
Actor-Critic Methods using Physics-Informed Neural Networks: Control of a 1D
PDE Model for Fluid-Cooled Battery Packs

Amartya Mukherjee * 1 Jun Liu 1

Abstract
This paper proposes an actor-critic algorithm for
controlling the temperature of a battery pack
using a cooling fluid. This is modeled by a
coupled 1D partial differential equation (PDE)
with a controlled advection term that determines
the speed of the cooling fluid. The Hamilton-
Jacobi-Bellman (HJB) equation is a PDE that
evaluates the optimality of the value function
and determines an optimal controller. We pro-
pose an algorithm that treats the value network
as a Physics-Informed Neural Network (PINN)
to solve the continuous-time HJB equation rather
than a discrete-time Bellman optimality equation,
and we derive a control function from the HJB
equation. Our experiments show that a hybrid-
policy method that updates the value network us-
ing the HJB equation and updates the policy net-
work identically to PPO achieves the best results
in the control of this PDE system.

1. Introduction
In recent years, there has been a growing interest in Rein-
forcement Learning (RL) for continuous control problems.
RL has shown promising results in environments with un-
known dynamics through a balance of exploration in the
environment and exploitation of the learned policies. Since
the advent of REINFORCE with Baseline, the value network
in RL algorithms has shown to be useful towards finding
optimal policies as a critic network (Sutton & Barto, 2018).
This value network continues to be used in state-of-the-art
RL algorithms today.

Proximal Policy Optimization (PPO) is an actor-critic
method introduced by Schulman et al. (2017). It limits

*Equal contribution 1Department of Applied Mathematics, Uni-
versity of Waterloo, Waterloo, Ontario, Canada. Correspondence
to: Amartya Mukherjee <a29mukhe@uwaterloo.ca>.

Workshop on New Frontiers in Learning, Control, and Dynamical
Systems at the International Conference on Machine Learning
(ICML), Honolulu, Hawaii, USA, 2023. Copyright 2023 by the
author(s).

the update of the policy network to a trust region at every
iteration. This ensures that the objective function of the
policy network is a good approximation of the true objective
function and forces smooth and reliable updates to the value
network as well.

In discrete-time RL, the value function estimates returns
from a given state as a sum of the returns over time steps.
This value function is obtained by solving the Bellman Op-
timality Equation. On the other hand, in continuous-time
RL, the value function estimates returns from a given state
as an integral over time. This value function is obtained by
solving a partial differential equation (PDE) known as the
Hamilton-Jacobi-Bellman (HJB) equation (Munos, 1999).
Both equations are difficult to solve analytically and numer-
ically, and therefore the RL agent must explore the environ-
ment and make successive estimations.

The introduction of physics-informed neural networks
(PINNs) by Raissi et al. (2019) has led to significant ad-
vancements in scientific machine learning. PINNs leverage
auto-differentiation to compute derivatives of neural net-
works with respect to their inputs and model parameters
exactly. This enables the laws of physics (described by
ODEs or PDEs) governing the dataset of interest to act as
a regularization term for the neural network. As a result,
PINNs outperform regular neural networks on such datasets
by exploiting the underlying physics of the data.

Control of PDEs is considered to be challenging compared
to control of ODEs. Works such as Vazquez & Krstic (2017)
introduced the backstepping method for the boundary con-
trol of reaction-advection-diffusion equations using kernels.
For PDE control problems where the control input is en-
coded in the PDE, the HJB equation has been used ((Sirig-
nano & Spiliopoulos, 2018),(Kalise & Kunisch, 2017)).
Works from control of ODEs have been used by writing
the PDE as an infinite-dimensional ODE.

To the best of our knowledge, this paper is the first to explore
the intersection between PINNs and RL in a PDE control
problem. We discretize the PDE as an ODE to derive an HJB
equation. In order to facilitate the convergence of the value
network in PPO towards the solution of the HJB equation,
we utilize PINNs to encode this PDE and train the value

Actor-Critic Methods using Physics-Informed Neural Networks

network. Upon deriving the HJB equation, we also derive an
optimal controller. We introduce two algorithms: HJB value
iteration and Hamilton-Jacobi-Bellman Proximal Policy Op-
timization (HJBPPO), that train the value function using the
HJB equation and use the optimal controller. The HJBPPO
algorithm shows superior performance compared to PPO
and HJB value iteration on the PackCooling environment.

2. Preliminaries
2.1. The 1D pack cooling problem

The 1D system for fluid-cooled battery packs was introduced
by Kato & Moura (2021) and is modeled by the following
coupled PDE:

ut(x, t) =−D(x, t)uxx(x, t) + h(x, t, u(x, t))

+
1

R(x, t)
(w − u) (1)

wt = −σ(t)wx +
1

R(x, t)
(u− w), (2)

with the following boundary conditions:

ux(0, t) = ux(1, t) = 0 (3)

w(0, t) = U(t) (4)

where u(x, t) is the heat distribution across the battery pack,
w(x, t) is the heat distribution across the cooling fluid,
D(x, t) is the thermal diffusion constant across the bat-
tery pack, R(x, t) is the heat resistance between the battery
pack and the cooling fluid, h(x, t, u) is the internal heat
generation in the battery pack, U(t) is the temperature of
the cooling fluid at the boundary, and σ(t) is the transport
speed of the cooling fluid, which will be the controller in
this paper.

The objective of the control problem in this paper is to de-
termine σ(t) such that u(x, t) is as close to zero as possible.
The transport speed σ(t) is strictly non-negative so the cool-
ing fluid travels only in the positive x-direction. We restrict
σ(t) to [0, 1].

2.2. Hamilton-Jacobi-Bellman equation

To achieve optimal control for the 1D PDE pack cooling
problem, we will utilize works from control theory for
ODEs. Consider a controlled dynamical system modeled by
the following equation:

ẋ = f(x, σ), x(t0) = x0, (5)

where x(t) is the state and σ(t) is the control input. In
control theory, the optimal value function V ∗(x) is useful

towards finding a solution to control problems (Munos et al.,
1999):

V ∗(x) = sup
σ

1

∆t

∫ ∞

t0

γ
t

∆tL(x(τ ; t0, x0, σ(·)), σ(τ))dτ,

(6)

where L(x, σ) is the reward function, ∆t is the time step
size for numerical simulation, and γ is the discount factor.
The following theorem introduces a criteria for assessing
the optimality of the value function ((Liberzon, 2012), (Ka-
malapurkar et al., 2018)).

Theorem 2.1. A function V (x) is the optimal value function
if and only if:

1. V ∈ C1(Rn) and V satisfies the Hamilton-Jacobi-
Bellman (HJB) Equation

(γ − 1)V (x) + sup
σ∈U
{L(x, σ) + γ∆t∇xV

T (x)f(x, σ)} = 0

(7)

for all x ∈ Rn.

2. For all x ∈ Rn, there exists a controller σ∗(·) such
that:

(γ − 1)V (x) + L(x, σ∗(x)) + γ∆t∇xV
T (x)f(x, σ∗(x))

= (γ − 1)V (x) + sup
σ̂∈U
{L(x, σ̂) + γ∆t∇xV

T (x)f(x, σ̂)}.

(8)

For completeness, the proof of part 1 of this known result
is provided in Appendix B. The HJB equation will be used
in this paper to determine a new loss function for the value
network V (x) in this pack cooling problem and an optimal
controller σ∗(t).

3. Related work
The HJB equation we intend to solve is a first-order quasi-
linear PDE. The use of HJB equations for continuous RL
has sparked interest in recent years among the RL com-
munity as well as the control theory community and has
led to promising works. Kim et al. (2021) introduced an
HJB equation for Q Networks and used it to derive a con-
troller that is Lipschitz continuous in time. This algorithm
has shown improved performance over Deep Determinis-
tic Policy Gradient (DDPG) in three out of the four tested
MuJoCo environments without the need for an actor net-
work. Wiltzer et al. (2022) introduced a distributional HJB
equation to train the FD-WGF Q-Learning algorithm. This
models return distributions more accurately compared to
Quantile Regression TD (QTD) for a particle-control task.

Actor-Critic Methods using Physics-Informed Neural Networks

Finite difference methods are used to solve this HJB equa-
tion numerically. Furthermore, the authors mentioned the
use of auto-differentiation for increased accuracy of the
distributional HJB equation as a potential area for future
research in their conclusion.

The use of neural networks to solve the HJB equation has
been an area of interest across multiple research projects.
Jiang et al. (2016) uses a structured Recurrent Neural Net-
work to solve the HJB equation and achieve optimal control
for the Dubins car problem. Tassa & Erez (2007) uses
the Pineda architecture (Pineda, 1987) to estimate partial
derivatives of the value function with respect to its inputs.
They used the iterative least squares method to solve the
HJB equation. This algorithm shows convergence in sev-
eral control problems without the need for an initial stable
policy.

RL for PDE control is a challenging field that has been of in-
terest to the machine learning community lately. Farahmand
et al. (2017) introduces the Deep Fitted Q Iteration to solve
a boundary control problem for a 2D convection-diffusion
equation. The model stabilizes the temperature in the envi-
ronment without encoding any knowledge of the governing
PDE. Sirignano & Spiliopoulos (2018) develops the DGM
algorithm to solve PDEs. They use auto-differentiation to
compute first-order derivatives and Monte Carlo methods
to estimate higher-order derivatives. This algorithm was
used to solve the HJB equation to control a stochastic heat
equation and achieved an error of 0.1%. Kalise & Kunisch
(2017) approximates the solution to the HJB equation us-
ing polynomials. This was used to control a semilinear
parabolic PDE.

PINNs have been used for the control of dynamical systems
in recent works. Antonelo et al. (2021) uses a PINN for
model predictive control of a dynamical system over a long
time interval. The PINN takes the initial condition, the
control input, and the spatial and temporal coordinates as
input and estimates the trajectory of the dynamical system
while repeatedly shifting the time interval towards zero to
allow for long-range interval predictions. Nicodemus et al.
(2022) uses a PINN-based model predictive control for the
tracking problem of a multi-link manipulator. Djeumou et al.
(2022) uses a PINN to incorporate partial knowledge about a
dynamical system such as symmetry and equilibrium points
to estimate the trajectory of a controlled dynamical system.

The use of a PINN to solve the HJB equation for the value
network was done by Nakamura-Zimmerer et al. (2020) in
an optimal feedback control problem setting. The paper
achieves results similar to that of the true optimal control
function in high-dimensional problems.

4. HJB control of the pack cooling problem
In this section, we will connect the pack cooling PDE model
with the HJB equation to derive a new loss function for
the value network V (u,w) using the HJB equation and an
optimal controller. The HJB equation has been useful in
finding optimal controllers for systems modeled by ODEs.
In (Kalise & Kunisch, 2017), the controlled PDE system has
been discretized in space to form an ODE that can be used
in the HJB equation. Similarly, to form the HJB equation for
this paper, we need to write equations 1 and 2 as an ODE.

4.1. ODE discretization of PDE

We can write equations 1 and 2 as an ODE by discretizing
it in the x variable. By letting ∆x = 1

Nx
where Nx is the

number of points we choose to discretize the system along
the x-axis, we arrive at a 2Nx dimensional ODE:

˙̂
U = −DAÛ + h(Û) +

1

R
(Ŵ − Û) (9)

˙̂
W = −σ(t)BŴ +

1

R
(Û − Ŵ), (10)

where

Ŵ (t) =

 w(x1, t)
...

w(xNx , t)

 , Û(t) =

 u(x1, t)
...

u(xNx , t)

 ,

and AÛ is a second-order discretization of uxx, e.g.,

[AÛ]k =
u(xk+1, t)− 2u(xk, t) + u(xk−1, t)

∆x2
,

BŴ is a second-order discretization of wx, e.g.,

[BŴ]k =
w(xk+1, t)− w(xk−1, t)

2∆x
.

4.2. Derivation of the optimal controller

The ODE system derived in section 4.1 can be used in the
HJB equation to determine a loss function and an optimal
controller.
Theorem 4.1. Let u(·, t), w(·, t) ∈ L2[0, 1]. With
σ(t) ∈ [0, 1] and the reward function L(Ut,Wt, σt) =
−||Ut+1||22∆x, the HJB equation for the 1D pack cooling
problem is:

(γ − 1)V − ||u(·, t+∆t)||2

+ ⟨Vu(u(·, t), w(·, t)), ut(·, t)⟩

+
1

R
⟨Vw(u(·, t), w(·, t)), u(·, t)− w(·, t)⟩

+max(0,−⟨Vw(u(·, t), w(·, t)), wx(·, t)⟩) = 0 (11)

where || · || is the L2[0, 1] norm and ⟨·, ·⟩ is the L2[0, 1]
inner product.

Actor-Critic Methods using Physics-Informed Neural Networks

The proof of this theorem is in Appendix C. Theorem 2.1
shows that there exists a controller that satisfies equation 8.
This allows us to determine an optimal controller, as shown
in the following corollary:
Corollary 4.2. Let w(·, t) ∈ L2[0, 1]. With σ(t) ∈ [0, 1]
and the reward function L(Ut,Wt, σt) = −||Ut+1||22∆x,
provided the optimal value function V ∗(u,w) with
V ∗
w(·, t) ∈ L2[0, 1], the optimal controller for the 1D pack

cooling problem is:

σ∗(t) =

{
1, ⟨V ∗

w(u(·, t), w(·, t)), wx(·, t)⟩ < 0,

0, otherwise,
(12)

where ⟨·, ·⟩ is the L2[0, 1] inner product.

The proof of this corollary is in Appendix D. These results
will be used in our algorithms to achieve optimal control of
the pack cooling problem.

5. Algorithm
For the control of the PDE, we introduce two algorithms.
The first algorithm, called HJB Value Iteration, uses only
a value network and exploits the HJB equation and opti-
mal controller derived in Theorem 4.1 and Corollary 4.2.
The second algorithm, called HJBPPO, is a hybrid-policy
method that uses policy network updates from PPO and
value network updates from HJB Value Iteration.

To define these algorithms, we first define two loss functions.
The first loss function is derived from the proof of theorem
4.1.

MSEf =
1

T

T−1∑
t=0

((γ − 1)V (Ût, Ŵt)

− ||Ût+1||22∆x

+∇UV
T (Ût, Ŵt)

˙̂
Ut∆t

+
1

R
∇WV T (Ût − Ŵt)∆t

+max(0,−∇WV TBŴ))2∆t (13)

The second loss function provides an initial condition.
At u(x, T) = 0, w(x, T) = −R(x, t) = −2, we have:
u(x, T) = 0 and ut(x, T) = 0. As a result, us-
ing the reward function L from theorem 4.1, we have
L(0,−R(x, t)) = 0 and Lt(0,−R(x, t)) = 0. This shows
us that u(x, T) = 0, w(x, T) = −R(x, t) is considered a
stable point that maximizes the reward. Thus, we choose to
let V (0,−R(x, t)) = 0 be the Dirichlet boundary condition
for the HJB equation. This leads to the second loss function:

MSEu = (V (0,−R(x, t)))2. (14)

Algorithm 1 HJB Value Iteration
1: Initiate value network parameter ϕ
2: Run the control as given in equation (16) in the

environment for T timesteps and observe samples
{(st, at, Rt, st+1)}Tt=1, where st is the concatenation
of Ut and Wt.

3: Compute the value network loss as: J(ϕ) = MSEf +
MSEu+MSEn described in equations (13), (14), and
(15)

4: Update ϕ← ϕ− α2∇ϕJ(ϕ)
5: Run steps 2–4 for multiple iterations

Since the value function achieves its global maximum at
u(x, T) = 0, w(x, T) = −2, this means the derivatives of
V must be zero along all directions. Thus, we choose to let
∂V
∂n = 0 at u(x, T) = 0, w(x, T) = −R(x, t) along every
normal be the Neumann boundary condition for the HJB
equation. This leads to the third loss function:

MSEn = ||∇UV (0,−R(x, t))||22+||∇WV (0,−R(x, t))||22
(15)

We derived an optimal controller in corollary 4.2. Gym en-
vironments recommend that actions be in the range [−1, 1].
We can use the proof of the optimal controller in Appendix
D to derive a way of selecting actions:

at = −sign(∇WV TBŴ (t)) (16)

The algorithms introduced in this paper will focus on mini-
mizing both of the loss functions defined above and using
the optimal controller.

5.1. HJB value iteration

The HJB Value Iteration trains the loss function without
the need for an actor-network. We treat the value network
as a PINN, using auto-differentiation to estimate gradient
vectors to compute the loss in equation 13 and the control
in equation 16. At every time step, it uses the controller
given in equation 16. It updates the value network using the
loss functions as shown above. The method is provided in
Algorithm 1.

5.2. HJBPPO

HJBPPO is an algorithm that combines policy optimization
from PPO with HJB value iteration. This is implemented by
modifying the PPO implementation by Barhate (2021).

To facilitate the exploration of the environment and exploita-
tion of the models, we introduce an action selection method
that uses the policy network and equation 16 with equal

Actor-Critic Methods using Physics-Informed Neural Networks

Algorithm 2 HJBPPO action selection
1: Retrieve state st, policy network parameter θ and value

network parameter ϕ
2: Sample i ∈ {0, 1}
3: if i = 0 then

Select controller based on equation (16)
4: else

Run policy πθ

5: end

Algorithm 3 HJBPPO
1: Initiate policy network parameter θ and value network

parameter ϕ
2: Run action selection as given in algorithm 2 in the

environment for T timesteps and observe samples
{(st, at, Rt, st+1)}Tt=1, where st is the concatenation
of Ut and Wt.

3: Compute the advantage At

4: Compute rt(θ) =
πθ(at|st)
πθold (at|st)

5: Compute the objective function of the policy network:

L(θ) =
1

T

T−1∑
t=0

min[rt(θ)At, clip(rt(θ), 1− ϵ, 1 + ϵ)At],

6: Update θ ← θ + α1∇θL(θ)
7: Compute the value network loss as: J(ϕ) = MSEf +

MSEu+MSEn described in equations (13), (14), and
(15)

8: Update ϕ← ϕ− α2∇ϕJ(ϕ)
9: Run steps 2–8 for multiple iterations

probability, as shown in Algorithm 2. Upon running the
policy πθ, we sample from a distribution N(µ, s) where µ
is the output from the policy network. We initiate s to 0.3
and decrease it by 0.01 every 1000 episodes until it reaches
0.1. After sampling an action from the normal distribution,
we clip it between −1 and 1.

This action selection method ensures that we select actions
that are not only in {−1, 1} but also in [−1, 1]. It introduces
a new method of exploration of the environment by choosing
from two different methods of action selection. Actions
selected using equation 16 are also stored in the memory
buffer and are used to train the policy network πθ. The
method is provided in Algorithm 3.

We will train PPO, HJB value iteration, and HJBPPO on the
PackCooling environment and compare these algorithms.

Figure 1. Reward curves of PPO (red), HJB value iteration (blue),
and HJBPPO (green) averaged over 5 seeds. Shaded area indicates
0.2 standard deviations.

6. Results
6.1. Training

To ensure the reproducibility of our results, we have posted
our code in the following link:

https://github.com/amartyamukherjee/PPO-PackCooling.
We posted our hyperparameters in Appendix E. The details
of the implementation of the PackCooling gym environment
are posted in Appendix A. The code was run using Kaggle
CPUs. Each algorithm was trained for a million timesteps.
Training each algorithm took approximately 5 hours.

6.2. Reward Curves

The reward curves have been plotted in Figure 1, comparing
PPO, HJB value iteration, and HJBPPO. Each algorithm was
run for 5 different seeds. We plotted the mean reward over
each seed and over 20 consecutive episodes, and shaded the
area 0.2 standard deviations from the mean. HJB value iter-
ation shows the worst performance, as its rewards decrease
past PPO after training for multiple episodes. PPO shows a
rapid increase in average rewards after the first episode and a
slow increase in average rewards afterward. HJBPPO shows
the best performance in the graph, achieving the highest
average reward in each episode and an increase in average
rewards after training for multiple episodes.

The significantly higher average reward in HJBPPO in the
first episode shows that the action selection method de-
scribed in Algorithm 2 provides a robust strategy to explore
the environment and train the models. The higher average
rewards are due to the exploitation of the dynamics of the
environment as done by the HJB equation.

https://github.com/amartyamukherjee/PPO-PackCooling

Actor-Critic Methods using Physics-Informed Neural Networks

6.3. Trajectories

The plots of the trajectories have been posted in Appendix F.
After training for a million timesteps, we tested our models
on the PackCooling environment and produced the plots.
These plots were generated using the rendering feature ex-
plained in section A.4.

The trajectory of HJB value iteration shows the worst results.
σ(t) returns 1.0 only once. It achieves a cumulative reward
of −7294.51. Thus, the input of the cooling fluid from
the boundary is minimal. As a result of the internal heat
generation in the battery pack, u(x, t) reaches high values
of roughly 5 at t = 10, and as a result, w(x, t) also reaches
high values of roughly 4. This shows that the training of the
value function in HJB value iteration is inadequate and we
have not arrived at an optimal controller for the pack cooling
problem. This is because exploration of the environment
was at a minimum, as we only exploited equation 16 at each
time step.

The trajectory of PPO shows that the values σ(t) takes at
every timestep have a large variance with its neighboring
timesteps. It achieves a cumulative reward of −3970.02.
Control of the temperature of the battery pack has been
achieved as u(x, t) takes values between−2 and 2 at t = 10.

The trajectory of u(x,t) with HJBPPO shows it takes val-
ues between −2 and 2 at t = 10. The values σ(t) takes
at every timestep have a lower variance with its neighbor-
ing timesteps compared to PPO. It achieves a cumulative
reward of −881.55. For t ∈ [4, 6], u(x, t) shows an in-
creasing trend towards u = 2. In response, the controller
σ(t) took values closer to 1.0 to allow for greater input of
cooling fluid from the boundary so that u(x, t) decreases
towards zero. Due to higher average rewards as shown in
Figure 1, this shows that a model that exploits the dynamics
of the environment to return a controller shows improved
performance compared to a model that returns noisy control
centered at σ = 0.5.

7. Conclusion
In this paper, we have introduced two algorithms that use
PINNs to solve the pack cooling problem. This paper com-
bines PINNs with RL in a PDE control setting. In the HJB
value iteration algorithm, the HJB equation is used to intro-
duce a loss function and a controller using a value network.
The HJBPPO algorithm is a hybrid-policy method that com-
bines the training of the value network from HJB value
iteration and the training of the policy network from PPO.
HJBPPO shows an overall improvement in performance
compared to PPO due to its ability to exploit the physics of
the environment to improve the learning curve of the agent.

8. Future research
Despite showing an overall improvement in the reward
curves, the HJBPPO algorithm leaves room for improved
RL algorithms using PINNs.

In this paper, we computed the HJB equation by expressing
the PDE as an ODE by discretizing in x. This was possible
because the pack cooling problem was modeled by 1D PDEs.
Currently existing works such as (Sirignano & Spiliopoulos,
2018) and (Kalise & Kunisch, 2017) solve the HJB equation
for 1D PDEs by discretizing it in x. It will be interesting to
see how HJB control can be extended to higher dimensional
PDEs.

The goal of PINNs is to solve PDEs without the need for nu-
merical methods. In this paper, we solved the pack cooling
problem numerically using the Crank-Nicolson method and
the method of characteristics. An area for further research
may be the use of PINNs to solve for the HJB equation and
the PDE that governs the dynamics of the system.

In the PackCooling environment, the HJBPPO algorithm
showed an improvement compared to PPO. But this is due
to the fact that we knew the dynamics of the system, thus
allowing for the physics of the environment to be exploited.
The environments give all the details of the state needed
to choose an action. One limitation of HJBPPO is that it
may not perform well in partially observable environments
because the estimate of the dynamics of the system may
be inaccurate. Deep Transformer Q Network (DTQN) was
introduced by Esslinger et al. (2022) and achieves state-of-
the-art results in many partially observable environments. A
potential area for further research may be the introduction
of an HJB equation that facilitates partial observability. The
DTQN algorithm may be improved by incorporating this
HJB equation using PINNs.

References
Antonelo, E. A., Camponogara, E., Seman, L. O., de Souza,

E. R., Jordanou, J. P., and Hubner, J. F. Physics-informed
neural nets for control of dynamical systems. arXiv
preprint arXiv:2104.02556, 2021.

Barhate, N. Minimal pytorch implementation of proxi-
mal policy optimization. https://github.com/
nikhilbarhate99/PPO-PyTorch, 2021.

Djeumou, F., Neary, C., Goubault, E., Putot, S., and Topcu,
U. Neural networks with physics-informed architec-
tures and constraints for dynamical systems modeling.
In Learning for Dynamics and Control Conference, pp.
263–277. PMLR, 2022.

Esslinger, K., Platt, R., and Amato, C. Deep transformer q-

https://github.com/nikhilbarhate99/PPO-PyTorch
https://github.com/nikhilbarhate99/PPO-PyTorch

Actor-Critic Methods using Physics-Informed Neural Networks

networks for partially observable reinforcement learning.
Preprint arXiv:2206.01078, 2022.

Farahmand, A.-m., Nabi, S., and Nikovski, D. N. Deep
reinforcement learning for partial differential equation
control. In 2017 American Control Conference (ACC), pp.
3120–3127, 2017. doi: 10.23919/ACC.2017.7963427.

Jiang, F., Chou, G., Chen, M., and Tomlin, C. J. Using neu-
ral networks for fast reachable set computations. Preprint
arXiv:611.03158, 2016.

Kalise, D. and Kunisch, K. Polynomial approxima-
tion of high-dimensional hamilton–jacobi–bellman equa-
tions and applications to feedback control of semilinear
parabolic pdes. SIAM Journal on Scientific Computing,
40, 02 2017. doi: 10.1137/17M1116635.

Kamalapurkar, R., Rosenfeld, J., Dixon, W. E., and Walters,
P. Reinforcement Learning for Optimal Feedback Control:
A Lyapunov-Based Approach. Springer Cham, 2018.

Kato, D. and Moura, S. J. 1d pde model for thermal dy-
namics in fluid-cooled battery packs: Numerical meth-
ods and sensor placement. In 2021 American Con-
trol Conference (ACC), pp. 3102–3107, 2021. doi:
10.23919/ACC50511.2021.9483248.

Kim, J., Shin, J., and Yang, I. Hamilton–jacobi deep q-
learning for deterministic continuous-time systems with
lipschitz continuous controls. Journal of Machine Learn-
ing Research, 22:1–34, 2021.

Liberzon, D. Calculus of variations and optimal control
theory: a concise introduction. Princeton University
Press, 2012.

Munos, R. A Study of Reinforcement Learning in the Con-
tinuous Case by the Means of Viscosity Solutions. Ma-
chine Learning, 40:265–299, 1999.

Munos, R., Baird, L., and Moore, A. Gradient descent
approaches to neural-net-based solutions of the hamilton-
jacobi-bellman equation. In IJCNN’99. International
Joint Conference on Neural Networks. Proceedings (Cat.
No.99CH36339), volume 3, pp. 2152–2157 vol.3, 1999.

Nakamura-Zimmerer, T., Gong, Q., and Kang, W.
A causality-free neural network method for high-
dimensional hamilton-jacobi-bellman equations. In 2020
American Control Conference (ACC), pp. 787–793, 2020.

Nicodemus, J., Kneifl, J., Fehr, J., and Unger, B. Physics-
informed neural networks-based model predictive control
for multi-link manipulators. IFAC-PapersOnLine, 55(20):
331–336, 2022. ISSN 2405-8963. 10th Vienna Interna-
tional Conference on Mathematical Modelling MATH-
MOD 2022.

Pineda, F. Generalization of back propagation to recurrent
and higher order neural networks. In Neural information
processing systems, 1987.

Raffin, A., Hill, A., Gleave, A., Kanervisto, A., Ernestus, M.,
and Dormann, N. Reinforcement learning tips and tricks.
https://stable-baselines3.readthedocs.
io/en/master/guide/rl_tips.html, 2022.

Raissi, M., Perdikaris, P., and Karniadakis, G. Physics-
informed neural networks: A deep learning framework for
solving forward and inverse problems involving nonlinear
partial differential equations. Journal of Computational
Physics, 378:686–707, 2019.

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and
Klimov, O. Proximal policy optimization algorithms.
Preprint arXiv:1707.06347, 2017.

Sirignano, J. and Spiliopoulos, K. Dgm: A deep learning al-
gorithm for solving partial differential equations. Journal
of Computational Physics, 375:1339–1364, 2018. ISSN
0021-9991.

Sutton, R. S. and Barto, A. G. Reinforcement Learning: An
Introduction (2nd edition). Cambridge, MA : The MIT
Press, 2018.

Tassa, Y. and Erez, T. Least squares solutions of the hjb
equation with neural network value-function approxima-
tors. IEEE Transactions on Neural Networks, 18(4):1031–
1041, 2007.

Vazquez, R. and Krstic, M. Boundary control of cou-
pled reaction-advection-diffusion systems with spatially-
varying coefficients. IEEE Transactions on Automatic
Control, 62(4):2026–2033, 2017. doi: 10.1109/TAC.2016.
2590506.

Wiltzer, H. E., Meger, D., and Bellemare, M. G. Distribu-
tional Hamilton-jacobi-Bellman equations for continuous-
time reinforcement learning. In Proceedings of the 39th
International Conference on Machine Learning, volume
162, pp. 23832–23856. PMLR, 2022.

https://stable-baselines3.readthedocs.io/en/master/guide/rl_tips.html
https://stable-baselines3.readthedocs.io/en/master/guide/rl_tips.html

Actor-Critic Methods using Physics-Informed Neural Networks

A. The PackCooling gym environment
To run numerical experiments in this paper, we had to create a gym environment that solves the pack cooling model
numerically and takes a controller as input every time step.

In gym environments, it is recommended to set the action range to [−1, 1] (Raffin et al., 2022). In our control problem, σ(t)
returns values in [0, 1]. Thus, we let σ(t) = at+1

2 .

A.1. Internal heat generation

In this paper, we set the internal heat generation in the battery pack, h(x, t, u(x, t)) as:

h(x, t, u(x, t)) = e0.1u(x,t). (17)

The objective of the internal heat generation was to increase the temperature distribution across the battery pack at every
time step, which serves as a motivation for choosing a strictly positive exponential function. This makes the desired state of
the controller, u = 0, unstable.

A.2. Initial conditions

For u(x, t) we chose initial conditions that satisfy the boundary conditions 3. A set of solutions that satisfy the boundary
conditions are:

u(x, 0) =

∞∑
n=0

Cn cos(πnx), (18)

since the derivative of cos(πnx) is zero at x = 0 and x = 1 for all integers n. Thus, we set our initial conditions to the
following:

u(x, 0) =

N∑
n=0

Cn cos(πnx), (19)

where N is the number of Fourier nodes. Note that N ≤ Nx where Nx is the number of points we discretize the numerical
solution into. In our experiments, we set N = 9. The Fourier coefficients Cn are sampled from the uniform distribution
U(−2, 2). Adding randomness in our initial conditions leads to more robustness in our controller.

For w(x, t), we set the initial condition to w(x, 0) = U(0) where U is defined in the boundary condition in equation 4. In
our experiments, we set U(t) to a constant: U(t) = −5.0.

This means if we set the controller to a constant σ(t) = 0, then u(x, t) will increase to high values due to the forcing term
h(x, t, u(x, t)). And if we set the controller to a constant σ(t) = 1, then u(x, t) will decrease to low values due to the
cooling fluid. So the objective of the controller is to choose σ(t) so that the temperature distribution in the battery pack is as
close to zero as possible.

A.3. Numerical solution

In our numerical solutions, we discretize the heat distributions u(x, t) and w(x, t) in x and t as: ∆x = 0.01,∆t = 0.01,
thus satisfying ∆x ≥ ∆t ≥ σ(t)∆t. We set D(x, t) and R(x, t) from equations 1 and 2 to constants as D(x, t) =
0.01, R(x, t) = 2.0.

The numerical solution to the PDE was implemented as explained in (Kato & Moura, 2021). We solve for a system

A+z(t+∆t)− 1

2
h(z(t+∆t)) = Az(t) +

1

2
h(z(t)), (20)

where z(t) is the concatenation of u(x, t) and w(x, t) discretized in space. The matrices A+ and A are derived using a
combination of the Crank-Nicolson method, characteristics, and interpolation. Finally, to solve this non-linear system, we
run 10 iterations of the Newton-Raphson method.

Actor-Critic Methods using Physics-Informed Neural Networks

A.4. Rendering

In the rendering of the environment, we plot the trajectories of σ(t), u(x, t), w(x, t) in the environment. We store the
numerical solutions of the three variables in a buffer every episode and reset the buffer upon resetting the environment.

Examples of rendered plots are shown in Appendix F. We return a line plot of σ(t) along t, and a mesh plot of u(x, t) and
w(x, t) along x and t.

B. Proof of theorem 2.1 part 1
Theorem A function V (x) is the optimal value function if and only if V ∈ C1(Rn) and V satisfies the HJB Equation

(γ − 1)V (x) + sup
σ∈U
{L(x, σ) + γ∆t∇xV

T (x)f(x, σ)} = 0 (21)

for all x ∈ Rn, assuming for all x ∈ Rn, there exists a controller σ∗(·) such that:

(γ − 1)V (x) + L(x, σ∗(x)) + γ∆t∇xV
T (x)f(x, σ∗(x))

= (γ − 1)V (x) + sup
σ̂∈U
{L(x, σ̂) + γ∆t∇xV

T (x)f(x, σ̂)}. (22)

Proof We start with equation 6:

V ∗(x(t0)) = sup
σ

1

∆t

∫ ∞

t0

γ
t

∆tL(x(τ), σ(τ))dτ (23)

Separating the integral term gives:

V ∗(x(t0)) = sup
σ

[
1

∆t

∫ t0+∆t

t0

γ
t

∆tL(x(τ), σ(τ))dτ +
γ

∆t

∫ ∞

t0+∆t

γ
t

∆tL(x(τ), σ(τ))dτ

]
(24)

= sup
σ

[
1

∆t

∫ t0+∆t

t0

γ
t

∆tL(x(τ), σ(τ))dτ + γV ∗(x(t0 +∆t))

]
(25)

As ∆t→ 0, we can rely on the following two assumptions:

1

∆t

∫ t0+∆t

t0

γ
t

∆tL(x(τ), σ(τ))dτ ≈ 1

∆t
(∆tL(x(t0), σ(t0))) = L(x(t0), σ(t0)) (26)

V ∗(x(t0 +∆t)) ≈ V ∗(x(t0)) + ∆t∇xV
∗(x(t0))

T f(x(t0)) (27)

This gives us the following equation:

V ∗(x(t0)) = sup
σ

[
L(x(t0), σ(t0)) + γV ∗(x(t0)) + γ∆t∇xV

∗(x(t0))
T f(x(t0))

]
(28)

0 = (γ − 1)V ∗(x(t0)) + sup
σ

[
L(x(t0), σ(t0)) + γ∆t∇xV

∗(x(t0))
T f(x(t0))

]
(29)

C. Proof of theorem 4.1
Theorem Let u(·, t), w(·, t) ∈ L2[0, 1]. With σ(t) ∈ [0, 1] and the reward function L(Ut,Wt, σt) = −||Ut+1||22∆x, the
HJB equation for the 1D pack cooling problem is:

(1− γ)V (u,w)− ||u(·, t+∆t)||2 + ⟨Vu, ut⟩+
1

R
⟨Vw, u− w⟩+max(0,−⟨Vw, wx⟩) = 0 (30)

Actor-Critic Methods using Physics-Informed Neural Networks

where || · || is the L2[0, 1] norm and ⟨·, ·⟩ is the L2[0, 1] inner product.

Proof In the pack cooling problem, the value function is a function of Û(t) and Ŵ (t), which is u(x, t) and w(x, t)
discretized in x. The HJB equation from equation 7 can thus be written as follows:

(γ−1)V (Û(t), Ŵ (t))+ sup
σ∈[0,1]

{L(Û(t), Ŵ (t), σ)+γ∆t∇ÛV
T (Û(t), Ŵ (t))

˙̂
U+γ∆t∇ŴV T (Û(t), Ŵ (t))

˙̂
W} = 0 (31)

We know that L(Û(t), Ŵ (t), σ) = −||Û(t + ∆t)||22∆x, where ∆x and ∆t are the discretizations in x and t used in the

environment respectively. Û(t+∆t) is determined by Û(t) and ˙̂
U(t). We know from equation 9 that neither Û(t) or ˙̂

U(t)

depend on σ(t). Thus, we can bring L(Û(t), Ŵ (t), σ) and ∇ÛV
T (Û(t), Ŵ (t))

˙̂
U outside the supremum.

(γ−1)V (Û(t), Ŵ (t))+L(Û(t), Ŵ (t), σ)+γ∆t∇ÛV
T (Û(t), Ŵ (t))

˙̂
U+ sup

σ∈[0,1]

{γ∆t∇ŴV T (Û(t), Ŵ (t))
˙̂
W} = 0 (32)

We expand ˙̂
W from equation 10.

sup
σ∈[0,1]

{∇ŴV T (Û , Ŵ)
˙̂
W} = sup

σ∈[0,1]

{∇ŴV T (Û , Ŵ)(−σ(t)BŴ +
1

R
(Û − Ŵ))} (33)

= ∇ŴV T (Û , Ŵ)(
1

R
(Û − Ŵ)) + sup

σ∈[0,1]

{∇ŴV T (Û , Ŵ)(−σ(t)BŴ)} (34)

For the expression to achieve its supremum, we let σ(t) be defined as the following:

σ(t) =

{
1 ∇ŴV T (Û , Ŵ)BŴ < 0

0 otherwise
(35)

We get:
sup

σ∈[0,1]

{∇ŴV T (Û , Ŵ)(−σ(t)BŴ)} = max(0,−∇ŴV T (Û , Ŵ)BŴ) (36)

Thus, we get the following HJB equation in discretized x:

(γ−1)V (Û , Ŵ)+L(Û , Ŵ , σ)+γ∆t∇ÛV
T (Û , Ŵ)

˙̂
U+∇ŴV T (Û , Ŵ)(

1

R
(Û−Ŵ))+max(0,−γ∆t∇ŴV T (Û , Ŵ)BŴ) = 0

(37)

Let ∆x = ∆t to satisfy the condition for numerical stability. As we let ∆x→ 0, we see a Riemann sum forming.

(γ − 1)V −
∫ 1

0

(u(·, t+∆t))2dx+

∫ 1

0

Vuutdx+

∫ 1

0

Vw(
1

R
(u− w))dx+max(0,−

∫ 1

0

Vwwxdx) = 0 (38)

We can write this as inner products and norms in the L2[0, 1] space.

(γ − 1)V − ||u(·, t+∆t)||2 + ⟨Vu, ut⟩+ ⟨Vw,
1

R
(u− w)⟩+max(0,−⟨Vw, wx⟩) = 0 (39)

Actor-Critic Methods using Physics-Informed Neural Networks

D. Proof of corollary 4.2
Corollary Let u(·, t), w(·, t) ∈ L2[0, 1]. With σ(t) ∈ [0, 1] and the reward function L(Ut,Wt, σt) = −||Ut+1||22∆x,
provided the optimal value function V ∗(u,w) the optimal controller for the 1D pack cooling problem is:

σ∗(t) =

{
1, ⟨V ∗

w(·, t), wx(·, t)⟩ < 0,

0, otherwise,
(40)

where || · || is the L2[0, 1] norm and ⟨·, ·⟩ is the L2[0, 1] inner product.

Proof The optimal controller was derived in the proof of the HJB equation in equation 35. As we let ∆x→ 0, we get:

σ(t) =

{
1

∫ 1

0
Vwwxdx < 0

0 otherwise
(41)

We can write this as inner products and norms in the L2[0, 1] space.

σ(t) =

{
1 ⟨Vw, wx⟩ < 0

0 otherwise
(42)

E. Hyperparameters

Hyperparameter Value
Horizon (T) 1024

Actor learning rate 3e-04
Critic learning rate 1e-03

Num. epochs 10
Minibatch size 64
Discount (γ) 0.99

GAE parameter (λ) 0.95

Table 1. Hyperparameters

Actor-Critic Methods using Physics-Informed Neural Networks

F. Plots of trajectories

Figure 2. Trajectory of PPO. Cumulative reward: −3970.02

Actor-Critic Methods using Physics-Informed Neural Networks

Figure 3. Trajectory of HJB value iteration. Cumulative reward: −7294.51

Actor-Critic Methods using Physics-Informed Neural Networks

Figure 4. Trajectory of HJBPPO. Cummulative reward: −881.55

