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ABSTRACT

The deep reinforcement learning (RL) framework has shown great promise to
tackle sequential decision-making problems, where the agent learns to behave op-
timally through interactions with the environment and receiving rewards. The
ability of an RL agent to learn different reward functions concurrently has many
benefits, such as the decomposition of task rewards and promoting skill reuse. One
obstacle for achieving this, is the amount of data required as well as the capacity
of the model for solving multiple tasks. In this paper, we consider the problem
of continuous control for robot manipulation tasks with an explicit representation
that promotes skill reuse while learning multiple tasks with similar reward func-
tion. Our approach relies on two key concepts: successor features (SF), a value
function representation that decouples the dynamics of the environment from the
rewards, and an actor-critic framework that incorporates the learned SF represen-
tations. We first show how to learn a decomposable representation required by SF.
Our proposed methods, is able to learn decoupled state and reward feature repre-
sentations. We empirically study this approach on non-trivial continuous control
problems with compositional structure built into the reward functions of the tasks.

1 INTRODUCTION

Reinforcement learning (RL) tackles sequential decision making problems by defining optimal be-
havior through a reward function, where the agent learns how to behave through interacting with
the environment and receiving rewards. The ability of RL algorithms to generalize across differ-
ent, yet related reward functions, has a great potential to realize more data-efficient algorithms with
the capability to transfer to new reward functions. In this paper we look at one particular type of
generalization, where the reward function itself changes, however the underlying dynamics of the
environment remain the same. This setup is flexible enough to allow transfer happen across tasks,
by appropriately defining the rewards which induce different task decompositions. This type of
task decomposition potentially allows the agent to tackle more complex problems than, would be
possible were the tasks modeled as a single task. We are interested in a setup where the agent is
exposed to multiple tasks i.e. tasks with different reward functions. In a multi-goal setting, differ-
ent reward function can simply be the difference in the euclidean distance to different target goal
locations. In a multi-task setting, the difference can be intricately designed in the reward function.
For instance a reward function that determines walking forward vs walking backward. We argue
that these differences in the structure of the reward function are difficult to capture within a goal or
context-conditioned RL frameworks (Sodhani et al., 2021).

In the context of robotics, generalization across tasks is crucial. Consider an agent playing ball
games with a racket Figure 1. An agent trained to dribble the ball vs hitting the ball, should be
able to quickly learn to play squash, as many of the skills such as approaching and hitting the ball
are shared in a more complex task of playing squash. From the learners perspective, all these tasks
share the same common properties, the ball falls to the ground due to gravity, depending on heavy
it is, and it moves with certain velocity when it is hit by the racket. In other words, all these tasks
share common dynamics. What changes is the small details in the reward function. For instance
the difference between dribbling a ball vs hitting it against the wall, can be the rotation angle of the
racket and the amount of force required.
If it was possible to learn a representation that could decouple such discrepancies between the re-
ward functions, i.e. decoupling the task dynamics and task-related dynamics, one could train an
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agent that could re-use the learned representation and quickly fine-tune itself to the more task-
specific representation and achieve a faster learning. Successor features (SF) (Barreto et al., 2017)
is one framework that enables such decomposability of representation, explicitly built into the RL
formulation. The main goal of this framework is to promote a desired property where instead of be-
ing posed as a decoupled representation learning problem, transfer is instead integrated into the RL
framework as much as possible, preferably in a way that is almost transparent to the agent. SFs in
theory, enable fast transfer between tasks that differ only in their reward function. The advantage of
using an SF framework over model-based RL where one learns models of the reward function, is the
ability of dynamics representation re-use which is decoupled from the task-specific representation.

Figure 1: Agent learning various related skills.

Our main contribution is to address the gen-
eralization and expensive inference problem
in the classical SF frameworks coupled with
GPI (Barreto et al., 2017). We show that a sim-
ple architecture can provide a solution to this
feature learning problem and demonstrate the
effectiveness of our method compared to (Bar-
reto et al., 2020) in more challenging contin-
uous state and action setting. The majority of
the existing work using SFs, operates under the
discrete action setting or under the GPI setting
optimizing a set of policies which in practice
are hard to apply on real robotics applications.
To the best of our knowledge, our method is
the first to show the applicability of SFs cou-
pled with an appropriate representation learn-
ing mechanism solving challenging continuous control tasks. We show that simple modifications to
an actor-critic framework can be easily coupled with SFs and empirically demonstrate the efficacy
of our method.

To summarize, our contributions are as follows: First we propose a practical implementation of
SF framework for continuous state and action domains in the context of actor-critic architecture.
Secondly we propose a robust method for learning the representations φ and w with the ability
to learn disentangled representations for the state-space vs task-specific representation of complex
nonlinear reward functions. Finally we demonstrate the efficacy our method on a ranging from
tasks including classical continuous control 2D reacher domain on DM control suite (Tassa et al.,
2020) to more challenging 3D reacher and manipulation tasks with the Sawyer arm on Meta-World
benchmark (Yu et al., 2019).

2 BACKGROUND

2.1 REINFORCEMENT LEARNING

We assume the interaction between agent and environment can be modeled as a Markov Decision
Process (MDP (Puterman, 1994)). An MDP is defined as a tuple M ≡ 〈S,A, p, R, γ〉 with state
space S and action space A. For each s ∈ S and a ∈ A the function p(.|s, a) gives the next-state
distribution upon taking action a in state s, where p(.|s, a) is referred to as the dynamics of the MDP.
The random variableR(s, a, s′) determines the reward received in the transition s a−→ s′. Usually we
are interested in the expected value of this variable, which is denoted by r(s, a, s′), and γ ∈ [0, 1)
weighs the importance of future rewards. The agent’s goal is to find a policy π : S → A, that is, a
mapping from states to actions, that maximizes the value of every state-action pairs, defined as

Qπ(s, a) ≡ Eπ
[ ∞∑
i=0

γir(St+i, At+i, St+i+1)|St = s,At = a
]
. (1)

where St and At are random variables indicating the state occupied and the action selected by the
agent at time step t and Eπ[.] denotes expectation over the trajectories induced by π. The function
Qπ(s, a) is referred to as the “action-value function” of policy π.
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RL algorithms based on dynamic programming build on two fundamental operations,
policy evaluation which is the computation of Qπ(s, a), the value function of policy π on task with
reward r, and policy improvement theorem (Bellman, 1957). Once a policy π has been evaluated,
we can compute a greedy policy π′(s) ∈ arg maxaQ

π(s, a) that is guaranteed to perform at least as
well as π, that is: Qπ

′
(s, a) ≥ Qπ(s, a) for any (s, a) ∈ S × A. The computation of π′ is referred

to as policy improvement.

2.2 MULTI-TASK RL & TRANSFER LEARNING

In practical situations, agents often face multiple related tasks, such as the robot learning numerous
skills in Figure 1. We define tasks Mi drawn from the setM. Then, the goal of multi-task learning
is to find π∗i , an optimal policy for each MDP Mi with corresponding optimal value function Qπ

∗
i
i .

Barreto et al. (2017) extended the policy improvement theorem to the scenario where the new policy
is computed based on the value functions of a set of policies and referred to this as generalized policy
improvement (GPI). Suppose the agent has computed n policies corresponding toQπ1 , Qπ2 , ..., Qπn

action-value functions. Let Qmax = maxiQ
πi and define π(s) ← arg maxaQ

max(s, a) for all
s ∈ S, then Qπ(s, a) ≥ Qmax(s, a) for all (s, a) ∈ S × A. The only caveat is that it is a waste of
computation to compute the value functions of π∗1 , π

∗
2 , ..., π

∗
n. This approach becomes appealing if

we have a way to quickly compute the value functions of the policies πi on the task Mn+1.

3 ACTOR-CRITIC SUCCESSOR FEATURES

This section will describe Successor Features and their previous use in the discrete action setting.
We will then explain our extension, through Universal Value Function Approximators and an Actor-
Critic approach, to learn useful Successor Features and corresponding policies for high dimensional
multi-task continuous control.

3.1 SUCCESSOR FEATURES DECOMPOSITION

Barreto et al. (2017) proposed a simple reward model which leads to the generalization of successor
representation (SR) proposed in (Dayan, 1993). The key assumption is that the reward function
can be approximately represented as a linear combination of learned features φ(s). The successor
representation (SR) (Dayan, 1993) is a representation that generalizes between states using sim-
ilarity between their successors, that is, the states that follow the current state given the agent’s
policy. The generalization of SR with function approximation is referred to as Successor Features
(SF) (Barreto et al., 2017) of (s, a) under policy π. Following (Barreto et al., 2017; 2018; 2020),
let φ : S×A×S → Rd be an arbitrary function whose output we will see as “features”. We assume
that there exist features such that the reward function can be written as

r(s, a, s′) = φ(s, a, s′)Tw (2)

where φ(s, a, s′) ∈ Rd are features of (s, a, s′) and w ∈ Rd are weights. Intuitively we can think of
φ(s, a, s′) as salient events that may be desirable or undesirable to the agent. Based on Eq.2 we can
define an environment Mφ(S,A, p, γ) as

Mφ ≡ {M(S,A, p, r, γ)|r(s, a, s′) = φ(s, a, s′)Tw}, (3)

that is, Mφ is the set of MDPs induced by φ through all possible instantiations of w. SFs make
it possible to compute the value of a policy π on any task Mi ∈ Mφ by simply plugging in the
representation vector wi defining the task. Specifically, if we substitute Eq.2 in the definition of
action-value function of a policy we have

Qπ(s, a) = Eπ
[
rt+1 + γrt+2 + ...|St = s,At = a

]
= Eπ

[
φTt+1w + φTt+2w...|St = s,At = a

]
= Eπ

[ ∞∑
i=t

γi−tφi+1|St = s,At = a
]T

w

= ψπ(s, a)Tw

(4)
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One benefit of doing so is that if we replace wi with wj in Eq.4, we immediately obtain the evaluation
of π on task Mj . This way only relevant module must be relearned, when either the dynamics or
reward changes. The key insight of SFs is that linearity of rewards rw with respect to the features φ
which gives us the decomposition of the action value of policy π on task rw. In the GPI setting when
the agent is presented with a new task Mn+1, it needs to compute {Qπ

∗
1
n+1, Q

π∗2
n+1, ..., Q

π∗n
n+1}, that

is, the evaluation of each π∗i under the new reward function induced by wn+1. This in turn would
require applying the GPI theorem to the newly-computed set of value functions that will give rise to
a policy that performs at least as well as the policy based on any subset of these. Hence (Barreto
et al., 2017) proposed to incorporate SFs where the reward function changes to rn+1(s, a, s′) =
φ(s, a, s′)Twn+1, as long as we have the correct wn+1 we can compute the value function of π∗i by
simply computing Qπ

∗
i
n+1(s, a) = ψπ

∗
i (s, a)Twn+1. This reduces the computation of all Qπ

∗
i
n+1 to the

simpler supervised problem of approximating wn+1 (Barreto et al., 2020).

Although at first glance, GPI and SFs seem tangled, this characterization of SF does not depend on
GPI framework itself. Thus, SF can be used in any RL framework where such decomposition of
reward is viable. Furthermore the combination of SFs and GPI provides an elegant framework for
transfer in a multi-task setting. However the computational cost of optimizing policies per task is
prohibitive in more complex multi-task setting where in the size of task set Mφ is large.

3.2 UNIVERSAL SUCCESSOR FEATURES AND TASK INFERENCE

We start our discussion by assuming the existence of appropriate representations φ and w that are
a decomposition of the reward function. We then turn our attention to the policy learning phase
that will make use of these representations as a substitute for the reward signal. For an RL agent to
generalise to unseen tasks, the agent needs to be able to identify and exploit some common structure
underlying the task. Two possible sources of structure in this scenario are: i) similarity in the space
of tasks, i.e. reward functions, and ii) the shared dynamics of the environment. One framework that
enables exploiting structures are universal value function approximators (UVFAs) (Schaul et al.,
2015). UVFAs extend the notion of value functions to also include the description of a task, thus
directly exploiting the common structure in the associated optimal value functions. As discussed
in (Borsa et al., 2018), UVFAs and SF & GPI address the transfer problem in quite different ways.
With UVFAs, one trains an approximator Q̃(s, a,w) by solving the training tasks w ∈Mφ using any
RL algorithm of choice. Borsa et al. (2018) proposed universal successor features approximators
(USFAs) with GPI. They show that by combining USFAs and GPI can outperform SF&GPI on a
grid-world navigation problem. Since majority of existing work explores SFs in the context of GPI
or Q-learning under a discrete action setting, in this paper we will examine a more practical UVFA
style framework targeted at solving more challenging continuous action control problems.

In this work, we ask the following questions: Can we incorporate SFs and train a policy which
can yield better generalization across multiple tasks? Do SFs introduce implicit composability
at the policy level? Composability of controllers is specially important for real-world applications,
where reuse of past experience can greatly improve sample efficiency for tasks that can naturally
be decomposed into simpler sub-problems. For instance, a policy for pick-and-place task can be
decomposed into (1) reaching specific target, (2) grabbing an object, (3) avoiding certain obstacles.
Such decomposable policies can be learned offline without the need to interact with the environment.
Although we are not using an explicit notion of compositionality as in (Haarnoja et al., 2018a), we
count on such properties emerging from the representation itself.

3.2.1 ALGORITHM DERIVATION

In this work we will be extending Soft Actor-Critic (Haarnoja et al., 2018b), by two means of
generalisation. That is by combining, UVFA and USFA to learn to generalize values over multiple
tasks. The structure of the RL problem creates a number of challenges. Without having access
to the target function, we generally use the approximation itself to build targets and many of the
techniques like replay buffer and target networks and optimizing two target networks by selecting
the minimum which leads to lower variance, are just strategies to remedy this instability (Mnih
et al., 2015; Fujimoto et al., 2018). Unfortunately since we are dealing with a multi-dimensional ψ
target functions, these instabilities are exacerbated. We elude this problem by taking the average of
ψ along the dimension of the features and the minimum is determined based on this average value.
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This causes further instability during the policy learning, and longer delayed critic target updates
were required. Similar to Hunt et al. (2018), we define action-dependent SF to include the entropy
of the policy

ψπ(st, at) = φt + Eπ

[ ∞∑
τ=i+1

γτ−t
(
φτ + αH[π(.|s)]

)]
(5)

The max-entropy action-value of π for any convex combination of rewards w is then given by
Qπw(s, a) = ψπ(s, a)w. For more details see Appendix A.1

3.2.2 LEARNING SUCCESSOR FEATURES IN CONTINUOUS CONTROL

We now describe how to build a decomposed representation required for φ and w. To make our dis-
cussion more concrete, consider a simple 2D goal reaching environment. We formulate the problem
in Eq. 2 as computing an approximate φ̃ as a multi-task problem, solving the following approxima-
tion:

φ̃(s, a, s′)Tw ≈ ri(s, a, s′), for i = 1, 2, ..., D (6)

We can start our assumption by considering the scenario where such representations φ ∈ Rn and w
exists that satisfy Eq. 2 exactly. For instance, we can define φi as an indicator function signaling
important event in the state features e.g. whether an object of type i has been picked up by the agent
(Barreto et al., 2020). Analogously, in a continuous control setting, we can consider a goal reaching
task with a non-linear reward function. A common reward function for a simple reach task can be
defined as the euclidean distance between two vectors, that is, the position of the agent’s link and the
goal location. Given the state vector µ = (x, y) and goal vector g = (x, y), we define the following
reward function,

r(µ, g) = −||µ− g||2 = ||µ||2 + 2gTµ− ||g||2 (7)

It is trivial to see the corresponding φ(µ) and w(g) can be recovered as follows,

φ(µ) =

 1
µ
||µ||2

 ,w(g) =

−||g||22g
−1

 (8)

Thus given such decomposition, we can recover the reward function as the linear combination of
φ(µ)Tw(g). Such representation, for this particular reacher task, immediately gives a solution to
compute ψπ . And by changing the target goal location associated with each reacher task, one can
create different tasks, where the only part of the representation i.e. goal location, changing is w,
relying on the assumption that the representation captures any task-related features.

Figure 2: 1-Goal Reacher Task. Comparison between learning a Successor Feature based SAC algorithm with
pre-defined φ and w vs regressing either φ and w. These results are sanity checks that given appropriate
representations φ and w, it is possible to incorporate SF within our Actor-Critic continuous action framework.
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Now that we have defined φ, we turn to the question of how to determine an appropriate policy π to
solve the task. We will start with what is perhaps the simplest case, for a single-goal reacher task.
In our experiments, Figure 2, we compare the performance of SF integrated with SAC. As a sanity
check, we alternate between keeping either φ or w fixed and regressing the other. This experiment
ensures that our objective is able to learn the decomposed representation for this reward function for
each component individually. These results confirm that, given the appropriate successor features,
our policy learning mechanism should be able to solve the task, and perform as close to the optimal
policy learned via the original reward signal. However most RL tasks have complex reward functions
and it is not feasible to always hand-engineer these features. Instead, we are interested in learning
these as a pre-training stage.

Barreto et al. (2020) proposed an approach to learn such representation. Given a task r, we are
looking for w ∈ Rd that leads to good performance of the generalized policy πψ(s; w) . Suppose
we have a set of m sample transitions from a given task, {(si, ai, r′i, s′i)}mi=1. Then based on Eq.2,
we can infer w by solving the following minimization:

min
w̃

=

m∑
i=1

|φ(si, ai, s
′
i)
T w̃− r′i|p, (9)

where p ≥ 1 and we may want to consider the inclusion of a regularization term in this objective
function. If we handcraft φ, we can obtain a solution w̃, which can be plugged in during the rep-
resentation learning phase. It turns out that Eq.9 can be generalized to also allow φ to be inferred
from data. Given sample transitions from k tasks, {(sij , aij , r′ij , s′ij)}

mj
i=1, with j = 1, 2, ..., k, we

can formulate the problem as the search for a function φ̃ : S ×A× S 7→ Rc and k vectors w̃i ∈ Rc
satisfying,

min
φ̃

k∑
j=1

min
w̃j

mj∑
i=1

|φ(sij , aij , s
′
ij)

T w̃j − r′ij |p (10)

where p ≥ 1. Note that the features φ̃ can be arbitrary nonlinear functions of their inputs. As
discussed in (Barreto et al., 2020) this objective can be decomposed into single objective for learning
φ and w stage-wise where the initial learned representation φ can be re-plugged in to learn w. More
generally, the problem in Eq.10 can be solved as a multi-task regression (Caruana, 1997).

Barreto et al. (2020) proposed the following procedure for learning φ̃ and w̃. First, a random policy
π is used to collect data from tasks w1,w2, ...,wk. They propose to use a neural network with the
number of output units or “heads”, corresponding to the number of tasks. The top layer of this joint
network represents φ, and hence each output unit represents ri = φTwi. Given a sample transition
(s, a, ri, s

′), only the i-th output unit of the network has access to the branch where the sample is
used to modify wi and φ. Once this optimization is done, the weights wi are discarded and the same
network is used to re-compute w, while keeping the learned representation φ̃ from previous iteration
frozen. This process repeats the optimization process solving for equation 9, but this time solving
for w. When learning w, “fresh” output units are added to the network i.e. the head branches of the
network weights are randomly initialized again and using gradient descent the associated weights w
are modified, while keeping φ fixed. Having computed φ and w, they resume to learning the policy
in their GPI setting. (Barreto et al., 2020) demonstrated the effectiveness of this procedure using a
simple tabular grid world navigation task. In this paper, we show that this procedure does not allow
for learning more complex representation such as a simple reacher task with a euclidean distance
reward function. Instead, we propose the following procedure which deemed more appropriate for
more complex control tasks with continuous state and action spaces.

3.2.3 JOINT TASK INFERENCE

Following (Barreto et al., 2020), we propose optimizing an approximation to the objective in Eq.10
where the representations φ and w are learned jointly, as opposed to the two-stage optimization
procedure proposed in (Barreto et al., 2020). Given a set of transitions {(si, ai, r′i, s′i)}mi=1, ideally
covering the space of state space for all the tasks seen at training time, we use two neural networks
φθ and wθ, where the function φ takes as input the tuple (s, a, s′) and the function w is a function
of the task itself, in a multi-goal setting, this can be the position of the target goal or task ids. Given
these two networks, using stochastic gradient descent we can approximate Eq.10 by optimizing,
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(b) Our representation Learning Module.

Figure 3: Architecture component of each representation module.

min
φ̃θ

k∑
j=1

min
w̃θ

m∑
i=1

|φ̃(sij , aij , s
′
ij)

T w̃(g)− r′ij |p (11)

where φ̃ and w are optimized jointly by considering their output as φ̃Tw ≈ r. This decomposition
has two advantages over (Barreto et al., 2020). Firstly, it is easier to decompose the environment dy-
namics information fed to the network via φ(s, a, s′) and task-specific information g via w(g) where
each of these components are fed the relevant information and the composition of these corresponds
to the reward approximation. This is not possible with the architecture proposed in (Barreto et al.,
2020) since both φ and w share the same input and the decomposition of these representations are
made explicit during the stage-wise optimization procedure. In addition, single-stage optimization
makes the inference task simpler to train and evaluate. We will illustrate the results of both these
approaches in our setup for a simple single-goal and multi-goal reacher task. Figure 3 shows the
architecture of the two methods.

4 EXPERIMENTS

Figure 4: Continuous control tasks we are considering in this work, starting with simple 2D link reacher task
to more complex metaworld reacher and door close tasks.

(a) Policy evaluation on seen reacher
environments.

(b) Policy evaluation on unseen reacher
environments.

Figure 5: Multi-Goal reacher task regression φ and w comparison.

Our experiments consist of learning continuous control robot manipulation tasks shown in Figure 4.
In the case of 2D link reacher, we fix the goals, separated into a set of training goal targets and test
goal targets, and for metaworld, we consider single goal tasks where the tasks are different.
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When learning a decomposed representation of the reward function, the function itself should ideally
be a dense function. Otherwise it is hard to learn a good representation with a sparse rewards as also
pointed out by (Machado et al., 2020)). For this reason, we modify the original reward function
for the default 2D Reacher task in DMSuite to a simple L2 norm squared reward function which
is easier to learn than a semi-sparse reward function. The original reward function of this task is
sparse, where dense reward are given when the agent is in the proximity of the target goal.

For each task, first, we need to learn representations φ̃ and w̃. Barreto et al. (2020) proposed to use a
random policy to collect the initial data which could be sufficient for a simple grid world navigation
task. In our setting, we found that a simple random policy does not allow full coverage of state
space. It is possible that a random policy in a small grid-world setting is enough however we found
this to be insufficient in a continuous control setting, allowing to learn a generalizable φ̃ and w̃.
Therefore we used a mixture of expert data and data generated by a random policy to train φ̃ and w̃.

Figure 5 shows comparison between the proposed method in (Barreto et al., 2020) and our method
where we compare a SAC policy trained with the original reward, our method with ACSF where φ
and w are learned jointly using the training scheme, referred to as ACSFJointHeadMLP, proposed
in (Barreto et al., 2020) vs our method for learning the joint representation. The task for this experi-
ment is a multi-goal reacher where for the architecture in (Barreto et al., 2020), each goal i.e. task is
represented by a separate head of the network. We can see that training a joint architecture becomes
harder for two reasons. Since the joint network takes in the input (s, a, s′, g), it is not possible to
disentangle the inputs to the module learning φ and the module w. As expected, the performance
drops even further, once we remove the goal information from the observations tuple. We prefer to
disentangle these observations for the dynamics learning vs any task-related part of the observation.
In addition, the training methodology in (Barreto et al., 2020) is a 3-stage training for the represen-
tation learning component, meanwhile one must ensure overfitting is not happening at each stage
of learning, and this is hard to evaluate in general without having access to any prior ground-truth.
Although this is not a direct comparison of the GPI method in (Barreto et al., 2020), the main ob-
jective of these experiment is to evaluate the representation learning procedures embedded into our
policy learning framework.

Figure 6 shows the generalization capability of our method evaluated on seen goal locations at train
time vs unseen goal locations. Finally Figure 7 shows the performance of our method compared to a
goal-conditioned SAC policy. Figure 7a shows the performance of both methods on the reacher task
where the goal location is perturbed but this is still a single goal task. Figure 7b shows the perfor-
mance on door close task and finally Figure 7c shows when these tasks are learned simultaneously.
These results confirm that our method works in par with a goal-conditioned policy and it has learned
the correct features which in turn enable learning robust policies.

(a) Policy evaluation on seen goal targets. (b) Policy evaluation on unseen goal targets.

Figure 6: Multi-Goal Reacher Task comparison between SAC and ACSF. This plot shows the training for the
train and evaluation setup for the 2Dlink reacher task. The training and evaluation on the same target goals

seen at train time show similar performance between a SAC policy and a ACSF policy. However we are
interested in the generalization result in Figure 6b where ACSF outperforms SAC on unseen target goals.
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(a) Reacher task. (b) Door Close task. (c) Reacher & Door Close tasks.

Figure 7: Metaworld reacher task comparison of SAC and ACSF on Reacher and Door close tasks
individually, and trained jointly. These results show our method performs in par with learning without an

explicit SF representation.

5 RELATED WORK

Multi-task RL and representation learning in RL are important topics that have generated a large
body of literature and as (Dabney et al., 2021) formally points out, there remains challenging aspect
of RL when learning representations. There exist various techniques that inject tasks information
directly into the definition of the value function. UVFAs have been used for zero-shot generaliza-
tion (Mankowitz et al., 2018) and learning a set of fictitious goals previously encountered by the
agent (Andrychowicz et al., 2017). Haarnoja et al. (2018a) proposed learning with multiple ob-
jectives where they define a compound task expressed in terms of the sum of individual rewards.
More recently, (Sodhani et al., 2021) proposed an approach for a contextual multi-task RL as a way
to incorporate task metadata, or contextual information. One other common and successful way to
approach the representation learning problem is through the use of auxiliary tasks: additional pre-
diction problems that shape the representation used by the agent (Jaderberg et al., 2017; Bellemare
et al., 2019).

Another body of work relates to the use of SFs. Kulkarni et al. (2016) presented a generalization of
successor representation in a deep reinforcement learning framework, based on DQN with discrete
action space. Similar in the spirit, (Zhang et al., 2017), proposes a deep RL architecture built on
DQN to solve a robot navigation task. Lehnert & Littman (2019) draws connections between model-
based RL and successor features by analyzing properties of different learned latent state spaces.
More related to our work is Ma et al. (2020) which combines goal-conditioning with SFs, where
SFs are learned end-to-end using temporal difference learning methods. However in their setup,
learning these successor features is done implicitly inside their architecture. In addition, they use
the true rewards during policy learning and the additional auxiliary loss for learning ψ demonstrates
additional stability over DDPG baselines.

Barreto et al. (2019) showed how to combine SF&GPI with deep learning using the reward func-
tions themselves as features for future tasks. Barreto et al. (2020) introduced the representation
learning component of SFs as opposed to using hand-crafted features as done in prior work. Hansen
et al. (2019) introduces Variational Intrinstic Successor FeatuRes (VISR) which shows that a behav-
ioral mutual information (BMI) maximization provides a solution for learning the successor feature
representation. They evaluate their method as an unsupervised pre-training technique. Hunt et al.
(2018) introduced SF in the context of maximum entropy framework, extending GPI theorem to
max-ent objective. Blier et al. (2021) formally derive a temporal difference algorithm for succes-
sor state and goal-dependant value function learning with function approximation. Zahavy et al.
(2021) considers a specific class of policy composition called set improving policies (SIPs). Gimel-
farb et al. (2021) proposes risk-aware successor features (RaSF) integrated into a generalized policy
improvement framework to maximize entropic utilities. Touati & Ollivier (2021) introduces the
forward-backward (FB) representation of the dynamics of an MDP, learning two representations in-
stead of one in the SF framework. Their setting is also more tailored towards a goal-oriented RL
problems with discrete action space.
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6 CONCLUSION

Our results suggest that our method can successfully incorporate SFs representation for learning
continuous control policies. Learning decoupled representations has been a longstanding challenge
in RL, and this work must continue in continuous control tasks, especially for the multi-task setting
with continuous goals. Our work sheds light on possible ways of incorporating SFs and their capa-
bility to solve more challenging RL control problems. Unlike the framework proposed in (Barreto
et al., 2020), which is explicitly tailored for transfer, this is not yet as straightforward in our actor-
critic architecture. Future work in this area includes more stable online feature learning and scaling
to more complex reward functions. By demonstrating that ACSF performs well on large continuous
tasks, we believe our approach is an important step in the direction of composable representations.
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André Barreto, Diana Borsa, John Quan, Tom Schaul, David Silver, Matteo Hessel, Daniel
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A APPENDIX

A.1 IMPLEMENTATION DETAILS

The loss function for learning ψ is:

LACSF (ψ) = E(s,a,s′,d)∼D

[
1

2

(
ψ(s, a)− y(φ, s′, d)

)2
]

(12)

where the target is given by

y(φ, s′, d) = φ(s, a, s′) + γ(1− d)(ψ(s, a)− α log πθ(ã′|s′)), ã′ ∼ πθ(.|s′) (13)

where d corresponds to the termination criterion. The gradient with respect to the parameter θ is

OθLACSF (ψ) = E(s,a,s′,d)

[(
ψ(s, a)− y(s, a, s′)Oθψ(s, a)

)]
(14)

which is similar to the gradient used in (Haarnoja et al., 2018b), with the distinction that ψ is a
multi-dimensional matrix rather than a vector as in the original definition of Q. The dimensionality
of ψ is a hyperparameter that needs to be tuned depending on the task observations complexity.

Figure 3 shows the comparison of the setup for our representation learning module compared to
(Barreto et al., 2020). First stage requires learning the representations φ and w. Ideally, the data used
to train these modules needs to be diverse enough, covering the state space adequately. We found
that learning these representation online tangled with policy learning does not perform well since
the representation needs to be able to handle regions where policy behavior is optimal. Therefore
we resort to using expert policy data. However we still do require the diversity. More intuitively,
this is because at the beginning of the agents learning experience, a random policy is exploring, it is
important to have good coverage of the state space that can ultimately lead to the highest performing
regions. Therefore we use a mixture of expert to random policy data of a 75%− 85% of expert and
the remaining data generated from a random policy with some action noise. We found this ratio to
be important for training robust representations that will later on perform well during the SF policy
learning stage.
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Table 1: ACSF Hyperparameters

Parameter Value

optimizer Adam (Kingma & Ba, 2015)
learning rate 1.10−4

discount (γ) 0.99
dimension of hidden layers ψ 1024
dimension of hidden layers w 64
dimension of hidden layers policy 1024
dimension of samples per minibatch 256
nonlinearity ReLU
Actor update rate 1
ψ update rate 4
Dimensionality of ψ 4-28 (Task dependent)

We also regularize the w using the layer weight normalization (Salimans & Kingma, 2016) which
is a simple reparameterization of the weight vectors in a neural network that decouples the mag-
nitude of a weight tensor from its direction. For the policy learning, we use an open-source SAC
implementation 1, extending this implementation to a ACSF policy.

A.2 APPROXIMATING THE REWARD FUNCTION

We demonstrated our method on tasks with more reaching-style reward functions which are still
learnable with our objective function. However this simple objective fails to capture more difficult
tasks or tasks with more complex state representations. For instance, our method fails to learn good
representations for some of the tasks in Meta-World such as picking and placing objects or tasks
interacting with an object such as pressing a button. We hypothesize that more complex reward
functions are too difficult for the current method to automatically decompose.

A.3 FEW-SHOT TRANSFER

Consider the 3 reaching scenarios presented in Figure 8. In our experiments we found that, an
agent that had been trained on the reacher and door close task, struggled to zero-shot transfer to
the third reacher task with an obstacle on the way. The performance had higher variance than we
expected and this happened with both SAC and ACSF which could entail an underlying issue with
the policy learning. Note that we would expect the agent to adapt to the third scenario through fine-
tuning. However in our experiments we found that the continual learning the third behavior led to
slower learning and, in some cases, reaching sub-optimal behavior due to instability. We found that
it is better to train an agent on the 3 tasks simultaneously or an agent trained per task separately.
We hypothesise that an agent starting from scratch with random exploration has a better chance at
discovering all the skills compared to an agent who has learned to reach the first two scenarios.
Transferring to the third case, it needs to unlearn the previous behavior and adapt.

Figure 8: Agent learning various forms of reaching skills.

1https://github.com/denisyarats/pytorch sac
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Algorithm 1 ACSF- Plugging in learned φ̃ and w̃

Input: initial policy parameters θ
Ψ parameters corresponding to ψ1 and ψ2

Replay buffer D
Set target parameters equal to main parameters
ψtar,1 ← ψ1, ψtar,2 ← ψ2

for Time t = 0 to∞ do
Observe state s and select action a ∼ πθ(.|s)
Step in environment, s′t ∼ p(.|st, at)
D ← D ∪ (st, at, φt, s

′
t, g)

if it’s time to update then
for j in range(numUpdates) do

Randomly sample a batch of transitions, B = {(s, a, φ, s′, d, g)} from D
Compute targets for the D-dimensional Ψ functions:

ΨD
ψtar,1(s, a, g) =

D∑
d=1

Ψψtar,1

ΨD
ψtar,2(s, a, g) =

D∑
d=1

Ψψtar,2

y(φ, s′, d) = φ(s, a, s′) + γ(1− d)(min
i=1,2

Ψψtar,i(s, a, g)− α log πθ(ã′|s′, g)),

ã′ ∼ πθ(.|s′, g)

Update Ψ-functions by one step of gradient descent using

Oψi
1

|B|
∑

(s′,a′,φ,s′,d)

∈ B(min
i=1,2

Ψ(s, ãθ(s), g)− α log πθ(ãθ(s)|s, g))

Compute the Q−function

Q1← Ψπ
tar,1(s, a, g)Tw

Q2← Ψπ
tar,2(s, a, g)Tw

Update policy by one step of gradient ascent using

Oθ
1

|B|
∑

(s,g)∈B

(min
i=1,2

Q(s, ãθ(s), g)− αlogπθ(ãθ(s)|s, g)),

where ãθ(s) is a sample from πθ(.|s) which is differentiable w.r.t. θ via the reparameteri-
zation trick.
Update target networks with

ψtarg,i ← ρψtarg,i + (1− ρ)ψi
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