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ABSTRACT

Scaling test-time compute has emerged as an effective strategy for improving
the performance of large language models. However, existing methods typically
allocate compute uniformly across all queries, overlooking variation in query dif-
ficulty. To address this inefficiency, we formulate test-time compute allocation
as a novel bandit learning problem and propose adaptive algorithms that estimate
query difficulty on the fly and allocate compute accordingly. Compared to uniform
allocation, our algorithms allocate more compute to challenging queries while
maintaining accuracy on easier ones. Among challenging queries, our algorithms
further learn to prioritize solvable instances, effectively reducing excessive comput-
ing on unsolvable queries. We theoretically prove that our algorithms achieve better
compute efficiency than uniform allocation and empirically validate their effective-
ness on math and code benchmarks. Specifically, our algorithms achieve up to an
11.10% performance improvement (15.04% relative) on the MATH-500 dataset,
up to 10.82% (14.44% relative) on the AIME25 dataset, and up to an 11.23%
performance improvement (15.29% relative) on the LiveCodeBench dataset.

1 INTRODUCTION

Recent advances in large language models (LLMs) have shifted attention from training-time compute
(Kaplan et al., 2020; Hoffmann et al., 2022; Chowdhery et al., 2022) to test-time compute (Wei et al.,
2023; Yao et al., 2023; Madaan et al., 2023; Agarwal et al., 2024; Muennighoff et al., 2025) as a
means of improving model performance. Test-time scaling methods such as Best-of-N sampling
(Brown et al., 2024; Snell et al., 2024) and consistency checking (Wang et al., 2022) enhance output
quality by generating multiple responses and selecting the most promising one. This selection process
can be strengthened using high-quality reward oracles (Cobbe et al., 2021; Uesato et al., 2022;
Lightman et al., 2023; Zhang et al., 2025a). These methods have achieved strong empirical gains
without additional model training. For instance, as noted in OpenAI’s o1 release report (OpenAI,
2024), repeated sampling with 64 generations improves accuracy on the 2024 AIME competition
math dataset from 74.4% to 83.3%—a nearly 9% gain without any model updates.

Despite recent advances, most test-time scaling techniques still allocate compute uniformly across all
queries (Brown et al., 2024; Snell et al., 2024), ignoring the inherent variability in query difficulty.
This one-size-fits-all strategy is inefficient: simple arithmetic questions receive the same compute as
multi-step reasoning tasks, leading to wasted resources on easy queries and insufficient budget on
hard ones. Ideally, one should allocate just enough compute to confidently solve easy queries and
reallocate the remaining budget to harder ones. While recent work has begun exploring adaptive
test-time strategies, existing methods either (1) focus on compute allocation within a single query
(Sun et al., 2024; Manvi et al., 2024; Tan et al., 2025), or (2) rely on two-stage procedures (Damani
et al., 2024; Wang et al., 2025b) that require training an auxiliary model (or pre-compute allocation)
in the first stage to guide later allocation decisions.

In this work, we introduce a new perspective: strategic scaling of test-time compute, where compute
is adaptively allocated across a set of queries based on their estimated difficulty. We formulate
this as a fully adaptive pure-exploration-style bandit problem (Bubeck et al., 2009; Jamieson &
Nowak, 2014; Locatelli et al., 2016; Zhu et al., 2020), treating each query as an action and allocating
compute sequentially to maximize the number of queries answered correctly within a fixed budget.
Our adaptive algorithms estimate query difficulty on the fly and prioritize compute for those most
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Figure 1: Comparison between our algorithm and baselines. Left: Accuracy comparison on MATH-
500 with Llama-3.1-8B-Instruct. Center: Accuracy comparison on AIME25 with Qwen3-4B.
Right: Coverage comparison on LiveCodeBench with DeepSeek-R1-Distill-Llama-8B .

likely to benefit from additional inference. Empirically, our method achieves up to 11.10% absolute
(15.04% relative) improvement on the MATH-500 dataset (Lightman et al., 2023; Hendrycks et al.,
2021), 10.82% absolute (14.44% relative) on AIME25 (AIME, 2025), and 11.23% absolute (15.29%
relative) on LiveCodeBench (Jain et al., 2024)—all under the same compute budget as baselines.
Fig. 1 provides a high-level comparison between our method and various baselines.

Contributions. We summarize our main contributions below:

1. We formulate LLM test-time compute allocation as a novel bandit learning problem, bridging
test-time scaling and bandit learning communities. This formulation grounds strategic test-time
scaling in a precise decision-theoretic framework.

2. We propose a general algorithmic framework for strategic compute allocation, supporting flexible
exploration strategies—including a novel entropy-based rule. Our framework naturally extends to
incorporate alternative aggregation methods and handles both streaming and token-constrained
settings. We further provide theoretical insights into the efficiency gains of our adaptive approach.

3. We conduct extensive experiments on math and code benchmarks and show that our algorithms
consistently outperform baselines. Further analyses demonstrate that our algorithms adaptively
allocate compute to harder queries in standard settings, and to solvable queries in scenarios
containing both solvable and unsolvable instances, effectively avoiding compute waste.

Paper organization. We introduce the problem setting in Section 2. Our solution is presented
in Section 3, including the bandit formulation, algorithmic framework, extensions, and theoretical
analysis. Empirical results are in Section 4, covering main results, analyses, and ablations. We
conclude in Section 5. Due to space limitations, we defer discussion of related work, additional
proofs, and extra experimental details and results to the Appendix.

2 PROBLEM SETTING

Let p denote a language model, which takes a query x ∈ X as input and generates a response
y ∼ p(· | x). Recent studies show that scaling up the test-time compute can significantly improve the
performance of LLMs across a variety of tasks (Snell et al., 2024). In this context, we consider the
amount of test-time compute as the total number of responses generated by the language model. For
example, given query x ∈ X and a compute budget of N , the model can generate a set of N responses
g(x;N) := {y1, · · · , yN}, where each response yi ∼ p(· | x) is sampled from the conditional
distribution p(· | x). A reward oracle r : X × Y → [0, 1] is used to evaluate the quality of each
generation; the reward oracle can be instantiated by either a ground truth verifier or a learned reward
model (Cobbe et al., 2021; Uesato et al., 2022; Lightman et al., 2023; Zhang et al., 2025a). When
the evaluation metric requires a single response as the output, test-time compute methods such as
the Best-of-N algorithm (Brown et al., 2024) use the reward oracle to score each response and return
the one with the highest score. Specifically, given a set of responses g(x;N) = {y1, · · · , yN} and
letting r(x, yi) denote the score of response yi, the final output f(x;N) := f(g(x;N)) is defined as:

f(x;N) = yi⋆ , where i⋆ := argmax
i∈[N ]

r(x, yi).

2
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While scaling test-time compute can improve performance, existing methods primarily focus on
uniform allocation of compute budget. Specifically, given a set of queries S = {x1, · · · , xn} and
total compute budget B := nB, existing approaches assign the same compute budget B to each query
xi and generate the final outputs {(x1, f(x1;B)), · · · , (xn, f(xn;B))}. This uniform allocation is
inefficient: it ignores differences in query difficulty and assigns the same compute to both easy and
hard queries.

2.1 STRATEGIC TEST-TIME COMPUTE ALLOCATION

To address the limitations of uniform allocation, we study the problem of strategic test-time compute
allocation—how to adaptively allocate a total compute budget across a set of queries to maximize the
fraction of correctly answered queries. Let B denote the total compute budget and S = {x1, · · · , xn}
be a set of n queries. Let Metric ∈ [0, 1] be an evaluation metric and c(xi) be the compute allocated
to query xi. The goal is to maximize the overall performance subject to a budget constraint:

max
{c(xi)}n

i=1

1

n

n∑
i=1

Metric
(
xi; c(xi)

)
subject to

n∑
i=1

c(xi) ≤ B. (1)

We consider two popular evaluation metrics: coverage and accuracy. Given a compute allocation
c(xi), coverage evaluates whether any of the c(xi) generations in g(xi; c(xi)) correctly answers the
query xi, while accuracy evaluates whether the final output f(xi; c(xi)) is correct. These metrics are
defined as:

Coverage(xi; c(xi)) := I{there exists y ∈ g(xi; c(xi)) that correctly answers query xi.}
Accuracy(xi; c(xi)) := I{f(xi; c(xi)) correctly answers query xi.}

The key challenge in Eq. (1) is to adaptively allocate compute budget c(xi) to each query xi under
uncertainty—that is, without knowing in advance the difficulty of each query or how much compute is
needed to answer it correctly. To isolate and address this challenge, we adopt the standard Best-of-N
approach (Brown et al., 2024; Snell et al., 2024) for both compute counting (i.e., measuring the
number of generations per query) and final output selection.

3 METHODS

We present our approaches to solve the strategic test-time compute allocation problem introduced
in Section 2.1. In Section 3.1, we first formulate test-time compute allocation as a bandit learning
problem. We then introduce our algorithmic framework in Section 3.2, followed by extensions in
Section 3.3 and theoretical analysis of compute efficiency in Section 3.4.

3.1 TEST-TIME SCALING AS BANDIT LEARNING

To address the challenge of strategic compute allocation under uncertainty, we introduce a novel
bandit learning formulation tailored to LLM test-time compute objectives. Following the bandit
terminology, we treat each query x ∈ S as an action, and interpret sampling action x as allocating
one unit of compute to query x to obtain a randomly generated response y. After taking action x, the
learner receives feedback from a reward oracle in the form of a score r(x, y).

Our objective is to design an adaptive compute allocation algorithm that maximizes the fraction of
queries that are correctly answered within a fixed compute budget B. Assuming availability of a
sufficiently accurate reward oracle (e.g., ground truth labels), we approximate the correctness of a
response using a user-specified threshold γ ∈ [0, 1]: a response y to query x is considered correct if
r(x, y) ≥ γ.1 Formally, the algorithm adaptively distributes the total compute budget B across all

1We assume access to a sufficiently accurate reward oracle in order to focus on the key challenge of adaptive
compute allocation. This assumption is clearly satisfied in settings with ground truth labels, and is approximately
satisfied by recently developed process reward models (Zhang et al., 2025a). In scenarios with noisy or imperfect
reward signals, one can incorporate additional slackness in the threshold γ to absorb uncertainty. We leave a
detailed investigation of compute allocation under imperfect reward oracles to future work.

3
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Algorithm 1 Strategic Test-Time Compute Allocation

Input: Query set S , total compute budget B, reward oracle r, per-round per-query compute budget
K, and elimination threshold γ.

1: For each query x ∈ S, maintain a response set g(x), the best-scoring response y̌(x), and its
associated reward ř(x).

2: Initialize the active set A ← S to be the full query set.
3: while B > 0 and |A| > 0 do
4: for x ∈ A do
5: Generate K new responses {yi}Ki=1. Update g(x)← g(x) ∪ {yi}Ki=1 and B ← B −K. //

The exploration rule: allocating compute to all queries in the active set A. We
discuss extensions of the exploration rule in Section 3.3.

6: Get i⋆ ← argmaxi∈[K] r(x, yi).
7: if r(x, yi⋆) > ř(x) then
8: Update y̌(x)← yi⋆ and ř(x)← r(x, yi⋆).
9: if r(x, yi⋆) ≥ γ then

10: Update A ← A \ {x}. // The elimination rule.
Output: For each x ∈ S, output its response set g(x) and the best-scoring response y̌(x). // Use

g(x) for coverage evaluation and y̌(x) for accuracy evaluation.

queries through an allocation {c(xi)}ni=1, optimizing the following objective:

max
{c(xi)}n

i=1

1

n

n∑
i=1

I
(

max
y∈g(xi;c(xi))

r(xi, y) ≥ γ
)
,

where g(xi; c(xi)) denotes the set of c(xi) responses generated for query xi.2

While our formulation is conceptually related to the bandit pure exploration problem (Bubeck et al.,
2009; Jamieson & Nowak, 2014) and its thresholding bandit variants (Locatelli et al., 2016; Zhu et al.,
2020), it fundamentally departs from the conventional objectives. Standard pure exploration settings
aim to identify actions (queries) with high expected scores, which correspond—in our setting—to
identifying a subset of easy queries that can be reliably answered by the LLM. In contrast, our
objective aims at generating at least one high-quality (correct) response for each query, regardless of
its expected score. To our knowledge, this not only introduces a novel bandit formulation but also
opens the door to further exploration of bandit-based LLM test-time compute allocation.

3.2 OUR ALGORITHMIC FRAMEWORK

Based on the bandit formulation, we next present our algorithmic framework in Algorithm 1. Given a
query set S , Algorithm 1 initializes an active set A = S that contains active queries that have not yet
been confidently answered. For each query x ∈ S , it maintains a response set g(x), the best-scoring
response y̌(x) observed so far, and its corresponding reward score ř(x), as evaluated by the reward
oracle r. Algorithm 1 proceeds in rounds, and operates based on two key components: an exploration
rule and an elimination rule:

• The exploration rule. At each round, Algorithm 1 explores all queries in the active set, i.e., for
each active query x ∈ A, it generates K new responses {yi}Ki=1 and updates the response set
g(x)← g(x) ∪ {yi}Ki=1. We discuss extensions to this simple exploration rule in Section 3.3.

• The elimination rule. For each explored query x, let yi⋆ denote the response that achieves the
highest score among newly generated responses, i.e., i⋆ = argmaxi∈[K] r(x, yi). If the reward
r(x, yi⋆) is greater than the previously observed best score ř(x), then Algorithm 1 (1) updates
its maintained best-scoring response y̌(x) = yi⋆ and the corresponding reward ř(x) = r(x, yi⋆);
and (2) eliminates query x from the active set A if the score r(x, yi⋆) is also greater or equal to
the elimination threshold γ.

Algorithm 1 terminates when the compute budget is exhausted (i.e., B = 0) or when all queries
have been eliminated from the active set (i.e., A = ∅). For each query x ∈ S, Algorithm 1 outputs

2When the evaluation metric is Accuracy, one must further explicitly select and output the correct response.

4
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its maintained response set g(x) for coverage evaluation, and its best-scoring response y̌(x) for
accuracy evaluation.

Reward oracles. Reward oracles have become a core component in test-time compute techniques,
even for the vanilla uniform Best-of-N algorithm (Brown et al., 2024; Snell et al., 2024). Common
reward oracles include outcome reward models (ORMs, Cobbe et al. (2021)) and process reward
models (PRMs, Uesato et al. (2022); Lightman et al. (2023); Zhang et al. (2025a)). For tasks with
easy or automatic verification, such as math and code generation, ground truth (GT) labels can serve
as an exact reward oracle. We emphasize that Algorithm 1 uses the same number of reward oracle
calls as the uniform Best-of-N algorithm, which relies on the reward oracle to select the final output.

Hyperparameters. Algorithm 1 takes two hyperparameters as input: the per-round per-query
compute budget K and a user-specified elimination threshold γ. The hyperparameter per-round
per-query compute budget K controls the granularity level of the budget allocation: a smaller value
of K leads to more fine-grained budget allocation with an increased number of allocation rounds.
The elimination hyperparameter γ decides when to eliminate a query from the active set A. The
value of γ can be determined based on expert knowledge or based on cross-validation on a separate
training set. These hyperparameters offer additional levels of flexibility for Algorithm 1. We conduct
ablation studies of these hyperparameters in Section 4.4 and Appendix D.2.1.

3.3 EXTENSIONS OF ALGORITHM 1

Algorithm 1 with different aggregation strategies. While our main discussion centers on Best-
of-N , the proposed framework is flexible and can accommodate alternative aggregation strategies.
Prior work (Wang et al., 2025a) has shown that Self-Consistency (SC) is often more effective for
reasoning models—such as Qwen3-4B—due to their tendency to produce logically coherent outputs.
To incorporate SC into Algorithm 1, we make two modifications: (1) the selection rule (line 8) now
uses SC instead of a reward model (PRM), and (2) the elimination rule (line 10) is updated to eliminate
a query once a certain proportion of its collected responses converge to the same answer (e.g., when
over 50% agree). When using SC, the reliance on PRMs can be eliminated altogether. Experiments
in Section 4.2 confirm that our algorithm remains effective when using SC as the aggregation rule.

Algorithm 1 with different exploration rules. While the base version of Algorithm 1
(ELIMINATION) explores all active queries uniformly at each round, our framework supports more
targeted exploration strategies inspired by the pure exploration bandit literature. For example, Upper
Confidence Bound (UCB) prioritizes queries with high empirical reward plus an uncertainty bonus
(Kalyanakrishnan et al., 2012; Jamieson et al., 2014), while gap-based sampling (GAP) focuses on
queries near the elimination threshold γ, allocating compute inversely proportional to the estimated re-
ward gap (Locatelli et al., 2016). We also propose a novel entropy-based rule (ENTROPY) that selects
queries with more diverse response patterns, as measured by empirical entropy, and encourages explo-
ration of under-sampled queries. Experiments in Section 4.3 show that ENTROPY is particularly ef-
fective across extremely difficult query sets. We defer formulations of these strategies to Appendix B.

Algorithm 1 with fine-grained token controls. The default version of Algorithm 1 models compute
cost as the number of response generations. However, it can be easily extended to track and control
token-level usage. At each iteration, the algorithm can record token consumption and stop once the
total token budget is reached. Alternatively, one can impose fine-grained token caps per generation.
We evaluate this variant in Section 4.4 and find that Algorithm 1 continues to outperform baselines
under the same token budget.

Algorithm 1 with streaming queries. In streaming settings, queries arrive sequentially, i.e., only
the current query xt is accessible at round t. To adapt Algorithm 1 to this setting, we modify line 4 to
focus solely on xt while keeping the rest of the framework unchanged. To prevent over-allocation
of compute on difficult queries, we additionally introduce a per-query cap max sample ∈ N, which
limits the number of generated responses for any individual query. This constraint enforces a local
trade-off between exploration and exploitation and promotes balanced compute usage across the
query stream. Ablation results in Section 4.4 show that this streaming variant remains competitive
with our original method.

5
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3.4 THEORETICAL INSIGHTS ON COMPUTE EFFICIENCY

A key strength of Algorithm 1 (and its variants in Section 3.3 with different exploration rules) lies in
their ability to adapt compute based on estimated query difficulty: easier queries get fewer samples,
while harder ones are given more when needed.

To understand this advantage, we analyze a simple probabilistic model where each query has an
unknown success rate ∆x, and the goal is to confidently answer all queries under a limited compute
budget. Assuming access to a sufficiently accurate reward oracle (see Appendix C), we can compare
our method with a uniform compute allocation baseline.

Theorem 1 (Informal). To output correct responses for all queries in S with high probability,
Algorithm 1 require a total budget Bours = Õ(

∑
x∈S

1
∆x

). In contrast, a uniform allocation strategy

requires budget Bunif = Θ̃( |S|
maxx∈S ∆x

) to achieve the same guarantee.

This result highlights the benefit of strategically allocating compute based on query difficulty. For
example, with |S| = n and ∆xi

= i/n, we then have Bours = Õ(n), yet Bunif = Θ̃(n2), which is n
times larger than Bours. We defer the full theoretical analysis and proof to Appendix C.

4 EXPERIMENTS

We describe experimental setups in Section 4.1, present main results in Section 4.2, offer further
analysis in Section 4.3, and report ablations in Section 4.4. Additional experimental details and
results are deferred to Appendix D.

4.1 EXPERIMENTAL SETUP

Datasets. We examine the performance of our algorithms on standard math and code benchmarks:
MATH-500 and AIME25 (Lightman et al., 2023; Hendrycks et al., 2021; AIME, 2025) and Live-
CodeBench (Jain et al., 2024). MATH-500 contains 500 math questions, AIME25 contains 30
difficult math questions, and the LiveCodeBench contains 479 code execution questions that were
collected from 5/1/2023 to 12/1/2023. From MATH-500, we further construct one challenging subset:
MATH-500-Hard-16, which contain questions that cannot be correctly answered after allocating 16
units of compute. Intuitively, this subset consists of the most difficult queries in the MATH-500
dataset.

Baselines. We compare our algorithms with the uniform Best-of-N baseline (Brown et al., 2024),
referred to as UNIFORM, and a two-stage baseline, referred to as TWO STAGE (Damani et al., 2024;
Wang et al., 2025b). The TWO STAGE baseline first uniformly allocates compute to estimate problem
difficulty (stage 1) and then allocates the remaining compute proportionally (stage 2); in other words,
it operates in an explore-then-commit style. For the TWO STAGE algorithm, we vary the stage 1
compute ratio from {25%, 50%, 75%} and report the best results. We report the performance of our
Algorithm 1 (ELIMINATION) and its variants introduced in Section 3.3.

Models and metrics. We conduct experiments with commonly used LLMs of various sizes,
including Llama-3.2-1B-Instruct and Llama-3.1-8B-Instruct (Grattafiori et al., 2024), as well
as more recently developed reasoning models DeepSeek-R1-Distill-Llama-8B (DeepSeek-AI
et al., 2025) and Qwen3-4B (Yang et al., 2025). For the MATH-500 dataset, we consider both the
PRM Qwen2.5-Math-PRM-7B (Zhang et al., 2025a) and the Ground Truth (GT) as reward oracles,
and evaluate algorithm performance using both the accuracy and coverage metrics described in
Section 2.1.3 For AIME25, we use the Self-Consistency (SC) variants of baselines and our methods,
as recent work shows that SC is more effective for reasoning models (Wang et al., 2025a). For
LiveCodeBench, since correctness can be deterministically verified by code execution, we use the GT
reward oracle and report only the coverage metric (equivalent to accuracy). We conduct experiments
under average compute budgets of {4, 8, 16, 32} and report results averaged over 4 random runs, with
shaded regions in plots representing ±0.5 standard deviations.

3When using the GT reward oracle, accuracy and coverage are equivalent. In this case, we only report
coverage.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

4 8 16 32
Average Compute Budget

0.35

0.40

0.45

0.50

0.55

Ac
cu

ra
cy Efficiency gain  1.82

(16 vs. ~29.07)

Uniform-PRM
Two-Stage-PRM
Elim-PRM (Ours)

(a) Llama-3.2-1B-Instruct

4 8 16 32
Average Compute Budget

0.4

0.5

0.6

0.7

0.8

Co
ve

ra
ge

Efficiency gain  2.00
(16 vs. ~32.00)

Uniform-GT
Elim-PRM (Ours)

Two-Stage-PRM
Elim-GT (Ours)

(b) Llama-3.2-1B-Instruct

4 8 16 32
Average Compute Budget

0.65

0.75

0.85

0.95

Co
ve

ra
ge Efficiency gain  3.93

(8 vs. ~31.47)

Uniform-GT
Elim-PRM (Ours)

Two-Stage-PRM
Elim-GT (Ours)

(c) Llama-3.1-8B-Instruct

Figure 2: Results on MATH-500 with Llama models of different sizes. Accuracy results of
Llama-3.1-8B-Instruct is presented at the left plot of Fig. 1.
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Figure 3: Results on AIME25 (left) and LiveCodeBench (middle and right). Accuracy re-
sult of Qwen3-4B on AIME25 is presented at the middle plot of Fig. 1; coverage result of
DeepSeek-R1-Distill-Llama-8B on LiveCodeBench is presented at right plot of Fig. 1.

4.2 MAIN RESULTS

MATH-500 results. Fig. 2 presents experimental results on the MATH-500 dataset across two LLMs
and two evaluation metrics (the accuracy result of Llama-3.1-8B-Instruct on MATH-500 is pre-
sented in the left plot of Fig. 1). Across all configurations, all variants of our Algorithm 1 consistently
outperform both baselines. Under the accuracy metric, when the average compute budget is 16, our
method achieves a 2.50% absolute improvement (7.37% relative) on Llama-3.2-1B-Instruct; this
corresponds to a 1.82× efficiency gain as shown on the top left plot: UNIFORM takes 1.82× compute
to achieve the same performance. For Llama-3.1-8B-Instruct, we observe a 1.40% absolute
improvement (4.11% relative), with a 2× efficiency gain (left plot of Fig. 1). For the coverage
metric, when the average compute budget is 16, our method yields a 10.70% absolute improvement
(17.95% relative) on Llama-3.2-1B-Instruct, resulting in a 2× efficiency gain (middle plot of
Fig. 2).4 When the average budget is 8, we observe an 11.10% absolute gain (15.04% relative) on
Llama-3.1-8B-Instruct, yielding a 3.93× efficiency gain (right plot of Fig. 2).

AIME25 results. Fig. 3 reports results on the AIME25 dataset with Qwen3-4B (accuracy result of
Qwen3-4B on AIME25 is presented at the middle plot of Fig. 1). Following Yang et al. (2025), we
enable the reasoning ability of Qwen3-4B and set the max token length to 38,912. Under the accuracy
metric (middle plot of Fig. 1), we are able to gain an absolute of 3.33% performance gain (4.60%
relative) when the average compute budget is 8 on Qwen3-4B, yielding a 4.00× efficiency gain. For
the coverage metric (left plot of Fig. 3), when the average compute budget is 16, we observe a 10.82%
absolute gain (14.44% relative) on Qwen3-4B, yielding a 4.00× efficiency gain.

LiveCodeBench results. Fig. 3 (middle and right) presents results on the LiveCodeBench
with Llama models of different sizes, and the right plot of Fig. 1 presents results of
DeepSeek-R1-Distill-Llama-8B. As described in Section 4.1, we use the GT reward oracle and re-
port coverage, which is equivalent to accuracy in this setting. We report results for the ELIMINATION

4Under the GT reward oracle, we report only the performance of ELIMINATION, as other variants yield
similar results. See Appendix D.2.1 for full comparisons.
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Figure 4: MATH-500-Hard result and analyses with Llama-3.2-1B-Instruct at an average compute
32. Left: Coverage on MATH-500-HARD-16. Center: Allocation behavior of Algorithm 1 for easy
vs. hard groups. Right: Allocation behavior of ENTROPY for solvable vs. unsolvable groups.

variant only, as UCB and GAP behave identically to ELIMINATION under the GT oracle. Across
all compute budgets, our method consistently outperforms uniform allocation. With an average
compute budget of 16, Llama-3.2-1B-Instruct achieves a 6.47% absolute improvement (11.63%
relative), corresponding to a 1.98× efficiency gain (middle plot of Fig. 3). With an average compute
budget of 8, Llama-3.1-8B-Instruct achieves a 7.41% absolute improvement (14.40% relative),
corresponding to a 3.11× efficiency gain (right plot of Fig. 3). With an average compute budget
of 8, DeepSeek-R1-Distill-Llama-8B achieves a 9.97% absolute improvement (12.30% relative),
corresponding to a 4.00× efficiency gain (right plot of Fig. 1).

MATH-500-Hard result. Fig. 4 (left) presents experimental results on the MATH-500-Hard-
16 dataset, which was constructed to include the most challenging questions in the MATH-500
benchmark. We evaluate performance using the GT reward oracle, as PRM-based scores are less
reliable on these difficult questions. On this dataset, baseline methods and the vanilla version of our
Algorithm 1 (ELIMINATION) doesn’t performance well, as many questions can not be solved by the
base LLM. However, we find alternative exploration rules introduced in Section 3.3—particularly
ENTROPY—achieve significantly better results. These findings highlight the benefits of incorporating
more nuanced exploration strategies, such as those developed in Section 3.3, for effective compute
allocation on challenging benchmarks. We defer more experiment results to Appendix D.2.2.

4.3 ANALYSIS ON THE ADVANTAGES OF STRATEGIC COMPUTE ALLOCATION

We conduct further empirical analyses to illustrate the benefits of strategic compute allocation in
two settings: (1) on standard datasets containing both easy and hard queries, and (2) on challenging
datasets containing both solvable and unsolvable queries. All experiments are conducted using
Llama-3.2-1B-Instruct with an average compute budget of 32.

Strategic allocation on standard datasets. In the first analysis, we partition the MATH-500 dataset
into two subsets: queries that can be correctly answered with at most 32 units of compute (easy
group), and those that cannot (hard group). Intuitively, the easy group consists of questions that
require less than 32 units of compute to solve, while the hard group includes questions that would
benefit from additional compute. In the middle plot of Fig. 4, we visualize the compute allocation of
Algorithm 1 under both PRM and GT reward oracles. Compared to uniform allocation, our algorithm
allocates fewer resources to easy queries and more to hard ones. This demonstrates the ability of
Algorithm 1 to strategically allocate compute—reserving effort for harder queries that need it most.

Strategic allocation on challenging datasets. In the second analysis, we consider the MATH-500-
Hard-16 dataset and divide it into solvable queries and unsolvable ones, where the latter cannot be
correctly answered even after allocating 500 units of compute. In such settings, effective allocation
should prioritize the solvable subset, as investing in unsolvable queries leads to wasted compute. The
right plot of Fig. 4 shows that under a 32-unit compute budget, ENTROPY allocates more compute
on average to solvable queries, and a larger fraction of them receive more than 32 samples. This
demonstrates that our method learns to concentrate compute on tractable instances, avoiding waste
on queries unlikely to be resolved.
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Figure 5: Ablation studies for Algorithm 1. Left: Effects of K on LiveCodeBench
with Llama-3.2-1B-Instruct. Center: Token control on LiveCodeBench with
DeepSeek-R1-Distill-Llama-8B. Right: Streaming variant on MATH-500 with
Llama-3.2-1B-Instruct.

To understand why ENTROPY behaves this way, we inspect model outputs on these challenging
questions in detail. We observe that unsolvable queries often yield invalid responses (e.g., incomplete
or poorly formatted), leading to lower entropy across generations. In contrast, solvable queries tend
to produce more diverse and well-formed outputs, resulting in higher entropy. We defer detailed
experiments and analysis of ENTROPY extension to Appendix D.2.2.

4.4 ABLATION STUDIES

Algorithm 1 with different K. All main experiments in Section 4.2 use the default setting K = 1.
Smaller values of K enable finer-grained adaptive allocation and are generally preferred for max-
imizing performance. In Fig. 5 (left), we conduct an ablation study with K ∈ {1, 2, 4, 8} on the
LiveCodeBench dataset using Llama-3.2-1B-Instruct. Across all values of K, our method consis-
tently outperforms the uniform baseline. While larger K reduces allocation granularity—making
performance closer to uniform allocation under tight budgets—the gap narrows as the average
compute budget increases. These results show that Algorithm 1 is robust to the choice of K.

Algorithm 1 with token controls. We evaluate Algorithm 1 in a token-controlled setting, where
compute is measured by total token usage rather than the number of generations. To ensure
comparability, we match the average token budget used by uniform allocation and discard ex-
cess samples when needed. As shown in Fig. 5 (middle), on the LiveCodeBench dataset with
DeepSeek-R1-Distill-Llama-8B, Algorithm 1 still outperforms the uniform baseline even under
equivalent token budgets.

Algorithm 1 with streaming queries. We also test Algorithm 1 in a streaming setting, where
queries arrive sequentially and the full query pool is not available in advance. Using the variant
described in Section 3.3, we evaluate performance in this setting and report results in Fig. 5 (right;
Llama-3.2-1B-Instruct on MATH-500). Our algorithm performs comparably to the pool-based
setting, demonstrating its effectiveness under streaming constraints.

5 CONCLUSION

We introduce a new perspective on LLM test-time scaling by formulating strategic compute allocation
as a bandit learning problem. We develop adaptive algorithms that estimate query difficulty on the fly
and allocate compute to maximize the fraction of correctly answered queries under a fixed compute
budget. Our framework is flexible and extends naturally to incorporate alternative aggregation and
exploration strategies, as well as to support both streaming and token-constrained settings. We
provide theoretical guarantees that strategic compute allocation improves compute efficiency over
uniform allocation, and we empirically demonstrate substantial performance improvements—up
to 11.10% on MATH-500, 10.82% on AIME25, and 11.23% on LiveCodeBench. These findings
underscore the potential of bandit-based compute allocation for more effective test-time scaling.
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6 REPRODUCIBILITY STATEMENT

We present our algorithmic framework and our ideas for choosing hyperparameters in Section 3. We
also discussed all algorithmic extensions formulation in Appendix B. We list the datasets, models,
and our baseline methods in Section 4. We report extra hyperparameters, our experiment setting, and
also our prompts used for all experiments in Appendix D.
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A RELATED WORK

Test-time compute techniques. Scaling test-time compute (TTC) has emerged as a powerful class
of methods for improving the performance of large language models, typically without requiring
additional parameter updates. In-context learning (Brown et al., 2020), including its scaling to
many-shot regimes (Agarwal et al., 2024; Bertsch et al., 2024), and prompting-based methods such
as Chain-of-Thought (Wei et al., 2023) and Tree-of-Thought (Yao et al., 2023; Feng et al., 2023),
have demonstrated that carefully designed test-time techniques can match or even surpass finetuned
models (Mosbach et al., 2023). Self-reflection (Madaan et al., 2023) is another popular technique
for leveraging TTC to improve performance: by prompting the LLM to iteratively refine its own
generations, the model can produce higher-quality responses across a range of tasks (Chen et al.,
2023; Gou et al., 2023). Muennighoff et al. (2025) further demonstrates that simply increasing the
number of generated “thinking” tokens leads to substantial performance gains.

Repeated sampling methods—most notably Best-of-N (Brown et al., 2024; Snell et al., 2024; Wang
et al., 2022)—have become popular for scaling test-time compute, especially when combined with
high-quality reward models (Cobbe et al., 2021; Uesato et al., 2022; Lightman et al., 2023; Zhang
et al., 2025a). Building on this line of work, recent—and in some cases concurrent—efforts have
proposed adaptive variants of Best-of-N that dynamically allocate compute for a given query (Sun
et al., 2024; Manvi et al., 2024; Tan et al., 2025). However, these methods focus on adaptive allocation
within an individual query, without considering opportunities to redistribute compute across a set
of queries. In contrast, we study strategic compute allocation across multiple queries, introducing
an additional layer of optimization—for example, deciding when to transfer unused budget from
easier queries to harder ones. The problem setting in Damani et al. (2024) is closely related, as
they also consider multi-query compute allocation. However, their approach relies on a two-stage
schedule that requires training an additional model in the first stage to guide compute distribution,
incurring extra compute cost. In contrast, we formulate the problem as a novel bandit learning task
and develop fully adaptive algorithms that learn to allocate compute on the fly, without any additional
training overhead. Furthermore, we provide the first theoretical result that provably demonstrates the
advantage of strategic test-time compute allocation over uniform allocation.

Bandit learning and pure exploration. Bandit learning is a fundamental framework for sequential
decision making under uncertainty, where an agent must choose among a set of actions (or arms) to
optimize a long-term objective with limited feedback (Bubeck & Cesa-Bianchi, 2012; Lattimore &
Szepesvári, 2020). Popular algorithms include Upper Confidence Bound (UCB, Auer et al. (2002);
Audibert & Bubeck (2009); Chu et al. (2011); Zhu & Nowak (2020; 2022); Garivier et al. (2022)),
which selects the action with the highest upper confidence bound; Thompson Sampling (Thompson,
1933; Chapelle & Li, 2011; Agrawal & Goyal, 2012; Russo et al., 2018), which selects the action
with the highest sampled reward from the posterior; and inverse gap weighting strategies (Foster &
Rakhlin, 2020; Foster et al., 2021; Zhu et al., 2022a; Zhu & Mineiro, 2022; Rucker et al., 2023),
which sample actions with probabilities inversely proportional to their estimated reward gaps. Bandit
algorithms have been widely applied in domains such as online recommendation systems (Li et al.,
2010), clinical trials (Villar et al., 2015), hyperparameter tuning (Li et al., 2018), and more recently
applications with LLMs (Shi et al., 2024; Chen et al., 2024).

Pure exploration (Bubeck et al., 2009; Jamieson & Nowak, 2014), also known as the best arm
identification (BAI) problem, is a key subfield of bandit learning that aims to identify high-performing
arms using as few samples as possible. Core algorithms include successive elimination (Even-
Dar et al., 2002; 2006; Karnin et al., 2013), UCB-based strategies (Kalyanakrishnan et al., 2012;
Kaufmann & Kalyanakrishnan, 2013; Jamieson et al., 2014), and gap-based sampling methods
(Locatelli et al., 2016). Recent extensions generalize these techniques to more expressive function
classes, including linear models (Fiez et al., 2019; Katz-Samuels et al., 2020; Zhu et al., 2022b),
kernel functions (Du et al., 2021), and neural networks (Zhu et al., 2021). Our work introduces a
novel pure-exploration-style bandit formulation, tailored to LLM test-time compute allocation—a
setting not previously explored in this context. We treat each query as a bandit action and adaptively
allocate compute to maximize the fraction of queries correctly answered under a fixed compute
budget. This formulation enables the use of classical bandit techniques such as elimination rules,
confidence bounds, and gap-based sampling. In addition, we propose a new entropy-based sampling
strategy (Section 3.3) that prioritizes queries with diverse response patterns. While our formulation is
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conceptually related to the thresholding bandit problem and its variants (Locatelli et al., 2016; Zhu &
Nowak, 2020), it departs fundamentally in its objective. Thresholding bandits aim to identify actions
(queries) whose expected reward exceeding a given threshold. In contrast, our goal is to generate at
least one high-quality response for each query, regardless of its expected score.

B SUPPORTING FORMULATIONS FROM SECTION 3.3

Our main algorithmic framework (Algorithm 1) is presented with a simple exploration rule that
explores all queries within the active set (lines 4-5). In practice, this rule can be flexibly extended to
incorporate diverse exploration objectives. Motivated by developments in the bandit pure exploration
literature, we introduce several alternative exploration rules in the following. We use g(x) to denote
the response set to query x, and N(x) := |g(x)| to denote the number of generations so far.

• Upper confidence bound (UCB). For any active query x ∈ A, let r̂(x) :=∑
yi∈g(x) r(x, yi)/N(x) denote the empirical average reward based on previously collected re-

sponses. Let λ > 0 be a hyperparameter. At each round, the UCB exploration rule selects the
query based on the following criteria:

argmax
x∈A

r̂(x) + λN(x)−1/2.

This exploration rule follows the principle of optimism in the face of uncertainty (Kalyanakrishnan
et al., 2012; Jamieson et al., 2014), and prioritizes on selecting queries that are more likely to be
solved (i.e., those with higher average rewards). The term λN(x)−1/2 is used to construct the
upper confidence bound of the reward.

• GAP. For any active query x ∈ A, let r̂(x) :=
∑

yi∈g(x) r(x, yi)/N(x) denote the empirical
average reward based on previously collected responses. At each round, the GAP exploration rule
selects the query based on the following criterion:

argmin
x∈A

(γ − r̂(x)) ·N(x)−1/2.

This exploration rule prioritizes queries whose estimated reward is close to the elimination threshold
γ, with a preference toward less-explored queries. The weighting term N(x)−1/2 ensures that
compute is allocated inversely proportional to the reward gap from the elimination threshold
(Locatelli et al., 2016).

• ENTROPY. For any active query x ∈ A, let {vk} be the set of distinct responses in g(x), and define
the empirical probability of observing response vk as pk(x) := |{i : yi = vk, yi ∈ g(x)}|/N(x).
Let H(x) = −

∑
k pk(x) log pk(x) denote the entropy of the empirical response distribution p(x).

Let λ > 0 be a hyperparameter. At each round, the ENTROPY exploration rule selects the query
based on the following criterion:

argmax
x∈A

H(x) + λN(x)−1/2.

This exploration rule, proposed in our work, prioritizes queries that elicit a more diverse set
of responses, as indicated by higher entropy. The term λN(x)−1/2 encourages exploration of
under-explored queries by balancing the trade-off between response diversity and sample count.

C SUPPORTING RESULTS FROM SECTION 3.4

One of the key advantages of Algorithm 1 (and its variants in Section 3.3 with different exploration
rules) is their ability to strategically allocate compute across a set of queries based on difficulty levels
estimated on the fly. In particular, easier queries receive less compute, while more challenging ones
tend to be allocated additional resources when beneficial.

To better understand the advantage of Algorithm 1 over uniform compute allocation, we consider the
following probabilistic model. For each query x ∈ S , we model the correctness of the LLM’s response
in a single, independent generation as a Bernoulli random variable with parameter ∆x ∈ (0, 1). That
is, X ∼ Bernoulli(∆x), where X = 1 if the LLM answers the query correctly and X = 0 otherwise.
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To ensure the reward oracle is compatible with this probability model and the specified threshold γ,
we make the following assumption.

Assumption 1. For any query x ∈ S and any randomly generated response y. y correctly answers x
if and only if the reward oracle r assigns a score r(x, y) ≥ γ.

Assumption 1 ensures that the elimination decision is aligned with the reward oracle and the
threshold, allowing us to focus on the analysis of the adaptive design in Algorithm 1. This assumption
is satisfied by the ground truth reward oracle, and holds approximately when the reward model is
sufficiently accurate—a condition empirically supported by recent advances in high-quality process
reward models (Zhang et al., 2025a).

Suppose K = O(1), we derive the following quantitative comparison between Algorithm 1 and
uniform compute allocation.

Theorem 2. Assume Assumption 1, and fix any δ ∈ (0, 1). To output correct responses for all queries
in S with probability at least 1 − δ, Algorithm 1 require a total budget Bours = Õ(

∑
x∈S

1
∆x

). In

contrast, a uniform allocation strategy requires budget Bunif = Θ̃( |S|
maxx∈S ∆x

) to achieve the same
guarantee.

Theorem 2 highlights the clear efficiency advantage of Algorithm 1 over uniform allocation: the
budget Bours required by Algorithm 1 is always smaller than that of uniform allocation Bunif , and in
certain cases, Bunif can be nearly |S| times larger than Bours. To give a concrete example, suppose
|S| = n and ∆xi

= i/n. We then have Bours = Õ(n), yet Bunif = Θ̃(n2), which is n times larger
than Bours. This theoretical separation underscores the benefit of strategic compute allocation: by
adapting to query difficulty, Algorithm 1 can dramatically reduce overall compute usage.

C.1 PROOFS OF THEOREM 2

Theorem 2. Assume Assumption 1, and fix any δ ∈ (0, 1). To output correct responses for all queries
in S with probability at least 1 − δ, Algorithm 1 require a total budget Bours = Õ(

∑
x∈S

1
∆x

). In

contrast, a uniform allocation strategy requires budget Bunif = Θ̃( |S|
maxx∈S ∆x

) to achieve the same
guarantee.

Proof. We first prove that Bours = Õ(
∑

x∈S
1

∆x
) under the elimination rule of Algorithm 1. Note

that under Assumption 1, a query is eliminated if and only if it is correctly answered.5 Denote
δ := δ/|S|, nx := 1

∆x
log 1

δ
; we consider the following event:

Ex := {query x will be correctly answered within nx random generations}.

We know that Ex happens with probability at least 1− δ as the probability of Ex is upper bounded
by δ:

(1−∆x)
nx ≤ e−∆x·nx = e−∆x· 1

∆x
log 1

δ = δ.

A union bound over x ∈ S leads to P(∪x∈SEx) ≥ 1 −
∑

x∈S δ = 1 − δ. As a result, the with
probability of at least 1− δ, Algorithm 1 and its variants in Section 3.3 output correct responses for
all queries with compute budget Bours =

∑
x∈S nx =

∑
x∈S

1
∆x

log |S|
δ = Õ(

∑
x∈S

1
∆x

).

For uniform compute allocation, it allocates the same amount of compute for each query x ∈ S . We
thus only need to quantify the amount of compute n needed to correctly answer x := argminx∈S ∆x,
the hardest query within S, with high probability. The analysis above shows that n ≤ Õ( 1

∆x
). This

upper bound tends out to be tight since if n ≤ 1
∆x

, then

(1−∆x)
1

∆x ≥ e
− ∆x

1−∆x
· 1
∆x = e

− 1
1−∆x , (2)

5Since the elimination rule works for all variants of Algorithm 1 introduced in Section 3.3, the guarantee
also holds for these variants.
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where the inequality is based on the fact that ∆x ∈ (0, 1) and

1−∆x =
1
1

1−∆x

=
1

1 + ∆x

1−∆x

≥ 1

e
∆x

1−∆x

.

Eq. (2) implies that the failure probability is at least e−
1

1−∆x ; note that if ∆x ≤ c < 1, the failure
probability is a universal constant e−

1
1−c (e.g., e−2 if ∆x ≤ 1

2 ). As a result, the compute budget
Bunif = Θ̃( |S|

∆x
) = Θ̃( |S|

maxx∈S ∆x
).

D OTHER DETAILS AND RESULTS FOR EXPERIMENTS

D.1 ADDITIONAL DETAILS ON EXPERIMENTAL SETUPS

D.1.1 ADDITIONAL HYPERPARAMETERS

We conduct all experiments on two NVIDIA RTX 6000 Ada GPUs (48 GB each). We use vLLM
(Kwon et al., 2023) for LLM response generation, with a temperature of 0.6. For UCB, we set λ = 1;
for ENTROPY, we set λ = 3. As mentioned in Section 3.3, to prevent excessive exploitation of UCB,
GAP, and ENTROPY, we cap the maximum number of generations per query using a hyperparameter
max samples. See Table 1 for the values of max samples used in our MATH-500 experiments across
different compute budgets, LLM variants, and reward oracles.

Table 1: Settings of max samples by model–scene and compute budget on MATH-500 dataset.

Scene Avg. budget 4 Avg. budget 8 Avg. budget 16 Avg. budget 32
(max samples) (max samples) (max samples) (max samples)

Llama-3.1 w/ GT 40 40 120 300
Llama-3.1 w/ PRM 12 40 80 120
Llama-3.2 w/ GT 40 40 120 120
Llama-3.2 w/ PRM 12 12 60 60

D.1.2 ADDITIONAL DETAILS ON MATH-500-HARD DATASETS

As discussed in Section 4.1, we construct the MATH-500-Hard dataset by removing queries from
MATH-500 that can be solved with 16 units of compute. On top of this, we construct another dataset
by removing queries that can be solved with 8 units of compute, and we call this dataset MATH-500-
Hard-8. After removing these relatively easy queries, MATH-500-Hard-8 contains 71 challenging
queries and MATH-500-Hard-16 contains 56 challenging queries. We further divide MATH-500-
Hard queries into two subsets: the subset that cannot be solved after allocating M compute units
(Unsolvable) and the reset (Solvable). We set M = 500 for Llama-3.2-1B-Instruct, and M =
350 for Llama-3.1-8B-Instruct. On these MATH-500-Hard datasets, we select max samples ∈
{36, 48, 64} for UCB, GAP, and ENTROPY. The setting of max samples is discussed in Section 3.3.

D.1.3 PROMPTS SELECTION

In-context examples for MATH-500. We include four in-context examples in the prompt for
MATH-500. An illustrative example used in our experiments is shown below.

MATH Few-Shot Example

Problem: If detA = 2 and detB = 12, then find det(AB).

Solution: We have that

det(AB) = det(A) det(B) = (2) (12) = 24 .

Final Answer: The final answer is 24. I hope it is correct.
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Prompts for LiveCodeBench. We use the prompt provided on the official GitHub of Live-
CodeBench (Jain et al., 2024). The prompt used in our experiments is shown below.

LiveCodeBench CoT prompt

You are given a Python function and an assertion containing an input to the function. Complete
the assertion with a literal (no unsimplified expressions, no function calls) containing the
output when executing the provided code on the given input, even if the function is incorrect or
incomplete. Do NOT output any extra information. Execute the program step by step before
arriving at an answer, and provide the full assertion with the correct output in [ANSWER] and
[/ANSWER] tags, following the examples.
[PYTHON] def performOperation(s): s = s + s return ”b” + s + ”a” assert performOperation(s
= ”hi”) == ?? [/PYTHON]
[THOUGHT] Let’s execute the code step by step: 1. The function performOperation is
defined, which takes a single argument s. 2. The function is called with the argument "hi", so
within the function, s is initially "hi". 3. Inside the function, s is concatenated with itself, so s
becomes "hihi". 4. The function then returns a new string that starts with "b", followed by s
(now "hihi"), and ends with "a". 5. The return value is therefore "bhihia". [/THOUGHT]
[ANSWER] assert performOperation(s = ”hi”) == ”bhihia” [/ANSWER]

AIME prompt. The same format as MATH-500 prompts, but without any in-context examples.

Output format. When we generate responses using vLLM, we expect the output from both models
to follow a structured format shown below. We use Step ## as a keyword to segment the solution into
individual reasoning steps, which are then fed into the PRM for evaluation. As noted in Zhang et al.
(2025b), using \n\n as a segmentation keyword is a common and effective strategy. We confirm that
this choice also works well in our setting. However, given the specific formatting of our answers, we
find that using Step ## as the segmentation keyword yields better overall performance, as reported in
Table 2.

Expected generation from both Llama models about MATH questions

Step 1: [Description of first step]
Step 2: [Description of second step]
Step 3: [Description of third step]
Step...
The final answer is: $\boxed{}$

Table 2: Effects of segmentation keywords on MATH-500 with Llama-3.1-8B-Instruct

Method 4 8 16 32
Uniform-Step 60.26% 63.30% 66.56% 67.80%
Uniform-Space 59.06% 61.50% 64.36% 64.76%
Elim-Step 62.50% 65.90% 67.96% 69.46%
Elim-Space 61.96% 64.66% 65.66% 66.20%

D.2 ADDITIONAL EXPERIMENTAL RESULTS

D.2.1 ADDITIONAL EXPERIMENTS ON MATH-500 AND LIVECODEBENCH

Compared to Fig. 2, Fig. 6 additionally includes the coverage performance of UCB and GAP with the
GT reward oracle. Since the results under GT are closely clustered, we display only ELIMINATION
with GT in the main text for clarity.

Streaming Setting. We further evaluate Algorithm 1 in a streaming setting where queries arrive
sequentially Table 4 and Table 5. In this case, compute is allocated on a per-query basis over 500
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Figure 6: Complete coverage comparisons for Fig. 2 on the MATH-500 dataset. Left: results with
Llama-3.2-1B-Instruct. Right: results with Llama-3.1-8B-Instruct.

rounds, rather than jointly across the entire dataset. Our method continues to outperform baseline
strategies under this setting. We present a more complete result with both accuracy and coverage
metrics.

Table 3: Streaming setting on MATH-500 — Llama-3.2-1B-Instruct.

Metric Avg. budget 4 Avg. budget 8 Avg. budget 16 Avg. budget 32
Coverage — Uniform-PRM 41.80% 50.75% 59.60% 68.80%
Coverage — Elim-PRM 43.70% 53.75% 63.45% 71.45%
Coverage — Stream-PRM 42.65% 52.85% 62.95% 71.05%

Accuracy — Uniform-PRM 35.00% 40.70% 46.45% 49.45%
Accuracy — Elim-PRM 37.15% 43.70% 48.90% 52.60%
Accuracy — Stream-PRM 36.55% 43.10% 48.55% 52.20%

Total Token Length. In this experiment, we first measured the total token usage under the uniform
allocation setting and then applied Algorithm 1 while constraining total token usage to the same
level. Whenever additional tokens were generated, we discarded responses to ensure that our method
consumed no more tokens than its uniform counterpart. Results on both datasets show that, even
under this controlled token budget, our algorithm consistently outperforms all baseline methods.

Table 4: Token setting on MATH-500 — Llama-3.2-1B-Instruct.

Metric Avg. budget 4 Avg. budget 8 Avg. budget 16 Avg. budget 32
Coverage — Uniform-PRM 41.80% 50.75% 59.60% 68.80%
Coverage — Elim-PRM 43.70% 53.75% 63.45% 71.45%
Coverage — Token-PRM 42.70% 52.10% 60.90% 69.95%

Accuracy — Uniform-PRM 35.00% 40.70% 46.45% 49.45%
Accuracy — Elim-PRM 37.15% 43.70% 48.90% 52.60%
Accuracy — Token-PRM 36.50% 42.60% 48.05% 51.85%

Table 5: Token setting on LiveCodeBench — DeepSeek-R1-Distill-Llama-8B.

Metric Avg. budget 4 Avg. budget 8 Avg. budget 16 Avg. budget 32
Coverage — Uniform-GT 73.43% 81.05% 86.01% 89.87%
Coverage — Elim-GT 84.66% 91.02% 94.00% 94.00%
Coverage — Token-GT 84.50% 91.65% 94.00% 94.00%
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Choices of the threshold γ. The elimination threshold γ controls which queries are confidently
answered and can be removed from the active set. Since higher reward scores generally indicate
higher-quality responses, setting a high threshold γ ∈ [0, 1] is natural. We conduct ablations with
γ ∈ {0.97, 0.98, 0.99, 1.0} and report the results in Fig. 7. We observe that γ = 1.0 performs
slightly better, likely because Qwen2.5-Math-PRM-7B assigns a deterministic score of 1.0 to answers
it deems correct—a property specific to this PRM. Importantly, across all tested values, our method
consistently outperforms the uniform allocation baseline, indicating that Algorithm 1 is robust to
variations in γ.
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Figure 7: Effect of γ on compute for Llama-3.2-1B-Instruct.

D.2.2 ADDITIONAL EXPERIMENTS AND ANALYSES ON MATH-500-HARD
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(a) Coverage with Llama-3.2-1B-Instruct on
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(c) Coverage with Llama-3.1-8B-Instruct on
MATH-500-Hard-8
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Figure 8: Coverage comparisons on MATH-500-Hard datasets with two language model of different
sizes: Llama-3.2-1B-Instruct and Llama-3.1-8B-Instruct.
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Fig. 8 presents additional results on MATH-500-Hard datasets, including experiments with the GAP
algorithm and experiments with the Llama-3.1-8B-Instruct model. These experiments show that
our algorithms introduced in Section 3.3, particularly ENTROPY and UCB, achieve early advantages
and outperform both UNIFORM and ELIMINATION.

Why ENTROPY works well on challenging datasets? We conduct a detailed analysis on under-
stand why ENTROPY performs particularly well on MATH-500-Hard datasets. Upon inspecting model
responses to challenging queries, we observe that unsolvable queries are more likely to yield invalid
outputs (e.g., incomplete or improperly formatted), resulting in lower entropy among their generated
responses; in contrast, solvable queries tend to generate more diverse outputs (see Table 6 and Table 7
for statistics computed from 64 responses per query). Since ENTROPY prioritizes queries with higher
entropy, it naturally allocates more compute to those that are more likely to be solvable—explaining
its strong empirical performance on challenging problems. We expect this behavior to generalize
to other challenging benchmarks, provided that invalid responses can be reliably identified. In such
settings, ENTROPY offers an effective means to shift compute toward promising queries and achieve
better performance under limited compute budget.

Table 6: Aggregated statistics by query group on MATH-500-Hard-8.

Query group #questions Entropy (mean) Invalid answers (%)
Unsolvable 49 4.26 19.45%
Solvable 22 4.52 12.45%

Table 7: Aggregated statistics by query group on MATH-500-Hard-16.

Query group #questions Entropy (mean) Invalid answers (%)
Unsolvable 43 4.33 18.39%
Solvable 13 4.53 13.10%

E THE USE OF LARGE LANGUAGE MODELS (LLMS)

LLMs were used to polish the writing of this paper.
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