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Abstract

Although recent advances in voice conversion have shown significant improvement,
there still remains a gap between the converted voice and target voice. A key factor
that maintains this gap is the insufficient decomposition of content and voice style
from the source speech. This insufficiency leads to the converted speech containing
source speech style or losing source speech content. In this paper, we present
VoiceMixer which can effectively decompose and transfer voice style through
a novel information bottleneck and adversarial feedback. With self-supervised
representation learning, the proposed information bottleneck can decompose the
content and style with only a small loss of content information. Also, for adversarial
feedback of each information, the discriminator is decomposed into content and
style discriminator with self-supervision, which enable our model to achieve better
generalization to the voice style of the converted speech. The experimental results
show the superiority of our model in disentanglement and transfer performance,
and improve audio quality by preserving content information.

1 Introduction

Voice conversion (VC) is the task of transferring the target voice style to the source speech while
keeping the content information of the source speech. VC is also called voice style transfer (VST),
and it shares a long history with the objective to clone someone’s voice. There is even a potential risk
of usage in crime such as a voice spoofing (Kinnunen et al., 2012), and also in various applications
in entertainment (Nachmani and Wolf, 2019), education (Sisman et al., 2020), security (Wu and Li,
2016), and voice restoring (Yamagishi et al., 2012). Although deep learning made the breakthrough
in the VC domain, there still remains challenging problems for real-world application such as low
audio quality or similarity to target voice style.

Usually, traditional VC systems require the same utterances for different speakers to train properly.
However, it is hard to collect such parallel data for many speakers, and extension to many-to-many VC
systems becomes a laborious task. To overcome this problem, several methods have been developed.
First, generative adversarial networks (GAN) based models (Kaneko and Kameoka, 2018; Kaneko
et al., 2019, 2020; Kameoka et al., 2018) use adversarial feedback with cycle-consistent loss to train
with non-parallel data. However, it is hard to train these models, and they produce lacking audio
quality and transfer performance. The flow-based VC model, Blow (Serrà et al., 2019), is also a
non-parallel VC model with normalizing flows using the hyperconditioning mechanism.

Despite effort to transfer the voice style in non-parallel settings, these models are not able to
sufficiently disentangle content and style from the source speech, and thus the converted speech
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still contains the style of source speech. To overcome this limitation, AUTOVC (Qian et al., 2019)
utilizes a simple autoencoder. The carefully designed fixed-length based information bottleneck
disentangles the content and style information. For better disentanglement, IDE-VC (Yuan et al.,
2021) followed the AUTOVC framework with information-theoretic guidance. AdaIN-VC (Chou
et al., 2019) and AGAIN-VC (Chen et al., 2020) employs the instance normalization (Ulyanov et al.,
2016) to remove the global style information. Additionally, AGAIN-VC makes use of the activation
function as an information bottleneck with a small size of content embedding. However, these models
have a trade-off between the audio quality and the disentanglement performance. In the process of
disentanglement, the loss of content information results in low audio quality with missing linguistic
information. Also, they have to find the proper size of information bottleneck heuristically.

Text transcriptions can be used to guide content embedding to learn only linguistic information
(Biadsy et al., 2019; Zhang et al., 2019). These models have to be jointly trained with the text-to-
speech (TTS) model to encode the linguistic information based on the attention alignment from
autoregressive TTS system (Shen et al., 2018). However, they require text transcriptions for training.

Recently, self-supervised representation learning is adopted to extract important representation in
speech representation learning task (Oord et al., 2018; Wang et al., 2020a). Predicting the future
latent representation can make the model learn useful information without labeled data. However,
such self-supervised representation learning has not yet gotten the attention in voice conversion task.

In this paper, we present VoiceMixer, which can decompose and transfer voice style through a novel
similarity-based information bottleneck and adversarial feedback. We introduce self-supervised
representation learning to disentangle and transfer voice style without any text transcription and
additional information extracted from the external feature extractor. Self-supervised similarity based
information bottleneck disentangles the content and style without effort to find the proper downsam-
pling size. Also, we propose an adversarial voice style mixup to learn the latent representation of the
converted speech. We first disentangle the discriminator into content and style discriminator. The
hidden representations of generator guide each discriminator as conditional information. Through
adversarial feedback of disentangled discriminators, the generator has better generalization on the
converted speech. The main contributions are as follows:

• We propose the similarity-based information bottleneck with self-supervised representation
learning, which can disentangle content and style with only a small loss of content informa-
tion. This preservation improves the audio quality of converted speech compared to previous
methods.

• For better generalization of the converted speech, we propose an adversarial voice style
mixup, which learns the converted speech by adversarial feedback with self-supervised
guidance, even though the converted speech does not have ground-truth audio.

• Through various subjective and objective evaluations, we demonstrate that VoiceMixer has
better disentanglement and transfer performance than other baselines in both many-to-many
and zero-shot voice style transfer scenarios on the real-world VCTK dataset.

2 Background

AUTOVC disentangles content and style information from the source speech, and transfers the voice
style of target speech through information bottleneck (Qian et al., 2019). The simple autoencoder
framework of AUTOVC consists of three modules; a speaker encoder fs(·), content encoder fc(·),
and a decoder g(·, ·). During training, this model only requires self-reconstruction with a fixed-length
information bottleneck to disentangle the content and style information.

S1 = fs(X1,A), CA = fc(X1,A), X̂1→1,A = g(S1,CA) (1)

Here, X1,A refers to the utterance “A” from the source speaker “1”. S1 denotes speaker infor-
mation in the speaker “1”, CA denotes content information of the utterance “A”, and X̂1→1,A is
self-reconstructed speech which contains the content information CA and matches the speaker char-
acteristics S1. Although it is a very simple way to decompose each information, a proper information
bottleneck size τ is necessary. Formally, this can be represented as follows:

H(:, bt/τc) = CA(:, t) (2)
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Figure 1: Overall framework of VoiceMixer.

whereH denotes the downsampled feature for time indices t ∈ {1, · · ·T}. When the fixed-length
information bottleneck size τ is “too narrow", the model has higher reconstruction quality but has
poor voice style transfer performance. On the other hand, when the τ is “too wide", the model
has higher voice style transfer performance but has lower reconstruction quality. In the process of
separating content and style information, some content information is lost even with proper bottleneck
size. Therefore, missing some content information in converted voice is inevitable.

3 VoiceMixer

In this paper, we propose a similarity-based information bottleneck by self-supervised representation
learning. For adversarial feedback, we disentangle the discriminator to train content and style
separately with self-supervised guidance. By disentangling the discriminator for each information, it
can be possible to train the converted speech which does not have ground-truth audio. It is worth
noting again that using other supervised features (e.g., pitch contour or text transcription) help the
model to disentangle each information, but our model uses self-supervised representation learning
without additional features. We describe the details of our architecture, similarity-based information
bottleneck, and the adversarial voice style mixup in the following subsections.

3.1 Generator

For the generator, we follow the autoencoder framework of AUTOVC. As shown in Figure 1a, the
generator G consists of a content encoder fc(·) which extracts the content embedding from speech, a
speaker encoder fs(·) which extracts a speaker embedding from speech, and a decoder g(·, ·) which
generates the speech from content and speaker embeddings represented in Equation 1.

3.2 Similarity-based information bottleneck

Unlike information bottleneck in Equation 2, we downsample the content embedding according to
the similarity between the content embeddings. We assume that the content encoder produces similar
content embedding from similar phoneme, and thus we downsample the adjacent phonetic information
to be mapped together. We calculate the similarityQ = (q1, · · · , qT ) between content embedding
sequenceC = (c1, · · · , cT ) and shifted content embedding sequenceCshift = (c2, · · · , cT+1) as:

qt = sig(
ct · ct+1

‖ct‖ ‖ct+1‖
/ρ), (3)

where sig denotes the sigmoid function and ρ is the temperature parameter. Then, we extract the
similarity-based duration D = (d1, · · · , dN ) where dn is cumulative sum until the similarity qt is
under the average similarity, and the dn+1 is computed again from qt+1 until time step T .

Gaussian down/up-sampling Assume that the center of same content have the largest information
of that content, then we apply the Gaussian downsampling to focus attention to the center. Given
the content embedding to be downsampled C, duration D, and learnable range parameter σ =
(σ1, · · · , σN ) like (Shen et al., 2020), we compute downsampled sequenceH = (h1, · · · ,hN ) as:

αn =
dn
2

+

n−1∑
m=1

dm, wn
t =

N (t;αn, σ
2
n)∑N

m=1N (t;αm, σ2
m)
, hn =

T∑
t=1

wn
t ct (4)
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Figure 2: (a) Fixed-length information bottleneck. (b) Similarity-based information bottleneck. (c)
Context network for self-supervised representation learning on content embedding.

Afterwards, we use Gaussian upsampling as a TTS model following (Shen et al., 2020) to upscale H
to upsampled content sequence C̃ = (c̃1, · · · , c̃T ) with the same duration of D, range parameter for
upsampling σ′ = (σ′1, · · · , σ′N ), and then C̃ is fed to g(·, ·) to generate the mel-spectrogram as:

w
′n
t =

N (t;αn, σ
′2
n )∑N

m=1N (t;αm, σ
′2
m)
, c̃t =

N∑
n=1

w
′n
t hn, X̂1→1,A = g(S1, C̃A) (5)

3.3 Auxiliary losses for similarity

Contrastive loss To increase the similarity between the adjacent content embeddings, we train
the content encoder with self-supervised representation learning. The content embedding is fed
to a context network fr to learn a content representation illustrated in Figure 2c. To train in non-
autoregressive manner, we utilize the masked convolutional blocks (Liu et al., 2020) to predict a
content embedding from the adjacent content embeddings, and the contrastive loss for positive sample
is defined to minimize distance between predicted content embedding Ĉ = (ĉ1, · · · , ĉT ) and content
embedding C:

Lpos(fc, fr) = E
[
− 1

T

T∑
i

log sig(
ci · ĉi
‖ci‖ ‖ĉi‖

/ρ)
]

(6)

where sig denotes the sigmoid function and ρ represents the temperature parameter.

To remove style information on the content embedding in an unsupervised manner, we prevent context
network to predict future representation of content embedding. While negative samples are uniformly
sampled from the same utterance in (Baevski et al., 2020), we only sample the k-th future content
embedding as a negative sample to prevent maximizing distance between the contents similar to
each other. We maximize cosine distance between predicted content embedding and k-th future
representation of content embedding, and the contrastive loss for negative sample is:

Lneg(fc, fr) = E
[ 1
T

T∑
i

log sig(
ci+k · ĉi
‖ci+k‖ ‖ĉi‖

/ρ)
]
. (7)

Adversarial speaker classification To enforce speaker disentanglement on the content embedding,
we apply adversarial speaker classification in a supervised manner (using speaker label yi) as:

Ladvsc(fc) = E
[ 1
T

T∑
i

yilog(fcls(ci))
]

(8)

where fcls denotes speaker classifier. To train the entired model jointly with fcls, we use a gradient
reversal layer before the content embedding is fed to fcls following (Hsu et al., 2019).

3.4 Disentangled discriminator with self-supervised guidance

Unlike the previous GAN-based VC model which uses the cycle-consistency training to preserve
linguistic information by two-way generation, we follow the autoencoder based reconstruction method
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Figure 3: Style feature matching loss for reconstructed and converted mel-spectrogram.

for training. For adversarial feedback, we divide the discriminator D into the content discriminator
Dc(·, ·) and style discriminator Ds(·, ·) to disentangle content and style, respectively. To guide each
discriminator for each attribute, we condition the content embedding to the content discriminator and
style embedding to the style discriminator as a self-supervised conditional information illustrated in
Figure 1. For the training objectives, we use the LSGAN (Mao et al., 2017) as followed:

LD
adv(D

c, Ds;G) = E
[
‖Dc(X1,A,CA)− 1‖2 + ‖Dc(X̂1→1,A,CA)‖2

+ ‖Ds(X1,A, S1)− 1‖2 + ‖Ds(X̂1→1,A, S1)‖2
] (9)

LG
adv(G;D

c, Ds) = E
[
‖Dc(X̂1→1,A,CA)− 1‖2 + ‖Ds(X̂1→1,A,S1)− 1‖2

]
(10)

Feature Matching for reconstruction We use the feature matching loss to train the generator,
which minimizes the distance of the discriminator’s features between ground truth and generated
speech. For each discriminator, we use the content feature matching loss LG

content from the content
discriminator for content and the style feature matching loss LG

style from the style discriminator for
style.

LG
content(G;D

c) = E
[ K∑

i=1

1

Ni
‖Dc

i (X1,A,CA)−Dc
i (X̂1→1,A,CA)‖1

]
(11)

LG
style(G;D

s) = E
[ K′∑

i=1

1

Ni
‖Ds

i (X1,A,S1)−Ds
i (X̂1→1,A,S1)‖1

]
(12)

where K and K ′ denote the number of blocks in each discriminator, and Ni is the number of features
in i-th discriminator block. The total loss for reconstructed mel-spectrogram is defined as:

Lrec = LG
adv(G;D

c, Ds) + λcLG
content(G;D

c) + λsLG
style(G;D

s) + λmelLmel (13)

where Lmel is mean absolute error between X1,A and X̂1→1,A.

3.5 Adversarial Voice Style Mixup

By introducing the disentangled discriminator for each information, we can train the reconstructed
speech for each disentangled feature. However, our goal is to convert voice by disentangling the
source style and transferring the target style. To learn the latent representations of the converted
speech, we propose an adversarial voice style mixup, which can train the converted speech by using
the disentangled discriminator with a self-supervised condition. Even though converted speech does
not have ground-truth (GT) samples, the converted mel-spectrogram can be trained with adversarial
feedback through each discriminator. It is worth noting that the model only uses a self-supervised
hidden representation of the generator as conditional features without any external feature extractor
for conditional information. The GAN losses for the converted mel-spectrogram are defined as:

LD
adv∗(D

c, Ds;G) = E
[
‖Dc(X̂1→2,A,CA)‖2 + ‖Ds(X̂1→2,A,S2)‖2

]
, (14)

LG
adv∗(G;D

c, Ds) = E
[
‖Dc(X̂1→2,A,CA)− 1‖2 + ‖Ds(X̂1→2,A,S2)− 1‖2

]
(15)
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Feature Matching for Mixup We can also use the feature matching loss for a converted speech
by the disentangled discriminator. For the content representation, the feature distance of content
discriminator between converted speech and source speech is minimized as:

LG
content∗(G;D

c) = E
[ K∑

i=1

1

Ni
‖Dc

i (X1,A,CA)−Dc
i (X̂1→2,A,CA)‖1

]
(16)

For the style representation, the feature distance of style between converted and target speech is
minimized as following:

LG
style+(G;D

s) = E
[ K′∑

i=1

1

Ni
‖Ds

i (X2,B ,S2)−Ds
i (X̂1→2,A,S2)‖1

]
(17)

We call it “Attractive style loss” which minimizes the style feature distance between the same style
of the same speaker. As shown in Figure 3, we also introduce “Repulsive style loss” to maximize the
style feature distance between the different style of the converted speech and source speech as:

LG
style−(G;D

s) = E
[
−

K′∑
i=1

1

Ni
‖Ds

i (X1,A,S1)−Ds
i (X̂1→2,A,S2)‖1

]
(18)

When the content encoder does not disentangle the source speaker, the converted speech may contain
the style of the source speaker. Thus, this repulsive style loss restricts the converted speech from
having the style of source speaker. The total loss for converted mel-spectrogram is defined as:

Lcon = LG
adv∗(G;D

c, Ds)+λcLG
content∗(G;D

c)+λsLG
style+(G;D

s)+λs−LG
style−(G;D

s) (19)

Our final objectives for the discriminators and generator are represented as:

LD = LD
adv(D

c, Ds;G) + λconLD
adv∗(D

c, Ds;G) (20)

LG = Lrec + λconLcon + λposLpos(fc, fr) + λnegLneg(fc, fr) + λadvscLadvsc(fc) (21)

4 Experiment and result

We evaluated our model with the VCTK dataset, which has 46 hours of audio from 109 speakers
(Veaux et al., 2017). We divided the dataset into 98 speakers as base speakers for many-to-many
VST and 10 speakers as the novel speakers for zero-shot VST. The base speaker is split into train and
test sets. For the non-parallel dataset setting, the training set consists of different utterances for all
of the speakers, and the test set consists of 25 same utterances. We transform the mel-spectrogram
with 80 bins from the audio downsampled at 22,050Hz. The spectrogram is inverted to a waveform
by the pre-trained HiFi-GAN (Kong et al., 2020). For many-to-many VST, we randomly choose
20 speakers with equal distribution of male and female from the base speakers. For zero-shot VST,
we randomly choose 10 speakers from the base speakers, and 10 speakers from the novel speakers.
For each setting, a single utterance is selected from each speaker, and then all the possible pairs of
utterances (20 x 20 = 400) are produced.

4.1 Implementation details

The generator consists of a speaker encoder, content encoder, similarity-based information bottleneck,
and decoder. We train the entire model jointly. The speaker embedding is extracted from the speaker
encoder which has the same architecture as the reference encoder in (Skerry-Ryan et al., 2018).
The source speech is fed to the content encoder consisting of a pre-net and three blocks of the
multi-receptive field fusion (MRF) (Kong et al., 2020). The pre-net is two linear layers with 384
channels. The output concatenated with source speaker embedding is fed to a 1D convolutional layer
with 384 channels, followed by the MRF. The MRF returns the sum of output from 384 channels
of multiple convolutional layers with multiple dilations and multiple receptive fields. We use the
combination of two dilations of [1, 3], and two receptive fields of [3, 7] for the MRF. Before the
features are fed to MRF, the instance normalization (IN) is applied.
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The similarity-based information bottleneck has two range predictors for down/up-sampling. Both
range predictors consist of three convolutional layers followed by a linear layer with a softplus
activation function, similar to (Shen et al., 2020). The range predictor for downsampling uses the
similarity-based duration as input. The range predictor for upsampling uses the same duration and
downsampled content embedding as input. The content embedding is fed to both adversarial speaker
classifier and contrastive encoder. The adversarial speaker classifier consists of five 1D convolutional
layers followed by a linear layer to predict speaker identity. To remove the speaker identity on content
embedding, a gradient reversal layer is used before the first layer of the adversarial speaker classifier.
For the contrastive encoder, we use three masked convolution blocks of (Liu et al., 2020) with 384
channels, receptive field size of 23, and mask sizes of [5, 7, 9]. We set the k as 24 (about 0.3s) which
is over the average duration of consonant-vowel syllables (Steinschneider et al., 2013).

After the similarity-based information bottleneck, the upsampled feature concatenated with the target
speaker embedding is fed to the decoder, which consists of a conditional layer, three blocks of MRF,
and the linear layer. The conditional layer is a single 1D convolutional layer with 384 channels. The
MRF of the decoder has the same architecture with the MRF of the encoder without IN applied to the
feature before being fed to the MRF. Finally, the mel-spectrogram is predicted by the linear layer.

The content discriminator consists of four blocks which have a speech-side and content-condition
side block following (Lee et al., 2021). Each block has two 1D convolutional layers. The hidden
representation of the condition-side block is added to the speech-side hidden representations of [256,
512, 1024, 1024]. The style discriminator consists of 4 blocks which have a speech-side block and
style-condition side linear layers. Each output of the linear layer is added to the speech-side hidden
representations of [256, 512, 1024, 1024]. We report more details of hyperparameter in Appendix A.

4.2 Information bottleneck alignment

To compare the similarity-based information bottleneck using a different combination of auxiliary
loss, Figure 4 show the alignment between source speech and downsampled content embedding. The
model without contrastive loss (Lpos and Lneg) nearly shows the diagonal alignment, which implies
that content embedding does not only represent content information. The model without Ladvsc

shows alignment closer to attention alignment of Tacotron2 (Shen et al., 2018). These results show
that contrastive loss is more important to disentangle content and speaker information than Ladvsc.
Without using any text transcript and target duration, our model with auxiliary losses produces an
alignment similar to phonetic alignment, and shows better performance as shown in Table 3.

(a) w/o Lpos and Lneg (b) w/o Ladvsc (c) VoiceMixer (d) Phoneme alignment

Figure 4: Alignment of similarity-based information bottleneck

4.3 Evaluation metrics

Subjective metrics We conduct the naturalness and similarity mean opinion score test. For the
naturalness of speech (Naturalness), converted samples are evaluated by at least 20 raters on a scale
of 1 to 5. The Naturalness is reported with 95% confidence intervals. For the similarity of converted
speech (Similarity), both converted and target speech are presented to at least 20 raters, and the raters
evaluate on a scale of 1 to 4. We also report the binary rating introduced in (Serrà et al., 2019).

Objective metrics We conduct three objective metrics; the equal error rate of the automatic speaker
verification (ASV EER), the mel-cepstral distance (MCD13) (Kubichek, 1993), and the F0 root mean
square error (RMSEf0). We use the pre-trained ASV model (Chung et al., 2020) trained by the large
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Table 1: Many-to-many VST evaluation results.
Method Naturalness Similarity ASV EER MCD13 RMSEf0 FDSD

GT 4.07±0.03 93.7% 5.5% - - -
HiFi-GAN (Vocoder) 3.92±0.03 92.8% 7.6% 3.19 36.22 0.546

StarGAN-VC 3.48±0.04 42.5% 22.7% 7.97 33.98 13.561
AGAIN-VC 3.60±0.03 52.2% 14.3% 6.75 41.39 3.185
AUTOVC (τ=16) 3.65±0.03 52.1% 18.3% 6.70 44.05 5.753
AUTOVC (τ=32) 3.64±0.03 52.1% 14.0% 6.44 39.93 10.703
AUTOVC + Ladvsc (τ=16) 3.63±0.03 54.6% 14.7% 6.58 39.40 6.036
Blow 3.12±0.04 33.2% 52.0% 6.74 44.55 15.112

VoiceMixer (Ours) 3.78±0.03 55.9% 12.5% 6.77 42.76 2.080

Table 2: Zero-shot VST evaluation results.
Method Naturalness Similarity ASV EER MCD13 RMSEf0 FDSD

GT 4.08±0.03 96.3% 4.4% - - -
HiFi-GAN (Vocoder) 4.03±0.03 95.4% 6.0% 3.34 38.33 0.576

AGAIN-VC 3.29±0.03 58.2% 15.0% 6.96 44.81 3.261
AUTOVC (τ=16) 3.40±0.03 46.3% 25.0% 6.92 46.33 5.227
AUTOVC (τ=32) 3.24±0.03 59.7% 20.7% 6.65 39.93 9.741
AUTOVC + Ladvsc (τ=16) 3.39±0.03 58.9% 21.9% 6.78 42.08 5.675

VoiceMixer (Ours) 3.75±0.03 63.4% 18.5% 7.04 44.70 2.416

scale dataset, VoxCeleb2 (Chung et al., 2018). We compute the EER from the converted and target
speech (400 x 20 = 8000). We apply the dynamic time warping (DTW) to calculate the MCD13

and RMSEf0 between converted and target speech, which has different time alignment. For the
naturalness measurement, we evaluate Fréchet DeepSpeech Distance (FDSD) (Bińkowski et al., 2020;
Gritsenko et al., 2020), which is the distance between the high-level features of GT and generated
audio from the pre-trained DeepSpeech2 (Amodei et al., 2016). Because DeepSpeech2 is a speech
recognition model trained with connectionist temporal classification loss to classify the text sequence,
the hidden representations are related to linguistic information. Thus, we use FDSD between the
converted and source speech for objective naturalness measurement.

4.4 Audio quality and style transfer performance

For the many-to-many VST evaluation, we compared our model with four VC models; StarGAN-VC
(Kameoka et al., 2018), AGAIN-VC (Chen et al., 2020), Blow (Serrà et al., 2019), and AUTOVC
(Qian et al., 2019). All models are trained on the same dataset as VoiceMixer, and the implementation
details are described in the Appendix A. We trained AUTOVC in various settings with each having
different sizes of information bottleneck. For a fair comparison, we also implemented the AUTOVC
model with an adversarial speaker classifier. Table 1 shows that our model outperforms other models
in Naturalness and FDSD metrics. Our model also shows better transfer performance on the Similarity
and ASV EER. When disentangling the content and style information, AGAIN-VC and AUTOVC
models lose a lot of content information, and thus the converted speech has lower Naturalness
and higher FDSD score. The adversarial speaker classifier on the content embedding can help the
disentanglement performance of models, but the naturalness can be degraded.

For the zero-shot VST evaluation, we compared our model with two VC models; AGAIN-VC and
AUTOVC as shown in Table 2. We also implemented various AUTOVC trained with different infor-
mation bottleneck size and adversarial speaker classification loss. Our model has better performance
in Naturalness and FDSD. In terms of similarity, even though the AGAIN-VC has higher performance
in ASV EER, our model has better performance in Similarity. In terms of AUTOVC, it is hard to
select the proper down-sampling factor, which has a trade-off between naturalness and similarity.
Thus, it is important to note that our proposed similarity-based information bottleneck need not find
the proper factor, which is learned by self-supervised representation learning with a small loss of
content information. Our audio samples are available on the demo page.2

2https://anonymous-speech.github.io/voicemixer/index.html
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Table 3: Ablation studies for zero-shot voice style transfer
Method Naturalness Similarity ASV EER MCD13 RMSEf0 FDSD

VoiceMixer (Ours) 3.72±0.03 63.7% 18.5% 7.04 44.70 2.416

w/o Ladvsc 3.74±0.03 41.3% 32.2% 7.33 47.63 1.217
w/o Lpos and Lneg 3.21±0.03 42.3% 38.0% 7.92 54.11 4.634
w/o Lneg 3.18±0.03 45.5% 24.2% 7.72 45.05 11.354
w fixed-length IB (τ=16) 3.35±0.03 51.8% 28.5% 7.38 46.14 2.827
w fixed-length IB (τ=32) 3.28±0.03 56.8% 20.7% 6.97 44.16 2.823

w/o GAN 3.70±0.03 58.5% 20.5% 6.95 44.79 2.666
w/o disentangled discriminator 3.68±0.03 60.4% 18.3% 7.02 45.23 3.502
w/o L∗style− 3.69±0.03 55.0% 21.6% 7.02 45.66 2.173

4.5 Ablation study

We conducted ablation studies for the information bottleneck and adversarial feedback in Table 3.
We evaluate each model for the same zero-shot VST setting of Table 2. In terms of similarity-based
information bottleneck, absence of Ladvsc or using fixed-length information bottleneck (IB) makes
it harder to disentangle the content and style in content embedding. For better disentanglement, it
is essential to use Lpos with Lneg, and it induces the information bottleneck to downsample the
content embedding similar to the phoneme alignment as shown in Figure 4. Additionally, when
trained without any information bottleneck or all of the auxiliary losses, these models are not
able to convert any voice, but only reconstruct source speech. Using GAN makes the model have
better performance on all of the metrics. The model trained with a single discriminator (instead
of disentangled discriminator) shows lower performance in FDSD. In this regard, disentangled
discriminator encourages better generalization for each attribute. Removing L∗style− results in lower
performance in both subjective and objective similarity metrics even though the FDSD decreases.

4.6 Content and speaker disentanglement

Table 4: Speaker classification accuracy on content
embedding of the autoencoder based VC models
and word error rate (WER) of converted speech.

Method ACC WER

GT - 8.18
HiFi-GAN (Vocoder) - 10.12

AGAIN-VC 27.31 27.26
AUTOVC (τ=16) 10.27 39.27
AUTOVC (τ=32) 4.47 61.99
AUTOVC + Ladvsc (τ=16) 3.11 39.31
VoiceMixer (Ours) 1.47 20.92

We conduct speaker classification on content
embedding to evaluate the disentanglement per-
formance compared to AGAIN-VC and AU-
TOVC. Table 4 represents the classification re-
sults. Our model shows the lowest accuracy,
which mean our model has better disentangle-
ment performance by removing speaker iden-
tity on content embedding despite having the
largest feature dimensions of 384 (The content
embedding of AUTOVC has 64 dimensions).
Even though AUTOVC trained with adversar-
ial speaker classifier has comparable disentan-
glement performance, AUTOVC loses a lot of
content information in their fixed-length based
information bottleneck as shown in Table 1. AU-
TOVC also has to heuristically find optimal
downsampling size for a good balance between content and style. On the other hand, our pro-
posed model finds proper downsampling size based on the similarity of content embedding learned by
self-supervised representation learning with only a small loss of content information. We additionally
conducted word error rate (WER) evaluation on the converted speech. The results show VoiceMixer
has a lower WER of 20.92%, which support our model converts the voice with a small loss of content
information. We used the Google Speech-to-Text API for ASR model.

5 Broader Impact

We see voice conversion technology could be used for various applications in many areas. First,
the personalized voice systems for the entertainment industry can be utilized in game or voice chat.
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This may help to secure the privacy of the player. Furthermore, it is also possible to read books
with parents’ voices for their children by converting the audiobook. The film industry can also use
the system for dubbing the original actors’ voice in different languages. Finally, voice conversion
can also restore the voice for individuals who passed away or have lost their ability to speak by a
neurological disorder or motor disabilities such as amyotrophic lateral sclerosis or spinal cord injury.
However, we also acknowledge the potential harms, malicious use, and ethical concerns of voice
conversion technology against the positive impacts.

Social negative impact and mitigation strategy As speech-related AI systems such as voice
conversion and text-to-speech synthesize realistic audio, there is an increased risk of the potential
harms, malicious use, and ethical concerns for TTS and VC systems. These systems can be used
to deceive people in various ways; usage in crimes such as voice spoofing (Kinnunen et al., 2012),
fake news (Singhal et al., 2019), and commercial use by cloning voice without consent (Wang et al.,
2020b). Also, there is a potential use for fraud, theft, abuse, or harassment. Hence, it is necessary to
consider a countermeasure for reducing these potential risks. The anti-spoofing techniques (Wu et al.,
2012) such a fake audio detection (Tak et al., 2021; Mittal et al., 2020; Ma et al., 2021) are developed
to distinguish synthesized speech, and (Müller et al., 2021) demonstrated that the AI outperforms the
human in fake audio attacks. Moreover, recently, there is an attack that uses a partially fake audio
clip, and some small fake audio clips are hidden in real speech audio. As (Yi et al., 2021) indicated
that partially fake audio detection is more challenging than fully fake audio, it is also important to
develop a partially fake audio detection model. For practical mitigation strategies, there are some
potential approaches. First, voice conversion system should be deployed when conditioned on written
consent from all parties involved (e.g., the speakers of source and target speech) if the dataset is not
open-sourced or licensed to be open publicly. This can prevent inappropriate use of voice conversion
without agreement from affiliated parties. If either of the two parties is dead or unavailable, there
must be other measures taken such as consent from the direct family. Second, the converted speech or
synthesized speech should be provided when conditioned on mandatory disclosure with the statement
such as “this speech is synthesized by voice conversion or text-to-speech model". This can potentially
prevent harmful and malicious conduct such as voice spoofing, phishing, or faking using voice
conversion. Third, the user could synthesize the speech with the virtual voice by mixing the style
vector from the multiple speakers where that voice doesn’t exist in real-world. However, the user
should use the data for style information, given the written consent from all of the parties. Finally,
there is a risk that the system trained with the leaked private data may be used to deceive people, so
researcher and institution should enhance their privacy protection mechanism. To do this, (Hong
et al., 2021) introduced federated learning for text-to-speech. Although these mitigation strategies
are still imperfect, we will continue to make improvements on mitigation strategies and dedicate
thoughtful discussions on methods to prevent harmful use in our future works.

6 Conclusion

We presented VoiceMixer, which can decompose and transfer voice style by similarity-based infor-
mation bottleneck and adversarial feedback with self-supervised representation learning. Without
effort to find the proper size of information bottleneck carefully, our model is able to learn proper
downsampling factor with self-supervised representation learning. We successfully demonstrated
that our novel information bottleneck can decompose content and style information from the source
speech with a small loss of content information. Moreover, the alignment of information bottleneck
is similar to phonetic alignment despite not using any text transcript and target phoneme duration. we
also show the adversarial voice style mixup makes it possible to learn the latent representation of
converted speech which does not have ground-truth speech, and it improves the overall generalization.

While there remains a gap between target and converted voice, we believe pre-trained speaker encoder
with large-scale dataset (Jia et al., 2018) could improve the VST performance. Moreover, we see
our self-supervised learning based speech disentanglement extending to other tasks. For future
work, we will apply our speech disentanglement to TTS without text (Dunbar et al., 2019; Tan et al.,
2021), which is a challenging task to synthesize the speech without any text transcript for use of
the untranscribed large-scale speech data. We will also attempt to control the rhythm of speech like
(Qian et al., 2020, 2021). We discussed the potential positive and negative impact of voice conversion
in section 5. We hope that our method will be used in positive applications or extend to technical
mitigation strategy such as fake audio detection.
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