ROBUST EEG CLASSIFICATION VIA GRAPH NEURAL NETWORKS

Anonymous authors

004

010 011

012

013

014

015

016

017

018

019

021

023

Paper under double-blind review

Abstract

Electroencephalogram (EEG) classification has gained prominence due to its applications in medical diagnostics and brain-computer interfaces. However, EEG data is known to have a low signal-to-noise ratio, resulting in high variance in predictions across similar instances. To overcome this issue, we introduce *RoGra*, a novel approach leveraging residual graph convolutional networks for robust EEG classification. Our model incorporates dynamic time warping (DTW) to align temporal information and capture meaningful neighborhood relationships, enhancing robustness against artifacts. Experiments on three well-established EEG datasets demonstrate that *RoGra* outperforms baseline methods by up to 25%, marking the largest improvement in EEG classification accuracy since the introduction of the seminal EEGNet. Our code is publically available¹.

1 INTRODUCTION

Electroencephalogram (EEG) classification is a key task in time-series analysis, both from a theoretical and practical perspective, due to its inherent complexity and significant challenges (Parbat & Chakraborty, 2021; Pan et al., 2022). One of the main problems is that the EEG sequences are often contaminated by various artifacts, such as eye blinks, eye movements, and muscle activity (Kotte & Dabbakuti, 2020; Delorme, 2023), which can significantly degrade the quality of the recorded data. These artifacts, which originate from sources other than brain activity, obscure relevant neural signals and reduce the signal-to-noise ratio (Johnson, 2006), thereby impairing the performance of downstream applications such as classification and clinical analysis.

Existing EEG classification approaches typically focus on denoising as a preprocessing step, aiming
 to remove specific types of artifacts, as demonstrated in (Pan et al., 2022). However, the optimal
 denoising strategy remains an open question. Recent findings by Delorme (2023) suggest that au tomated denoising can, in fact, reduce classification performance, or at best, have no significant
 impact, raising concerns about the efficacy of such preprocessing steps.

038 In this work, we model EEG sequences as a graph, where edges represent the relationships between different EEG instances, transforming the EEG classification task into a node classification 040 problem. We introduce a neural architecture for EEG classification, built on graph neural networks 041 (GNNs) (Scarselli et al., 2008; Bresson & Laurent, 2017; Kipf & Welling, 2022). Leveraging the inherent denoising capabilities of GNNs, due to the smoothness properties of graph-based archi-042 tectures (Ma et al., 2021), we demonstrate that our approach is resilient to noise and enhances 043 classification accuracy. Our method, termed Robust EEG classification via Graph Neural Networks 044 (RoGra), integrates an InceptionTime (Ismail Fawaz et al., 2020) module to capture high-level tem-045 poral features, which are further refined through a residual GNN layer (Bresson & Laurent, 2017; 046 Liu et al., 2021). This layer processes information from neighboring nodes using a similarity-based 047 adjacency matrix (Zha et al., 2022), treating each edge as a functional dependency between con-048 nected nodes. To account for time shifts between different time series, we compute similarities of data points with the help of Dynamic Time Warping (DTW) (Sakoe & Chiba, 1978). We argue that the similarity-based adjacency matrix introduces a beneficial inductive bias, improving classifica-051 tion performance for EEG data. Our method achieves a significant improvement of approximately 052 25% across various EEG datasets while maintaining stable performance. These results indicate that

⁰⁵³

¹Git link redacted for double-blind review. Please check the .zip file in the supplementary materials.

O54
 O55
 GNNs can effectively mitigate the impact of diverse artifacts without compromising the integrity of the underlying neural signals.

057 Our contributions in this work are the following:

- 1. We introduce **Ro**bust EEG Classification via **Gra**ph Neural Networks, (*RoGra*), which exploits similarity-based graph neural networks within the context of EEG classification.
- 2. We formulate the EEG classification task as an inductive node classification problem, where weighted edges are constructed from the data matrix with the help of dynamic time warping.
- 3. We demonstrate the effectiveness of *RoGra* on both EEG classification and general timeseries classification tasks. Our model achieves up to a 25% improvement in accuracy across three benchmark EEG datasets, representing the largest performance gain in EEG classification since the introduction of EEGNet! Additionally, *RoGra* proves to be generalizable, outperforming state-of-the-art time-series classification models by approximately 2% on four multivariate non-EEG time-series datasets.
 - 4. We empirically show that *RoGra* is especially robust to noise. By adding successively more and more noise to the data, we show that *RoGra* is able to classify in highly noisy settings, where *RoGra* is able to maintain its performance.
- 071 072 073 074

092

058

059

060

061

062

063

064

065

066

067

068

069

2 RELATED WORK

075 In the EEG literature, most models integrate various types of convolutions (spatial, temporal, and 076 hybrid), along with normalization, pooling, and a final linear layer. Some pioneering models include 077 EEGNet (Lawhern et al., 2018) and ShallowConvNet (Schirrmeister et al., 2017), both of which employ temporal convolutions and convolutional blocks. SCCNet (Wei et al., 2019) extends this 079 by incorporating spatiotemporal convolution to learn spectral filtering. FBCNet (Mane et al., 2021) follows a similar approach to EEG-TCNet but incorporates spectral filtering in the initial stage. 081 EEG-TCNet (Ingolfsson et al., 2020) utilizes causal convolutions, while TCNet-Fusion (Musallam et al., 2021) enhances this and concatenates the outputs of the first and second layers before the 083 final classification step. MBEEGSE (Altuwaijri et al., 2022) is one of the first transformers and uses EEG blocks (Riyad et al., 2020) in combination with SE attention blocks (Altuwaijri & Muhammad, 084 2022). MAtt (Pan et al., 2022) introduces a novel approach by utilizing manifold attention layers in 085 Riemann space instead of the standard Euclidean space. Furthermore, Burchert et al. (2024) propose ResNet (Kachuee et al., 2018) and Inception (Ismail Fawaz et al., 2020) as robust baselines, along 087 with a different training protocol for joint subject training. One of the main challenges in EEG 880 classification literature is the large variance observed when training models on different subjects for the same task. Additionally, model performance is highly dependent on the choice of architecture and hyperparameters, leading to high standard deviations. As a result, it becomes difficult to identify 091 the most suitable models for a given task, as many results lack statistical significance.

Signals in EEG datasets inherently contain brain activity alongside various sources of noise and ar-093 tifacts (Zhang et al., 2021). Numerous studies have addressed these noise issues, originating from 094 sources such as ocular movements (Croft & Barry, 2000; Chan et al., 2010) and muscle activity (Mc-095 Menamin et al., 2010; Nekrasova et al., 2022). Traditional denoising techniques, such as regression 096 and linear filtering methods, have been widely used to mitigate noise in EEG signals (Lai et al., 097 2018; Grobbelaar et al., 2022). However, these approaches often risk removing or distorting im-098 portant physiological information, thereby reducing classification performance (Lai et al., 2018). Advanced methods, including blind source separation (Taha & Abdel-Raheem, 2022) and empirical mode decomposition (Soler et al., 2020), have also been explored but struggle with non-linear or 100 overlapping artifacts. Furthermore, signal decomposition methods like Wavelet Transform (Borse, 101 2015; Alyasseri et al., 2019) have gained popularity, though they rely heavily on the selection of an 102 appropriate wavelet basis and thresholding, which can be challenging and may lead to the loss of 103 significant signal components (Lai et al., 2018; Grobbelaar et al., 2022). Therefore, mitigating the 104 impact of diverse noise sources without compromising the integrity of the neural signals remains an 105 open question. 106

107 Graph neural networks (GNNs) capture dependencies in a graph by facilitating information exchange between nodes (Zhou et al., 2020). The problem of time series classification can be ap108 proached from two distinct perspectives: as a graph classification task, referred to as Series-as-109 Graph, or as a node classification task, referred to as Series-as-Node (Jin et al., 2024). In the Series-110 as-Graph approach, time series classification was first explored by Time2Graph (Cheng et al., 2020), 111 which extracts time-aware shapelets to build a shapelet-based graph for classification. This was ex-112 tended to Time2Graph+ (Cheng et al., 2021), introducing time-level attention to capture shapelet evolution. MTS2Graph (Younis et al., 2024) combines CNNs and clustering to extract patterns and 113 build graphs for classification, while TodyNet (Liu et al., 2024) avoids predefined graphs, using tem-114 poral graph pooling to capture spatio-temporal dependencies. From the Series-as-Node perspective, 115 SimTSC (Zha et al., 2022) represents each time series as a node in a graph, with edges weighted by 116 similarity. GNN operations generate node embeddings, which are then classified. In this work, we 117 formulate EEG classification task from a Series-as-Node perspective as in (Zha et al., 2022) where 118 edges are constructed from the data matrix. 119

GNNs have recently gained attention for EEG classification, with various GNN architectures being 120 tailored to specific EEG tasks (Klepl et al., 2024) such as emotion recognition (Song et al., 2018; 121 Zhou et al., 2023), epilepsy diagnosis (Wang et al., 2023), seizure detection (Ho & Armanfard, 122 2023; Tang et al., 2021), sleep staging (Eldele et al., 2021), and motor imagery (Jin et al., 2021). 123 Many state-of-the-art GNN-based approaches leverage pre-defined structural connectivity to repre-124 sent the physical connections between EEG sensors (Zhong et al., 2020; Lin et al., 2021), and rely 125 on feature extraction techniques involving convolutional neural networks (CNNs) (Jia et al., 2021), 126 long short-term memory (LSTM) (Hou et al., 2020), or multi-layer perceptrons (MLPs) (Sun et al., 127 2022). These features are then fed into different GNN variants, such as simplified Graph Neural 128 Networks (GCNs) (Klepl et al., 2022), first-order ChebConv (Raeisi et al., 2022), and Graph Atten-129 tion Networks (GATs) (Priyasad et al., 2022). However, current state-of-the-art graph-based EEG classification methods have several limitations. First, they are only tailored to specific tasks, lack-130 ing a generalizable framework for diverse EEG classification problems. Additionally, these models 131 typically construct graphs based on the physical locations of EEG sensors, which fails to capture 132 the functional dependencies between EEG signals. Furthermore, like other EEG-based approaches, 133 these models often show only moderate performance, as they struggle to fully leverage the complex 134 information inherent in EEG signals. 135

136 137

138

139 140

3 PRELIMINARIES

3.1 PROBLEM SETTING: EEG TIME SERIES CLASSIFICATION

Given a set of EEG recordings from a subject and their classification into distinct categories (e.g., 141 by an expert), the objective is to classify new EEG recordings from this subject into these categories 142 based on patterns in the signals. Each EEG recording is represented by a time series $X \in \mathbb{R}^{C \times T}$, 143 where C is the number of EEG channels (electrodes) and T the length of the recording in time steps, 144 each class label by a number $y \in \{1, \ldots, K\}$. Given N such labeled EEG recordings, i.e., pairs 145 $(X_1, y_1), \ldots, (X_N, y_N)$ from an unknown distribution p (e.g., representing a subject), the task is to 146 find a model \hat{y} that maps EEG signals X to the correct class (where X and its ground truth class y are 147 from the same distribution p). Correctness is measured simply by a loss function, typically accuracy 148 or for problems with imbalanced class distribution area under the curve (AUC; see Appendix A.2). 149 To achieve this goal, the model has to capture both spatial (across channels C) and temporal (across time points T) patterns. 150

We focus on the standard **inductive** problem setting, where the model must make predictions for each test instance independently, without access to the features of other test instances. In contrast, in the **transductive** setting, models have access to all test features collectively, providing additional information. We emphasize this distinction to differentiate our work from transductive approaches in the literature.

- 156
- 157 158

3.2 EEG TIME SERIES CLASSIFICATION AS NODE CLASSIFICATION

We represent EEG data as a graph from a novel perspective. Instead of using channels as nodes and treating EEG time series classification as a graph classification task, we construct a graph G = (V, E) where each node $v_i \in V$ corresponds to a full EEG sequence X_i . Edges E denote relationships between these time series, based on a similarity matrix A. Each EEG sequence X_i has

Figure 1: Our proposed model RoGra

a label $y_i \in \{1, 2, ..., K\}$, where K is the number of distinct classes representing different brain states or conditions. The objective is to predict these labels $\boldsymbol{y} = (y_1, y_2, ..., y_N)$ for all nodes in the graph.

4 Methodology

175 176

181

182

191

192

193

194

196 197

199

204

209

214

183 While the vast majority of recent EEG classification models follow one common architecture, deep 184 convolutional neural networks, with many different layers and choices in detail (see sec. 2), we are 185 interested in a model than can leverage both, a rich encoder of the EEG recording and a distance 186 measure *d* between such EEG recordings in an end-to-end learnable way in a graph neural network. 187 Here, the graph neural network is build not over a single instance, e.g., over the different channels, 188 but each EEG instance is a node. Let us have in the following a sequence of EEG training series 189 $X = (X_1, \ldots, X_N) \in (\mathbb{R}^{C \times T})^N$. RoGra contains the steps we discuss in the following. It is 190 depicted in Figure 1 and the training procedure is described in Algorithm 1.

1. DTW Distance and Graph Construction The EEG sequences X_1, \ldots, X_n denote the nodes and the adjacency matrix (and therefore the edges) is constructed as follows. We are using dynamic time warping (DTW; Sakoe & Chiba 1978) to measure distances between two EEG recordings, allowing to re-align patterns that slightly shifted in time between different instances:

$$d^{\text{DTW}}(X_m, X_n) := \min\{\sum_{i=1}^{|w|} d(X_{m, w_{i,1}}, X_{n, w_{i,2}}) \mid w \in (\{1, \dots, T\}^2)^* \text{ warping path}\}$$

where a sequence w of index pairs is called a warping path if it starts at (1, 1), ends at (T, T) and in each step each index increases by 1 or stays at its previous value. We convert distances into similarity values used for edge weights in a weighted adjacency matrix A via an exponential decay (Zha et al., 2022):

$$A_{m,n} := \exp(-\alpha \cdot d^{\text{DTW}}(X_m, X_n)), \quad m, n \in \{1, \dots, N\}$$

$$\tag{1}$$

where $\alpha \ge 0$ controls how quickly the weights decay with increasing DTW distance; in all our experiments we used $\alpha := 0.3$. We sparsify the weighted adjacency matrix A by keeping only the largest J values in every row and setting all others to zero, in effect dropping the edges between these nodes.

210 2. Instance Encoding. We utilize InceptionTime (Ismail Fawaz et al., 2020) to extract temporal 211 features from each EEG recording X_n . It employs multi-scale convolutional layers with various 212 filter sizes $k \in \{1, 3, 5\}$ to capture temporal patterns at different resolutions and then concatenates 213 all of them to an initial latent representation:

$$Z_n^0 := \operatorname{inception}(X_n; \theta^{\operatorname{enc}}) \in \mathbb{R}^F$$
(2)

where $F \in \mathbb{N}$ is the latent feature dimension and θ^{enc} are the parameters of the inception encoder (e.g., its kernel matrices). Z_n^0 now represents the initial latent embedding of instance X_n . **3. Information Fusion with Residual Graph Neural Networks.** Once the temporal features Z^0 are extracted, we use Residual Graph Neural Networks (ResGNN; Bresson & Laurent 2017; Liu et al. 2021) to fuse the two types of information: the distance information in the graph G, esp. its weighted adjacency matrix A, and the initial encodings Z_n^0 of the EEG recordings, used as node features in the first GNN layer. Each layer performs one step of message passing between neighboring nodes, transforming the $N \times d^l$ matrix Z^l of all node features to a $N \times d^{l+1}$ matrix Z^{l+1}

$$Z^{l+1} \coloneqq \phi(A'Z^lW_l) + Z^lW'_l \tag{3}$$

if the latent dimension changes $(d_{l+1} \neq d_l)$, and just with a residual link otherwise:

$$Z^{l+1} \coloneqq \phi(A'Z^lW_l) + Z^l \tag{4}$$

where W_l, W'_l are trainable weight matrices. Here $A' = D^{-\frac{1}{2}}AD^{-\frac{1}{2}}$ denotes the normalized adjacency matrix, where D is the weighted degree matrix, the diagonal matrix containing the row sums of A, and ϕ an activation function. The output of the last, L-th layer we denote as

$$\operatorname{ResGNN}(A, Z^0; \theta^{\mathrm{GNN}}) \coloneqq Z^L$$
(5)

with parameters $\theta^{\text{GNN}} := (W_l, W'_l)_{l=0:L-1}$.

4. Node Classification Head. We choose the number of classes as last embedding dimension $(d_L := K)$ and finally apply softmax on the output of the last GNN layer (on top of its activation function), to predict class probabilities:

$$\hat{y}_n := \operatorname{RoGra}(X; \theta)_n := \operatorname{softmax}(Z_n^L)$$
(6)

with parameters $\theta := (\theta^{enc}, \theta^{GNN})$.

223

224

226

227

228

229

230

231 232

233

234 235

236

237

238 239 240

241 242 243

244 245

246

247 248 249

250

251

253

254 255

256

257

258

259

5. Loss and Training Procedure. During training time, we infer the predicted labels with RoGra and train with cross-entropy:

 $\ell(\theta; X, y) := \frac{1}{N} \sum_{n=1}^{N} \operatorname{cross-entropy}(y_n, \hat{y}_n) \quad \text{with } \hat{y} := \operatorname{RoGra}(X; \theta)$ (7)

6. Inference for Test Examples. At inference, RoGra will build a separate graph for each test instance X^{qu} . This is done by building a graph having the training examples and the particular test example as nodes. We then apply RoGra, i.e., step 1 to 4 to $(X_1, \ldots, X_N, X^{qu})$ and use the predictions for the test instance:

 $\hat{y}(X^{qu}) := \operatorname{RoGra}((X_1, \ldots, X_N, X^{qu}); \theta)_{N+1}$

Equipped with this inference procedure RoGra is a fully inductive model that can predict each instance separately. For performance reasons, we batch the training examples and compute the similarity matrix only in the batch and apply RoGra batch wise. For inferring a test example, we sample a batch of training instances $X_1, ..., X_B$ and compute $\operatorname{RoGra}((X_1, \ldots, X_B, X^{qu}))$.

260 7. Delineation from SimTSC and Kernel-based Methods. While *RoGra* shares some conceptual 261 similarities with SimTSC (Zha et al., 2022) in constructing the adjacency matrix, it introduces key 262 distinctions that set it apart. RoGra leverages an InceptionTime encoder to process time series data 263 or EEG recordings. It utilizes a ResGNN architecture to dynamically update node representations. 264 Unlike approaches that build a graph over channels, separately for each instance, *RoGra* constructs 265 a graph over all training instances and the test instance being predicted. For each test instance X^{qu} , a graph $G(X^{qu})$ is formed with nodes $V(X^{qu}) := \{X_1, \ldots, X_N, X^{qu}\}$, and edges are created based 266 267 on nearest neighbors according to the distance measure d. This setup differs from the transductive inference approach used in SimTSC, where a single graph is built over both the training and several 268 test instances. It also contrasts with kernel-based models, as *RoGra* constructs its graph using only 269 the training predictors X_n , without incorporating the class labels y_n .

Alg	orithm 1 RoGra Training	
Req	uire: Training dataset $\mathcal{D}^{\text{train}} = \{(X_1, y_1), \dots, (X_N, y_N)\}$, scaling factor α ,	batch size $B \leq N$,
1.	number of epochs <i>I</i>	
2:	for epoch $i = 1$ to I do	
3:	Partition data $\mathcal{D}^{\text{train}}$ in batches $\{(X_b^{(j)}, y_b^{(j)})_{b=1:B} \mid j = 1, \dots, \lceil N/B \rceil\}$	
4:	for each batch $(X_{b}^{(j)}, y_{b}^{(j)})_{b=1:B}$ do	
5:	$A_{ab} \leftarrow \text{ComputeSimilarity}(X_a^{(j)}, X_b^{(j)}) \forall a, b \in \{1, \dots, B\}$	⊳ Equation (1)
6:	$Z_{b}^{0} \leftarrow \operatorname{inception}(X_{b}^{(j)}; \theta^{\operatorname{enc}}) \forall b \in \{1, \dots, B\}$	\triangleright Equation (2)
7:	$Z^{L} \leftarrow \text{ResGNN}(A, Z^{0}; \theta^{\text{GNN}})$	\triangleright Equation (5)
8:	$\hat{y}_b \leftarrow \operatorname{softmax}(Z_b^L) \forall b \in \{1, \dots, B\}$	\triangleright Equation (6)
9:	$\mathcal{L} \leftarrow \frac{1}{2} \sum_{k=1}^{B} \text{cross-entropy}(\hat{y}_{k}^{(j)}, y_{k}^{(j)})$	\triangleright Equation (7)
10.	Undate parameters: θ^{enc} θ^{GNN} based on $\nabla_{\theta} f$	1
10.	return θ^{enc} , θ^{GNN}	

5 EXPERIMENTS

We compare our model *RoGra* in two settings, EEG classification and time-series classification 291 (TSC). For the application domain of EEG, we evaluate our method with the current state-of-the-art 292 models for EEG Classification including Inception and InceptionJoint (Burchert et al., 2024), MAtt 293 (Pan et al., 2022), MBEEGSE (Altuwaijri et al., 2022), FBCNet (Mane et al., 2021), TCNet-Fusion (Musallam et al., 2021), EEG-TCNet (Ingolfsson et al., 2020), SCCNet (Wei et al., 2019), EEGNet 295 (Lawhern et al., 2018), and ShallowConvNet (Schirrmeister et al., 2017). Additionally, we analyze 296 RoGra in the broader context of TSC on five multivariate UCR (Dau et al., 2019) datasets. Here we 297 compare against SimTSC(Zha et al., 2022), HIVE-COTE2 (Middlehurst et al., 2021), Hydra-MR 298 (Tan et al., 2022), and H-InceptionTime (Ismail-Fawaz et al., 2022).

299 300 301

302

287 288

289 290

5.1 DATASETS

For EEG classification, we experiment on the following three datasets representing three different classification targets, motor imagery, visual stimuli, and error recognition, respectively.

MI – Motor Imagery (Brunner et al., 2008). Originally released for the BCI Competition IV in 306 2008 as dataset BCIC-IV-2a, it is widely used in EEG-based studies and consists of recordings from 307 9 subjects. The EEG signals were collected using 22 Ag/AgCl electrodes placed over central and 308 surrounding scalp regions, with a sampling rate of 250 Hz. The motor imagery task in this dataset 309 includes four classes, where subjects were asked to imagine one of four movements: right hand, 310 left hand, feet, or tongue. Standard preprocessing procedures were applied to the 22-channel data, 311 which involved down-sampling the signals from 256 Hz to 128 Hz, followed by band-pass filtering 312 to retain frequencies between 4 Hz and 38 Hz. The signals were then segmented, beginning 0.5 313 seconds after the onset of the cue and continuing for 4 seconds, resulting in segments containing 314 438 time points.

315 SSVEP – Steady-State Visual Evoked Potentials (Nikolopoulos, 2021). Released 2016 by the 316 MAMEM project as dataset II, it includes EEG recordings from 11 subjects, using an EGI 300 317 Geodesic EEG System (GES 300). During the task, subjects focused on one of five visual stim-318 uli flickering at specific frequencies (6.66, 7.50, 8.57, 10.00, and 12.00 Hz) for a duration of five 319 seconds. Preprocessing of the EEG signals involved applying a band-pass filter between 1 Hz and 320 50 Hz. Eight channels, located in the occipital region of the brain (PO7, PO3, PO, PO4, PO8, O1, 321 Oz, and O2), where the visual cortex is situated, were selected for analysis. Each trial was divided into four 1-second segments, starting 1 second after the cue onset and continuing for the next four 322 seconds. This produced a total of 500 trials of 1-second, 8-channel SSVEP signals for each subject, 323 with each segment consisting of 125 time points.

Table 1: Performance comparison for the datasets BCIC-IV-2a (MI), MAMEM EEG SSVEP (SSVEP) and the BCI challenge error-related negativity (ERN). We report the average accuracy for MI and SSVEP and the AUC for ERN over 5 runs respectively. The **best** result is highlighted in bold and the <u>second best</u> is underlined. Overall we achieve an average relative increase in performance of 18.78% over the current state-of-the-art.

Model	MI	SSVEP	ERN
ShallowConvNet	61.84±6.39	$56.93 {\pm} 6.97$	71.86±2.64
EEGNet	57.43 ± 6.25	53.72 ± 7.23	$74.28 {\pm} 2.47$
SCCNet	$71.95 {\pm} 5.05$	62.11 ± 7.70	$70.93 {\pm} 2.31$
EEG-TCNet	67.09 ± 4.66	55.45 ± 7.66	77.05 ± 2.46
TCNet-Fusion	56.52 ± 3.07	$45.00{\pm}6.45$	$70.46 {\pm} 2.94$
FBCNet	71.45 ± 4.45	$53.09 {\pm} 5.67$	$60.47 {\pm} 3.06$
MBEEGSE	$64.58 {\pm} 6.07$	56.45 ± 7.27	$75.46{\pm}2.34$
MAtt	<u>74.71</u> ±5.01	$65.50 {\pm} 8.20$	$76.01{\pm}2.28$
Inception	62.85 ± 3.21	62.71±2.95	$73.55 {\pm} 5.08$
InceptionJoint	61.38 ± 1.57	<u>66.00</u> ±0.36	$76.13 {\pm} 0.95$
RoGra (ours)	92.09 ±1.45	71.33 ±1.79	96.29 ±1.57
Increase in %	23.27	8.08	24.98

ERN – Error-Related Negativity (Margaux et al., 2012). Released 2015 as part of the BCI Challenge NER 2015², it captures EEG data from 16 subjects from 56 Ag/AgCl electrodes. Subjects are performing a P300-based BCI spelling task, a binary classification challenge, with an inherent class imbalance due to more frequent correct inputs. Preprocessing involved down-sampling the signals from 600 Hz to 128 Hz and applying a band-pass filter between 1 Hz and 40 Hz. After processing, each trial was composed of 56 channels, with 160 time points per trial.

351 5.2 EXPERIMENTAL SETUP

352 We compare our model *RoGra* against the EEG Classification baselines for these three datasets. For 353 the MI and SSVEP datasets, accuracy is used as the performance metric, while AUC is employed 354 for ERN due to class imbalance. We split the data 80/20 uniform at random for training and testing 355 respectively. The baselines use a slightly different split, where for MI there is a fixed train/test split 356 by instances, and SSVEP as well as ERN are split time-wise by sessions. There is no significant 357 difference between the two protocols for model performance. We show this for SSVEP in the ap-358 pendix in Table 9, where we apply our split for MAtt. We train *RoGra* for 500 epochs and we repeat 359 the training 5 times. For our model, we did no additional hyperparameter optimization for any of the three datasets and used a learning rate of $1e^{-4}$, weight-decay of $4e^{-3}$, and dropout of 0.5 in the 360 inception backbone for all experiments. Additionally, we set the scaling factor α to 0.3 and assigned 361 each node 3 neighbors (J = 3). We use two layers of ResGNN in all of our experiments for fair 362 comparison. The results for the baselines were aggregated from (Burchert et al., 2024) and (Pan 363 et al., 2022). 364

365 366

350

5.3 EEG CLASSIFICATION RESULTS

367 In Table 1, we show the performance of *RoGra* compared to state-of-the-art EEG classification 368 methods. On the first dataset, MI, we achieve a significant 23.27% lift over the second-best model, 369 MAtt, as shown in Table 2. For the second dataset, SSVEP, we also observe a performance increase 370 of 8.08% compared to the InceptionJoint model. However, this model employs a different evalua-371 tion protocol, training all subjects jointly. We further compare performance for individual subjects 372 directly in Table 3. Notably, *RoGra* demonstrates consistent performance for challenging subjects; 373 for instance, in the case of subjects 4,5 and 8, where all other models are incapable of learning useful 374 patterns and default to random performance. For the last dataset, ERN, we again achieve a signifi-375 cant lift of 24.98% over the second-best model, EEG-TCNet. The results for individual subjects for 376 ERN can be found in the Appendix in Table 8

³⁷⁷

²https://www.kaggle.com/c/inria-bci-challenge

378	Table 2: Performance comparison for the MI dataset. The best result is highlighted in bold and the
379	second best is underlined. Overall we achieve an average increase in performance of 23.3% over the
380	current state-of-the-art for EEG classification models.

Subject	Inception	MAtt	RoGra
1	78.96 ± 1.82	86.94 ± 1.36	94.83 ± 2.18
2	41.25 ± 2.63	56.00 ± 3.27	$\textbf{77.06} \pm 1.02$
3	82.09 ± 3.05	$\underline{88.33} \pm 1.17$	$\textbf{98.28} \pm 1.41$
4	52.43 ± 2.40	67.85 ± 3.42	$\textbf{91.38} \pm 1.02$
5	38.75 ± 3.74	61.32 ± 1.07	$\textbf{92.81} \pm 1.82$
6	48.61 ± 1.78	67.00 ± 2.54	$\textbf{85.06} \pm 2.38$
7	75.99 ± 4.51	$\underline{91.18}\pm0.89$	$\textbf{98.28} \pm 0.86$
8	74.31 ± 3.28	83.06 ± 2.01	$\textbf{96.29} \pm 1.08$
9	73.26 ± 2.14	$\underline{81.18}\pm1.06$	$\textbf{94.83} \pm 1.28$

Table 3: Performance comparison for the **SSVEP** dataset. The **best** result is highlighted in bold and the <u>second best</u> is underlined. Overall we achieve an average increase in performance of 8.08% over the current state-of-the-art for EEG classification models.

Subject	Inception	MAtt	RoGra
1	$\underline{80.40}\pm2.06$	$\textbf{81.60} \pm 2.87$	68.01 ± 1.52
2	86.60 ± 1.62	$\textbf{89.40} \pm 1.36$	71.05 ± 1.74
3	61.60 ± 3.07	58.20 ± 5.64	$\textbf{67.01} \pm 0.64$
4	25.00 ± 4.00	20.60 ± 3.88	$\textbf{66.12} \pm 2.15$
5	25.00 ± 6.72	26.40 ± 4.80	$\textbf{62.34} \pm 3.51$
6	79.20 ± 1.72	79.00 ± 2.68	$\textbf{81.24} \pm 1.63$
7	69.20 ± 1.72	66.00 ± 2.19	$\textbf{69.94} \pm 1.36$
8	23.60 ± 1.74	23.80 ± 2.71	$\textbf{61.28} \pm 1.28$
9	$\underline{79.40}\pm2.58$	$\textbf{88.20} \pm 2.04$	74.62 ± 1.78
10	68.60 ± 3.72	70.60 ± 4.54	$\textbf{71.36} \pm 2.46$
11	$\underline{91.20}\pm2.48$	90.20 ± 1.47	$\textbf{91.74} \pm 1.67$

Overall *RoGra* performs 18.78% better on average than its competitors while also exhibiting strong robustness. We use the same set of hyperparameters across all datasets, whereas the other methods are highly susceptible to the choice of the hyperparameter search space. Furthermore, *RoGra* also has a lower standard deviation compared to the other EEG classification models. A notable exception is InceptionJoint, which employs a subject-conditional evaluation protocol. However, even with the additional training data and static features containing subject information, our model performs significantly better across all datasets.

5.4 TIME SERIES CLASSIFICATION RESULTS

Additionally, we evaluate *RoGra* in the broader domain of Time Series Classification on five mul-tivariate UCR (Dau et al., 2019) datasets against five TSC baselines: SimTSC (Zha et al., 2022), HIVE-COTE2 (Middlehurst et al., 2021), Hydra-MR (Tan et al., 2022), and H-InceptionTime (Ismail-Fawaz et al., 2022). Our model, RoGra, also outperforms all other baselines in four out of the five datasets as shown in Table 4. The improvements are statistically significant for the ECG5000 and Handwriting datasets, as determined by a t-test. While we achieve an average performance in-crease of approximately 2%, the gains are much lower compared to the EEG datasets. Although the addition of the DTW and residual GCN compared to the vanilla H-InceptionTime represents an improvement, the encoding with DTW is especially valuable for noisy datasets, such as those in the application of EEG.

5.5 *RoGra*: Empirical Analysis

To further analyze the performance of *RoGra*, we conducted a series of experiments: (I) we investigated the impact of individual model components on overall performance, (II) we examined the

Datasets	ECG5000	ElectricDevices	CharTraj	Handwriting	PhonemeSpectra
SimTSC	94.13 ± 0.2	70.33 ± 1.2	98.89 ± 0.1	56.65 ± 1.3	30.54 ± 0.6
HIVE-COTE2	94.58 ± 0.2	74.70 ± 0.7	$\textbf{99.28} \pm 0.1$	57.56 ± 0.6	31.46 ± 1.1
Hydra-MR	94.60 ± 0.1	73.93 ± 0.5	99.19 ± 0.2	56.09 ± 0.9	31.93 ± 0.9
H-InceptionTime	94.09 ± 0.2	71.74 ± 1.0	98.95 ± 0.2	56.50 ± 1.9	32.01 ± 1.0
RoGra (ours)	95.26 ±0.3	$\textbf{75.08} \pm 0.7$	99.09 ± 0.2	$\textbf{58.49} \pm 0.6$	$\textbf{32.72}\pm0.7$

Table 4: Performance comparison for multivariate TSC datasets. The **best** result is highlighted in
bold and the <u>second best</u> is underlined. Overall we achieve an average increase in performance of
2% over the current state-of-the-art for time series classification models.

Table 5: Ablation study for different similarity measures, backbones, and GNNs and their relative impact on accuracy on the MI dataset.

Similarity	Backbone	GNN	(MI) Performance	Impact
DTW	+ Inception	+ ResGCN	$\begin{array}{c} \textbf{92.09} \pm 1.45 \\ 63.51 \pm 7.53 \\ 52.36 \pm 8.46 \end{array}$	RoGra
Euclidean	+ Inception	+ ResGCN		-31.06%
Euclidean	+ Inception	+ GCN		-43.14%
DTW	+ ResNet	+ ResGCN	91.54 ± 2.81	-0.60%
DTW	+ ResNet	+ GCN	88.17 ± 2.87	-4.25%
DTW	+ 1NN	+ None	$\begin{array}{c} 22.41 \pm 9.34 \\ 65.56 \pm 5.12 \end{array}$	-75.67%
None	+ Inception	+ None		-28.81%

robustness of *RoGra* compared to *MAtt* under noisy input conditions, and (III) we demonstrated the
 denoising effect of the Graph Neural Network (GNN) through output smoothing.

For the first study, we compared the full *RoGra* architecture by systematically replacing its com-ponents, including the similarity measure, backbone, and GNN. Our findings, reported in Table 5, indicate that the primary factor driving performance improvement is the use of the DTW similarity measure. The model's predictive capability significantly diminishes when this measure is replaced with Euclidean distance. However, DTW alone is insufficient for accurate prediction, as demon-strated by replacing the backbone and GCN with a simple 1-Nearest-Neighbor approach, which causes accuracy to drop to near-random levels. DTW, when combined with ResNet and the GCN, resembles the SimTSC architecture but uses the entire training set. However, we managed to outper-form that with more than 4%. When comparing ResNet with Inception, the latter performs better in EEG classification tasks but, when used alone without additional components, also shows a decline in model accuracy.

Table 6: Impact of noise on *RoGra* and MAtt for the MI Dataset. Below each model, we list the degradation of performance in percent.

Model	no Noise	$\gamma = 0.05$	$\gamma = 0.1$	$\gamma = 0.25$	$\gamma = 0.5$
RoGra (ours)	92.09 ± 1.45	92.33 ± 1.30	91.73 ± 1.31	91.64 ± 1.37	91.39 ± 1.52
	-	-0.26%	0.39%	0.49%	0.76%
MAtt	74.71 ± 5.01	73.29 ± 4.95	70.92 ± 5.34	66.82 ± 5.73	61.79 ± 15.30
	-	1.90%	5.07%	10.56%	17.29%

Secondly, we demonstrate the robustness of *RoGra*. In this ablation, we evaluate the model's performance under varying levels of noise in the MI dataset and analyze the resulting degradation. We have plotted the EEG sequences with the noise levels in Figure 2 and for higher values of γ in Figure 3 in the Appendix. The noise is drawn from the following distribution and applied to the full dataset in an additive fashion:

$$\mathsf{noise} = \mathcal{N}(0, 1)\mathsf{std}(D^{\mathsf{train}})\gamma$$

Where $std(D^{train})$ represents the standard deviation of the training data, and γ denotes the noise level. The mean of the added noise is zero, simulating the behavior of EEG data, which typically

Figure 2: In this figure we show the effect of the additive noise on the EEG sequence for the first channel of MI. We also show the moving average with a window size of 10 in red to highlight the trend. The figure is best viewed in color.

Table 7: Ablation study for Kullback–Leibler divergence (KL) metric between instances within same class in **MI** dataset in comparison to the best-performing baseline **MAtt**.

Model	Class I	Class II	Class III	Class IV
MAtt RoGra	0.0468	0.0994	0.0366	0.0246

has a mean of zero and oscillates around this point. For MI, the oscillation ranges approximately 507 from -50 to 50, with a standard deviation of 6. Thus, we modify the magnitude of the oscillations and peaks in the data with additive noise. For a value of $\gamma = 0.5$ the trend of the data is identifiable, 508 509 therefore a model should be able to extract meaningful features. As shown in Table 6, our model, *RoGra*, is an order of magnitude less sensitive to noisy data compared to *MAtt*, which performance 510 degrades significantly. This demonstrates that *RoGra* is still able to extract meaningful patterns even 511 when the peaks and valleys in the data are distorted. For EEG classification tasks, this high resistance 512 to noise is particularly valuable, as the data is inherently noisy due to ocular and myogenic artifacts, 513 as well as misaligned EEG sensors. 514

515 Lastly, we demonstrate that *RoGra* also generalizes effectively in the output space, as shown by the Kullback-Leibler (KL) divergence analysis on the MI dataset. For this experiment, we compute the 516 KL divergence between the output distributions of instances within the same class, using the softmax 517 of the final model output. In Table 7, we compare the KL divergence values for each class between 518 RoGra and the best performing baseline, MAtt. RoGra exhibits significantly lower KL divergence 519 across all classes compared to MAtt. This lower divergence indicates that the output distributions 520 produced by *RoGra* are much more similar within the same class, suggesting that the model achieves 521 more consistent and well-regularized predictions. As a result, the decision boundaries between 522 different classes are better defined, leading to improved classification performance on EEG data in 523 the MI dataset. Furthermore, we also compute the Shannon Divergence for the output distributions, 524 which can be found in Appendix (Table 12). These results further support that *RoGra* effectively 525 minimizes uncertainty in its predictions, enhancing its robustness for EEG classification tasks.

526 527

493

494

495

496 497 498

499

500 501

504 505

6 CONCLUSION

528 529

530 In this paper, we introduce a novel approach to EEG classification by representing EEG sequences 531 as a graph, transforming the task into a node classification problem. Our proposed method, *RoGra*, 532 leverages the denoising capabilities of GNNs to improve classification accuracy and robustness in noisy environments. By integrating an InceptionTime module for high-level temporal feature ex-534 traction and refining these features through a residual GNN layer with a similarity-based adjacency matrix, RoGra captures functional dependencies between EEG instances. This design introduces 536 a valuable inductive bias, enabling the model to perform consistently across various EEG datasets, achieving up to a notable 25% performance improvement. Additionally, our method demonstrates strong resilience to noise, maintaining classification accuracy even when the data contains signifi-538 cant noise levels. These results underscore the potential of GNNs in enhancing EEG classification, particularly in challenging real-world conditions where noise is prevalent.

540 7 **REPRODUCIBILITY STATEMENT**

541 542

We are committed to ensuring the reproducibility of our model, *RoGra*. To support this, we provide 543 the source code, including pre-processing steps, model architecture, and training scripts, in the sup-544 plementary material. Upon publication, the code will also be made publicly available on GitHub, 545 along with detailed documentation to guide experiment setup and execution. The datasets used in 546 our experiments are publicly available, and we additionally provide a link to the preprocessed data in a cloud service for easy access. All hyperparameters and model configurations are detailed in both 547 548 the paper and the code repository to ensure easy replication. The computing environment, including hardware specifications, software dependencies, and package versions, is fully documented, with a 549 "requirements.txt" file provided to facilitate seamless environment setup. 550

551 552

553

559

561

577

ETHICS STATEMENT 8

554 We are committed to contributing positively to society and human well-being, while respecting 555 the privacy of the subjects involved in our evaluation. Our experiments utilize three established 556 EEG datasets: MI, SSVEP, and ERN, which involve data from human subjects. These datasets are fully anonymized and do not contain any personally identifiable information. Additionally, they are publicly available and widely used within the machine learning community. 558

REFERENCES

- Ghadir Ali Altuwaijri and Ghulam Muhammad. A multibranch of convolutional neural network 562 models for electroencephalogram-based motor imagery classification. Biosensors, 12(1):22, 563 2022. 564
- 565 Ghadir Ali Altuwaijri, Ghulam Muhammad, Hamdi Altaheri, and Mansour Alsulaiman. A multi-566 branch convolutional neural network with squeeze-and-excitation attention blocks for eeg-based 567 motor imagery signals classification. Diagnostics, 12(4):995, 2022. 568
- 569 Zaid Abdi Alkareem Alvasseri, Ahamad Tajudin Khader, Mohammed Azmi Al-Betar, Ammar Kamal Abasi, and Sharif Naser Makhadmeh. Eeg signals denoising using optimal wavelet transform 570 hybridized with efficient metaheuristic methods. IEEE Access, 8:10584–10605, 2019. 571
- 572 Sachin Borse. Eeg de-noising using wavelet transform and fast ica. IJISET-International Journal of 573 Innovative Science Engineering & Technology, 2(7):200–205, 2015. 574
- 575 Xavier Bresson and Thomas Laurent. Residual gated graph convnets. arXiv preprint 576 arXiv:1711.07553.2017.
- Clemens Brunner, Robert Leeb, Gernot Müller-Putz, Alois Schlögl, and Gert Pfurtscheller. Bci com-578 petition 2008-graz data set a. Institute for Knowledge Discovery (Laboratory of Brain-Computer 579 Interfaces), Graz University of Technology, 16:1–6, 2008. 580
- 581 Johannes Burchert, Thorben Werner, Vijaya Krishna Yalavarthi, Diego Coello de Portugal, Maxim-582 ilian Stubbemann, and Lars Schmidt-Thieme. Are eeg sequences time series? eeg classification 583 with time series models and joint subject training. arXiv preprint arXiv:2404.06966, 2024. 584
- Hsiao-Lung Chan, Yu-Tai Tsai, Ling-Fu Meng, and Tony Wu. The removal of ocular artifacts 585 from eeg signals using adaptive filters based on ocular source components. Annals of Biomedical 586 Engineering, 38:3489-3499, 2010. 587
- 588 Ziqiang Cheng, Yang Yang, Wei Wang, Wenjie Hu, Yueting Zhuang, and Guojie Song. Time2graph: 589 Revisiting time series modeling with dynamic shapelets. In Proceedings of the AAAI Conference 590 on Artificial Intelligence, volume 34, pp. 3617-3624, 2020.
- Ziqiang Cheng, Yang Yang, Shuo Jiang, Wenjie Hu, Zhangchi Ying, Ziwei Chai, and Chunping 592 Wang. Time2graph+: Bridging time series and graph representation learning via multiple attentions. IEEE Transactions on Knowledge and Data Engineering, 35(2):2078–2090, 2021.

641

- ⁵⁹⁴ Rodney J Croft and Robert J Barry. Removal of ocular artifact from the eeg: a review. *Neurophysiologie Clinique/Clinical Neurophysiology*, 30(1):5–19, 2000.
 ⁵⁹⁶ Hoang Anh Dau, Anthony Bagnall, Kaveh Kamgar, Chin-Chia Michael Yeh, Yan Zhu, Shaghayegh
- Hoang Anh Dau, Anthony Bagnall, Kaveh Kamgar, Chin-Chia Michael Yeh, Yan Zhu, Shaghayegh
 Gharghabi, Chotirat Ann Ratanamahatana, and Eamonn Keogh. The ucr time series archive. *IEEE/CAA Journal of Automatica Sinica*, 6(6):1293–1305, 2019.
- Arnaud Delorme. Eeg is better left alone. *Scientific Reports*, 13(1):2372, 2023.
- Emadeldeen Eldele, Zhenghua Chen, Chengyu Liu, Min Wu, Chee-Keong Kwoh, Xiaoli Li, and
 Cuntai Guan. An attention-based deep learning approach for sleep stage classification with single channel eeg. *IEEE Transactions on Neural Systems and Rehabilitation Engineering*, 29:809–818, 2021.
- Maximilian Grobbelaar, Souvik Phadikar, Ebrahim Ghaderpour, Aaron F Struck, Nidul Sinha, Ra jdeep Ghosh, and Md Zaved Iqubal Ahmed. A survey on denoising techniques of electroen cephalogram signals using wavelet transform. *Signals*, 3(3):577–586, 2022.
- Thi Kieu Khanh Ho and Narges Armanfard. Self-supervised learning for anomalous channel detection in eeg graphs: Application to seizure analysis. In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 37, pp. 7866–7874, 2023.
- Yimin Hou, Shuyue Jia, Xiangmin Lun, Shu Zhang, Tao Chen, Fang Wang, and Jinglei Lv. Deep feature mining via attention-based bilstm-gcn for human motor imagery recognition. *arXiv preprint* arXiv:2005.00777, 2020.
- Thorir Mar Ingolfsson, Michael Hersche, Xiaying Wang, Nobuaki Kobayashi, Lukas Cavigelli, and Luca Benini. Eeg-tcnet: An accurate temporal convolutional network for embedded motor-imagery brain-machine interfaces. In 2020 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 2958–2965. IEEE, 2020.
- Ali Ismail-Fawaz, Maxime Devanne, Jonathan Weber, and Germain Forestier. Deep learning for time series classification using new hand-crafted convolution filters. In 2022 IEEE International Conference on Big Data (Big Data), pp. 972–981. IEEE, 2022.
- Hassan Ismail Fawaz, Benjamin Lucas, Germain Forestier, Charlotte Pelletier, Daniel F Schmidt, Jonathan Weber, Geoffrey I Webb, Lhassane Idoumghar, Pierre-Alain Muller, and François Petitjean. Inceptiontime: Finding alexnet for time series classification. *Data Mining and Knowledge Discovery*, 34(6):1936–1962, 2020.
- Ziyu Jia, Youfang Lin, Jing Wang, Xiaojun Ning, Yuanlai He, Ronghao Zhou, Yuhan Zhou, and H Lehman Li-wei. Multi-view spatial-temporal graph convolutional networks with domain generalization for sleep stage classification. *IEEE Transactions on Neural Systems and Rehabilitation Engineering*, 29:1977–1986, 2021.
- Jing Jin, Hao Sun, Ian Daly, Shurui Li, Chang Liu, Xingyu Wang, and Andrzej Cichocki. A novel
 classification framework using the graph representations of electroencephalogram for motor im agery based brain-computer interface. *IEEE Transactions on Neural Systems and Rehabilitation Engineering*, 30:20–29, 2021.
- Ming Jin, Huan Yee Koh, Qingsong Wen, Daniele Zambon, Cesare Alippi, Geoffrey I Webb, Irwin King, and Shirui Pan. A survey on graph neural networks for time series: Forecasting, classification, imputation, and anomaly detection. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 2024.
- Don H Johnson. Signal-to-noise ratio. *Scholarpedia*, 1(12):2088, 2006.
- Mohammad Kachuee, Shayan Fazeli, and Majid Sarrafzadeh. Ecg heartbeat classification: A deep transferable representation. In *2018 IEEE International Conference on Healthcare Informatics* (*ICHI*), pp. 443–444. IEEE, 2018.
- 647 Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional networks. In *International Conference on Learning Representations*, 2022.

690

- Dominik Klepl, Fei He, Min Wu, Daniel J Blackburn, and Ptolemaios Sarrigiannis. Eeg-based graph neural network classification of alzheimer's disease: An empirical evaluation of functional connectivity methods. *IEEE Transactions on Neural Systems and Rehabilitation Engineering*, 30: 2651–2660, 2022.
- Dominik Klepl, Min Wu, and Fei He. Graph neural network-based eeg classification: A survey.
 IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2024.
- Shailaja Kotte and JRK Kumar Dabbakuti. Methods for removal of artifacts from eeg signal: A
 review. In *Journal of Physics: Conference Series*, volume 1706, pp. 012093. IOP Publishing, 2020.
- ⁶⁵⁸
 ⁶⁵⁹ Chi Qin Lai, Haidi Ibrahim, Mohd Zaid Abdullah, Jafri Malin Abdullah, Shahrel Azmin Suandi, and Azlinda Azman. Artifacts and noise removal for electroencephalogram (eeg): A literature review. In *2018 IEEE Symposium on Computer Applications & Industrial Electronics (ISCAIE)*, pp. 326–332. IEEE, 2018.
- Vernon J Lawhern, Amelia J Solon, Nicholas R Waytowich, Stephen M Gordon, Chou P Hung, and
 Brent J Lance. Eegnet: a compact convolutional neural network for eeg-based brain–computer
 interfaces. *Journal of Neural Engineering*, 15(5):056013, 2018.
- ⁶⁶⁶ Zhiqiang Lin, Taorong Qiu, Ping Liu, Lingyun Zhang, Siwei Zhang, and Zhendong Mu. Fatigue
 ⁶⁶⁷ driving recognition based on deep learning and graph neural network. *Biomedical Signal Pro-* ⁶⁶⁸ *cessing and Control*, 68:102598, 2021.
- Huaiyuan Liu, Donghua Yang, Xianzhang Liu, Xinglei Chen, Zhiyu Liang, Hongzhi Wang, Yong Cui, and Jun Gu. Todynet: temporal dynamic graph neural network for multivariate time series classification. *Information Sciences*, pp. 120914, 2024.
- Kiaorui Liu, Jiayuan Ding, Wei Jin, Han Xu, Yao Ma, Zitao Liu, and Jiliang Tang. Graph neural networks with adaptive residual. *Advances in Neural Information Processing Systems*, 34:9720–9733, 2021.
- Yao Ma, Xiaorui Liu, Tong Zhao, Yozen Liu, Jiliang Tang, and Neil Shah. A unified view on graph neural networks as graph signal denoising. In *Proceedings of the 30th ACM International Conference on Information & Knowledge Management*, pp. 1202–1211, 2021.
- Ravikiran Mane, Effie Chew, Karen Chua, Kai Keng Ang, Neethu Robinson, A Prasad Vinod, Seong-Whan Lee, and Cuntai Guan. Fbcnet: A multi-view convolutional neural network for brain-computer interface. *arXiv preprint arXiv:2104.01233*, 2021.
- Perrin Margaux, Maby Emmanuel, Daligault Sébastien, Bertrand Olivier, and Mattout Jérémie. Objective and subjective evaluation of online error correction during p300-based spelling. *Advances in Human-Computer Interaction*, 2012:4–4, 2012.
- Brenton W McMenamin, Alexander J Shackman, Jeffrey S Maxwell, David RW Bachhuber, Adam M Koppenhaver, Lawrence L Greischar, and Richard J Davidson. Validation of ica-based myogenic artifact correction for scalp and source-localized eeg. *Neuroimage*, 49(3):2416–2432, 2010.
- Matthew Middlehurst, James Large, Michael Flynn, Jason Lines, Aaron Bostrom, and Anthony
 Bagnall. Hive-cote 2.0: a new meta ensemble for time series classification. *Machine Learning*, 110(11):3211–3243, 2021.
- Yazeed K Musallam, Nasser I AlFassam, Ghulam Muhammad, Syed Umar Amin, Mansour Al sulaiman, Wadood Abdul, Hamdi Altaheri, Mohamed A Bencherif, and Mohammed Algabri.
 Electroencephalography-based motor imagery classification using temporal convolutional net work fusion. *Biomedical Signal Processing and Control*, 69:102826, 2021.
- J Nekrasova, O Bazanova, D Shunenkov, M Kanarskiy, I Borisov, and E Luginina. Problem of myogenic contamination in electroencephalography. *Human Physiology*, 48(4):470–482, 2022.
- 701 Spiros Nikolopoulos. Mamem eeg ssvep dataset ii (256 channels, 11 subjects, 5 frequencies presented simultaneously). 2021.

702 703 704	Yue-Ting Pan, Jing-Lun Chou, and Chun-Shu Wei. Matt: A manifold attention network for eeg decoding. <i>Advances in Neural Information Processing Systems</i> , 35:31116–31129, 2022.
705 706 707	Debanjan Parbat and Monisha Chakraborty. A novel methodology to study the cognitive load in- duced eeg complexity changes: Chaos, fractal and entropy based approach. <i>Biomedical Signal</i> <i>Processing and Control</i> , 64:102277, 2021.
708 709 710	Darshana Priyasad, Tharindu Fernando, Simon Denman, Sridha Sridharan, and Clinton Fookes. Affect recognition from scalp-eeg using channel-wise encoder networks coupled with geometric deep learning and multi-channel feature fusion. <i>Knowledge-Based Systems</i> , 250:109038, 2022.
711 712 713 714	Khadijeh Raeisi, Mohammad Khazaei, Pierpaolo Croce, Gabriella Tamburro, Silvia Comani, and Filippo Zappasodi. A graph convolutional neural network for the automated detection of seizures in the neonatal eeg. <i>Computer methods and programs in biomedicine</i> , 222:106950, 2022.
715 716 717	Mouad Riyad, Mohammed Khalil, and Abdellah Adib. Incep-eegnet: a convnet for motor imagery decoding. In <i>Image and Signal Processing: 9th International Conference, ICISP 2020, Marrakesh, Morocco, June 4–6, 2020, Proceedings 9</i> , pp. 103–111. Springer, 2020.
718 719 720	Hiroaki Sakoe and Seibi Chiba. Dynamic programming algorithm optimization for spoken word recognition. <i>IEEE Transactions on Acoustics, Speech, and Signal Processing</i> , 26(1):43–49, 1978.
721 722	Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and Gabriele Monfardini. The graph neural network model. <i>IEEE Transactions on Neural Networks</i> , 20(1):61–80, 2008.
723 724 725 726	Robin Tibor Schirrmeister, Jost Tobias Springenberg, Lukas Dominique Josef Fiederer, Martin Glasstetter, Katharina Eggensperger, Michael Tangermann, Frank Hutter, Wolfram Burgard, and Tonio Ball. Deep learning with convolutional neural networks for eeg decoding and visualization. <i>Human Brain Mapping</i> , 38(11):5391–5420, 2017.
727 728 729 730	Andres Soler, Pablo A Muñoz-Gutiérrez, Maximiliano Bueno-López, Eduardo Giraldo, and Marta Molinas. Low-density eeg for neural activity reconstruction using multivariate empirical mode decomposition. <i>Frontiers in Neuroscience</i> , 14:175, 2020.
731 732 733	Tengfei Song, Wenming Zheng, Peng Song, and Zhen Cui. Eeg emotion recognition using dy- namical graph convolutional neural networks. <i>IEEE Transactions on Affective Computing</i> , 11(3): 532–541, 2018.
734 735 736 737	Xinlin Sun, Chao Ma, Peiyin Chen, Mengyu Li, He Wang, Weidong Dang, Chaoxu Mu, and Zhongke Gao. A novel complex network-based graph convolutional network in major depressive disorder detection. <i>IEEE Transactions on Instrumentation and Measurement</i> , 71:1–8, 2022.
738 739 740	Luay Yassin Taha and Esam Abdel-Raheem. Blind source separation: A performance review approach. In 2022 5th International Conference on Signal Processing and Information Security (ICSPIS), pp. 148–153. IEEE, 2022.
741 742 743	Chang Wei Tan, Angus Dempster, Christoph Bergmeir, and Geoffrey I Webb. Multirocket: multiple pooling operators and transformations for fast and effective time series classification. <i>Data Mining and Knowledge Discovery</i> , 36(5):1623–1646, 2022.
744 745 746 747	Siyi Tang, Jared A Dunnmon, Khaled Saab, Xuan Zhang, Qianying Huang, Florian Dubost, Daniel L Rubin, and Christopher Lee-Messer. Self-supervised graph neural networks for improved electroencephalographic seizure analysis. <i>arXiv preprint arXiv:2104.08336</i> , 2021.
748 749 750	Jialin Wang, Rui Gao, Haotian Zheng, Hao Zhu, and C-J Richard Shi. Ssgcnet: A sparse spectra graph convolutional network for epileptic eeg signal classification. <i>IEEE Transactions on Neural Networks and Learning Systems</i> , 2023.
751 752 753	Chun-Shu Wei, Toshiaki Koike-Akino, and Ye Wang. Spatial component-wise convolutional net- work (scenet) for motor-imagery eeg classification. In 2019 9th International IEEE/EMBS Con- ference on Neural Engineering (NER), pp. 328–331. IEEE, 2019.
755	Raneen Younis, Abdul Hakmeh, and Zahra Ahmadi. Mts2graph: Interpretable multivariate time series classification with temporal evolving graphs. <i>Pattern Recognition</i> , 152:110486, 2024.

756 757 758 750	Daochen Zha, Kwei-Herng Lai, Kaixiong Zhou, and Xia Hu. Towards similarity-aware time-series classification. In <i>Proceedings of the 2022 SIAM International Conference on Data Mining (SDM)</i> , pp. 199–207. SIAM, 2022.
759 760 761 762	Haoming Zhang, Mingqi Zhao, Chen Wei, Dante Mantini, Zherui Li, and Quanying Liu. Eegde- noisenet: a benchmark dataset for deep learning solutions of eeg denoising. <i>Journal of Neural</i> <i>Engineering</i> , 18(5):056057, 2021.
763 764	Peixiang Zhong, Di Wang, and Chunyan Miao. Eeg-based emotion recognition using regularized graph neural networks. <i>IEEE Transactions on Affective Computing</i> , 13(3):1290–1301, 2020.
765 766 767 768	Jie Zhou, Ganqu Cui, Shengding Hu, Zhengyan Zhang, Cheng Yang, Zhiyuan Liu, Lifeng Wang, Changcheng Li, and Maosong Sun. Graph neural networks: A review of methods and applications. <i>AI Open</i> , 1:57–81, 2020.
769 770 771	Yijin Zhou, Fu Li, Yang Li, Youshuo Ji, Guangming Shi, Wenming Zheng, Lijian Zhang, Yuan- fang Chen, and Rui Cheng. Progressive graph convolution network for eeg emotion recognition. <i>Neurocomputing</i> , 544:126262, 2023.
772 773	
774	
775	
776	
777	
778	
779	
780	
781	
782	
783	
784	
785	
786	
787	
788	
789	
790	
791	
792	
793	
794	
795	
796	
797	
798	
200	
801	
802	
803	
804	
805	
806	
807	
808	
809	

810 APPENDIX А 811

812 A.1 INCEPTIONTIME 813

814 As our backbone for *RoGra*, we use the InceptionTime (Ismail Fawaz et al., 2020) model, which consists of multiple stacked InceptionTimeBlocks. In Algorithm 2, we show the layout of such a 815 block. Here, 1D convolutions are used with different kernel sizes to extract features and produce 816 latent embeddings at different resolutions. Afterwards, BatchNorm and ReLU, as non-linear ac-817 tivation functions, are applied. Additionally, in C_4 , InceptionTime applies MaxPooling to further 818 regularize the embeddings. In the final step of the InceptionTimeBlock, the latent embeddings are 819 concatenated and returned. 820

Algorithm 2 InceptionTime Block

1: In	put: Input time series data $X \in \mathbb{R}^{C \times T}$ \triangleright	C: number of channels, T : sequence length
2: O I	utput: Output feature map Z^0	
3:		
4: pr	ocedure INCEPTIONTIMEBLOCK(X)	
5:	$C_1 \leftarrow \text{ReLU}(\text{BatchNorm}(\text{Conv1D}(X)))$	▷ Convolution with kernel size 1
6:	$C_2 \leftarrow \text{ReLU}(\text{BatchNorm}(\text{Conv1D}(X)))$	\triangleright Done twice with kernel size 1 and 3
7:	$C_3 \leftarrow \text{ReLU}(\text{BatchNorm}(\text{Conv1D}(X)))$	\triangleright Done twice with kernel size 1 and 5
8:	$C_4 \leftarrow \text{ReLU}(\text{BatchNorm}(\text{Conv1D}(\text{MaxPool}(X$	()))) \triangleright Convolution with kernel size 1
9:	$Z^0 \leftarrow \text{Concatenate}([C_1, C_2, C_3, C_4], \text{axis=-1})$	
10:	return Z ⁰	

A.2 EVALUATION METRICS

836 In addition to accuracy for the first two datasets, MI and SSVEP, we use Area Under the Curve 837 (AUC) as the evaluation metric for the last dataset, **ERN**. This particular dataset is unbalanced, with 838 a ratio of 70/30 for the positive and negative classes, respectively, which makes accuracy unsuitable; 839 therefore, AUC is applied. AUC measures how well a binary classification model can distinguish between two classes. Ranging from 0 to 1, a higher AUC indicates better performance, with 0.5 rep-840 resenting random guessing and 1 indicating perfect classification. The exact calculation is described in the equation below. 842

843 844

841

821

835

 $AUC = \int_{-\infty}^{1} TPR(x) d(FPR(x))$

845 846

847

848

A.3 ADDITIONAL RESULTS AND ABLATION STUDIES

Here we have compiled additional experimental results and further evidence for the ablation studies. 849 For the main results of this paper, we have included the performance for the ERN dataset in Table 8. 850 Here, our model, *RoGra*, achieves an impressive lift of 24.98% compared to the next best baseline. 851 We achieve very high performance for all subjects, with no noticeable decreases. 852

where TPR(x) is the True Positive Rate (sensitivity) at a given false positive rate FPR(x).

853 Furthermore, we compare two different splitting methods for the train and test data. Here, Inception 854 and *MAtt* split the dataset timewise, where the first 300 timesteps are used for training, the next 100 855 for validation, and the final 100 for testing. We adopt a different protocol by splitting not time-wise by session, but instead using a split by instances. This protocol is utilized by MAtt Inst. and RoGra. 856 The results for this ablation are shown in Table 9, where there is no significant difference in the 857 performance of the two protocols. MAtt Inst. shows a higher standard deviation for some subjects, 858 but this is caused by a lower number of runs for this protocol. The original MAtt has 8 runs, while 859 we used 3 as an approximation for this study. 860

We also test the resilience of *RoGra* and *MAtt* against noisy input data, which is common in the 861 domain of EEG classification. In Figure 3, we show the EEG sequences and the corresponding 862 factor γ for the additive noise. For simplicity, we only plot the first channel of the EEG sequences as a representative sample of the data. We also show the moving average with a sliding window of 10

Table 8: Performance comparison for the ERN dataset. The best result is highlighted in bold and
the second best is underlined. Overall we achieve an average increase in performance of 24.98%
over the current state-of-the-art for EEG classification models.

Subject	Inception	MAtt	RoGra
2	74.03 ± 3.37	81.86 ± 2.56	$\textbf{97.64} \pm 1.34$
6	88.40 ± 2.67	$68.34{\pm}1.76$	$\textbf{94.58} \pm 1.08$
7	<u>85.45</u> ±7.05	$69.28 {\pm} 10.90$	$\textbf{98.76} \pm 1.12$
11	55.27 ± 9.19	70.50 ± 2.66	$\textbf{95.44} \pm 2.54$
12	68.62 ± 9.92	60.62 ± 4.70	$\textbf{98.04} \pm 1.52$
13	51.15 ± 4.16	<u>62.92</u> ±3.65	$\textbf{96.14} \pm 2.13$
14	<u>75.22</u> ±3.17	$70.42 {\pm} 4.80$	97.46 ± 1.89
16	50.53 ± 3.54	<u>55.71</u> ±2.56	$\textbf{95.84} \pm 2.28$
17	75.93 ± 4.20	80.60 ± 5.52	97.17 ± 1.64
18	72.30 ± 1.39	<u>75.11</u> ±1.42	97.67 ± 1.73
20	<u>59.97</u> ±2.56	57.60 ± 8.12	$\textbf{92.51} \pm 2.25$
21	<u>67.95</u> ±7.76	62.43 ± 9.56	97.05 ± 1.84
22	<u>95.09</u> ±0.89	89.33 ± 4.28	98.53 ± 1.06
23	61.66 ± 2.38	70.03 ± 5.40	$\textbf{96.91} \pm 2.02$
24	$70.88 {\pm} 4.60$	<u>73.71</u> ±2.99	97.81 ± 1.24
26	54.03 ± 4.66	60.08 ± 1.92	95.52 ± 1.25

Table 9: Performance comparison for the SSVEP dataset. The best result is highlighted in bold and
the second best is underlined. Overall, we achieve an average increase in performance of 8.08% over
the current state-of-the-art for EEG classification models. Here, MAtt Inst. is using our train/test
split of splitting by instances instead of time.

Subject	Inception	MAtt	MAtt Inst.	RoGra
1	80.40 ± 2.06	$\textbf{81.60} \pm 2.87$	75.00 ± 7.35	68.01 ± 1.52
2	86.60 ± 1.62	$\textbf{89.40} \pm 1.36$	89.00 ± 2.10	71.05 ± 1.74
3	61.60 ± 3.07	58.20 ± 5.64	52.00 ± 5.90	$\textbf{67.01} \pm 0.64$
4	25.00 ± 4.00	20.60 ± 3.88	26.40 ± 5.57	66.12 ± 2.15
5	25.00 ± 6.72	26.40 ± 4.80	27.20 ± 4.79	$\textbf{62.34} \pm 3.51$
6	79.20 ± 1.72	79.00 ± 2.68	$\textbf{85.80} \pm 2.48$	$\underline{81.24} \pm 1.63$
7	69.20 ± 1.72	66.00 ± 2.19	73.60 ± 7.39	69.94 ± 1.36
8	23.60 ± 1.74	23.80 ± 2.71	22.20 ± 3.19	$\textbf{61.28} \pm 1.28$
9	79.40 ± 2.58	88.20 ± 2.04	90.60 ± 4.96	74.62 ± 1.78
10	68.60 ± 3.72	70.60 ± 4.54	68.20 ± 4.58	$\textbf{71.36} \pm 2.46$
11	91.20 ± 2.48	90.20 ± 1.47	84.40 ± 6.83	$\textbf{91.74} \pm 1.67$
Summary	62.71	63.09	63.13	71.34

in red to better visualize the trends in the data. For a noise level ranging from 0 to 0.5, the patterns, while distorted, remain clearly identifiable, with the peaks and valleys largely unchanged. When applying a $\gamma \ge 1$, the signal begins to deteriorate until it is mostly noise in the case of $\gamma = 100$.

Additionally, we present the impact of noise on the performance of each individual subject for *MAtt* in Table 10 and *RoGra* in Table 11. Here, the same trend of monotonically decreasing performance for larger values of the noise-scaling factor γ can be observed.

For the study of the output distribution of the softmax on the final latent representation of the model, we also use the Jensen-Shannon Divergence. This metric is also based on the KL divergence which takes the following form for two input distributions P and Q:

$$KL(P||Q) = \sum_{x} P(x) \log(\frac{P(x)}{Q(x)})$$

913 The Jensen-Shannon Divergence is defined as:

$$JS(P||Q) = \frac{1}{2}KL(P||\frac{(P+Q)}{2}) + \frac{1}{2}KL(Q||\frac{(P+Q)}{2})$$

In Table 12 we show the Jensen-Shannon Divergence for each class for *RoGra* and *MAtt* respectively.
Like in the case of the KL divergence the Jensen-Shannon similarity measure shows that *RoGra* is well regularized for the output space.

Figure 3: In this figure we show the effect of the additive noise on the EEG sequence for the first channel of MI. We also show the moving average with a window size of 10 in red to highlight the trend. The figure is best viewed in color.

Table 10: Impact of noise on MAtt					
Subject	$\gamma = 0.05 \qquad \gamma = 0.1 \qquad \gamma = 0.25$		$\gamma = 0.5$		
1	86.17 \pm 1.67	83.45 ± 2.20	77.31 ± 1.07	70.02 ± 0.91	
2	57.81 ± 2.45	55.67 ± 1.07	52.08 ± 3.69	44.68 ± 13.10	
3	86.57 ± 1.00	80.67 ± 0.16	78.59 ± 1.61	76.62 ± 2.95	
4	67.01 ± 1.01	65.16 ± 3.38	57.87 ± 0.71	51.50 ± 2.09	
5	57.52 ± 1.93	50.93 ± 2.36	51.39 ± 0.57	49.19 ± 5.23	
6	52.89 ± 1.56	49.07 ± 0.43	47.11 ± 2.57	45.14 ± 0.98	
7	88.77 ± 1.93	87.85 ± 1.77	79.17 ± 2.55	68.98 ± 4.05	
8	82.06 ± 1.18	83.91 ± 0.71	79.17 ± 1.24	73.38 ± 1.18	
9	80.79 ± 1.56	81.60 ± 1.30	78.70 ± 0.16	76.62 ± 1.56	
Summary	73.29 ± 4.95	$\textbf{70.92} \pm \textbf{5.34}$	$\textbf{66.82} \pm \textbf{5.73}$	$\textbf{61.79} \pm \textbf{15.30}$	

Table 11: Impact of noise on RoGra

Subject	$\gamma = 0.05$	$\gamma = 0.1$	$\gamma = 0.25$	$\gamma = 0.5$
1	94.56 \pm 1.82	94.24 ± 1.93	94.21 ± 1.86	93.13 ± 2.11
2	77.03 ± 1.17	76.91 ± 1.08	76.73 ± 1.14	76.33 ± 1.44
3	98.13 ± 1.47	98.02 ± 1.57	97.93 ± 1.45	97.67 ± 1.38
4	91.22 ± 1.31	91.04 ± 1.17	91.01 ± 1.23	90.89 ± 1.34
5	92.51 ± 1.09	92.64 ± 1.81	92.46 ± 1.21	92.33 ± 1.48
6	84.92 ± 1.86	84.53 ± 2.13	84.51 ± 2.19	84.47 ± 2.52
7	97.91 ± 0.72	97.82 ± 0.78	97.71 ± 0.83	97.59 ± 1.04
8	96.15 ± 1.06	96.01 ± 1.12	95.92 ± 1.15	95.84 ± 1.12
9	94.66 ± 1.23	94.37 ± 1.31	94.31 ± 1.34	94.28 ± 1.29
Summary	$\mid \textbf{92.33} \pm \textbf{1.30}$	$\textbf{91.73} \pm \textbf{1.31}$	$\textbf{91.64} \pm \textbf{1.37}$	$\textbf{91.39} \pm \textbf{1.52}$

Table 12: Ablation study for Shannon Divergence metric between instances within the same class in MI dataset in comparison to the best-performing baseline MAtt.

Model	Class I	Class II	Class III	Class IV
MAtt	0.0221	0.0176	0.0113	0.0163
RoGra	0.0062	0.0033	0.0042	0.0044