STRATEGIC SCALING OF TEST-TIME COMPUTE: A BANDIT LEARNING APPROACH

Anonymous authors

Paper under double-blind review

ABSTRACT

Scaling test-time compute has emerged as an effective strategy for improving the performance of large language models. However, existing methods typically allocate compute uniformly across all queries, overlooking variation in query difficulty. To address this inefficiency, we formulate test-time compute allocation as a novel bandit learning problem and propose adaptive algorithms that estimate query difficulty on the fly and allocate compute accordingly. Compared to uniform allocation, our algorithms allocate more compute to challenging queries while maintaining accuracy on easier ones. Among challenging queries, our algorithms further learn to prioritize solvable instances, effectively reducing excessive computing on unsolvable queries. We theoretically prove that our algorithms achieve better compute efficiency than uniform allocation and empirically validate their effectiveness on math and code benchmarks. Specifically, our algorithms achieve up to an 11.10% performance improvement (15.04% relative) on the MATH-500 dataset, up to 10.82% (14.44% relative) on the AIME25 dataset, and up to an 11.23% performance improvement (15.29% relative) on the LiveCodeBench dataset.

1 Introduction

Recent advances in large language models (LLMs) have shifted attention from training-time compute (Kaplan et al., 2020; Hoffmann et al., 2022; Chowdhery et al., 2022) to test-time compute (Wei et al., 2023; Yao et al., 2023; Madaan et al., 2023; Agarwal et al., 2024; Muennighoff et al., 2025) as a means of improving model performance. Test-time scaling methods such as Best-of-N sampling (Brown et al., 2024; Snell et al., 2024) and consistency checking (Wang et al., 2022) enhance output quality by generating multiple responses and selecting the most promising one. This selection process can be strengthened using high-quality reward oracles (Cobbe et al., 2021; Uesato et al., 2022; Lightman et al., 2023; Zhang et al., 2025a). These methods have achieved strong empirical gains without additional model training. For instance, as noted in OpenAI's o1 release report (OpenAI, 2024), repeated sampling with 64 generations improves accuracy on the 2024 AIME competition math dataset from 74.4% to 83.3%—a nearly 9% gain without any model updates.

Despite recent advances, most test-time scaling techniques still allocate compute *uniformly across all queries* (Brown et al., 2024; Snell et al., 2024), ignoring the inherent variability in query difficulty. This one-size-fits-all strategy is inefficient: simple arithmetic questions receive the same compute as multi-step reasoning tasks, leading to wasted resources on easy queries and insufficient budget on hard ones. Ideally, one should allocate *just enough compute* to confidently solve easy queries and *reallocate the remaining budget* to harder ones. While recent work has begun exploring adaptive test-time strategies, existing methods either (1) focus on compute allocation *within a single query* (Sun et al., 2024; Manvi et al., 2024; Tan et al., 2025), or (2) rely on *two-stage procedures* (Damani et al., 2024; Wang et al., 2025b) that require training an auxiliary model (or pre-compute allocation) in the first stage to guide later allocation decisions.

In this work, we introduce a new perspective: *strategic scaling of test-time compute*, where compute is adaptively allocated *across* a set of queries based on their estimated difficulty. We formulate this as a *fully adaptive* pure-exploration-style bandit problem (Bubeck et al., 2009; Jamieson & Nowak, 2014; Locatelli et al., 2016; Zhu et al., 2020), treating each query as an action and allocating compute sequentially to *maximize the number of queries answered correctly within a fixed budget*. Our adaptive algorithms estimate query difficulty on the fly and prioritize compute for those most

Figure 1: Comparison between our algorithm and baselines. *Left:* Accuracy comparison on MATH-500 with Llama-3.1-8B-Instruct. *Center:* Accuracy comparison on AIME25 with Qwen3-4B. *Right:* Coverage comparison on LiveCodeBench with DeepSeek-R1-Distill-Llama-8B.

likely to benefit from additional inference. Empirically, our method achieves up to 11.10% absolute (15.04% relative) improvement on the MATH-500 dataset (Lightman et al., 2023; Hendrycks et al., 2021), 10.82% absolute (14.44% relative) on AIME25 (AIME, 2025), and 11.23% absolute (15.29% relative) on LiveCodeBench (Jain et al., 2024)—all under the same compute budget as baselines. Fig. 1 provides a high-level comparison between our method and various baselines.

Contributions. We summarize our main contributions below:

- 1. We formulate LLM test-time compute allocation as a novel bandit learning problem, bridging test-time scaling and bandit learning communities. This formulation grounds strategic test-time scaling in a precise decision-theoretic framework.
- 2. We propose a general algorithmic framework for strategic compute allocation, supporting flexible exploration strategies—including a novel entropy-based rule. Our framework naturally extends to incorporate alternative aggregation methods and handles both streaming and token-constrained settings. We further provide theoretical insights into the efficiency gains of our adaptive approach.
- 3. We conduct extensive experiments on math and code benchmarks and show that our algorithms consistently outperform baselines. Further analyses demonstrate that our algorithms adaptively allocate compute to harder queries in standard settings, and to solvable queries in scenarios containing both solvable and unsolvable instances, effectively avoiding compute waste.

Paper organization. We introduce the problem setting in Section 2. Our solution is presented in Section 3, including the bandit formulation, algorithmic framework, extensions, and theoretical analysis. Empirical results are in Section 4, covering main results, analyses, and ablations. We conclude in Section 5. Due to space limitations, we defer discussion of related work, additional proofs, and extra experimental details and results to the Appendix.

2 Problem setting

Let p denote a language model, which takes a query $x \in \mathcal{X}$ as input and generates a response $y \sim p(\cdot \mid x)$. Recent studies show that scaling up the test-time compute can significantly improve the performance of LLMs across a variety of tasks (Snell et al., 2024). In this context, we consider the amount of test-time compute as the total number of responses generated by the language model. For example, given query $x \in \mathcal{X}$ and a compute budget of N, the model can generate a set of N responses $g(x;N) := \{y_1,\cdots,y_N\}$, where each response $y_i \sim p(\cdot \mid x)$ is sampled from the conditional distribution $p(\cdot \mid x)$. A reward oracle $r: \mathcal{X} \times \mathcal{Y} \to [0,1]$ is used to evaluate the quality of each generation; the reward oracle can be instantiated by either a ground truth verifier or a learned reward model (Cobbe et al., 2021; Uesato et al., 2022; Lightman et al., 2023; Zhang et al., 2025a). When the evaluation metric requires a single response as the output, test-time compute methods such as the Best-of-N algorithm (Brown et al., 2024) use the reward oracle to score each response and return the one with the highest score. Specifically, given a set of responses $g(x;N)=\{y_1,\cdots,y_N\}$ and letting $r(x,y_i)$ denote the score of response y_i , the final output f(x;N):=f(g(x;N)) is defined as:

$$f(x; N) = y_{i^*}, \text{ where } i^* := \underset{i \in [N]}{\operatorname{arg max}} r(x, y_i).$$

While scaling test-time compute can improve performance, existing methods primarily focus on uniform allocation of compute budget. Specifically, given a set of queries $S = \{x_1, \cdots, x_n\}$ and total compute budget $B := n\overline{B}$, existing approaches assign the same compute budget \overline{B} to each query x_i and generate the final outputs $\{(x_1, f(x_1; \overline{B})), \cdots, (x_n, f(x_n; \overline{B}))\}$. This uniform allocation is inefficient: it ignores differences in query difficulty and assigns the same compute to both easy and hard queries.

2.1 Strategic test-time compute allocation

To address the limitations of uniform allocation, we study the problem of strategic test-time compute allocation—how to adaptively allocate a total compute budget across a set of queries to maximize the fraction of correctly answered queries. Let B denote the total compute budget and $S = \{x_1, \cdots, x_n\}$ be a set of n queries. Let Metric $\in [0,1]$ be an evaluation metric and $c(x_i)$ be the compute allocated to query x_i . The goal is to maximize the overall performance subject to a budget constraint:

$$\max_{\{c(x_i)\}_{i=1}^n} \frac{1}{n} \sum_{i=1}^n \mathsf{Metric}\big(x_i; c(x_i)\big) \quad \text{subject to} \quad \sum_{i=1}^n c(x_i) \le B. \tag{1}$$

We consider two popular evaluation metrics: coverage and accuracy. Given a compute allocation $c(x_i)$, coverage evaluates whether any of the $c(x_i)$ generations in $g(x_i; c(x_i))$ correctly answers the query x_i , while accuracy evaluates whether the final output $f(x_i; c(x_i))$ is correct. These metrics are defined as:

```
Coverage(x_i; c(x_i)) := \mathbb{I}\{\text{there exists } y \in g(x_i; c(x_i)) \text{ that correctly answers query } x_i.\}
Accuracy(x_i; c(x_i)) := \mathbb{I}\{f(x_i; c(x_i)) \text{ correctly answers query } x_i.\}
```

The key challenge in Eq. (1) is to adaptively allocate compute budget $c(x_i)$ to each query x_i under uncertainty—that is, without knowing in advance the difficulty of each query or how much compute is needed to answer it correctly. To isolate and address this challenge, we adopt the standard Best-of-N approach (Brown et al., 2024; Snell et al., 2024) for both compute counting (i.e., measuring the number of generations per query) and final output selection.

3 Methods

We present our approaches to solve the strategic test-time compute allocation problem introduced in Section 2.1. In Section 3.1, we first formulate test-time compute allocation as a bandit learning problem. We then introduce our algorithmic framework in Section 3.2, followed by extensions in Section 3.3 and theoretical analysis of compute efficiency in Section 3.4.

3.1 TEST-TIME SCALING AS BANDIT LEARNING

To address the challenge of strategic compute allocation under uncertainty, we introduce a novel bandit learning formulation tailored to LLM test-time compute objectives. Following the bandit terminology, we treat each query $x \in \mathcal{S}$ as an *action*, and interpret sampling action x as allocating one unit of compute to query x to obtain a randomly generated response y. After taking action x, the learner receives feedback from a reward oracle in the form of a score r(x,y).

Our objective is to design an adaptive compute allocation algorithm that maximizes the fraction of queries that are correctly answered within a fixed compute budget B. Assuming availability of a sufficiently accurate reward oracle (e.g., ground truth labels), we approximate the correctness of a response using a user-specified threshold $\gamma \in [0,1]$: a response y to query x is considered correct if $r(x,y) \geq \gamma$. Formally, the algorithm adaptively distributes the total compute budget B across all

 $^{^{1}}$ We assume access to a sufficiently accurate reward oracle in order to focus on the key challenge of adaptive compute allocation. This assumption is clearly satisfied in settings with ground truth labels, and is approximately satisfied by recently developed process reward models (Zhang et al., 2025a). In scenarios with noisy or imperfect reward signals, one can incorporate additional slackness in the threshold γ to absorb uncertainty. We leave a detailed investigation of compute allocation under imperfect reward oracles to future work.

Algorithm 1 Strategic Test-Time Compute Allocation

Input: Query set S, total compute budget B, reward oracle r, per-round per-query compute budget K, and elimination threshold γ .

- 1: For each query $x \in \mathcal{S}$, maintain a response set g(x), the best-scoring response $\check{y}(x)$, and its associated reward $\check{r}(x)$.
- 2: Initialize the active set $\mathcal{A} \leftarrow \mathcal{S}$ to be the full query set.
- 3: while B>0 and $|\mathcal{A}|>0$ do
 - 4: **for** $x \in \mathcal{A}$ **do**

- 5: Generate K new responses $\{y_i\}_{i=1}^K$. Update $g(x) \leftarrow g(x) \cup \{y_i\}_{i=1}^K$ and $B \leftarrow B K$. // The exploration rule: allocating compute to all queries in the active set \mathcal{A} . We discuss extensions of the exploration rule in Section 3.3.
- 6: Get $i^* \leftarrow \arg \max_{i \in [K]} r(x, y_i)$.
- 7: **if** $r(x, y_{i^*}) > \check{r}(x)$ **then**
- 8: Update $\check{y}(x) \leftarrow y_{i^*}$ and $\check{r}(x) \leftarrow r(x, y_{i^*})$.
- 9: **if** $r(x, y_{i^*}) \geq \gamma$ **then**
- 10: Update $A \leftarrow A \setminus \{x\}$. // The elimination rule.

Output: For each $x \in \mathcal{S}$, output its response set g(x) and the best-scoring response $\check{y}(x)$. // Use g(x) for coverage evaluation and $\check{y}(x)$ for accuracy evaluation.

queries through an allocation $\{c(x_i)\}_{i=1}^n$, optimizing the following objective:

$$\max_{\{c(x_i)\}_{i=1}^n} \frac{1}{n} \sum_{i=1}^n \mathbb{I}\Big(\max_{y \in g(x_i; c(x_i))} r(x_i, y) \ge \gamma\Big),$$

where $g(x_i; c(x_i))$ denotes the set of $c(x_i)$ responses generated for query x_i .²

While our formulation is conceptually related to the bandit pure exploration problem (Bubeck et al., 2009; Jamieson & Nowak, 2014) and its thresholding bandit variants (Locatelli et al., 2016; Zhu et al., 2020), it fundamentally departs from the conventional objectives. Standard pure exploration settings aim to identify actions (queries) with high *expected* scores, which correspond—in our setting—to identifying a subset of easy queries that can be reliably answered by the LLM. In contrast, our objective aims at generating at least one high-quality (correct) response for each query, regardless of its expected score. To our knowledge, this not only introduces a novel bandit formulation but also opens the door to further exploration of bandit-based LLM test-time compute allocation.

3.2 Our algorithmic framework

Based on the bandit formulation, we next present our algorithmic framework in Algorithm 1. Given a query set \mathcal{S} , Algorithm 1 initializes an *active set* $\mathcal{A} = \mathcal{S}$ that contains active queries that have not yet been confidently answered. For each query $x \in \mathcal{S}$, it maintains a response set g(x), the best-scoring response $\check{y}(x)$ observed so far, and its corresponding reward score $\check{r}(x)$, as evaluated by the reward oracle r. Algorithm 1 proceeds in rounds, and operates based on two key components: an *exploration rule* and an *elimination rule*:

- The exploration rule. At each round, Algorithm 1 explores all queries in the active set, i.e., for each active query x ∈ A, it generates K new responses {y_i}_{i=1}^K and updates the response set g(x) ← g(x) ∪ {y_i}_{i=1}^K. We discuss extensions to this simple exploration rule in Section 3.3.
- The elimination rule. For each explored query x, let $y_{i^{\star}}$ denote the response that achieves the highest score among newly generated responses, i.e., $i^{\star} = \arg\max_{i \in [K]} r(x, y_i)$. If the reward $r(x, y_{i^{\star}})$ is greater than the previously observed best score $\check{r}(x)$, then Algorithm 1 (1) updates its maintained best-scoring response $\check{y}(x) = y_{i^{\star}}$ and the corresponding reward $\check{r}(x) = r(x, y_{i^{\star}})$; and (2) eliminates query x from the active set \mathcal{A} if the score $r(x, y_{i^{\star}})$ is also greater or equal to the elimination threshold γ .

Algorithm 1 terminates when the compute budget is exhausted (i.e., B=0) or when all queries have been eliminated from the active set (i.e., $A=\emptyset$). For each query $x \in \mathcal{S}$, Algorithm 1 outputs

²When the evaluation metric is Accuracy, one must further explicitly select and output the correct response.

its maintained response set g(x) for coverage evaluation, and its best-scoring response $\check{y}(x)$ for accuracy evaluation.

Reward oracles. Reward oracles have become a core component in test-time compute techniques, even for the vanilla uniform Best-of-*N* algorithm (Brown et al., 2024; Snell et al., 2024). Common reward oracles include outcome reward models (ORMs, Cobbe et al. (2021)) and process reward models (PRMs, Uesato et al. (2022); Lightman et al. (2023); Zhang et al. (2025a)). For tasks with easy or automatic verification, such as math and code generation, ground truth (GT) labels can serve as an exact reward oracle. We emphasize that Algorithm 1 uses *the same number of reward oracle calls* as the uniform Best-of-*N* algorithm, which relies on the reward oracle to select the final output.

Hyperparameters. Algorithm 1 takes two hyperparameters as input: the per-round per-query compute budget K and a user-specified elimination threshold γ . The hyperparameter per-round per-query compute budget K controls the granularity level of the budget allocation: a smaller value of K leads to more fine-grained budget allocation with an increased number of allocation rounds. The elimination hyperparameter γ decides when to eliminate a query from the active set \mathcal{A} . The value of γ can be determined based on expert knowledge or based on cross-validation on a separate training set. These hyperparameters offer additional levels of flexibility for Algorithm 1. We conduct ablation studies of these hyperparameters in Section 4.4 and Appendix D.2.1.

3.3 Extensions of Algorithm 1

Algorithm 1 with different aggregation strategies. While our main discussion centers on Best-of-*N*, the proposed framework is flexible and can accommodate alternative aggregation strategies. Prior work (Wang et al., 2025a) has shown that Self-Consistency (SC) is often more effective for reasoning models—such as Qwen3-4B—due to their tendency to produce logically coherent outputs. To incorporate SC into Algorithm 1, we make two modifications: (1) the selection rule (line 8) now uses SC instead of a reward model (PRM), and (2) the elimination rule (line 10) is updated to eliminate a query once a certain proportion of its collected responses converge to the same answer (e.g., when over 50% agree). When using SC, the reliance on PRMs can be eliminated altogether. Experiments in Section 4.2 confirm that our algorithm remains effective when using SC as the aggregation rule.

Algorithm 1 with different exploration rules. While the base version of Algorithm 1 (ELIMINATION) explores all active queries uniformly at each round, our framework supports more targeted exploration strategies inspired by the pure exploration bandit literature. For example, Upper Confidence Bound (UCB) prioritizes queries with high empirical reward plus an uncertainty bonus (Kalyanakrishnan et al., 2012; Jamieson et al., 2014), while gap-based sampling (GAP) focuses on queries near the elimination threshold γ , allocating compute inversely proportional to the estimated reward gap (Locatelli et al., 2016). We also propose a novel entropy-based rule (ENTROPY) that selects queries with more diverse response patterns, as measured by empirical entropy, and encourages exploration of under-sampled queries. Experiments in Section 4.3 show that ENTROPY is particularly effective across extremely difficult query sets. We defer formulations of these strategies to Appendix B.

Algorithm 1 with fine-grained token controls. The default version of Algorithm 1 models compute cost as the number of response generations. However, it can be easily extended to track and control token-level usage. At each iteration, the algorithm can record token consumption and stop once the total token budget is reached. Alternatively, one can impose fine-grained token caps per generation. We evaluate this variant in Section 4.4 and find that Algorithm 1 continues to outperform baselines under the same token budget.

Algorithm 1 with streaming queries. In streaming settings, queries arrive sequentially, i.e., only the current query x_t is accessible at round t. To adapt Algorithm 1 to this setting, we modify line 4 to focus solely on x_t while keeping the rest of the framework unchanged. To prevent over-allocation of compute on difficult queries, we additionally introduce a per-query cap max_sample $\in \mathbb{N}$, which limits the number of generated responses for any individual query. This constraint enforces a local trade-off between exploration and exploitation and promotes balanced compute usage across the query stream. Ablation results in Section 4.4 show that this streaming variant remains competitive with our original method.

3.4 Theoretical insights on compute efficiency

A key strength of Algorithm 1 (and its variants in Section 3.3 with different exploration rules) lies in their ability to adapt compute based on estimated query difficulty: easier queries get fewer samples, while harder ones are given more when needed.

To understand this advantage, we analyze a simple probabilistic model where each query has an unknown success rate Δ_x , and the goal is to confidently answer all queries under a limited compute budget. Assuming access to a sufficiently accurate reward oracle (see Appendix C), we can compare our method with a uniform compute allocation baseline.

Theorem 1 (Informal). To output correct responses for all queries in S with high probability, Algorithm 1 require a total budget $B_{\text{ours}} = \widetilde{O}(\sum_{x \in S} \frac{1}{\Delta_x})$. In contrast, a uniform allocation strategy requires budget $B_{\text{unif}} = \widetilde{\Theta}(\frac{|S|}{\max_{x \in S} \Delta_x})$ to achieve the same guarantee.

This result highlights the benefit of strategically allocating compute based on query difficulty. For example, with $|\mathcal{S}| = n$ and $\Delta_{x_i} = i/n$, we then have $B_{\text{ours}} = \widetilde{O}(n)$, yet $B_{\text{unif}} = \widetilde{\Theta}(n^2)$, which is n times larger than B_{ours} . We defer the full theoretical analysis and proof to Appendix C.

4 EXPERIMENTS

We describe experimental setups in Section 4.1, present main results in Section 4.2, offer further analysis in Section 4.3, and report ablations in Section 4.4. Additional experimental details and results are deferred to Appendix D.

4.1 EXPERIMENTAL SETUP

Datasets. We examine the performance of our algorithms on standard math and code benchmarks: MATH-500 and AIME25 (Lightman et al., 2023; Hendrycks et al., 2021; AIME, 2025) and Live-CodeBench (Jain et al., 2024). MATH-500 contains 500 math questions, AIME25 contains 30 difficult math questions, and the LiveCodeBench contains 479 code execution questions that were collected from 5/1/2023 to 12/1/2023. From MATH-500, we further construct one challenging subset: MATH-500-Hard-16, which contain questions that cannot be correctly answered after allocating 16 units of compute. Intuitively, this subset consists of the most difficult queries in the MATH-500 dataset.

Baselines. We compare our algorithms with the uniform Best-of-N baseline (Brown et al., 2024), referred to as UNIFORM, and a two-stage baseline, referred to as TWO STAGE (Damani et al., 2024; Wang et al., 2025b). The TWO STAGE baseline first uniformly allocates compute to estimate problem difficulty (stage 1) and then allocates the remaining compute proportionally (stage 2); in other words, it operates in an explore-then-commit style. For the TWO STAGE algorithm, we vary the stage 1 compute ratio from $\{25\%, 50\%, 75\%\}$ and report the best results. We report the performance of our Algorithm 1 (ELIMINATION) and its variants introduced in Section 3.3.

Models and metrics. We conduct experiments with commonly used LLMs of various sizes, including Llama-3.2-1B-Instruct and Llama-3.1-8B-Instruct (Grattafiori et al., 2024), as well as more recently developed reasoning models DeepSeek-R1-Distill-Llama-8B (DeepSeek-AI et al., 2025) and Qwen3-4B (Yang et al., 2025). For the MATH-500 dataset, we consider both the PRM Qwen2.5-Math-PRM-7B (Zhang et al., 2025a) and the Ground Truth (GT) as reward oracles, and evaluate algorithm performance using both the accuracy and coverage metrics described in Section 2.1.³ For AIME25, we use the Self-Consistency (SC) variants of baselines and our methods, as recent work shows that SC is more effective for reasoning models (Wang et al., 2025a). For LiveCodeBench, since correctness can be deterministically verified by code execution, we use the GT reward oracle and report only the coverage metric (equivalent to accuracy). We conduct experiments under average compute budgets of $\{4, 8, 16, 32\}$ and report results averaged over 4 random runs, with shaded regions in plots representing ± 0.5 standard deviations.

³When using the GT reward oracle, accuracy and coverage are equivalent. In this case, we only report coverage.

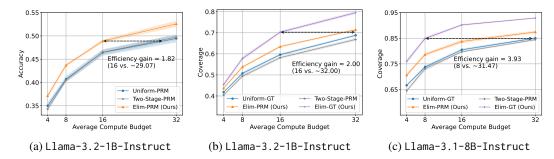


Figure 2: Results on MATH-500 with Llama models of different sizes. Accuracy results of Llama-3.1-8B-Instruct is presented at the left plot of Fig. 1.

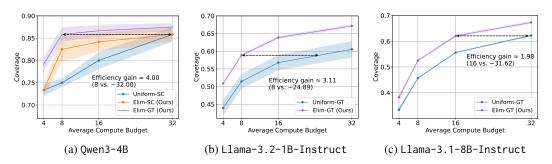


Figure 3: Results on AIME25 (*left*) and LiveCodeBench (*middle and right*). Accuracy result of Qwen3-4B on AIME25 is presented at the middle plot of Fig. 1; coverage result of DeepSeek-R1-Distill-Llama-8B on LiveCodeBench is presented at right plot of Fig. 1.

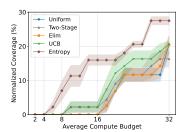
4.2 MAIN RESULTS

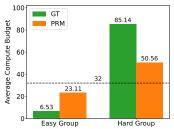
MATH-500 results. Fig. 2 presents experimental results on the MATH-500 dataset across two LLMs and two evaluation metrics (the accuracy result of Llama-3.1-8B-Instruct on MATH-500 is presented in the left plot of Fig. 1). Across all configurations, all variants of our Algorithm 1 consistently outperform both baselines. Under the accuracy metric, when the average compute budget is 16, our method achieves a 2.50% absolute improvement (7.37% relative) on Llama-3.2-1B-Instruct; this corresponds to a 1.82× efficiency gain as shown on the top left plot: UNIFORM takes 1.82× compute to achieve the same performance. For Llama-3.1-8B-Instruct, we observe a 1.40% absolute improvement (4.11% relative), with a 2× efficiency gain (left plot of Fig. 1). For the coverage metric, when the average compute budget is 16, our method yields a 10.70% absolute improvement (17.95% relative) on Llama-3.2-1B-Instruct, resulting in a 2× efficiency gain (middle plot of Fig. 2). When the average budget is 8, we observe an 11.10% absolute gain (15.04% relative) on Llama-3.1-8B-Instruct, yielding a 3.93× efficiency gain (right plot of Fig. 2).

AIME25 results. Fig. 3 reports results on the AIME25 dataset with Qwen3-4B (accuracy result of Qwen3-4B on AIME25 is presented at the middle plot of Fig. 1). Following Yang et al. (2025), we enable the reasoning ability of Qwen3-4B and set the max token length to 38,912. Under the accuracy metric (middle plot of Fig. 1), we are able to gain an absolute of 3.33% performance gain (4.60% relative) when the average compute budget is 8 on Qwen3-4B, yielding a $4.00\times$ efficiency gain. For the coverage metric (left plot of Fig. 3), when the average compute budget is 16, we observe a 10.82% absolute gain (14.44% relative) on Qwen3-4B, yielding a $4.00\times$ efficiency gain.

LiveCodeBench results. Fig. 3 (middle and right) presents results on the LiveCodeBench with Llama models of different sizes, and the right plot of Fig. 1 presents results of DeepSeek-R1-Distill-Llama-8B. As described in Section 4.1, we use the GT reward oracle and report coverage, which is equivalent to accuracy in this setting. We report results for the ELIMINATION

⁴Under the GT reward oracle, we report only the performance of ELIMINATION, as other variants yield similar results. See Appendix D.2.1 for full comparisons.





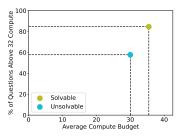


Figure 4: MATH-500-Hard result and analyses with Llama-3.2-1B-Instruct at an average compute 32. *Left:* Coverage on MATH-500-HARD-16. *Center:* Allocation behavior of Algorithm 1 for easy vs. hard groups. *Right:* Allocation behavior of ENTROPY for solvable vs. unsolvable groups.

variant only, as UCB and GAP behave identically to ELIMINATION under the GT oracle. Across all compute budgets, our method consistently outperforms uniform allocation. With an average compute budget of 16, Llama-3.2-1B-Instruct achieves a 6.47% absolute improvement (11.63% relative), corresponding to a 1.98× efficiency gain (middle plot of Fig. 3). With an average compute budget of 8, Llama-3.1-8B-Instruct achieves a 7.41% absolute improvement (14.40% relative), corresponding to a 3.11× efficiency gain (right plot of Fig. 3). With an average compute budget of 8, DeepSeek-R1-Distill-Llama-8B achieves a 9.97% absolute improvement (12.30% relative), corresponding to a 4.00× efficiency gain (right plot of Fig. 1).

MATH-500-Hard result. Fig. 4 (left) presents experimental results on the MATH-500-Hard-16 dataset, which was constructed to include the most challenging questions in the MATH-500 benchmark. We evaluate performance using the GT reward oracle, as PRM-based scores are less reliable on these difficult questions. On this dataset, baseline methods and the vanilla version of our Algorithm 1 (ELIMINATION) doesn't performance well, as many questions can not be solved by the base LLM. However, we find alternative exploration rules introduced in Section 3.3—particularly ENTROPY—achieve significantly better results. These findings highlight the benefits of incorporating more nuanced exploration strategies, such as those developed in Section 3.3, for effective compute allocation on challenging benchmarks. We defer more experiment results to Appendix D.2.2.

4.3 Analysis on the advantages of strategic compute allocation

We conduct further empirical analyses to illustrate the benefits of strategic compute allocation in two settings: (1) on standard datasets containing both easy and hard queries, and (2) on challenging datasets containing both solvable and unsolvable queries. All experiments are conducted using Llama-3.2-1B-Instruct with an average compute budget of 32.

Strategic allocation on standard datasets. In the first analysis, we partition the MATH-500 dataset into two subsets: queries that can be correctly answered with at most 32 units of compute (easy group), and those that cannot (hard group). Intuitively, the easy group consists of questions that require less than 32 units of compute to solve, while the hard group includes questions that would benefit from additional compute. In the middle plot of Fig. 4, we visualize the compute allocation of Algorithm 1 under both PRM and GT reward oracles. Compared to uniform allocation, our algorithm allocates fewer resources to easy queries and more to hard ones. This demonstrates the ability of Algorithm 1 to strategically allocate compute—reserving effort for harder queries that need it most.

Strategic allocation on challenging datasets. In the second analysis, we consider the MATH-500-Hard-16 dataset and divide it into solvable queries and unsolvable ones, where the latter cannot be correctly answered even after allocating 500 units of compute. In such settings, effective allocation should prioritize the solvable subset, as investing in unsolvable queries leads to wasted compute. The right plot of Fig. 4 shows that under a 32-unit compute budget, ENTROPY allocates more compute on average to solvable queries, and a larger fraction of them receive more than 32 samples. This demonstrates that our method learns to concentrate compute on tractable instances, avoiding waste on queries unlikely to be resolved.

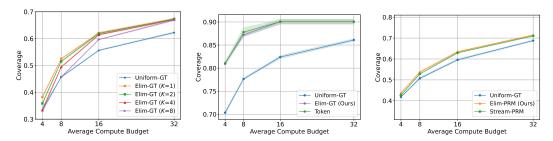


Figure 5: Ablation studies for Algorithm 1. *Left:* Effects of *K* on LiveCodeBench with Llama-3.2-1B-Instruct. *Center:* Token control on LiveCodeBench with DeepSeek-R1-Distill-Llama-8B. *Right:* Streaming variant on MATH-500 with Llama-3.2-1B-Instruct.

To understand why ENTROPY behaves this way, we inspect model outputs on these challenging questions in detail. We observe that unsolvable queries often yield invalid responses (e.g., incomplete or poorly formatted), leading to lower entropy across generations. In contrast, solvable queries tend to produce more diverse and well-formed outputs, resulting in higher entropy. We defer detailed experiments and analysis of ENTROPY extension to Appendix D.2.2.

4.4 ABLATION STUDIES

 Algorithm 1 with different K. All main experiments in Section 4.2 use the default setting K=1. Smaller values of K enable finer-grained adaptive allocation and are generally preferred for maximizing performance. In Fig. 5 (left), we conduct an ablation study with $K \in \{1, 2, 4, 8\}$ on the LiveCodeBench dataset using Llama-3.2-1B-Instruct. Across all values of K, our method consistently outperforms the uniform baseline. While larger K reduces allocation granularity—making performance closer to uniform allocation under tight budgets—the gap narrows as the average compute budget increases. These results show that Algorithm 1 is robust to the choice of K.

Algorithm 1 with token controls. We evaluate Algorithm 1 in a token-controlled setting, where compute is measured by total token usage rather than the number of generations. To ensure comparability, we match the average token budget used by uniform allocation and discard excess samples when needed. As shown in Fig. 5 (middle), on the LiveCodeBench dataset with DeepSeek-R1-Distill-Llama-8B, Algorithm 1 still outperforms the uniform baseline even under equivalent token budgets.

Algorithm 1 with streaming queries. We also test Algorithm 1 in a streaming setting, where queries arrive sequentially and the full query pool is not available in advance. Using the variant described in Section 3.3, we evaluate performance in this setting and report results in Fig. 5 (right; Llama-3.2-1B-Instruct on MATH-500). Our algorithm performs comparably to the pool-based setting, demonstrating its effectiveness under streaming constraints.

5 CONCLUSION

We introduce a new perspective on LLM test-time scaling by formulating strategic compute allocation as a bandit learning problem. We develop adaptive algorithms that estimate query difficulty on the fly and allocate compute to maximize the fraction of correctly answered queries under a fixed compute budget. Our framework is flexible and extends naturally to incorporate alternative aggregation and exploration strategies, as well as to support both streaming and token-constrained settings. We provide theoretical guarantees that strategic compute allocation improves compute efficiency over uniform allocation, and we empirically demonstrate substantial performance improvements—up to 11.10% on MATH-500, 10.82% on AIME25, and 11.23% on LiveCodeBench. These findings underscore the potential of bandit-based compute allocation for more effective test-time scaling.

6 REPRODUCIBILITY STATEMENT

We present our algorithmic framework and our ideas for choosing hyperparameters in Section 3. We also discussed all algorithmic extensions formulation in Appendix B. We list the datasets, models, and our baseline methods in Section 4. We report extra hyperparameters, our experiment setting, and also our prompts used for all experiments in Appendix D.

REFERENCES

- Rishabh Agarwal, Avi Singh, Lei M. Zhang, Bernd Bohnet, Luis Rosias, Stephanie Chan, Biao Zhang, Ankesh Anand, Zaheer Abbas, Azade Nova, John D. Co-Reyes, Eric Chu, Feryal Behbahani, Aleksandra Faust, and Hugo Larochelle. Many-shot in-context learning, 2024. URL https://arxiv.org/abs/2404.11018.
- Shipra Agrawal and Navin Goyal. Analysis of thompson sampling for the multi-armed bandit problem. In *Conference on learning theory*, pp. 39–1. JMLR Workshop and Conference Proceedings, 2012.
- AIME. Aime problems and solutions, 2025. URL https://artofproblemsolving.com/wiki/index.php/AIME_Problems_and_Solutions.
- Jean-Yves Audibert and Sébastien Bubeck. Minimax policies for adversarial and stochastic bandits. In *COLT*, pp. 217–226, 2009.
- Peter Auer, Nicolo Cesa-Bianchi, and Paul Fischer. Finite-time analysis of the multiarmed bandit problem. *Machine learning*, 47:235–256, 2002.
- Amanda Bertsch, Maor Ivgi, Uri Alon, Jonathan Berant, Matthew R. Gormley, and Graham Neubig. In-context learning with long-context models: An in-depth exploration, 2024. URL https://arxiv.org/abs/2405.00200.
- Bradley Brown, Jordan Juravsky, Ryan Ehrlich, Ronald Clark, Quoc V. Le, Christopher Ré, and Azalia Mirhoseini. Large language monkeys: Scaling inference compute with repeated sampling, 2024. URL https://arxiv.org/abs/2407.21787.
- Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya Sutskever, and Dario Amodei. Language models are few-shot learners, 2020. URL https://arxiv.org/abs/2005.14165.
- Sébastien Bubeck, Rémi Munos, and Gilles Stoltz. Pure exploration in multi-armed bandits problems. In *International conference on Algorithmic learning theory*, pp. 23–37. Springer, 2009.
- Sébastien Bubeck and Nicolò Cesa-Bianchi. Regret analysis of stochastic and nonstochastic multiarmed bandit problems, 2012. URL https://arxiv.org/abs/1204.5721.
- Olivier Chapelle and Lihong Li. An empirical evaluation of thompson sampling. *Advances in neural information processing systems*, 24, 2011.
- Dingyang Chen, Qi Zhang, and Yinglun Zhu. Efficient sequential decision making with large language models. *Empirical Methods in Natural Language Processing*, 2024.
- Xinyun Chen, Maxwell Lin, Nathanael Schärli, and Denny Zhou. Teaching large language models to self-debug. *arXiv preprint arXiv:2304.05128*, 2023.
- Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann, Parker Schuh, Kensen Shi, Sasha Tsvyashchenko, Joshua Maynez, Abhishek Rao, Parker Barnes, Yi Tay, Noam Shazeer, Vinodkumar Prabhakaran, Emily Reif, Nan Du, Ben Hutchinson, Reiner Pope, James Bradbury, Jacob Austin, Michael Isard, Guy Gur-Ari, Pengcheng Yin, Toju Duke, Anselm Levskaya, Sanjay Ghemawat, Sunipa Dev, Henryk Michalewski, Xavier Garcia, Vedant Misra, Kevin Robinson, Liam Fedus, Denny Zhou, Daphne Ippolito, David Luan, Hyeontaek Lim, Barret Zoph, Alexander Spiridonov, Ryan Sepassi, David Dohan, Shivani Agrawal, Mark Omernick, Andrew M. Dai, Thanumalayan Sankaranarayana Pillai, Marie Pellat, Aitor Lewkowycz, Erica Moreira, Rewon Child, Oleksandr Polozov, Katherine Lee, Zongwei Zhou, Xuezhi Wang, Brennan Saeta, Mark Diaz, Orhan Firat, Michele Catasta, Jason Wei, Kathy Meier-Hellstern, Douglas Eck, Jeff Dean, Slav Petrov, and Noah Fiedel. Palm: Scaling language modeling with pathways, 2022. URL https://arxiv.org/abs/2204.02311.

595

596

597

598

600

601 602

603

604 605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

627

629

630

631 632

633

634 635

636

637

638 639

640

641

642 643

644

645

646

647

Wei Chu, Lihong Li, Lev Reyzin, and Robert Schapire. Contextual bandits with linear payoff functions. In *Proceedings of the fourteenth international conference on artificial intelligence and statistics*, pp. 208–214. JMLR Workshop and Conference Proceedings, 2011.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John Schulman. Training verifiers to solve math word problems, 2021. URL https://arxiv.org/abs/2110.14168.

Mehul Damani, Idan Shenfeld, Andi Peng, Andreea Bobu, and Jacob Andreas. Learning how hard to think: Input-adaptive allocation of lm computation. *arXiv preprint arXiv:2410.04707*, 2024.

DeepSeek-AI, Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu, Shirong Ma, Peiyi Wang, Xiao Bi, Xiaokang Zhang, Xingkai Yu, Yu Wu, Z. F. Wu, Zhibin Gou, Zhihong Shao, Zhuoshu Li, Ziyi Gao, Aixin Liu, Bing Xue, Bingxuan Wang, Bochao Wu, Bei Feng, Chengda Lu, Chenggang Zhao, Chengqi Deng, Chenyu Zhang, Chong Ruan, Damai Dai, Deli Chen, Dongjie Ji, Erhang Li, Fangyun Lin, Fucong Dai, Fuli Luo, Guangbo Hao, Guanting Chen, Guowei Li, H. Zhang, Han Bao, Hanwei Xu, Haocheng Wang, Honghui Ding, Huajian Xin, Huazuo Gao, Hui Qu, Hui Li, Jianzhong Guo, Jiashi Li, Jiawei Wang, Jingchang Chen, Jingyang Yuan, Junjie Qiu, Junlong Li, J. L. Cai, Jiaqi Ni, Jian Liang, Jin Chen, Kai Dong, Kai Hu, Kaige Gao, Kang Guan, Kexin Huang, Kuai Yu, Lean Wang, Lecong Zhang, Liang Zhao, Litong Wang, Liyue Zhang, Lei Xu, Leyi Xia, Mingchuan Zhang, Minghua Zhang, Minghui Tang, Meng Li, Miaojun Wang, Mingming Li, Ning Tian, Panpan Huang, Peng Zhang, Qiancheng Wang, Qinyu Chen, Qiushi Du, Ruiqi Ge, Ruisong Zhang, Ruizhe Pan, Runji Wang, R. J. Chen, R. L. Jin, Ruyi Chen, Shanghao Lu, Shangyan Zhou, Shanhuang Chen, Shengfeng Ye, Shiyu Wang, Shuiping Yu, Shunfeng Zhou, Shuting Pan, S. S. Li, Shuang Zhou, Shaoqing Wu, Shengfeng Ye, Tao Yun, Tian Pei, Tianyu Sun, T. Wang, Wangding Zeng, Wanjia Zhao, Wen Liu, Wenfeng Liang, Wenjun Gao, Wenqin Yu, Wentao Zhang, W. L. Xiao, Wei An, Xiaodong Liu, Xiaohan Wang, Xiaokang Chen, Xiaotao Nie, Xin Cheng, Xin Liu, Xin Xie, Xingchao Liu, Xinyu Yang, Xinyuan Li, Xuecheng Su, Xuheng Lin, X. Q. Li, Xiangyue Jin, Xiaojin Shen, Xiaosha Chen, Xiaowen Sun, Xiaoxiang Wang, Xinnan Song, Xinyi Zhou, Xianzu Wang, Xinxia Shan, Y. K. Li, Y. Q. Wang, Y. X. Wei, Yang Zhang, Yanhong Xu, Yao Li, Yao Zhao, Yaofeng Sun, Yaohui Wang, Yi Yu, Yichao Zhang, Yifan Shi, Yiliang Xiong, Ying He, Yishi Piao, Yisong Wang, Yixuan Tan, Yiyang Ma, Yiyuan Liu, Yongqiang Guo, Yuan Ou, Yuduan Wang, Yue Gong, Yuheng Zou, Yujia He, Yunfan Xiong, Yuxiang Luo, Yuxiang You, Yuxuan Liu, Yuyang Zhou, Y. X. Zhu, Yanhong Xu, Yanping Huang, Yaohui Li, Yi Zheng, Yuchen Zhu, Yunxian Ma, Ying Tang, Yukun Zha, Yuting Yan, Z. Z. Ren, Zehui Ren, Zhangli Sha, Zhe Fu, Zhean Xu, Zhenda Xie, Zhengyan Zhang, Zhewen Hao, Zhicheng Ma, Zhigang Yan, Zhiyu Wu, Zihui Gu, Zijia Zhu, Zijun Liu, Zilin Li, Ziwei Xie, Ziyang Song, Zizheng Pan, Zhen Huang, Zhipeng Xu, Zhongyu Zhang, and Zhen Zhang. Deepseek-r1: Incentivizing reasoning capability in llms via reinforcement learning, 2025. URL https://arxiv.org/abs/2501.12948.

Yihan Du, Wei Chen, Yuko Kuroki, and Longbo Huang. Collaborative pure exploration in kernel bandit. *arXiv preprint arXiv:2110.15771*, 2021.

Eyal Even-Dar, Shie Mannor, and Yishay Mansour. Pac bounds for multi-armed bandit and markov decision processes. In *Computational Learning Theory: 15th Annual Conference on Computational Learning Theory, COLT 2002 Sydney, Australia, July 8–10, 2002 Proceedings 15*, pp. 255–270. Springer, 2002.

Eyal Even-Dar, Shie Mannor, Yishay Mansour, and Sridhar Mahadevan. Action elimination and stopping conditions for the multi-armed bandit and reinforcement learning problems. *Journal of machine learning research*, 7(6), 2006.

Xidong Feng, Ziyu Wan, Muning Wen, Stephen Marcus McAleer, Ying Wen, Weinan Zhang, and Jun Wang. Alphazero-like tree-search can guide large language model decoding and training. *arXiv* preprint arXiv:2309.17179, 2023.

Tanner Fiez, Lalit Jain, Kevin G Jamieson, and Lillian Ratliff. Sequential experimental design for transductive linear bandits. *Advances in neural information processing systems*, 32, 2019.

- Dylan Foster and Alexander Rakhlin. Beyond ucb: Optimal and efficient contextual bandits with regression oracles. In *International conference on machine learning*, pp. 3199–3210. PMLR, 2020.
 - Dylan J Foster, Sham M Kakade, Jian Qian, and Alexander Rakhlin. The statistical complexity of interactive decision making. *arXiv preprint arXiv:2112.13487*, 2021.
 - Aurélien Garivier, Hédi Hadiji, Pierre Menard, and Gilles Stoltz. Kl-ucb-switch: optimal regret bounds for stochastic bandits from both a distribution-dependent and a distribution-free viewpoints. *Journal of Machine Learning Research*, 23(179):1–66, 2022.
 - Zhibin Gou, Zhihong Shao, Yeyun Gong, Yelong Shen, Yujiu Yang, Nan Duan, and Weizhu Chen. Critic: Large language models can self-correct with tool-interactive critiquing. *arXiv* preprint *arXiv*:2305.11738, 2023.
 - Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, et al. The llama 3 herd of models. *arXiv preprint arXiv:2407.21783*, 2024.
 - Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song, and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset. *NeurIPS*, 2021.
 - Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, et al. Training compute-optimal large language models. *arXiv preprint arXiv:2203.15556*, 2022.
 - Naman Jain, King Han, Alex Gu, Wen-Ding Li, Fanjia Yan, Tianjun Zhang, Sida Wang, Armando Solar-Lezama, Koushik Sen, and Ion Stoica. Livecodebench: Holistic and contamination free evaluation of large language models for code, 2024. URL https://arxiv.org/abs/2403.07974.
 - Kevin Jamieson and Robert Nowak. Best-arm identification algorithms for multi-armed bandits in the fixed confidence setting. In 2014 48th annual conference on information sciences and systems (CISS), pp. 1–6. IEEE, 2014.
 - Kevin Jamieson, Matthew Malloy, Robert Nowak, and Sébastien Bubeck. lil'ucb: An optimal exploration algorithm for multi-armed bandits. In *Conference on Learning Theory*, pp. 423–439. PMLR, 2014.
 - Shivaram Kalyanakrishnan, Ambuj Tewari, Peter Auer, and Peter Stone. Pac subset selection in stochastic multi-armed bandits. In *ICML*, volume 12, pp. 655–662, 2012.
 - Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B. Brown, Benjamin Chess, Rewon Child, Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language models, 2020. URL https://arxiv.org/abs/2001.08361.
 - Zohar Karnin, Tomer Koren, and Oren Somekh. Almost optimal exploration in multi-armed bandits. In *International conference on machine learning*, pp. 1238–1246. PMLR, 2013.
 - Julian Katz-Samuels, Lalit Jain, Kevin G Jamieson, et al. An empirical process approach to the union bound: Practical algorithms for combinatorial and linear bandits. *Advances in Neural Information Processing Systems*, 33:10371–10382, 2020.
 - Emilie Kaufmann and Shivaram Kalyanakrishnan. Information complexity in bandit subset selection. In *Conference on Learning Theory*, pp. 228–251. PMLR, 2013.
 - Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model serving with pagedattention. In *Proceedings of the 29th Symposium on Operating Systems Principles*, pp. 611–626, 2023.
 - Tor Lattimore and Csaba Szepesvári. Bandit algorithms. Cambridge University Press, 2020.
 - Lihong Li, Wei Chu, John Langford, and Robert E Schapire. A contextual-bandit approach to personalized news article recommendation. In *Proceedings of the 19th international conference on World wide web*, pp. 661–670, 2010.

- Lisha Li, Kevin Jamieson, Giulia DeSalvo, Afshin Rostamizadeh, and Ameet Talwalkar. Hyperband: A novel bandit-based approach to hyperparameter optimization. *Journal of Machine Learning Research*, 18(185):1–52, 2018.
- Hunter Lightman, Vineet Kosaraju, Yura Burda, Harri Edwards, Bowen Baker, Teddy Lee, Jan Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let's verify step by step, 2023. URL https://arxiv.org/abs/2305.20050.
- Andrea Locatelli, Maurilio Gutzeit, and Alexandra Carpentier. An optimal algorithm for the thresholding bandit problem, 2016. URL https://arxiv.org/abs/1605.08671.
- Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler Hallinan, Luyu Gao, Sarah Wiegreffe, Uri Alon, Nouha Dziri, Shrimai Prabhumoye, Yiming Yang, et al. Self-refine: Iterative refinement with self-feedback. *Advances in Neural Information Processing Systems*, 36:46534–46594, 2023.
- Rohin Manvi, Anikait Singh, and Stefano Ermon. Adaptive inference-time compute: Llms can predict if they can do better, even mid-generation, 2024. URL https://arxiv.org/abs/2410.02725.
- Marius Mosbach, Tiago Pimentel, Shauli Ravfogel, Dietrich Klakow, and Yanai Elazar. Few-shot fine-tuning vs. in-context learning: A fair comparison and evaluation, 2023. URL https://arxiv.org/abs/2305.16938.
- Niklas Muennighoff, Zitong Yang, Weijia Shi, Xiang Lisa Li, Li Fei-Fei, Hannaneh Hajishirzi, Luke Zettlemoyer, Percy Liang, Emmanuel Candès, and Tatsunori Hashimoto. s1: Simple test-time scaling, 2025. URL https://arxiv.org/abs/2501.19393.
- OpenAI. Learning to reason with llms, 2024. URL https://openai.com/index/learning-to-reason-with-llms/.
- Mark Rucker, Yinglun Zhu, and Paul Mineiro. Infinite action contextual bandits with reusable data exhaust. In *International Conference on Machine Learning*, pp. 29259–29274. PMLR, 2023.
- Daniel J Russo, Benjamin Van Roy, Abbas Kazerouni, Ian Osband, Zheng Wen, et al. A tutorial on thompson sampling. *Foundations and Trends*® *in Machine Learning*, 11(1):1–96, 2018.
- Chengshuai Shi, Kun Yang, Zihan Chen, Jundong Li, Jing Yang, and Cong Shen. Efficient prompt optimization through the lens of best arm identification. *arXiv preprint arXiv:2402.09723*, 2024.
- Charlie Snell, Jaehoon Lee, Kelvin Xu, and Aviral Kumar. Scaling llm test-time compute optimally can be more effective than scaling model parameters, 2024. URL https://arxiv.org/abs/2408.03314.
- Hanshi Sun, Momin Haider, Ruiqi Zhang, Huitao Yang, Jiahao Qiu, Ming Yin, Mengdi Wang, Peter Bartlett, and Andrea Zanette. Fast best-of-n decoding via speculative rejection. *arXiv preprint arXiv:2410.20290*, 2024.
- Zhendong Tan, Xingjun Zhang, Chaoyi Hu, Yancheng Pan, and Shaoxun Wang. Adaptive rectification sampling for test-time compute scaling, 2025. URL https://arxiv.org/abs/2504.01317.
- William R Thompson. On the likelihood that one unknown probability exceeds another in view of the evidence of two samples. *Biometrika*, 25(3/4):285–294, 1933.
- Jonathan Uesato, Nate Kushman, Ramana Kumar, Francis Song, Noah Siegel, Lisa Wang, Antonia Creswell, Geoffrey Irving, and Irina Higgins. Solving math word problems with process-and outcome-based feedback. *arXiv* preprint arXiv:2211.14275, 2022.
- Sofía S Villar, Jack Bowden, and James Wason. Multi-armed bandit models for the optimal design of clinical trials: benefits and challenges. *Statistical science: a review journal of the Institute of Mathematical Statistics*, 30(2):199, 2015.
- Junlin Wang, Shang Zhu, Jon Saad-Falcon, Ben Athiwaratkun, Qingyang Wu, Jue Wang, Shuaiwen Leon Song, Ce Zhang, Bhuwan Dhingra, and James Zou. Think deep, think fast: Investigating efficiency of verifier-free inference-time-scaling methods, 2025a. URL https://arxiv.org/abs/2504.14047.

- Xinglin Wang, Shaoxiong Feng, Yiwei Li, Peiwen Yuan, Yueqi Zhang, Chuyi Tan, Boyuan Pan, Yao Hu, and Kan Li. Make every penny count: Difficulty-adaptive self-consistency for cost-efficient reasoning, 2025b. URL https://arxiv.org/abs/2408.13457.
 - Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, Ed Chi, Sharan Narang, Aakanksha Chowdhery, and Denny Zhou. Self-consistency improves chain of thought reasoning in language models. *arXiv* preprint arXiv:2203.11171, 2022.
 - Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed Chi, Quoc Le, and Denny Zhou. Chain-of-thought prompting elicits reasoning in large language models, 2023. URL https://arxiv.org/abs/2201.11903.
 - An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang Gao, Chengen Huang, Chenxu Lv, Chujie Zheng, Dayiheng Liu, Fan Zhou, Fei Huang, Feng Hu, Hao Ge, Haoran Wei, Huan Lin, Jialong Tang, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin Yang, Jiaxi Yang, Jing Zhou, Jingren Zhou, Junyang Lin, Kai Dang, Keqin Bao, Kexin Yang, Le Yu, Lianghao Deng, Mei Li, Mingfeng Xue, Mingze Li, Pei Zhang, Peng Wang, Qin Zhu, Rui Men, Ruize Gao, Shixuan Liu, Shuang Luo, Tianhao Li, Tianyi Tang, Wenbiao Yin, Xingzhang Ren, Xinyu Wang, Xinyu Zhang, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang, Yinger Zhang, Yu Wan, Yuqiong Liu, Zekun Wang, Zeyu Cui, Zhenru Zhang, Zhipeng Zhou, and Zihan Qiu. Qwen3 technical report, 2025. URL https://arxiv.org/abs/2505.09388.
 - Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Thomas L. Griffiths, Yuan Cao, and Karthik Narasimhan. Tree of thoughts: Deliberate problem solving with large language models, 2023. URL https://arxiv.org/abs/2305.10601.
 - Zhenru Zhang, Chujie Zheng, Yangzhen Wu, Beichen Zhang, Runji Lin, Bowen Yu, Dayiheng Liu, Jingren Zhou, and Junyang Lin. The lessons of developing process reward models in mathematical reasoning. *arXiv preprint arXiv:2501.07301*, 2025a.
 - Zhenru Zhang, Chujie Zheng, Yangzhen Wu, Beichen Zhang, Runji Lin, Bowen Yu, Dayiheng Liu, Jingren Zhou, and Junyang Lin. The lessons of developing process reward models in mathematical reasoning, 2025b. URL https://arxiv.org/abs/2501.07301.
 - Yinglun Zhu and Paul Mineiro. Contextual bandits with smooth regret: Efficient learning in continuous action spaces. In *International Conference on Machine Learning*, pp. 27574–27590. PMLR, 2022.
 - Yinglun Zhu and Robert Nowak. On regret with multiple best arms. *Advances in Neural Information Processing Systems*, 33:9050–9060, 2020.
 - Yinglun Zhu and Robert Nowak. Pareto optimal model selection in linear bandits. In *International Conference on Artificial Intelligence and Statistics*, pp. 6793–6813. PMLR, 2022.
 - Yinglun Zhu, Sumeet Katariya, and Robert Nowak. Robust outlier arm identification. In *International Conference on Machine Learning*, pp. 11566–11575. PMLR, 2020.
 - Yinglun Zhu, Dongruo Zhou, Ruoxi Jiang, Quanquan Gu, Rebecca Willett, and Robert Nowak. Pure exploration in kernel and neural bandits. *Advances in neural information processing systems*, 34: 11618–11630, 2021.
 - Yinglun Zhu, Dylan J Foster, John Langford, and Paul Mineiro. Contextual bandits with large action spaces: Made practical. In *International Conference on Machine Learning*, pp. 27428–27453. PMLR, 2022a.
 - Yinglun Zhu, Julian Katz-Samuels, and Robert Nowak. Near instance optimal model selection for pure exploration linear bandits. In *International Conference on Artificial Intelligence and Statistics*, pp. 6735–6769. PMLR, 2022b.

A RELATED WORK

Test-time compute techniques. Scaling test-time compute (TTC) has emerged as a powerful class of methods for improving the performance of large language models, typically without requiring additional parameter updates. In-context learning (Brown et al., 2020), including its scaling to many-shot regimes (Agarwal et al., 2024; Bertsch et al., 2024), and prompting-based methods such as Chain-of-Thought (Wei et al., 2023) and Tree-of-Thought (Yao et al., 2023; Feng et al., 2023), have demonstrated that carefully designed test-time techniques can match or even surpass finetuned models (Mosbach et al., 2023). Self-reflection (Madaan et al., 2023) is another popular technique for leveraging TTC to improve performance: by prompting the LLM to iteratively refine its own generations, the model can produce higher-quality responses across a range of tasks (Chen et al., 2023; Gou et al., 2023). Muennighoff et al. (2025) further demonstrates that simply increasing the number of generated "thinking" tokens leads to substantial performance gains.

Repeated sampling methods—most notably Best-of-N (Brown et al., 2024; Snell et al., 2024; Wang et al., 2022)—have become popular for scaling test-time compute, especially when combined with high-quality reward models (Cobbe et al., 2021; Uesato et al., 2022; Lightman et al., 2023; Zhang et al., 2025a). Building on this line of work, recent—and in some cases concurrent—efforts have proposed adaptive variants of Best-of-N that dynamically allocate compute for a given query (Sun et al., 2024; Manvi et al., 2024; Tan et al., 2025). However, these methods focus on adaptive allocation within an individual query, without considering opportunities to redistribute compute across a set of queries. In contrast, we study strategic compute allocation across multiple queries, introducing an additional layer of optimization—for example, deciding when to transfer unused budget from easier queries to harder ones. The problem setting in Damani et al. (2024) is closely related, as they also consider multi-query compute allocation. However, their approach relies on a two-stage schedule that requires training an additional model in the first stage to guide compute distribution, incurring extra compute cost. In contrast, we formulate the problem as a novel bandit learning task and develop fully adaptive algorithms that learn to allocate compute on the fly, without any additional training overhead. Furthermore, we provide the first theoretical result that provably demonstrates the advantage of strategic test-time compute allocation over uniform allocation.

Bandit learning and pure exploration. Bandit learning is a fundamental framework for sequential decision making under uncertainty, where an agent must choose among a set of actions (or arms) to optimize a long-term objective with limited feedback (Bubeck & Cesa-Bianchi, 2012; Lattimore & Szepesvári, 2020). Popular algorithms include Upper Confidence Bound (UCB, Auer et al. (2002); Audibert & Bubeck (2009); Chu et al. (2011); Zhu & Nowak (2020; 2022); Garivier et al. (2022)), which selects the action with the highest upper confidence bound; Thompson Sampling (Thompson, 1933; Chapelle & Li, 2011; Agrawal & Goyal, 2012; Russo et al., 2018), which selects the action with the highest sampled reward from the posterior; and inverse gap weighting strategies (Foster & Rakhlin, 2020; Foster et al., 2021; Zhu et al., 2022a; Zhu & Mineiro, 2022; Rucker et al., 2023), which sample actions with probabilities inversely proportional to their estimated reward gaps. Bandit algorithms have been widely applied in domains such as online recommendation systems (Li et al., 2010), clinical trials (Villar et al., 2015), hyperparameter tuning (Li et al., 2018), and more recently applications with LLMs (Shi et al., 2024; Chen et al., 2024).

Pure exploration (Bubeck et al., 2009; Jamieson & Nowak, 2014), also known as the best arm identification (BAI) problem, is a key subfield of bandit learning that aims to identify high-performing arms using as few samples as possible. Core algorithms include successive elimination (Even-Dar et al., 2002; 2006; Karnin et al., 2013), UCB-based strategies (Kalyanakrishnan et al., 2012; Kaufmann & Kalyanakrishnan, 2013; Jamieson et al., 2014), and gap-based sampling methods (Locatelli et al., 2016). Recent extensions generalize these techniques to more expressive function classes, including linear models (Fiez et al., 2019; Katz-Samuels et al., 2020; Zhu et al., 2022b), kernel functions (Du et al., 2021), and neural networks (Zhu et al., 2021). Our work introduces a novel pure-exploration-style bandit formulation, tailored to LLM test-time compute allocation—a setting not previously explored in this context. We treat each query as a bandit action and adaptively allocate compute to maximize the fraction of queries correctly answered under a fixed compute budget. This formulation enables the use of classical bandit techniques such as elimination rules, confidence bounds, and gap-based sampling. In addition, we propose a new entropy-based sampling strategy (Section 3.3) that prioritizes queries with diverse response patterns. While our formulation is

conceptually related to the thresholding bandit problem and its variants (Locatelli et al., 2016; Zhu & Nowak, 2020), it departs fundamentally in its objective. Thresholding bandits aim to identify actions (queries) whose *expected reward* exceeding a given threshold. In contrast, our goal is to generate at least one high-quality response for each query, regardless of its expected score.

B SUPPORTING FORMULATIONS FROM SECTION 3.3

Our main algorithmic framework (Algorithm 1) is presented with a simple exploration rule that explores all queries within the active set (lines 4-5). In practice, this rule can be flexibly extended to incorporate diverse exploration objectives. Motivated by developments in the bandit pure exploration literature, we introduce several alternative exploration rules in the following. We use g(x) to denote the response set to query x, and N(x) := |g(x)| to denote the number of generations so far.

• Upper confidence bound (UCB). For any active query $x \in \mathcal{A}$, let $\widehat{r}(x) := \sum_{y_i \in g(x)} r(x,y_i)/N(x)$ denote the empirical average reward based on previously collected responses. Let $\lambda > 0$ be a hyperparameter. At each round, the UCB exploration rule selects the query based on the following criteria:

$$\underset{x \in \mathcal{A}}{\arg\max} \ \widehat{r}(x) + \lambda N(x)^{-1/2}.$$

This exploration rule follows the principle of optimism in the face of uncertainty (Kalyanakrishnan et al., 2012; Jamieson et al., 2014), and prioritizes on selecting queries that are more likely to be solved (i.e., those with higher average rewards). The term $\lambda N(x)^{-1/2}$ is used to construct the upper confidence bound of the reward.

• GAP. For any active query $x \in \mathcal{A}$, let $\widehat{r}(x) := \sum_{y_i \in g(x)} r(x, y_i) / N(x)$ denote the empirical average reward based on previously collected responses. At each round, the GAP exploration rule selects the query based on the following criterion:

$$\underset{x \in \mathcal{A}}{\operatorname{arg\,min}} \ (\gamma - \widehat{r}(x)) \cdot N(x)^{-1/2}.$$

This exploration rule prioritizes queries whose estimated reward is close to the elimination threshold γ , with a preference toward less-explored queries. The weighting term $N(x)^{-1/2}$ ensures that compute is allocated inversely proportional to the reward gap from the elimination threshold (Locatelli et al., 2016).

ENTROPY. For any active query x ∈ A, let {v_k} be the set of distinct responses in g(x), and define the empirical probability of observing response v_k as p_k(x) := |{i : y_i = v_k, y_i ∈ g(x)}|/N(x). Let H(x) = -∑_k p_k(x) log p_k(x) denote the entropy of the empirical response distribution p(x). Let λ > 0 be a hyperparameter. At each round, the ENTROPY exploration rule selects the query based on the following criterion:

$$\underset{x \in \mathcal{A}}{\operatorname{arg\,max}} \ H(x) + \lambda N(x)^{-1/2}.$$

This exploration rule, proposed in our work, prioritizes queries that elicit a more diverse set of responses, as indicated by higher entropy. The term $\lambda N(x)^{-1/2}$ encourages exploration of under-explored queries by balancing the trade-off between response diversity and sample count.

C Supporting Results from Section 3.4

One of the key advantages of Algorithm 1 (and its variants in Section 3.3 with different exploration rules) is their ability to strategically allocate compute across a set of queries based on difficulty levels estimated on the fly. In particular, easier queries receive less compute, while more challenging ones tend to be allocated additional resources when beneficial.

To better understand the advantage of Algorithm 1 over uniform compute allocation, we consider the following probabilistic model. For each query $x \in \mathcal{S}$, we model the correctness of the LLM's response in a single, independent generation as a Bernoulli random variable with parameter $\Delta_x \in (0,1)$. That is, $X \sim \text{Bernoulli}(\Delta_x)$, where X = 1 if the LLM answers the query correctly and X = 0 otherwise.

To ensure the reward oracle is compatible with this probability model and the specified threshold γ , we make the following assumption.

Assumption 1. For any query $x \in S$ and any randomly generated response y. y correctly answers x if and only if the reward oracle r assigns a score $r(x, y) \ge \gamma$.

Assumption 1 ensures that the elimination decision is aligned with the reward oracle and the threshold, allowing us to focus on the analysis of the adaptive design in Algorithm 1. This assumption is satisfied by the ground truth reward oracle, and holds approximately when the reward model is sufficiently accurate—a condition empirically supported by recent advances in high-quality process reward models (Zhang et al., 2025a).

Suppose $K={\cal O}(1),$ we derive the following quantitative comparison between Algorithm 1 and uniform compute allocation.

Theorem 2. Assume Assumption 1, and fix any $\delta \in (0,1)$. To output correct responses for all queries in S with probability at least $1-\delta$, Algorithm 1 require a total budget $B_{\text{ours}} = \widetilde{O}(\sum_{x \in S} \frac{1}{\Delta_x})$. In contrast, a uniform allocation strategy requires budget $B_{\text{unif}} = \widetilde{\Theta}(\frac{|S|}{\max_{x \in S} \Delta_x})$ to achieve the same guarantee.

Theorem 2 highlights the clear efficiency advantage of Algorithm 1 over uniform allocation: the budget B_{ours} required by Algorithm 1 is always smaller than that of uniform allocation B_{unif} , and in certain cases, B_{unif} can be nearly $|\mathcal{S}|$ times larger than B_{ours} . To give a concrete example, suppose $|\mathcal{S}|=n$ and $\Delta_{x_i}=i/n$. We then have $B_{\text{ours}}=\widetilde{O}(n)$, yet $B_{\text{unif}}=\widetilde{\Theta}(n^2)$, which is n times larger than B_{ours} . This theoretical separation underscores the benefit of strategic compute allocation: by adapting to query difficulty, Algorithm 1 can dramatically reduce overall compute usage.

C.1 Proofs of Theorem 2

Theorem 2. Assume Assumption 1, and fix any $\delta \in (0,1)$. To output correct responses for all queries in S with probability at least $1-\delta$, Algorithm 1 require a total budget $B_{\mathsf{ours}} = \widetilde{O}(\sum_{x \in S} \frac{1}{\Delta_x})$. In contrast, a uniform allocation strategy requires budget $B_{\mathsf{unif}} = \widetilde{\Theta}(\frac{|S|}{\max_{x \in S} \Delta_x})$ to achieve the same guarantee.

Proof. We first prove that $B_{\text{ours}} = \widetilde{O}(\sum_{x \in \mathcal{S}} \frac{1}{\Delta_x})$ under the elimination rule of Algorithm 1. Note that under Assumption 1, a query is eliminated if and only if it is correctly answered.⁵ Denote $\overline{\delta} := \delta/|\mathcal{S}|$, $n_x := \frac{1}{\Delta_n} \log \frac{1}{\delta}$; we consider the following event:

 $E_x := \{ \text{query } x \text{ will be correctly answered within } n_x \text{ random generations} \}.$

We know that E_x happens with probability at least $1 - \bar{\delta}$ as the probability of \bar{E}_x is upper bounded by $\bar{\delta}$:

$$(1 - \Delta_x)^{n_x} \le e^{-\Delta_x \cdot n_x} = e^{-\Delta_x \cdot \frac{1}{\Delta_x} \log \frac{1}{\bar{\delta}}} = \bar{\delta}.$$

A union bound over $x \in \mathcal{S}$ leads to $\mathbb{P}(\bigcup_{x \in \mathcal{S}} E_x) \geq 1 - \sum_{x \in \mathcal{S}} \bar{\delta} = 1 - \delta$. As a result, the with probability of at least $1 - \delta$, Algorithm 1 and its variants in Section 3.3 output correct responses for all queries with compute budget $B_{\text{ours}} = \sum_{x \in \mathcal{S}} n_x = \sum_{x \in \mathcal{S}} \frac{1}{\Delta_x} \log \frac{|\mathcal{S}|}{\delta} = \widetilde{O}(\sum_{x \in \mathcal{S}} \frac{1}{\Delta_x})$.

For uniform compute allocation, it allocates the same amount of compute for each query $x \in \mathcal{S}$. We thus only need to quantify the amount of compute \overline{n} needed to correctly answer $\overline{x} := \arg\min_{x \in \mathcal{S}} \Delta_x$, the hardest query within \mathcal{S} , with high probability. The analysis above shows that $\overline{n} \leq \widetilde{O}(\frac{1}{\Delta_{\overline{x}}})$. This upper bound tends out to be tight since if $\overline{n} \leq \frac{1}{\Delta_{\overline{x}}}$, then

$$(1 - \Delta_{\overline{x}})^{\frac{1}{\Delta_{\overline{x}}}} \ge e^{-\frac{\Delta_{\overline{x}}}{1 - \Delta_{\overline{x}}} \cdot \frac{1}{\Delta_{\overline{x}}}} = e^{-\frac{1}{1 - \Delta_{\overline{x}}}},\tag{2}$$

⁵Since the elimination rule works for all variants of Algorithm 1 introduced in Section 3.3, the guarantee also holds for these variants.

 where the inequality is based on the fact that $\Delta_{\overline{x}} \in (0,1)$ and

$$1 - \Delta_{\overline{x}} = \frac{1}{\frac{1}{1 - \Delta_{\overline{x}}}} = \frac{1}{1 + \frac{\Delta_{\overline{x}}}{1 - \Delta_{\overline{x}}}} \ge \frac{1}{e^{\frac{\Delta_{\overline{x}}}{1 - \Delta_{\overline{x}}}}}.$$

Eq. (2) implies that the failure probability is at least $e^{-\frac{1}{1-\Delta_{\overline{x}}}}$; note that if $\Delta_{\overline{x}} \leq c < 1$, the failure probability is a universal constant $e^{-\frac{1}{1-c}}$ (e.g., e^{-2} if $\Delta_{\overline{x}} \leq \frac{1}{2}$). As a result, the compute budget $B_{\mathrm{unif}} = \widetilde{\Theta}(\frac{|\mathcal{S}|}{\Delta_{\overline{x}}}) = \widetilde{\Theta}(\frac{|\mathcal{S}|}{\max_{x \in \mathcal{S}} \Delta_x})$.

D OTHER DETAILS AND RESULTS FOR EXPERIMENTS

D.1 ADDITIONAL DETAILS ON EXPERIMENTAL SETUPS

D.1.1 ADDITIONAL HYPERPARAMETERS

We conduct all experiments on two NVIDIA RTX 6000 Ada GPUs (48 GB each). We use vLLM (Kwon et al., 2023) for LLM response generation, with a temperature of 0.6. For UCB, we set $\lambda=1$; for Entropy, we set $\lambda=3$. As mentioned in Section 3.3, to prevent excessive exploitation of UCB, GAP, and Entropy, we cap the maximum number of generations per query using a hyperparameter max_samples. See Table 1 for the values of max_samples used in our MATH-500 experiments across different compute budgets, LLM variants, and reward oracles.

Table 1: Settings of max_samples by model-scene and compute budget on MATH-500 dataset.

Scene	Avg. budget 4 (max_samples)	Avg. budget 8 (max_samples)	Avg. budget 16 (max_samples)	Avg. budget 32 (max_samples)
Llama-3.1 w/GT	40	40	120	300
Llama-3.1 w/PRM	12	40	80	120
Llama-3.2 w/GT	40	40	120	120
Llama-3.2 w/ PRM	12	12	60	60

D.1.2 ADDITIONAL DETAILS ON MATH-500-HARD DATASETS

As discussed in Section 4.1, we construct the MATH-500-Hard dataset by removing queries from MATH-500 that can be solved with 16 units of compute. On top of this, we construct another dataset by removing queries that can be solved with 8 units of compute, and we call this dataset MATH-500-Hard-8. After removing these relatively easy queries, MATH-500-Hard-8 contains 71 challenging queries and MATH-500-Hard-16 contains 56 challenging queries. We further divide MATH-500-Hard queries into two subsets: the subset that cannot be solved after allocating M compute units (Unsolvable) and the reset (Solvable). We set M = 500 for Llama-3.2-1B-Instruct, and M = 350 for Llama-3.1-8B-Instruct. On these MATH-500-Hard datasets, we select max_samples $\in \{36, 48, 64\}$ for UCB, GAP, and ENTROPY. The setting of max_samples is discussed in Section 3.3.

D.1.3 PROMPTS SELECTION

In-context examples for MATH-500. We include four in-context examples in the prompt for MATH-500. An illustrative example used in our experiments is shown below.

MATH Few-Shot Example

Problem: If det A = 2 and det B = 12, then find det(A B).

Solution: We have that

$$\det(\mathbf{A}\,\mathbf{B}) = \det(\mathbf{A})\,\det(\mathbf{B}) = (2)\,(12) = \boxed{24}$$

Final Answer: The final answer is 24. I hope it is correct.

Prompts for LiveCodeBench. We use the prompt provided on the official GitHub of Live-CodeBench (Jain et al., 2024). The prompt used in our experiments is shown below.

LiveCodeBench CoT prompt

You are given a Python function and an assertion containing an input to the function. Complete the assertion with a literal (no unsimplified expressions, no function calls) containing the output when executing the provided code on the given input, even if the function is incorrect or incomplete. Do NOT output any extra information. Execute the program step by step before arriving at an answer, and provide the full assertion with the correct output in [ANSWER] and [/ANSWER] tags, following the examples.

[PYTHON] def performOperation(s): s = s + s return "b" + s + "a" assert performOperation(s = "hi") == ?? [/PYTHON]

[THOUGHT] Let's execute the code step by step: 1. The function performOperation is defined, which takes a single argument s. 2. The function is called with the argument "hi", so within the function, s is initially "hi". 3. Inside the function, s is concatenated with itself, so s becomes "hihi". 4. The function then returns a new string that starts with "b", followed by s (now "hihi"), and ends with "a". 5. The return value is therefore "bhihia". [/THOUGHT] [ANSWER] assert performOperation(s = "hi") == "bhihia" [/ANSWER]

AIME prompt. The same format as MATH-500 prompts, but without any in-context examples.

Output format. When we generate responses using vLLM, we expect the output from both models to follow a structured format shown below. We use Step ## as a keyword to segment the solution into individual reasoning steps, which are then fed into the PRM for evaluation. As noted in Zhang et al. (2025b), using \n as a segmentation keyword is a common and effective strategy. We confirm that this choice also works well in our setting. However, given the specific formatting of our answers, we find that using Step ## as the segmentation keyword yields better overall performance, as reported in Table 2.

Expected generation from both Llama models about MATH questions

Step 1: [Description of first step]

Step 2: [Description of second step]

Step 3: [Description of third step]

Step...

The final answer is: \$\boxed{}\$

Table 2: Effects of segmentation keywords on MATH-500 with Llama-3.1-8B-Instruct

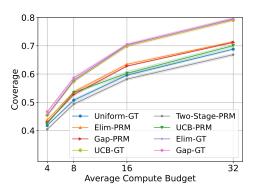
Method	4	8	16	32
Uniform-Step	60.26%	63.30%	66.56%	67.80%
Uniform-Space	59.06%	61.50%	64.36%	64.76%
Elim-Step	62.50%	65.90%	67.96%	69.46%
Elim-Space	61.96%	64.66%	65.66%	66.20%

D.2 ADDITIONAL EXPERIMENTAL RESULTS

D.2.1 ADDITIONAL EXPERIMENTS ON MATH-500 AND LIVECODEBENCH

Compared to Fig. 2, Fig. 6 additionally includes the coverage performance of UCB and GAP with the GT reward oracle. Since the results under GT are closely clustered, we display only ELIMINATION with GT in the main text for clarity.

Streaming Setting. We further evaluate Algorithm 1 in a streaming setting where queries arrive sequentially Table 4 and Table 5. In this case, compute is allocated on a per-query basis over 500



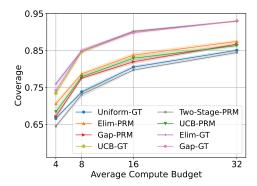


Figure 6: Complete coverage comparisons for Fig. 2 on the MATH-500 dataset. *Left:* results with Llama-3.2-1B-Instruct. *Right:* results with Llama-3.1-8B-Instruct.

rounds, rather than jointly across the entire dataset. Our method continues to outperform baseline strategies under this setting. We present a more complete result with both accuracy and coverage metrics.

Table 3: Streaming setting on MATH-500 — Llama-3.2-1B-Instruct.

Metric	Avg. budget 4	Avg. budget 8	Avg. budget 16	Avg. budget 32
Coverage — Uniform-PRM	41.80%	50.75%	59.60%	68.80%
Coverage — Elim-PRM	43.70%	53.75%	63.45%	71.45%
Coverage — Stream-PRM	42.65%	52.85%	62.95%	71.05%
Accuracy — Uniform-PRM	35.00%	40.70%	46.45%	49.45%
Accuracy — Elim-PRM	37.15%	43.70%	48.90%	52.60%
Accuracy — Stream-PRM	36.55%	43.10%	48.55%	52.20%

Total Token Length. In this experiment, we first measured the total token usage under the uniform allocation setting and then applied Algorithm 1 while constraining total token usage to the same level. Whenever additional tokens were generated, we discarded responses to ensure that our method consumed no more tokens than its uniform counterpart. Results on both datasets show that, even under this controlled token budget, our algorithm consistently outperforms all baseline methods.

Table 4: Token setting on MATH-500 — Llama-3.2-1B-Instruct.

Metric	Avg. budget 4	Avg. budget 8	Avg. budget 16	Avg. budget 32
Coverage — Uniform-PRM	41.80%	50.75%	59.60%	68.80%
Coverage — Elim-PRM	43.70%	53.75%	63.45%	71.45%
Coverage — Token-PRM	42.70%	52.10%	60.90%	69.95%
Accuracy — Uniform-PRM	35.00%	40.70%	46.45%	49.45%
Accuracy — Elim-PRM	37.15%	43.70%	48.90%	52.60%
Accuracy — Token-PRM	36.50%	42.60%	48.05%	51.85%

Table 5: Token setting on LiveCodeBench — DeepSeek-R1-Distill-Llama-8B.

Metric	Avg. budget 4	Avg. budget 8	Avg. budget 16	Avg. budget 32
Coverage — Uniform-GT	73.43%	81.05%	86.01%	89.87%
Coverage — Elim-GT	84.66%	91.02%	94.00%	94.00%
Coverage — Token-GT	84.50%	91.65%	94.00%	94.00%

MATH-500-Hard-8

Choices of the threshold γ . The elimination threshold γ controls which queries are confidently answered and can be removed from the active set. Since higher reward scores generally indicate higher-quality responses, setting a high threshold $\gamma \in [0,1]$ is natural. We conduct ablations with $\gamma \in \{0.97, 0.98, 0.99, 1.0\}$ and report the results in Fig. 7. We observe that $\gamma = 1.0$ performs slightly better, likely because Qwen2.5-Math-PRM-7B assigns a deterministic score of 1.0 to answers it deems correct—a property specific to this PRM. Importantly, across all tested values, our method consistently outperforms the uniform allocation baseline, indicating that Algorithm 1 is robust to variations in γ .

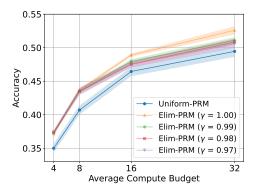


Figure 7: Effect of γ on compute for Llama-3.2-1B-Instruct.

D.2.2 ADDITIONAL EXPERIMENTS AND ANALYSES ON MATH-500-HARD

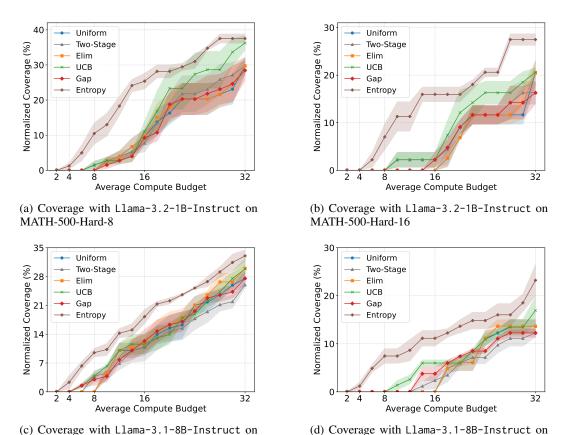


Figure 8: Coverage comparisons on MATH-500-Hard datasets with two language model of different sizes: Llama-3.2-1B-Instruct and Llama-3.1-8B-Instruct.

MATH-500-Hard-16

Fig. 8 presents additional results on MATH-500-Hard datasets, including experiments with the GAP algorithm and experiments with the Llama-3.1-8B-Instruct model. These experiments show that our algorithms introduced in Section 3.3, particularly ENTROPY and UCB, achieve early advantages and outperform both UNIFORM and ELIMINATION.

Why ENTROPY works well on challenging datasets? We conduct a detailed analysis on understand why ENTROPY performs particularly well on MATH-500-Hard datasets. Upon inspecting model responses to challenging queries, we observe that unsolvable queries are more likely to yield invalid outputs (e.g., incomplete or improperly formatted), resulting in lower entropy among their generated responses; in contrast, solvable queries tend to generate more diverse outputs (see Table 6 and Table 7 for statistics computed from 64 responses per query). Since ENTROPY prioritizes queries with higher entropy, it naturally allocates more compute to those that are more likely to be solvable—explaining its strong empirical performance on challenging problems. We expect this behavior to generalize to other challenging benchmarks, provided that invalid responses can be reliably identified. In such settings, ENTROPY offers an effective means to shift compute toward promising queries and achieve better performance under limited compute budget.

Table 6: Aggregated statistics by query group on MATH-500-Hard-8.

Query group	#questions	Entropy (mean)	Invalid answers (%)
Unsolvable	49	4.26	19.45%
Solvable	22	4.52	12.45%

Table 7: Aggregated statistics by query group on MATH-500-Hard-16.

Query group	#questions	Entropy (mean)	Invalid answers (%)
Unsolvable	43	4.33	18.39%
Solvable	13	4.53	13.10%

E THE USE OF LARGE LANGUAGE MODELS (LLMS)

LLMs were used to polish the writing of this paper.