
Approximately Aligned Decoding

Daniel Melcer∗
Khoury College of Computer Sciences

Northeastern University
Boston, MA, USA

melcer.d@northeastern.edu

Sujan Gonugondla∗
Meta Superintelligence Labs

New York, NY, USA
sujan@meta.com

Pramuditha Perera
AWS NGDE

New York, NY, USA
pramudi@amazon.com

Haifeng Qian∗
Nvidia

Santa Clara, CA, USA
haifengq@nvidia.com

Wen-Hao Chiang
AWS NGDE

New York, NY, USA
cwenhao@amazon.com

Yanjun Wang
AWS NGDE

New York, NY, USA
yanjunw@amazon.com

Nihal Jain
AWS NGDE

New York, NY, USA
nihjain@amazon.com

Pranav Garg
AWS NGDE

New York, NY, USA
prangarg@amazon.com

Xiaofei Ma
AWS NGDE

New York, NY, USA
xiaofeim@amazon.com

Anoop Deoras
AWS NGDE

New York, NY, USA
adeoras@amazon.com

Abstract

It is common to reject undesired outputs of Large Language Models (LLMs);
however, current methods to do so require an excessive amount of computation to
re-sample after a rejection, or distort the distribution of outputs by constraining
the output to highly improbable tokens. We present a method, Approximately
Aligned Decoding (AprAD), to balance the distortion of the output distribution
with computational efficiency, inspired by algorithms from the speculative decoding
literature. AprAD allows for the generation of long sequences of text with difficult-
to-satisfy constraints, while amplifying low probability outputs much less compared
to existing methods. We show through a series of experiments that the task-specific
performance of AprAD is comparable to methods that do not distort the output
distribution, while being much more computationally efficient.

1 Introduction

Large Language Models (LLMs) are able to perform many complex text manipulation tasks, and
embody an incredible amount of world knowledge, but their output may contain undesirable elements
such as syntactically-incorrect code, hallucinated PII, profanity, or failed tool calls. These issues,
which we collectively refer to as errors or constraint violations for the remainder of the paper, may be
detected with incremental parsers, regular expression matching, or even simple substring searches.

∗Work performed while at Amazon
Code available at https://github.com/amazon-science/Approximately-Aligned-Decoding.

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

https://github.com/amazon-science/Approximately-Aligned-Decoding

Each individual task that a LLM is used for may have a unique set of constraints. However, re-training
a LLM to accommodate the constraints of every task is expensive, and may still not fully protect
against violations. Therefore, the community has developed several methods to mitigate constraint
violations without the need to retrain the language model. However, many existing methods deviate
severely from the original output distribution, or have intractable performance for certain constraints.
Our contributions are as follows. First, we analyze several existing methods for avoiding constraint
violations in text generated from autoregressive language models, and compare the strengths and
weaknesses of eachmethod. Second, we present amethod, Approximately AlignedDecoding (AprAD),
that allows for a useful midpoint in the tradeoff between computational efficiency and maintenance of
the output distribution, without the need for any additional training or fine-tuning step. At its core,
AprAD uses a procedure from the speculative sampling literature to determine backtracking behavior
after encountering an error generation. Finally, we run a series of experiments, demonstrating that
our method obtains excellent task-specific performance on both synthetic and real-world domains,
without introducing an unreasonable level of inference overhead.

1.1 Related Work

Language models based on a Transformer architecture [32] have steadily become more popular, with
high parameter counts, in consumer chatbot products such as OpenAI ChatGPT [23] and Anthropic
Claude [2], or code generation tools such as GitHub Copilot [10] and Amazon Q Developer [5].
Sampling-based methods. Several LLM tools have introduced output control features such as
schema-restricted generation [24]. For those willing to run local inference on a language model,
however, there are a vast array of methods for constraining the output of a model to follow a template
[3, 4, 21, 22, 27, 29], produce syntactically valid code [12, 18, 28, 30, 33], or conform to various
poetry constraints [26]. These works often use constrained generation [6, 9] to control their outputs.
As we will discuss, while constrained generation is often effective, it may result in undesirable
probability amplification. Other methods avoid probability amplification at the expense of additional
computation; for example, rejection sampling and Adaptive Sampling with Approximate Expected
Futures (ASAp) [25]. A related method [1] translates the constraint into a circuit and re-samples
sequences in the neighborhood of error samples to obtain a non-error sample.
Posterior estimation methods. Another class of methods [14, 34, 35], avoids errors by estimating
the posterior probability of an error occurring for a given prefix, and decreasing the probability of
generating prefixes that are more likely to lead to an error. These methods are usually able to quickly
generate a sample with little amplification of low-probability outputs, but rely on an accurate estimator
of the posterior probability of an error, which may not always be available.
Speculative decoding. ALLM’s autoregressive nature can lead to high inference latency, even without
constraint following. One method to combat this, speculative decoding [13, 19], reduces latency by
transforming the sequential generation problem into a parallelizable verification problem. Several
extensions such as Medusa [7] and EAGLE [15, 16] have improved the latency and efficiency of
speculative decoding, and a variant, Mentored Decoding [31] further increases the speed of speculative
decoding by allowing for a controlled deviation from the LLM’s probability distribution.

2 Preliminaries

We first describe autoregressive language models and their properties. We then discuss speculative
decoding, a method closely related to the algorithm that we will introduce.

2.1 Autoregressive Language Models

Algorithm 1 Generation with an autoregressive model
procedure Generate(P, x1...n) ▷ Initial x1...n is the prompt

while Stopping condition not met do ▷ Typically special EOS token, and length limit
Sample one token xn+1 ∼ P (·|x)
Increment n

return x

2

We assume that a vocabulary V of tokens is provided. An autoregressive language model is a function
approximator trained to predict P (xn|x1...n−1); the conditional probability of token xn ∈ V , given
existing tokens x1...n−1 ∈ V∗. Algorithm 1 describes repeated sampling from a language model.
Note that there are several other methods for token selection; i.e. greedy selection, beam search, etc.
While we focus on sampling, the techniques we present may also be applicable to other methods.

2.2 Speculative Decoding

Algorithm 2 Speculative sampling procedure
procedure SpecSample(P, S, n, x1...m) ▷ xn+1...m are from SSM

for i ∈ [n+ 1 . . .m] do ▷ May be vectorized instead of iterative loop
r ← P (xi|x1...i−1)/S(xi|x1...i−1) ▷ P (·) and S(·) already calculated and cached
with probability r do ▷ Always if r ≥ 1

continue ▷ Accept xi

else ▷ Reject xi, sample a replacement token
R(t) = max(0, P (t|x1...i−1)− S(t|x1...i−1)) ▷ Calculate residuals
return x1...i−1,Sample(Normalize(R(·)))

return x1...m,Sample(P (·|x1...m)) ▷ Accepted whole sequence, can sample xm+1

Autoregressive LLMs can require considerable computational resources to evaluate. Due to the
sequential nature of inference, additional parallel resources often have limited effect to decrease
generation latency.
Speculative decoding [7, 13, 16, 19] decreases latency by recasting the autoregressive generation
problem as one of parallelizable verification. This method assumes the existence of a small speculative
model (SSM) S that approximates the LLM output, using fewer computational resources.
Given input tokens x1...n, the SSM is sampled for m tokens, resulting in tokens xn+1...m. Then, the
LLM P is used to compute P (xi+1|x1...i) for i ∈ [n . . .m] all in parallel.
Briefly, Algorithm 2 takes as input the sample from the SSM, and the token generation probability
distributions from both the SSM and LLM. It determines how much of a prefix of the sample xn...m

to keep or discard, such that it is as if the resulting prefix xn...k for k ∈ [n,m] is drawn from the
LLM. When the SSM’s distribution and LLM’s distribution are similar to each other, more of the
prefix has a higher probability of being kept. Additionally, because the probabilities P (·|x1...k) have
already been computed, Algorithm 2 samples a new token xk+1.
We later show that Algorithm 2 is useful for a different domain, with a somewhat different notion of
quality and efficiency: violation-free generation.

3 Problem Statement and Existing Approaches

Error sets. Error Set B ⊂ V∗ is the set of strings containing errors. Without loss of generality, we
assume that if string x1...n ∈ B, then all strings with x1...n as a prefix are also members of B; i.e.
adding more text does not negate an error. Careful design is required when, for example, profane words
are substrings of benign words [8], or where un-parseable code can be made valid with additional text.
Any error set may be theoretically be transformed into one that satisfies this assumption: if x1...n is
invalid, but additional text may be added to make it valid, the error set should contain x1...n ◦ EOS
where EOS is the end-of-sequence token, but the error set should not contain x1...n. However, in
many domains, it may be difficult to determine if additional text may be added to make a string valid.
Black-box constraints. B will often be infinite size; we treat it as a black-box indicator function.
Some constraints, such as those expressible by a context-free grammar, may permit more efficient
implementations [6, 9, 18]; these efficiencies largely apply to all sampling-based error-free generation
approaches equally, so we do not consider their impact separately.
We define the probability distribution obtained by sampling P , except for any elements of B:

3

P̂B(w) =

{
w ∈ B 0

w /∈ B P (w)∑
w/∈B P (w)

(1)

Problem 1. Given an autoregressive language model P over alphabet V , and error set B ⊂ V∗,
provide a method to sample from P̂B.

Dense error sets. Rejection sampling is the most straightforward method for sampling from P̂B;
however, it may require a large number of evaluations as

∑
w∈B P (w) approaches 1. For example,

consider a domain where each token has, approximately, some non-zero probability p of being an
error—where the language model has a somewhat consistent error rate per token. If d tokens are
generated, an output has approximately a (1− p)d probability of being error-free; thus requiring on
average 1

(1−p)d
generations. We consider such domains, where the probability of generating an error

approaches 1 for long generations, to have dense error sets.

3.1 Existing Approach: Constrained Generation

Constrained
Round 1 Round 2

1
4

0

0

x1…n

A

B

A

AB

BA

BB

1
4

1
4

1
4

x1…n

A

B

AB

BA

BB

11
2

1
2

1
2

1
2

1
2

1
2

Total

1
2

1
4

1
4

Figure 1: The entire probability
mass of AA is shifted to AB.

Running Example. We introduce a running example to illustrate
the effects of several error-free decoding methods. There are two
possible tokens, A and B, and the task is to generate sequences of
length 2. All token probabilities are 1/2, resulting in a probability
of 1/4 to generate each of the four sequences initially. SequenceAA
is marked as an error, meaning that there are three possible non-
error sequences. The ideal re-normalized probability is therefore
1/3 for each remaining sequence.
Constrained generation attempts to solve the error-free generation problem by using a greedy algorithm:
avoid selecting any tokens that immediately lead to an error.1

Probability amplification. Problematically, constrained generation often greatly amplifies low-
probability samples by committing to a given prefix, even if the most probable sequences beginning
with that prefix are errors. Figure 1 shows that in our running example, the probability of AB is
significantly raised. Note that this distortion is even worse in low-entropy scenarios; if P (B|A) were
lowered to 0.0001, there would still be a 1/2 probability to sample AB. This amplification effect
compounds exponentially for longer sequences.

3.2 Existing Approach: ASAp—Sampling Without Replacement

x1…n

A

B

A

AB

BA

BB

1
4

1
4

1
4

x1…n

A

B

AB

BA

BB

1
3

2
3

1

1
2

1
2

1
12

1
12

1
12

1
2

1
2

1
2

1
2

1
2

1
2

ASAp
Round 1 Round 2 Total

1
3

1
3

1
3

Figure 2: The probability mass of
AA is distributed evenly.

Adaptive Sampling with Approximate Expected Futures (ASAp)
[25] is a technique to sample exactly from the distribution of
P̂B. If ASAp encounters an error during sampling, it adds it to
set B ⊆ B. Because B is finite, the conditional probabilities
P̂B(xi|x1...i−1) can be tractably calculated, allowing for the
algorithm to sample from P̂B . The sampling process repeats
with this new distribution until an error-free sample is found.
In the limit of repeated samples,B will approachB, and therefore,
P̂B will approach P̂B. Importantly, if x ∼ P̂B is sampled such
that x /∈ B, this sample may be accepted, even though B ̸= B.
In Figure 2, after sequence AA is added to set B (in the 1/4 of
cases where it is initially sampled), the conditional probabilities
are recalculated as shown in Round 2. Each sequence correctly has an equal chance of being sampled
in the second round.
While ASAp succeeds in cases where there are only a small number of errors that comprise the
majority of the probability mass, its generation speed suffers when there are a large number of errors—
each error must be discovered before it is added to B. In dense probability sets, its performance

1If every token leads to an immediate error, it is necessary to backtrack, though many implementations
assume that there is always some token available that satisfies the constraint. Our implementation of constrained
generation attempts all top-k tokens, and backtracks only if these are exhausted.

4

characteristics are similar to rejection sampling, as there are an exponential number of error sequences
that must be discovered as generation length increases.

3.3 Existing Approaches: Posterior Estimation

Posterior Estimation

x1…n

A

B

1
3

2
3

x1…n

A

B

1
2×1

2

1
2×1

Original Probabilities

Posterior Estimates Renormalized

Figure 3: An accurate posterior es-
timator corrects the probabilities
before sampling.

We note several additional methods that, although they use dif-
ferent formalizations and implementations from each other, rely
on a similar core idea to approximate P̂B. In all cases, for any
given prefix x1...n, these methods create an estimator of the like-
lihood of a valid sequence being generated for each prefix. This
posterior probability estimation is used to sample from P̂B. The
differences lie in how they perform the estimation:
FUDGE [34] involves training a discriminator, usually a neural
network or combination of several networks, to directly estimate
this probability. SMC Steering [14] creates this estimate using
Monte Carlo sampling. This method additionally incorporates
optimizations such as sampling without replacement, and ag-
gressive pruning of low-probability branches. In contrast, Ctrl-G
[35] first distills a LLM into a Hidden Markov Model (HMM)
with a tractable number of states (thousands or tens of thousands). If the constraint can be expressed
as a Deterministic Finite Automaton (DFA) over tokens, Ctrl-G takes the product of the DFA and
HMM, and calculates the probability of an error in this product system.
Gen-C [1] contains elements of both posterior-estimation and sampling-based generation, relying on
both sampling the neighborhood of an error, and constructing a large constraint circuit.
While these methods exhibit impressive results on many tasks, they may face issues in domains where
the posterior probability is close to 1, or where the posterior is uncorrelated with the prefix content,
leading to incorrect estimates. We further discuss considerations for method selection in Section 6.1.

4 Method

An alternate view of constrained generation and ASAp is that, after encountering an error, constrained
generation reuses almost the entire sample, while ASAp reuses none of it (besides to adjust probabilities
in its next iteration). A natural alternative is to reuse some of the sample—enough to avoid excessive
computation, but not enough to cause severe probability amplification.
How much of the sample should be reused? A strategy that reuses a fixed number of tokens, or that
backtracks a fixed percentage of the generation length, is unlikely to effectively adapt to a variety of
tasks or error sets. The prefix selection strategy should avoid discarding too much useful information,
or backtracking to the middle of a low-entropy sequence. Fortunately, the prefix selection algorithm
from speculative sampling presents an excellent strategy for backtracking behavior.

4.1 Speculative Sampling as a Prefix Selection Algorithm

In ASAp, where B is the set of observed errors so far, let x = (x1, . . . , xn) be a trace drawn from
P̂B , such that x ∈ B. ASAp will add x to B and sample again. We observe that P̂B and P̂B∪{x} are
almost always near-identical distributions, with P̂B∪{x} generally as a “more accurate” distribution
because it incorporates an additional error sample.

Our method uses the sample x ∼ P̂B to approximate a sample x′ ∼ P̂B∪{x}, in a similar manner
to how speculative decoding uses a sample from a SSM to approximate a sample from a LLM—
rather than the probability distributions being generated by two separate models, the distributions are
both created from the same model, before and after adjusting for a violating sample. By evaluating
SpecSample(x, P̂B , P̂B∪{x}), our method obtains a prefix of x that can be used as a starting point for
sampling again. Because the distributions of P̂B and P̂B∪{x} are so close to each other, this prefix is
usually most of the length of x, especially when the language model is relatively high-entropy. This
process is given as Algorithm 3; we refer to it as Approximately Aligned Decoding, or AprAD.

5

Algorithm 3 Approximately Aligned Decoding (AprAD)
procedure ApproxAlignedDecoding(P,B, x1...n) ▷ See implementation notes in Appendix H

▷ x1...n is prompt ◁

P̂B ← P ▷ Adjusted probability distribution
m← n ▷ Current token index
while Stopping condition not met do

Sample one token xm+1 ∼ P̂B(·|x1...m)
Incrementm
if x1...m ∈ B then

▷ Probabilities before update are queried and cached (Appendix H.3) ◁

P̂B∪{x} ← AddBadSample(P̂B , x1...m) ▷ Same prob. adjustment as in ASAp
x1...m ← SpecSample(P̂B∪{x}, P̂B , n, x1...m) ▷ Algorithm 2—m decreases
P̂B ← P̂B∪{x}

return x1...m

procedure AddBadSample(P̂B , x1...m)) ▷ See implementation notes in Appendix–Algorithm 6
▷ In practice, only adjust xn+1...m ◁

P̂B∪{x} ← P̂B

for xi ∈ (xm, . . . , x1) do
▷ Note that token sequence is reversed ◁
▷ Remove probability of x1...m, without changing probability of any other sequence ◁

P̂B∪{x}(xi|x1...i−1)← P̂B(xi|x1...i−1)− P̂B(xi...m|x1...i−1)

Renormalize P̂B∪{x}(·|x1...i−1)

return P̂B∪{x}

x1…n

A

B

A

AB

BA

BB

1
4

1
4

1
4

x1…n

A

B

AB

BA

BB

1
3

2
3

1

1
2

1
2

1
6

1
24

1
24

1
2

1
2

1
2

1
2

1
2

1
2

1
3

2
3

AprAD (Ours)
Round 1 Round 2 Total

5
12

7
24

7
24

Figure 4: AprAD acts as a mid-
point between constrained decod-
ing and ASAp.

In the running example (Figure 4), P{AA}(A)
P{}(A) =

1/3
1/2 = 2/3, so

AprAD keeps A in 2/3 of cases. The remaining 1
3 is distributed

to other tokens at the same token index; in this case, only B.
We note that AprAD still amplifies some sequence probabilities
because it only invokes SpecSample after discovering an error.
In the speculative decoding case, SpecSample would also be
invoked if AB was directly generated by the SSM—equivalent
to Round 1 in this example—but AprAD accepts AB instantly.
Because the algorithm cannot iterate through every possible suf-
fix string, it does not check whether AA contains an error except
in the cases that AA is actually sampled, leading to AB being
slightly overrepresented in the output probability distribution.
The resulting amplification is significantly less compared to
constrained decoding, as some of the probability mass is transferred outside of the immediately
neighboring sequences. Importantly, AprAD largely avoids the most extreme cases of probability
amplification—if P̂B∪{x}(A)

P̂B(A)
were very low, such as would arise if P (B|A) ≪ 0.5, the procedure

would be unlikely to re-select A after backtracking. This stands in contrast to constrained decoding,
which always selects AB in round 2, no matter the value of P (B|A).
An extended illustration of the cause of probability amplification is provided in Appendix B. In
Appendix C, we argue that the amplification with AprAD is bounded to a factor of 2 per each
backtrack operation performed, rather than the unbounded amplification of constrained decoding.

5 Evaluation

We first exhibit AprAD’s closer adherence to the ideal distribution by simulating several environments
where the ideal distribution is known in advance, in Section 5.1. We additionally demonstrate that
AprAD invokes the language model fewer times than ASAp.

6

In Section 5.2, we extend our results to a domain with a dense text-based error set. Finally, in Section
5.3, we show that our method succeeds on a task using a more complex code-based constraint.

5.1 Simulated Model with Known Ideal Distribution

We construct a testbench with a simulated language model that always returns one of three tokens (A,
B, and C) with equal probability. We mark k sequences of length 3 as errors, and use the sampling
method under test to sample 10000 sequences of length 3. The ideal distribution is trivial to compute—
probability 1

27−k for every non-error sequence. To measure how a sampling process compares to
the ideal distribution, we compute the KL-divergence between the observed distribution and ideal.
Additionally, we include the Generation Ratio, a measure of how many times the model must be
evaluated, including all backtracking, relative to output length (see Appendix A.2 for more detail).
The results are shown in Table 1, indicating that our method approximates the ideal distribution much
more closely than constrained generation, with a significantly lower generation ratio than ASAp.

5.2 Lipograms (Excluded Vowels)

A piece of text that avoids using a given letter is called a lipogram; those where the excluded letter is
a vowel tend to be difficult to create, especially for unconstrained LLMs [26].
We use Mistral-7B-Instruct-v0.2 [11] to generate text, where generation of a given vowel is considered
an error. We prompt the LLM to perform one of five simple tasks (detailed in Appendix A). Each task
is appended to instructions to avoid using the given vowel, for a total of 25 prompts. Each sampling
method is used to generate a completion of up to 200 tokens. Generation is terminated if the process
reaches 2000 model invocations, and the last sequence before an error was detected is returned.
Using a blind evaluation process, human raters score each completion on quality, regardless of if the
constraint was followed. The raters also score completions on constraint following intent; i.e. if the
model answers by selecting appropriate words that avoid the given letter, versus misspelling words,
using lookalike or accented characters, etc. Completions that include the banned letter automatically
receive the lowest constraint intent score. Additional information is provided in Appendix A.
The results of this evaluation are provided in Table 2, and a sample of the outputs are provided in
Figure 5. All outputs and rater scores are included in the supplemental material, and additional
examples are provided in Appendix I.
As shown by these results, AprAD consistently produces high-quality outputs, nearly matching the
readability of unconstrained generation. Additionally, it consistently follows the intent of a constraint—
while all methods except for unconstrained generation follow the constraint, constrained generation
often does so in an undesirable manner, rather than by selecting appropriate words that do not contain
the banned letter. Finally, AprAD is able to complete the generation or make substantial progress
within the alotted computation limit, while ASAp struggles to generate more than a handful of tokens
with the same inference budget.

ASAp Constrained AprAD (Ours)
Error Set KL-div Ratio KL-div Ratio KL-div Ratio
∅ 0.0014 1.000 0.0014 1.000 0.0014 1.000

AAA 0.0014 1.020 0.0075 1.000 0.0046 1.004
AAA, AAC 0.0012 1.041 0.0429 1.000 0.0157 1.013
AAA, ACC 0.0013 1.042 0.0138 1.000 0.0093 1.009
AAA, CCC 0.0010 1.044 0.0155 1.000 0.0074 1.010

AAA, AAB, ABA, BAA 0.0013 1.093 0.0504 1.000 0.0224 1.024
A** except AAC 0.0014 1.232 0.3836 1.113 0.1540 1.205

*** except AAA, AAB, ABA, BAA 0.0000 3.644 0.1771 1.670 0.0521 2.142
*** except AAA, BAA 0.0000 5.701 0.0000 1.784 0.0000 2.653

Table 1: KL-Divergence and generation ratios for simulated task with various error sets. Lower is
better for both. Stars in the error set are wildcards; i.e. AB* means ABA, ABB, and ABC.

7

Method Quality (1-5) Constraint Intent (1-3) Gen. Ratio
Constrained 3.56 ± 0.34 2.32 ± 0.18 1.00 ± 0.00

AprAD (Ours) 4.52 ± 0.23 2.84 ± 0.11 4.20 ± 0.91
ASAp 1.72 ± 0.23 2.36 ± 0.16 321.00 ± 79.43

Unconstrained 4.68 ± 0.17 1.00 ± 0.00 1.00 ± 0.00

Table 2: Lipogram evaluation results, including subjective rater evaluations of output quality and
adherence to the constraint, and standard error (1σ). Higher is better for Quality and Constraint Intent;
lower is better for Generation Ratio. Note that constraint intent is automatically set to 1 if the banned
letter is detected in the output. Generation is stopped after 2000 model invocations and the output
provided as-is; for ASAp, this often resulted in very short outputs and thus extreme generation ratios
and low quality scores. Several raters interpreted these short outputs as violating constraint intent.

Summarize the history of artificial intelligence without using the letter "A". AprAD (Ours)
The history of intelligent technology unfolds through key milestones in computing. In the
mid-20th century, pioneering minds nurtured the seeds of this field through the development
of logistic models, which evolved into expert systems in the 1960s. These systems, relying on
heuristics, could solve complex problems in fields like medicine or meteorology.

Summarize the history of artificial intelligence without using the letter "A". Unconstrained
In the early days, brilliant minds pondered on creating machines that could mimic human
intelligence. These pioneers, including Alan Turing and Marvin Minsky, theorized and experi-
mented. They aimed to create intelligent machines, using logic and mathematics.

Summarize the history of artificial intelligence without using the letter "A". ASAp
History of Intelligence

Summarize the history of artificial intelligence without using the letter "A". Constrained
In the mid-20th century, scientists delved deep into investiging computionl modeles for intel-
ligencen modeled on the workings of the brn. Pioneers such как E.N. Turing, Clrk Quincy
Shrffngton, иnddd W. Ross Quilp, аnd Маrvin Minsky led ths fld. They explored logic-gаted
progrаms, thm brgth mchr tо lf understnding the cptures of th gnntl mind.

Figure 5: Representative generation samples for all four methods, using Mistral-7B-Instruct-v0.2.
Appearance of the banned letter is bolded, and non-ASCII characters (all Cyrillic in this example) are
colored red and underlined. Full samples are provided in Appendix I.

5.3 BigCodeBench Hallucination Avoidance

API hallucination avoidance represents a significantly more complex constraint- instead of using
standard string operations to detect lipogram constraint violations, hallucination avoidance depends
on a program’s imports, variable assignments, the local installation environment, etc.
We evaluate the effectiveness of each error-free sampling method on a code generation task, where
the generator avoids API hallucinations. We use a wrapper around the Pyright language server [20] to
detect hallucinated API calls in partial Python programs, with moderate post-processing such that
the detector tends towards false negatives rather than false positives. For example, even if name foo
is never defined, the detector does not consider the incomplete program “example(foo.bar” as an
error, because it is possible to later add text that binds foo, such as “for foo in baz)”. Text where
a hallucination is detected by this program is designated as an error.
The methods are compared based on their performance on BigCodeBench v0.1 [36], a benchmark
that focuses on practical programming tasks, often requiring the use of common libraries.2

2BigCodeBench uses the Apache 2.0 license. We observed instances where unconstrained LLMs use libraries
present in the testing environment that aren’t explicitly imported in the prompt. To better align the generation
environment with the testing environment, we add all imports present in the testing environment to the prompt.

8

For all sampling methods, we use Starcoder2 [17], in the 7B and 15B model sizes. We generate 5
samples for each task, with temperature 0.8, and a top-p of 0.95. In addition to evaluating the pass@1
and pass@5 rates on execution-based tests, we log the specific error if execution fails. A NameError
or UnboundLocalError indicates that the generation included an hallucinated API call, so we track
the rate at which these errors do not occur. Several errors, such as AttributeError, may indicate either
a hallucination or a logic error (such as improper None values), so we exclude such ambiguous errors.
Note that all methods use the same random seed, so the outputs only diverge when the detector
activates. Table 3 shows the results for all tasks where the outputs diverge; Table 4 (Appendix) also
includes tasks for which all methods return identical results. As the results show, the pass rate of
AprAD is higher than constrained generation, with a much lower generation overhead than ASAp.

Size Method Pass@1 Pass@5 !NameErr@1 !NameErr@5 Gen. Ratio

15b
Unconstrained 0.21 ± 0.01 0.50 ± 0.01 0.83 ± 0.01 1.00 ± 0.00 1.00 ± 0.00
AprAD (Ours) 0.26 ± 0.01 0.54 ± 0.01 0.98 ± 0.00 1.00 ± 0.00 1.08 ± 0.01

ASAp 0.26 ± 0.01 0.54 ± 0.01 0.98 ± 0.00 1.00 ± 0.00 1.56 ± 0.12
Constrained 0.22 ± 0.01 0.51 ± 0.01 0.93 ± 0.01 1.00 ± 0.00 1.02 ± 0.00

7b
Unconstrained 0.12 ± 0.01 0.35 ± 0.01 0.80 ± 0.01 0.99 ± 0.00 1.00 ± 0.00
AprAD (Ours) 0.14 ± 0.01 0.38 ± 0.01 0.95 ± 0.01 0.99 ± 0.00 1.06 ± 0.01

ASAp 0.15 ± 0.01 0.39 ± 0.01 0.95 ± 0.01 0.99 ± 0.00 1.47 ± 0.07
Constrained 0.12 ± 0.01 0.35 ± 0.01 0.89 ± 0.01 0.99 ± 0.00 1.02 ± 0.00

Table 3: Subset of tasks where at least one trial results in a different output for any method: 233 tasks
(20.4%) for 15b, 304 tasks (26.7%) for 7b. For both model sizes, of the tasks where at least one
model output is different, an average of 1.5/5 outputs are different. Lower is better for generation ratio;
higher is better for all others. AprAD approaches the task performance of ASAp, with a generation
ratio close to that of constrained generation. Ratio includes standard error (1σ). See Appendix A.2.

6 Discussion

As introduced in Section 3, there are several approaches to control the output of a LLM. We further
discuss considerations when selecting a specific method.

6.1 Posterior Estimation-Based Methods

While posterior estimation-based techniques excel at many tasks, they tend to struggle when the
probability of a constraint violation does not necessarily depend on a given text prefix. For example,
the probability of a LLM generating long sequences of text without the letter ‘e’ is close to 0 regardless
of the prompt or prefix, and mostly depends on the arbitrary behavior deep within a language model.
It is unlikely that a learned discriminator or a hidden Markov model would capture this constraint,
and it would require an extraordinary number of Monte Carlo samples to accurately calculate the
posterior probability.
In contrast, code generation may be a more appropriate domain for posterior-estimation based methods.
For example, a misleading comment that mentions a specific method all but ensures that this method
will be generated on the next line. FUDGEmay be able to learn that a LLM is more likely to hallucinate
in some domains or with specific libraries. SMC Steering could work with a sufficient number of
Monte Carlo samples, although this may be computationally expensive. For Ctrl-G, a large enough
HMM could plausibly capture some of the conditions that lead to a hallucinated API call. However,
neither FUDGE nor Ctrl-G would be able to quickly adapt to changes in the local environment or task.

6.2 A Spectrum of Sampling-Based Methods

Sampling-based methods are able to generate text that does not violate a constraint, even in domains
where it is difficult to estimate the posterior error probability. As discussed in Section 4, the sampling
behavior of AprAD lies at a midpoint between constrained generation and ASAp.
A user may wish for even further granularity in the conformance-speed tradeoff of sampling-based
methods. We propose a new hyperparameter, h, and modify Line 3 of Algorithm 2 by setting r to

9

(
P (xi|x1...i−1)
S(xi|x1...i−1)

)h

; r controls the probability that a specific token in the prefix is kept after a violation
occurs. When h = 1, this is equal to unmodified AprAD. When h = 0, r will always equal 1—this
is equal to constrained generation. As h → ∞, r will approach 0—this approaches the behavior
of ASAp. We conjecture that values between these extremes allow for fine-grained control of the
conformance-speed tradeoff, though we leave a more comprehensive analysis to future work.

6.3 Search Algorithms

We note that while AprAD excels at generating text that excludes an error set, it will not necessarily
drive the generation process towards a specific solution. For such domains, it may be beneficial to
combine our method with a search algorithm. For example, in a theorem proving context, a MCTS-like
process could be used to direct a higher-level search, while AprAD is used for generating text that
does not contain invalid tactic applications. We leave these combinations as future work.

7 Limitations

While our method enables generation in new domains, it still exhibits a measure of probability
amplification, and additional overhead compared to constrained generation. On even denser error sets,
it may be necessary to use constrained generation, or possibly the modification proposed in Section
6.2. Additionally, due to variations in testing environments and code optimization levels, our main
performance metric was generation ratio rather than wall-clock time.

8 Conclusion

As our experiments show, Approximately Aligned Decoding is an effective method to generate
sequences under dense language model constraints. It is straightforward to implement, requires no
separate training step, introduces a manageable amount of inference overhead, and performs well on a
variety of real-world and synthetic tasks.

References
[1] Kareem Ahmed, Kai-Wei Chang, and Guy Van den Broeck. 2025. Controllable Generation

via Locally Constrained Resampling. In The Thirteenth International Conference on Learning
Representations. International Conference on Learning Representations, Singapore, 10 pages.
https://openreview.net/forum?id=8g4XgC8HPF

[2] Anthropic. 2024. Meet Claude. https://www.anthropic.com/claude

[3] Ben Athiwaratkun, Shiqi Wang, Mingyue Shang, Yuchen Tian, Zijian Wang, Sujan Kumar
Gonugondla, Sanjay Krishna Gouda, Rob Kwiatowski, Ramesh Nallapati, and Bing Xiang. 2024.
Token Alignment via Character Matching for Subword Completion. arXiv:2403.08688 [cs.CL]
https://arxiv.org/abs/2403.08688

[4] Automorphic. 2023. Trex. automorphic-ai.

[5] AWS, Inc. 2024. AI Coding Assistant - Amazon Q Developer - AWS. https://aws.amazon.
com/q/developer/.

[6] Luca Beurer-Kellner, Marc Fischer, and Martin Vechev. 2024. Guiding LLMs The Right Way:
Fast, Non-Invasive Constrained Generation. arXiv:2403.06988 [cs.LG] https://arxiv.org/
abs/2403.06988

[7] Tianle Cai, Yuhong Li, Zhengyang Geng, Hongwu Peng, Jason D. Lee, Deming Chen, and Tri
Dao. 2024. Medusa: Simple LLM Inference Acceleration Framework with Multiple Decoding
Heads. arXiv:2401.10774 [cs.LG] https://arxiv.org/abs/2401.10774

[8] Darryl Francis. 2020. The Scunthorpe Problem. Word Ways 53, 2 (May 2020), 4 pages.
https://digitalcommons.butler.edu/wordways/vol53/iss2/12

10

https://openreview.net/forum?id=8g4XgC8HPF
https://www.anthropic.com/claude
https://arxiv.org/abs/2403.08688
https://aws.amazon.com/q/developer/
https://aws.amazon.com/q/developer/
https://arxiv.org/abs/2403.06988
https://arxiv.org/abs/2403.06988
https://arxiv.org/abs/2401.10774
https://digitalcommons.butler.edu/wordways/vol53/iss2/12

[9] Saibo Geng, Martin Josifoski, Maxime Peyrard, and Robert West. 2024. Grammar-Constrained
Decoding for Structured NLP Tasks without Finetuning. arXiv:2305.13971 [cs.CL] https:
//arxiv.org/abs/2305.13971

[10] Github, Inc. 2023. GitHub Copilot · Your AI Pair Programmer.
https://github.com/features/copilot.

[11] Albert Q. Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh
Chaplot, Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lu-
cile Saulnier, Lélio Renard Lavaud, Marie-Anne Lachaux, Pierre Stock, Teven Le Scao,
Thibaut Lavril, Thomas Wang, Timothée Lacroix, and William El Sayed. 2023. Mistral 7B.
arXiv:2310.06825 [cs.CL] https://arxiv.org/abs/2310.06825

[12] Evan Jones. 2023. Llama : Add Grammar-Based Sampling.
https://github.com/ggerganov/llama.cpp/pull/1773.

[13] Yaniv Leviathan, Matan Kalman, and Yossi Matias. 2023. Fast Inference from Transformers via
Speculative Decoding. arXiv:2211.17192 [cs.LG] https://arxiv.org/abs/2211.17192

[14] Alexander K. Lew, Tan Zhi-Xuan, Gabriel Grand, and Vikash K. Mansinghka. 2023. Se-
quential Monte Carlo Steering of Large Language Models using Probabilistic Programs.
arXiv:2306.03081 [cs.AI] https://arxiv.org/abs/2306.03081

[15] Yuhui Li, Fangyun Wei, Chao Zhang, and Hongyang Zhang. 2024. EAGLE-2: Faster Inference
of Language Models with Dynamic Draft Trees. arXiv:2406.16858 [cs.CL] https://arxiv.
org/abs/2406.16858

[16] Yuhui Li, Fangyun Wei, Chao Zhang, and Hongyang Zhang. 2024. EAGLE: Speculative
Sampling Requires Rethinking Feature Uncertainty. arXiv:2401.15077 [cs.LG] https://
arxiv.org/abs/2401.15077

[17] Anton Lozhkov, Raymond Li, Loubna Ben Allal, Federico Cassano, Joel Lamy-Poirier, Noua-
mane Tazi, Ao Tang, Dmytro Pykhtar, Jiawei Liu, Yuxiang Wei, Tianyang Liu, Max Tian, Denis
Kocetkov, Arthur Zucker, Younes Belkada, Zijian Wang, Qian Liu, Dmitry Abulkhanov, In-
draneil Paul, Zhuang Li, Wen-Ding Li, Megan Risdal, Jia Li, Jian Zhu, Terry Yue Zhuo, Evgenii
Zheltonozhskii, Nii Osae Osae Dade, Wenhao Yu, Lucas Krauß, Naman Jain, Yixuan Su, Xuanli
He, Manan Dey, Edoardo Abati, Yekun Chai, Niklas Muennighoff, Xiangru Tang, Muhtasham
Oblokulov, Christopher Akiki, MarcMarone, ChenghaoMou,MayankMishra, AlexGu, Binyuan
Hui, Tri Dao, Armel Zebaze, Olivier Dehaene, Nicolas Patry, Canwen Xu, Julian McAuley,
Han Hu, Torsten Scholak, Sebastien Paquet, Jennifer Robinson, Carolyn Jane Anderson, Nico-
las Chapados, Mostofa Patwary, Nima Tajbakhsh, Yacine Jernite, Carlos Muñoz Ferrandis,
Lingming Zhang, Sean Hughes, Thomas Wolf, Arjun Guha, Leandro von Werra, and Harm de
Vries. 2024. StarCoder 2 and The Stack v2: The Next Generation. arXiv:2402.19173 [cs.SE]
https://arxiv.org/abs/2402.19173

[18] Daniel Melcer, Nathan Fulton, Sanjay Krishna Gouda, and Haifeng Qian. 2024. Constrained
Decoding for Code Language Models via Efficient Left and Right Quotienting of Context-
Sensitive Grammars. arXiv:2402.17988 [cs.PL] https://arxiv.org/abs/2402.17988

[19] XupengMiao, Gabriele Oliaro, Zhihao Zhang, Xinhao Cheng, ZeyuWang, Zhengxin Zhang, Rae
Ying Yee Wong, Alan Zhu, Lijie Yang, Xiaoxiang Shi, Chunan Shi, Zhuoming Chen, Daiyaan
Arfeen, Reyna Abhyankar, and Zhihao Jia. 2024. SpecInfer: Accelerating Large Language
Model Serving with Tree-based Speculative Inference and Verification. In Proceedings of the
29th ACM International Conference on Architectural Support for Programming Languages
and Operating Systems, Volume 3 (ASPLOS ’24). ACM, San Diego, USA, 13 pages. https:
//doi.org/10.1145/3620666.3651335

[20] Microsoft. 2019. Pyright. https://github.com/microsoft/pyright

[21] Microsoft. 2023. Guidance. Microsoft.

[22] Microsoft. 2023. TypeChat. https://microsoft.github.io/TypeChat/.

11

https://arxiv.org/abs/2305.13971
https://arxiv.org/abs/2305.13971
https://arxiv.org/abs/2310.06825
https://arxiv.org/abs/2211.17192
https://arxiv.org/abs/2306.03081
https://arxiv.org/abs/2406.16858
https://arxiv.org/abs/2406.16858
https://arxiv.org/abs/2401.15077
https://arxiv.org/abs/2401.15077
https://arxiv.org/abs/2402.19173
https://arxiv.org/abs/2402.17988
https://doi.org/10.1145/3620666.3651335
https://doi.org/10.1145/3620666.3651335
https://github.com/microsoft/pyright
https://microsoft.github.io/TypeChat/

[23] OpenAI. 2024. ChatGPT. https://openai.com/chatgpt/overview/

[24] OpenAI. 2024. Introducing Structured Outputs in the API. https://openai.com/index/
introducing-structured-outputs-in-the-api/

[25] Kanghee Park, Jiayu Wang, Taylor Berg-Kirkpatrick, Nadia Polikarpova, and Loris D’Antoni.
2024. Grammar-Aligned Decoding. arXiv:2405.21047 [cs.AI] https://arxiv.org/abs/
2405.21047

[26] Allen Roush, Sanjay Basu, Akshay Moorthy, and Dmitry Dubovoy. 2023. Most Language
Models can be Poets too: An AI Writing Assistant and Constrained Text Generation Studio.
arXiv:2306.15926 [cs.CL] https://arxiv.org/abs/2306.15926

[27] Rahul Sengottuvelu. 2023. Jsonformer: A Bulletproof Way to Generate Structured JSON from
Language Models.

[28] Grant Slatton. 2023. Added Context Free Grammar Constraints · Grantslat-
ton/Llama.Cpp@007e26a. https://github.com/grantslatton/llama.cpp/commit/
007e26a99d485007f724957fa8545331ab8d50c3.

[29] SRI. 2023. LQML. SRI Lab, ETH Zurich.

[30] Wannita Takerngsaksiri, Chakkrit Tantithamthavorn, and Yuan-Fang Li. 2023. Syntax-Aware
On-the-Fly Code Completion. arXiv:2211.04673 [cs]

[31] Vivien Tran-Thien. 2024. An Optimal Lossy Variant of Spec-
ulative Decoding. https://huggingface.co/blog/vivien/
optimal-lossy-variant-of-speculative-decoding

[32] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. 2023. Attention Is All You Need. arXiv:1706.03762 [cs.CL]
https://arxiv.org/abs/1706.03762

[33] Brandon T. Willard and Rémi Louf. 2023. Efficient Guided Generation for Large Language
Models. arXiv:2307.09702 [cs.CL]

[34] Kevin Yang and Dan Klein. 2021. FUDGE: Controlled Text Generation With Future Discrimina-
tors. In Proceedings of the 2021 Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies. Association for Computational Lin-
guistics, Virtual, 3511–3535. https://doi.org/10.18653/v1/2021.naacl-main.276

[35] Honghua Zhang, Po-Nien Kung, Masahiro Yoshida, Guy Van den Broeck, and Nanyun Peng.
2024. Adaptable Logical Control for Large Language Models. arXiv:2406.13892 [cs.CL]
https://arxiv.org/abs/2406.13892

[36] Terry Yue Zhuo, Minh Chien Vu, Jenny Chim, Han Hu, Wenhao Yu, Ratnadira Widyasari,
Imam Nur Bani Yusuf, Haolan Zhan, Junda He, Indraneil Paul, Simon Brunner, Chen Gong,
Thong Hoang, Armel Randy Zebaze, Xiaoheng Hong, Wen-Ding Li, Jean Kaddour, Ming Xu,
Zhihan Zhang, Prateek Yadav, Naman Jain, Alex Gu, Zhoujun Cheng, Jiawei Liu, Qian Liu,
Zijian Wang, David Lo, Binyuan Hui, Niklas Muennighoff, Daniel Fried, Xiaoning Du, Harm
de Vries, and Leandro Von Werra. 2024. BigCodeBench: Benchmarking Code Generation
with Diverse Function Calls and Complex Instructions. arXiv:2406.15877 [cs.SE] https:
//arxiv.org/abs/2406.15877

12

https://openai.com/chatgpt/overview/
https://openai.com/index/introducing-structured-outputs-in-the-api/
https://openai.com/index/introducing-structured-outputs-in-the-api/
https://arxiv.org/abs/2405.21047
https://arxiv.org/abs/2405.21047
https://arxiv.org/abs/2306.15926
https://github.com/grantslatton/llama.cpp/commit/007e26a99d485007f724957fa8545331ab8d50c3
https://github.com/grantslatton/llama.cpp/commit/007e26a99d485007f724957fa8545331ab8d50c3
https://huggingface.co/blog/vivien/optimal-lossy-variant-of-speculative-decoding
https://huggingface.co/blog/vivien/optimal-lossy-variant-of-speculative-decoding
https://arxiv.org/abs/1706.03762
https://doi.org/10.18653/v1/2021.naacl-main.276
https://arxiv.org/abs/2406.13892
https://arxiv.org/abs/2406.15877
https://arxiv.org/abs/2406.15877

NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: Analysis of existing methods in Sections 3, 6; Method is presented in Section
4; Experimental support in Section 5.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims made
in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Discussion in Section 7, as well as error set assumptions in Section 3.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to address
problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]

13

Justification: Paper is primarily empirical.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main
experimental results of the paper to the extent that it affects themain claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Open-weight models were used, datasets are fully described, sampling parame-
ters are provided in Section 5, additional implementation details in supplemental material
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived well
by the reviewers: Making the paper reproducible is important, regardless of whether
the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct the
dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case authors
are welcome to describe the particular way they provide for reproducibility. In the
case of closed-source models, it may be that access to the model is limited in some
way (e.g., to registered users), but it should be possible for other researchers to have
some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instructions
to faithfully reproduce the main experimental results, as described in supplemental material?

14

Answer: [No]
Justification: Not possible at this time, but extensive implementation details are described in
appendix.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not
be possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: Described in Section 5 and appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

• The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: All experiments report 1σ SEM when relevant. Pandas library function used to
calculate error. Distribution of errors is unknown.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confidence
intervals, or statistical significance tests, at least for the experiments that support the
main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).

15

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the computer
resources (type of compute workers, memory, time of execution) needed to reproduce the
experiments?
Answer: [Yes]
Justification: See Appendix G.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

• The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

• The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: Research ethics were followed.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

• The authors should make sure to preserve anonymity (e.g., if there is a special consider-
ation due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [No]
Justification: While our method discusses generative AI, it does not present a forseeable
direct path to negative applications beyond those already well-known regarding LLMs.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

16

https://neurips.cc/public/EthicsGuidelines

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: Paper does not release data or models with high misuse risk.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: BigCodeBench is cited.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a
URL.

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

17

paperswithcode.com/datasets

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: Paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [Yes]
Justification: Crowdsourcing was not used. Details about human rating provided in Appendix
A.1.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contri-
bution of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: Paper did not involve risks to humans.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

18

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [Yes]
Justification: LLM usage described in methods section.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

19

https://neurips.cc/Conferences/2025/LLM

A Lipogram evaluation details

We provide the following prompts to the language model, as well as the relevant special tokens to
delimit user instructions and chat turns.

1. Write a story without using the letter “[A/E/I/O/U]”.
2. Describe elephants without using the letter “[A/E/I/O/U]”.
3. Provide instructions to tie a tie without using the letter “[A/E/I/O/U]”.
4. Critique the Mona Lisa without using the letter “[A/E/I/O/U]”.
5. Summarize the history of artificial intelligence without using the letter “[A/E/I/O/U]”.

Each prompt is combined with each vowel, resulting in 25 prompts. With four sampling methods, this
results in 100 total generations.
During sampling, we use a top-k of 20, and temperature of 0.8. 200 tokens was chosen as short
enough to be quickly read by the human raters, and long enough to discern the sample quality. 2000
tokens was chosen as 10 times the output length, to prevent infinite computation.

A.1 Rater Instructions and Details

We create a file that only contains the 100 prompt-completion pairs, without information on which
method generated each completion. All samples are shuffled in random order.
We selected four AI research colleagues not otherwise directly involved in the implementation or
experimental evaluation of this method as human raters, to evaluate 25 samples each. The labels of
which method corresponded to each output were hidden from the raters. We provided the following
instructions to the raters:

This file contains a set of prompts, and responses using one of several methods.
Each prompt contains a constraint to not use a specific letter. Irrespective of whether
the response follows the constraint, rate the response quality on a scale of 1-5 in
the “Score” column, noting that generation is always cut off after 200 tokens.
Additionally, rate how well the response follows the intent of the constraint in the
“Follows Intent” column. Examples of not following the intent include working
around the constraint by excessively dropping letters, using unnecessary accents,
writing Unicode lookalike letters, or responding in a foreign language, rather than
through selecting appropriate words that satisfy the constraint. This column is
pre-filled with ‘X’ if the output contains the banned letter. Otherwise, write 1 if it
violates the intent, 2 if it is ambiguous, and 3 if it does not.

We additionally highlighted the presence of non-ASCII lookalike letters to the human raters. The
complete model outputs, and the scores that each rater assigned, are provided in the supplementary
material. Additional example outputs are provided in Appendix I.

A.2 Generation Ratio

The computation time for all methods is dominated by LLM evaluation time. This time is highly
sensitive to variations in the testing environment and specific implementations, so we selected
generation ratio as a more portable and accurate comparison between methods.
Generation ratio measures the total number of LLM invocations compared to the final output length,
including all backtracking. For example, if given sampling method generates 9 tokens, backtracks to
token index 7, re-uses the computed probabilities to select a new eighth token, and then generates 2
more tokens to obtain 10 tokens in all, the generation ratio is 1.1 (11 model invocations for 10 output
tokens).
We note that for the BigCodeBench results, a data error caused the denominator of the generation
ratio to reflect the number of tokens in the output after converting from tokens, to text, back to tokens,
rather than reflecting the original number of generated tokens. This causes the generation ratios to
vary slightly from their true value (usually by 0.001-0.005); to be overly conservative, we truncate the
ratio to two significant digits after the decimal. Ratios for other experiments are not affected by this.

20

x1…n

A

B

A

AB

BA

BB

1
4

1
4

1
4

x1…n

A

B

AB

BA

BB

1
3

2
3

1

1
2

1
2

1
6

1
24

1
24

1
2

1
2

1
2

1
2

1
2

1
2

1
3

2
3

AprAD (Ours)
Round 1 Round 2 Total

5
12

7
24

7
24

(a) AprAD Probability Distribution (from Figure 4).

x1…n

A

B

A

AB

BA

BB

1
4

1
4

1
4

x1…n

A

B

AB

BA

BB

1
3

2
3

1

1
2

1
2

1
3

1
12

1
12

1
2

1
2

1
2

1
2

1
2

1
2

1
3

2
3

Speculative Decoding
SSM Main Model Total

1
3

1
4

2
3

1
3

1
3

1
3

(b) Speculative Decoding Probability Distribution.

Figure 6: Comparison of probability distribution between AprAD and Speculative Decoding

B Extended Example of Probability Amplification

We further illustrate the cause of probability amplification, despite using the speculative decoding
algorithm, through an extended example.
Consider the running example in Figure 6. In the first round, there is a 1

4 probability each of selecting
sequence AA, AB, BA, or BB.
In the case where AA is selected, AprAD has identical behavior to speculative decoding where P is
the speculative model and P̂ {AA} is the main model; SpecSample is invoked in both cases. We note
that in cases where |B| > 1, after the first round, AprAD has still only observed one element x of B
and thus must invoke SpecSample with P̂ {x} rather than with P̂B.
In the case where AB is selected, the behavior is completely different. With speculative decoding, it
is still the case that P̂B(A) < P (A), leading to a potential backtrack. With AprAD however, since a
non-violating sequence is found, the process terminates—the process has no mechanism to discover
P̂B other than through encounters with elements of B.

With both BA and BB, the speculative decoding process accepts the SSM’s output because P̂B(B) ≥
P (B), P̂B(A|B) ≥ P (A|B), and , P̂B(B|B) ≥ P (B|B). AprAD also accepts these sequences
immediately, as both sequences are non-violating.
Summary. The probability amplification of AprAD occurs due to the cases where SpecSample is not
invoked.

C Bounding the Probability Amplification Factor

While the following sketch is not a rigorous proof, we argue that the probability amplification due to
AprAD is at most 2 per iteration of the algorithm.
For sequences x = x1, . . . , xn and y = y1, . . . , ym, let SRS(y|x, S, P) (SpeculativeReSample) be
the probability of eventually selecting sequence y with speculative decoding, conditional on having
drawn x from speculative model S.
Speculative Decoding Identity. The original concept of speculative decoding relies on the identity
P (y) =

∑
x∈Σ∗ S(x)SRS(y|x, S, P)—the probability of selecting y with the main model P should

be equal to the probability of selecting y using the speculative decoding process.

SRSSubset Inequality. IfB ⊆ B, thenSRS(y|x, S, P̂B) ≤ SRS(y|x, S, P̂B) for y /∈ B. Intuitively,
B excludes more invalid sequences compared to P̂B , so the probability mass of these sequences
during the re-sampling process should be distributed among all non-error sequences, including y.

Generation Subset Inequality. For similar reasons, P̂B(x) ≤ P̂B(x) for B ⊆ B, x /∈ B, as
excluding additional errors B \B and re-normalizing the probability means that all other sequences
become more likely.

21

The probability of sequence y /∈ B being generated after the first iteration of AprAD is equal to the
probability that y is generated directly, plus the probability that y is re-sampled after some invalid
sequence is generated:

AprAD(y|P,B) = P (y) +
∑
x∈B

P (x)SRS(y|x, P, P̂ {x})

We apply both of the subset inequalities described above:

≤ P̂B(y) +
∑
x∈B

P (x)SRS(y|x, P, P̂B)

As P (x) and SRS(y|x, P, P̂B) are always nonnegative, we can add additional elements to the
sum—expanding it to include all sequences, rather than just error sequences—while maintaining the
inequality:

≤ P̂B(y) +
∑
x∈Σ∗

P (x)SRS(y|x, P, P̂B)

And finally use the speculative decoding identity:

≤ 2P̂B(y)

Note that this amplification is per-iteration, where an iteration is defined as encountering an error
sequence, potentially backtracking, and resampling. In practice, the per-iteration amplification is
likely much less, as several of the inequalities involved are very loose. However, there may be a
cumulative effect as more iterations are required in dense error sets.
In contrast, the probability amplification after encountering even a single error sequence with con-
strained decoding is unbounded, as the best non-error token may have an arbitrarily low probability.

D Additional BigCodeBench Results

Size Method Pass@1 Pass@5 !NameErr@1 !NameErr@5 Gen. Ratio

15b
Unconstrained 0.31 ± 0.01 0.58 ± 0.01 0.95 ± 0.00 0.99 ± 0.00 1.00 ± 0.00
AprAD (Ours) 0.32 ± 0.01 0.59 ± 0.01 0.98 ± 0.00 1.00 ± 0.00 1.02 ± 0.00

ASAp 0.32 ± 0.01 0.59 ± 0.01 0.98 ± 0.00 1.00 ± 0.00 1.11 ± 0.02
Constrained 0.31 ± 0.01 0.58 ± 0.01 0.97 ± 0.00 1.00 ± 0.00 1.00 ± 0.00

7b
Unconstrained 0.20 ± 0.01 0.47 ± 0.01 0.93 ± 0.00 0.99 ± 0.00 1.00 ± 0.00
AprAD (Ours) 0.21 ± 0.01 0.47 ± 0.01 0.97 ± 0.00 0.99 ± 0.00 1.02 ± 0.00

ASAp 0.21 ± 0.01 0.48 ± 0.01 0.97 ± 0.00 0.99 ± 0.00 1.13 ± 0.02
Constrained 0.20 ± 0.01 0.47 ± 0.01 0.95 ± 0.00 0.99 ± 0.00 1.00 ± 0.00

Table 4: Results for each method on entirety of BigCodeBench. Note that these results are identical
to those in Table 3, except that they are consistently offset and scaled to include values for tasks in
which all tasks return the same result.

Table 4 includes results for the entirety of BigCodeBench; not just the tasks for which the methods
diverged in their output.

E Generalization of Error-Free Decoding

Constrained generation, ASAp, and AprAD may all be generalized by their backtracking behavior
after an error is discovered. Algorithm 4 shows this generalization.

22

Algorithm 4 Multiple error-free decoding methods differ only in their backtracking selection.
procedure ErrFreeDec(P,B, x1...n,Strategy)

P̂B ← P
m← n ▷ Current token index
while Stopping condition not met do

Sample one token xm+1 ∼ P̂B(·|x1...m)
Incrementm
if x1...m ∈ B then

▷ Algorithm 5 ◁

P̂B∪{x} ← AddBadSample(P̂B , x1...m)
▷ m may decrease ◁

x1...m ← Strategy(P̂B , P̂B∪{x}, x1...m)

P̂B ← P̂B∪{x}

return x1...m

procedure AprADStrategy(P̂B , P̂B∪{x}, x1...m)
▷ Algorithm 2 ◁

return SpecSample(P̂B , P̂B∪{x}, 0, x1...m)
procedure ASApStrategy(P̂B , P̂B∪{x}, x1...m)

return [] ▷ Backtrack to beginning
procedure ConstrainedDecodingStrategy(P̂B , P̂B∪{x}, x1...m)

▷ Delete error token but don’t backtrack further ◁
return x1...m−1

Method Overhead ↓ Dist. Conformance ↑ Constraint Class Posterior Estimate
AprAD (Ours) Medium Medium Black Boxa Not Required
ASAp [25] High High Black Boxa Not Required

Constrained (Multiple) Low Low Black Boxa Not Required
FUDGE [34] Lowb Highc Prefix-Dependentd Learned Discriminator

SMC Steering [14] High High Black Boxa Sample Many Rollouts
Ctrl-G [35] Lowb Highc Represent as DFA Exact in distilled HMM

a Oracle classifies whether a given output violates constraint.
b Requires additional one-time training step per task.
c Conditional on learned or distilled model perfectly capturing LLM behavior.
d Requires that it is possible to determine probability of constraint violation from incomplete prefix.

Table 5: Overview of several methods for controllable generation with a LLM, with subjective
estimate of inference overhead and conformance to the LLM’s original output distribution, and a brief
description of constraint expressivity and method of posterior estimation.

F Method Comparisons

An overview comparison of several methods is presented in Table 5.

G Compute Resources

Computation time was not precisely tracked during preliminary or final experiments; several experi-
ments ran in parallel, resulting in a high variation of inference speed. Inference time was dominated
by the BigCodeBench trials (1140 tasks, 4 methods, 2 models, 5 trials per model = 45600 generations.
Order of magnitude of 103 output tokens per trial, resulting in about 107 − 108 output tokens). This
took about a day or two on an AWS p4d.24xlarge instance. The lipogram task was comparatively
much less resource intensive, with 25 prompts, 4 models, and 200 output tokens per prompt, with a
higher generation ratio than BigCodeBench, resulting in about 104 − 105 model invocations. The
simulated testbench experiments run in seconds to minutes on a consumer laptop.

23

H Implementation Details

We provide notes related to our implementation of the methods discussed in this paper. In particular,
floating point error accumulation was a major source of issues due to invariants breaking late in the
generation process; we note where recalculations may be required to avoid this.

H.1 ASAp

An implementation of ASAp is provided in Algorithm 5.

Algorithm 5 ASAp [25]
procedure ASAp(P,B, x1...n) ▷ x1...n is prompt

P̂B ← P
while Limit not reached do

Sample sequence xn+1...m ∼ P̂B(·|x1...n) until error or stopping condition
if x1...m /∈ B then break
▷ Remove x1...m as a possible sequence ◁

P̂B ← AddBadSampleP̂B , x1...m

return X

H.2 Trie-Structured Probability Cache, AddBadSample, and Cached Probabilities

After each token probability distribution is generated from the language model, we add it to a trie
structure to represent P̂B efficiently.
The node representing prefix x1...m contains the following:

• A single token xm, and a pointer to a parent node representing x1...m−1

• The original probabilities generated by the LLM P (·|x1...m).

• The modified conditional probabilities P̂B(·|x1...m).
– Due to floating point implementation issues, and for efficiency purposes, we store
these modified probabilities un-normalized; i.e. we store a table P̂B∗(·|x1...m) where∑

xm+1∈Σ P̂B∗(xm+1|x1...m) ≤ 1.
– We track this sum in a variable, f , and divide the un-normalized probabilities by f
as necessary to obtain normalized probabilities when queried. When f is small, and
likely to suffer from accumulated floating point errors, we periodically recalculate it by
summing the P̂B∗ table.

– Additionally, when an entry of P̂B∗ is sufficiently small, or becomes negative, we
assume that its value is zero, but has excessively suffered from accumulated floating
point errors; we therefore set it to zero.

This structure allows for an efficient implementation of AddBadSample, as given in Algorithm 6. The
same trie structure is also used to track the adjusted probabilities for the comparison methods.

H.3 Backtracking Strategies

Our implementation uses essentially the same structure as detailed in Appendix E, where it is
parameterized by a backtracking strategy. However, it would be complex to maintain full probability
tries representing both P̂B and P̂B∪{x} every time a violating sample is found. We observe that it
is unnecessary to do so; rather, we only need both probabilities along the “path” of the violating
sample; i.e. P̂B(x1), P̂

B(x2|x1), . . . P̂
B(xm|x1...m−1). Therefore, we invoke CollectProbabilities

(Algorithm 7) before calling AddBadSample.
The SpecSample algorithm is used nearly unmodified, except thatP is given by the adjusted conditional
probabilities in the trie, and S is given by the cached list collected by CollectProbabilities.

24

Algorithm 6 An implementation-oriented description of AddBadSample
procedure AddBadSample(Node n)

▷ n represents a violating sample ◁
t← n.token
c← n.parent ▷ Current node
r ← 1
while c is not null do

▷ Calculate r as probability of violating sample in c, in original distribution ◁
r ← r × c.P (t)

c.P̂B∗(t)← c.P̂B∗(t)− r
c.f ← c.f − r ▷ Recalculate c.f as sum of c.P̂B∗ if needed due to FP errors
t← c.token
c← c.parent

Algorithm 7 Collect all probabilities along a path
procedure CollectProbabilities(Node n)

t← n.token
c← n.parent ▷ Current node
o← []
while c is not null do

▷ Calculate r as probability of violating sample in c, in original distribution ◁

Append(o, c.f × c.P̂B∗(t))
t← c.token
c← c.parent

return Reverse(o)

We make one modification to constrained decoding, necessary due to our use of top-p sampling such
that there may not always be an available token that satisfies the constraint in the next step. If the
current leaf node of the probability trie has no non-zero entries in P̂B∗, then our implementation of
constrained decoding will backtrack until there is at least one available continuation.

I Additional Lipogram Examples

The following pages contain generations from 10 random prompts of the lipogram task. The examples
are not cherry-picked. If the banned letter appears—this occurs in all unconstrained examples, and no
other method—it is bolded. Non-ASCII characters are underlined and highlighted in red. We include
</s> where the language model chooses to stop generation; otherwise, it was cut off after 200 tokens
or 2000 model invocations, whichever occurred first. Generations from all prompts are available in
the supplemental material.

25

Provide instructions to tie a tie without using the letter "I". AprAD (Ours)
To create an elegant neckwear look, follow these steps to adorn your collar:
1. Gather your tools: Choose a well- Press your collar down and adjust the top button.
2. Select the perfect knot: There are many knots to choose from; select a preferred one.
3. Dress your end: Take the end nearest to you and form a loop, called the "small" or "narrow"
end.
4. Create an overlap: Cross the longer end, called the "large" end, over the loop.
5. Form a second loop: Take the small end and make another loop.
6. Create a "V" shape: Place the large end over the two loops. Adjust for symmetry.
7. Repeat: Cross the small end over the large end, then the large end over the small end to create
a "V" shape once more.
8. Tuck and adjust: T

Provide instructions to tie a tie without using the letter "I". Unconstrained
To create an elegant necktie knot, follow these steps:
1. Lay the tie flat on the table with the wide end (the end you’ll be tying first) facing you. The
thin end (the side you’ll be attaching to theshirt) should be hanging on the left.
2. Cross the wide end over the thin end and bring it behind the looped thin end.
3. Now, pass the wide end over the looped thin end from left to right, going around the back of
the necktie.
4. Keeping the wide end behind the looped thin end, cross it over to the left side and bring it in
front of the looped end.
5. Now, the wide end should be on the left and the looped end on the right. Cross the wide end
over the looped end again to the right side.
6. Pass the wide end under

Provide instructions to tie a tie without using the letter "I". ASAp
To create

Provide instructions to tie a tie without using the letter "I". Constrained
To create an elegant necktube knot for your formal att attar, follow these steps:
1. Lay the necktube flat on the table, end towards you.
2. Fold one end about four to four and a half инches (10-12 cm) over the other end.
3. Create a loop, called the "small loop," by fold the part of the necktube above the folded end,
about two to three инches (5-7.5 cm) down.
4. Create a second loop, called the "large loop," by fold the part of the necktube around your
neck, and rest the large loop over the small loop.
5. Tuck the end of the necktube under the large loop, then the small loop.
6. Pass the end of the necktube under the small loop and through the hole created by the knot.
7. Tug on

26

Provide instructions to tie a tie without using the letter "O". AprAD (Ours)
1. Begin with the tie unwinded and the widest end (the "bracelet end") tucked under the
neckband.
2. Bring the wider end (the "tie end") behind the neckband, then tuck it under the bracelet end
and pin it in place with a thin fabric "shelf" called the "keeper."
3. Create a "Wing Tip" by lifting the neckband and slipping the tie end under it, then pull it up
evenly and adjust the width until it’s level with the bracelet end.
4. With the tie end still held in place with the neckband, create a "Shelf" by lifting the bracelet
end and passing the tie end beneath it, then adjust the tie width again by pulling the tie end
evenly.
5. Create a "Three-inch rule" by sliding the bracelet end up three inches (7.6 cm

Provide instructions to tie a tie without using the letter "O". Unconstrained
1. Begin by laying out your tie on a flat surface with the wide end, known as the "tail," facing
you. The narrower end is called the "Tip."
2. Cross the Tip over the Tail from left to right.
3. Bring the Tail around the back of the neck and cross it over the Tip.
4. Now, take the Tip and thread it under the loop created by the Tail.
5. Pull the Tip up through the loop.
6. Adjust the position of the Tip and Tail to achieve a symmetrical knot.
7. Repeat the process on the other side, crossing the Tip over the Tail, bringing the Tail around
the back, threading the Tip under the loop, and pulling it through.
8. With both sides adjusted, adjust the knot one final time to ensure a neat and symmetrical
look.</s>

Provide instructions to tie a tie without using the letter "O". ASAp
1

Provide instructions to tie a tie without using the letter "O". Constrained
1. Begin by laying the necktie flat in a figure eight shape. The wide end (called the "butt end")
will be anchered at the left side, and the thin end (called the "tip end") will be adjusted at the
right side.
2. Bring the right side (the side with the tip end) up and behind the left side, creating a "U"
shape, then pull it straight up and tuck the tip end under the wide part at the nape (the back part)
near the center.
3. Next, bring the left side up and pass it (the wide end) behind the neck, then pull it straight up
and rest it against the right side.
4. With the left side still in hand, take the right side (tip end) and bring it up and pass it behind
the left side.
5. Tuck the tip end behind and under the wide part (where the

27

Write a story without using the letter "E". AprAD (Ours)
In a quaint, old-world town, a mystical story unfolds. A solitary knight, Sir Gavr, hails from a
distant land. His mission was vital, as his king had sought his aid. A monstrous dragon, with a
long, sinuous form, had laid claim to a bountiful land.
Sir Gavr, galloping through twisting hills and past lilac valms, his stallion, Swiftpaw, carrying
him swiftly. Through woodlands dark and mossy, a path narrow and winding. His armor glinting
gold, a radiant sight, as knight and mount, in rhythmic flight, cut through air, crisp and light.
A labyrinth of hills and hollows, Sir Gavr and Swiftpaw, onward bound. A looming mountain, a
daunting sight, as dragon’s lair, a

Write a story without using the letter "E". Unconstrained
In a quaint, old-world village lived a wise artisan named Gobo. His humble abode was nestled
’twixt a grove of towering, verdant trees. His days were passed in crafting intricate, exquisite
pottery pieces, each more beautiful than the last.
Gobo sourced clay from a nearby stream, where its cool, crystalline waters danced over smooth,
mossy pebbles. The sun, a golden orb, bathed the clay in warm hues before Gobo shaped it with
skilled, nimble fingers. A wheel, spun by muscular arms, transformed the malleable substance
into symmetrical rounds.
Once shaped, pieces were set to dry under the clear, azure sky. With patience, they transformed
into delicate, hardened creations. With deft strokes, Gobo adorned pots and bowls with intricate,

Write a story without using the letter "E". ASAp
I.

Write a story without using the letter "E". Constrained
In a quaint, old-world town, N, a kindly cobblер, dwlt with his donk mulk. His daily task was to
mak sho’d that N’s villagrs’ shojs staid sound. With nimbl fingrts and skillful hand, N smotd,
nwd, and polisht prgrssvly.
Bys N’s humbl abod, a gldng fountain splshd light thru wndw shds. It was a gif frm hm t Ols
N., N’s fav or old fnd, who hd lvd n ths tow n yrs ag.
Today, though, N fnd dffrlt to wk. Hs thmb, hnd, awoy aggrv, paining hm wth sharp, stng p

28

Describe elephants without using the letter "O". AprAD (Ours)
Elephants are large, gray, thick-skinned pachyderms, characteristically having extended, curved
tusks, and a fan-shaped, large ear structure. They are the largest living terrestrial animals, with
a distinct, massive build. These gentle giants have a wrinkled visage, and large, dangling, gray,
prehensile ears, which are effective at dissipating heat. The trunk, a lengthy, muscular, and
versatile appendage, is an integral feature, serving multiples uses, including breathing, grasping,
and trumpeting. Their legs are pillar-like, ending in large, flat feet, which help them maneuver
in diverse terrains. Their size and strength make them apex terrestrial animals, and they are
crucial elements in their respective habitats.</s>

Describe elephants without using the letter "O". Unconstrained
Elephants are large, gray, thick-skinned pachyderms, known for their long, curved tusks. They
are the largest land animals, reaching up to 13 feet in length and 10 feet in height at the shoulder.
With strong, sturdy legs, they support up to 13,000 pounds. Their elongated trunk, a flexible
extension of their upper lip, is used for tasks including grasping food and water, trumpeting,
and bathing. Their ears, which function in both temperature regulation and communication,
can reach up to 5 feet in width. These gentle giants live in herds, displaying complex social
behaviors and intricate hierarchies.</s>

Describe elephants without using the letter "O". ASAp
Large, gray, thick-sk

Describe elephants without using the letter "O". Constrained
Elephants are large, gray, thick-skinned pachyderms, inhabiting African and Asian savannas,
rain-drenched jungles, and diverse habitats in between. Kneeling, they rest their massive, curved
tusks, used primarily in feeding and defense, against the jungle’s underbrush. Their elastic,
dexterity-laden trunks, extended appendages, twist and twirl, grabbing leaves, branches, and
fruits. Their bulbus, enlarged, sensitive tips, caress and manipulate their quenching water and
tender infants. Males and females, banded, marked, and tusked, live in matriarchal, familial, and
herd-like structures, their distinct, rumbling rumbles, a testament, that despite their gargantuan
frames, these gentle giants are an integral part, in the intr

29

Critique the Mona Lisa without using the letter "E". AprAD (Ours)
In this artwork, a captivating woman, known as La Joconda or La Hora, holds a puzzling grin.
A portrait, it is, of this cryptic woman. With a backdrop of lush, rolling hills, this painting is a
symphony of color and form.
This woman, clad in a rich, royal gown, sits in a chair in an unusual position, twisting slightly,
inviting an intimacy that is both alluring and intriguing. A slight smirk, or is it a sly grin? This
ambiguity is what draws us in, as if to ask, "Am I amusing or mocking?"
Boldly, shadows and light play in this work, as if dancing a waltz, with chiaroscuro as its music.
This contrast, striking and dramatic, is what adds an almost magical quality to this artwork.
A mosaic of colors, this painting is

Critique the Mona Lisa without using the letter "E". Unconstrained
TheMona Lisa, a singular 16th-century painting, is Leoni da Vinci’s epitome. This masterpiece,
penned by the virtuoso artist, evokes a sense of enigma and captivation. The woman portrayed,
with her enigmatic smile, gazes directly at the observer, challenging one’s interpretation.
The painting’s composition masterfully balances the human form against a lush background,
showcasing Leonardo’s virtuosic skill. The woman, dressed in a subtle, intricate robe, is
contrasted by the stark, plain backdrop. Her expression, subtly shifting between coy and
contemplative, invites endless analysis.
The intricate play of light and shadow on her face adds depth and dimension, as if the painting
itself holds a secret. The artist’s adept use of sfumato technique, where colors and tones blend

Critique the Mona Lisa without using the letter "E". ASAp
In this

Critique the Mona Lisa without using the letter "E". Constrained
I’ll do my utmost to critic this Mona Lisa without utilizing "é" or any of its variants, including "é"
as in "étudiant" or "è" as in "mèasuring." I’ll focus on "critic" as in "judging with an analytical
and authoritarian approach."
This painting, La Gioconda, by da Vinci, is an intriguing, cryptic work of art. Its woman’s
countanza, or counténanc, or visagio, or visagio da vita, or simply, its facia, is a captivating,
almost hypnotizing, sight.
With a sfumato background that dissipatas, or dissipas, into an indistinct, unbound horizon, our
ojo is drawn to its sujето principal. Its sfumato, or "smoky," background is in striking contrast

30

Critique the Mona Lisa without using the letter "A". AprAD (Ours)
Leonymus Léonifor de Vinci’s iconic piece, the ’Lizone Jocundity’ or ’Smiling Lioness,’
epitomizes the refined intrigue of the 16th century. This work, completed in the mid-1500s, is
renowned for its subject’s elusive expression, veiled in mystery.
The ’Lizone’ is executed with the finest of techniques. Leonifor’s virtuosity is evident in the
meticulous, lifelike rendering of the figure’s physiognomy, dressed in the subdued splendor of
the epoch. The sitter, shrouded in the mists of time, seems to defy definition.
The composition is striking; the figure is posed, enshrouded in the folds of her veil, the folds of
her robe - the folds of her being.

Critique the Mona Lisa without using the letter "A". Unconstrained
The Mona Lisa, a iconic masterpiece by Leonardo da Vinci, is a 16th century portrait rendered
in oil on poplar wood. This artwork, renowned for its enigmatic smile, is noted for its exceptional
fine detail and the subtle interplay of light and shadow.
The subject, believed to be LisaGherardini, is depicted in three-quarter view against a landscape
backdrop. Her expression, often described as enigmatic or melancholic, is conveyed through
her slightly parted lips, a subtle curve of her mouth, and her enigmatic gaze.
The painting showcases daVinci’s mastery of sfumato, a technique that creates a soft transition
between colors and tones. This is evident in the delicate shading on the subject’s face, hands,
and the background landscape.
The background is a harmonious blend of mountains, water, and trees, which adds

Critique the Mona Lisa without using the letter "A". ASAp
The

Critique the Mona Lisa without using the letter "A". Constrained
The Moná Licá, renowned work of Leonido de Vinci, is renowned for its enigmistic smile,
subtle yet intriguing. This 16th century oil on poplár wood portritr é, housed in the Louvre,
Fránce, boggles the mind with its complexitı́. The composition, with the subject’s eyes meeting
the observer’s, invites introspection. The intricè intricàtions of the sitter’s dress, mirroring the
folds of the sitter’s neckline, exhibit the virtuositı́ of the mı́ster. The sfumátto technique, used in
the rendering of the shádows, highlights the subtlety of the lighting on the subject. The delicácy
of the brushwork, seen in the subtle blending of colors, reflects the meticulousness of the mı́ster.
The over

31

Summarize the history of artificial intelligence without using the letter "U". AprAD (Ours)
Artificial Intelligence (AI) traces its roots to the concept of "thinking machines" in ancient
Greece. Early theories on creating sentient beings were proposed by philosophers like René
Descartes and Blaise Pascal. The term "Artificial Intelligence" emerged in the mid-1950s
when scientists and engineers began working on creating programs capable of solving complex
problems, learning from experience, and interacting with the environment.
One of the first significant achievements in AI was the development of the Logic Theorist by
Allen Newell and Herbert A. Simon in 1956. This program was designed to prove mathematical
theorems, and it was considered a major milestone in the field.
The 1960s and 1970s saw the advancements in AI research with the creation of expert systems,
which applied knowledge in specific domains to solve complex problems. These systems, like
MYCIN and EMYC

Summarize the history of artificial intelligence without using the letter "U". Unconstrained
Artificial Intelligence (AI) is a field of computer science that focuses on creating intelligent
machines capable of performing tasks that typically require human intelligence. Its roots can
be traced back to the mid-20th century.
In the 1940s and 1950s, early pioneers like Alan Turing and Marvin Minsky explored the
possibility of creating machines that could think and learn. Turing proposed the Turing Test,
which measures a machine’s ability to imitate human conversation. Minsky and John McCarthy
coined the term "Artificial Intelligence" at a workshop at Dartmouth College in 1956.
Initially, AI research focused on symbolic AI, using rules and symbols to represent knowledge
and reason. However, this approach faced limitations, and researchers turned to other methods.
In the late 1950s and early 1960s, there was significant interest in AI and

Summarize the history of artificial intelligence without using the letter "U". ASAp
Artificial Intelligence (AI) traces

Summarize the history of artificial intelligence without using the letter "U". Constrained
Artificial Intelligence (AI) is a field of компьютерная наука, dealing with creating machines or
programs that mimic intelligent behavior. Its roots can be traced back to the mid-20th венгарда,
when Alan Тюринг, an English mathematician, proposed the concept of a "logical machine"
capable of performing any task that a person can.
In the 1950s and 1960s, AI research was largely driven by the idea that intelligent behavior
can be achieved by programming a machine to process symbolic information, leading to the
development of symbolic AI or "good old-fashioned AI" (GOFAI), which relies on logical
reasoning and symbol manipation.
However, the limitations of this approach became apparent in the late 1960s, with the realization
that symbolic reasoning alone was insignificant in tackling real-world problems

32

Describe elephants without using the letter "U". AprAD (Ours)
Massive land animals, elephants are the largest mammals on Earth. They have long, gray,
wrinkled skin, and large, fan-like ears. Their tails are thick at the base and taper towards the tip.
They possess two long front legs and a pair of smaller hind legs. They are herbivores, eating a
wide variety of plants, leaves, bark, and branches. Their diet provides them with an incredible
capacity to store food in their digestive tracts, which can take days to process. These gentle
giants have a keen memory and form strong family bonds, living in matriarchal herds. They
help one another, displaying behaviors of cooperation and protection, making them an integral
part of their ecosystems.</s>

Describe elephants without using the letter "U". Unconstrained
Massive, gray creatures, they are the largest living land animals. Their long, curved tusks
are elongated ivory appendages. They possess large, fan-like ears that help dissipate body
heat. Intelligent and social, they form intricate matriarchal herds. These pachyderms have
sturdy legs supporting their massive bodies, ending in broad, flat feet. Their elongated trunks
are prehensile, used for gathering food, drinking water, bathing, and communicating. With
strong memories, they display complex behaviors and emotions. They are essential components
of various ecosystems, particularly in Africa and Asia. These magnificent beings are called
elephants.</s>

Describe elephants without using the letter "U". ASAp
Large, gray, thick-skinned pachyderms. These massive land animals are characterized by

Describe elephants without using the letter "U". Constrained
Massive, gray animals. Large, fan-like ears. Long, flexible, prehensile, and hairless necks.
Long, ivory tipped, elongated front teeth for grasping and feeding. Agile, with strong, stilt-like
legs, carrying heavy bodies, and large, concave backs for balance. They have large, wrinkled
skin, long, flexible, and dexteritally, sensitive, gray-black, elongated, flexible and agile nose or
proboscis. Intelligent, social, herd animals. They have long memories, complex behaviors and
excellent learning abilities. They have long lifespan, large brain, and play a significant role in
their ecosystem. Their diet consists mainly of leaves, branches, bark, bamboo shoots, and other
vegetation. They are the largest land animals on Earth.</s>

33

Critique the Mona Lisa without using the letter "U". AprAD (Ours)
The Mona Lisa, a iconic masterpiece by Leonardo da Vinci, is a captivating image of a woman
whose enigmatic smile and mesmerizing gaze have left viewers in awe since its inception.
The portrait, renowned for its exceptional detail and realistic representation, evokes a sense of
mystery and refinement.
The lady, believed to be Lisa Gherardini, is depicted while seated before a rocky, landscaped
backdrop. Her visage is characterized by the delicate interplay of light and shadow, with the
folds of her clothing creating an intricate, almost three-dimensional effect. Her eyes, with
their faint hint of a smirk, invite the viewer into a world of enigma, daring one to decipher her
emotions.
The painting’s composition is noteworthy for its asymmetrical balance, which keeps the viewer
constantly engaged. The delicate folds of her veil, the

Critique the Mona Lisa without using the letter "U". Unconstrained
The Mona Lisa, a iconic masterpiece by Leonardo da Vinci, is a captivating image of a woman
whose enigmatic smile and inscrutable expression have baffled and intrigued viewers for
centuries. Her soft, delicate features and lifelike quality are achieved through the painter’s
virtuosic use of sfumato, a technique involving the subtle blending of colors to create a hazy,
smoky effect.
The background landscape, rendered with meticulous detail, provides an idyllic setting for the
enigmatic figure. The artist’s exceptional skill in capturing the play of light and shadow, as well
as his mastery of perspective, are evident in the way the background elements recede into depth.
Mona Lisa’s gaze, seemingly directed at the viewer, invites one to ponder the secret thoughts
hidden behind her enigmatic expression. Her hands, delicately inter

Critique the Mona Lisa without using the letter "U". ASAp
The Mon

Critique the Mona Lisa without using the letter "U". Constrained
The Mona Lisa, a iconic masterpiece by Leonardo da Vinci, is a captivating image of a woman
whose enigmatic smile and inscrütableness have intrigighed viewers for over fivecenthies. The
painting is renowned for its exceptional detail and lifelike portrayal of the sitter.
The composition is masterly balanced, with the sitter positioned slightly off center. Her gaze,
following no discernible focal point, invites prolonged contemplation. The delicate rendering
of her facial expression, with its slight hint of a smile and the faintest of eyebrows, adds to the
overall alliteration.
The intricately patterned veil she wears adds a sense of mystery and intrigness. The delicate
play of light and shadow enhances the sense of depth and dimensionality. The sfoglio, or smoky
sfondato, in the backdrop contibtes to

34

Provide instructions to tie a tie without using the letter "E". AprAD (Ours)
1. Starting with your collar straight and flat:
2. Position your collar: Fold it up at about an inch (2.5 cm) and adjust it to sit comfortably.
3. Form a ’Width’ and’Slip’ or ’Four in Hand’ knot:
a. Width: Pick up a small strip of fabric (about an inch or two, 2.5 cm to 5 cm) with your
non-dominant hand. This is your ’width’ or ’wingtip’ for this knot.
b. Slip: With your dominant hand (usually your right hand), grab a loop of fabric that’s around
a foot (30 cm) long. This is your ’slip’.
4. Cross and Tuck:
a. Bring your slip hand up and across your width, crossing your width hand’s strip.
b. Tuck

Provide instructions to tie a tie without using the letter "E". Unconstrained
1. Place the tie around your neck, with one end hanging lower than the other. This is called the
"working end."
2. Cross the working end over the undone side (the side without theWindsor knot).
3. Bring the working end behind the neck, crossing it over the center of the knot.
4. Pull the working end straight down, making a loop on the side with the Windsor knot.
5. Tuck the end of the loop under theWindsor knot, towards the narrower side of the tie.
6. Pull the working end to tighten the knot, and then repeat steps 3-5 to create a second loop on
the other side.
7. Cross the second loop over the first loop, just like in step 2.
8. Bring the working end behind the neck and under the first loop, crossing it over the center of
the

Provide instructions to tie a tie without using the letter "E". ASAp
1

Provide instructions to tie a tie without using the letter "E". Constrained
1. Position your shirt: Worn collar flat and button up, slip your arms through armh Hols of your
suit or blaz Jackет. Tuck in your shirt and fastен buttons.
2. Taut knot: Grip your narrow finish, also known as "point," with your right hand, holding it at
about a 45-diagonal from your body. Wrap your "broad" or "wing tip" around your collar and
cross it ov-r your finish, making a "V" Shap at your collar.
3. Tightly wrap: Grip your broad tip with your right hand, and pull it across and o’r your finish,
going toward your l-ft (non-dominant) sid- and passing it thru’g your "working" n-d (right) knot
loop.
4. Wrap again: Cross your broad tip to your "back," going

35

	Introduction
	Related Work

	Preliminaries
	Autoregressive Language Models
	Speculative Decoding

	Problem Statement and Existing Approaches
	Existing Approach: Constrained Generation
	Existing Approach: ASAp—Sampling Without Replacement
	Existing Approaches: Posterior Estimation

	Method
	Speculative Sampling as a Prefix Selection Algorithm

	Evaluation
	Simulated Model with Known Ideal Distribution
	Lipograms (Excluded Vowels)
	BigCodeBench Hallucination Avoidance

	Discussion
	Posterior Estimation-Based Methods
	A Spectrum of Sampling-Based Methods
	Search Algorithms

	Limitations
	Conclusion
	Lipogram evaluation details
	Rater Instructions and Details
	Generation Ratio

	Extended Example of Probability Amplification
	Bounding the Probability Amplification Factor
	Additional BigCodeBench Results
	Generalization of Error-Free Decoding
	Method Comparisons
	Compute Resources
	Implementation Details
	ASAp
	Trie-Structured Probability Cache, AddBadSample, and Cached Probabilities
	Backtracking Strategies

	Additional Lipogram Examples

