
sciLaMA: A Single-Cell Representation Learning Framework to Leverage Prior
Knowledge from Large Language Models

Hongru Hu 1 2 Shuwen Zhang 3 Yongin Choi 1 2 Venkat S. Malladi 4 Gerald Quon 1 2

Abstract

Single-cell RNA sequencing (scRNA-seq) en-
ables high-resolution exploration of cellular di-
versity and gene regulation, yet analyzing such
data remains challenging due to technical and
methodological limitations. Existing task-specific
deep generative models like Variational Auto-
Encoder (VAE) and its variants struggle to in-
corporate external biological knowledge, while
transformer-based foundational large Language
Models (LLMs or large LaMs) face limitations
in computational cost and applicability to tabular
gene expression data. Here, we introduce sciL-
aMA (single-cell interpretable Language Model
Adapter), a novel representation learning frame-
work that bridges these gaps by integrating static
gene embeddings from multimodal LLMs with
scRNA-seq tabular data through a paired-VAE
architecture. Our approach generates context-
aware representations for both cells and genes
and outperforms state-of-the-art methods in key
single-cell downstream tasks, including batch
effect correction, cell clustering, and cell-state-
specific gene marker and module identification,
while maintaining computational efficiency. sciL-
aMA offers a computationally efficient, unified
framework for comprehensive single-cell data
analysis and biologically interpretable gene mod-
ule discovery. Source code is available at https:
//github.com/microsoft/sciLaMA
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1. Introduction
Single-cell RNA sequencing (scRNA-seq) has revolution-
ized studies of cellular heterogeneity and transcriptome dy-
namics by providing gene expression profiles at single-cell
resolution. Deep generative models, particularly Variational
Autoencoders (VAE) (Kingma & Welling, 2014) and its vari-
ants, have become widely used for analyzing scRNA-seq
data, which enable dimensionality reduction and representa-
tion learning by projecting cells from high-dimensional gene
spaces to lower-dimensional embedding spaces (Grønbech
et al., 2020; Lopez et al., 2018). These cell embeddings
facilitate downstream tasks such as cell clustering, trajec-
tory inference, and differential expression analysis (Chen
et al., 2021; Kana et al., 2023; Yan et al., 2023). VAE’s
nonlinear representation capabilities allow them to effec-
tively model complex cellular landscapes, making them
well-suited for tabular data like gene expression matrices.
However, scRNA-seq analysis remains challenging due to
technical noise, sparse measurements, and batch effects,
which often obscure true biological signals (Lähnemann
et al., 2020). Incorporating external prior knowledge of
genes, such as their functional annotations or molecular se-
quence data, has the potential to mitigate these challenges.
However, the representation of input gene expression data
as fixed-length vectors in traditional VAEs such as scVI-
tools (Lopez et al., 2018) is not directly compatible with
the different representations of prior gene knowledge, such
as variable-length molecular sequences or text descriptions.
This prevents prior gene knowledge from being directly
incorporated into traditional VAE architectures.

Large Language Models (LLMs), on the other hand, have
emerged as powerful tools for learning gene representations
from various sources, including literature-based textual de-
scriptions (Chen & Zou, 2024; Liu et al., 2023), molecular
sequences (Elnaggar et al., 2022; Lin et al., 2023), and large-
scale expression atlases (Cui et al., 2024; Theodoris et al.,
2023). These models encode sequential data through tok-
enization and transformer architectures to create static gene
embeddings that capture rich biological information. How-
ever, LLMs also face challenges: they are computationally
expensive to train and inherently less suited for processing
tabular data such as gene expression matrices, where VAEs
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demonstrate superior performance (Kedzierska et al., 2023).

To bridge the complementary strengths of VAEs and LLMs,
we propose sciLaMA (single cell interpretable Language
Model Adapter), a novel representation learning framework
that extends the siVAE (Choi et al., 2023) architecture to
integrate precomputed static gene embeddings from pre-
trained multimodal LLMs with scRNA-seq tabular data.
By combining the representation power of VAEs with the
adaptable and knowledge-rich embeddings of LLMs, our ap-
proach projects static gene information into context-aware
representations by aligning each dimension of gene and cell
latent space within the unified paired-VAE framework (Sec-
tion 3). This approach presents a unified framework that
improves over state of the art methods in single-cell analysis
in three tasks: (1) cell representation learning and batch
effect correction, (2) gene expression imputation, and (3)
discovery of biologically meaningful gene modules and cell-
state-specific regulatory dynamics, all while maintaining
computational efficiency.

Contributions: (1) We introduce a novel framework that in-
corporates external gene knowledge from pretrained LLMs
with scRNA-seq data, facilitating context-aware cell and
gene representation learning. (2) We demonstrate that our
approach reduces computational requirements while im-
proving performance compared to existing state-of-the-art
methods across various single-cell tasks.

2. Related work
Deep generative approaches for single cell analysis. Deep
generative models, particularly those based on variational
autoencoders (VAEs), have advanced single-cell RNA se-
quencing (scRNA-seq) analysis. Methods such as scVI-
tools learn low-dimensional cell embeddings for cell-centric
tasks such as visualization, clustering, and batch correction.
Researchers have also further utilized feature attribution
techniques to identify important genes in specific cell pop-
ulations and infer gene modules (Janizek et al., 2023) by
leveraging the learned cell embeddings. However, these ap-
proaches primarily focus on cell representations without in-
ferring gene representations, and pipelines leveraging other
tools are needed for gene-centric analyses such as marker
identification and gene network discovery. To address this
limitation, siVAE (Choi et al., 2023) introduced a unified
framework for learning both cell and gene representations,
enabling direct gene-centric analyses using the gene repre-
sentations and therefore eliminating the need for explicit
gene module inference via external tools. However, siVAE
gene representation learning involves training an encoder
whose number of input nodes scales with the number of
cells, thus limiting its applications to large datasets. More-
over, scVI, siVAE, and most other VAE methods do not
integrate external knowledge into scRNA-seq analysis due

to the representational challenges discussed above. Meth-
ods such as GLUE (Cao & Gao, 2022) incorporate external
information about regulatory interactions among features
in the form of feature variables, however, such approaches
struggle to utilize information such as molecular sequences
or natural language descriptions of genes.

Single-cell foundation language models. Transformer-
based large language models (LLMs) have recently been
applied for single-cell data analysis. Unlike VAE-based
methods, which treat scRNA-seq data as a cell-by-gene
matrix, models such as scGPT (Cui et al., 2024) represent
expression profiles as sequences of tokens, drawing similar-
ities to natural language and demonstrating a novel way to
represent single-cell data. However, despite their promise,
single-cell LLMs exhibit certain limitations. Their perfor-
mance in zero-shot scenarios is often unreliable, and fine-
tuning them requires extensive computational resources and
technical expertise compared to task-specific small models
(Kedzierska et al., 2023). These drawbacks emphasize the
need for approaches that are computationally efficient and
capable of bridging foundational knowledge with real-world
single-cell tasks.

Applications of static gene embeddings in single-cell anal-
ysis. Gene embeddings derived from non-single-cell biolog-
ical data modalities can complement information derived
from single-cell data analysis. For instance, precomputed
gene embeddings from protein language models (PLMs),
such as ESM and ProtTrans (Elnaggar et al., 2022; Lin et al.,
2023), capture gene molecular properties and have been
applied in frameworks like SATURN (Rosen et al., 2024) to
identify conserved master regulatory genes across species.
Similarly, models such as GenePT (Chen & Zou, 2024)
and scELMo (Liu et al., 2023) use embeddings derived
from textual descriptions of gene functions and biologi-
cal pathways via natural language models such as OpenAI
text-embedding model (OpenAI, 2022). These applications
demonstrate the feasibility of incorporating external static
gene embeddings from various modalities into single-cell
analysis frameworks. By integrating such embeddings, re-
searchers are able to improve the robustness of single-cell
analysis, facilitate gene module characterization, and un-
cover regulatory dynamics.

3. Methods
Conceptually, sciLaMA is an adapter framework that inte-
grates pretrained gene embeddings from LLMs of different
modalities, and tailors them for downstream single-cell anal-
yses. Instead of learning gene representations de novo, sciL-
aMA adapts and contextualizes these precomputed static
gene embeddings by incorporating context specific cell-level
data (cell-by-gene expression matrix). In this section, we
detail the technical components of the sciLaMA framework
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and its application to single-cell analysis.

3.1. Input data processing and notation

The sciLaMA framework requires two inputs: (1) A set of
gene expression inputs {ci}Ni=1 , representing scRNA-seq
data for N cells (scaled log-normalized expression) drawn
from a specific cell population. Each of theN cell vectors ci
hasM measurements corresponding to individual genes. (2)
Static gene embeddings {gj}Mj=1, derived from a single pre-
trained language model (LaM). These embeddings provide
D-dimensional representations of M genes, capturing their
properties derived from external prior knowledge, where the
number D depends on the embedding dimensionality of the
specific LLM.

3.2. sciLaMA architecture

sciLaMA is based on a paired encoder-decoder design, in-
spired by siVAE (Choi et al., 2023), a interpretable deep
generative model that jointly learns sample (cell) and fea-
ture (gene) embeddings using a paired VAE design. siVAE
only uses scRNA-seq data to learn both sets of embeddings,
whereas sciLaMA uses external data to inform gene embed-
dings. sciLaMA consists of two encoder-decoders: one for
cells and one for genes (Figure 1a).

3.2.1. CELL ENCODER AND DECODER

The cell encoder f cell
ϕcell(·) projects each cell i’s expression

profile ci, represented as an M -dimensional gene expres-
sion vector, to parameters of a K-dimensional variational
posterior distribution with mean µcell

i ∈ Rk and variance
(σcell

i )2 ∈ Rk. A latent embedding zcell
i is sampled via the

reparameterization trick:

(
µcell
i ,σcell

i

)
← f cell

ϕcell(ci)

zcell
i = µcell

i + ϵ⊙ exp
(
0.5 · log(σcell

i )2
)

(1)

hcell
i = gcell

ψcell(z
cell
i ) (2)

where ϵ ∼ N (0, I) and ⊙ denotes element-wise multi-
plication. gcell

ψcell(·) represents the cell decoder without a
conventional final linear transformation layer, and outputs
hcell
i ∈ Rl for cell i.

3.2.2. GENE ENCODER AND DECODER

Similarly, the gene encoder f gene
ϕgene(·) maps each gene j’s ex-

ternal static embedding gj ∈ RD, derived from a pretrained
LLM, into the contextual embedding space by predicting the
parameters of a K-dimensional variational posterior distri-
bution with mean µgene

j ∈ Rk and variance (σgene
j )2 ∈ Rk.

The gene-level decoder ggene
ψgene(·) is then used to produce

output hgene
j :(

µgene
j ,σgene

j

)
← f gene

ϕgene(gj)

zgene
j = µgene

j + ϵ⊙ exp
(
0.5 · log(σgene

j )2
)

(3)

hgene
j = ggene

ψgene(z
gene
j ) (4)

3.2.3. SCILAMA RECONSTRUCTION OUTPUT

Similar to the siVAE framework (Choi et al., 2023), the
output of sciLaMA is the reconstruction of the single cell
expression data for gene j in cell i, denoted as ĉi,j , via
combining the respective cell and gene decoder outputs hcell

i

and hgene
j :

ĉi,j =
(
hcell
i

)T × hgene
j + bj (5)

3.3. Optimization

The optimization of the sciLaMA framework involves a step-
wise training procedure designed for representation learning
of both cells and genes (Appendix B), and the training objec-
tives follow the evidence lower bound (ELBO) framework,
combining reconstruction accuracy and regularization via
Kullback–Leibler (KL) divergence.

Step 1: Pretraining the Cell Encoder and Decoder: We
first pretrain the weights of the cell encoder and decoder
(ϕcell and ψcell, respectively) by treating the encoder-decoder
as a VAE, where the objective function focuses on matching
cell decoder outputs hcell

i to the original expression vectors
ci via a linear transformation with parameters W cell ∈
Rl×M and b . The loss function Lcell for this step is defined
as:

ĉcellrecon
i =

(
hcell
i

)T ×W cell + b (6)

Lcellrecon
i =

(
ci − ĉcellrecon

i

)T (
ci − ĉcellrecon

i

)
(7)

Lcell =
∑
i

Lcellrecon
i + β ·KL

(
N (zcell

i |µcell
i ,σcell

i )∥N (0, I)
)

(8)
where β represents the weight of the KL divergence term
in VAEs, and is tuned to prioritize accurate reconstruction
during the early stages of training.

Step 2: Pretraining the Gene Encoder and Decoder:
Once the cell encoder and decoder are pretrained, its pa-
rameters (ϕcell, ψcell, W cell, and b) are frozen, and we then
pretrain the parameters (ϕgene, ψgene) of the gene encoder
f gene
ϕgene(·) and decoder ggene

ψgene(·), respectively. The loss func-
tion Lgene for this step is defined as:

Lrecon
i = (ci − ĉi)

T
(ci − ĉi) (9)

Lgene =
∑
i

Lrecon
i + β ·KL

(
N (zgene

j |µgene
j ,σgene

j )∥N (0, I)
)

(10)
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Figure 1. sciLaMA overview. (a) Diagram of the sciLaMA framework, which utilizes static gene embeddings generated from multimodal
language models and employs paired encoder-decoders for both genes and cells. (b) Visualizations of cell and gene latent and last-hidden
spaces and their operations for different components of the loss functions. (c) Illustrations of downstream applications using sciLaMA.

Note that unlike the reconstruction term Lcellrecon
i from pre-

vious step (Equation (7)), this loss function operates on
the outputs of the last hidden layers of both cell and gene
decoders (Equation (5)). Because the inputs to the gene
encoder are the prior LLM-defined gene embeddings gj ,
and the output is reconstruction of the gene expression mea-
surements ci, this pretraining serves to help adapt the LLM
embeddings to the current (gene expression) context.

Step 3: Joint Optimization of sciLaMA: In the final step,
all parameters of the sciLaMA framework are optimized to
improve the reconstruction quality of the expression matrix.
The loss function LsciLaMA for this step is:

ĉalignment
i,j =

(
zcell
i

)T × zgene
j + bj (11)

Lalignment
i =

(
ci − ĉalignment

i

)T (
ci − ĉalignment

i

)
(12)

LsciLaMA =
∑
i

Lrecon
i + γ · Lalignment

i

+β ·KL
(
N (zcell

i |µcell
i ,σcell

i )∥N (0, I)
)

+β ·KL
(
N (zgene

j |µgene
j ,σgene

j )∥N (0, I)
)
(13)

where Lalignment
i is a reconstruction-based regularization

term that encourages alignment between the latent spaces
of cells (zcell

i ) and genes (zgene
j ) by enforcing that the linear

product of the embeddings approximates the original ex-
pression value of gene j in cell i (ci,j). This term, inspired
by siVAE, serves as the interpretability term, ensuring that
individual dimensions of the cell and gene embeddings (zcell

and zgene) correspond meaningfully to each other. γ is a
scalar weight (default = 0.05) that determines the influence
of Lalignment

i term on the overall loss function. A small value
prevents it from dominating the optimization process.

3.4. Inference and Embedding Extraction

After training the sciLaMA framework, the learned cell and
gene embeddings can be extracted for downstream analyses.
Given the trained encoders f cell

ϕ̂cell(·) and f gene
ϕ̂gene(·), they can

be used to project a cell expression profile c(1) or gene
embedding g(2) into the cell (z(1)) or gene (z(2)) latent
space for downstream visualization or analysis.

(µ(1),σ(1))← f cell
ϕ̂cell(c

(1)) (14)

z(1) ∼ N
(
µ(1),σ(1)) (15)

(µ(2),σ(2))← f gene
ϕ̂gene(g

(2)) (16)

z(2) ∼ N
(
µ(2),σ(2)) (17)

4. Experiments
The experiments evaluating sciLaMA are designed to assess
its performance in single-cell analysis at both cell- and gene-
level tasks. For cell-level tasks, sciLaMA is assessed by
evaluating its capacity to generate cell embeddings that si-
multaneously preserve biological signals and remove batch
effects, with performance measured by (1) cell clustering an-
notation accuracy, (2) cell type separation precision, and (3)
the effectiveness of batch mixing. For gene-level tasks, sciL-
aMA is evaluated on its ability to impute gene expression,
identify gene markers, infer developmental trajectories and
discover temporal dynamic gene modules (Figure 1c). De-
tailed methodologies are listed in the Appendices C and D.

4.1. Prior Knowledge Improves Cell Representation
Learning

We first evaluated cell-level tasks because gene-level analy-
sis tasks are largely cell state-specific, and therefore rely on
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Figure 2. Robust cell representation learning and integration
with sciLaMA. (a) Quantitative performance comparison of mod-
els based on sciLaMA against other methods in preserving biolog-
ical variance (blue and orange metrics) and removing batch effects
(green metrics). (b-c) Scatter plot directly comparing sciLaMA-
GPT (y-axis) to sciLaMA (s.i.) (x-axis, b) and fine-tuned scGPT
(x-axis, c). (d) UMAP (McInnes et al., 2020) visualizations of
cell embeddings with colors indicating cell types (top) and batch
origins (bottom).

cell-level tasks such as accurate cell clustering and robust
cell representations. To evaluate sciLaMA’s performance
and assess the impact of incorporating prior knowledge en-
coded as gene embeddings on cell-level tasks (Section 4), we
benchmarked sciLaMA against the state-of-the-art (SOTA)
model scVI (Lopez et al., 2018) and foundation models
such as scGPT, CellPLM, and GenePT (Chen & Zou, 2024;
Cui et al., 2024; Wen et al., 2023). Multiple variants of
sciLaMA were created, each using a different set of gene
embeddings precomputed using different prior knowledge
databases to determine which prior knowledge is most rel-
evant to single cell tasks: sciLaMA-GenePT, sciLaMA-
ProtTrans, sciLaMA-CellPLM, sciLaMA-ChatGPT, and
sciLaMA-ESM. To determine the extent to which the sciL-
aMA framework itself is superior to other models, we cre-
ated the ”self-informed” version of sciLaMA, sciLaMA
(s.i.), to represent the framework when learning gene em-
beddings from the transposed single cell expression data
itself solely (without prior LLM-derived knowledge). Cell-
level tasks were evaluated using five pancreatic scRNA-seq
datasets from different labs and sequencing platforms (Tran
et al., 2020).

Across multiple standard integration metrics (Luecken et al.,
2022), all sciLaMA variants robustly outperformed other
models both individually (Figure 2a,d, Appendix E) as well
as on average (Table 1), suggesting that the sciLaMA frame-

Table 1. Cell representation learning and integration performance
on human pancreatic datasets. Adjusted Rand Index (ARI) and
Normalized Mutual Information (NMI) for cluster annotation ac-
curacy; Average Silhouette Width (ASW) for cell type separation;
batchASW and graph integration local inverse Simpson’s Index
(iLISI) for batch mixing quality.

Methods ARI ↑ NMI ↑ ASW ↑ batchASW ↑ iLISI ↑

sciLaMA (avg.) 0.522 0.745 0.535 0.865 0.238
sciLaMA (s.i.) 0.436 0.698 0.539 0.832 0.210
scGPT fine-tuned 0.483 0.704 0.650 0.736 0.074
scVI-batch 0.447 0.718 0.499 0.744 0.115
scVI-raw 0.297 0.570 0.453 0.621 0.030
scGPT zero-shot 0.321 0.487 0.442 0.588 0.005
CellPLM zero-shot 0.330 0.516 0.421 0.492 1.11e-16

GenePT-w 0.022 0.079 0.192 0.553 0.121

work is a general, powerful framework for tackling cell-level
tasks. For cell type clustering and annotation, sciLaMA
achieved an average adjusted Rand index (ARI) of 0.522
and normalized mutual information (NMI) of 0.745, outper-
forming scVI (with batch variable consideration) by 16.78%
and 3.76%, respectively, and fine-tuned scGPT by 8.07%
and 5.82%. Additionally, its ARI and NMI values were
approximately 1.5 times higher than those of the best zero-
shot foundation models, showcasing its ability to generate
well-defined cell clusters aligned with cell type annotations
from the original studies. In cell type separation, sciLaMA
achieved an average silhouette width (ASW) of 0.535 and
a graph cell type local inverse Simpson’s index (cLISI) of
0.9935, indicating precise separation of cell types with pre-
served biological variation. Furthermore, for batch effect
correction, sciLaMA achieved the highest batch-ASW of
0.865 and a graph integration-LISI (iLISI) of 0.238, surpass-
ing the next-best models by 16.26% and 96.69%, respec-
tively. These results collectively highlight sciLaMA’s robust
ability to integrate cells across batches while maintaining
accurate cell type representations and biological relevance.

Interestingly, the performance of sciLaMA (s.i.) without
any external prior knowledge from LLMs is worse than all
variants of sciLaMA with prior knowledge despite the diver-
sity of prior knowledgebases, suggesting that incorporating
prior knowledge of gene function is broadly acting to regu-
larize sciLaMA and prevent overfitting (Figure 2b). These
results are consistent with the observation across all tasks.
sciLaMA outperformed scVI, another SOTA VAE-based
model without external knowledge, again supporting that
incorporating prior gene knowledge is beneficial to single
cell analysis.

While our experiment above confirmed incorporating prior
knowledge is helpful for single cell analysis, we also won-
dered whether with a framework inspired by paired VAEs,
is sciLaMA the best framework for integrating prior knowl-
edge? To explore this, we directly compared the transformer-
based foundation model scGPT that was subsequently fine-
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Table 2. Comparison of runtime (in seconds) for modeling 14,767
human pancreatic cells sourced from five different origins on a
single NVIDIA A100 80GB GPU. Due to memory limitations, the
batch size for scGPT was set to 10, while siVAE and the various
sciLaMA configurations utilized a batch size of 128.

Method scGPT fine-tune siVAE sciLaMA (avg.)

Runtime (s) ↓ 19,474 2,265 759

tuned on our training single cell data (scGPT-finetuned) with
sciLaMA-scGPT (sciLaMA using pretrained scGPT gene
embeddings). Both models are based on the same pretrained
scGPT-whole-human as prior knowledge, but differ in how
the pretrained embeddings are updated further. sciLaMA-
scGPT outperformed fine-tuned scGPT by 6.82% in cell
type clustering and annotation task (ARI and NMI) (Fig-
ure 2c). Although the fine-tuned scGPT achieved marginally
better results in silhouette width (ASW), its lower batch-
ASW and integration-LISI (iLISI) scores (by 34.57% on
average) indicate poor batch integration. This comparison
underscores the lightweight and well-designed nature of
sciLaMA, which improves performance while being more
computationally efficient, reducing runtime by 25-fold com-
pared to fine-tuned scGPT (Table 2).

4.2. sciLaMA Reconstructs Gene Expression with High
Accuracy

We next benchmarked sciLaMA accuracy on gene-level
tasks, starting with the imputation of gene expression pat-
terns. Gene imputation, the prediction of missing or masked
gene expression levels based on other genes’ profiles, is
particularly beneficial for sparsely measured datasets, such
as Multiplexed Error-Robust Fluorescence in situ Hybridiza-
tion (MERFISH) or Antibody-Derived Tags (ADTs), where
only a subset of genes is typically quantified in an exper-
iment. We benchmarked sciLaMA against leading mod-
els for gene imputation accuracy, including scProjection,
gimVI, uniPort and Tangram (Johansen et al., 2023; Lopez
et al., 2019; Cao et al., 2022; Biancalani et al., 2021). The
experimental setup employed a leave-one-gene-out strategy,
where the expression of a single gene was masked across
all cells, and the models were tasked with predicting its
expression pattern based on the remaining genes.

Our results show that sciLaMA models consistently out-
performed competing models in imputation accuracy (Fig-
ure 3a,b, and Table 3) on the spatial transcriptomics data
(Codeluppi et al., 2018). sciLaMA achieved the high-
est scores across established metrics (Appendix D) (Li
et al., 2022), outperforming the average performance of
other benchmarked methods (Johansen et al., 2023; Lopez
et al., 2019; Cao et al., 2022; Biancalani et al., 2021) by
27.39% in Pearson Correlation Coefficient (PCC), 15.58%
in Spearman Correlation Coefficient (SCC), 32.86% in 1-

Figure 3. Accurate imputation of unseen gene expression with
sciLaMA. (a) Quantitative performance comparison of models
based on sciLaMA against other methods for gene imputation task
using leave-one-gene-out strategy. (b) Metric values for 30 genes
from the spatial dataset across methods (color-coded). (c) Example
visualizations of measured (left) and imputed (right) spatial gene
expression patterns.

Jensen–Shannon Divergence (1-JSD), and 3.32% in 1/Root
Mean Squared Error (1/RMSE) on average. These met-
rics indicate that its predictions were more aligned with
true gene expression patterns compared to other models
(Figure 3a). Notably, the results demonstrate the signifi-
cance of incorporating external gene information gain, as
evidenced by sciLaMA’s performance superiority over the
baseline sciLaMA (s.i.) model, as well as additional baseline
sciLaMA (random) and sciLaMA (shuffled) (Appendix E).
Unlike sciLaMA, these baseline models do not leverage
meaningful prior knowledge derived from LLMs. Specif-
ically, sciLaMA (s.i.) utilizes a transposed single-cell ex-
pression matrix, sciLaMA (random) employs a randomized
input matrix for the gene encoder, and sciLaMA (shuffled)
uses shuffled external gene embeddings to intentionally dis-
rupt dimension alignment. Collectively, these comparisons
emphasize the significance of leveraging structured, seman-
tically meaningful gene embeddings derived from LLMs to
enhance generalizability.

Figure 3c illustrates examples of measured versus imputed
spatial patterns for genes such as Cpne5 and Sox10 and show
sciLaMA accurately predicts expression while preserving
spatial organization and region-specific heterogeneity of
expression, which is crucial for understanding tissue spatial
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Figure 4. Marker gene identification and validation using sciLaMA. (a) UMAP of human PBMC 3K dataset cell embedding using
sciLaMA, with points representing cells colored by cell type and outlined by coarse cell classes using dashed circles. (b) Comparison of
LLM-derived static gene embedding (top) and sciLaMA-derived contextual gene embedding (bottom) with points representing genes.
Marker genes are colored by cell type specificity, and those from the same circle are relevant to the same broader cell classes. Color
codes are consistent between (a) and (b). (c) A graph of a gene module identified through sciLaMA-based gene clustering, with Gene
Ontology (GO) terms enriched for module-associated genes. The module includes PPBP gene, a known marker for Megakaryocytes. (d)
Bar chat of the top six GO terms and significance (adjusted p-values). (e) UMAP visualization of sciLaMA contextual gene embedding on
multi-source human pancreas datasets. Marker gene modules associated with different cell types are highlighted.

Table 3. Evaluation of gene expression imputation performance on
spatial transcriptomics data across multiple methods using Pearson
Correlation Coefficient (PCC), Spearman Correlation Coefficient
(SCC), Jensen-Shannon Divergence (JSD), and Root Mean Square
Error (RMSE). A leave-one-gene-out strategy was applied on 30
measured genes.

Methods PCC (↑) SCC (↑) JSD (↓) RMSE (↓)

sciLaMA (avg.) 0.222 ± 0.027 0.217 ± 0.028 0.283 ± 0.008 1.242 ± 0.022
scProjection 0.177 ± 0.029 0.207 ± 0.029 0.352 ± 0.032 1.277 ± 0.023
gimVI 0.224 ± 0.021 0.207 ± 0.024 0.580 ± 0.014 1.243 ± 0.017
uniPort 0.166 ± 0.027 0.184 ± 0.027 0.451 ± 0.017 1.287 ± 0.022
Tangram 0.130 ± 0.019 0.154 ± 0.018 0.458 ± 0.017 1.316 ± 0.015

structure.

4.3. sciLaMA Enables Marker Gene Identification

In single-cell studies, identifying and validating marker
genes characteristic of individual cell types is another essen-
tial process for cell type annotation traditionally dependent
on expert domain knowledge. Conventionally, bioinfor-
maticians preprocess and integrate data, cluster cells, and
then experts annotate these clusters using known biomark-
ers or gene signatures relevant to specific cell types (Butler
et al., 2018; Wolf et al., 2018). Such division of labor is
time-consuming and demands extensive collaboration. sciL-
aMA streamlines this process by simultaneously integrating
cells and implicitly organizing genes into biologically mean-
ingful modules within its contextual gene representation
space. By analyzing gene embeddings, sciLaMA can iden-
tify groups of genes that are consistently co-expressed or
show coordinated patterns within specific cell types. This
goes beyond simply checking the expression levels of pre-
defined markers such as CD4 for T-cells. Instead, it reveals
potentially unknown gene modules that strongly correlate

with particular cellular states or types. sciLaMA not only re-
duces the manual labor involved in marker identification but
also opens up possibilities for discovering new biological
insights by detecting subtle, coordinated gene expression
patterns that expert-driven methods might overlook.

To assess sciLaMA’s efficacy in marker gene identification,
we compared its contextual gene embeddings to static em-
beddings from the LLMs. sciLaMA’s contextualization
significantly improved the clustering of markers associated
with the same cell states (Figure 4a-b). For example, in
the static embeddings (Figure 4b, top), marker genes for
the same cell type do not cluster as expected, while in the
sciLaMA contextual embeddings (Figure 4b, bottom), mark-
ers for the same cell states group together, as indicated by
the circles. Moreover, PPBP is a well-established marker
for Megakaryocytes (platelet precursor cells) in human pe-
ripheral blood mononuclear cells (PBMCs) (Butler et al.,
2018), and sciLaMA’s contextual gene embedding presents
a cluster that includes it. Neighboring genes within this
cluster were linked to platelet-related biological processes,
cellular components, and molecular functions, confirmed
via Gene Ontology (GO) enrichment analysis (Figure 4c-d)
(Subramanian et al., 2005). Many of these genes, though not
previously annotated as Megakaryocyte markers from the
original study, exhibit strong co-expression with PPBP and
functional links to platelet biology. Their coordinated clus-
tering in biologically meaningful modules indicates their
relevance to Megakaryocyte identity.

Furthermore, sciLaMA robustly identified marker modules
across multiple datasets, demonstrating its effectiveness
even in the presence of batch effects (Figure 4e). Im-
portantly, sciLaMA integrating LLM-derived priors gene
knowledge outperformed the self-informed version sciL-
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Figure 5. Enhanced developmental gene trajectory analysis
with sciLaMA. (a) Overview of P0 mouse neurodevelopment
data, with five cell types from early progenitors to mature excita-
tory neurons. (b) UMAP visualizations of cell embeddings using
sciLaMA (top) and scVI (bottom) with a bar plot comparing cell
type annotation and separation performance. (c) Pseudotime (x-
axis) heatmap displaying the dynamic changes in gene expression
across developmental stages. Rows represent ordered temporal
specific genes. (d) UMAP visualizations of gene embeddings with-
out (left) and with (right) embedding alignment using sciLaMA.
Temporal specific genes (from (c)) are highlighted with color gra-
dient.

aMA (s.i.) across clustering metrics (Table S7), which
indicates the value of leveraging pretrained static gene em-
beddings. These findings highlight sciLaMA’s potential
to streamline single-cell studies by reducing reliance on
manual annotation and revealing novel biological insights,
which advances gene module discovery.

4.4. sciLaMA Enhances Trajectory Analysis by
Unveiling Temporal Dynamics of Genes

Building upon its strength in identifying gene markers and
modules across discrete cell types, sciLaMA also excels at
capturing temporal dynamics in developmental processes.
This capability enables the study of continuous gene expres-
sion changes across time and facilitates the analysis of cell
differentiation and developmental trajectories.

To investigate sciLaMA’s capability in this context, we con-
ducted pseudotime trajectory analysis using cell embeddings
learned by sciLaMA and compared them with those from
scVI, a SOTA single-cell model. The analysis was applied
to a dataset capturing P0 mouse cortex development (Fig-
ure 5a) (Chen et al., 2019). Pseudotime visualizations (Fig-
ure 5b, and Appendix E) illustrated that sciLaMA provided

Table 4. Cell representation learning performance on P0 mouse
neurodevelopment dataset, with ARI and NMI quantifying cluster
annotation accuracy, and ASW and cLISI quantifying cell type
separation.

Methods ARI ↑ NMI ↑ ASW ↑ cLISI ↑

sciLaMA 0.316 0.351 0.518 0.738
scVI 0.284 0.291 0.501 0.501

clearer transitions between developmental stages, such as
the progression from intermediate progenitors (IPs) to layer-
2-3 excitatory neurons (ExNs). sciLaMA outperformed
scVI in trajectory clarity by 20.65% overall (Table 4).

Pseudotime-aligned heatmaps of gene expression (Figure 5c,
and Appendix E) highlighted temporal-specific genes with
coordinated expression shifts corresponding to distinct
stages of cell differentiation. Additionally, sciLaMA’s con-
textual gene embeddings further illuminated temporal re-
lationships between genes, offering insights into the se-
quential activation of developmental markers (Figure 5d).
This analysis provides a comprehensive perspective on the
dynamic interplay of genes during cell differentiation and
development.

By accurately mapping cell lineages and identifying stage-
specific gene modules, sciLaMA provides researchers with
a powerful tool for understanding cell differentiation and de-
velopmental processes. When applied to organoid datasets,
sciLaMA can also compare developmental trajectories of
organoids with those of real tissues. For example, it can
identify which gene modules from real tissues correspond
to specific stages in organoid development, aiding in the as-
sessment of organoid fidelity. This capability has significant
implications for therapeutic strategies, enabling researchers
to evaluate how organoids can model human diseases and
inform potential treatment designs.

5. Conclusion
This study introduces sciLaMA, a novel framework that inte-
grates external gene knowledge from language models with
single-cell expression data to address critical challenges in
single-cell analysis and enable comprehensive downstream
tasks spanning both cell-level and gene-level analyses. Our
experiments demonstrate the framework’s effectiveness and
performance superiority, and highlight the value of incor-
porating external gene knowledge through an innovative
design. These findings establish sciLaMA as a powerful
tool for advancing our understanding of cellular heterogene-
ity and gene regulation, and showcase how language models
can be leveraged through a lightweight adapter framework.
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E.-M., Andréasson, A.-C., Sun, X., Picelli, S., Sabirsh,
A., Clausen, M., Bjursell, M. K., et al. Single-cell tran-
scriptome profiling of human pancreatic islets in health
and type 2 diabetes. Cell Metabolism, 24(4):593–607,
2016. doi: 10.1016/j.cmet.2016.08.020.

Subramanian, A., Tamayo, P., Mootha, V. K., Mukherjee,
S., Ebert, B. L., Gillette, M. A., Paulovich, A., Pomeroy,
S. L., Golub, T. R., Lander, E. S., and Mesirov, J. P. Gene
set enrichment analysis: A knowledge-based approach
for interpreting genome-wide expression profiles. Pro-
ceedings of the National Academy of Sciences, 102(43):
15545–15550, 2005. doi: 10.1073/pnas.0506580102.

Theodoris, C. V., Xiao, L., Chopra, A., Chaffin, M. D.,
Al Sayed, Z. R., Hill, M. C., Mantineo, H., Bry-
don, E. M., Zeng, Z., Liu, X. S., and Ellinor, P. T.
Transfer learning enables predictions in network biol-
ogy. Nature, 618(7965):616–624, 2023. doi: 10.1038/
s41586-023-06139-9.

Tran, H. T. N., Ang, K. S., Chevrier, M., Zhang, X., Lee,
N. Y. S., Goh, M., and Chen, J. A benchmark of batch-
effect correction methods for single-cell rna sequencing
data. Genome Biology, 21(1):12, 2020. doi: 10.1186/
s13059-019-1850-9.

Wang, Y. J., Schug, J., Won, K.-J., Liu, C., Naji, A., Avra-
hami, D., Golson, M. L., and Kaestner, K. H. Single-cell
transcriptomics of the human endocrine pancreas. Dia-
betes, 65(10):3028–3038, 2016. doi: 10.2337/db16-0405.

Wen, H., Tang, W., Dai, X., Ding, J., Jin, W., Xie, Y., and
Tang, J. Cellplm: Pre-training of cell language model
beyond single cells. 2023. doi: 10.1101/2023.10.03.
560734.

Wolf, F. A., Angerer, P., and Theis, F. J. Scanpy: Large-scale
single-cell gene expression data analysis. Genome Biol-
ogy, 19(1):15, 2018. doi: 10.1186/s13059-017-1382-0.

Xin, Y., Kim, J., Okamoto, H., Ni, M., Wei, Y., Adler, C.,
Murphy, A. J., Yancopoulos, G. D., Lin, C., and Gromada,
J. Rna sequencing of single human islet cells reveals type
2 diabetes genes. Cell Metabolism, 24(4):608–615, 2016.
doi: 10.1016/j.cmet.2016.08.018.

Yan, J., Ma, M., and Yu, Z. bmvae: A variational autoen-
coder method for clustering single-cell mutation data.
Bioinformatics, 39(1):btac790, 2023. doi: 10.1093/
bioinformatics/btac790.
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Appendix
sciLaMA: A Single-Cell Representation Learning Framework to Leverage

Prior Knowledge from Large Language Models

A. Model Input Processing:
A.1. Cell Encoder Input

As mentioned in Section 3 Methods, the input for cell Encoder is the scRNA-seq data for specific cell population c.
Therefore, ci,j denotes the scaled log-normalized expression value of gene j in cell i.

The raw scRNA-seq expression matrix, craw, is a sparse count matrix. For use in sciLaMA, the data after quality control
(QC) is processed through library size normalization and feature-wise z-score scaling to achieve zero mean and unit variance.
Values beyond ±10 are clipped. Specifically, the normalized expression cnorm is calculated as:

cnorm
i,j = loge

(
1 + 104 ×

craw
i,j∑m

k=1 c
raw
i,k

)

Here, craw
i,j represents the raw count value of gene j in cell i, and

∑m
k=1 c

raw
i,k is the total expression counts number for cell i.

The multiplication by 104 ensures a standardized size factor for normalization. This normalization procedure adjusts for
library size differences across cells and prepares the data for following analysis.

A.2. Gene Encoder Input

In this study, sciLaMA integrated static gene embeddings from six external sources across three distinct modalities.

Source Dimensionality Modality

ChatGPT 1536 Text
GenePT (NCBI) 1536 Text
ESM 5120 Protein Sequence
ProtTrans 1024 Protein Sequence
scGPT 512 Single Cell
CellPLM 1024 Single Cell

Table S1. Gene Embedding Sources and Characteristics.

A.2.1 Natural Language Embeddings

We acquired text description-based gene embeddings from two studies: GenePT and scELMo (Chen & Zou, 2024; Liu
et al., 2023), utilizing the OpenAI text-embedding-ada-002 model (OpenAI, 2022). These embeddings were generated using
two distinct text corpora: GPT-3.5 generated descriptions (referred to as ChatGPT) and National Center for Biotechnology
Information (NCBI) gene card summaries (referred to as GenePT). We obtained 1,536-dimensional static embeddings for
each gene (d = 1,536).

A.2.2 Protein Language Embeddings

We derived protein sequence-based gene embeddings from two protein language models: ESM2 t48 15B UR50D with 5,120-
dimensional embeddings per gene (Lin et al., 2023), and ProtXLNet from ProtTrans with 1,024-dimensional embeddings
(Elnaggar et al., 2022) from the SATURN study (Rosen et al., 2024). These embeddings were generated using the amino
acid sequences of each corresponding gene.

A.2.3 Single-Cell Gene Language Embeddings
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For single-cell foundation models, we retrieved static gene embeddings from two pretrained models: scGPT-whole-human
(512-dimensional embeddings) (Cui et al., 2024) and cellPLM (1,024-dimensional embeddings) (Wen et al., 2023). The
scGPT embeddings were obtained using the model’s GitHub tutorial, while cellPLM embeddings were extracted from the
embedder module’s feature encoder parameters, as directed by the authors.

B. Model Optimization Illustration:
The sciLaMA model optimization process, comprehensively described in Section 3 Methods, is illustrated through a
stepwise training strategy visualization (Figure S1). The optimal hyperparameter values chosen for our experiments are
scalar γ = 0.05 and latent dimensionality K = 40, based on the evaluations presented in Table S8 and Table S9.

Figure S1. Schematic representation of the progressive optimization workflow for the sciLaMA framework. (Box indicates freezing
parameters.)

C. Dataset Introduction:
C.1. Experiment 1: Cell Representation Learning Benchmarking

This experiment benchmarks cell representation learning methods using a combination of single-cell RNA sequencing
datasets derived from five studies focused on the pancreas. The data includes a total of 14,767 cells spanning 13,062 genes
(after intersection with precomputed static gene embeddings).

Datasets Used: Baron et al.: 8,569 cells (Baron et al., 2016); Segerstolpe et al.: 2,127 cells (Segerstolpe et al., 2016);
Muraro et al.: 2,122 cells (Muraro et al., 2016); Xin et al.: 1,492 cells (Xin et al., 2016); Wang et al.: 457 cells (Wang et al.,
2016).

The aggregated dataset was a gold-standard benchmarking dataset originally analyzed in the context of batch-effect
correction, as described in Tran et al., in 2020 (Tran et al., 2020). This benchmarking experiment evaluates the performance
of cell representation learning in mitigating batch effects while preserving biological signal.

C.2. Experiment 2: Gene Expression Imputation Benchmarking

This experiment evaluates the accuracy of gene expression imputation approaches by leveraging two complementary datasets
(Zeisel et al., 2015; Codeluppi et al., 2018):

Reference scRNA-seq Dataset (Zeisel et al., 2015):

· Number of cells: 3,005

· Total genes: 19,972, with 3,654 highly variable genes selected for benchmarking.

· Validation: A 10% validation split is used for early stopping during model training.

Spatial Transcriptomics Dataset (Codeluppi et al., 2018):

· Number of spatial spots: 4,530
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· Genes: 30, analyzed using a leave-one-gene-out approach to simulate imputation scenarios.

This setup allows for assessing the generalizability of gene imputation models.

C.3. Experiment 3: Marker Gene Identification

This experiment focuses on identifying marker genes for distinct cell types using the human Peripheral Blood Mononu-
clear Cell (PBMC) 3K dataset from 10x Genomics, a legacy dataset widely utilized in tools like Seurat (Butler et al.,
2018) and scanpy (Wolf et al., 2018) tutorials. The ground truth gene markers and cell type annotations were ob-
tained from the tutorials (https://satijalab.org/seurat/articles/pbmc3k_tutorial, and https:
//scanpy.readthedocs.io/en/stable/tutorials/basics/clustering-2017.html).

Dataset Details:

· Initial Size: 2,700 cells × 32,738 genes

· Final Size: 2,700 cells × 9,540 genes (post-filtering and intersection with static gene embeddings).

Cell Type Number of cells

CD4 T cells 1158
CD14 Monocytes 487
B cells 357
CD8 T cells 329
FCGR3A Monocytes 160
NK cells 160
Dendritic cells 36
Megakaryocytes 13

Table S2. Cell Type Statistics of human PBMC 3K dataset

C.4. Experiment 4: Trajectory Analysis and Temporal Dynamic Gene Discovery

This experiment investigates gene dynamics along developmental trajectories using the P0 mouse cortex dataset from the
SNARE-seq study (Chen et al., 2019). The original SNARE-seq dataset includes both transcriptomic and epigenomic
information from the same single cells, but we only utilized the transcriptomic data with 1,469 cells and 8,293 genes (after
intersection with precomputed static gene embeddings). This experiment focuses on uncovering temporally dynamic genes
critical for neurodevelopmental processes. The ground truth gene markers and cell type annotations were obtained from the
original study.

Cell Type Number of cells

IP Hmgn2 214
IP Gadd45g 99
IP Eomes 437

Ex23 Cntn2 177
Ex23 Cux1 542

Table S3. Cell Type Statistics of mouse P0 cortex dataset

D. Benchmarking Metrics Introduction:
To comprehensively evaluate the performance of various methods, we employ metrics tailored to different aspects of single-
cell data analysis, including cluster annotation accuracy, cell type separation, batch mixing quality, and predictive/imputation
accuracy (Li et al., 2022; Luecken et al., 2022), briefly summarized below:

D.1. Clustering and Annotation Accuracy

To assess the biological relevance of clustering and annotation based on the learned embeddings, we employ:
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· Adjusted Rand Index (ARI): Measures the agreement between predicted and ground-truth cluster labels, adjusted for
chance. A higher ARI indicates better alignment between predicted clusters and original biological annotations, reflecting
more accurate and biologically meaningful clustering.

· Normalized Mutual Information (NMI): Quantifies the mutual dependence between predicted clusters and ground-truth
cell type annotation labels, normalized to account for the total number of clusters. A higher NMI indicates better clustering
accuracy.

D.2. Cell Type Separation

To evaluate how well methods preserve separation between distinct cell types, we employ:

· Average Silhouette Width (ASW): Evaluates the cohesion within clusters and the separation between them. Higher ASW
scores indicate that cells within the same cluster are more similar to each other than to cells in other clusters, signifying
well-defined clusters.

· Graph Cell-Type Integration Local Inverse Simpson’s Index (cLISI): Measures the local diversity of cell types within
neighborhoods in an integrated graph representation. High cLISI values suggest better grouping of similar cell types in the
embedding space.

D.3. Batch-Effect Correction Quality

To evaluate batch effect removal while preserving biological variance, we apply:

· Batch-Adjusted Silhouette Width (batchASW): Evaluates the extent of batch mixing while penalizing over-mixing of
unrelated cells. Higher batchASW scores indicate better batch integration without compromising biological separation.

· Graph Integration Local Inverse Simpson’s Index (iLISI): Measures the diversity of batch labels within local neighbor-
hoods of an integrated graph. Higher iLISI scores indicate more uniform batch mixing, reflecting better integration while
preserving cell type integrity.

D.4. Predictive Accuracy and Divergence Metrics

For imputation and gene expression prediction tasks, we employ:

· Pearson Correlation Coefficient (PCC): Assesses linear relationships between predicted and observed gene expression
values, with higher values indicating stronger correlations.

· Spearman Correlation Coefficient (SCC): Evaluates rank-based relationships, capturing monotonic correlations between
predicted and observed values, providing insights into the consistency of expression patterns.

· Jensen-Shannon Divergence (JSD): Measures the similarity between predicted and true gene expression distributions.
Lower JSD values indicate better agreement between the two distributions.

· Root Mean Square Error (RMSE): Quantifies the average magnitude of errors between predicted and observed values.
Lower RMSE scores reflect higher accuracy

D.5. Clustering Quality Metrics To evaluate the geometric coherence and separation of clusters in the learned gene
embedding space, we include two additional metrics:

· Davies-Bouldin Index (DBI): Quantifies the ratio of intra-cluster dispersion to inter-cluster separation. Lower DBI values
indicate better-defined clusters with high intra-cluster similarity and distinct separation between clusters.

· Calinski-Harabasz Score (CHS): Measures the ratio of between-cluster dispersion to within-cluster dispersion. Higher
CHS values reflect dense, well-separated clusters

E. Supplementary Results:
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Methods w\ external knowledge ARI ↑ NMI ↑ ASW ↑ batchASW ↑ iLISI ↑

sciLaMA-GenePT
√

0.545 0.767 0.539 0.863 0.240
sciLaMA-CellPLM

√
0.479 0.723 0.541 0.871 0.257

sciLaMA-ProtTrans
√

0.547 0.749 0.538 0.864 0.229
sciLaMA-ChatGPT

√
0.545 0.762 0.534 0.863 0.225

sciLaMA-scGPT
√

0.522 0.746 0.526 0.867 0.223
sciLaMA-ESM

√
0.494 0.722 0.529 0.864 0.253

sciLaMA (s.i.) × 0.436 0.698 0.539 0.832 0.210

Table S4. Cell representation learning and integration performance on human pancreatic datasets across variants of sciLaMA models

Methods cLISI ↑

sciLaMA-GenePT 0.995
sciLaMA-CellPLM 0.995
sciLaMA-ProtTrans 0.992
sciLaMA-ChatGPT 0.993
sciLaMA- scGPT 0.993
sciLaMA- ESM 0.993
sciLaMA (s.i.) 0.987

scGPT fine-tuned 0.998
scVI-batch 0.982
scVI-raw 0.972

scGPT zero-shot 0.951
CellPLM zero-shot 0.961

GenePT-w 0.838

Table S5. Graph Cell-Type Integration Local Inverse Simpson’s Index (cLISI) scores across methods (listed as supplementary result due
to the low variance of 0.001714)

Methods w\ external knowledge PCC (↑) SCC (↑) JSD (↓) RMSE (↓)

sciLaMA-GenePT
√

0.220 ± 0.029 0.214 ± 0.031 0.280 ± 0.009 1.243 ± 0.023
sciLaMA-CellPLM

√
0.222 ± 0.027 0.218 ± 0.028 0.286 ± 0.009 1.242 ± 0.022

sciLaMA-ProtTrans
√

0.218 ± 0.026 0.211 ± 0.028 0.283 ± 0.009 1.246 ± 0.021
sciLaMA-ChatGPT

√
0.219 ± 0.027 0.217 ± 0.027 0.282 ± 0.009 1.244 ± 0.022

sciLaMA-scGPT
√

0.219 ± 0.027 0.217 ± 0.027 0.285 ± 0.009 1.244 ± 0.022
sciLaMA-ESM

√
0.233 ± 0.026 0.227 ± 0.027 0.282 ± 0.009 1.233 ± 0.022

sciLaMA (s.i.) × 0.202 ± 0.027 0.212 ± 0.025 0.286 ± 0.009 1.258 ± 0.022
sciLaMA (random) × 0.051 ± 0.027 0.049 ± 0.031 0.289 ± 0.009 1.374 ± 0.020
sciLaMA (shuffled) × 0.056 ± 0.036 0.043 ± 0.037 0.288 ± 0.009 1.366 ± 0.027

Table S6. Evaluation of gene expression imputation performance on spatial transcriptomics data across variants of sciLaMA models

Methods w/ external knowledge Davies-Bouldin Index (↓) Calinski-Harabasz Score (↑)

sciLaMA-GenePT
√

0.852 16.376
sciLaMA-CellPLM

√
0.727 19.610

sciLaMA-ProtTrans
√

0.802 19.947
sciLaMA-ChatGPT

√
0.874 16.522

sciLaMA-scGPT
√

0.780 17.973
sciLaMA-ESM

√
0.780 16.920

sciLaMA (s.i.) × 0.977 13.087

Table S7. Clustering performance comparison for marker gene identification across variants of sciLaMA models
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γ ARI mean ARI std NMI mean NMI std ASW mean ASW std cLISI mean cLISI std

0 0.464 0.371 0.513 0.390 0.589 0.087 0.881 0.170
0.01 0.582 0.021 0.734 0.022 0.645 0.010 0.990 0.002
0.05 0.665 0.114 0.763 0.041 0.654 0.005 0.991 0.002
0.1 0.634 0.088 0.751 0.023 0.658 0.012 0.992 0.002

0.25 0.581 0.024 0.743 0.013 0.655 0.006 0.990 0.002
0.5 0.592 0.010 0.747 0.004 0.658 0.012 0.993 0.001

0.75 0.590 0.015 0.748 0.013 0.656 0.012 0.992 0.002
1 0.647 0.107 0.762 0.038 0.651 0.025 0.993 0.003

Table S8. Effect of scalar γ on clustering performance across multiple metrics.

K Latent dim ARI mean ARI std NMI mean NMI std ASW mean ASW std cLISI mean cLISI std

10 0.651 0.110 0.756 0.042 0.654 0.005 0.991 0.002
20 0.627 0.082 0.761 0.025 0.631 0.015 0.991 0.000
30 0.583 0.017 0.742 0.022 0.633 0.014 0.991 0.001
40 0.680 0.114 0.771 0.039 0.637 0.009 0.991 0.002
50 0.606 0.085 0.743 0.023 0.631 0.010 0.990 0.002
60 0.649 0.100 0.757 0.030 0.631 0.015 0.990 0.002
70 0.590 0.037 0.738 0.017 0.635 0.009 0.991 0.001
80 0.649 0.095 0.753 0.020 0.632 0.009 0.991 0.001
90 0.656 0.102 0.756 0.030 0.637 0.008 0.991 0.001

100 0.641 0.108 0.751 0.027 0.635 0.006 0.991 0.002

Table S9. Effect of varying latent dimension K on clustering performance across multiple metrics.
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Figure S2. Benchmark of cell representation learning. (a) Radar plot showing the performance across six established metrics, comparing
single cell SOTA methods (scVI and scVI-batch), zero-shot models (GenePT-w, CellPLM, and scGPT), a fine-tuned model (scGPT), and
comparable sciLaMA-based models (sciLaMA-GenePT/CellPLM/scGPT). (b-c) UMAP visualizations of cell embeddings derived from
various models, with colors indicating cell types (top) and batch origins (bottom). (b) includes foundation models in zero-shot mode,
while (c) presents sciLaMA-based models in additional to those from Figure 2c.

Figure S3. Enhanced developmental cell trajectory analysis with sciLaMA. (a) UMAP visualizations of cell embeddings from
sciLaMA (top) and scVI (bottom) colored by inferred pseudotime via Palantir. (b) Heatmaps of dynamic gene expression changes by
pseudotime (x-axis) with genes ordered by temporal specificity (y-axis). Top shows sciLaMA-based pseudotime, bottom shows scVI
results.
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Figure S4. This visualization presents results from sciLaMA (with latent dimensionality K=2) trained on an exemplar fetal liver dataset
(Choi et al., 2023). The cell embeddings (middle-left; dots represent individual cells) are colored according to annotated cell types,
while the contextual gene embeddings (middle-right; dots represent individual genes) show corresponding embedding dimensions. The
top and bottom panels illustrate cell embeddings colored by expression levels of genes sampled from distinct regions of the contextual
gene embedding space. We quantitatively assessed sciLaMA’s interpretability by computing feature attribution scores using Integrated
Gradients applied to the pretrained cell VAE encoder. This resulted in a gene-by-latent-node attribution matrix, which we summarized
into a single gene vector by aggregating absolute attribution scores. To facilitate comparison, we projected sciLaMA’s contextual gene
embeddings into a comparable vector form using vector normalization. The strong correlations (Pearson r = 0.43, Spearman ρ = 0.46)
indicate that sciLaMA effectively captures key gene features in alignment with traditional stepwise attribution methods, yet does so within
a more efficient, unified framework.
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