each method in order to determine the most appropriate option for a
particular task.

An equivalent framework for SPSD matrices can be defined based on the geometric mean proposed in (Yair et al., 2020) and
the difference operator presented in Appendix B.

We demonstrate our multi-class FS algorithm on MNIST. To highlight the few-sample capabilities of our algorithm, we
use only 300 samples from each class (digit) for computing the FS score, resulting in a total of N = 3000 samples. We
apply multi-class ManiFeSt to the 3000 samples and choose a subset of the features based on its score, r. Fig. 8 presents
examples of (left) the data, (middle-left) the leading eigenvectors of the geometric mean of all the class (digit) kernels, M ,
(middle-right) the leading eigenvectors of the difference operators between each class kernel and the mean, and (right) the
final multi-class ManiFeSt score. The two right-most plots are overlaid with orange and red circles, which mark the highest
ranked 20 and 50 features, respectively, according to the final ManiFeSt score. This figure depicts that the eigenvectors of
the geometric mean capture the general region in which all digits typically appear, whereas the leading eigenvectors of the
difference operators from the different classes capture digit-specific properties, e.g., the highlighted center of the digit ’0’,
and the highlighted bottom-left edge of ’2’. The final ManiFeSt score aggregates this information and highlights the most
influential features (pixels) from each class.

For a quantitative comparison with other FS methods, we take a subset of k = {20, 50} features with the highest scores
from each FS method and optimize an SVM classifier on the same 3000 samples used for computing the FS scores. The test
set comprised of 57000 additional images, and the train-test split was repeated 10 times with random shuffling. More details
on the hyperparameter tuning and cross-validation appear in Appendix D.1. In Fig. 9, we present the comparison of several
FS methods along with a baseline in which the feature subset was chosen randomly (denoted by ’Random’). Each image
in this figure presents the feature (pixel) scores obtained by each of the compared FS methods, along with orange and red
circles, denoting the highest ranked 20 and 50 features, respectively. Below each image we report the average test accuracy
obtained when training the SVM classifier on the top 20 (orange) or 50 (red) highlighted features. Note that ManiFeSt
results in the highest test accuracy in both cases, indicating that it indeed captures the most discriminative features in the
multi-class setting as well.

As additional motivation for our geometric approach to extending ManiFeSt to a multi-class setting, we considered a naive
one vs. one extension, where we aggregated feature scores (taking the maximum) from pairwise comparisons of the different
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Figure 8. Mulit-class ManiFeSt scheme and the resulting score for images from the MNIST dataset.

digits using Algorithm 1. This resulted in lower average test accuracies of 70.41% (20 features) and 85.49% (50 features),
indicating the advantage of our geometric extension.
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Figure 9. Mulit-class ManiFeSt scheme compared to competing methods on the MNIST dataset. The orange and red circles denote the
best ranked 20 and 50 features, respectively. The numbers in parenthesis denote the classification accuracy obtained using the best ranked
20 (orange) and 50 (red) features.

To complete the comparison to related work, we compare our results with DiSC (Sristi et al., 2022). Since DiSC does
not provide a score measure for individual features and only highlights discriminative groups of features, a feature subset
of fixed size cannot be obtained from it. Therefore, to compare our results with DiSC, we report the number of features
required to obtain a similar accuracy. In this dataset, DiSC obtains an accuracy of 89.75%, however, it uses 400 − 500
features from each digit class to compute the meta-features for the classification, resulting in a total of approximately 700
different features. In contrast, multi-class ManiFeSt achieves an accuracy of 90.71% when using only 100 features.

D. Experiments – More Details and Additional Results
D.1. Implementation Details.

In all the experiments, the data is split to train and test sets with nested cross-validation. The nested train set is divided
using 10-fold cross-validation for all datasets. This whole procedure is repeated with shuffled samples for small datasets for
better tuning. The data normalization, FS, and SVM hyperparameters tuning are applied to the train set to prevent test-train
leakage.

The optimization of SVM hyperparameters is performed over validation sets to improve the generalization of the model,
while the hyperparameters of the FS methods are selected to achieve the highest accuracy on the training set. This approach
is adopted to avoid the optimization of both SVM and FS hyperparameters simultaneously.

The process of FS hyperparameter tuning depends on the selected number of features. In the results in Table 1, we tune
the hyperparameters using the training set for each number of selected features. The highest resulting test accuracy is then
presented for the number of features that yielded the best results. In the rest of the paper, we first tune the hyperparameters
for different number of features (from a regular grid). Then, we fix the hyperparameters corresponding to the number of
features that yielded the highest train accuracy. Last, we use this fixed set of hyperparameters to demonstrate the behavior of
the score across various feature subsets.

Data normalization. Following (Atashgahi et al., 2022), the features in the Madelon dataset are normalized by removing
the mean and rescaling to unit variance. This is implemented using the standard sklearn function. The other datasets do not
require normalization.

Kernel type, scale, and distance metric. The choice of the kernel type and scale as well as the distance metric can
significantly impact the performance of our method and is typically task-specific. We postulate that these choices are
common to almost all kernel and manifold learning methods. They do not have a definitive solution and still attract research,
e.g., (Lindenbaum et al., 2020).

Our method is not limited to RBF kernels, and other symmetric positive semi-definite (SPSD) kernels could be used instead.
However, in our experiments, we choose to use the Gaussian kernel with the Euclidean metric due to its simplicity and
popularity in manifold learning and classification tasks. Our aim was to emphasize the contribution of our approach rather
than the kernel type selection, which is important but common to all kernel and manifold learning methods. For the choice
of kernel scale, we used cross-validation to estimate the optimal bandwidth, as outlined in Appendix D.1.
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We remark that there may be multiple scales for each task, and in our future work, we plan to investigate the use of
multi-scale ManiFeSt to capture additional information in different scales.

FS hyperparameter tuning. Both IG and ReliefF FS methods have a number of nearest neighbors parameter, since
the extension of the classic IG score from discrete to continuous features makes use of the k nearest neighbors (Ross,
2014). We tune the number of neighbors for IG and ReliefF over the grid k = {1, 3, 5, 10, 15, 20, 30, 50, 100}. For
the Laplacian score, the samples’ kernel scale is tuned to the ith percentile of Euclidean distances over the grid i =
{1, 5, 10, 30, 50, 70, 90, 95, 99}. ManiFeSt only requires tuning of the features’ kernel scale. For the illustrative example,
the scale σℓ is set to the median of Euclidean distances, for best visualization. For the XOR and Madelon problems, the scale
is set to the median of Euclidean distances multiplied by a factor 0.1. Since the multi-feature associations of the relevant
features are distinct in these two datasets, no scale tuning was required. Conversely, for the remaining datasets, the scale
factor is tuned to the ith percentile of the Euclidean distances over the grid i = {5, 10, 30, 50, 70, 90, 95}. The optimization
of the hyperparameters of the combination of ReliefF and ManiFeSt is achieved through a single-variable optimization
approach. Specifically, the optimal parameter for ReliefF is selected based on its individual performance and subsequently,
the ManiFeSt algorithm is tuned to attain the highest combination score on the training set. The scale factor of ManiFeSt is
fine-tuned by including two additional grid points of the ith percentile of Euclidean distances, specifically i = {1, 99}, to
effectively capture multivariate relations that are more prominent in such regions and are not captured by traditional filter
methods.

SVM hyperparameter tuning. When the ground-truth of which features are relevant is not available, we apply an
SVM classifier to the selected subset of features in order to evaluate the FS. For the SVM hyperparameter tuning,
we follow (Hsu et al., 2003). We use an RBF kernel and perform a grid search on the penalty parameter C and the
kernel scale γ. C and γ are tuned over exponentially growing sequences, C = {2−5, 2−2, 21, 24, 27, 210, 213} and
γ = {2−15, 2−12, 2−9, 2−6, 2−3, 20, 23}.

Computing resources. All the experiments were performed using Python on a standard PC with an Intel i7-12700 CPU
and 64GB of RAM without GPUs. We note that according to a recent work (Fawzi & Goulbourne, 2021), using GPUs could
allow a faster computation of the eigenvalue decomposition required by ManiFeSt.

FS source code. The competing methods were implemented as follows. The IG (Vergara & Estévez, 2014) and
ANOVA (Kao & Green, 2008) methods were computed using the scikit-learn package. For Gini-index (Shang et al.,
2007), t-test (Davis & Sampson, 1986), Fisher (Duda et al., 2006), Laplacian (He et al., 2005), and ReliefF (Robnik-Šikonja
& Kononenko, 2003), we use the skfeature repository developed by the Arizona State University (Li et al., 2018). The
Pearson correlation (Battiti, 1994) is implemented by the built-in Panda package correlation.

The code implementing ManiFeSt, along with the script for reproducing the illustrative example, is available on GitHub1.

Details on the hypercube dataset. For the experiment in Subsection 5.3, we create a 10-dimensional hypercube embedded
in R10. Then, 2000 points are generated and grouped into 4 clusters. The data in each cluster are normally distributed and
centered at one of vertices of the hypercube. We define two classes, where each class consists of two clusters. The partition
of the 4 clusters to the two classes is performed in an arbitrarily manner.

To create the dataset, these 10-dimensional points are mapped to R200 by appending coordinates with random noise, so that
each point in the dataset consists of 200 features out of which only 10 are relevant.

Details on Gisette and Prostate datasets. The Gisette dataset (Guyon et al., 2008) is a synthetic dataset from the NIPS
2003 feature selection challenge. The dataset contains 7000 samples consisting of 5000 features, of which only 2500 are
relevant features. The classification problem aims to discriminate between the digits 4 and 9, which were mapped into a
high dimensional feature space. For more details, see (Guyon, 2003).

The Prostate cancer dataset (Singh et al., 2002) consists of the expression levels of 5966 genes (features) and 102 samples,
of which 50 are normal and 52 are tumor samples.

1https://github.com/DavidCohen2/ManiFeSt
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In both datasets, the samples are split into 90% train and 10% test sets. Results are averaged over 10 and 30 cross-validation
iterations for Gisette and Prostate, respectively.

D.2. Additional Results

D.2.1. FASHION-MNIST: ANOTHER ILLUSTRATIVE EXAMPLE

We use the Fashion-MNIST dataset (Xiao et al., 2017) for illustration. We generate two sets: one consists of 1500 images
of pants and the other consists of 1500 images of shirts. Fig. 10 is the same as Fig. 2, presenting the results obtained by
ManiFeSt for this example.

In Fig. 10(middle), we see that the leading eigenvectors of the composite difference kernel, D, indeed capture the main
conceptual differences between the two clothes. These differences include the gap between the pants’ legs, the gap between
the shirts’ sleeves, and the shirt collar. As shown in Fig. 10(right), the ManiFeSt score, which weighs the eigenvectors by
their respective eigenvalues, provides a consolidated measure of the discriminative pixels.

Figure 10. Ilustration of the proposed scheme and the resulting ManiFeSt score for images from the Fashion-MNIST dataset.

D.2.2. COLON CANCER GENE EXPRESSION: ADDITIONAL RESULTS

More generalization tests. To further demonstrate the generalization capabilities of ManiFeSt, we examine the effect of
the kernel scale, i.e., σℓ in Eq. (1), on the results of the colon dataset. In Fig. 11, we present the generalization error obtained
by ManiFeSt for three different kernel scales. We see that the larger the scale is, i.e., the more feature associations are
captured by the kernel, the smaller the generalization error becomes. This result indicates that the multi-feature associations
taken into account by ManiFeSt play a central role in its favorable generalization capabilities.

We conclude this section on generalization with a possible direction for future investigation. We speculate that the large
generalization error demonstrated in Fig. 7 by the competing methods may suggest the presence of significant batch effects
in the colon dataset, which is prototypical to such biological data (Lazar et al., 2013). In contrast, the smaller generalization
error achieved by ManiFeSt could indicate its robustness to batch effects. Therefore, the robustness of ManiFeSt to batch
effects will be studied in future work.
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Figure 11. ManiFeSt with three different kernel scales. The dashed and solid lines represent the average test and validation accuracy, and
the shaded area represents the validation-test generalization error.

Table 2. ManiFeSt Comparison with Embedded Methods

Method Accuracy ± STD

LASSO 81.54± 9.85
SVC 76.15± 9.39
RF 79.23± 9.76
XGBoost 76.15± 12.14
MLP 81.54± 7.84
Linear STG 74.62± 11.44
Nonlinear STG 76.15± 13.95
INVASE 76.92± 12.40
L2X 78.46± 8.28
TabNet 64.62± 12.02
REAL-x 75.38± 12.78
LSPIN 71.54± 6.92
LLSPIN 83.85± 5.38
ManiFeSt 85.38± 8.60

Comparison with embedded methods. To complement the experimental study, we report here recent results on the colon
dataset (Yang et al., 2022) obtained by various embedded methods. These results are displayed in Table 2 along with our
result obtained by ManiFeSt. For a fair comparison, in this experiment we use the same train-test split (49/13) and average
the results over 50 cross-validation iterations. We see in the table that ManiFeSt achieves the best mean accuracy, but with
a larger standard deviation, compared with the leading competing embedded method (LLSPIN proposed in (Yang et al.,
2022)).

D.2.3. TOY EXAMPLE: LIMITATIONS OF MANIFEST

ManiFeSt considers multivariate associations rather than univariate properties. In some scenarios, this might lead to the
selection of irrelevant features or the misselection of relevant features.

We demonstrate this limitation using a toy example. We simulate data consisting of d = 20 binary features and N = 500
instances. Each feature is sampled from a Bernoulli distribution. We consider two cases. In the first case, each instance is
associated with a label that is equal to the first feature f1, where fi denotes the ith feature. Accordingly, only f1 is a relevant
for the classification of the label. In the second case, we set f5 = 0 to be a fixed constant, while the label is still determined
by f1.
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Figure 12. ManiFeSt score on the toy example, averaged over 50 Monte-Carlo iterations of data generation. The green circles denote the
average score, and the red lines indicate the standard deviation. (a) The first case. (b) The second case (f5 ≡ 0).

In Fig. 12, we present the normalized feature score obtained by ManiFeSt, averaged over 200 Monte-Carlo iterations of data
generation. The green circles denote the average score, and the red dashes indicate the standard deviation.

In Fig. 12(a), we show the results for the first case. We see that ManiFeSt does not identify f1, since the associations
of this feature to the other features are not distinct. More specifically, the differences f1 − fj for every j have the same
statistics over samples from the two classes. In Fig. 12(b), we show the results for the second case. We see that the relevant
feature f1 is captured, yet the irrelevant feature f5 is also detected. This is due to the fact that now the association of f1
with f5 becomes distinct between the two classes. This result implies that ManiFeSt may identify features without any
discriminative capabilities through their associations to other relevant and discriminative features.

Fig. 7(b) suggests that the combination of a classical univariate criterion with the multivariate ManiFeSt score has potential to
mitigate this limitation. In future work, we will further investigate the simultaneous utilization of univariate and multivariate
properties.

E. Additional Theoretical Foundation
We begin by proving Proposition 1 from Section 4, which provides additional justification for the ManiFeSt score (4). We
reiterate the proposition for completeness:

Proposition 1. Assume that ϕ is a shared eigenvector of K1 and K2 with respective eigenvalues λ(K1) and λ(K2). Then ϕ
is an eigenvector of D with a corresponding eigenvalue λ(D) =

√
λ(K1)λ(K2)

(
log λ(K1) − log λ(K2)

)
that satisfies:

∣∣∣λ(D)
∣∣∣ ≤ 2

d∑
i,j=1

∣∣∣e−∥x(1)
i −x

(1)
j ∥2/2σ2

− e−∥x(2)
i −x

(2)
j ∥2/2σ2

∣∣∣ |ϕ(i)||ϕ(j)| (15)

where x
(ℓ)
i and x

(ℓ)
j are vectors containing the values of features i and j, respectively, from all the samples in class ℓ.

Proof. First, the claim that ϕ is also an eigenvector of D with its corresponding eigenvalue, given by λ(D) =√
λ(K1)λ(K2)

(
log λ(K1) − log λ(K2)

)
, is proved in (Shnitzer et al., 2022, Theorem 2). Second, to prove the bound

for λ(D), we start from the definition of the eigenvalue decomposition, for ℓ = {1, 2}:

λ(Kℓ) = ϕTKℓϕ =

d∑
i,j=1

e−∥x(ℓ)
i −x

(ℓ)
j ∥2/2σ2

ϕ(i)ϕ(j) (16)

The difference between the eigenvalues λ(K1) and λ(K2) is then given by:

∣∣∣λ(K1) − λ(K2)
∣∣∣ =

∣∣∣∣∣∣
d∑

i,j=1

(
e−∥x(1)

i −x
(1)
j ∥2/2σ2

− e−∥x(2)
i −x

(2)
j ∥2/2σ2

)
ϕ(i)ϕ(j)

∣∣∣∣∣∣ (17)
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Assume w.l.o.g that λ(K1) > λ(K2). Then, we have

| log λ(K1) − log λ(K2)| ≤ 2

∣∣∣√λ(K1) −
√
λ(K2)

∣∣∣
√
λ(K2)

since λ(K1), λ(K2) > 0, log(x)− log(y) = log(x/y) and 0 ≤ log(x) ≤ 2(
√
x− 1) for x ≥ 1. Multiplying both sides by√

λ(K1)λ(K2) gives the following inequality∣∣∣√λ(K1)λ(K2)
(
log λ(K1) − log λ(K2)

)∣∣∣ ≤ 2
∣∣∣λ(K1) −

√
λ(K1)λ(K2)

∣∣∣ ≤ 2
∣∣∣λ(K1) − λ(K2)

∣∣∣ (18)

where the last transition is due to
√
λ(K1) >

√
λ(K2), and the left hand side of this equation is equal to λ(D). Combining

(17) and (18) concludes the proof, leading to the following upper bound of the absolute value of λ(D):

∣∣∣λ(D)
∣∣∣ ≤ 2

d∑
i,j=1

∣∣∣e−∥x(1)
i −x

(1)
j ∥2/2σ2

− e−∥x(2)
i −x

(2)
j ∥2/2σ2

∣∣∣ |ϕ(i)||ϕ(j)| (19)

Note that a similar derivation can be done for eigenvectors of K1 and K2 that are only approximately similar (not identically
shared), as stated by the following proposition.

Proposition 2. Let ϕ denote an eigenvector of K1 with eigenvalue λ(K1) and ϕ(2) denote an eigenvector of K2

with eigenvalue λ(K2). Assume that ϕ(2) = ϕ + ϕϵ, where ∥ϕϵ∥2 < ϵ for some small ϵ > 0. Then ϕ and
λ(D) =

√
λ(K1)λ(K2)

(
log λ(K1) − log λ(K2)

)
are an approximate eigen-pair of D, such that λ(D) satisfies:

∣∣∣λ(D)
∣∣∣ ≤ 2

d∑
i,j=1

∣∣∣e−∥x(1)
i −x

(1)
j ∥2/2σ2

− e−∥x(2)
i −x

(2)
j ∥2/2σ2

∣∣∣ |ϕ(i)||ϕ(j)|+ 2aϵ2 (20)

where a = maxi
∑

j K2(i, j).

Proof. A proof showing that ϕ and λ(D) are an approximate eigen-pair of D can be found in (Shnitzer et al., 2022, Theorem
4). For the bound on λ(D), note that equation (16) holds for K1 with no change, whereas for K2 we have:

λ(K2) =
(
ϕ(2)

)T

K2ϕ
(2) = ϕTK2ϕ+ ϕT

ϵ K2ϕϵ

=

d∑
i,j=1

e−∥x(2)
i −x

(2)
j ∥2/2σ2

ϕ(i)ϕ(j) + ϕT
ϵ K2ϕϵ (21)

The difference between the eigenvalues can then be bounded by:

∣∣∣λ(K1) − λ(K2)
∣∣∣ =

∣∣∣∣∣∣
d∑

i,j=1

(
e−∥x(1)

i −x
(1)
j ∥2/2σ2

− e−∥x(2)
i −x

(2)
j ∥2/2σ2

)
ϕ(i)ϕ(j)− ϕT

ϵ K2ϕϵ

∣∣∣∣∣∣
≤

∣∣∣∣∣∣
d∑

i,j=1

(
e−∥x(1)

i −x
(1)
j ∥2/2σ2

− e−∥x(2)
i −x

(2)
j ∥2/2σ2

)
ϕ(i)ϕ(j)

∣∣∣∣∣∣+ λ(K2)
max ϵ2

≤

∣∣∣∣∣∣
d∑

i,j=1

(
e−∥x(1)

i −x
(1)
j ∥2/2σ2

− e−∥x(2)
i −x

(2)
j ∥2/2σ2

)
ϕ(i)ϕ(j)

∣∣∣∣∣∣+ aϵ2 (22)

where λ(2)
max is the maximal eigenvalue of K2, which is bounded by a = maxi

∑
j K2(i, j) (maximal row sum of K2) from

the Perron-Frobenius theorem. Note that since K2 is positive semi-definite with 1s on its diagonal, its maximal eigenvalue
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can also be crudely bounded by d, the dimension of the feature space. The rest of the derivation for the approximate case
follows from (18), resulting in:

∣∣∣λ(D)
∣∣∣ ≤ 2

d∑
i,j=1

∣∣∣e−∥x(1)
i −x

(1)
j ∥2/2σ2

− e−∥x(2)
i −x

(2)
j ∥2/2σ2

∣∣∣ |ϕ(i)||ϕ(j)|+ 2aϵ2 (23)

Lastly, we reiterate the proof for Proposition 3 from (Shnitzer et al., 2022, Proposition 3), which states:

Proposition 3. Assume K2 = K1 +E such that ∥EK−1
1 ∥ < 1, then D ≈ − 1

2 (K2 −K1)
(
K−1

1 K2

)1/2
.

Proof.

D = log
(
K1M

−1
)
M (24)

= log

(
K1

(
(K2K

−1
1 )1/2K1

)−1
)(

K2K
−1
1

)1/2
K1 (25)

= − 1
2 log

(
K2K

−1
1

) (
K2K

−1
1

)1/2
K1 (26)

= − 1
2 log

(
I +EK−1

1

) (
K2K

−1
1

)1/2
K1 (27)

≈ − 1
2EK−1

1

(
K2K

−1
1

)1/2
K1 (28)

= − 1
2E

(
K−1

1 K2

)1/2
(29)

= − 1
2 (K2 −K1)

(
K−1

1 K2

)1/2
(30)

where the approximation is given by a power series of the matrix logarithm, and the transition before last is due to K2K
−1
1

being similar to a symmetric matrix, and therefore, diagonalizable, and due to X−1A1/2X =
(
X−1AX

)1/2
for a

diagonalizable matrix A and an invertible matrix X .

Note that the definitions of M and D in the proof are equivalent to definitions (2) and (3) in the paper, as shown in (Shnitzer
et al., 2022, Proposition 1).
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