
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

SPEEDING UP IMAGE CLASSIFIERS WITH LITTLE COM-
PANIONS

Anonymous authors
Paper under double-blind review

ABSTRACT

Scaling up neural networks has been a key recipe to the success of large language
and vision models. However, in practice, up-scaled models can be disproportion-
ately costly in terms of computations, providing only marginal improvements in
performance; for example, EfficientViT-L3-384 achieves <2% improvement on
ImageNet-1K accuracy over the base L1-224 model, while requiring 14× more
multiply–accumulate operations (MACs). In this paper, we investigate scaling
properties of popular families of neural networks for image classification, and
find that scaled-up models mostly help with “difficult” samples. Decomposing
the samples by difficulty, we develop an embarrassingly simple model-agnostic
two-pass Little-Big algorithm that first uses a light-weight “little” model to make
predictions of all samples, and only passes the difficult ones for the “big” model to
solve. Good little companions achieve drastic MACs reduction for a wide variety
of model families and scales. Without loss of accuracy or modification of existing
models, our Little-Big models achieve MACs reductions of 76% for EfficientViT-
L3-384, 81% for EfficientNet-B7-600, 71% for DeiT3-L-384 on ImageNet-1K.
Little-Big also speeds up the InternImage-G-512 model by 62% while achieving
90% ImageNet-1K top-1 accuracy, serving both as a strong baseline and as a simple
practical method for large model compression.

100 101 102 103

Inference Cost / Image (GMACs)

80

82

84

86

88

90

Im
ag

eN
et

-1
K

 V
al

 A
cc

ur
ac

y
(%

)

-33%

-42%

-61%
-81%

-76%

-71%
-80%

-62%

M
or

e A
cc

ur
at

e

More Efficient

EfficientNet-B2-288
EfficientNet-B3-300
ConvNext-S-224
EfficientNet-B7-600
EfficientVit-L3-384
DeiT3-L-384
ViT-H-14-518
InternImage-G-512

+EfficientViT-B1-224
+EfficientViT-B1-224
+EfficientNet-B3-300
+EfficientNet-B4-380
+EfficientVit-L2-288
+EfficientVit-L2-288
+DeiT3-L-384
+DeiT3-L-384

Figure 1: Little-Big relaxes the assumption of obtaining predictions for samples in a single pass using
a single model, achieving MACs reduction of 30%− 80% across models types (convolutional neural
networks, transformers, and hybrid networks) and scales (from 1 to 3000 GMACs). Marker sizes
correspond to log(#parameters). Model labels are formatted as “Family-Size-InputResolution”.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

1 INTRODUCTION

Advances in parallel computing hardware, such as GPUs, have made end-to-end single-pass parallel
processing standard in computer vision models. Large vision datasets like ImageNet-1K (Deng
et al., 2009) made it possible for such deep vision models (e.g.Alexnet (Krizhevsky et al., 2012),
ResNet (He et al., 2016) and ViT Dosovitskiy et al. (2020)) to learn general visual features at
scale. While vision models surpassed human performance on ImageNet-1K a decade ago (Szegedy
et al., 2015), researchers are in the perpetual pursuit of achieving improved performance by using a
combination of two strategies: 1) developing more performant models and training techniques for
a given compute budget, and 2) scaling up the models. While improved models from the former
approach are often preferred in compute or memory-constrained applications, the latter has become
increasingly popular, thanks to its success in large language models (LLMs) (Touvron et al., 2023).
However, despite architectural improvements, scaling up models remains expensive; we are often
trading exponential compute cost for marginal gains in model accuracy (Table 1).

In this work, we show that much of the inefficiency comes from our implicit preference for single-pass
models and propose an embarrassingly simple two-pass algorithm to drastically speed up models
with little companions. We summarize our work in response to two critical questions around model
scaling and compression.

〈Q1〉 Given a pair of Little-Big models in the same model family, which incorrect predictions made
by the Little model are fixed using the Big model?

• Using ImageNet-1K as the test bed and binning the Little model’s predictions by confidence, we
find that, very often, mistakes made by the Little model correspond to low confidence (measured
via maximum softmax probability)

〈Q2〉 Without compromising accuracy, can we speed up a Big model by using a Little model to
preprocess a proportion of samples in a distribution?

• We propose an embarrassingly simple two-pass Little-Big protocol where a light-weight Little
model is used to make predictions (class and confidence) on all samples in the first pass, and a
Big model performs a second pass on samples with low confidence from the first pass, achieving
significant reduction in inference compute costs without compromising accuracy.

• Without any modification to existing models, we prescribe Little-Big pairs that significantly reduce
compute costs of models across types and scales, while not compromising accuracy: Little-Big
models achieves MACs reductions of 76% for EfficientViT-L3-384, 81% for EfficientNet-B7-600,
71% for DeiT3-L-384 on ImageNet-1K. Little-Big also speeds up the very large InternImage-G-512
model by 62% while achieving 90% ImageNet-1K top-1 accuracy, serving both as a strong baseline
and as a practical approach for efficient deployment of large models.

Table 1: Scaling up is expensive. Scaling up model size is a popular way to improve performance
without redesigning neural architectures or training recipes. Popular practices often involve sparing
compound scaling in input resolution H , model width w and depth l over the base model (character-
ized by H0, w0, l0). However Equation 2 shows that model size and inference cost quickly blow up
by 10− 100×, with only marginal performance gains over small base models of the same family.

Model Family Size H/H0 w/w0 l/l0
ImageNet-1K Val GMACs

Accuracy (%) ∆ Absolute ∆

EfficientNet (Tan & Le, 2019)

B0-224 1 1 1 77.65 −− 0.39 −−
B2-280 1.3 1.1 1.2 80.56 +2.91 1.09 +1.8×
B4-380 1.7 1.4 1.8 83.45 +5.80 4.39 +10.3×
B7-600 2.7 2.0 3.1 84.11 +6.45 37.8 +95.8×

EfficientViT (Cai et al., 2023)
L1-224 1 1 1 84.39 −− 5.3 −−
L2-288 1.3 1 1.4 85.60 +1.21 11.0 +1.1×
L3-384 1.7 2 1.4 86.34 +1.95 81.0 +14.3×

DeiT3 (Touvron et al., 2022)
S-224 1 1 1 83.05 −− 4.6 −−
B-224 1 2 1 85.60 +2.55 17.6 +1.1×
L-384 1.7 2.7 2 87.73 +4.68 191.2 +40.6×

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

2 RELATED WORK

2.1 COMPUTER VISION MODELS

Since Alexnet (Krizhevsky et al., 2012), single-pass neural classifiers trained end-to-end have
dominated leaderboards of various vision tasks from image classification to video segmentation
(Beyer et al., 2020; Deng et al., 2009; He et al., 2016; Szegedy et al., 2015; Xu et al., 2018). Most
neural models originates from two families of neural architectures: convolutional neural networks
(CNNs) and transformers. Core to CNNs are “convolutions” which apply the same compute across
locations on a feature map. On the other hand, transformers, which first found success in sequence-
to-sequence language models (Vaswani et al., 2017) and subsequently in vision (Dosovitskiy et al.,
2020), embed a sequence of tokens (e.g., image patches) and utilize attention mechanism to model
intra- and inter-token interactions. Finally, hybrid models like Swin (Liu et al., 2021) combine CNN
priors and attention mechanisms to achieve good performance.

2.2 SCALING IN VISION

Many neural classifiers can be expressed as a composition of layers (He et al., 2016; Krizhevsky
et al., 2012; Szegedy et al., 2015; Touvron et al., 2022):

y = F (x) = fwl
· ... · fw1

· fw0
(x), (1)

where x ∈ RC×H×H denotes an input image (using square images for simplicity) and y ∈ (0, 1)N

denotes a N -dimensional softmax confidence score. To get a class prediction, one finds the class n
with the highest confidence. fwj denotes the function of layer j with its characteristic width wj . The
inference cost of a single sample x with such a model F (x) can be expressed as:

MACs[F (x)] ≈ CF ∗H2 ∗ w2 ∗ l (2)

where CF is a scaling coefficient determined by the model family Tan & Le (2019), and w denotes
the model width, while l represents its depth. In turn, the average inference cost per sample over a
(finite) distribution D is given by:

ED

(
MACs[F]

)
=

1

|D|
∑
x∈D

MACs[F (x)] ≈ CF ∗H2 ∗ w2 ∗ l (3)

Complementing innovations in model architecture F that make models more compute efficient, a
straightforward way of improving performance is to scale up the model. Thanks to architectural
improvements like the skip connections (He et al., 2016), normalization layers Szegedy et al. (2015),
as well as better initialization and parameterization (Yang & Hu, 2021), scaling up a model by orders
of magnitude has been made feasible. Furthermore, efficient scaling strategies such as compound
scaling in model width and depth, as well as input resolution (Tan & Le, 2019) have also emerged.
However, Equation 2 imposes a fundamental limitation on the prohibitive cost of scaling: doubling in
H , w, and l leads to 25 − 1 = 31× increase in model compute cost. The marginal accuracy gains
associated with model scaling shown in Table 1 further make it unappealing for many practical use
cases with limited compute budget.

2.3 MODEL COMPRESSION

It is well known that modern neural networks have significant redundancy, thus impacting both
the model size (often measured by the number of parameters) and inference compute cost (often
measured by MACs). This has motivated the design of compression strategies to reduce redundancy
in the model. This has motivated the development of various compression strategies to reduce
redundancy. Popular approaches include:

• Pruning: Ablating weights or neurons deemed less important for predictions. For example,
WDPruning (Yu et al., 2022a) reduces width based on saliency scores, while X-Pruner (Yu
& Xiang, 2023) measures a unit’s importance by its contribution to predicting each target
class. The underlying ideas of these models is that the redundancy in size and compute are
coupled, and one reduces compute by removing the units.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

• Adaptive Computation: Employing mechanisms that dynamically adjust the computation
based on input complexity (Kag & Fedorov, 2023; Rao et al., 2021; Yin et al., 2022). These
methods often adopt some form of “early exit” mechanisms that reduce l in Equation 2. For
instance, techniques like DynamicViT (Rao et al., 2021) downsamples the number of tokens
adaptively to reduce compute cost, while A-ViT (Yin et al., 2022) introduces learned token
halting for ViT models so that not all tokens are processed by the full depth of the model,
thus effectively reducing the average depth of the compute graph during inference.

• Quantization: This is a widely adopted technique that reduces the precision of model
weights and activations, thereby decreasing memory usage and computational require-
ments (Rokh et al., 2023). While quantization is not the focus of Little-Big, it is worth
noting that it can complement our framework to further reduce inference costs. For instance,
quantized versions of both Little and Big models could be used within the Little-Big frame-
work, offering compounded efficiency gains. However, it is also important to highlight
that the benefits of quantization are often hardware-dependent, relying on specific accel-
erators or processors that support low-precision computations. In contrast, Little-Big is
entirely hardware-independent, making it applicable across a wide range of deployment
environments without requiring specialized hardware.

2.4 HUMAN VISION

While parallel processing plays an essential role in making it possible to ingest gigabits/s of raw
visual information and compress it to tens of bits/s to guide our behavior (Soto et al., 2020; Zheng &
Meister, 2024), human vision is not a single-pass process. Human eyes have two distinct information
processing pathways that originate from two types of photoreceptors called rods and cones. While
the visual acuity in the cone-rich fovea is ∼ 1 arcmin, it only covers ∼ 2 degrees, or ∼ 0.01% of the
visual field (Rosenholtz, 2016). The rest of the ∼ 99.9% of the visual field is mostly dominated by
rods which provides much lower visual acuity (∼ 10 arcmin). A given small patch in the visual field
either only gets processed in a single-pass by the low-acuity rod pathway, or followed by additional
passes with high-acuity foveal vision if needed as directed by the saccade. Studies (Tang et al., 2018;
Torralba, 2009) have shown that human visual classification performance adapts to variable compute
budget.

3 SCALING UP HELPS WITH “HARD” SAMPLES

0.0 0.2 0.4 0.6 0.8 1.0
Model Confidence

0.0

0.2

0.4

0.6

0.8

1.0

Im
ag

eN
et

-1
K

 A
cc

ur
ac

y

B0
B2
B4

0.0 0.2 0.4 0.6 0.8 1.0
Little Model Confidence

0

500

1000

1500

2000

2500

3000

C
ou

nt

B0 B7:
B2 B7:
B4 B7:

B0 B7:
B2 B7:
B4 B7:

Figure 2: Using the EfficientNet family as an example, we first show that confidence of individual
models correlate well with prediction accuracy(left). This allows us to approximate a “hardness”
axis, where harder samples correspond to predictions with lower confidence. Mistakes made by
Little models can be categorized as correctable (solid bars, × → ✓) and non-correctable (shaded
bars, × → ×) by the Big model. Breaking down the mistakes of Little models by hardness in
the right panel, we find that most of the correctable mistakes are characterized by low confidence.
This motivates the idea of a two-pass Little-Big algorithm enabled by decomposing the samples by
confidence thresholds. More examples can be found in Appendix Figure 6.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

In answer to 〈Q1〉, we first define an axis of “hardness” along which we can break down the
predictions of the Little models. In lieu of an objective notion of hardness, we use the model
confidence max(Fsmall(xi)) as a surrogate since it reflects model calibration, i.e., higher prediction
confidence correspond to higher accuracy (Figure 2 left).

Intuitively, there are 3 simple hypotheses on how scaled up “Big” models help correct the mistakes of
base “Little” models:

〈H1〉 Big models uniformly help samples across difficulty,

〈H2〉 Big models preferentially help with “hard” samples,

〈H3〉 Big models preferentially help with “easy” samples.

Using the Pytorch (Paszke et al., 2019) pretrained EffcientNet family (Tan & Le, 2019) as an example,
the right panel in Figure 2 visualizes prediction mistakes by Little model confidence (B0, B2, and
B4) on the ImageNet-1K validation set. The mistakes made by Little models are divided into two
categories, correctable (solid bars) and non-correctable (shaded bars) by the Big model. The full
height of each bar (solid + shaded parts) sums up to the total number mistakes in the corresponding bin.
Quantitatively, the average confidence of correctable mistakes for EfficientNet-B0+B7, EfficientNet-
B2+B7, EfficientNet-B4+B7 pairs are 0.38, 0.41, and 0.30 respectively. In fact, 90% of correctable
mistakes fall under confidence thresholds of 0.65, 0.67, 0.47, respectively. This suggests 〈H2〉 is the
likely to be true and motivates the two-pass algorithm in the next section.

4 TWO-PASS LITTLE-BIG ALGORITHM

4.1 SPEEDING UP BIG MODELS

1import torch.nn.functional as F
2

3Class BigLittle:
4

5__init__(self,
6little, # small model
7big, # big model
8t_little, # image transform for small model
9t_big, # image transform for big model
10):
11

12self.little, self.big = little, big
13self.t_little, self.t_big = t_little, t_big
14

15predict(self,
16x, # raw input image
17threshold # prediction threshold T
18):
19

20y = F.softmax(self.little(self.t_little(x)),dim=1)
21

22if torch.max(y) < threshold:
23y = F.softmax(self.big(self.t_big(x)),dim=1)
24

25return F.argmax(y,dim=1)

Little-Big Algorithm: Pytorch pseudo code of Little-Big for single image inference. Separate
pre-processing image transforms are included as Big and Little models may require different input
resolution and/or interpolation. The implementation keeps both models in the memory, Big and Little
models can be loaded/unloaded to avoid overhead in max memory usage.
To answer 〈Q2〉, when we allow a sample to be solved with more than one pass like human vision, a
simple way is to have a Little-Big pair GFLittle,FBig

(x, T) or shortly G(x, T) for simplicity:

GFLittle,FBig
(x, T) =

{
FLittle(x), if max(FLittle(x)) ≥ T

FBig(x).
Little-Big (4)

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

The essence of this Little-Big algorithm is to use a light-weight model to pre-screen samples and only
pass hard samples to the Big model (see Algorithm). The average per-sample cost of inference over a
dataset D can then be expressed as:

ED(MACs[G(x, T)]) =
1

|D|

[∑
x∼D

MACs[FLittle(x)] +
∑

x∼D∗

MACs[FBig(x)]

]
= MACs[FLittle(x)] +

|D∗|
|D|

MACs[FBig(x)], (5)

where D∗ ⊆ D is defined as the set of x where max(FLittle(x)) < T, ∀x ∈ D.

Using EfficientNet-B7 (Paszke et al., 2019) as an example Big model to speed up, the top left panel
in Figure 3 shows how the relative size |D∗|/|D| varies as a function of threshold T with Little
models ranging from EfficientNet-B0 to B6. The shape of the curves correspond to the cumulative
distribution of prediction confidence for each Little model. Equation 5 further links |D∗|/|D| to the
relative compute cost ED(MACs[G(x, T)])/ED(MACs[FBig(x)]): the higher the threshold the
more samples that get passed to the big model, thus increasing MACs. Since |D∗|/|D| ≤ 1, the upper
bound of relative MACs overhead in the worst case scenario is MACs[FLittle(x)]/MACs[FBig(x)],
which is usually no greater than 1 with proper choices of the Little model. As shown in the top middle
panel of Figure 3, the net effect of adding a pre-screening Little model to the Big model leads to
significant reduction in compute cost for a wide range of T across difference choices of Little models.

0.00 0.25 0.50 0.75 1.00
Threshold (T)

0.0

0.2

0.4

0.6

0.8

1.0

|D
*|

 /
|D

|

B0-B7
B1-B7
B2-B7
B3-B7
B4-B7
B5-B7
B6-B7

0.00 0.25 0.50 0.75 1.00
Threshold (T)

10 2

10 1

100

R
el

at
iv

e
G

M
A

C
s

0.00 0.25 0.50 0.75 1.00
Threshold (T)

0.78

0.80

0.82

0.84

Im
ag

eN
et

-1
k

A
cc

ur
ac

y

100 101

GMACs

0.78

0.80

0.82

0.84

Im
ag

eN
et

-1
k

A
cc

ur
ac

y

B7
B4-B7 (T = 0.24)

100 101

GMACs

0.84

0.85

0.86

0.87

0.88

0.89

R
ea

L
A

cc
ur

ac
y

100 101

GMACs

0.66

0.68

0.70

0.72

0.74

Im
ag

eN
et

-V
2

A
cc

ur
ac

y

Figure 3: Speeding up EfficientNet-B7 with smaller EfficientNets. For using Little-Big, one
needs to choose what small model to use and set a threshold T based on an accuracy or MACs
target. 50 evenly spaced T in the range of 0 to 1 are sampled to generate each curve. “⋆” marks
the accuracy-MACs tradeoff of the Big EfficientNet-B7. “⋆” indicates the optimal Little-Big pair
without any loss of accuracy on ImageNet-1K, achieving 81% of MACs reduction. The same fixed T
performs well on both ReaL and ImageNet-V2 as well. Importantly, the optimal pair achieves both
better accuracy and lower MACs than simply scaling down B7 to B6 or B5.

4.2 SPEEDING UP WITHOUT LOSING ACCURACY

Accuracy-MACs trade-off In addition to MACs, one is interested in how the accuracy of G(x, T)
changes as a function of T . While it is not surprising that the accuracy generally decreases with
smaller T , eventually degenerating to the accuracy of the Little model at T = 0, certain choices of
G(x, T) achieve very little accuracy drop or even slight accuracy boost across a wide range of T .
The bottom left panel of Figure 3 visualizes the accuracy-MACs trade-off on ImageNet-1K. One
might immediately notice that any point on the curves is a valid G(x, T) model, and adjusting T
allows traversal along the full curve. Many points on certain curves, such as GB4,B7(x, T), achieves

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

new Pareto optima. A convenient way to pick an optimal operating point of G(x, T) is to set up
a target accuracy either in the form of absolute accuracy or tolerable accuracy loss ∆Acc. Setting
∆Acc >= 0, one can easily draw a horizontal line on the accuracy-MACs plot (dashed line in bottom
row of Figure 3) and find the leftmost intersection point (blue star, GB4,B7(x, T = 0.24)), yielding
the Little-Big pair with the least compute cost while satisfying the accuracy target, speeding up B7
by 81%. Little-Big also achieves significant speed-up in throughput and latency (Appendix Figure 9).

Generalization beyond ImageNet-1K To test whether the optimal G determined on ImageNet-1K
generalizes well, individual models as well as Little-Big pairs are evaluated two additional datasets:
1) ImageNet-ReaL (Beyer et al., 2020) where the ground truth labels of the ImageNet-1K validation
set are reassessed with an improved labeling protocol ((Figure 3 bottom middle), and 2) ImageNet-
V2 (Recht et al., 2019) where slightly “harder” validation images are collected (Figure 3 bottom
right). Comparing accuracy-MACs curves across the three datasets, one may notice that although
the absolute accuracies and MACs varies, the shapes match qualitatively. Quantitatively, we find
the optimal GB4,B7(x, T = 0.24) found on ImageNet-1K performs well on ReaL and V2, with only
marginal accuracy losses of 0.04% and 0.07%, respectively, validating the generalizability of the
optimal G.

Evidently, the key to determining the optimal G is estimating the accuracy-MACs trade-off curves
on the target distribution D. In practice, however, one might only have access to a small subset
of D or a set D′ close to to D. We simulate this case by determining an optimal G(x, T) on the
smaller V2 (10000 samples) and test generalization performance on ImageNet-1K and ReaL (50000
samples). Following the aforementioned process of determining optimal G(x, T) on V2 (Appendix
Figure 7) yields a similar optimal pair G′

B4,B7(x, T = 0.28)), speeding up B7 by a similar 78% on
ImageNet-1K. This validates the robustness of such a process.

4.3 SPEEDING UP MODELS ACROSS TYPES AND SCALES

Table 2 shows more examples the strong MACs compression with Little-Big on a variety of model
families including CNNs, transformers, and hybrid models, across scales from 1 to 2700 GMACs.
Thanks to the model agnostic nature of Little-Big , it allows pairing up models of different families
(models in blue in Table 2). Large modes such as EfficientVit-L3-384 (Cai et al., 2023), DeiT3-L3-
384 (Touvron et al., 2022), ViT-H-14-518 (Dosovitskiy et al., 2020) can be compressed without any
loss of accuracy by 70% to 80%.

It is worth noting that the roles of Big and Little in the Little-Big pair are relative. For example,
DeiT3-L-384 performs well as Little model, efficiently speeding up the 3B-parameter InternImage-
G-512 (Wang et al., 2022b) and 600M-parameter ViT-H-14-518 by 62% and 80%, respectively.
However, it does not imply that DeiT3-L-384 itself cannot act as the Big model and be sped up by an
even smaller model. In fact, Table 2 shows that it can be sped up by the EfficientViT-L2-288 by 71%.
Similarly, EfficientNet-B4 can serve as a strong Little model for compressing EfficientNet-B7, as well
as a Big model to be compressed by the smaller EfficientNet-B2. This enables the generalization of
Little-Big to a K-pass framework where K > 1 with additional performance gain (Appendix Section
A.2). Another important observation is that the speed up depends on the distribution D: Relative
MACs reduction are consistently lower on the slightly harder ImageNet-V2 than on ImageNet-1K.
This suggests that one may measure distribution shift by measuring average MACs with Little-Big.
Furthermore in Appendix A.3, we investigate a more sophisticated variant of the Little-Big approach,
termed Little-Big Ensemble, where predictions from the Little and Big models are combined using a
weighted average for hard samples. Our findings reveal that despite the added memory overhead of
storing the Little model’s predictions, Little-Big Ensemble does not yield significant improvements
in achieving lossless accuracy compared to the simpler Little-Big method.

4.4 COMPARISON WITH PRIOR ART

As discussed in Section 2.3, many methods have been developed for model compression in various
axis. We compare accuracy-MACs tradeoff of Little-Big with many such methods in Table 3. Typical
pruning methods such as WDPruning (Yu et al., 2022a) and X-Pruner (Yu & Xiang, 2023) selectively
removes units that are less important to model accuracy, methods like SPViT (He et al., 2024) “prune”
some attention layers into convolutional layers, effecitvely changing the model type. Addtionally,

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 2: The simple Little-Big algorithm achieves strong MACs reduction across model types
and scales. Thresholds (T) are determined as the minimum value achieving a preset accuracy loss
tolerance on ImageNet-1K (IN-1K). All but InterImage-G-512 are compressed without loss in IN-1K
accuracy. Models in blue denote the Little model is from a different model family as the Big model.
Configurations with lowest MACs are in bold.

Model Params Top@1 Accuracy (%) GMACs

IN-1k ReaL V2 IN-1k&ReaL IN-V2

Efficientnet-B2-288 (Tan & Le, 2019) 9.1M 80.56 86.31 68.95 1.09
+B0-224 (T=0.66) +3.5M(+58%) 80.59(+0.03) 86.35(+0.04) 68.99(+0.04) 0.78(−28%) 0.91(−16%)

+EfficientViT-B1-224 (T=0.58) +9.1M(+100%) 80.57(+0.01) 86.35(+0.04) 68.92(−0.03) 0.73(−33%) 0.83(−24%)

Efficientnet-B3-300 (Tan & Le, 2019) 12.2M 82.01 87.28 71.16 1.83
+B1-240 (T=0.66) +7.8M(+64%) 82.01(+0.00) 87.35(+0.07) 71.15(−0.01) 1.36(−26%) 1.56(−15%)

+EfficientViT-B1-224 (T=0.78) +9.1M(+74%) 82.01(+0.00) 87.31(+0.03) 70.94(−0.22) 1.07(−42%) 1.27(−31%)

Efficientnet-B4-380 (Tan & Le, 2019) 19.3M 83.45 88.43 73.27 4.6
+B3-300 (T=0.50) +12.2M(+63%) 83.46(+0.01) 88.42(−0.01) 73.39(+0.12) 2.7(−38%) 3.1(−29%)

+B2-288 (T=0.72) +9.1M(+47%) 83.47(+0.02) 88.42(−0.01) 73.28(+0.01) 2.7(−39%) 3.2(−27%)

+B1-240 (T=0.86) +7.8M(+40%) 83.46(+0.01) 88.44(+0.01) 73.27(+0.00) 4.0(−10%) 4.3(−3%)

+B0-224 (T=0.94) +5.3M(+27%) 83.45(+0.00) 88.43(+0.00) 73.29(+0.02) 3.9(−10%) 4.2(−4%)

EfficientViT-B3-288 (Cai et al., 2023) 48.6M 84.13 88.49 74.12 6.5
+B3-224 (T=0.60) +48.6M(+100%) 84.14(+0.01) 88.49(+0.00) 73.98(−0.14) 4.7(−28%) 5.1(−22%)

+B2-288 (T=0.76) +24.3M(+50%) 84.13(+0.00) 88.55(+0.06) 73.82(−0.30) 3.8(−42%) 4.3(−33%)

+B2-224 (T=0.94) +24.3M(+50%) 84.14(+0.01) 88.52(+0.03) 74.11(−0.01) 3.8(−42%) 4.5(−30%)

ConvNext-L-224 (Liu et al., 2022) 197.8M 84.39 88.75 74.34 34.3
+S-224 (T=0.52) +50.2M(+25%) 84.39(+0.00) 88.75(+0.00) 74.35(+0.01) 15.7(−54%) 19.2(−44%)

Efficientnet-B7-600 (Tan & Le, 2019) 66.3M 84.11 88.84 74.39 37.8
+B6-528 (T=0.24) +43.0M(+65%) 84.13(+0.02) 88.90(+0.06) 74.50(+0.11) 20.1(−47%) 21.4(−43%)

+B5-456 (T=0.38) +30.4M(+46%) 84.12(+0.01) 88.78(−0.06) 74.65(+0.26) 13.2(−65%) 15.4(−59%)

+B4-380 (T=0.24) +19.3M(+29%) 84.12(+0.01) 88.80(−0.04) 74.32(−0.07) 7.1(−81%) 9.5(−75%)

+B3-300 (T=0.66) +12.2M(+18%) 84.13(+0.02) 88.88(+0.04) 74.41(+0.02) 14.6(−61%) 18.9(−50%)

+B2-288 (T=0.74) +9.1M(+14%) 84.11(+0.00) 88.83(−0.01) 74.39(+0.00) 15.6(−59%) 20.1(−47%)

+B1-240 (T=0.90) +7.8M(+12%) 84.12(+0.01) 88.85(+0.01) 74.34(−0.05) 32.9(−13%) 34.6(−8%)

+B0-224 (T=0.92) +5.3M(+8%) 84.12(+0.01) 88.84(+0.00) 74.40(+0.01) 28.4(−25%) 31.1(−18%)

EfficientViT-L3-384 (Cai et al., 2023) 246.0M 86.34 89.66 77.35 81.1
+L3-256 (T=0.52) +246.0M(+100%) 86.35(+0.01) 89.71(+0.05) 77.36(+0.01) 40.4(−50%) 44.3(−45%)

+L2-384 (T=0.60) +63.7M(+26%) 86.34(+0.00) 89.83(+0.17) 77.55(+0.20) 27.0(−67%) 31.7(−61%)

+L2-288 (T=0.66) +63.7M(+26%) 86.35(+0.01) 89.86(+0.20) 77.37(+0.02) 19.8(−76%) 25.0(−69%)

DeiT3-L-384 (Touvron et al., 2022) 304.8M 87.73 90.24 79.34 191.2
+B-224 (T=0.82) +86.6M(+28%) 87.73(+0.00) 90.23(−0.01) 79.36(+0.02) 71.2(−63%) 90.3(−53%)

+EfficientViT-L2-288 (T=0.90) +63.7M(+21%) 87.73(+0.00) 90.37(+0.13) 79.43(+0.09) 54.7(−71%) 74.0(−61%)

ViT-H-14-518 (Dosovitskiy et al., 2020) 633.5 88.55 90.51 81.12 1016
+L-16-512 (T=0.46) +305M(+48%) 88.59(+0.04) 90.89(+0.38) 81.04(−0.08) 430(−58%) 488(−52%)

+DeiT3-L-384 (T=0.70) +305M(+10%) 88.56(+0.01) 90.64(+0.13) 81.06(−0.06) 204(−80%) 276(−73%)

InternImage-G-512 (Wang et al., 2022b) 3.076B 90.05 90.97 83.04 2700
+XL-384 (T=0.84) +335M(+11%) 90.01(−0.04) 90.98(+0.01) 82.99(−0.05) 1436(−47%) 1781(−34%)

+DeiT3-L-384 (T=0.90) +305M(+10%) 90.03(−0.02) 90.99(+0.02) 82.95(−0.09) 1035(−62%) 1335(−51%)

distillation is used to retrain the network to achieve better performance. We show that even with tricks
that effectively retrained models, many pruning methods are not competitive, especially compared
with modern baselines such as DeiT3 (Touvron et al., 2022), which in essence are better trained
ViTs. For example, the best performing SPViT-DeiT-B with distillation failed to outperform a better
trained DeiT3-S baseline in both accuracy, model size, and MACs. It remains to be seen whether
these methods work with the improved baseline models. In contrast, the process of choosing T for
lossless compression with Little-Big in Section 4.2 will yield T = 0 which automatically suggests
replacement of the Big with the more performant Little model. Adaptive compute may still be an
interesting direction, however popular models such as A-ViT (Yin et al., 2022) also fail to match the
performance of better trained baseline models or show that their adaptive models are really better
than simply scaling down the model moderately to match the MACs of the adaptive counterparts.

5 DISCUSSION

A large corpus of literature in modern computer vision (Cai et al., 2023; Dosovitskiy et al., 2020;
He et al., 2016; Krizhevsky et al., 2012; Szegedy et al., 2015; Tan & Le, 2019; Touvron et al., 2022)
has followed the norm of developing single-pass solutions trained end-to-end for a wide variety of
vision tasks ranging from image/video classification to dense prediction.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 3: Little-Big outperforms a variety of pruning methods and adaptive compute models (†).
Models in blue denote the Little model is from a different model family as the Big model. Thresholds
in red indicate the Little model can simply replace the Big model, achieving model compression and
better accuracy. “+disl.” denotes additional distillation training.

Model Method ImageNet-1K GMACs

Accuracy (%) ∆ Remaining ∆

DeiT-S-224 Touvron et al. (2021)

Baseline 79.81 +0.9 4.6 −−
DynamicViT-DeiT-S† Rao et al. (2021) 78.3 −0.6 3.4 −26%

A-ViT-S† Yin et al. (2022) 78.6 −0.3 3.6 −22%
A-ViT-S† + disl. Yin et al. (2022) 80.7 +1.8 3.6 −22%

eTPS-DeiT-S Wei et al. (2023) 79.7 +0.8 3.0 −35%
dTPS-DeiT-S Wei et al. (2023) 80.1 +1.2 3.0 −35%
SPViT-DeiT-S He et al. (2024) 78.3 −0.6 3.3 −28%

SPViT-DeiT-S + disl. He et al. (2024) 80.3 +1.4 3.3 −28%
+EfficientViT-B1-224(T=0.44) 79.81 +0.9 1.1 −77%

DeiT3-S Baseline Touvron et al. (2022) 83.05 +4.1 4.6 −−
+EfficientViT-B1-224(T=0.54) 83.11 +4.2 2.1 −54%
+EfficientNet-B2-288(T=0.52) 83.06 +4.1 2.0 −56%

DeiT-B-224 Touvron et al. (2021)

Baseline 81.81 −− 17.6 −−
DynamicViT-DeiT-B† Rao et al. (2021) 81.4 −0.4 11.4 −35%

SCOP Tang et al. (2020) 79.7 −2.1 10.2 −42%
UVC Yu et al. (2022b) 80.57 −1.24 8.0 −55%

WDPruning Yu et al. (2022a) 80.76 −1.05 9.9 −44%
X-Pruner Yu & Xiang (2023) 81.02 −0.99 8.5 −52%

eTPS-DeiT-B Wei et al. (2023) 81.1 −0.7 11.4 −35%
dTPS-DeiT-B Wei et al. (2023) 81.2 −0.6 11.4 −35%
SPViT-DeiT-B He et al. (2024) 81.5 −0.4 8.4 −52%

SPViT-DeiT-B + disl. He et al. (2024) 82.4 +0.6 8.4 −52%
+DeiT-S (T=0.60) 81.83 +0.02 9.0 −49%

DeiT3-B Baseline Touvron et al. (2022) 85.75 +3.94 17.6 −−
+DeiT3-S(T=0.60) 85.75 +3.94 11.4 −35%

+EfficientViT-B2-288 (T=0.60) 85.77 +3.96 7.8 −56%

Swin-S-224 Liu et al. (2021)

Baseline 83.17 −− 8.7 −−
STEP Li et al. (2021) 79.6 −3.6 6.3 −28%

WDPruning Yu et al. (2022a) 81.8 −1.4 6.3 −28%
X-Pruner Yu & Xiang (2023) 82.0 −1.2 6.0 −31%

SPViT-Swin-S He et al. (2024) 82.4 −0.6 6.1 −30%
SPViT-Swin-S + disl. He et al. (2024) 83.0 −0.2 6.1 −30%

+Swin-T (T=0.68) 83.18 +0.01 7.0 −20%
+EfficientViT-B2-224 (T=0.58) 83.18 +0.01 2.5 −71%

While many multi-pass test-time augmentations (TTAs) (Shanmugam et al., 2021) that aggregate
predictions of several augmented views of the same sample have been developed as a post-hoc add-on
to improve performance, these methods go in the opposite direction of Little-Big . Fundamentally,
K-pass TTAs are multiplicative methods that trades K× inference cost for slight improvement of
accuracy. Little-Big is a subtractive multi-pass algorithm that relies on a good decomposition of
problems and solve each part with the least compute, not unlike Speculative Decoding in languange
modeling (Leviathan et al., 2023). What TTA and Little-Big share in common is that both are post-hoc
methods that do not require any re-training of the original models. It is actually possible to combine
both in the same inference pipeline much like human vision to make predictions adaptively.

A potentially important contributing factor to the sub-optimal performance of popular adaptive
compute models such as DynamicViT and A-ViT lies in their end-to-end training protocol. As the
number of tokens decrease over depth, the deeper layers effectively “see” less pixels during training.
This implicit coupling between the need to reduce compute cost at inference time and at training time
due to the end-to-end training protocol may hinder the potential of adaptive methods. In contrast,
Little-Big decouples inference and training compute costs, and uses models individually trained on
all pixels on full datasets.

In language modeling, recent work such as Hybrid-LLM (Ding et al., 2024) shares the same principle
as Little-Big . Hybrid-LLM involves training a probabilistic router that connects a little transformer
and a big transformer. Like many other model compression methods, Hybrid-LLM trades accuracy
for inference speed. In contrast, the embarrassingly simple routing mechanism of Little-Big involves
choosing only one hyperparameter T , and achieves lossless speedup without losing accuracy.

Limitations It is worth noting that, while Little-Big achieves drastic MACs reduction across model
families and scales, the speed up is not free: since an additional Little model is needed to make the
Little-Big pair, the storage overhead is usually a small fraction of the storage requirement of the Big
model. However, the storage overhead does not necessarily translate to memory overhead. Although

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

the example Pytorch pseudo code keeps both Big and Little models in memory at the same time to
minimize latency while increasing maximum memory usage, one can alternatively only load one
model into the memory at a time so that there is no overhead on maximum memory usage. Batching
predictions can further reduce the memory I/O overhead per sample.

Extensions It is possible to extend the same principles of Little-Big to other tasks by re-examining
and modifying Equation 1. For example, consider the task of video classification, where the input x
is updated as a sequence of images with an added time dimension t, x ∈ RC×W×H×t. The inference
cost of a neural video classifier is given by:

MACs[F (x)] ≈ CF ∗H2 ∗ t ∗ w2 ∗ l, (6)

which makes brute-force upscaling more costly because of the additional t dimension. However,
decomposition based on Equations 4 and 5 generalize to this task provided video classifiers are well
calibrated and video samples are decomposable by confidence. To demonstrate the generalizability of
Little-Big , we apply it to the Swin3D-B video classification model on Kinetics-400. The Swin3D-T +
Swin3D-B pair achieves 41% MACs reduction of Swin3D-B while maintaining 79.4% Top-1 accuracy
on Kinetics-400. For dense image prediction tasks like semantic segmentation, the prediction y
becomes a map, where y ∈ [0, 1]W×H×N . In principle, one can continue perform decomposition
on a per sample basis, but it may be more efficient to perform decomposition on a per pixel or
per patch level. In Appendix A.1 we also demonstrate how Little-Big could also be extended to
zero-shot multimodal classification, semantic segmentation, multi-label segmentation as well as for
text classification

Additional contextualization of novelty As the ML community continues to produce increasingly
large models with massive parameter counts, efficiently deploying them has become a significant
challenge. Current inference optimization strategies, such as quantization or distillation, often require
training new, smaller models or performing operations that result in performance drops. Additionally,
these techniques fail to fully leverage the extensive ecosystem of models that is readily available (e.g.,
the EfficientNet family or user-submitted models on platforms like Torch or HuggingFace Hub).

In this context, we believe that our study on speeding up large models using smaller models is an
important direction of work. Though the proposed protocol is simple to implement, our work holds
significant practical value since (i) our approach completely post-hoc, requiring no re-training; (ii)
our approach is entirely model- and architecture-agnostic, allowing seamless integration with a
variety of models; and ours is the first work to systematically study and benchmark its utility in
improving inference efficiency across a variety of tasks and model architectures.

By leveraging the growing diversity of pre-existing models across frameworks, Little-Big enables
users to mix and match architectures (e.g., pairing models from different families such as EfficientNet
and ViTs, BERTs and T5s). This flexibility ensures that one can adopt state-of-the-art models
without the burden of additional training or specialized pipelines, and obtain significant compute
savings and latency reductions without sacrificing accuracy. We argue that the framework’s simplicity,
adaptability, and compatibility with existing models make it a highly practical solution for real-world
use cases.

6 CONCLUSION

In summary, we investigate how scaled-up models help base models correct their mistakes, show
that the former preferentially help with samples with low confidence predictions. Inspired by that,
we propose a simple two-pass Little-Big algorithm that selectively pass “difficult” samples to large
models, achieving drastic MACs reduction of up to 80% without sacrificing accuracy for a wide
range of model families and sizes.

The inefficiency in model scale-up and the effectiveness of Little-Big in compressing the scaled-up
models are two sides of the same coin, with effective decomposition of samples in a dataset being
the key to connecting the two sides. Despite being embarrassingly simple and surprisingly effective,
Little-Big is considered as a lower bound on how much a model can be compressed without losing
accuracy. More sophisticated ways to decompose the data distribution and better ways to use the
Little models output are promising directions to further improve the performance of such subtractive
multi-pass algorithms.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Radhakrishna Achanta, Appu Shaji, Kevin Smith, Aurelien Lucchi, Pascal Fua, and Sabine Süsstrunk.
Slic superpixels compared to state-of-the-art superpixel methods. IEEE transactions on pattern
analysis and machine intelligence, 34(11):2274–2282, 2012.

Lucas Beyer, Olivier J Hénaff, Alexander Kolesnikov, Xiaohua Zhai, and Aäron van den Oord. Are
we done with imagenet? arXiv preprint arXiv:2006.07159, 2020.

Lukas Bossard, Matthieu Guillaumin, and Luc Van Gool. Food-101–mining discriminative compo-
nents with random forests. In European conference on computer vision, pp. 446–461. Springer,
2014.

Han Cai, Junyan Li, Muyan Hu, Chuang Gan, and Song Han. Efficientvit: Lightweight multi-scale
attention for high-resolution dense prediction. In Proceedings of the IEEE/CVF International
Conference on Computer Vision (ICCV), pp. 17302–17313, October 2023.

Liang-Chieh Chen. Rethinking atrous convolution for semantic image segmentation. arXiv preprint
arXiv:1706.05587, 2017.

Mircea Cimpoi, Subhransu Maji, Iasonas Kokkinos, Sammy Mohamed, and Andrea Vedaldi. Describ-
ing textures in the wild. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pp. 3606–3613, 2014.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale
hierarchical image database. In 2009 IEEE conference on computer vision and pattern recognition,
pp. 248–255. Ieee, 2009.

Dujian Ding, Ankur Mallick, Chi Wang, Robert Sim, Subhabrata Mukherjee, Victor Rühle, Laks VS
Lakshmanan, and Ahmed Hassan Awadallah. Hybrid llm: Cost-efficient and quality-aware query
routing. In The Twelfth International Conference on Learning Representations, 2024.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An
image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint
arXiv:2010.11929, 2020.

Haoyu He, Jianfei Cai, Jing Liu, Zizheng Pan, Jing Zhang, Dacheng Tao, and Bohan Zhuang. Pruning
self-attentions into convolutional layers in single path. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 2024.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pp. 770–778, 2016.

Derek Hoiem, Santosh K Divvala, and James H Hays. Pascal voc 2008 challenge. World Literature
Today, 24(1):1–4, 2009.

Andrew G Howard. Mobilenets: Efficient convolutional neural networks for mobile vision applica-
tions. arXiv preprint arXiv:1704.04861, 2017.

Anil Kag and Igor Fedorov. Efficient edge inference by selective query. In International Conference
on Learning Representations, 2023.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convolu-
tional neural networks. Advances in neural information processing systems, 25, 2012.

Yaniv Leviathan, Matan Kalman, and Yossi Matias. Fast inference from transformers via speculative
decoding. In International Conference on Machine Learning, pp. 19274–19286. PMLR, 2023.

Jiaoda Li, Ryan Cotterell, and Mrinmaya Sachan. Differentiable subset pruning of transformer heads.
Transactions of the Association for Computational Linguistics, 9:1442–1459, 2021.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr
Dollár, and C Lawrence Zitnick. Microsoft coco: Common objects in context. In Computer Vision–
ECCV 2014: 13th European Conference, Zurich, Switzerland, September 6-12, 2014, Proceedings,
Part V 13, pp. 740–755. Springer, 2014.

Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining Guo.
Swin transformer: Hierarchical vision transformer using shifted windows. In Proceedings of the
IEEE/CVF international conference on computer vision, pp. 10012–10022, 2021.

Zhuang Liu, Hanzi Mao, Chao-Yuan Wu, Christoph Feichtenhofer, Trevor Darrell, and Saining Xie.
A convnet for the 2020s. In Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition, pp. 11976–11986, 2022.

Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang. Deep learning face attributes in the wild. In
Proceedings of International Conference on Computer Vision (ICCV), December 2015.

Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully convolutional networks for semantic
segmentation. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pp. 3431–3440, 2015.

Ilya Loshchilov and Frank Hutter. Sgdr: Stochastic gradient descent with warm restarts. arXiv
preprint arXiv:1608.03983, 2016.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. arXiv preprint
arXiv:1711.05101, 2017.

Andrew L. Maas, Raymond E. Daly, Peter T. Pham, Dan Huang, Andrew Y. Ng, and Christopher
Potts. Learning word vectors for sentiment analysis. In Proceedings of the 49th Annual Meeting
of the Association for Computational Linguistics: Human Language Technologies, pp. 142–150,
Portland, Oregon, USA, June 2011. Association for Computational Linguistics. URL http:
//www.aclweb.org/anthology/P11-1015.

Samuel G Müller and Frank Hutter. Trivialaugment: Tuning-free yet state-of-the-art data augmenta-
tion. In Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 774–782,
2021.

Maria-Elena Nilsback and Andrew Zisserman. Automated flower classification over a large number
of classes. In 2008 Sixth Indian Conference on Computer Vision, Graphics & Image Processing,
pp. 722–729. IEEE, 2008.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,
Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas
Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy,
Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style, high-
performance deep learning library. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc,
E. Fox, and R. Garnett (eds.), Advances in Neural Information Processing Systems 32, pp.
8024–8035. Curran Associates, Inc., 2019. URL http://papers.neurips.cc/paper/
9015-pytorch-an-imperative-style-high-performance-deep-learning-library.
pdf.

Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. Language
models are unsupervised multitask learners. 2019.

Yongming Rao, Wenliang Zhao, Benlin Liu, Jiwen Lu, Jie Zhou, and Cho-Jui Hsieh. Dynamicvit:
Efficient vision transformers with dynamic token sparsification. Advances in neural information
processing systems, 34:13937–13949, 2021.

Benjamin Recht, Rebecca Roelofs, Ludwig Schmidt, and Vaishaal Shankar. Do imagenet classifiers
generalize to imagenet? In International Conference on Machine Learning, pp. 5389–5400. PMLR,
2019.

Babak Rokh, Ali Azarpeyvand, and Alireza Khanteymoori. A comprehensive survey on model
quantization for deep neural networks in image classification. ACM Transactions on Intelligent
Systems and Technology, 14(6):1–50, 2023.

12

http://www.aclweb.org/anthology/P11-1015
http://www.aclweb.org/anthology/P11-1015
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Ruth Rosenholtz. Capabilities and limitations of peripheral vision. Annual review of vision science,
2:437–457, 2016.

V Sanh. Distilbert, a distilled version of bert: smaller, faster, cheaper and lighter. arXiv preprint
arXiv:1910.01108, 2019.

Divya Shanmugam, Davis Blalock, Guha Balakrishnan, and John Guttag. Better aggregation in
test-time augmentation. In Proceedings of the IEEE/CVF international conference on computer
vision, pp. 1214–1223, 2021.

Florentina Soto, Jen-Chun Hsiang, Rithwick Rajagopal, Kisha Piggott, George J Harocopos, Steven M
Couch, Philip Custer, Josh L Morgan, and Daniel Kerschensteiner. Efficient coding by midget and
parasol ganglion cells in the human retina. Neuron, 107(4):656–666, 2020.

Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir Anguelov, Du-
mitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. Going deeper with convolutions. In
Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 1–9, 2015.

Mingxing Tan and Quoc Le. Efficientnet: Rethinking model scaling for convolutional neural networks.
In International conference on machine learning, pp. 6105–6114. PMLR, 2019.

Hanlin Tang, Martin Schrimpf, William Lotter, Charlotte Moerman, Ana Paredes, Josue Ortega Caro,
Walter Hardesty, David Cox, and Gabriel Kreiman. Recurrent computations for visual pattern
completion. Proceedings of the National Academy of Sciences, 115(35):8835–8840, 2018.

Yehui Tang, Yunhe Wang, Yixing Xu, Dacheng Tao, Chunjing Xu, Chao Xu, and Chang Xu. Scop:
Scientific control for reliable neural network pruning. Advances in Neural Information Processing
Systems, 33:10936–10947, 2020.

Antonio Torralba. How many pixels make an image? Visual neuroscience, 26(1):123–131, 2009.

Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre Sablayrolles, and Hervé
Jégou. Training data-efficient image transformers & distillation through attention. In International
conference on machine learning, pp. 10347–10357. PMLR, 2021.

Hugo Touvron, Matthieu Cord, and Hervé Jégou. Deit iii: Revenge of the vit. In European conference
on computer vision, pp. 516–533. Springer, 2022.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open foundation
and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information processing
systems, 30, 2017.

Wenhai Wang, Jifeng Dai, Zhe Chen, Zhenhang Huang, Zhiqi Li, Xizhou Zhu, Xiaowei Hu, Tong
Lu, Lewei Lu, Hongsheng Li, et al. Internimage. https://github.com/OpenGVLab/
InternImage, 2022a.

Wenhai Wang, Jifeng Dai, Zhe Chen, Zhenhang Huang, Zhiqi Li, Xizhou Zhu, Xiaowei Hu, Tong Lu,
Lewei Lu, Hongsheng Li, et al. Internimage: Exploring large-scale vision foundation models with
deformable convolutions. arXiv preprint arXiv:2211.05778, 2022b.

Siyuan Wei, Tianzhu Ye, Shen Zhang, Yao Tang, and Jiajun Liang. Joint token pruning and squeezing
towards more aggressive compression of vision transformers. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 2092–2101, 2023.

Ross Wightman. Pytorch image models. https://github.com/rwightman/
pytorch-image-models, 2019.

Jianxiong Xiao, James Hays, Krista A Ehinger, Aude Oliva, and Antonio Torralba. Sun database:
Large-scale scene recognition from abbey to zoo. In 2010 IEEE computer society conference on
computer vision and pattern recognition, pp. 3485–3492. IEEE, 2010.

13

https://github.com/OpenGVLab/InternImage
https://github.com/OpenGVLab/InternImage
https://github.com/rwightman/pytorch-image-models
https://github.com/rwightman/pytorch-image-models

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Ning Xu, Linjie Yang, Yuchen Fan, Dingcheng Yue, Yuchen Liang, Jianchao Yang, and Thomas
Huang. Youtube-vos: A large-scale video object segmentation benchmark. arXiv preprint
arXiv:1809.03327, 2018.

Greg Yang and Edward J Hu. Tensor programs iv: Feature learning in infinite-width neural networks.
In International Conference on Machine Learning, pp. 11727–11737. PMLR, 2021.

Hongxu Yin, Arash Vahdat, Jose M Alvarez, Arun Mallya, Jan Kautz, and Pavlo Molchanov. A-vit:
Adaptive tokens for efficient vision transformer. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 10809–10818, 2022.

Fang Yu, Kun Huang, Meng Wang, Yuan Cheng, Wei Chu, and Li Cui. Width & depth pruning for
vision transformers. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 36,
pp. 3143–3151, 2022a.

Lu Yu and Wei Xiang. X-pruner: explainable pruning for vision transformers. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 24355–24363, 2023.

Shixing Yu, Tianlong Chen, Jiayi Shen, Huan Yuan, Jianchao Tan, Sen Yang, Ji Liu, and Zhangyang
Wang. Unified visual transformer compression. arXiv preprint arXiv:2203.08243, 2022b.

Jieyu Zheng and Markus Meister. The unbearable slowness of being. arXiv preprint arXiv:2408.10234,
2024.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

A APPENDIX

A.1 EXTENSIONS AND ADDITIONAL INSIGHTS

A.1.1 EXTENDING TO ZERO-SHOT CLASSIFICATION USING MULTIMODAL MODELS

To evaluate the generality of the Little-Big paradigm, we apply it to zero-shot classification using
OpenAI’s pre-trained CLIP models, specifically with ViT-B-32 and ViT-L-14 as the little and big
models respectively. We conducted experiments on four diverse datasets: Flowers-102 (Nilsback &
Zisserman, 2008), Food-101 (Bossard et al., 2014), SUN-397 (Xiao et al., 2010), and DTD (Cimpoi
et al., 2014). We follow the same protocol as outlined in Section 4.1 with a key difference in how
logits are obtained. In CLIP models, logits are computed as the cosine similarity between the image
embedding and the text embeddings of class labels. We construct the prompts for each class using
the prompt templates outlined in the OpenAI’s CLIP repository. We then apply softmax over these
logits to derive class probabilities and using the little model, we establish a threshold T based on
20% of the data (validation split) and measure the performance of the Little-Big framework on the
remaining 80%.

Table 4 summarizes the results. For each dataset, we report the top-1 accuracy achieved by the Little
model, the Big model, and the performance of Little-Big and Little-Big Ensemble approaches.

Table 4: Zero-shot classification results using CLIP models on Flowers-102, Food-101, SUN-397,
and DTD datasets. The Little-Big approach effectively balances accuracy and computational costs.

Dataset Little Model Big Model Little-Big Little-Big Ensemble
Acc (%) Acc (%) Acc (%) ∆ GMACs (%) Acc (%) ∆ GMACs (%)

SUN-397 54.09 58.50 58.44 -49.91 58.68 -63.11
Food-101 78.42 89.79 89.41 -45.16 89.42 -47.09
DTD 31.86 37.44 37.44 -31.20 37.6 -37.45
Flowers-102 53.29 66.35 65.31 -33.49 65.34 -33.40

These results demonstrate that the Little-Big framework maintains the high accuracy of the big
model while significantly reducing the computational cost, confirming its adaptability to multimodal
zero-shot tasks.

A.1.2 EXTENDING TO MULTI-LABEL CLASSIFICATION

To evaluate the applicability of the Little-Big framework in multi-label classification, we conducted
experiments using the CelebA dataset (Liu et al., 2015), which contains 40 attributes (classes). In this
setup, we used Vision Transformers (ViTs) pretrained on ImageNet: with ViT-B-32 as the "Little"
model, and ViT-L-14 as the "Big" model. With the backbones frozen, we trained a classification
head— comprising of two linear layers with ReLU activation and dropout on the CelebA dataset.

Since the multi-label classification is typically posed as k binary predictions for each sample, where
k is the number of classes, we obtain k logits per sample. A sigmoid function is then applied to obtain
the probabilities for each class. We compute the confidence for a class as confidence = |prob − 0.5|
measuring the distance from the decision boundary. To obtain an aggregated confidence for an image,
the confidences across all k classes are averaged.

Using this aggregated confidence from the predictions of the Little model, we determine a threshold
T on a validation subset and pass the images whose aggregated confidence is below T to the big
model. Through the results, reported in Table 5, we demonstrate the effectiveness of the Little-Big
framework for multi-label classification, with minimal loss in F1-score while significantly reducing
computational costs.

Table 5: Multi-label classification results using ViT-B-32 and ViT-L-14 models on the CelebA
dataset. Little-Big speeds up the big model significantly with a small drop in performance.

Little Model F1 (%) Big Model F1 (%) Little-Big F1 (%) ∆ GMACs (%)
60.44 64.31 63.28 -40.10

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

A.1.3 EXTENDING LITTLE-BIG TO SEMANTIC SEGMENTATION

To evaluate the Little-Big framework in the context of semantic segmentation, we conducted exper-
iments using DeepLabv3 (Chen, 2017) with MobileNet (Howard, 2017) as the "Little" model and
FCN (Long et al., 2015) with ResNet-101 as the "Big" model. Both models were sourced from the
PyTorch repository and pretrained on a subset of the COCO dataset (Lin et al., 2014) that includes
class names overlapping with Pascal VOC (Hoiem et al., 2009). These models were not fine-tuned
further and evaluation was performed on the validation set.

In this setup, we first generated superpixels for each input image using the SLIC algorithm (Achanta
et al., 2012), producing compact regions that preserve spatial information. The image was then
passed through the Little model to obtain class-wise probabilities for each pixel. For each SLIC
region, we computed a region-level confidence by averaging the maximum softmax probability across
all pixels in the region. These region-level confidences were further aggregated across the image
to compute an image-level aggregated confidence, summarizing the overall certainty of the Little
model’s predictions.

Based on the image-level aggregated confidence, a threshold T was applied and images with con-
fidence below T were passed to the Big model for further evaluation. This two-stage approach
leverages the efficiency of the little model while ensuring high-quality predictions via the big model
when necessary. The results, detailed in Table 6, demonstrate that the Little-Big framework effectively
balances computational efficiency with segmentation accuracy in this setting.

Table 6: Semantic segmentation results using the Little-Big framework.

Little Model mIOU (%) Big Model mIOU (%) Little-Big mIOU (%) ∆ GMACs (%)
60.3 63.7 63.0 -39.2

A.1.4 EXTENDING LITTLE-BIG TO NLP CLASSIFICATION

Finally, we extend the framework to NLP tasks by conducting experiments on the IMDB movie
review sentiment classification task (Maas et al., 2011). In this setup, DistilBERT (Sanh, 2019)
served as the "Little" model, and GPT2 (Radford et al., 2019) was used as the "Big" model. Both
models were sourced from the HuggingFace hub and fine-tuned on this dataset. We employ the same
approach as outlined in Section 4.1. The results detailed in Table 7 clearly evidence the effectiveness
of the approach to even non-vision classification tasks by achieving significant computational savings
without losing performance.

Table 7: IMDB sentiment (binary) classification using Distill-Bert and GPT2 as Little and Big
models.

Little Model Acc (%) Big Model ACC (%) Little-Big ACC (%) ∆ GMACs (%)
92.8 93.5 93.51 -58.75

A.2 ADDITIONAL EXPERIMENTAL DETAILS

Implementation The three datasets used in this work, ImageNet-1K, ImageNet-ReaL, and ImageNet-
V2 are released with ImageNet license https://www.image-net.org/download.php,
Apache-2.0 license, and MIT license, respectively. All models are implemented in Pytorch Paszke
et al. (2019). EfficientNet Tan & Le (2019), Swin Liu et al. (2021), ConvNext Liu et al. (2022), and
ViT Dosovitskiy et al. (2020) checkpoints are loaded from public Torchvision pretrained models
with BSD-3 license. Pretrained models including EfficientViT Cai et al. (2023), DeiT Touvron et al.
(2021), DeiT3 Touvron et al. (2022) are accessed on Timm Wightman (2019) under Apache-2.0
license. The official code and weight of InternImage models Wang et al. (2022a) are accessed under
MIT licence.

Model inference are conducted on an NVIDIA RTX 3090 with 24 GB vRAM, taking 1 minute
to 4 hours to finsh evaluation on the ImageNet-1K validation set. The main results are based on

16

https://www.image-net.org/download.php

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

measurements of single pretrained models. To estimate the error bar on single model accuracy, we
train a small EfficientNet-B0 on ImageNet-1K from scratch for 300 epochs on 32 NVIDIA V100
GPUs with cosine learning rate decay Loshchilov & Hutter (2016), TrivialAugment Müller & Hutter
(2021), input resolution of 224, batch size of 2048, AdamW Loshchilov & Hutter (2017) with initial
learning rate of 0.003, and weight decay of 0.05. Three models are independently trained from scratch
and achieve top-1 accuracies of 76.76%, 76.43%, 76.56%, with a standard deviation of 0.14%.

As shown in Section 4.2, the dataset used in choosing T can affect the optimal T as well as relative
MACs reduction. By choosing T over ImageNet-1K, Real, V2 for the same model pair, we estimate
MACs reduction reported in Tables 2 and 3 to be ∼ 2%, which is an order of magnitude smaller than
the effect size of 50% throughout the paper, validating the statistical significance of our speedup.

Table 8: To simulate errors stemming from noise in determining the optimal T , we choose T for
each Little-Big pair on ImageNet-1K, Real, and V2 and compute mean and standard deviation of
accuracy change and MACs reduction on ImageNet-1K.

Choose T on: IN-1K ReaL V 2

∆Acc1K ∆GMACs1K ∆Acc1K ∆GMACs1K ∆Acc1K ∆GMACsIN ∆Acc1K ∆GMACsIN ∆Acc1K ∆GMACsIN

Big Model Little Model Mean SD

EfficientNet-B7-600

B6-528 +0.02 −47% −0.01 −48% −0.11 −49% −0.03 −48% 0.06 1%
B5-456 +0.01 −65% +0.09 −62% −0.20 −68% −0.03 −65% 0.12 2%
B4-380 +0.01 −81% +0.05 −80% +0.09 −78% +0.05 −80% 0.03 1%
B3-300 +0.02 −61% −0.02 −65% −0.01 −69% −0.00 −65% 0.02 3%
B2-288 +0.00 −59% +0.01 −53% −0.16 −67% −0.05 −60% 0.08 6%
B1-240 +0.01 −13% −0.01 −18% −0.12 −51% −0.04 −27% 0.06 17%
B0-224 +0.01 −25% +0.01 −25% −0.03 −44% −0.01 −31% 0.02 9%

As discussed in Section 2.3, the roles of Big and Little in the Little-Big pair are relative. For example,
DeiT3-L-384 performs well as Little model, efficiently speeding up the 3B-parameter InternImage-G-
512 Wang et al. (2022b) and 600M-parameter ViT-H-14-518 by 62% and 80%, respectively. However,
it does not imply that DeiT3-L-384 itself cannot act as the Big model and be sped up by an even
smaller model. In fact, Table 2 shows that it can be sped up by the EfficientViT-L2-288 by 71%.
Similarly, EfficientNet-B4 can serve as a strong Little model for compressing EfficientNet-B7, as
well as a Big model to be compressed by the smaller EfficientNet-B2. This enables the generalization
of Little-Big to a K-pass framework where K > 1 with additional performance gain.

One can extend Little-Big to a 3-pass Tiny-Little-Big model GFTiny,FLittle,FBig
(x, T1, T2) or shortly

G(x, T1, T2) for simplicity:

GFTiny,FLittle,FBig
(x, T1, T2) =


FTiny(x), if max(FTiny(x)) ≥ T1

FLittle(x), if max(FTiny(x)) < T1,max(FLittle(x)) ≥ T2

FBig(x).
(7)

A 3-pass model GB2,B4,B7(x, T1 = 0.74, T2 = 0.26)) further compresses EfficientNet-B7, achieving
85% MACs reduction while preserving the Big model performance.

A.3 LITTLE-BIG ENSEMBLE

A more sophisticated way to construct Little-Big pairs is to combine the softmax output of the little
and big models for hard examples. GFLittle,FBig

(x, T, w) or shortly G(x, T, w) for simplicity:

GFLittle,FBig
(x, T, w) =

{
FLittle(x), if max(FLittle(x)) ≥ T

(1− w) ∗ FLittle(x) + w ∗ FBig(x).
Little-Big Ensemble (8)

where weight w controls the relative weights of the two models. the softmax score FLittle(x) is used
for model ensembling. In the case of w = 1, this reverts to the base Little-Big prescribed by Equation
4.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

0.00 0.25 0.50 0.75 1.00
Threshold (T)

0.0

0.2

0.4

0.6

0.8

1.0
|D

*|
 /

|D
|

B0-B7
B1-B7
B2-B7
B3-B7
B4-B7
B5-B7
B6-B7

0.00 0.25 0.50 0.75 1.00
Threshold (T)

10 2

10 1

100

R
el

at
iv

e
G

M
A

C
s

0.00 0.25 0.50 0.75 1.00
Threshold (T)

0.78

0.80

0.82

0.84

Im
ag

eN
et

-1
k

A
cc

ur
ac

y

100 101

GMACs

0.76

0.78

0.80

0.82

0.84

Im
ag

eN
et

-1
k

A
cc

ur
ac

y

B7
B4-B7 (T = 0.28)

100 101

GMACs

0.84

0.85

0.86

0.87

0.88

0.89
R

ea
L

A
cc

ur
ac

y

100 101

GMACs

0.66

0.68

0.70

0.72

0.74

Im
ag

eN
et

-V
2

A
cc

ur
ac

y

(a) w = 0.2, T ∗ = 0.28, ∆MACs∗ = 78%0.00 0.25 0.50 0.75 1.00
Threshold (T)

0.0

0.2

0.4

0.6

0.8

1.0

|D
*|

 /
|D

|

B0-B7
B1-B7
B2-B7
B3-B7
B4-B7
B5-B7
B6-B7

0.00 0.25 0.50 0.75 1.00
Threshold (T)

10 2

10 1

100

R
el

at
iv

e
G

M
A

C
s

0.00 0.25 0.50 0.75 1.00
Threshold (T)

0.78

0.80

0.82

0.84

Im
ag

eN
et

-1
k

A
cc

ur
ac

y

100 101

GMACs

0.76

0.78

0.80

0.82

0.84

Im
ag

eN
et

-1
k

A
cc

ur
ac

y

B7
B4-B7 (T = 0.22)

100 101

GMACs

0.84

0.85

0.86

0.87

0.88

0.89

R
ea

L
A

cc
ur

ac
y

100 101

GMACs

0.66

0.68

0.70

0.72

0.74
Im

ag
eN

et
-V

2
A

cc
ur

ac
y

(b) w = 0.5, T ∗ = 0.22, ∆MACs∗ = 82%0.00 0.25 0.50 0.75 1.00
Threshold (T)

0.0

0.2

0.4

0.6

0.8

1.0

|D
*|

 /
|D

|

B0-B7
B1-B7
B2-B7
B3-B7
B4-B7
B5-B7
B6-B7

0.00 0.25 0.50 0.75 1.00
Threshold (T)

10 2

10 1

100

R
el

at
iv

e
G

M
A

C
s

0.00 0.25 0.50 0.75 1.00
Threshold (T)

0.78

0.80

0.82

0.84

Im
ag

eN
et

-1
k

A
cc

ur
ac

y

100 101

GMACs

0.76

0.78

0.80

0.82

0.84

Im
ag

eN
et

-1
k

A
cc

ur
ac

y

B7
B4-B7 (T = 0.24)

100 101

GMACs

0.84

0.85

0.86

0.87

0.88

0.89

R
ea

L
A

cc
ur

ac
y

100 101

GMACs

0.66

0.68

0.70

0.72

0.74

Im
ag

eN
et

-V
2

A
cc

ur
ac

y

(c) w = 0.8, T ∗ = 0.24, ∆MACs∗ = 81%

Figure 4: Speeding up EfficientNet-B7 with the EfficientNet family and Little-Big Ensemble
(Equation 8).

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

In Figure 5, EfficientNet-B7 is compressed without loss of accuracy by Little-Big Ensemble (Equa-
tion 8) using EfficientNet-B0-B6. Setting w = {0.2, 0.5, 0.8} yield T ∗ = {0.28, 0.22, 0.24}
and consequently MACs reductions ∆MACs∗ = {78%, 82%, 81%}, similar to T = 0.24 and
∆MACs = 81% achieved by the simple Little-Big (Equation 4).

0.00 0.25 0.50 0.75 1.00
Threshold (T)

0.0

0.2

0.4

0.6

0.8

1.0

|D
*|

 /
|D

|

B0-B7
B1-B7
B2-B7
B3-B7
B4-B7
B5-B7
B6-B7

0.00 0.25 0.50 0.75 1.00
Threshold (T)

10 2

10 1

100

R
el

at
iv

e
G

M
A

C
s

0.00 0.25 0.50 0.75 1.00
Threshold (T)

0.78

0.80

0.82

0.84

Im
ag

eN
et

-1
k

A
cc

ur
ac

y

100 101

GMACs

0.76

0.78

0.80

0.82

0.84

Im
ag

eN
et

-1
k

A
cc

ur
ac

y

B7
B4-B7 (T = 0.28)

100 101

GMACs

0.84

0.85

0.86

0.87

0.88

0.89

R
ea

L
A

cc
ur

ac
y

100 101

GMACs

0.66

0.68

0.70

0.72

0.74

Im
ag

eN
et

-V
2

A
cc

ur
ac

y

(a) w = 0.2, T ∗ = 0.28, ∆MACs∗ = 78%0.00 0.25 0.50 0.75 1.00
Threshold (T)

0.0

0.2

0.4

0.6

0.8

1.0
|D

*|
 /

|D
|

B0-B7
B1-B7
B2-B7
B3-B7
B4-B7
B5-B7
B6-B7

0.00 0.25 0.50 0.75 1.00
Threshold (T)

10 2

10 1

100

R
el

at
iv

e
G

M
A

C
s

0.00 0.25 0.50 0.75 1.00
Threshold (T)

0.78

0.80

0.82

0.84

Im
ag

eN
et

-1
k

A
cc

ur
ac

y

100 101

GMACs

0.76

0.78

0.80

0.82

0.84

Im
ag

eN
et

-1
k

A
cc

ur
ac

y

B7
B4-B7 (T = 0.22)

100 101

GMACs

0.84

0.85

0.86

0.87

0.88

0.89

R
ea

L
A

cc
ur

ac
y

100 101

GMACs

0.66

0.68

0.70

0.72

0.74

Im
ag

eN
et

-V
2

A
cc

ur
ac

y

(b) w = 0.5, T ∗ = 0.22, ∆MACs∗ = 82%0.00 0.25 0.50 0.75 1.00
Threshold (T)

0.0

0.2

0.4

0.6

0.8

1.0

|D
*|

 /
|D

|

B0-B7
B1-B7
B2-B7
B3-B7
B4-B7
B5-B7
B6-B7

0.00 0.25 0.50 0.75 1.00
Threshold (T)

10 2

10 1

100

R
el

at
iv

e
G

M
A

C
s

0.00 0.25 0.50 0.75 1.00
Threshold (T)

0.78

0.80

0.82

0.84

Im
ag

eN
et

-1
k

A
cc

ur
ac

y

100 101

GMACs

0.76

0.78

0.80

0.82

0.84

Im
ag

eN
et

-1
k

A
cc

ur
ac

y

B7
B4-B7 (T = 0.24)

100 101

GMACs

0.84

0.85

0.86

0.87

0.88

0.89

R
ea

L
A

cc
ur

ac
y

100 101

GMACs

0.66

0.68

0.70

0.72

0.74

Im
ag

eN
et

-V
2

A
cc

ur
ac

y

(c) w = 0.8, T ∗ = 0.24, ∆MACs∗ = 81%

Figure 5: Speeding up EfficientNet-B7 with the EfficientNet family and Little-Big Ensemble
(Equation 8).

A.4 BENCHMARKING THROUGHPUT AND LATENCY

Average throughput and latency are measured on an Nvidia RTX3090 on the ImageNet-1K validation
set with 50000 samples. In Table 9, we consider a memory constrained use case where the max
memory use of Little-Big pair is no larger than that of using the Big model alone. This requires the
Little model being unloaded from memory after the first passs before the big model is loaded for the
second pass. Without the memory constraint, Little-Big can achieve better throughput and latency
improvement than resported in Table 9.
Table 9: We use the largest power of 2 batch size that fits in the vRAM for each model, throughput
and latency include amortized model loading time. Compared with EfficientNet-B7, EfficientNet-
B4+B7 pair achieves throughput improvement by 339% and latency reduction by 77%.

ImageNet-1K Throughput Latency

Big Model Little Model ∆Acc ∆GMACs samples/s ∆ ms ∆

EfficientNet-B7-600

None −− −− 35.5 −− 28.2 −−
B0-224 +0.01 −25% 54.0 +52% 18.5 −34%
B1-240 +0.01 −13% 39.9 +12% 25.1 −11%
B2-288 +0.00 −59% 76.6 +116% 13.1 −54%
B3-300 +0.02 −61% 86.4 +144% 11.6 −59%
B4-380 +0.01 −81% 155.2 +338% 6.4 −77%
B5-456 +0.01 −65% 97.1 +174% 10.3 −64%
B6-528 +0.02 −47% 62.4 +76% 16.0 −43%

To demonstrate the generalizability of Little-Big, we apply Little-Big to the Swin3D-B video classifi-
cation model on Kinetics-400. The Swin3D-T + Swin3D-B pair achieves 41% MACs reduction of
Swin3D-B while maintaining 79.4% Top-1 accuracy on Kinetics-400.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

A.5 ADDITIONAL DATA

0.0 0.2 0.4 0.6 0.8 1.0
Model Confidence

0.0

0.2

0.4

0.6

0.8

1.0

Im
ag

eN
et

-1
K

 A
cc

ur
ac

y
T-224
S-224
B-224

0.0 0.2 0.4 0.6 0.8 1.0
Little Model Confidence

0

500

1000

1500

2000

2500

C
ou

nt

T-224 L-224:
S-224 L-224:
B-224 L-224:

T-224 L-224:
S-224 L-224:
B-224 L-224:

ConvNext

0.0 0.2 0.4 0.6 0.8 1.0
Model Confidence

0.0

0.2

0.4

0.6

0.8

1.0

Im
ag

eN
et

-1
K

 A
cc

ur
ac

y

B0-224
B1-224
B2-256

0.0 0.2 0.4 0.6 0.8 1.0
Little Model Confidence

0

500

1000

1500

2000

2500

3000

3500

C
ou

nt

B0-224 L-384:
B1-224 L-384:
B2-256 L-384:

B0-224 L-384:
B1-224 L-384:
B2-256 L-384:

EfficientViT

0.0 0.2 0.4 0.6 0.8 1.0
Model Confidence

0.0

0.2

0.4

0.6

0.8

1.0

Im
ag

eN
et

-1
K

 A
cc

ur
ac

y

S-224
B-224
L-224

0.0 0.2 0.4 0.6 0.8 1.0
Little Model Confidence

0

500

1000

1500

2000

2500

C
ou

nt

S-224 L-384:
B-224 L-384:
L-224 L-384:

S-224 L-384:
B-224 L-384:
L-224 L-384:

DeiT3

Figure 6: More examples with ConvNext, EfficientViT, and DeiT3. Prediction confidence of
individual models correspond well with prediction accuracy (left), which allows us to approximate a
“difficulty” axis with prediction confidence. Breaking down the mistakes of little models by difficulty,
we find that big models disproportionally “correct” mistakes that are difficult to the little models.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

0.00 0.25 0.50 0.75 1.00
Threshold (T)

0.0

0.2

0.4

0.6

0.8

1.0

|D
*|

 /
|D

|

B0-B7
B1-B7
B2-B7
B3-B7
B4-B7
B5-B7
B6-B7

0.00 0.25 0.50 0.75 1.00
Threshold (T)

10 2

10 1

100

R
el

at
iv

e
G

M
A

C
s

0.00 0.25 0.50 0.75 1.00
Threshold (T)

0.78

0.80

0.82

0.84

Im
ag

eN
et

-1
k

A
cc

ur
ac

y

100 101

GMACs

0.78

0.80

0.82

0.84

Im
ag

eN
et

-1
k

A
cc

ur
ac

y

B7
B4-B7 (T = 0.24)

100 101

GMACs

0.84

0.85

0.86

0.87

0.88

0.89

R
ea

L
A

cc
ur

ac
y

100 101

GMACs

0.66

0.68

0.70

0.72

0.74

Im
ag

eN
et

-V
2

A
cc

ur
ac

y

Figure 7: Speeding up EfficientNet-B7 with the EfficientNet family. Different from Figure 3 where
T is chosen on ImageNet-1K, the optimal pair (blue star) is chosen on the smaller V2 set. This yields
a similar optimal T = 0.28 achieving 78% of MACs reduction.

21

	Introduction
	Related Work
	Computer Vision Models
	Scaling in Vision
	Model Compression
	Human Vision

	Scaling Up Helps with ``Hard'' Samples
	Two-Pass Little-Big Algorithm
	Speeding Up Big Models
	Speeding Up Without Losing Accuracy
	Speeding Up Models Across Types And Scales
	Comparison with Prior Art

	Discussion
	Conclusion
	Appendix
	Extensions and Additional Insights
	Extending to Zero-Shot Classification Using Multimodal Models
	Extending to Multi-Label Classification
	Extending Little-Big to Semantic Segmentation
	Extending Little-Big to NLP Classification

	Additional Experimental Details
	Little-Big Ensemble
	Benchmarking throughput and latency
	Additional Data

