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ABSTRACT

Scaling up neural networks has been a key recipe to the success of large language
and vision models. However, in practice, up-scaled models can be disproportion-
ately costly in terms of computations, providing only marginal improvements in
performance; for example, EfficientViT-L3-384 achieves <2% improvement on
ImageNet-1K accuracy over the base L1-224 model, while requiring 14× more
multiply–accumulate operations (MACs). In this paper, we investigate scaling
properties of popular families of neural networks for image classification, and
find that scaled-up models mostly help with “difficult” samples. Decomposing
the samples by difficulty, we develop an embarrassingly simple model-agnostic
two-pass Little-Big algorithm that first uses a light-weight “little” model to make
predictions of all samples, and only passes the difficult ones for the “big” model to
solve. Good little companions achieve drastic MACs reduction for a wide variety
of model families and scales. Without loss of accuracy or modification of existing
models, our Little-Big models achieve MACs reductions of 76% for EfficientViT-
L3-384, 81% for EfficientNet-B7-600, 71% for DeiT3-L-384 on ImageNet-1K.
Little-Big also speeds up the InternImage-G-512 model by 62% while achieving
90% ImageNet-1K top-1 accuracy, serving both as a strong baseline and as a simple
practical method for large model compression.
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Figure 1: Little-Big relaxes the assumption of obtaining predictions for samples in a single pass using
a single model, achieving MACs reduction of 30%− 80% across models types (convolutional neural
networks, transformers, and hybrid networks) and scales (from 1 to 3000 GMACs). Marker sizes
correspond to log(#parameters). Model labels are formatted as “Family-Size-InputResolution”.
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1 INTRODUCTION

Advances in parallel computing hardware, such as GPUs, have made end-to-end single-pass parallel
processing standard in computer vision models. Large vision datasets like ImageNet-1K (Deng
et al., 2009) made it possible for such deep vision models (e.g.Alexnet (Krizhevsky et al., 2012),
ResNet (He et al., 2016) and ViT Dosovitskiy et al. (2020)) to learn general visual features at
scale. While vision models surpassed human performance on ImageNet-1K a decade ago (Szegedy
et al., 2015), researchers are in the perpetual pursuit of achieving improved performance by using a
combination of two strategies: 1) developing more performant models and training techniques for
a given compute budget, and 2) scaling up the models. While improved models from the former
approach are often preferred in compute or memory-constrained applications, the latter has become
increasingly popular, thanks to its success in large language models (LLMs) (Touvron et al., 2023).
However, despite architectural improvements, scaling up models remains expensive; we are often
trading exponential compute cost for marginal gains in model accuracy (Table 1).

In this work, we show that much of the inefficiency comes from our implicit preference for single-pass
models and propose an embarrassingly simple two-pass algorithm to drastically speed up models
with little companions. We summarize our work in response to two critical questions around model
scaling and compression.

〈Q1〉 Given a pair of Little-Big models in the same model family, which incorrect predictions made
by the Little model are fixed using the Big model?

• Using ImageNet-1K as the test bed and binning the Little model’s predictions by confidence, we
find that, very often, mistakes made by the Little model correspond to low confidence (measured
via maximum softmax probability)

〈Q2〉 Without compromising accuracy, can we speed up a Big model by using a Little model to
preprocess a proportion of samples in a distribution?

• We propose an embarrassingly simple two-pass Little-Big protocol where a light-weight Little
model is used to make predictions (class and confidence) on all samples in the first pass, and a
Big model performs a second pass on samples with low confidence from the first pass, achieving
significant reduction in inference compute costs without compromising accuracy.

• Without any modification to existing models, we prescribe Little-Big pairs that significantly reduce
compute costs of models across types and scales, while not compromising accuracy: Little-Big
models achieves MACs reductions of 76% for EfficientViT-L3-384, 81% for EfficientNet-B7-600,
71% for DeiT3-L-384 on ImageNet-1K. Little-Big also speeds up the very large InternImage-G-512
model by 62% while achieving 90% ImageNet-1K top-1 accuracy, serving both as a strong baseline
and as a practical approach for efficient deployment of large models.

Table 1: Scaling up is expensive. Scaling up model size is a popular way to improve performance
without redesigning neural architectures or training recipes. Popular practices often involve sparing
compound scaling in input resolution H , model width w and depth l over the base model (character-
ized by H0, w0, l0). However Equation 2 shows that model size and inference cost quickly blow up
by 10− 100×, with only marginal performance gains over small base models of the same family.

Model Family Size H/H0 w/w0 l/l0
ImageNet-1K Val GMACs

Accuracy (%) ∆ Absolute ∆

EfficientNet (Tan & Le, 2019)

B0-224 1 1 1 77.65 −− 0.39 −−
B2-280 1.3 1.1 1.2 80.56 +2.91 1.09 +1.8×
B4-380 1.7 1.4 1.8 83.45 +5.80 4.39 +10.3×
B7-600 2.7 2.0 3.1 84.11 +6.45 37.8 +95.8×

EfficientViT (Cai et al., 2023)
L1-224 1 1 1 84.39 −− 5.3 −−
L2-288 1.3 1 1.4 85.60 +1.21 11.0 +1.1×
L3-384 1.7 2 1.4 86.34 +1.95 81.0 +14.3×

DeiT3 (Touvron et al., 2022)
S-224 1 1 1 83.05 −− 4.6 −−
B-224 1 2 1 85.60 +2.55 17.6 +1.1×
L-384 1.7 2.7 2 87.73 +4.68 191.2 +40.6×
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2 RELATED WORK

2.1 COMPUTER VISION MODELS

Since Alexnet (Krizhevsky et al., 2012), single-pass neural classifiers trained end-to-end have
dominated leaderboards of various vision tasks from image classification to video segmentation
(Beyer et al., 2020; Deng et al., 2009; He et al., 2016; Szegedy et al., 2015; Xu et al., 2018). Most
neural models originates from two families of neural architectures: convolutional neural networks
(CNNs) and transformers. Core to CNNs are “convolutions” which apply the same compute across
locations on a feature map. On the other hand, transformers, which first found success in sequence-
to-sequence language models (Vaswani et al., 2017) and subsequently in vision (Dosovitskiy et al.,
2020), embed a sequence of tokens (e.g., image patches) and utilize attention mechanism to model
intra- and inter-token interactions. Finally, hybrid models like Swin (Liu et al., 2021) combine CNN
priors and attention mechanisms to achieve good performance.

2.2 SCALING IN VISION

Many neural classifiers can be expressed as a composition of layers (He et al., 2016; Krizhevsky
et al., 2012; Szegedy et al., 2015; Touvron et al., 2022):

y = F (x) = fwl
· ... · fw1

· fw0
(x), (1)

where x ∈ RC×H×H denotes an input image (using square images for simplicity) and y ∈ (0, 1)N

denotes a N -dimensional softmax confidence score. To get a class prediction, one finds the class n
with the highest confidence. fwj denotes the function of layer j with its characteristic width wj . The
inference cost of a single sample x with such a model F (x) can be expressed as:

MACs[F (x)] ≈ CF ∗H2 ∗ w2 ∗ l (2)

where CF is a scaling coefficient determined by the model family Tan & Le (2019), and w denotes
the model width, while l represents its depth. In turn, the average inference cost per sample over a
(finite) distribution D is given by:

ED

(
MACs[F ]

)
=

1

|D|
∑
x∈D

MACs[F (x)] ≈ CF ∗H2 ∗ w2 ∗ l (3)

Complementing innovations in model architecture F that make models more compute efficient, a
straightforward way of improving performance is to scale up the model. Thanks to architectural
improvements like the skip connections (He et al., 2016), normalization layers Szegedy et al. (2015),
as well as better initialization and parameterization (Yang & Hu, 2021), scaling up a model by orders
of magnitude has been made feasible. Furthermore, efficient scaling strategies such as compound
scaling in model width and depth, as well as input resolution (Tan & Le, 2019) have also emerged.
However, Equation 2 imposes a fundamental limitation on the prohibitive cost of scaling: doubling in
H , w, and l leads to 25 − 1 = 31× increase in model compute cost. The marginal accuracy gains
associated with model scaling shown in Table 1 further make it unappealing for many practical use
cases with limited compute budget.

2.3 MODEL COMPRESSION

It is well known that modern neural networks have significant redundancy, thus impacting both
the model size (often measured by the number of parameters) and inference compute cost (often
measured by MACs). This has motivated the design of compression strategies to reduce redundancy
in the model. This has motivated the development of various compression strategies to reduce
redundancy. Popular approaches include:

• Pruning: Ablating weights or neurons deemed less important for predictions. For example,
WDPruning (Yu et al., 2022a) reduces width based on saliency scores, while X-Pruner (Yu
& Xiang, 2023) measures a unit’s importance by its contribution to predicting each target
class. The underlying ideas of these models is that the redundancy in size and compute are
coupled, and one reduces compute by removing the units.

3
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• Adaptive Computation: Employing mechanisms that dynamically adjust the computation
based on input complexity (Kag & Fedorov, 2023; Rao et al., 2021; Yin et al., 2022). These
methods often adopt some form of “early exit” mechanisms that reduce l in Equation 2. For
instance, techniques like DynamicViT (Rao et al., 2021) downsamples the number of tokens
adaptively to reduce compute cost, while A-ViT (Yin et al., 2022) introduces learned token
halting for ViT models so that not all tokens are processed by the full depth of the model,
thus effectively reducing the average depth of the compute graph during inference.

• Quantization: This is a widely adopted technique that reduces the precision of model
weights and activations, thereby decreasing memory usage and computational require-
ments (Rokh et al., 2023). While quantization is not the focus of Little-Big, it is worth
noting that it can complement our framework to further reduce inference costs. For instance,
quantized versions of both Little and Big models could be used within the Little-Big frame-
work, offering compounded efficiency gains. However, it is also important to highlight
that the benefits of quantization are often hardware-dependent, relying on specific accel-
erators or processors that support low-precision computations. In contrast, Little-Big is
entirely hardware-independent, making it applicable across a wide range of deployment
environments without requiring specialized hardware.

2.4 HUMAN VISION

While parallel processing plays an essential role in making it possible to ingest gigabits/s of raw
visual information and compress it to tens of bits/s to guide our behavior (Soto et al., 2020; Zheng &
Meister, 2024), human vision is not a single-pass process. Human eyes have two distinct information
processing pathways that originate from two types of photoreceptors called rods and cones. While
the visual acuity in the cone-rich fovea is ∼ 1 arcmin, it only covers ∼ 2 degrees, or ∼ 0.01% of the
visual field (Rosenholtz, 2016). The rest of the ∼ 99.9% of the visual field is mostly dominated by
rods which provides much lower visual acuity (∼ 10 arcmin). A given small patch in the visual field
either only gets processed in a single-pass by the low-acuity rod pathway, or followed by additional
passes with high-acuity foveal vision if needed as directed by the saccade. Studies (Tang et al., 2018;
Torralba, 2009) have shown that human visual classification performance adapts to variable compute
budget.

3 SCALING UP HELPS WITH “HARD” SAMPLES
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Figure 2: Using the EfficientNet family as an example, we first show that confidence of individual
models correlate well with prediction accuracy(left). This allows us to approximate a “hardness”
axis, where harder samples correspond to predictions with lower confidence. Mistakes made by
Little models can be categorized as correctable (solid bars, × → ✓) and non-correctable (shaded
bars, × → ×) by the Big model. Breaking down the mistakes of Little models by hardness in
the right panel, we find that most of the correctable mistakes are characterized by low confidence.
This motivates the idea of a two-pass Little-Big algorithm enabled by decomposing the samples by
confidence thresholds. More examples can be found in Appendix Figure 6.
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In answer to 〈Q1〉, we first define an axis of “hardness” along which we can break down the
predictions of the Little models. In lieu of an objective notion of hardness, we use the model
confidence max(Fsmall(xi)) as a surrogate since it reflects model calibration, i.e., higher prediction
confidence correspond to higher accuracy (Figure 2 left).

Intuitively, there are 3 simple hypotheses on how scaled up “Big” models help correct the mistakes of
base “Little” models:

〈H1〉 Big models uniformly help samples across difficulty,

〈H2〉 Big models preferentially help with “hard” samples,

〈H3〉 Big models preferentially help with “easy” samples.

Using the Pytorch (Paszke et al., 2019) pretrained EffcientNet family (Tan & Le, 2019) as an example,
the right panel in Figure 2 visualizes prediction mistakes by Little model confidence (B0, B2, and
B4) on the ImageNet-1K validation set. The mistakes made by Little models are divided into two
categories, correctable (solid bars) and non-correctable (shaded bars) by the Big model. The full
height of each bar (solid + shaded parts) sums up to the total number mistakes in the corresponding bin.
Quantitatively, the average confidence of correctable mistakes for EfficientNet-B0+B7, EfficientNet-
B2+B7, EfficientNet-B4+B7 pairs are 0.38, 0.41, and 0.30 respectively. In fact, 90% of correctable
mistakes fall under confidence thresholds of 0.65, 0.67, 0.47, respectively. This suggests 〈H2〉 is the
likely to be true and motivates the two-pass algorithm in the next section.

4 TWO-PASS LITTLE-BIG ALGORITHM

4.1 SPEEDING UP BIG MODELS

1import torch.nn.functional as F
2

3Class BigLittle:
4

5__init__(self,
6little, # small model
7big, # big model
8t_little, # image transform for small model
9t_big, # image transform for big model
10):
11

12self.little, self.big = little, big
13self.t_little, self.t_big = t_little, t_big
14

15predict(self,
16x, # raw input image
17threshold # prediction threshold T
18):
19

20y = F.softmax(self.little(self.t_little(x)),dim=1)
21

22if torch.max(y) < threshold:
23y = F.softmax(self.big(self.t_big(x)),dim=1)
24

25return F.argmax(y,dim=1)

Little-Big Algorithm: Pytorch pseudo code of Little-Big for single image inference. Separate
pre-processing image transforms are included as Big and Little models may require different input
resolution and/or interpolation. The implementation keeps both models in the memory, Big and Little
models can be loaded/unloaded to avoid overhead in max memory usage.
To answer 〈Q2〉, when we allow a sample to be solved with more than one pass like human vision, a
simple way is to have a Little-Big pair GFLittle,FBig

(x, T ) or shortly G(x, T ) for simplicity:

GFLittle,FBig
(x, T ) =

{
FLittle(x), if max(FLittle(x)) ≥ T

FBig(x).
Little-Big (4)

5
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The essence of this Little-Big algorithm is to use a light-weight model to pre-screen samples and only
pass hard samples to the Big model (see Algorithm). The average per-sample cost of inference over a
dataset D can then be expressed as:

ED(MACs[G(x, T )]) =
1

|D|

[ ∑
x∼D

MACs[FLittle(x)] +
∑

x∼D∗

MACs[FBig(x)]

]
= MACs[FLittle(x)] +

|D∗|
|D|

MACs[FBig(x)], (5)

where D∗ ⊆ D is defined as the set of x where max(FLittle(x)) < T, ∀x ∈ D.

Using EfficientNet-B7 (Paszke et al., 2019) as an example Big model to speed up, the top left panel
in Figure 3 shows how the relative size |D∗|/|D| varies as a function of threshold T with Little
models ranging from EfficientNet-B0 to B6. The shape of the curves correspond to the cumulative
distribution of prediction confidence for each Little model. Equation 5 further links |D∗|/|D| to the
relative compute cost ED(MACs[G(x, T )])/ED(MACs[FBig(x)]): the higher the threshold the
more samples that get passed to the big model, thus increasing MACs. Since |D∗|/|D| ≤ 1, the upper
bound of relative MACs overhead in the worst case scenario is MACs[FLittle(x)]/MACs[FBig(x)],
which is usually no greater than 1 with proper choices of the Little model. As shown in the top middle
panel of Figure 3, the net effect of adding a pre-screening Little model to the Big model leads to
significant reduction in compute cost for a wide range of T across difference choices of Little models.
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Figure 3: Speeding up EfficientNet-B7 with smaller EfficientNets. For using Little-Big, one
needs to choose what small model to use and set a threshold T based on an accuracy or MACs
target. 50 evenly spaced T in the range of 0 to 1 are sampled to generate each curve. “⋆” marks
the accuracy-MACs tradeoff of the Big EfficientNet-B7. “⋆” indicates the optimal Little-Big pair
without any loss of accuracy on ImageNet-1K, achieving 81% of MACs reduction. The same fixed T
performs well on both ReaL and ImageNet-V2 as well. Importantly, the optimal pair achieves both
better accuracy and lower MACs than simply scaling down B7 to B6 or B5.

4.2 SPEEDING UP WITHOUT LOSING ACCURACY

Accuracy-MACs trade-off In addition to MACs, one is interested in how the accuracy of G(x, T )
changes as a function of T . While it is not surprising that the accuracy generally decreases with
smaller T , eventually degenerating to the accuracy of the Little model at T = 0, certain choices of
G(x, T ) achieve very little accuracy drop or even slight accuracy boost across a wide range of T .
The bottom left panel of Figure 3 visualizes the accuracy-MACs trade-off on ImageNet-1K. One
might immediately notice that any point on the curves is a valid G(x, T ) model, and adjusting T
allows traversal along the full curve. Many points on certain curves, such as GB4,B7(x, T ), achieves
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new Pareto optima. A convenient way to pick an optimal operating point of G(x, T ) is to set up
a target accuracy either in the form of absolute accuracy or tolerable accuracy loss ∆Acc. Setting
∆Acc >= 0, one can easily draw a horizontal line on the accuracy-MACs plot (dashed line in bottom
row of Figure 3) and find the leftmost intersection point (blue star, GB4,B7(x, T = 0.24)), yielding
the Little-Big pair with the least compute cost while satisfying the accuracy target, speeding up B7
by 81%. Little-Big also achieves significant speed-up in throughput and latency (Appendix Figure 9).

Generalization beyond ImageNet-1K To test whether the optimal G determined on ImageNet-1K
generalizes well, individual models as well as Little-Big pairs are evaluated two additional datasets:
1) ImageNet-ReaL (Beyer et al., 2020) where the ground truth labels of the ImageNet-1K validation
set are reassessed with an improved labeling protocol ((Figure 3 bottom middle), and 2) ImageNet-
V2 (Recht et al., 2019) where slightly “harder” validation images are collected (Figure 3 bottom
right). Comparing accuracy-MACs curves across the three datasets, one may notice that although
the absolute accuracies and MACs varies, the shapes match qualitatively. Quantitatively, we find
the optimal GB4,B7(x, T = 0.24) found on ImageNet-1K performs well on ReaL and V2, with only
marginal accuracy losses of 0.04% and 0.07%, respectively, validating the generalizability of the
optimal G.

Evidently, the key to determining the optimal G is estimating the accuracy-MACs trade-off curves
on the target distribution D. In practice, however, one might only have access to a small subset
of D or a set D′ close to to D. We simulate this case by determining an optimal G(x, T ) on the
smaller V2 (10000 samples) and test generalization performance on ImageNet-1K and ReaL (50000
samples). Following the aforementioned process of determining optimal G(x, T ) on V2 (Appendix
Figure 7) yields a similar optimal pair G′

B4,B7(x, T = 0.28)), speeding up B7 by a similar 78% on
ImageNet-1K. This validates the robustness of such a process.

4.3 SPEEDING UP MODELS ACROSS TYPES AND SCALES

Table 2 shows more examples the strong MACs compression with Little-Big on a variety of model
families including CNNs, transformers, and hybrid models, across scales from 1 to 2700 GMACs.
Thanks to the model agnostic nature of Little-Big , it allows pairing up models of different families
(models in blue in Table 2). Large modes such as EfficientVit-L3-384 (Cai et al., 2023), DeiT3-L3-
384 (Touvron et al., 2022), ViT-H-14-518 (Dosovitskiy et al., 2020) can be compressed without any
loss of accuracy by 70% to 80%.

It is worth noting that the roles of Big and Little in the Little-Big pair are relative. For example,
DeiT3-L-384 performs well as Little model, efficiently speeding up the 3B-parameter InternImage-
G-512 (Wang et al., 2022b) and 600M-parameter ViT-H-14-518 by 62% and 80%, respectively.
However, it does not imply that DeiT3-L-384 itself cannot act as the Big model and be sped up by an
even smaller model. In fact, Table 2 shows that it can be sped up by the EfficientViT-L2-288 by 71%.
Similarly, EfficientNet-B4 can serve as a strong Little model for compressing EfficientNet-B7, as well
as a Big model to be compressed by the smaller EfficientNet-B2. This enables the generalization of
Little-Big to a K-pass framework where K > 1 with additional performance gain (Appendix Section
A.2). Another important observation is that the speed up depends on the distribution D: Relative
MACs reduction are consistently lower on the slightly harder ImageNet-V2 than on ImageNet-1K.
This suggests that one may measure distribution shift by measuring average MACs with Little-Big.
Furthermore in Appendix A.3, we investigate a more sophisticated variant of the Little-Big approach,
termed Little-Big Ensemble, where predictions from the Little and Big models are combined using a
weighted average for hard samples. Our findings reveal that despite the added memory overhead of
storing the Little model’s predictions, Little-Big Ensemble does not yield significant improvements
in achieving lossless accuracy compared to the simpler Little-Big method.

4.4 COMPARISON WITH PRIOR ART

As discussed in Section 2.3, many methods have been developed for model compression in various
axis. We compare accuracy-MACs tradeoff of Little-Big with many such methods in Table 3. Typical
pruning methods such as WDPruning (Yu et al., 2022a) and X-Pruner (Yu & Xiang, 2023) selectively
removes units that are less important to model accuracy, methods like SPViT (He et al., 2024) “prune”
some attention layers into convolutional layers, effecitvely changing the model type. Addtionally,
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Table 2: The simple Little-Big algorithm achieves strong MACs reduction across model types
and scales. Thresholds (T ) are determined as the minimum value achieving a preset accuracy loss
tolerance on ImageNet-1K (IN-1K). All but InterImage-G-512 are compressed without loss in IN-1K
accuracy. Models in blue denote the Little model is from a different model family as the Big model.
Configurations with lowest MACs are in bold.

Model Params Top@1 Accuracy (%) GMACs

IN-1k ReaL V2 IN-1k&ReaL IN-V2

Efficientnet-B2-288 (Tan & Le, 2019) 9.1M 80.56 86.31 68.95 1.09
+B0-224 (T=0.66) +3.5M(+58%) 80.59(+0.03) 86.35(+0.04) 68.99(+0.04) 0.78(−28%) 0.91(−16%)

+EfficientViT-B1-224 (T=0.58) +9.1M(+100%) 80.57(+0.01) 86.35(+0.04) 68.92(−0.03) 0.73(−33%) 0.83(−24%)

Efficientnet-B3-300 (Tan & Le, 2019) 12.2M 82.01 87.28 71.16 1.83
+B1-240 (T=0.66) +7.8M(+64%) 82.01(+0.00) 87.35(+0.07) 71.15(−0.01) 1.36(−26%) 1.56(−15%)

+EfficientViT-B1-224 (T=0.78) +9.1M(+74%) 82.01(+0.00) 87.31(+0.03) 70.94(−0.22) 1.07(−42%) 1.27(−31%)

Efficientnet-B4-380 (Tan & Le, 2019) 19.3M 83.45 88.43 73.27 4.6
+B3-300 (T=0.50) +12.2M(+63%) 83.46(+0.01) 88.42(−0.01) 73.39(+0.12) 2.7(−38%) 3.1(−29%)

+B2-288 (T=0.72) +9.1M(+47%) 83.47(+0.02) 88.42(−0.01) 73.28(+0.01) 2.7(−39%) 3.2(−27%)

+B1-240 (T=0.86) +7.8M(+40%) 83.46(+0.01) 88.44(+0.01) 73.27(+0.00) 4.0(−10%) 4.3(−3%)

+B0-224 (T=0.94) +5.3M(+27%) 83.45(+0.00) 88.43(+0.00) 73.29(+0.02) 3.9(−10%) 4.2(−4%)

EfficientViT-B3-288 (Cai et al., 2023) 48.6M 84.13 88.49 74.12 6.5
+B3-224 (T=0.60) +48.6M(+100%) 84.14(+0.01) 88.49(+0.00) 73.98(−0.14) 4.7(−28%) 5.1(−22%)

+B2-288 (T=0.76) +24.3M(+50%) 84.13(+0.00) 88.55(+0.06) 73.82(−0.30) 3.8(−42%) 4.3(−33%)

+B2-224 (T=0.94) +24.3M(+50%) 84.14(+0.01) 88.52(+0.03) 74.11(−0.01) 3.8(−42%) 4.5(−30%)

ConvNext-L-224 (Liu et al., 2022) 197.8M 84.39 88.75 74.34 34.3
+S-224 (T=0.52) +50.2M(+25%) 84.39(+0.00) 88.75(+0.00) 74.35(+0.01) 15.7(−54%) 19.2(−44%)

Efficientnet-B7-600 (Tan & Le, 2019) 66.3M 84.11 88.84 74.39 37.8
+B6-528 (T=0.24) +43.0M(+65%) 84.13(+0.02) 88.90(+0.06) 74.50(+0.11) 20.1(−47%) 21.4(−43%)

+B5-456 (T=0.38) +30.4M(+46%) 84.12(+0.01) 88.78(−0.06) 74.65(+0.26) 13.2(−65%) 15.4(−59%)

+B4-380 (T=0.24) +19.3M(+29%) 84.12(+0.01) 88.80(−0.04) 74.32(−0.07) 7.1(−81%) 9.5(−75%)

+B3-300 (T=0.66) +12.2M(+18%) 84.13(+0.02) 88.88(+0.04) 74.41(+0.02) 14.6(−61%) 18.9(−50%)

+B2-288 (T=0.74) +9.1M(+14%) 84.11(+0.00) 88.83(−0.01) 74.39(+0.00) 15.6(−59%) 20.1(−47%)

+B1-240 (T=0.90) +7.8M(+12%) 84.12(+0.01) 88.85(+0.01) 74.34(−0.05) 32.9(−13%) 34.6(−8%)

+B0-224 (T=0.92) +5.3M(+8%) 84.12(+0.01) 88.84(+0.00) 74.40(+0.01) 28.4(−25%) 31.1(−18%)

EfficientViT-L3-384 (Cai et al., 2023) 246.0M 86.34 89.66 77.35 81.1
+L3-256 (T=0.52) +246.0M(+100%) 86.35(+0.01) 89.71(+0.05) 77.36(+0.01) 40.4(−50%) 44.3(−45%)

+L2-384 (T=0.60) +63.7M(+26%) 86.34(+0.00) 89.83(+0.17) 77.55(+0.20) 27.0(−67%) 31.7(−61%)

+L2-288 (T=0.66) +63.7M(+26%) 86.35(+0.01) 89.86(+0.20) 77.37(+0.02) 19.8(−76%) 25.0(−69%)

DeiT3-L-384 (Touvron et al., 2022) 304.8M 87.73 90.24 79.34 191.2
+B-224 (T=0.82) +86.6M(+28%) 87.73(+0.00) 90.23(−0.01) 79.36(+0.02) 71.2(−63%) 90.3(−53%)

+EfficientViT-L2-288 (T=0.90) +63.7M(+21%) 87.73(+0.00) 90.37(+0.13) 79.43(+0.09) 54.7(−71%) 74.0(−61%)

ViT-H-14-518 (Dosovitskiy et al., 2020) 633.5 88.55 90.51 81.12 1016
+L-16-512 (T=0.46) +305M(+48%) 88.59(+0.04) 90.89(+0.38) 81.04(−0.08) 430(−58%) 488(−52%)

+DeiT3-L-384 (T=0.70) +305M(+10%) 88.56(+0.01) 90.64(+0.13) 81.06(−0.06) 204(−80%) 276(−73%)

InternImage-G-512 (Wang et al., 2022b) 3.076B 90.05 90.97 83.04 2700
+XL-384 (T=0.84) +335M(+11%) 90.01(−0.04) 90.98(+0.01) 82.99(−0.05) 1436(−47%) 1781(−34%)

+DeiT3-L-384 (T=0.90) +305M(+10%) 90.03(−0.02) 90.99(+0.02) 82.95(−0.09) 1035(−62%) 1335(−51%)

distillation is used to retrain the network to achieve better performance. We show that even with tricks
that effectively retrained models, many pruning methods are not competitive, especially compared
with modern baselines such as DeiT3 (Touvron et al., 2022), which in essence are better trained
ViTs. For example, the best performing SPViT-DeiT-B with distillation failed to outperform a better
trained DeiT3-S baseline in both accuracy, model size, and MACs. It remains to be seen whether
these methods work with the improved baseline models. In contrast, the process of choosing T for
lossless compression with Little-Big in Section 4.2 will yield T = 0 which automatically suggests
replacement of the Big with the more performant Little model. Adaptive compute may still be an
interesting direction, however popular models such as A-ViT (Yin et al., 2022) also fail to match the
performance of better trained baseline models or show that their adaptive models are really better
than simply scaling down the model moderately to match the MACs of the adaptive counterparts.

5 DISCUSSION

A large corpus of literature in modern computer vision (Cai et al., 2023; Dosovitskiy et al., 2020;
He et al., 2016; Krizhevsky et al., 2012; Szegedy et al., 2015; Tan & Le, 2019; Touvron et al., 2022)
has followed the norm of developing single-pass solutions trained end-to-end for a wide variety of
vision tasks ranging from image/video classification to dense prediction.
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Table 3: Little-Big outperforms a variety of pruning methods and adaptive compute models (†).
Models in blue denote the Little model is from a different model family as the Big model. Thresholds
in red indicate the Little model can simply replace the Big model, achieving model compression and
better accuracy. “+disl.” denotes additional distillation training.

Model Method ImageNet-1K GMACs

Accuracy (%) ∆ Remaining ∆

DeiT-S-224 Touvron et al. (2021)

Baseline 79.81 +0.9 4.6 −−
DynamicViT-DeiT-S† Rao et al. (2021) 78.3 −0.6 3.4 −26%

A-ViT-S† Yin et al. (2022) 78.6 −0.3 3.6 −22%
A-ViT-S† + disl. Yin et al. (2022) 80.7 +1.8 3.6 −22%

eTPS-DeiT-S Wei et al. (2023) 79.7 +0.8 3.0 −35%
dTPS-DeiT-S Wei et al. (2023) 80.1 +1.2 3.0 −35%
SPViT-DeiT-S He et al. (2024) 78.3 −0.6 3.3 −28%

SPViT-DeiT-S + disl. He et al. (2024) 80.3 +1.4 3.3 −28%
+EfficientViT-B1-224(T=0.44) 79.81 +0.9 1.1 −77%

DeiT3-S Baseline Touvron et al. (2022) 83.05 +4.1 4.6 −−
+EfficientViT-B1-224(T=0.54) 83.11 +4.2 2.1 −54%
+EfficientNet-B2-288(T=0.52) 83.06 +4.1 2.0 −56%

DeiT-B-224 Touvron et al. (2021)

Baseline 81.81 −− 17.6 −−
DynamicViT-DeiT-B† Rao et al. (2021) 81.4 −0.4 11.4 −35%

SCOP Tang et al. (2020) 79.7 −2.1 10.2 −42%
UVC Yu et al. (2022b) 80.57 −1.24 8.0 −55%

WDPruning Yu et al. (2022a) 80.76 −1.05 9.9 −44%
X-Pruner Yu & Xiang (2023) 81.02 −0.99 8.5 −52%

eTPS-DeiT-B Wei et al. (2023) 81.1 −0.7 11.4 −35%
dTPS-DeiT-B Wei et al. (2023) 81.2 −0.6 11.4 −35%
SPViT-DeiT-B He et al. (2024) 81.5 −0.4 8.4 −52%

SPViT-DeiT-B + disl. He et al. (2024) 82.4 +0.6 8.4 −52%
+DeiT-S (T=0.60) 81.83 +0.02 9.0 −49%

DeiT3-B Baseline Touvron et al. (2022) 85.75 +3.94 17.6 −−
+DeiT3-S(T=0.60) 85.75 +3.94 11.4 −35%

+EfficientViT-B2-288 (T=0.60) 85.77 +3.96 7.8 −56%

Swin-S-224 Liu et al. (2021)

Baseline 83.17 −− 8.7 −−
STEP Li et al. (2021) 79.6 −3.6 6.3 −28%

WDPruning Yu et al. (2022a) 81.8 −1.4 6.3 −28%
X-Pruner Yu & Xiang (2023) 82.0 −1.2 6.0 −31%

SPViT-Swin-S He et al. (2024) 82.4 −0.6 6.1 −30%
SPViT-Swin-S + disl. He et al. (2024) 83.0 −0.2 6.1 −30%

+Swin-T (T=0.68) 83.18 +0.01 7.0 −20%
+EfficientViT-B2-224 (T=0.58) 83.18 +0.01 2.5 −71%

While many multi-pass test-time augmentations (TTAs) (Shanmugam et al., 2021) that aggregate
predictions of several augmented views of the same sample have been developed as a post-hoc add-on
to improve performance, these methods go in the opposite direction of Little-Big . Fundamentally,
K-pass TTAs are multiplicative methods that trades K× inference cost for slight improvement of
accuracy. Little-Big is a subtractive multi-pass algorithm that relies on a good decomposition of
problems and solve each part with the least compute, not unlike Speculative Decoding in languange
modeling (Leviathan et al., 2023). What TTA and Little-Big share in common is that both are post-hoc
methods that do not require any re-training of the original models. It is actually possible to combine
both in the same inference pipeline much like human vision to make predictions adaptively.

A potentially important contributing factor to the sub-optimal performance of popular adaptive
compute models such as DynamicViT and A-ViT lies in their end-to-end training protocol. As the
number of tokens decrease over depth, the deeper layers effectively “see” less pixels during training.
This implicit coupling between the need to reduce compute cost at inference time and at training time
due to the end-to-end training protocol may hinder the potential of adaptive methods. In contrast,
Little-Big decouples inference and training compute costs, and uses models individually trained on
all pixels on full datasets.

In language modeling, recent work such as Hybrid-LLM (Ding et al., 2024) shares the same principle
as Little-Big . Hybrid-LLM involves training a probabilistic router that connects a little transformer
and a big transformer. Like many other model compression methods, Hybrid-LLM trades accuracy
for inference speed. In contrast, the embarrassingly simple routing mechanism of Little-Big involves
choosing only one hyperparameter T , and achieves lossless speedup without losing accuracy.

Limitations It is worth noting that, while Little-Big achieves drastic MACs reduction across model
families and scales, the speed up is not free: since an additional Little model is needed to make the
Little-Big pair, the storage overhead is usually a small fraction of the storage requirement of the Big
model. However, the storage overhead does not necessarily translate to memory overhead. Although
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the example Pytorch pseudo code keeps both Big and Little models in memory at the same time to
minimize latency while increasing maximum memory usage, one can alternatively only load one
model into the memory at a time so that there is no overhead on maximum memory usage. Batching
predictions can further reduce the memory I/O overhead per sample.

Extensions It is possible to extend the same principles of Little-Big to other tasks by re-examining
and modifying Equation 1. For example, consider the task of video classification, where the input x
is updated as a sequence of images with an added time dimension t, x ∈ RC×W×H×t. The inference
cost of a neural video classifier is given by:

MACs[F (x)] ≈ CF ∗H2 ∗ t ∗ w2 ∗ l, (6)

which makes brute-force upscaling more costly because of the additional t dimension. However,
decomposition based on Equations 4 and 5 generalize to this task provided video classifiers are well
calibrated and video samples are decomposable by confidence. To demonstrate the generalizability of
Little-Big , we apply it to the Swin3D-B video classification model on Kinetics-400. The Swin3D-T +
Swin3D-B pair achieves 41% MACs reduction of Swin3D-B while maintaining 79.4% Top-1 accuracy
on Kinetics-400. For dense image prediction tasks like semantic segmentation, the prediction y
becomes a map, where y ∈ [0, 1]W×H×N . In principle, one can continue perform decomposition
on a per sample basis, but it may be more efficient to perform decomposition on a per pixel or
per patch level. In Appendix A.1 we also demonstrate how Little-Big could also be extended to
zero-shot multimodal classification, semantic segmentation, multi-label segmentation as well as for
text classification

Additional contextualization of novelty As the ML community continues to produce increasingly
large models with massive parameter counts, efficiently deploying them has become a significant
challenge. Current inference optimization strategies, such as quantization or distillation, often require
training new, smaller models or performing operations that result in performance drops. Additionally,
these techniques fail to fully leverage the extensive ecosystem of models that is readily available (e.g.,
the EfficientNet family or user-submitted models on platforms like Torch or HuggingFace Hub).

In this context, we believe that our study on speeding up large models using smaller models is an
important direction of work. Though the proposed protocol is simple to implement, our work holds
significant practical value since (i) our approach completely post-hoc, requiring no re-training; (ii)
our approach is entirely model- and architecture-agnostic, allowing seamless integration with a
variety of models; and ours is the first work to systematically study and benchmark its utility in
improving inference efficiency across a variety of tasks and model architectures.

By leveraging the growing diversity of pre-existing models across frameworks, Little-Big enables
users to mix and match architectures (e.g., pairing models from different families such as EfficientNet
and ViTs, BERTs and T5s). This flexibility ensures that one can adopt state-of-the-art models
without the burden of additional training or specialized pipelines, and obtain significant compute
savings and latency reductions without sacrificing accuracy. We argue that the framework’s simplicity,
adaptability, and compatibility with existing models make it a highly practical solution for real-world
use cases.

6 CONCLUSION

In summary, we investigate how scaled-up models help base models correct their mistakes, show
that the former preferentially help with samples with low confidence predictions. Inspired by that,
we propose a simple two-pass Little-Big algorithm that selectively pass “difficult” samples to large
models, achieving drastic MACs reduction of up to 80% without sacrificing accuracy for a wide
range of model families and sizes.

The inefficiency in model scale-up and the effectiveness of Little-Big in compressing the scaled-up
models are two sides of the same coin, with effective decomposition of samples in a dataset being
the key to connecting the two sides. Despite being embarrassingly simple and surprisingly effective,
Little-Big is considered as a lower bound on how much a model can be compressed without losing
accuracy. More sophisticated ways to decompose the data distribution and better ways to use the
Little models output are promising directions to further improve the performance of such subtractive
multi-pass algorithms.
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A APPENDIX

A.1 EXTENSIONS AND ADDITIONAL INSIGHTS

A.1.1 EXTENDING TO ZERO-SHOT CLASSIFICATION USING MULTIMODAL MODELS

To evaluate the generality of the Little-Big paradigm, we apply it to zero-shot classification using
OpenAI’s pre-trained CLIP models, specifically with ViT-B-32 and ViT-L-14 as the little and big
models respectively. We conducted experiments on four diverse datasets: Flowers-102 (Nilsback &
Zisserman, 2008), Food-101 (Bossard et al., 2014), SUN-397 (Xiao et al., 2010), and DTD (Cimpoi
et al., 2014). We follow the same protocol as outlined in Section 4.1 with a key difference in how
logits are obtained. In CLIP models, logits are computed as the cosine similarity between the image
embedding and the text embeddings of class labels. We construct the prompts for each class using
the prompt templates outlined in the OpenAI’s CLIP repository. We then apply softmax over these
logits to derive class probabilities and using the little model, we establish a threshold T based on
20% of the data (validation split) and measure the performance of the Little-Big framework on the
remaining 80%.

Table 4 summarizes the results. For each dataset, we report the top-1 accuracy achieved by the Little
model, the Big model, and the performance of Little-Big and Little-Big Ensemble approaches.

Table 4: Zero-shot classification results using CLIP models on Flowers-102, Food-101, SUN-397,
and DTD datasets. The Little-Big approach effectively balances accuracy and computational costs.

Dataset Little Model Big Model Little-Big Little-Big Ensemble
Acc (%) Acc (%) Acc (%) ∆ GMACs (%) Acc (%) ∆ GMACs (%)

SUN-397 54.09 58.50 58.44 -49.91 58.68 -63.11
Food-101 78.42 89.79 89.41 -45.16 89.42 -47.09
DTD 31.86 37.44 37.44 -31.20 37.6 -37.45
Flowers-102 53.29 66.35 65.31 -33.49 65.34 -33.40

These results demonstrate that the Little-Big framework maintains the high accuracy of the big
model while significantly reducing the computational cost, confirming its adaptability to multimodal
zero-shot tasks.

A.1.2 EXTENDING TO MULTI-LABEL CLASSIFICATION

To evaluate the applicability of the Little-Big framework in multi-label classification, we conducted
experiments using the CelebA dataset (Liu et al., 2015), which contains 40 attributes (classes). In this
setup, we used Vision Transformers (ViTs) pretrained on ImageNet: with ViT-B-32 as the "Little"
model, and ViT-L-14 as the "Big" model. With the backbones frozen, we trained a classification
head— comprising of two linear layers with ReLU activation and dropout on the CelebA dataset.

Since the multi-label classification is typically posed as k binary predictions for each sample, where
k is the number of classes, we obtain k logits per sample. A sigmoid function is then applied to obtain
the probabilities for each class. We compute the confidence for a class as confidence = |prob − 0.5|
measuring the distance from the decision boundary. To obtain an aggregated confidence for an image,
the confidences across all k classes are averaged.

Using this aggregated confidence from the predictions of the Little model, we determine a threshold
T on a validation subset and pass the images whose aggregated confidence is below T to the big
model. Through the results, reported in Table 5, we demonstrate the effectiveness of the Little-Big
framework for multi-label classification, with minimal loss in F1-score while significantly reducing
computational costs.

Table 5: Multi-label classification results using ViT-B-32 and ViT-L-14 models on the CelebA
dataset. Little-Big speeds up the big model significantly with a small drop in performance.

Little Model F1 (%) Big Model F1 (%) Little-Big F1 (%) ∆ GMACs (%)
60.44 64.31 63.28 -40.10
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A.1.3 EXTENDING LITTLE-BIG TO SEMANTIC SEGMENTATION

To evaluate the Little-Big framework in the context of semantic segmentation, we conducted exper-
iments using DeepLabv3 (Chen, 2017) with MobileNet (Howard, 2017) as the "Little" model and
FCN (Long et al., 2015) with ResNet-101 as the "Big" model. Both models were sourced from the
PyTorch repository and pretrained on a subset of the COCO dataset (Lin et al., 2014) that includes
class names overlapping with Pascal VOC (Hoiem et al., 2009). These models were not fine-tuned
further and evaluation was performed on the validation set.

In this setup, we first generated superpixels for each input image using the SLIC algorithm (Achanta
et al., 2012), producing compact regions that preserve spatial information. The image was then
passed through the Little model to obtain class-wise probabilities for each pixel. For each SLIC
region, we computed a region-level confidence by averaging the maximum softmax probability across
all pixels in the region. These region-level confidences were further aggregated across the image
to compute an image-level aggregated confidence, summarizing the overall certainty of the Little
model’s predictions.

Based on the image-level aggregated confidence, a threshold T was applied and images with con-
fidence below T were passed to the Big model for further evaluation. This two-stage approach
leverages the efficiency of the little model while ensuring high-quality predictions via the big model
when necessary. The results, detailed in Table 6, demonstrate that the Little-Big framework effectively
balances computational efficiency with segmentation accuracy in this setting.

Table 6: Semantic segmentation results using the Little-Big framework.

Little Model mIOU (%) Big Model mIOU (%) Little-Big mIOU (%) ∆ GMACs (%)
60.3 63.7 63.0 -39.2

A.1.4 EXTENDING LITTLE-BIG TO NLP CLASSIFICATION

Finally, we extend the framework to NLP tasks by conducting experiments on the IMDB movie
review sentiment classification task (Maas et al., 2011). In this setup, DistilBERT (Sanh, 2019)
served as the "Little" model, and GPT2 (Radford et al., 2019) was used as the "Big" model. Both
models were sourced from the HuggingFace hub and fine-tuned on this dataset. We employ the same
approach as outlined in Section 4.1. The results detailed in Table 7 clearly evidence the effectiveness
of the approach to even non-vision classification tasks by achieving significant computational savings
without losing performance.

Table 7: IMDB sentiment (binary) classification using Distill-Bert and GPT2 as Little and Big
models.

Little Model Acc (%) Big Model ACC (%) Little-Big ACC (%) ∆ GMACs (%)
92.8 93.5 93.51 -58.75

A.2 ADDITIONAL EXPERIMENTAL DETAILS

Implementation The three datasets used in this work, ImageNet-1K, ImageNet-ReaL, and ImageNet-
V2 are released with ImageNet license https://www.image-net.org/download.php,
Apache-2.0 license, and MIT license, respectively. All models are implemented in Pytorch Paszke
et al. (2019). EfficientNet Tan & Le (2019), Swin Liu et al. (2021), ConvNext Liu et al. (2022), and
ViT Dosovitskiy et al. (2020) checkpoints are loaded from public Torchvision pretrained models
with BSD-3 license. Pretrained models including EfficientViT Cai et al. (2023), DeiT Touvron et al.
(2021), DeiT3 Touvron et al. (2022) are accessed on Timm Wightman (2019) under Apache-2.0
license. The official code and weight of InternImage models Wang et al. (2022a) are accessed under
MIT licence.

Model inference are conducted on an NVIDIA RTX 3090 with 24 GB vRAM, taking 1 minute
to 4 hours to finsh evaluation on the ImageNet-1K validation set. The main results are based on
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measurements of single pretrained models. To estimate the error bar on single model accuracy, we
train a small EfficientNet-B0 on ImageNet-1K from scratch for 300 epochs on 32 NVIDIA V100
GPUs with cosine learning rate decay Loshchilov & Hutter (2016), TrivialAugment Müller & Hutter
(2021), input resolution of 224, batch size of 2048, AdamW Loshchilov & Hutter (2017) with initial
learning rate of 0.003, and weight decay of 0.05. Three models are independently trained from scratch
and achieve top-1 accuracies of 76.76%, 76.43%, 76.56%, with a standard deviation of 0.14%.

As shown in Section 4.2, the dataset used in choosing T can affect the optimal T as well as relative
MACs reduction. By choosing T over ImageNet-1K, Real, V2 for the same model pair, we estimate
MACs reduction reported in Tables 2 and 3 to be ∼ 2%, which is an order of magnitude smaller than
the effect size of 50% throughout the paper, validating the statistical significance of our speedup.

Table 8: To simulate errors stemming from noise in determining the optimal T , we choose T for
each Little-Big pair on ImageNet-1K, Real, and V2 and compute mean and standard deviation of
accuracy change and MACs reduction on ImageNet-1K.

Choose T on: IN-1K ReaL V 2

∆Acc1K ∆GMACs1K ∆Acc1K ∆GMACs1K ∆Acc1K ∆GMACsIN ∆Acc1K ∆GMACsIN ∆Acc1K ∆GMACsIN

Big Model Little Model Mean SD

EfficientNet-B7-600

B6-528 +0.02 −47% −0.01 −48% −0.11 −49% −0.03 −48% 0.06 1%
B5-456 +0.01 −65% +0.09 −62% −0.20 −68% −0.03 −65% 0.12 2%
B4-380 +0.01 −81% +0.05 −80% +0.09 −78% +0.05 −80% 0.03 1%
B3-300 +0.02 −61% −0.02 −65% −0.01 −69% −0.00 −65% 0.02 3%
B2-288 +0.00 −59% +0.01 −53% −0.16 −67% −0.05 −60% 0.08 6%
B1-240 +0.01 −13% −0.01 −18% −0.12 −51% −0.04 −27% 0.06 17%
B0-224 +0.01 −25% +0.01 −25% −0.03 −44% −0.01 −31% 0.02 9%

As discussed in Section 2.3, the roles of Big and Little in the Little-Big pair are relative. For example,
DeiT3-L-384 performs well as Little model, efficiently speeding up the 3B-parameter InternImage-G-
512 Wang et al. (2022b) and 600M-parameter ViT-H-14-518 by 62% and 80%, respectively. However,
it does not imply that DeiT3-L-384 itself cannot act as the Big model and be sped up by an even
smaller model. In fact, Table 2 shows that it can be sped up by the EfficientViT-L2-288 by 71%.
Similarly, EfficientNet-B4 can serve as a strong Little model for compressing EfficientNet-B7, as
well as a Big model to be compressed by the smaller EfficientNet-B2. This enables the generalization
of Little-Big to a K-pass framework where K > 1 with additional performance gain.

One can extend Little-Big to a 3-pass Tiny-Little-Big model GFTiny,FLittle,FBig
(x, T1, T2) or shortly

G(x, T1, T2) for simplicity:

GFTiny,FLittle,FBig
(x, T1, T2) =


FTiny(x), if max(FTiny(x)) ≥ T1

FLittle(x), if max(FTiny(x)) < T1,max(FLittle(x)) ≥ T2

FBig(x).
(7)

A 3-pass model GB2,B4,B7(x, T1 = 0.74, T2 = 0.26)) further compresses EfficientNet-B7, achieving
85% MACs reduction while preserving the Big model performance.

A.3 LITTLE-BIG ENSEMBLE

A more sophisticated way to construct Little-Big pairs is to combine the softmax output of the little
and big models for hard examples. GFLittle,FBig

(x, T, w) or shortly G(x, T, w) for simplicity:

GFLittle,FBig
(x, T, w) =

{
FLittle(x), if max(FLittle(x)) ≥ T

(1− w) ∗ FLittle(x) + w ∗ FBig(x).
Little-Big Ensemble (8)

where weight w controls the relative weights of the two models. the softmax score FLittle(x) is used
for model ensembling. In the case of w = 1, this reverts to the base Little-Big prescribed by Equation
4.
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(a) w = 0.2, T ∗ = 0.28, ∆MACs∗ = 78%0.00 0.25 0.50 0.75 1.00
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(b) w = 0.5, T ∗ = 0.22, ∆MACs∗ = 82%0.00 0.25 0.50 0.75 1.00
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(c) w = 0.8, T ∗ = 0.24, ∆MACs∗ = 81%

Figure 4: Speeding up EfficientNet-B7 with the EfficientNet family and Little-Big Ensemble
(Equation 8).
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In Figure 5, EfficientNet-B7 is compressed without loss of accuracy by Little-Big Ensemble (Equa-
tion 8) using EfficientNet-B0-B6. Setting w = {0.2, 0.5, 0.8} yield T ∗ = {0.28, 0.22, 0.24}
and consequently MACs reductions ∆MACs∗ = {78%, 82%, 81%}, similar to T = 0.24 and
∆MACs = 81% achieved by the simple Little-Big (Equation 4).
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(a) w = 0.2, T ∗ = 0.28, ∆MACs∗ = 78%0.00 0.25 0.50 0.75 1.00
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(b) w = 0.5, T ∗ = 0.22, ∆MACs∗ = 82%0.00 0.25 0.50 0.75 1.00
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(c) w = 0.8, T ∗ = 0.24, ∆MACs∗ = 81%

Figure 5: Speeding up EfficientNet-B7 with the EfficientNet family and Little-Big Ensemble
(Equation 8).

A.4 BENCHMARKING THROUGHPUT AND LATENCY

Average throughput and latency are measured on an Nvidia RTX3090 on the ImageNet-1K validation
set with 50000 samples. In Table 9, we consider a memory constrained use case where the max
memory use of Little-Big pair is no larger than that of using the Big model alone. This requires the
Little model being unloaded from memory after the first passs before the big model is loaded for the
second pass. Without the memory constraint, Little-Big can achieve better throughput and latency
improvement than resported in Table 9.
Table 9: We use the largest power of 2 batch size that fits in the vRAM for each model, throughput
and latency include amortized model loading time. Compared with EfficientNet-B7, EfficientNet-
B4+B7 pair achieves throughput improvement by 339% and latency reduction by 77%.

ImageNet-1K Throughput Latency

Big Model Little Model ∆Acc ∆GMACs samples/s ∆ ms ∆

EfficientNet-B7-600

None −− −− 35.5 −− 28.2 −−
B0-224 +0.01 −25% 54.0 +52% 18.5 −34%
B1-240 +0.01 −13% 39.9 +12% 25.1 −11%
B2-288 +0.00 −59% 76.6 +116% 13.1 −54%
B3-300 +0.02 −61% 86.4 +144% 11.6 −59%
B4-380 +0.01 −81% 155.2 +338% 6.4 −77%
B5-456 +0.01 −65% 97.1 +174% 10.3 −64%
B6-528 +0.02 −47% 62.4 +76% 16.0 −43%

To demonstrate the generalizability of Little-Big, we apply Little-Big to the Swin3D-B video classifi-
cation model on Kinetics-400. The Swin3D-T + Swin3D-B pair achieves 41% MACs reduction of
Swin3D-B while maintaining 79.4% Top-1 accuracy on Kinetics-400.
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A.5 ADDITIONAL DATA
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Figure 6: More examples with ConvNext, EfficientViT, and DeiT3. Prediction confidence of
individual models correspond well with prediction accuracy (left), which allows us to approximate a
“difficulty” axis with prediction confidence. Breaking down the mistakes of little models by difficulty,
we find that big models disproportionally “correct” mistakes that are difficult to the little models.

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

0.00 0.25 0.50 0.75 1.00
Threshold (T)

0.0

0.2

0.4

0.6

0.8

1.0

|D
*|

 / 
|D

|

B0-B7
B1-B7
B2-B7
B3-B7
B4-B7
B5-B7
B6-B7

0.00 0.25 0.50 0.75 1.00
Threshold (T)

10 2

10 1

100

R
el

at
iv

e 
G

M
A

C
s

0.00 0.25 0.50 0.75 1.00
Threshold (T)

0.78

0.80

0.82

0.84

Im
ag

eN
et

-1
k 

A
cc

ur
ac

y

100 101

GMACs

0.78

0.80

0.82

0.84

Im
ag

eN
et

-1
k 

A
cc

ur
ac

y

B7
B4-B7 (T = 0.24)

100 101

GMACs

0.84

0.85

0.86

0.87

0.88

0.89

R
ea

L 
A

cc
ur

ac
y

100 101

GMACs

0.66

0.68

0.70

0.72

0.74

Im
ag

eN
et

-V
2 

A
cc

ur
ac

y

Figure 7: Speeding up EfficientNet-B7 with the EfficientNet family. Different from Figure 3 where
T is chosen on ImageNet-1K, the optimal pair (blue star) is chosen on the smaller V2 set. This yields
a similar optimal T = 0.28 achieving 78% of MACs reduction.
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