
Exploring One Million Machine Learning Pipelines:
A Benchmarking Study

Edesio Alcobaça1 André C. P. L. F. De Carvalho1

1
University of São Paulo

Abstract Machine learning solutions are largely affected by the values of the hyperparameters of

their algorithms. This has motivated a large number of recent research projects on hyperpa-

rameter tuning, with the proposal of several, and highly diverse, tuning approaches. Rather

than proposing a new approach or identifying the most effective hyperparameter tuning ap-

proach, this paper looks for good machine learning solutions by exploring machine learning

pipelines. For such, it benchmarks pipelines focusing on the interaction between feature

preprocessing techniques and classification models. The study evaluates the effectiveness

of pipeline combinations, identifying high-performing and underperforming combinations.

Additionally, it provides meta-knowledge datasets without any optimization selection bias

to foster research contributions in meta-learning, accelerating the development of meta-

models. The findings provide insights into the most effective preprocessing and modeling

combination, guiding practitioners and researchers in their selection processes.

1 Introduction

Despite being seen as a transformative technology across various domains [1–3], the performance

obtained by machine learning models strongly depends on how effective are the stages of data

preparation, model selection, and evaluation. This process is often structured as a machine learning

pipeline. This sequential workflow combines preprocessing stages and model training in a unified

way [4].

Despite the importance of pipelines, their design and performance across different problems

remain a topic of ongoing research. Benchmarking the effectiveness of various pipelines, particularly

by exploring different combinations of preprocessing techniques and modeling algorithms, is crucial

to understanding their strengths and limitations [5–8]. This study aims to benchmark machine

learning pipelines across diverse classification and preprocessing algorithms.

The main objectives of this research are as follows: (i) to evaluate machine learning models

interaction with different feature preprocessing techniques; (ii) to identify which combinations of

preprocessing stages and models are most effective and which ones perform poorly; (iii) to generate

valuable meta-knowledge datasets, without any optimization selection bias, to foster research in

meta-learning and automated machine learning (AutoML).

This paper contributes by offering insights into the performance of various machine learning

pipelines across a wide range of classification tasks. The findings aim to guide practitioners

and researchers in selecting effective preprocessing and modeling techniques. Furthermore, the

pipeline runs generated from this study were properly collected in order to serve as an off-the-shelf

meta-knowledge for meta-learning approaches, enhancing the development of AutoML systems [9].

The structure of this paper is as follows: Section 2 reviews the existing literature on machine

learning pipelines and hyperparameter tuning. Section 3 describes the experimental design, includ-

ing the datasets, models, and preprocessing techniques used. In Section 4, we present the results of

the benchmarking experiment and discuss the findings and their implications. Finally, Section 5

concludes the paper with a summary of key insights and suggestions for future work.

AutoML 2025 © 2025 the authors, released under CC BY 4.0

mailto:e.alcobaca@gmail.com
mailto:andre@icmc.usp.br
https://creativecommons.org/licenses/by/4.0/

2 Background

The design and optimization of machine learning pipelines have been the focus of extensive research,

encompassing both hyperparameter tuning of individual components and integrating preprocessing

and modeling stages [10–12]. These studies have significantly advanced the field by providing

insights into learning, default hyperparameters [13], hyperparameter optimization initialization [14,

15] and tunability [16–18].

Several studies have examined the impact of hyperparameter tuning on the performance of

individual classifiers. Probst et al. [18] explored tuning strategies for Random Forest models, pro-

viding insights into key hyperparameters that affect their predictive accuracy. Similarly, Mantovani

et al. [19] conducted studies on hyperparameter tuning for Support Vector Machines (SVM), em-

phasizing the effectiveness of random search for identifying optimal configurations. Futhermore,

Bentéjac et al. [20] provided a comparative analysis of gradient boosting algorithms, highlighting

the impact of parameter tuning on model performance. Beyond algorithm selection, portfolio-based

hyperparameter optimization has been a key focus. For instance, Bardenet et al. [21] introduced
collaborative hyperparameter tuning, while Bergstra & Bengio [10] demonstrated the efficacy of

random search over grid search. Bayesian optimization techniques, as discussed by Wu et al. [22]
and Snoek et al. [23], offer probabilistic models to efficiently explore the hyperparameter space.

Evolutionary approaches, such as hierarchical ant colony optimization by Costa & Rodrigues [24],

have also shown promise for simultaneous classifier selection and hyperparameter tuning.

Preprocessing is another key component of machine learning pipelines, as demonstrated by

García et al. [25], who explored various preprocessing methods for large datasets. Bommert et al.
[26] benchmarked filter methods for feature selection, showcasing their effectiveness in improving

model performance. Similarly, Alcobaça et al. [27] studied the impact of dimensionality reduction

techniques in mitigating the curse of dimensionality in high-dimensional datasets. Furthermore,

Jäger et al. [28] examined data imputation methods to improve data quality. These studies highlight

the importance of systematically evaluating preprocessing methods and their interactions with

modeling algorithms.

Integrating preprocessing and modeling stages into a unified pipeline has been a focus of

AutoML frameworks [6, 7]. Feurer et al. [4] introduced Auto-sklearn 2.0, which leverages meta-

learning for hands-free optimization of machine learning pipelines. Olson & Moore [29] developed

TPOT, a tree-based optimization tool, while Erickson et al. [30] proposed AutoGluon-Tabular,

emphasizing robust and accurate AutoML for structured data. Other notable contributions include

Auto-WEKA, FLAML, and H2O AutoML [31–33]. Benchmarking studies are crucial in evaluating

and comparing machine learning frameworks and methods. Zöller & Huber [6] surveyed automated

machine learning frameworks, and Olson et al. [5] introduced PMLB, a benchmark suite for machine

learning evaluation. Gijsbers et al. [7] and Eldeeb et al. [8] provided comprehensive benchmarks

for AutoML frameworks, facilitating objective comparisons.

While existing studies have extensively explored hyperparameter tuning and pipeline optimiza-

tion, this research differs in key aspects. Rather than focusing on identifying the most effective

tuning approach, we aim to evaluate the interactions between classifiers and preprocessors within

pipelines. By employing a random search strategy, we eliminate biases introduced by model-based

optimization methods, enabling an unbiased evaluation of pipeline compositions. Furthermore, this

study aims to generate meta-knowledge to support meta-learning approaches for pipeline selection

and optimization, paving the way for more effective AutoML systems.

3 Methodology

This section provides a detailed description of the methodological framework adopted in this study.

It outlines the dataset selection criteria, the design of the configuration space for machine learning

pipelines, and the experimental setup.

2

3.1 Datasets
For this study, we collected 211 real-world datasets from diverse domains to ensure comprehensive

coverage of various classification problems. The datasets were collected using the OpenML [34]

and were selected based on curated collection from previous AutoML work [4, 7]. The selection

criteria required datasets to have between 500 and 1,000,000 samples of classification tasks. Datasets

OpenML IDs and meta-data can be found in Table 4 in the Appendix.

3.2 Configuration Space
The configuration space defines the range of possible pipeline designs, encompassing key compo-

nents where the search operates. In this study, the configuration space is structured as a tree-based

search space, following [35], with three main components: modeling, feature preprocessing, and

data preprocessing.

Figure 1 illustrates the hierarchical structure of the configuration space. The root node repre-

sents the pipeline, branching into the three primary components—each component further branches

into its respective hyperparameters, with dimensions defining these parameters’ potential values.

Figure 1: Main stages the machine learning pipeline considered. The first levels of search space with

available algorithms are shown.

We used 16 classification algorithms, encompassing a broad spectrum of algorithmic categories.

These included distance-based methods (e.g., k-nearest neighbors), linear models (e.g., stochastic

3

gradient descent), neural networks (e.g., multilayer perceptron), kernel-based approaches (e.g.,

support vector machines), probabilistic methods (e.g., naive Bayes), tree-based algorithms (e.g.,

decision tree, extra trees), and ensemble-based (e.g., gradient boosting, random forest).

We employed 13 feature preprocessing techniques representing distinct strategies. These

included dimensionality reduction methods (e.g., principal component analysis, independent com-

ponent analysis), feature selection techniques (e.g., selecting percentiles based on feature statistics,

rate-based), feature generation approaches (e.g., polynomial feature generation), embedding-based

methods (e.g., random tree embeddings), model-based feature selection (e.g., support vector coeffi-

cients, extra-tree feature selection), and a no-preprocessing option. Data preprocessing was applied

when required to ensure compatibility with the scikit-learn algorithms. We used one-hot encoding

to transform categorical features, data imputation to fill in missing values, and feature rescaling to

standardize or normalize feature distributions. Tables 1, 2, and 3 in the Appendix provide detailed

descriptions of the configuration space dimensions for modeling, feature preprocessing, and data

preprocessing, respectively. These tables outline the possible values, hyperparameter categories,

and indicate whether transformations such as 𝑙𝑜𝑔10 scaling are applied.

3.3 Experimental Setup

The datasets were split into training, validation, and testing. We used the holdout approach for

the train-test split, allocating 25% of the data for testing. The training set was split using a 10-fold

cross-validation approach to assess validation performance. Thus, validation performance was

assessed using cross-validation, while test performance by holdout.

To select the pipeline configuration, we used random search as the search strategy, ensuring a

broad and unbiased exploration of the configuration space. This approach minimizes the selection

bias once there are no assumptions when selecting a new sample. Thus, we can search for con-

figurations without prioritizing regions. Therefore, it is fair to assume that configuration regions

were randomly visited equally. Each of the 211 datasets was evaluated on a sample of 500 different

pipeline configurations. It resulted in 500 × 211 × 10 = 1, 055, 000 pipeline evaluations.

We evaluated performance using multiple metrics, including accuracy, balanced accuracy,

F1-macro, F1-weighted, precision-macro, precision-weighted, recall-macro, and recall-weighted.

Each metric was computed for the training, validation, and test sets, providing a comprehensive

assessment of each pipeline run. The experiments were implemented using Scikit-learn algorithms

orchestrated by Auto-sklearn [35, 36], with a limit of 600 seconds per pipeline run and 24 hours

per dataset. The experiments run on a Debian Linux system, using Intel Xeon E5-2680v2 and 128

GB DDR3 RAM. Each pipeline execution was constrained to a maximum memory usage of 10 GB

and a single computational core. To promote reproducibility and facilitate further research, all

experimental code and analysis are available on GitHub
1
. Furthermore, we provide a comprehensive

dataset containing the pipeline configurations, execution times, and performance metrics obtained

during the experiments
2
. This dataset is a valuable resource for enhancing meta-knowledge in

AutoML systems and supports the research of more robust and efficient machine learning pipelines.

4 Experimental Results

This section presents and explores the main experiments carried out in this study. The analysis of the

experimental results is divided into three main aspects: feature preprocessor performance, modeling

(classifier) performance, and pipeline performance. While pipeline performance is discussed in this

section, the same analysis for feature preprocessing and classifier performance is left in Appendix

A and Appendix B, respectively. For this reported analysis, we focused on the F1-weighted score.

We chose this metric because it accounts for class imbalance, ensuring that the performance of

1
GitHub Repository: https://github.com/ealcobaca/exploring-machine-learning-pipelines

2
Pipeline database can be found at figshare.

4

https://github.com/ealcobaca/exploring-machine-learning-pipelines
https://figshare.com/articles/dataset/Meta-datasets/28696262

minority classes was adequately represented and reducing the potential bias toward the majority

class.

For each pipeline and dataset, we aggregated the test performance across 10 runs using statistical

measures: mean, median, standard deviation, and maximum values. This allowed us to evaluate

the overall consistency and variability in performance. To visualize the distribution of results, we

employed boxplots. Furthermore, for each aggregation, we computed the ranking of each method,

where values closer to 1 indicate superior performance. In addition to ranking, we tracked how

often each method won, tied, or lost. In this section, we concentrate on maximum and standard

deviation aggregations, while the analysis of mean and median is presented in Appendix D.

To assess the statistical significance of differences between methods, we applied the Friedman-

Nemenyi test. This non-parametric test enabled us to determine whether there were statistically

significant differences, helping to identify which algorithms performed best [37].

We also measured each method’s computational efficiency by tracking the time spent during

pipeline execution. This metric reflects the processing time required for each pipeline, including

the feature preprocessing and classifier stages. Lastly, we evaluated each pipeline’s success rate,

considering timeouts and memory usage factors. We documented the rates of pipeline failures,

either due to exceeding the time limit or running out of memory, which is critical for understanding

the scalability and reliability of each approach in practical scenarios.

4.1 Performance obtained by the Pipelines

Figure 2 presents the aggregated maximum and standard deviation F1 performance of pipelines

by dataset for each combination of classifier and feature preprocessor for the 20 outperforming

combinations. The boxplot of the aggregated maximum shows that the combination of Gradient

Boosting with Polynomial Features achieved the highest performance, followed by Gradient Boost-

ing with Feature Agglomeration, AdaBoost with Feature Agglomeration, and Extra Trees without

preprocessing. Tree-based ensemble classifiers, combined with feature generation approaches like

Polynomial Features and dimensionality reduction methods such as Feature Agglomeration, had

highest performance.

The ranking analysis indicated that Extra Trees without preprocessing achieved the best rank

score. In terms of wins, AdaBoost with Polynomial Features was the top combination with 12 wins,

followed by Gradient Boosting with Polynomial Features, which had 11 wins.

The standard deviation analysis showed that SVM combined with Select Percentile, SGD with

Select Rates, and SVM with Select Rate exhibited the highest variability in performance across

datasets. Additionally, in thewin/tie analysis, the combination ofMLPwith Extra Trees Preprocessor

got 15 wins.

Figure 3 presents the aggregated maximum and standard deviation F1 performance of pipelines

by dataset for the 20 underperforming combinations. The boxplot of the aggregated maximum

F1 scores indicates that the combination of Naive Bayes with kernel transformation exhibited

the poorest performance, followed by SGD with Fast ICA and SGD with Kitchen Sinks. These

combinations involve linear modeling approaches, which are inherently simple and require the

feature space to be linearly separable to achieve optimal performance. The kernel transformation

used in preprocessing may require more intensive hyperparameter optimization to effectively

transform the feature space, a process that was limited in this study, likely contributing to the

observed poor performance.

The ranking analysis confirmed these results, consistently identifying the three aforementioned

combinations as the lowest-performing pipelines, all with no wins in the ranking. Only the

combination of SGD with Kitchen Sinks achieved a tie in one instance, while the others resulted

exclusively in losses.

The standard deviation analysis revealed that the combination of Decision Tree with Select

Rates exhibited very low variability in performance. This behavior can be attributed to the double

5

0.0 0.2 0.4 0.6 0.8 1.0
f1_weighted_test_max

gradient_boosting + polynomial

gradient_boosting + feature_agglomeration

adaboost + feature_agglomeration

extra_trees + no_preprocessing

adaboost + polynomial

gradient_boosting + select_percentile

random_forest + polynomial

mlp + no_preprocessing

random_forest + extra_trees_preproc

random_forest + select_percentile

extra_trees + polynomial

gradient_boosting + no_preprocessing

random_forest + no_preprocessing

passive_aggressive + nystroem_sampler

adaboost + select_rates

gradient_boosting + extra_trees_preproc

adaboost + fast_ica

adaboost + extra_trees_preproc

gradient_boosting + liblinear_svc_preprocessor

k_nearest_neighbors + no_preprocessing

p
ip

e
lin

e
s

0 10 20 30 40 50
rank

26.06

22.69

22.4

19.76

30.03

28.45

25.41

43.99

33.33

33.09

27.39

37.01

39.89

47.82

47.94

38.32

40.76

43.95

44.23

41.11

0 5 10 15 20 25

7

13

9

7

12

10

8

4

4

6

7

7

10

3

8

13

9

13

14

12

3

3

2

2

2

2

9

1

1

4

3

6

8

12

8

4

9

11

tie

wins

0.0 0.1 0.2 0.3 0.4 0.5
f1_weighted_test_std

libsvm_svc + select_percentile

sgd + select_rates

libsvm_svc + select_rates

libsvm_svc + polynomial

mlp + extra_trees_preproc

sgd + nystroem_sampler

bernoulli_nb + extra_trees_preproc

libsvm_svc + liblinear_svc_preprocessor

bernoulli_nb + select_rates

mlp + no_preprocessing

lda + nystroem_sampler

libsvm_svc + feature_agglomeration

bernoulli_nb + polynomial

bernoulli_nb + no_preprocessing

libsvm_svc + pca

sgd + no_preprocessing

passive_aggressive + select_percentile

libsvm_svc + random_trees_embedding

decision_tree + fast_ica

passive_aggressive + fast_ica

p
ip

e
lin

e
s

0 10 20 30 40 50
rank

16.69

30.29

32.7

28.85

32.19

40.37

27.85

32.61

28.26

33.64

36.59

32.02

34.47

34.89

35.63

32.91

34.23

39.41

37.23

43.68

0 2 4 6 8 10 12 14

1

1

3

2

3

1

2

4

7

6

1

8

1

8

15

7

6

9

2 tie

wins

Figure 2: Aggregated F1 by dataset for each machine learning pipeline. From top to bottom, the figure

shows F1 performance aggregated using maximum and standard deviation. From left to

right, the plots display the performance boxplots, the ranking barplot, and the wins and

ties barplot for each pipeline. All plots are ordered by boxplot mean. Only the worst 20

(excepting Kernel PCA) were selected.

filtering effect applied by both the preprocessing method and the classifier itself. Linear models,

such as Naive Bayes and SGD-based pipelines, also showed low standard deviation, indicating

consistent performance. However, these combinations consistently ranked among the lowest in

terms of F1 scores, with poor overall performance.

The findings show that combinations with low standard deviation in performance do not

necessarily imply high-performing pipelines. While low variability indicates consistent results

across datasets, this consistency can also reflect uniformly poor performance, as observed with

linear models and pipelines that applied excessive filtering.

Figure 4 presents the results of the Friedman statistical test and Nemenyi post-hoc analysis for

pipeline combinations of preprocessors and classifiers. Extra Trees with no preprocessing, Gradient

Boosting with Feature Agglomeration, and AdaBoost with Feature Agglomeration are tied at the

top without significant differences. Gradient Boost with Polynomial Feature and Adaboost with

Polynomial Feature come next, being statistically different.

Figure 5 presents the analysis of pipeline training time. The slowest pipeline combinations

were Gradient Boosting with Polynomial Features, Random Forest with Polynomial Features, and

Multilayer Perceptron with Random Tree Embeddings. However, in the ranking score analysis, RF

6

0.0 0.2 0.4 0.6 0.8 1.0
f1_weighted_test_max

liblinear_svc + liblinear_svc_preprocessor

passive_aggressive + select_rates

bernoulli_nb + pca

gaussian_nb + select_percentile

passive_aggressive + feature_agglomeration

sgd + select_percentile

qda + fast_ica

qda + no_preprocessing

liblinear_svc + feature_agglomeration

sgd + polynomial

bernoulli_nb + nystroem_sampler

passive_aggressive + pca

qda + nystroem_sampler

passive_aggressive + kitchen_sinks

libsvm_svc + fast_ica

qda + kitchen_sinks

bernoulli_nb + feature_agglomeration

sgd + kitchen_sinks

sgd + fast_ica

bernoulli_nb + liblinear_svc_preprocessor

p
ip

e
lin

e
s

0 20 40 60 80 100 120 140
rank

92.19

101.68

105.68

98.9

111.47

102.9

97.62

105.83

111.56

106.22

112.56

117.3

111.24

119.75

111.36

120.87

118.22

123.24

125.08

142.36

0 1 2 3 4 5

1

4

1

3

1

2

3

3

1

4

3

1

1

1

1

tie

wins

0.0 0.1 0.2 0.3 0.4
f1_weighted_test_std

liblinear_svc + pca

liblinear_svc + nystroem_sampler

extra_trees + feature_agglomeration

liblinear_svc + liblinear_svc_preprocessor

liblinear_svc + kitchen_sinks

k_nearest_neighbors + polynomial

passive_aggressive + feature_agglomeration

qda + kitchen_sinks

passive_aggressive + kitchen_sinks

decision_tree + liblinear_svc_preprocessor

passive_aggressive + no_preprocessing

decision_tree + feature_agglomeration

liblinear_svc + fast_ica

passive_aggressive + random_trees_embedding

bernoulli_nb + nystroem_sampler

passive_aggressive + select_rates

qda + extra_trees_preproc

bernoulli_nb + liblinear_svc_preprocessor

gaussian_nb + select_rates

decision_tree + select_rates

p
ip

e
lin

e
s

0 20 40 60 80 100 120
rank

113.25

104.32

122.1

124.14

120.96

110.49

122.1

103.55

122.09

118.97

96.92

90.59

122.96

125.84

95.15

115.94

100.25

129.18

102.96

119.95

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

1

2

2

tie

wins

Figure 3: Aggregated F1 by dataset for each for each machine learning pipeline. From top to bottom,

the figure shows F1 performance aggregated using maximum and standard deviation. From

left to right, the plots display the performance boxplots, the ranking barplot, and the wins

and ties barplot for each pipeline. All plots are ordered by boxplot mean. Only the top 20

worst minus Kernel PCA, sorted by boxplot mean, were selected.

CD = 0.13

1 2 3 4 5

extra_trees + no_preprocessing

gradient_boosting + feature_agglomeration

adaboost + polynomial

gradient_boosting + polynomial

adaboost + feature_agglomeration

Figure 4: Friedman statistical test and Nemenyi post-hoc analysis for machine learning pipelines

(𝛼 = 0.05). The diagram illustrates statistically significant differences among methods, where

groups of methods not connected by a line are significantly different. Only the top 5 best,

sorted by boxplot median, were selected.

with Fast ICA achieved the highest score. The fastest pipelines were generated using combinations

with Naive Bayes classifiers.

Figure 6 shows the percentage of successful runs, time-out errors, and memory-out errors for

each pipeline composition. Pipelines with Kernel PCA had a 100% memory-out rate due to the

high memory resource needed. Polynomial Feature combinations also exhibited memory-out and

time-out errors, ranging from 13% to 21% and 5% to 16%, respectively.

7

1 2 3 4 5 6
time_spent_log10_median (s)

gradient_boosting + polynomial

random_forest + polynomial

mlp + random_trees_embedding

mlp + polynomial

random_forest + fast_ica

adaboost + fast_ica

random_forest + select_rates

random_forest + pca

random_forest + random_trees_embedding

adaboost + polynomial

liblinear_svc + select_percentile

decision_tree + no_preprocessing

passive_aggressive + no_preprocessing

bernoulli_nb + pca

lda + select_rates

gaussian_nb + pca

gaussian_nb + feature_agglomeration

gaussian_nb + select_rates

bernoulli_nb + liblinear_svc_preprocessor

gaussian_nb + select_percentile

p
ip

e
lin

e
s

0 20 40 60 80 100 120 140
rank

11.64

6.34

14.55

11.28

6.04

16.25

14.89

14.76

16.18

20.94

119.31

121.07

117.33

120.74

124.33

127.83

124.66

126.56

109.76

134.39

Figure 5: Pipeline training time analysis aggregated by dataset for each pipeline. The left side displays

a boxplot of the time spent in seconds after log10 scale, while the right side shows the

time-spent rankings. Methods are ordered by the mean time from the boxplot. Only the top

10 outperforming and 10 underperforming pipeline combinations, sorted by f1 aggregate

mean, were considered.

0 20 40 60 80 100
%

lda + kernel_pca

sgd + kernel_pca

sgd + feature_agglomeration

qda + kernel_pca

bernoulli_nb + kernel_pca

passive_aggressive + kernel_pca

adaboost + polynomial

gradient_boosting + polynomial

lda + polynomial

libsvm_svc + polynomial

gaussian_nb + select_percentile

mlp + pca

extra_trees + liblinear_svc_preprocessor

decision_tree + feature_agglomeration

bernoulli_nb + feature_agglomeration

gaussian_nb + select_rates

liblinear_svc + feature_agglomeration

liblinear_svc + liblinear_svc_preprocessor

liblinear_svc + select_percentile

sgd + select_percentile

p
ip

e
lin

e
s

71

72

74

75

99

99

99

99

100

100

100

100

100

100

16

11

5

11

1

100

100

100

100

100

100

13

17

21

15

1

1

1

success

timeout

memout

Figure 6: Barplot showing the percentage of successful runs, time-out errors, and memory-out errors

for each machine learning pipeline. Only the top 10 outperforming and 10 underperforming

pipeline combinations, sorted by f1 aggregate mean, were considered.

4.2 Key Insights

The analysis of preprocessing methods revealed that No Preprocessing, Feature Agglomeration,

Polynomial Features, and Select Percentile were the most effective in maintaining or improving

pipeline performance. These approaches likely preserve or enhance relevant feature structures

for subsequent classification. In contrast, kernel PCA and Random Kitchen Sinks demonstrated

limited success, possibly due to their sensitivity to hyperparameter tuning. See complete results in

Appendix A

8

The efficacy of No Preprocessing aligns with the restriction of search space of Auto-Sklearn 2.0,

which removed feature preprocessing [4]. Furthermore, some empirical studies reveal that feature

preprocessing does not always enhance performance, suggesting that in some cases, preprocessing

may be unnecessary [38]. In contrast, other studies suggested that processing can reduce the

computational training time, which helps to model very large datasets [39, 40].

Ensemble tree-based algorithms, which yielded favorable results in this study, inherently

perform feature selection during model construction. Thus, preprocessing methods aimed at

reducing feature set size may be redundant for these algorithms. Conversely, feature preprocessing

has proven beneficial for algorithms lacking inherent feature selection mechanisms, such as MLP, k-

NN, and SVM [41]. Furthermore, Polynomial Features, which generate new features by considering

polynomial combinations of existing ones, have been critical to certain AutoML systems, aiding

them in achieving high performance [29, 42].

Among classifiers, ensemble-based models such as Gradient Boosting, AdaBoost, Extra Trees,

and Random Forest consistently demonstrated strong performance. These models combine multiple

base learners to improve predictive performance and handle complex dataset. Conversely, Naive

Bayes exhibited poor results, likely due to its simplifying assumption of feature independence,

which limits its effectiveness for datasets with complex feature interactions. See complete results

in Appendix B

The effectiveness of ensemble models has been extensively documented in the literature,

including research in AutoML [29, 35, 43–45]. Ensemble methods typically outperform single

models by leveraging the strengths of diverse learners, thereby reducing variance and bias to achieve

superior predictive performance [43]. Notably, pipelines incorporating RF not only demonstrated

good performance but also exhibited the lowest standard deviation, indicating consistent results

across diverse datasets. RF stands out for its robustness and minimal hyperparameter tuning

requirements, distinguishing it from more tuning-sensitive algorithms like SVM and MLP [13, 46].

In contrast, kernel-based models, such as SVM, which utilize kernel transformations to map data

into higher-dimensional spaces, often require extensive hyperparameter tuning to achieve optimal

performance [13, 18]. The relatively poor performance of SVM (and kernel-based preprocessing

methods) observed in this study may be attributed to the limited hyperparameter optimization

conducted during experimentation.

The combination of ensemble classifiers with selected preprocessing methods was frequently

among the top-performing pipeline configurations. Notably, the combination of Extra Trees with No

Preprocessing achieved the best results, underscoring the strength of tree-based methods without

the added complexity of feature transformations. Additionally, pipelines combining AdaBoost or

Gradient Boosting with Feature Agglomeration performed well, likely benefiting from the synergy

between these ensemble methods and feature reduction techniques.

Pipelines involving Naive Bayes consistently underperformed, regardless of the preprocessing

method used. This was particularly evident when paired with preprocessing approaches such as

Select Percentile or kernel-based transformations. These combinations likely failed due to Naive

Bayes’ limited capacity to model intricate feature dependencies, compounded by the effects of

preprocessing methods that alter feature distributions in ways that the classifier could not leverage

effectively.

4.3 Limitations

Despite this study’s comprehensive design, some limitations must be acknowledged. The configura-

tion space, although extensive, can not capture all possible preprocessing and modeling strategies

available in the literature. Thus, emerging techniques not currently available in Scikit-learn, such

as XGBoost, LightGBM or CatBoost, may outperform on certain datasets. Moreover, we did not use

a semantic constraint in the pipeline generation to avoid implausible or suboptimal configurations.

Approaches like that can avoid spurious configurations as presented by [47].

9

Hyperparameter optimization was not exhaustively explored, as predefined ranges were used

instead. While this approach relied on Auto-sklearn’s configuration space, which has demonstrated

efficacy in previous AutoML competitions [4], it may not fully reflect the potential of some al-

gorithms. Moreover, although Random Search is suitable for unbiased sampling, which is our

objective in this work, as we aim to provide reusable meta-knowledge for meta-learning systems,

the absence of fine-grained hyperparameter optimization likely penalizes tuning-sensitive models,

such as SVC, MLP, and preprocessing kernel-based approaches.

The experiments were performed under resource constraints, including the use of a single

computational core, a 10 GB memory limit, and a 600-second maximum runtime per pipeline.

These limitations likely contributed to failures, particularly for resource-intensive methods such as

Kernel PCA and SVM. Relaxing these constraints could alter the outcomes. Lastly, some pipeline

configurations, notably those using Kernel PCA and Polynomial Features, experienced frequent

memory or time-out errors. These errors likely impacted the observed performance of these

methods.

5 Conclusions

This study benchmarks machine learning pipelines by systematically analyzing the interaction

between classifiers and feature preprocessing techniques across diverse classification tasks. Unlike

previous research focusing on individual hyperparameter tuning strategies or optimization ap-

proaches, this work evaluates pipeline compositions without introducing exploration assumptions

from specific tuning methods. By employing Random Search, we provide an assumption-free

exploration of pipeline configurations, generating meta-knowledge that can feed meta-learning

approaches for pipeline selection and optimization.

Key findings highlight the effectiveness of techniques like No Preprocessing, Feature Agglom-

eration, Polynomial Features, and Select Percentile in combination with ensemble classifiers, such

as Gradient Boosting, Adaboost and Extra Trees. These classifiers performed well with minimal

hyperparameter tuning. In contrast, Kernel PCA, Random Kitchen Sinks, and classifiers like Naive

Bayes and SVM underperformed. Future work can leverage the meta-data and insights discovered

in this study to enhance the development of AutoML systems by identifying robust pipeline con-

figurations that require minimal tuning. Additionally, this analysis could be extended to include

regression and unsupervised learning tasks.

Acknowledgements. Research carried out using the computational resources of the Center for

Mathematical Sciences Applied to Industry (CeMEAI) funded by FAPESP (grant 2013/07375-0) and

FAPESP (grant 2018/14819-5). This study was financed in part by the Coordenação de Aperfeiçoa-

mento de Pessoal de Nível Superior - Brasil (CAPES) - Finance Code 001.

References

1. Castiglioni, I. et al. AI applications to medical images: From machine learning to deep learning.

Physica medica 83, 9–24 (2021).

2. Sarker, I. H. Machine learning: Algorithms, real-world applications and research directions.

SN computer science 2, 160 (2021).

3. Haleem, A., Javaid, M., Qadri, M. A., Singh, R. P. & Suman, R. Artificial intelligence (AI) appli-

cations for marketing: A literature-based study. International Journal of Intelligent Networks 3,
119–132 (2022).

4. Feurer, M., Eggensperger, K., Falkner, S., Lindauer, M. & Hutter, F. Auto-sklearn 2.0: Hands-free

automl via meta-learning. Journal of Machine Learning Research 23, 1–61 (2022).

10

5. Olson, R. S., La Cava, W., Orzechowski, P., Urbanowicz, R. J. & Moore, J. H. PMLB: a large

benchmark suite for machine learning evaluation and comparison. BioData mining 10, 1–13
(2017).

6. Zöller, M.-A. & Huber, M. F. Benchmark and survey of automated machine learning frame-

works. Journal of Artificial Intelligence Research 70, 409–472 (2021).

7. Gijsbers, P. et al. Amlb: an automl benchmark. Journal of Machine Learning Research 25, 1–65
(2024).

8. Eldeeb, H., Maher, M., Elshawi, R. & Sakr, S. AutoMLBench: A comprehensive experimental

evaluation of automated machine learning frameworks. Expert Systems with Applications 243,
122877 (2024).

9. Brazdil, P., Giraud-Carrier, C. G., Soares, C. & Vilalta, R. Metalearning - Applications to Data
Mining isbn: 978-3-540-73262-4. https://doi.org/10.1007/978-3-540-73263-1 (Springer,
–, 2009).

10. Bergstra, J. & Bengio, Y. Random search for hyper-parameter optimization. Journal of machine
learning research 13 (2012).

11. Automated Machine Learning - Methods, Systems, Challenges (eds Hutter, F., Kotthoff, L. &
Vanschoren, J.) isbn: 978-3-030-05317-8. https://doi.org/10.1007/978-3-030-05318-5
(Springer, –, 2019).

12. He, X., Zhao, K. & Chu, X. AutoML: A survey of the state-of-the-art. Knowledge-based systems
212, 106622 (2021).

13. Mantovani, R. G., Rossi, A. L., Alcobaça, E., Vanschoren, J. & de Carvalho, A. C. Ameta-learning

recommender system for hyperparameter tuning: Predicting when tuning improves SVM

classifiers. Information Sciences 501, 193–221 (2019).

14. Wistuba, M., Schilling, N. & Schmidt-Thieme, L. Learning hyperparameter optimization ini-
tializations in 2015 IEEE International Conference on Data Science and Advanced Analytics,
DSAA 2015, Campus des Cordeliers, Paris, France, October 19-21, 2015 (2015), 1–10. https:
//doi.org/10.1109/DSAA.2015.7344817.

15. Feurer, M., Springenberg, J. T. & Hutter, F. Initializing Bayesian Hyperparameter Optimization
via Meta-Learning in Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence,
January 25-30, 2015, Austin, Texas, USA (2015), 1128–1135. http://www.aaai.org/ocs/index.
php/AAAI/AAAI15/paper/view/10029.

16. Hutter, F., Hoos, H. & Leyton-Brown, K. An efficient approach for assessing hyperparameter
importance in International conference on machine learning (2014), 754–762.

17. Van Rijn, J. N. & Hutter, F. Hyperparameter importance across datasets in Proceedings of the
24th ACM SIGKDD international conference on knowledge discovery & data mining (2018),

2367–2376.

18. Probst, P., Boulesteix, A.-L. & Bischl, B. Tunability: Importance of hyperparameters of machine

learning algorithms. Journal of Machine Learning Research 20, 1–32 (2019).

19. Mantovani, R. G., Rossi, A. L., Vanschoren, J., Bischl, B. & De Carvalho, A. C. Effectiveness of
random search in SVM hyper-parameter tuning in 2015 international joint conference on neural
networks (IJCNN) (2015), 1–8.

20. Bentéjac, C., Csörgő, A. & Martínez-Muñoz, G. A comparative analysis of gradient boosting

algorithms. Artificial Intelligence Review 54, 1937–1967 (2021).

21. Bardenet, R., Brendel, M., Kégl, B. & Sebag, M. Collaborative hyperparameter tuning in Interna-
tional conference on machine learning (2013), 199–207.

11

https://doi.org/10.1007/978-3-540-73263-1
https://doi.org/10.1007/978-3-030-05318-5
https://doi.org/10.1109/DSAA.2015.7344817
https://doi.org/10.1109/DSAA.2015.7344817
http://www.aaai.org/ocs/index.php/AAAI/AAAI15/paper/view/10029
http://www.aaai.org/ocs/index.php/AAAI/AAAI15/paper/view/10029

22. Wu, J. et al. Hyperparameter optimization for machine learning models based on Bayesian

optimization. Journal of Electronic Science and Technology 17, 26–40 (2019).

23. Snoek, J., Larochelle, H. & Adams, R. P. Practical Bayesian Optimization of Machine Learning
Algorithms in Advances in Neural Information Processing Systems 25: 26th Annual Conference on
Neural Information Processing Systems 2012. Proceedings of a meeting held December 3-6, 2012,
Lake Tahoe, Nevada, United States (2012), 2960–2968. http://papers.nips.cc/paper/4522-
practical-bayesian-optimization-of-machine-learning-algorithms.

24. Costa, V. O. & Rodrigues, C. R. Hierarchical ant colony for simultaneous classifier selection and
hyperparameter optimization in 2018 IEEE congress on evolutionary computation (CEC) (2018),
1–8.

25. García, S., Ramírez-Gallego, S., Luengo, J., Benítez, J. M. & Herrera, F. Big data preprocessing:

methods and prospects. Big data analytics 1, 1–22 (2016).

26. Bommert, A., Sun, X., Bischl, B., Rahnenführer, J. & Lang, M. Benchmark for filter methods

for feature selection in high-dimensional classification data. Computational Statistics & Data
Analysis 143, 106839 (2020).

27. Alcobaça, E., Mantovani, R. G., Rossi, A. L. & De Carvalho, A. C. Dimensionality reduction for
the algorithm recommendation problem in 2018 7th Brazilian Conference on Intelligent Systems
(BRACIS) (2018), 318–323.

28. Jäger, S., Allhorn, A. & Bießmann, F. A benchmark for data imputation methods. Frontiers in
big Data 4, 693674 (2021).

29. Olson, R. S. & Moore, J. H. TPOT: A tree-based pipeline optimization tool for automating machine
learning inWorkshop on automatic machine learning (2016), 66–74.

30. Erickson, N. et al. Autogluon-tabular: Robust and accurate automl for structured data. arXiv
preprint arXiv:2003.06505 (2020).

31. Thornton, C., Hutter, F., Hoos, H. H. & Leyton-Brown, K. Auto-WEKA: combined selection and
hyperparameter optimization of classification algorithms in The 19th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, KDD 2013, Chicago, IL, USA, August
11-14, 2013 (2013), 847–855. https://doi.org/10.1145/2487575.2487629.

32. LeDell, E. & Poirier, S. H2o automl: Scalable automatic machine learning in Proceedings of the
AutoML Workshop at ICML 2020 (2020).

33. Wang, C., Wu, Q., Liu, X. & Quintanilla, L. Automated machine learning & tuning with flaml in
Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining
(2022), 4828–4829.

34. Vanschoren, J., van Rijn, J. N., Bischl, B. & Torgo, L. OpenML: networked science in machine

learning. SIGKDD Explorations 15, 49–60. https://doi.org/10.1145/2641190.2641198
(2013).

35. Feurer, M. et al. Efficient and Robust Automated Machine Learning in Advances in Neural
Information Processing Systems 28: Annual Conference on Neural Information Processing Systems
2015, December 7-12, 2015, Montreal, Quebec, Canada (2015), 2962–2970. http://papers.nips.
cc/paper/5872-efficient-and-robust-automated-machine-learning.

36. Pedregosa, F. et al. Scikit-learn: Machine learning in Python. the Journal of machine Learning
research 12, 2825–2830 (2011).

37. Demšar, J. Statistical Comparisons of Classifiers over Multiple Data Sets. Journal of Machine
Learning Research 7, 1–30. http://jmlr.org/papers/v7/demsar06a.html (2006).

12

http://papers.nips.cc/paper/4522-practical-bayesian-optimization-of-machine-learning-algorithms
http://papers.nips.cc/paper/4522-practical-bayesian-optimization-of-machine-learning-algorithms
https://doi.org/10.1145/2487575.2487629
https://doi.org/10.1145/2641190.2641198
http://papers.nips.cc/paper/5872-efficient-and-robust-automated-machine-learning
http://papers.nips.cc/paper/5872-efficient-and-robust-automated-machine-learning
http://jmlr.org/papers/v7/demsar06a.html

38. Schoenfeld, B., Giraud-Carrier, C., Poggemann, M., Christensen, J. & Seppi, K. Preprocessor

selection for machine learning pipelines. arXiv preprint arXiv:1810.09942 (2018).

39. Bolón-Canedo, V., Sánchez-Maroño, N. & Alonso-Betanzos, A. Recent advances and emerging

challenges of feature selection in the context of big data. Knowledge-based systems 86, 33–45
(2015).

40. Cai, J., Luo, J., Wang, S. & Yang, S. Feature selection in machine learning: A new perspective.

Neurocomputing 300, 70–79 (2018).

41. Bilal, M. et al. Auto-prep: efficient and automated data preprocessing pipeline. IEEE Access 10,
107764–107784 (2022).

42. Gijsbers, P. & Vanschoren, J. GAMA: genetic automated machine learning assistant. Journal
of Open Source Software 4, 1132 (2019).

43. Sagi, O. & Rokach, L. Ensemble learning: A survey.Wiley interdisciplinary reviews: data mining
and knowledge discovery 8, e1249 (2018).

44. Grinsztajn, L., Oyallon, E. & Varoquaux, G. Why do tree-based models still outperform deep

learning on typical tabular data? Advances in neural information processing systems 35, 507–520
(2022).

45. Shwartz-Ziv, R. & Armon, A. Tabular data: Deep learning is not all you need. Information
Fusion 81, 84–90 (2022).

46. Wainberg, M., Alipanahi, B. & Frey, B. J. Are random forests truly the best classifiers? Journal
of Machine Learning Research 17, 1–5 (2016).

47. De Sá, A. G., Pinto, W. J. G., Oliveira, L. O. V. & Pappa, G. L. RECIPE: a grammar-based
framework for automatically evolving classification pipelines in European Conference on Genetic
Programming (2017), 246–261.

13

Submission Checklist

1. For all authors. . .

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes]

(b) Did you describe the limitations of your work? [Yes] Section 4.3

(c) Did you discuss any potential negative societal impacts of your work? [Yes] We discussed

but we didn’t find one.

(d) Did you read the ethics review guidelines and ensure that your paper conforms to them?

(see https://2022.automl.cc/ethics-accessibility/) [Yes]

2. If you ran experiments. . .

(a) Did you use the same evaluation protocol for all methods being compared (e.g., same

benchmarks, data (sub)sets, available resources, etc.)? [Yes]

(b) Did you specify all the necessary details of your evaluation (e.g., data splits, pre-processing,

search spaces, hyperparameter tuning details and results, etc.)? [Yes]

(c) Did you repeat your experiments (e.g., across multiple random seeds or splits) to account

for the impact of randomness in your methods or data? [Yes]

(d) Did you report the uncertainty of your results (e.g., the standard error across random seeds

or splits)? [Yes]

(e) Did you report the statistical significance of your results? [Yes]

(f) Did you use enough repetitions, datasets, and/or benchmarks to support your claims? [Yes]

(g) Did you compare performance over time and describe how you selected the maximum

runtime? [Yes]

(h) Did you include the total amount of compute and the type of resources used (e.g., type of

gpus, internal cluster, or cloud provider)? [Yes]

(i) Did you run ablation studies to assess the impact of different components of your approach?

[Yes]

3. With respect to the code used to obtain your results. . .

(a) Did you include the code, data, and instructions needed to reproduce the main experimental

results, including all dependencies (e.g., requirements.txt with explicit versions), random

seeds, an instructive README with installation instructions, and execution commands (either

in the supplemental material or as a url)? [Yes]

(b) Did you include a minimal example to replicate results on a small subset of the experiments

or on toy data? [Yes]

(c) Did you ensure sufficient code quality and documentation so that someone else can execute

and understand your code? [Yes]

(d) Did you include the raw results of running your experiments with the given code, data, and

instructions? [Yes]

(e) Did you include the code, additional data, and instructions needed to generate the figures

and tables in your paper based on the raw results? [Yes]

14

https://2022.automl.cc/ethics-accessibility/

4. If you used existing assets (e.g., code, data, models). . .

(a) Did you cite the creators of used assets? [Yes]

(b) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating if the license requires it? [Yes]

(c) Did you discuss whether the data you are using/curating contains personally identifiable

information or offensive content? [N/A]

5. If you created/released new assets (e.g., code, data, models). . .

(a) Did you mention the license of the new assets (e.g., as part of your code submission)? [Yes]

(b) Did you include the new assets either in the supplemental material or as a url (to, e.g.,

GitHub or Hugging Face)? [Yes]

6. If you used crowdsourcing or conducted research with human subjects. . .

(a) Did you include the full text of instructions given to participants and screenshots, if appli-

cable? [N/A]

(b) Did you describe any potential participant risks, with links to institutional review board

(irb) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount spent

on participant compensation? [N/A]

7. If you included theoretical results. . .

(a) Did you state the full set of assumptions of all theoretical results? [N/A]

(b) Did you include complete proofs of all theoretical results? [N/A]

15

A Feature Preprocessors Performance
Figure 7 presents the aggregated maximum and standard deviation of F1 performance for pipelines

across datasets, grouped by feature preprocessing methods.

The boxplot of the aggregated maximum shows that pipelines without preprocessing achieved

the highest performance, followed by Feature Agglomeration and Select Percentile. Kernel PCA

and Kitchen Sinks had the lowest performance, with Kernel PCA failing to produce any successful

runs. This issue is discussed in Section 4.3.

The ranking results identified No Preprocessing, Polynomial Features, and Feature Agglomera-

tion as the top three methods. In terms of win/tie scores, Polynomial Features achieved 42 wins,

followed by No Preprocessing with 28, while Feature Agglomeration and Select Percentile tied with

22 wins each.

The standard deviation analysis showed that Kitchen Sinks, Nystroem Sampler, and Polynomial

Features had the highest variation in performance distribution. This pattern was consistent with

ranking and win/tie analysis. Both Kitchen Sinks and Nystroem Sampler transform the feature

space using kernel approximation techniques.

0.0 0.2 0.4 0.6 0.8 1.0
f1_weighted_test_max

no_preprocessing

feature_agglomeration

select_percentile

polynomial

select_rates

liblinear_svc_preprocessor

fast_ica

extra_trees_preproc

pca

nystroem_sampler

random_trees_embedding

kitchen_sinks

kernel_pca

p
re
p
ro
ce
ss
o
r

0 2 4 6 8 10
rank

3.96

4.85

5.27

3.98

5.96

7.17

6.44

5.95

7.77

8.09

7.95

9.54

0 10 20 30 40 50 60

7

13

14

13

19

15

17

23

19

17

17

27

2

7

5

6

19

6

10

9

42

21

21

28

tie

wins

0.0 0.1 0.2 0.3 0.4
f1_weighted_test_std

kitchen_sinks

nystroem_sampler

polynomial

fast_ica

select_rates

feature_agglomeration

select_percentile

no_preprocessing

liblinear_svc_preprocessor

extra_trees_preproc

pca

random_trees_embedding

kernel_pca

p
re
p
ro
ce
ss
o
r

0 2 4 6 8 10
rank

4.99

4.36

4.9

5.62

5.44

5.7

6.49

6.63

7.49

7.51

8.3

9.55

0 10 20 30 40 50 60

1

1

5

8

1

10

14

14

15

31

62

49

tie

wins

Figure 7: Aggregated F1-score by dataset for each for each feature preprocessor. From top to bottom,

the figure shows F1 performance aggregated using maximum and standard deviation values.

From left to right, the plots display the performance boxplots, the ranking barplot, and the

wins and ties barplot for each method. All plots are ordered by boxplot mean.

Figure 8 presents the Friedman statistical test and Nemenyi post-hoc analysis for feature prepro-

cessing methods. Pipelines without preprocessing demonstrated statistically superior performance

16

compared to other methods. Feature Agglomeration, Polynomial Features, and Select Percentile

followed with no significant differences among them. Excluding Kernel PCA, which did not produce

any successful runs, Kitchen Sinks had the lowest performance.

CD = 0.40

1 2 3 4 5 6 7 8 9 10 11 12 13

no_preprocessing

feature_agglomeration

polynomial

select_percentile_classification

extra_trees_preproc_for_classification

select_rates_classification

kernel_pca

kitchen_sinks

nystroem_sampler

random_trees_embedding

pca

liblinear_svc_preprocessor

fast_ica

Figure 8: Friedman statistical test and Nemenyi post-hoc analysis for feature preprocessing methods

(𝛼 = 0.05). The diagram illustrates statistically significant differences among methods, where

groups of methods not connected by a line are significantly different.

Figure 9 presents the analysis of pipeline training time. The fastest methods were no preprocess-

ing, followed by PCA. Nystroem Sampler and Kitchen Sinks, both kernel transformation methods,

were the slowest. However, when considering the ranking score, Fast ICA emerged as the slowest

method.

1 2 3 4 5 6
time_spent_log10_median (s)

nystroem_sampler

kitchen_sinks

random_trees_embedding

fast_ica

polynomial

extra_trees_preproc

select_percentile

liblinear_svc_preprocessor

feature_agglomeration

select_rates

pca

no_preprocessing

p
re

p
ro

ce
ss

o
r

0 2 4 6 8 10
rank

4.46

3.98

5.14

3.45

5.79

5.2

7.1

7.22

7.7

7.52

9.28

10.22

Figure 9: Pipeline training time analysis aggregated by dataset for each feature preprocessor using

median. The left side displays a boxplot of the time spent, while the right side shows the

time-spent rankings. Methods are ordered by the mean time from the boxplot.

Finally, Figure 10 shows the percentage of successful runs, time-out errors, and memory-out

errors for each feature preprocessor. Kernel PCA failed in all runs due to memory-out errors, as all

pipelines using this method exceeded the 10 GB memory limit. Polynomial feature generation also

exhibited a high memory-out rate of 14% and a time-out rate of 5%. This behavior may be attributed

to the algorithm’s feature-combination process, which can result in a very high-dimensional feature

space when applied to datasets with a large number of features.

17

0 20 40 60 80 100
%

kernel_pca

polynomial

fast_ica

select_percentile

nystroem_sampler

random_trees_embedding

select_rates

liblinear_svc_preprocessor

kitchen_sinks

feature_agglomeration

no_preprocessing

extra_trees_preproc

pca

p
re
p
ro
ce
ss
o
r

81

93

95

96

97

97

97

97

97

97

98

98

5

5

3

2

2

2

2

1

1

1

1

100

14

1

2

2

2

2

1

3

1

1

1

1success

timeout

memout

Figure 10: Barplot showing the percentage of successful runs, time-out errors, and memory-out errors

for each feature preprocessor method.

18

B Classifiers Performance
Figure 11 presents the aggregated maximum and standard deviation F1 performance of pipelines

by dataset for each classifier.

The boxplot of the aggregated maximum shows that Extra Trees achieved the highest perfor-

mance, followed by AdaBoost, Gradient Boosting, and Random Forest (RF). These are tree-based

ensemble algorithms with different ensemble approaches: RF uses bagging, training multiple deci-

sion trees on bootstrapped data samples and aggregating their predictions, while Gradient Boosting

uses boosting, training trees sequentially to correct errors made by previous trees.

Bernoulli, Multinomial, and Gaussian Naive Bayes showed the lowest performance. The Naive

Bayes algorithm assumes feature independence, which may not hold for many real datasets. The

ranking analysis confirmed the top four classifiers, with Gradient Boosting ranking highest, followed

by Extra Trees, AdaBoost, and RF.

The standard deviation analysis showed that SVM, Stochastic Gradient Descent (SGD), and

Multilayer Perceptron (MLP) had the highest variability in performance across datasets. The SVM

model includes radial basis function, sigmoid, or polynomial kernel transformations, which can be

sensitive to hyperparameter settings and dataset characteristics. This trend was consistent with

their ranking and win/tie performance. In contrast, RF demonstrated low variance, followed by

Multinomial Naive Bayes and k-Nearest Neighbor (k-NN).

0.0 0.2 0.4 0.6 0.8 1.0
f1_weighted_test_max

extra_trees

adaboost

gradient_boosting

random_forest

mlp

k_nearest_neighbors

liblinear_svc

lda

libsvm_svc

passive_aggressive

sgd

qda

decision_tree

gaussian_nb

bernoulli_nb

multinomial_nb

cl
a
ss
ifi
e
r

0 2 4 6 8 10 12 14
rank

5.32

5.08

4.35

5.59

7.17

7.31

8.51

7.53

7.99

8.06

10.65

10.05

9.92

11.65

11.93

14.4

0 10 20 30 40 50 60 70

8

7

13

7

14

16

16

14

13

19

15

14

21

22

21

3

2

5

5

5

10

15

11

15

8

15

48

22

17 tie

wins

0.0 0.1 0.2 0.3 0.4
f1_weighted_test_std

libsvm_svc

sgd

mlp

bernoulli_nb

passive_aggressive

qda

decision_tree

gradient_boosting

lda

gaussian_nb

adaboost

extra_trees

liblinear_svc

k_nearest_neighbors

multinomial_nb

random_forest

cl
a
ss
ifi
e
r

0 2 4 6 8 10 12
rank

3.04

3.31

5.3

6.36

7.03

7.15

7.13

8.73

9.71

10.73

9.78

9.92

10.35

12.25

12.4

12.12

0 10 20 30 40 50 60

1

4

2

5

1

6

5

1

9

13

5

2

8

39

48

62

tie

wins

Figure 11: Aggregated F1 by dataset for each for each classifier algorithm. From top to bottom, the

figure shows F1 performance aggregated using maximum and standard deviation values.

From left to right, the plots display the performance boxplots, the ranking barplot, and the

wins and ties barplot for each classifier. All plots are ordered by boxplot mean.

Figure 12 presents the results of the Friedman statistical test and Nemenyi post-hoc analysis for

classifier algorithms. Gradient Boosting demonstrated statistically superior performance compared

19

to other algorithms. AdaBoost, Extra Trees, and Random Forest followed, with no significant

differences among them. Multinomial Naive Bayes showed the lowest performance.

CD = 0.50

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

gradient_boosting

adaboost

extra_trees

random_forest

mlp

k_nearest_neighbors

lda

passive_aggressive

multinomial_nb

bernoulli_nb

gaussian_nb

sgd

qda

decision_tree

liblinear_svc

libsvm_svc

Figure 12: Friedman statistical test and Nemenyi post-hoc analysis for classifiers algorithms (𝛼 = 0.05).

The diagram illustrates statistically significant differences among methods, where groups

of methods not connected by a line are significantly different.

Figure 13 presents the analysis of pipeline training time. The fastest algorithms were Gaussian

Naive Bayes, followed by Quadratic Discriminant Analysis (QDA). Ensemble methods such as

Random Forest, AdaBoost, Extra Trees, and Gradient Boosting had the longest training times. These

methods require training multiple base classifiers, unlike single-model classifiers such as Decision

Trees. However, when considering the ranking score, Multinomial Naive Bayes emerged as the

second fastest.

1 2 3 4 5 6
time_spent_log10_median (s)

random_forest

adaboost

extra_trees

gradient_boosting

mlp

libsvm_svc

liblinear_svc

passive_aggressive

sgd

lda

k_nearest_neighbors

decision_tree

bernoulli_nb

multinomial_nb

qda

gaussian_nb

cl
a
ss

ifi
e
r

0 2 4 6 8 10 12 14
rank

1.66

2.84

3.76

3.91

4.71

5.87

8.39

10.03

9.75

10.2

9.84

11.6

11.89

13.87

12.5

14.67

Figure 13: Pipeline training time analysis aggregated by dataset for each classifier using median. The

left side displays a boxplot of the time spent, while the right side shows the time-spent

rankings. Methods are ordered by the mean time from the boxplot.

Finally, Figure 14 shows the percentage of successful runs, time-out errors, and memory-out

errors for each classifier. RF had a 5% memory-out rate, mainly due to its resource-intensive nature

when applied to large datasets, as shown in Figure 13. SVM exhibited an 8% memory-out rate,

mainly caused by convergence issues that prolonged execution time.

20

0 20 40 60 80 100
%

libsvm_svc

random_forest

liblinear_svc

adaboost

bernoulli_nb

gradient_boosting

qda

extra_trees

decision_tree

k_nearest_neighbors

sgd

passive_aggressive

lda

gaussian_nb

mlp

multinomial_nb

cl
a
ss
ifi
e
r

90

92

92

92

93

94

95

95

95

96

96

96

96

97

97

98

8

5

2

5

1

3

2

2

1

3

1

1

1

1

1

3

3

6

3

6

3

3

3

4

2

3

3

3

3

2

2success

timeout

memout

Figure 14: Barplot showing the percentage of successful runs, time-out errors, and memory-out errors

for each classifier algorithm.

21

C Configuration Space

Table 1: Configuration space for pipeline experiments (classifiers branch). The first column lists the

hyperparameters along with their respective levels (lv) in the tree-based search space. The

second column categorizes the hyperparameters. The third column specifies the possible

values for each hyperparameter. The final column indicates whether a log10 transformation

is applied to the hyperparameter dimension.

Hyperparameter Type Dimension Log Scale
(lv0) (lv1) (lv2)

classifier

__choice__ categorical

(’adaboost’, ’bernoulli_nb’,

’decision_tree’, ’extra_trees’,

’gaussian_nb’, ’gradient_boosting’,

’k_nearest_neighbors’, ’lda’, ’liblinear_svc’,

’libsvm_svc’, ’mlp’, ’multinomial_nb’,

’passive_aggressive’, ’qda’,

’random_forest’, ’sgd’)

-

adaboost

algorithm categorical (’SAMME.R’, ’SAMME’) -

learning_rate uniform float [0.01, 2.0] Yes

max_depth uniform integer [1, 10] No

n_estimators uniform integer [50, 500] No

bernoulli_nb

alpha uniform float [0.01, 100.0] Yes

fit_prior categorical (’True’, ’False’) -

decision_tree

criterion categorical (’gini’, ’entropy’) -

max_depth_factor uniform float [0.0, 2.0] No

max_features constant 1 -

max_leaf_nodes constant None -

min_impurity_decrease constant 0 -

min_samples_leaf uniform integer [1, 20] No

min_samples_split uniform integer [2, 20] No

min_weight_fraction_leaf constant 0 -

extra_trees

bootstrap categorical (’True’, ’False’) -

criterion categorical (’gini’, ’entropy’) -

max_depth constant None -

max_features uniform float [0.0, 1.0] No

max_leaf_nodes constant None -

min_impurity_decrease constant 0 -

min_samples_leaf uniform integer [1, 20] No

min_samples_split uniform integer [2, 20] No

min_weight_fraction_leaf constant 0 -

gradient_boosting

early_stop categorical (’off’, ’valid’, ’train’) -

l2_regularization uniform float [1e-10, 1.0] Yes

learning_rate uniform float [0.01, 1.0] Yes

loss constant auto -

max_bins constant 255 -

max_depth constant None -

max_leaf_nodes uniform integer (3, 2047] Yes

min_samples_leaf uniform integer [1, 200] Yes

n_iter_no_change uniform integer [1, 20] No

scoring constant loss -

tol constant 1.00E-07 -

validation_fraction uniform float [0.01, 0.4] No

k_nearest_neighbors

n_neighbors uniform integer [1, 100] Yes

p categorical [1, 2] -

weights categorical (’uniform’, ’distance’) -

lda

shrinkage categorical (’None’, ’auto’, ’manual’) -

shrinkage_factor uniform float [0.0, 1.0] No

tol uniform float [1e-05, 0.1] Yes

liblinear_svc

C uniform float [0.03125, 32768.0] Yes

dual constant FALSE -

fit_intercept constant TRUE -

intercept_scaling constant 1 -

loss categorical (’hinge’, ’squared_hinge’) -

multi_class constant ovr -

penalty categorical (’l1’, ’l2’) -

tol uniform float [1e-05, 0.1] Yes

libsvm_svc

C uniform float [0.03125, 32768.0] Yes

coef0 uniform float [-1.0, 1.0] No

degree uniform integer [2, 5] No

gamma uniform float [3e-05, 8.0] Yes

kernel categorical (’rbf’, ’poly’, ’sigmoid’) -

max_iter constant -1 -

shrinking categorical (’True’, ’False’) -

tol uniform float [1e-05, 0.1] Yes

mlp

activation categorical (’tanh’, ’relu’) -

alpha uniform float [1e-07, 0.1] Yes

22

Table 1 continued from previous page

Hyperparameter Type Dimension Log Scale
(lv0) (lv1) (lv2)

batch_size constant auto -

beta_1 constant 0.9 -

beta_2 constant 0.999 -

early_stopping categorical (’valid’, ’train’) -

epsilon constant 1.00E-08 -

hidden_layer_depth uniform integer [1, 3] No

learning_rate_init uniform float [0.0001, 0.5] Yes

n_iter_no_change constant 32 -

num_nodes_per_layer uniform integer [16, 264] Yes

shuffle constant TRUE -

solver constant adam -

tol constant 0.0001 -

validation_fraction constant 0.1 -

multinomial_nb

alpha uniform float [0.01, 100.0] Yes

fit_prior categorical (’True’, ’False’) -

passive_aggressive

C uniform float [1e-05, 10.0] Yes

average categorical (’False’, ’True’) -

fit_intercept constant TRUE -

loss categorical (’hinge’, ’squared_hinge’) -

tol uniform float [1e-05, 0.1] Yes

qda reg_param uniform float [0.0, 1.0] No

random_forest

bootstrap categorical (’True’, ’False’) -

criterion categorical (’gini’, ’entropy’) -

max_depth constant None -

max_features uniform float [0.0, 1.0] No

max_leaf_nodes constant None -

min_impurity_decrease constant 0 -

min_samples_leaf uniform integer [1, 20] No

min_samples_split uniform integer [2, 20] No

min_weight_fraction_leaf constant 0 -

sgd

alpha uniform float [1e-07, 0.1] Yes

average categorical (’False’, ’True’) -

epsilon uniform float [1e-05, 0.1] Yes

eta0 uniform float [1e-07, 0.1] Yes

fit_intercept constant TRUE -

l1_ratio uniform float [1e-09, 1.0] Yes

learning_rate categorical (’optimal’, ’invscaling’, ’constant’) -

loss categorical

(’hinge’, ’log’, ’modified_huber’,

’squared_hinge’, ’perceptron’)
-

penalty categorical (’l1’, ’l2’, ’elasticnet’) -

power_t uniform float [1e-05, 1.0] No

tol uniform float [1e-05, 0.1] Yes

balancing strategy categorical (’none’, ’weighting’) -

Table 2: Configuration space for pipeline experiments (feature preprocessing branch). The first column

lists the hyperparameters along with their respective levels (lv) in the tree-based search space.

The second column categorizes the hyperparameters. The third column specifies the possible

values for each hyperparameter. The final column indicates whether a log10 transformation

is applied to the hyperparameter dimension.

Hyperparameter Type Dimension Log Scale

(lv0) (lv1) (lv2)

feature_preprocessor

__choice__ categorical

(’extra_trees_preproc’,

’fast_ica’,

’feature_agglomeration’,

’kernel_pca’, ’kitchen_sinks’,

’liblinear_svc_preprocessor’,

’no_preprocessing’,

’nystroem_sampler’, ’pca’,

’polynomial’,

’random_trees_embedding’,

’select_percentile’,

’select_rates)

-

extra_trees_preproc

bootstrap categorical (’True’, ’False’) -

criterion categorical (’gini’, ’entropy’) -

max_depth constant None -

max_features uniform float [0.0, 1.0] No

max_leaf_nodes constant None -

min_impurity_decrease constant 0 -

min_samples_leaf uniform integer [1, 20] No

min_samples_split uniform integer [2, 20] No

23

Table 2 continued from previous page
Hyperparameter Type Dimension Log Scale

(lv0) (lv1) (lv2)

min_weight_fraction_leaf constant 0 -

n_estimators constant 100 -

fast_ica

algorithm categorical (’parallel’, ’deflation’) -

fun categorical (’logcosh’, ’exp’, ’cube’) -

n_components uniform integer [10, 2000] No

whiten categorical (’False’, ’True’) -

feature_agglomeration

affinity categorical

(’euclidean’, ’manhattan’,

’cosine’)
-

linkage categorical (’ward’, ’complete’, ’average’) -

n_clusters uniform integer [2, 400] No

pooling_func categorical (’mean’, ’median’, ’max’) -

kernel_pca

coef0 uniform float [-1.0, 1.0] No

degree uniform integer [2, 5] No

gamma uniform float [3e-05, 8.0] Yes

kernel categorical (’poly’, ’rbf’, ’sigmoid’, ’cosine’) -

n_components uniform integer [10, 2000] No

kitchen_sinks

gamma uniform float [3e-05, 8.0] Yes

n_components uniform integer [50, 10000] Yes

liblinear_svc_preprocessor

C uniform float [0.03125, 32768.0] Yes

dual constant FALSE -

fit_intercept constant TRUE -

intercept_scaling constant 1 -

loss categorical (’hinge’, ’squared_hinge’) -

multi_class constant ovr -

penalty constant l1 -

tol uniform float [1e-05, 0.1] Yes

nystroem_sampler

coef0 uniform float [-1.0, 1.0] No

degree uniform integer [2, 5] No

gamma uniform float [3e-05, 8.0] Yes

kernel categorical (’poly’, ’rbf’, ’sigmoid’, ’cosine’) -

n_components uniform integer [50, 10000] Yes

pca

keep_variance uniform float [0.5, 0.9999] No

whiten categorical (’False’, ’True’) -

polynomial

degree uniform integer [2, 3] No

include_bias categorical (’True’, ’False’) -

interaction_only categorical (’False’, ’True’) -

random_trees_embedding

bootstrap categorical (’True’, ’False’) -

max_depth uniform integer [2, 10] No

max_leaf_nodes constant None -

min_samples_leaf uniform integer [1, 20] No

min_samples_split uniform integer [2, 20] No

min_weight_fraction_leaf constant 1 -

n_estimators uniform integer [10, 100] No

select_percentile

percentile uniform float [1.0, 99.0] No

score_func categorical (’chi2’, ’f_classif’, ’mutual_info’) -

select_rates

alpha uniform float [0.01, 0.5] No

mode categorical (’fpr’, ’fdr’, ’fwe’) -

score_func categorical

(’chi2’, ’f_classif’,

’mutual_info_classif’)
-

24

T
a
b
l
e
3
:
C
o
n
fi
g
u
r
a
t
i
o
n
s
p
a
c
e
f
o
r
p
i
p
e
l
i
n
e
e
x
p
e
r
i
m
e
n
t
s
(
d
a
t
a
p
r
e
p
r
o
c
e
s
s
i
n
g
b
r
a
n
c
h
)
.
T
h
e
fi
r
s
t
c
o
l
u
m
n

l
i
s
t
s
t
h
e
h
y
p
e
r
p
a
r
a
m
e
t
e
r
s
a
l
o
n
g
w
i
t
h
t
h
e
i
r
r
e
s
p
e
c
t
i
v
e
l
e
v
e
l
s
(
l
v
)
i
n
t
h
e
t
r
e
e
-
b
a
s
e
d
s
e
a
r
c
h
s
p
a
c
e
.

T
h
e
s
e
c
o
n
d
c
o
l
u
m
n
c
a
t
e
g
o
r
i
z
e
s
t
h
e
h
y
p
e
r
p
a
r
a
m
e
t
e
r
s
.
T
h
e
t
h
i
r
d
c
o
l
u
m
n
s
p
e
c
i
fi
e
s
t
h
e
p
o
s
s
i
b
l
e

v
a
l
u
e
s
f
o
r
e
a
c
h
h
y
p
e
r
p
a
r
a
m
e
t
e
r
.
T
h
e
fi
n
a
l
c
o
l
u
m
n
i
n
d
i
c
a
t
e
s
w
h
e
t
h
e
r
a
l
o
g
1
0
t
r
a
n
s
f
o
r
m
a
t
i
o
n

i
s
a
p
p
l
i
e
d
t
o
t
h
e
h
y
p
e
r
p
a
r
a
m
e
t
e
r
d
i
m
e
n
s
i
o
n
.
T
h
e
c
a
t
e
g
o
r
i
c
a
l
t
r
a
n
s
f
o
r
m

i
s
u
s
e
d
o
v
e
r
w
h
i
l
e
t
h
e

n
u
m
e
r
i
c
a
l
t
r
a
n
s
f
o
r
m

i
s
t
h
e
o
p
p
o
s
i
t
e
.
C
a
t
e
g
o
r
i
c
a
l
t
r
a
n
s
f
o
r
m
a
t
i
o
n
a
n
d
i
m
p
u
t
a
t
i
o
n
a
r
e
a
l
w
a
y
s

r
e
q
u
i
r
e
d
d
u
e
t
o
s
k
l
e
a
r
n
l
i
m
i
t
a
t
i
o
n
s
.

H
yp

er
pa

ra
m
et
er

Ty
pe

D
im

en
si
on

Lo
g
Sc
al
e

(l
v0

)
(l
v1

)
(l
v2

)
(l
v3

)
(l
v4

)
(l
v5

)

d
a
t
a
_
p
r
e
p
r
o
c
e
s
s
o
r

_
_
c
h
o
i
c
e
_
_

c
a
t
e
g
o
r
i
c
a
l

(
’
f
e
a
t
u
r
e
_
t
y
p
e
’,
)

-

f
e
a
t
u
r
e
_
t
y
p
e

c
a
t
e
g
o
r
i
c
a
l
_
t
r
a
n
s
f
o
r
m
e
r

c
a
t
e
g
o
r
i
c
a
l
_
e
n
c
o
d
i
n
g

_
_
c
h
o
i
c
e
_
_

c
a
t
e
g
o
r
i
c
a
l

(
’
e
n
c
o
d
i
n
g
’,

’
n
o
_
e
n
c
o
d
i
n
g
’,

’
o
n
e
_
h
o
t
_
e
n
c
o
d
i
n
g
’
)

-

c
a
t
e
g
o
r
y
_
c
o
a
l
e
s
c
e
n
c
e

_
_
c
h
o
i
c
e
_
_

c
a
t
e
g
o
r
i
c
a
l

(
’
m
i
n
o
r
i
t
y
_
c
o
a
l
e
s
c
e
r
’,

’
n
o
_
c
o
a
l
e
s
c
e
n
s
e
’
)

-

c
a
t
e
g
o
r
y
_
c
o
a
l
e
s
c
e
n
c
e

m
i
n
o
r
i
t
y
_
c
o
a
l
e
s
c
e
r

m
i
n
i
m
u
m
_
f
r
a
c
t
i
o
n

u
n
i
f
o
r
m

fl
o
a
t

[
0
.0
0
0
1
,
0
.5
]

Y
e
s

n
u
m
e
r
i
c
a
l
_
t
r
a
n
s
f
o
r
m
e
r

i
m
p
u
t
a
t
i
o
n

s
t
r
a
t
e
g
y

c
a
t
e
g
o
r
i
c
a
l

(
’
m
e
a
n
’,
’
m
e
d
i
a
n
’,

’
m
o
s
t
_
f
r
e
q
u
e
n
t
’
)

-

r
e
s
c
a
l
i
n
g

_
_
c
h
o
i
c
e
_
_

c
a
t
e
g
o
r
i
c
a
l

(
’
m
i
n
m
a
x
’,
’
n
o
n
e
’,

’
n
o
r
m
a
l
i
z
e
’,

’
p
o
w
e
r
_
t
r
a
n
s
f
o
r
m
e
r
’,

’
q
u
a
n
t
i
l
e
_
t
r
a
n
s
f
o
r
m
e
r
’,

’
r
o
b
u
s
t
_
s
c
a
l
e
r
’,

’
s
t
a
n
d
a
r
d
i
z
e
’
)

-

q
u
a
n
t
i
l
e
_
t
r
a
n
s
f
o
r
m
e
r

n
_
q
u
a
n
t
i
l
e
s

u
n
i
f
o
r
m

i
n
t
e
g
e
r

[
1
0
,
2
0
0
0
]

N
o

q
u
a
n
t
i
l
e
_
t
r
a
n
s
f
o
r
m
e
r

o
u
t
p
u
t
_
d
i
s
t
r
i
b
u
t
i
o
n

c
a
t
e
g
o
r
i
c
a
l

(
’
n
o
r
m
a
l
’,
’
u
n
i
f
o
r
m
’
)

-

r
o
b
u
s
t
_
s
c
a
l
e
r

q
_
m
a
x

u
n
i
f
o
r
m

fl
o
a
t

[
0
.7
,
0
.9
9
9
]

N
o

r
o
b
u
s
t
_
s
c
a
l
e
r

q
_
m
i
n

u
n
i
f
o
r
m

fl
o
a
t

[
0
.0
0
1
,
0
.3
]

N
o

25

D Performance Aggregated by Mean and Median

In this section, we presented the performance aggregated by mean and median for feature prepro-

cessing, classifier and pipeline.

0.0 0.2 0.4 0.6 0.8 1.0
f1_weighted_test_mean

no_preprocessing

extra_trees_preproc

feature_agglomeration

random_trees_embedding

liblinear_svc_preprocessor

polynomial

fast_ica

select_percentile

pca

select_rates

nystroem_sampler

kitchen_sinks

kernel_pca

p
re
p
ro
ce
ss
o
r

0 2 4 6 8 10
rank

4.09

4.54

4.52

4.22

6.19

5.72

6.6

6.23

7.15

7.63

9.48

10.74

0 10 20 30 40 50 60

3

3

2

14

12

9

13

20

61

19

35

20 tie

wins

0.0 0.2 0.4 0.6 0.8 1.0
f1_weighted_test_median

no_preprocessing

feature_agglomeration

extra_trees_preproc

random_trees_embedding

polynomial

liblinear_svc_preprocessor

fast_ica

select_percentile

select_rates

pca

nystroem_sampler

kitchen_sinks

kernel_pca

p
re
p
ro
ce
ss
o
r

0 2 4 6 8 10
rank

4.36

4.11

4.86

5.43

4.91

6.22

6.11

6.19

7.37

7.66

9.23

10.55

0 10 20 30 40 50

8

12

6

12

10

10

7

2

2

13

10

11

1

1

7

6

9

11

16

22

44

28

40

10

tie

wins

Figure 15: Aggregated F1 by dataset for each for each feature preprocessor. From top to bottom, the

figure shows F1 performance aggregated using mean and median. From left to right, the

plots display the performance boxplots, the ranking barplot, and the wins and ties barplot

for each method. All plots are ordered by boxplot mean.

26

0.0 0.2 0.4 0.6 0.8 1.0
f1_weighted_test_mean

random_forest

gradient_boosting

extra_trees

adaboost

k_nearest_neighbors

liblinear_svc

lda

passive_aggressive

gaussian_nb

multinomial_nb

decision_tree

mlp

qda

bernoulli_nb

libsvm_svc

sgd

cl
a
ss
ifi
e
r

0 2 4 6 8 10 12 14
rank

2.95

4.55

5.1

4.55

5.43

6.57

6.87

10.11

8.44

8.25

10.25

10.17

11.73

12.9

13.62

14.11

0 10 20 30 40 50 60 70

1

15

14

1

17

17

9

15

9

43

70

tie

wins

0.0 0.2 0.4 0.6 0.8 1.0
f1_weighted_test_median

random_forest

gradient_boosting

adaboost

extra_trees

k_nearest_neighbors

liblinear_svc

lda

passive_aggressive

gaussian_nb

multinomial_nb

mlp

decision_tree

sgd

qda

libsvm_svc

bernoulli_nb

cl
a
ss
ifi
e
r

0 2 4 6 8 10 12 14
rank

3.62

4.01

4.55

5.27

6.63

7.23

5.82

9.38

8.7

9.36

9.82

10.51

13.05

11.71

12.97

12.96

0 10 20 30 40 50 60 70

1

2

2

1

4

5

1

2

3

2

3

3

1

1

8

14

4

22

8

5

4

26

64

45

tie

wins

Figure 16: Aggregated F1 by dataset for each for each classifier algorithm. From top to bottom, the

figure shows F1 performance aggregated using mean and median. From left to right, the

plots display the performance boxplots, the ranking barplot, and the wins and ties barplot

for each classifier. All plots are ordered by boxplot mean.

27

0.0 0.2 0.4 0.6 0.8 1.0
f1_weighted_test_mean

gradient_boosting + feature_agglomeration

gradient_boosting + polynomial

random_forest + extra_trees_preproc

gradient_boosting + no_preprocessing

random_forest + select_percentile

random_forest + polynomial

adaboost + polynomial

adaboost + feature_agglomeration

extra_trees + no_preprocessing

random_forest + no_preprocessing

extra_trees + polynomial

adaboost + extra_trees_preproc

gradient_boosting + fast_ica

decision_tree + select_rates

random_forest + random_trees_embedding

liblinear_svc + random_trees_embedding

lda + no_preprocessing

gradient_boosting + extra_trees_preproc

adaboost + no_preprocessing

mlp + random_trees_embedding

p
ip

e
lin

e
s

0 10 20 30 40 50
rank

20.43

24.51

28.02

25.08

30.42

23.21

21.77

23.01

28.69

25.77

23.82

33.64

45.27

49.39

40.47

35.96

34.94

39.3

42.36

48.72

0 5 10 15 20 25

4

4

2

3

6

4

3

3

1

1

1

8

1

4

5

2

1

3

3

5

7

1

2

3

5

7

1

10

1

3

20

7

23

8

tie

wins

0.0 0.2 0.4 0.6 0.8 1.0
f1_weighted_test_median

gradient_boosting + feature_agglomeration

gradient_boosting + polynomial

random_forest + extra_trees_preproc

adaboost + feature_agglomeration

gradient_boosting + no_preprocessing

random_forest + polynomial

adaboost + polynomial

random_forest + select_percentile

extra_trees + polynomial

random_forest + no_preprocessing

extra_trees + no_preprocessing

adaboost + select_rates

gradient_boosting + extra_trees_preproc

gradient_boosting + select_percentile

adaboost + extra_trees_preproc

gradient_boosting + fast_ica

extra_trees + extra_trees_preproc

decision_tree + select_rates

k_nearest_neighbors + no_preprocessing

random_forest + random_trees_embedding

p
ip

e
lin

e
s

0 10 20 30 40 50 60
rank

22.81

27.4

30.08

22.83

28.41

22.95

24.35

34.46

21.56

27.04

26.96

48.33

40.41

38.54

37.73

48.46

47.78

55.0

42.65

45.12

0 5 10 15 20 25

4

3

2

2

1

1

3

3

3

10

2

4

7

2

6

7

1

1

2

3

1

3

2

1

5

6

4

11

2

19

3

4

19

7

tie

wins

Figure 17: Aggregated F1 by dataset for each for each machine learning pipeline. From top to bottom,

the figure shows F1 performance aggregated using mean and median. From left to right, the

plots display the performance boxplots, the ranking barplot, and the wins and ties barplot

for each pipeline. All plots are ordered by boxplot mean. Only the top 20 outperforming,

sorted by boxplot mean, were selected.

28

0.0 0.2 0.4 0.6 0.8 1.0
f1_weighted_test_mean

bernoulli_nb + nystroem_sampler

mlp + feature_agglomeration

libsvm_svc + select_percentile

sgd + nystroem_sampler

bernoulli_nb + kitchen_sinks

libsvm_svc + feature_agglomeration

bernoulli_nb + polynomial

passive_aggressive + pca

libsvm_svc + select_rates

qda + fast_ica

passive_aggressive + kitchen_sinks

libsvm_svc + polynomial

sgd + select_rates

qda + nystroem_sampler

bernoulli_nb + feature_agglomeration

qda + kitchen_sinks

sgd + fast_ica

libsvm_svc + fast_ica

bernoulli_nb + liblinear_svc_preprocessor

sgd + kitchen_sinks

p
ip

e
lin

e
s

0 20 40 60 80 100 120 140
rank

103.41

93.79

111.62

101.23

102.49

107.67

111.23

110.03

107.8

105.01

105.04

116.17

115.89

111.23

106.08

114.05

113.38

117.7

140.2

131.85

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

1

4

2

tie

wins

0.0 0.2 0.4 0.6 0.8 1.0
f1_weighted_test_median

sgd + nystroem_sampler

mlp + feature_agglomeration

bernoulli_nb + no_preprocessing

bernoulli_nb + nystroem_sampler

libsvm_svc + feature_agglomeration

bernoulli_nb + kitchen_sinks

passive_aggressive + pca

passive_aggressive + kitchen_sinks

bernoulli_nb + polynomial

qda + fast_ica

libsvm_svc + select_rates

libsvm_svc + polynomial

sgd + select_rates

bernoulli_nb + feature_agglomeration

qda + nystroem_sampler

qda + kitchen_sinks

sgd + fast_ica

libsvm_svc + fast_ica

bernoulli_nb + liblinear_svc_preprocessor

sgd + kitchen_sinks

p
ip

e
lin

e
s

0 20 40 60 80 100 120 140
rank

99.02

92.55

101.72

104.85

105.71

100.74

111.39

106.66

110.86

103.84

106.19

112.8

112.12

106.31

112.91

114.34

114.18

116.9

136.78

131.42

0 1 2 3 4 5

1

5

2

1

3

2 tie

wins

Figure 18: Aggregated F1 by dataset for each for each machine learning pipeline. From top to bottom,

the figure shows F1 performance aggregated using mean and median deviation. From left

to right, the plots display the performance boxplots, the ranking barplot, and the wins and

ties barplot for each pipeline. All plots are ordered by boxplot mean. Only the top 20 worst

minus Kernel PCA, sorted by boxplot mean, were selected.

29

E Datasets

Table 4: Datasets used in the study. The columns, from left to right, show: (i) the OpenML dataset

ID, (ii) the number of examples, (iii) the number of features, (iv) the number of categorical

features, (v) the number of classes, (vi) the percentage of examples in the majority class, and

(vii) the percentage of examples in the minority class. Percentage less than 0.01% is indicate

with *.

OpenML
ID # Examples # Features

Categorical
Features

Number
of class

Majority
Class %

Minority
Class %

2 898 38 32 5 76.17 0.00*

6 20000 16 0 26 4.070 3.67

11 625 4 0 3 46.08 7.84

15 699 9 0 2 65.52 34.48

23 1473 9 7 3 42.70 22.61

24 8124 22 22 2 51.80 48.20

26 12960 8 8 5 33.33 0.02

28 5620 64 0 10 10.18 9.86

30 5473 10 0 5 89.77 0.51

32 10992 16 0 10 10.41 9.60

37 768 8 0 2 65.10 34.90

42 683 35 35 19 13.47 1.17

44 4601 57 0 2 60.60 39.40

46 3190 60 60 3 51.88 24.04

50 958 9 9 2 65.34 34.66

57 3772 29 22 4 92.29 0.05

60 5000 40 0 3 33.84 33.06

151 45312 8 1 2 57.55 42.45

155 829201 10 5 10 50.11 0.00*

181 1484 8 0 10 31.20 0.34

182 6430 36 0 6 23.81 9.72

184 28056 6 6 18 16.23 0.10

185 1340 16 1 3 90.67 4.25

188 736 19 5 5 29.08 14.27

279 45164 74 0 11 50.97 0.00*

300 7797 617 0 26 3.85 3.82

307 990 12 2 11 9.09 9.09

310 11183 6 0 2 97.68 2.32

311 937 49 0 2 95.62 4.38

333 556 6 6 2 50.00 50.00

334 601 6 6 2 65.72 34.28

335 554 6 6 2 51.99 48.01

375 9961 14 0 9 16.20 7.85

377 600 60 0 6 16.67 16.67

451 500 5 3 2 55.60 44.40

458 841 70 0 4 37.69 6.54

469 797 4 4 6 19.45 15.43

470 672 9 4 2 66.67 33.33

554 70000 784 0 10 11.25 9.02

715 1000 25 0 2 55.70 44.30

717 508 10 0 2 56.30 43.70

722 15000 48 0 2 66.39 33.61

725 8192 8 0 2 59.63 40.37

727 40768 10 0 2 50.09 49.91

728 4052 7 0 2 76.04 23.96

734 13750 40 0 2 57.61 42.39

735 8192 12 0 2 69.76 30.24

737 3107 6 0 2 50.40 49.60

30

Table 4 continued from previous page
OpenML

ID # Examples # Features
Categorical
Features

Number
of class

Majority
Class %

Minority
Class %

740 1000 10 0 2 56.00 44.00

742 500 100 0 2 56.60 43.40

750 500 7 0 2 50.80 49.20

752 8192 32 0 2 50.39 49.61

757 528 21 2 2 89.77 10.23

761 8192 21 0 2 69.76 30.24

770 625 6 0 2 50.40 49.60

772 2178 3 0 2 55.51 44.49

799 1000 5 0 2 50.30 49.70

802 1945 18 6 2 50.03 49.97

803 7129 5 0 2 53.06 46.94

807 8192 8 0 2 50.88 49.12

816 8192 8 0 2 50.22 49.78

819 9517 6 0 2 50.28 49.72

821 22784 16 0 2 70.40 29.60

823 20640 8 0 2 56.81 43.19

825 506 20 3 2 55.93 44.07

826 576 11 11 2 58.51 41.49

833 8192 32 0 2 68.96 31.04

837 1000 50 0 2 54.70 45.30

839 782 8 2 2 64.96 35.04

841 950 9 0 2 51.37 48.63

846 16599 18 0 2 69.09 30.91

847 6574 14 0 2 53.26 46.74

871 3848 5 0 2 50.00 50.00

881 40768 10 3 2 59.66 40.34

884 500 5 0 2 50.20 49.80

886 500 7 0 2 50.20 49.80

897 1161 15 2 2 70.03 29.97

901 40768 10 0 2 50.11 49.89

903 1000 25 0 2 56.30 43.70

920 500 50 0 2 59.00 41.00

923 8641 4 1 2 55.01 44.99

930 1302 33 1 2 52.84 47.16

934 1156 5 4 2 77.85 22.15

936 500 10 0 2 54.40 45.60

937 500 50 0 2 56.40 43.60

940 527 36 15 2 84.82 15.18

947 559 4 1 2 95.71 4.29

949 559 4 1 2 85.69 14.31

950 559 4 1 2 96.60 3.40

951 559 4 1 2 97.67 2.33

981 10108 68 68 2 73.14 26.86

1039 4229 1617 0 2 96.48 3.52

1044 10936 27 3 3 38.97 26.24

1046 15545 5 0 2 67.14 32.86

1049 1458 37 0 2 87.79 12.21

1050 1563 37 0 2 89.76 10.24

1053 10885 21 0 2 80.65 19.35

1056 9466 38 0 2 99.28 0.72

1063 522 21 0 2 79.50 20.50

1068 1109 21 0 2 93.06 6.94

1069 5589 36 0 2 99.59 0.41

1116 6598 167 1 2 84.59 15.41

1120 19020 10 0 2 64.84 35.16

1128 1545 10935 0 2 77.73 22.27

31

Table 4 continued from previous page
OpenML

ID # Examples # Features
Categorical
Features

Number
of class

Majority
Class %

Minority
Class %

1130 1545 10935 0 2 91.84 8.16

1134 1545 10935 0 2 83.17 16.83

1142 1545 10935 0 2 96.05 3.95

1146 1545 10935 0 2 95.53 4.47

1161 1545 10935 0 2 81.49 18.51

1166 1545 10935 0 2 87.18 12.82

1233 945 6373 0 7 14.81 12.59

1457 1500 10000 0 50 2.00 2.00

1459 10218 7 0 10 13.86 5.87

1462 1372 4 0 2 55.54 44.46

1466 2126 35 0 10 27.23 2.49

1471 14980 14 0 2 55.12 44.88

1475 6118 51 0 6 41.75 7.94

1478 10299 561 0 6 18.88 13.65

1479 1212 100 0 2 50.00 50.00

1480 583 10 1 2 71.36 28.64

1481 28056 6 3 18 16.23 0.10

1483 164860 7 2 11 33.05 0.84

1485 2600 500 0 2 50.00 50.00

1487 2534 72 0 2 93.69 6.31

1491 1600 64 0 100 1.00 1.00

1494 1055 41 0 2 66.26 33.74

1496 7400 20 0 2 50.49 49.51

1497 5456 24 0 4 40.41 6.01

1501 1593 256 0 10 10.17 9.73

1502 245057 3 0 2 79.25 20.75

1503 263256 14 0 10 10.06 9.92

1507 7400 20 0 2 50.04 49.96

1509 149332 4 0 22 14.73 0.61

1510 569 30 0 2 62.74 37.26

1515 571 1300 0 20 10.51 1.93

1528 1623 3 0 5 90.63 1.79

1529 1521 3 0 5 90.01 1.91

1530 1515 3 0 5 90.10 1.91

1531 10176 3 0 5 96.22 0.26

1532 10668 3 0 5 96.41 0.24

1535 9989 3 0 5 96.10 0.26

1536 10130 3 0 5 96.21 0.26

1538 8753 3 0 5 94.42 0.64

1541 8654 3 0 5 94.33 0.65

1542 1183 3 0 5 91.55 0.76

1547 1000 20 0 2 74.10 25.90

1549 750 40 3 8 22.00 7.60

1552 1100 12 4 5 27.73 13.91

1553 700 12 4 3 35.00 30.57

1590 48842 14 8 2 76.07 23.93

4134 3751 1776 0 2 54.23 45.77

4534 11055 30 30 2 55.69 44.31

4538 9873 32 0 5 29.88 10.11

4541 101766 49 36 3 53.91 11.16

6332 540 37 19 2 57.78 42.22

23380 2796 33 2 6 24.32 9.80

23381 500 12 11 2 58.00 42.00

40496 500 7 0 10 11.40 7.40

40498 4898 11 0 7 44.88 0.10

40499 5500 40 0 11 9.09 9.09

32

Table 4 continued from previous page
OpenML

ID # Examples # Features
Categorical
Features

Number
of class

Majority
Class %

Minority
Class %

40536 8378 120 61 2 83.53 16.47

40645 1600 1000 1000 2 50.00 50.00

40646 1600 20 20 2 50.00 50.00

40647 1600 20 20 2 50.00 50.00

40648 1600 20 20 2 50.00 50.00

40649 1600 20 20 2 50.00 50.00

40650 1600 20 20 2 50.00 50.00

40668 67557 42 42 3 65.83 9.55

40670 3186 180 180 3 51.91 24.01

40672 100968 29 15 8 41.71 0.010

40677 3200 24 24 10 10.53 9.25

40680 1324 10 10 2 77.95 22.05

40691 1599 11 0 6 42.59 0.63

40693 973 9 9 2 66.91 33.09

40701 5000 20 4 2 85.86 14.14

40704 2201 3 0 2 67.70 32.30

40705 959 44 2 2 63.92 36.08

40706 1124 10 10 2 50.44 49.56

40900 5100 36 0 2 98.53 1.47

40922 88588 6 0 2 50.08 49.92

40923 92000 1024 0 46 2.17 2.17

40927 60000 3072 0 10 10.00 10.00

40966 1080 77 0 8 13.89 9.72

40971 1000 19 0 30 8.00 0.60

40978 3279 1558 1555 2 86.00 14.00

40982 1941 27 0 7 34.67 2.83

40983 4839 5 0 2 94.61 5.39

40985 45781 2 0 20 6.35 3.05

40994 540 18 0 2 91.48 8.52

41082 9298 256 0 10 16.7 7.61

41084 575 10304 0 20 8.35 3.3

41144 3140 259 0 2 50.29 49.71

41145 5832 308 0 2 50.00 50.00

41146 5124 20 0 2 50.00 50.00

41147 425240 78 52 2 50.00 50.00

41150 130064 50 0 2 71.94 28.06

41160 31406 22 14 2 90.46 9.54

41162 72983 32 18 2 87.70 12.30

41163 10000 2000 0 5 20.49 19.13

41671 20000 20 0 5 55.81 3.72

41972 9144 220 0 8 44.29 0.22

41982 70000 784 0 10 10.00 10.00

41986 51839 1568 0 43 5.79 0.52

41988 51839 1568 0 43 5.79 0.52

41989 51839 2916 0 43 5.79 0.52

41990 51839 256 0 43 5.79 0.52

41991 270912 784 0 49 2.58 0.17

42193 5278 13 6 2 52.96 47.04

42206 595212 37 25 2 96.36 3.64

42343 82318 477 136 2 88.23 11.77

42345 70340 20 19 3 48.88 4.98

33

F Performance Tables

The performance tables that generated the figures are available on GitHub in the path "analysis/base-
level-analysis/performance_avaluation"3. You can also find different performance metrics on this

path as well.

3
https://github.com/ealcobaca/exploring-machine-learning-pipelines/tree/main/analysis/base-level-

analysis/perforamnce_evaluation

34

https://github.com/ealcobaca/exploring-machine-learning-pipelines/tree/main/analysis/base-level-analysis/perforamnce_evaluation
https://github.com/ealcobaca/exploring-machine-learning-pipelines/tree/main/analysis/base-level-analysis/perforamnce_evaluation

	Introduction
	Background
	Methodology
	Datasets
	Configuration Space
	Experimental Setup

	Experimental Results
	Performance obtained by the Pipelines
	Key Insights
	Limitations

	Conclusions
	Feature Preprocessors Performance
	Classifiers Performance
	Configuration Space
	Performance Aggregated by Mean and Median
	Datasets
	Performance Tables

