
Improving Behavioural Cloning with
Positive Unlabeled Learning

Qiang Wang1, Robert McCarthy2, David Cordova Bulens1,
Francisco Roldan Sanchez3,4, Kevin McGuinness3,4, Noel E. O’Connor3,4,

Nico Gürtler5, Felix Widmaier5, Stephen J. Redmond†1,4

1University College Dublin, 2University College London,3 Dublin City University
4Insight SFI Research Centre for Data Analytics, 5MPI for Intelligent Systems

Abstract: Learning control policies offline from pre-recorded datasets is a promis-
ing avenue for solving challenging real-world problems. However, available
datasets are typically of mixed quality, with a limited number of the trajecto-
ries that we would consider as positive examples; i.e., high-quality demonstrations.
Therefore, we propose a novel iterative learning algorithm for identifying ex-
pert trajectories in unlabeled mixed-quality robotics datasets given a minimal set
of positive examples, surpassing existing algorithms in terms of accuracy. We
show that applying behavioral cloning to the resulting filtered dataset outper-
forms several competitive offline reinforcement learning and imitation learning
baselines. We perform experiments on a range of simulated locomotion tasks
and on two challenging manipulation tasks on a real robotic system; in these
experiments, our method showcases state-of-the-art performance. Our website:
https://sites.google.com/view/offline-policy-learning-pubc.

Keywords: Offline policy learning, Positive unlabeled learning, Behavioural
cloning

1 Introduction
Data-driven learning methods can discover sophisticated control strategies with minimal human in-
volvement, and have demonstrated impressive performance in learning skills across many challenging
domains [1, 2, 3, 4]. Nonetheless, data-driven methods are not often applied in real world applications
due to the amount of interactions with the environment needed before an effective policy can be
learned [5, 6, 7]. Moreover, data acquisition can be costly and/or unsafe in physical environments.
This inefficiency can potentially be improved by learning from previously-collected data; i.e., learning
a policy from a historical dataset without needing additional data acquisition from the environment.
This is termed offline policy learning.

Standard behavioral cloning (BC) is the simplest offline policy learning algorithm, it aims to find a
policy that can mimic the behavior observed in a dataset capturing the performance of a given task.
The target behavior to be cloned is usually obtained from an expert; for instance, a human [8, 9] or a
well-performing scripted agent [10]. BC performs supervised regression, learning a control policy
that maps observations from a dataset to the corresponding actions taken by a behavior policy. When
high-quality expert data is used for training, BC demonstrates high efficiency, and the resulting agent
typically exhibits good performance [11].

However, a major drawback of BC is its dependence on a high-quality training dataset. Specifically,
the data collected for BC should come from one highly-skilled expert. Moreover, the actions
conditioned on the environment states must display a unimodal distribution to prevent regression
ambiguity [12], as BC follows a supervised machine learning paradigm. However, real-world/practical
training datasets are often of mixed-quality, containing examples of both high-quality and low-quality

† is the corresponding author

7th Conference on Robot Learning (CoRL 2023), Atlanta, USA.

https://sites.google.com/view/offline-policy-learning-pubc


behaviors/data, which can be detrimental to the training process. The presence of low-quality data in
these datasets can be attributed to factors such as the involvement of low-skilled agents, non-task-
related policies, or environmental noise. If multiple experts are involved, the dataset may furthermore
exhibit multi-modal behavior, leading to regression ambiguity in BC. In this paper, we aim to study
methods allowing the discrimination of a single target expert’s data within a mixed-quality dataset,
and utilize this single-expert subset for BC learning.

1.1 Our work

We assume we are provided with a mixed-quality dataset, as discussed previously, along with a seed-
positive dataset consisting of high-quality data generated by an expert. Our goal is to discriminate data
in the mixed-quality dataset that shares the same behavioral patterns as the seed-positive examples
to obtain an expert dataset suitable for BC. In practice, the seed-positive dataset can be quite small,
typically constituting only 0.1% to 0.4% of the mixed-quality dataset’s size. This enables users to
obtain the seed-positive examples using feasible methods, such as heuristically/manually sampling
from the mixed-quality raw dataset or by requesting the target expert to collect a small amount of
additional data. Our approach can be considered an example of Positive Unlabeled (PU) learning,
which constitutes an important subfield within conventional semi-supervised learning. Concisely,
datasets for PU learning comprise a portion of data labeled as positive, while the rest remains
unlabeled. The objective of PU learning is to leverage the information from positive examples to
classify the unlabeled data as either positive or negative.

We establish a supervised learning signal by integrating synthetically-generated negative examples and
seed-positive examples. Our training methodology adheres to a traditional semi-supervised learning
paradigm; it begins the training with a small, positive dataset and then iteratively discriminates
positive examples from a large, unlabeled dataset. These identified examples are then added to the
positively-labeled subset for the subsequent training cycle, until convergence is achieved. Once
the dataset has been labeled using this iterative method, during the policy learning phase, we apply
standard BC to this positively-labeled subset.

In general, we refer to our offline policy learning approach as Positive Unlabeled Behavioural Cloning
(PUBC). PUBC stands out for its simplicity in implementation, quick training time, and ease of
parameter tuning. In our experiment, PUBC achieves excellent performance across a wide range of
challenging robotic tasks, surpassing several state-of-the-art algorithms.

2 Related work

2.1 Offline policy learning

Research methods for offline policy learning can largely be categorized as offline imitation learning
(IL) or offline reinforcement learning (RL); we refer readers to [13, 14] for comprehensive surveys,
and to [15, 16, 17] for research benchmarks.

BC is the simplest form of offline IL. In addition to standard BC as mentioned earlier, researchers
have recently proposed Implicit BC [18], which employs an energy-based model [19] to improve BC’s
performance. Furthermore, Inverse RL [20] is regarded as an alternative branch of IL, focusing on
understanding the motivations behind an agent’s actions by inferring the underlying reward structure,
which guides the decision-making process in Inverse RL. Additionally, a Generative Adversarial
Network (GAN) [21] has been integrated with IL in [22], where it employs adversarial training with
generative and discriminative models to learn the action distribution of the behavior policy.

Offline RL[14] aims to maximize the expectation of the sum of discounted rewards. However, unlike
in online RL, no interactions with the environment are allowed. Most off-policy RL [23] algorithms
are applicable offline, but they typically suffer from the issue of outputting out-of-distribution (OOD)
actions due to the distribution shift between the action distribution in the training dataset and that
induced by the learned policy [10]. To mitigate this issue, several constraint methods, such as policy
regularization [24, 10, 25, 26] and conservative value estimates [27, 28] are proposed.

2



Recently, a novel offline RL approach, inspired by transformer models [29], has been introduced in
[30, 31]. Unlike conventional RL methods that depend on policy gradients or temporal differences,
this approach takes a distinct route by utilising supervised sequence modelling to fit the policy data
distribution. In the policy evaluation phase, the GPT model takes a target return and generates an
action sequence for that goal. This GPT-based method will be a baseline in our paper.

Another branch of offline RL perfroms BC while focusing on learning transitions with higher
significance in the datasets. It starts by learning advantage functions and subsequently utilizes them to
downweight transitions with lower advantage [32, 33, 34, 35, 36, 37]. Similarly, in [38], the authors
propose a GAN-like architecture [21] that combines BC and a discriminator. The discriminator
selectively picks high-quality expert data from the dataset for BC learning.

2.2 Positive unlabeled learning
The main challenge in PU learning is to acquire negative examples from the unlabeled data to
complement the available positive examples for training a supervised classifier. The two-step PU
learning approach involves manually labeling a subset of negative examples and using them along
with positive examples to train the classifier [39]. The classifier can then label the remaining unlabeled
data in the dataset. However, this method can be human labor-intensive, and it may not be effective if
the underlying patterns of the negative examples are difficult to interpret.

Another solution is to naively treat the unlabeled data as negative examples during classifier training
[40]. The classifier can then assign scores to the unlabeled examples, with positive examples typically
receiving higher scores. This method has been improved in [41] by using the bagging technique to
generate multiple subsets from the unlabeled dataset, which are combined with positive examples to
train a series of weaker classifiers. Finally, the output from the classifier ensemble is used to produce
a more accurate prediction. However, if an unsuitable loss function is used, biased errors may occur.
This problem is addressed in [42] by introducing Unbiased PU learning. More recently, [43] proposed
Non-negative PU learning to mitigate the overfitting problem associated with unbiased PU learning.
We recommend [44] for an in-depth analysis of PU learning.

3 Positive Unlabeled Behavioural Cloning
3.1 Preliminaries
The offline policy learning problem is formulated in the context of a Markov decision process,M
= (S, A,R, P , γ) [45], where S is the state space, A is the action space,R is the reward function,
P is environment dynamic and γ is the discount factor. At each time step, t, the agent gets a state
st ∈ S and outputs an action at ∈ A according to a policy π(at | st); after applying the action to the
environment, the agent will get a reward rt ∈ R and the environment state transitions to st+1. We
assume that we can obtain or are given a positive dataset, D+ = {(s+t , a+t , r+t , s+t+1)t=1...m}, with
m time steps and a large mixed-quality offline dataset Dmix = {(smix

t , amix
t , rmix

t , smix
t+1 )t=1...n},

with n time steps. We assume m << n, that D+ contains only data collected by the targeted expert,
and Dmix includes a proportion of data collected by the target expert. In our following description,
we define a positive example as the data collected by the target expert, and a negative example as any
data not collected by the target expert.

3.2 Generating the training examples
Our approach to generating negative examples for training the PU classifier is similar to the two-
step method outlined in Section 2.2. However, rather than depending on manual selection of
negative examples from Dmix, we create them by randomly mixing the states and actions from
different sources, including from D+, from Dmix, and random examples from the state-action
space (see Figure 1(a)). Therefore, the set of negative examples can be informally written as:
D− = {(s+, amix)n1

∪(s+, ã)n2
∪(smix, a+)n3

∪(smix, ã)n4
∪(s̃, a+)n5

∪(s̃, amix)n6
∪(s̃, ã)n7

},
where s̃ and ã refer to the random states and actions that follow a uniform distribution within the
range of minimum action to maximum action; n1− n7 correspond to the number of state-action pairs
generated for each combination of sources. We require that the artificially generated state-action pair
be distinct from the state-action pair obtained from the raw dataset.

3



(a) (b)

Figure 1: PUBC learning block diagram. (a) Illustration of the iterative PU learning process. The
red rounded rectangle shows how positive and negative training examples are generated, with the
negative examples generated by intentionally mismatching actions and states from different time
points and/or different data subsets to form action-state pairs that would most likely represent poorly
performing behaviors; See section 3.2 for a more comprehensive explanation. (b) The neural network
structure of the classifier includes an encoder to reduce the usually high-dimensional state vector,
∫ , followed by a multilayer perceptron (MLP) classifier, taking as input both state ∫ and action a
vectors, and whose sigmoidal output is interpreted as the probability that the example was generated
by an expert agent.

In the first training iteration, we treat the examples in the positive dataset as positive, similar to
traditional PU learning. Once the classifier is trained, we use it to identify additional positive examples
from the unlabeled dataset. These newly identified positive examples then replace the previous ones.

3.3 Classifier structure
Figure 1(b) shows the network structure of the classifier, which is a combination of MLPs; it takes the
state-action pair and outputs the probability that this pair was generated by the actions of the same
expert agent that generated (we assume) most of the data in the training dataset, D+. Experimentally,
we found that directly inputting a concatenation of raw state-action pairs into the neural network
will cause the action to be effectively ignored, as the dimension of the observation space is typically
much larger than the action space in practical task settings. Therefore, to reduce the dimension
of the observation space, we encode the observation vector into a lower dimensional space before
concatenating it with the action vector and inputting it to the MLP to obtain a decision. The final
layer of the MLP uses a sigmoid activation function, sigmoid(x) = 1/(1 + e−x), where the output
F(s, a) is interpreted as the probability that the state-action pair was generated by an expert. Binary
cross-entropy is chosen as the training loss, L:

L = E
(st,at)∼D−

[− log(1−F(st, at))] + E
(st,at)∼D+

[− logF(st, at)] . (1)

3.4 Additional methods for optimizing PU learning performance
• Classifying per trajectory: The policy used for data collection typically does not change within a

trajectory (each interaction episode). The labels assigned to all state-action pairs in a trajectory are
therefore aggregated and the same label is applied to all transitions in the trajectory. This is done by
soft voting, taking the mean of the individually predicted probabilities of the state-action pairs in
the trajectory, F(st, at) for t a member of the trajectory time interval, to create a confidence score
for the trajectory. Subsequently, a threshold, thconf , is applied to the confidence score to binarize it.

• Adaptive confidence threshold: It is necessary to set a confidence threshold thconf to discriminate
positive trajectories in the unlabeled dataset,Dmix. In other words, all trajectories with a confidence
score exceeding the threshold are classified as subsets containing entirely positive examples. We
discovered that employing an adaptive threshold can enhance the classifier’s performance. Briefly,
it searches for a local minimum in the confidence score histogram and uses this value as a decision

4



Algorithm 1: PUBC algorithm
Input: Mixed-quality dataset Dmix, positive dataset D+

while D+ not converged do
Randomly sample K subsets {Dk

+}k=1...K from D+;
Generate K corresponding negative subsets {Dk

−}k=1...K ;
Initialise K classifiers {Fθk}k=1...K with parameters θ1, ..., θK ;
for k ← 1 to K do

Update θk by minimizing the loss in Equation 1;
end
Get confidence threshold thconf using the trained {Fθk}k=1...K ;
Update the membership of D+ using Equation 2;

end
Initialise BC network πδ with parameters of δ;
for epoch← 1 to epochs do

Update δ by minimizing: E
(st,at)∼D+

[− log πδ(at | st)]

end
Output: πδ

boundary, above which it is assumed the data is dominated by expert-generated trajectories (see
Appendix B for details).

• Ensemble learning: Similar to the approach in [41], we employ bagging to enhance the classifier’s
performance by concurrently learning multiple independent weaker classifiers and combining their
individual decisions to determine a final decision. The datasets used to train each classifier are
subsets of D+, sampled with replacement.

In Appendix D, we conducted an ablation study on these three techniques individually.

3.5 Using the trained classifier and learning the policy
Considering the above techniques, the label decision for a trajectory can be determined using:

f := 1

[
K∑

k=1

1

[(
1

T

T∑
t=1

Fk(st, at)

)
≥ thconf

]
>

K

2

]
, (2)

where 1[·] are indicator functions, T is the number of time steps in each trajectory; and K is the
number of classifiers in the ensemble, set to an odd number to avoid ties.

The process iterates until trajectories in D+ converge. Once D+ has converged, we train a standard
BC model to mimic the behavior in D+. The entire semi-supervised training and filtering process for
our PU classifier as well as the training of BC can be succinctly summarized in Algorithm 1.

4 Experimental results
This section aims to showcase the effectiveness of our proposed PUBC method by conducting
experiments on a range of continuous control benchmark tasks, including challenging physical
robotic manipulation tasks from the Real Robot Challenge (RRC) III competition1 and numerous
MuJoCo locomotion tasks [47, 48] (see Figure 2).

4.1 Environments, tasks and datasets
4.1.1 Robotic manipulation tasks
Figure 2(a) illustrates the domains of RRC III, which focuses on two tasks: Push and Lift [49]. In the
Push task, the cube must be moved to specified positions on the arena floor. The more challenging
Lift task requires lifting the cube and maintaining it at a target position and orientation.

1A robotic manipulation competition featured in the NeurIPS 2022 Competition Track, more details see
https://real-robot-challenge.com/. We won the competition [46], with the filter-based technique being
one of our key strategies, and the proposed PUBC method extends this filtering method.

5

https://real-robot-challenge.com/


In our experiment, we use the mixed datasets provided by the competition organizers for each task.
Each mixed dataset is collected by a mixture of different policies with varying levels of skill, and a
significant portion of the data was collected by domain-specific experts, ensuring high quality. The
subsequent discussion will denote these datasets by Lift/mixed and Push/mixed, respectively.

To obtain the seed-positive dataset,D+, we assume that the target expert has generated the trajectories
with the highest returns. Therefore, we select the 0.4% episodes with the highest returns as our
seed-positive dataset. The selection of this value is further investigated in Appendix D through an
ablation study. Post-competition, we received trajectory labels from RRC III organizers, serving as
ground truth to assess our PU learning method’s accuracy.

4.1.2 MuJoCo locomotion tasks
As shown in Figure 2(b)-2(c), the bodies being controlled in the locomotion tasks comprise segments
and joints. Actions are applied to maintain the balance of the body and to move forward. Here, We
collected mixed-quality datasets comprising five different structures: 1. E+E: Expert+Expert dataset
consisting of data from two expert policies with similar performance but different habits/behaviors,
with only one expert policy being of interest to us; 2. E+W: Expert+Weaker dataset containing data
from one expert policy and one poorly performing agent; 3. E+N: Expert+Noise dataset comprising
expert data and an equal amount of domain noise; 4. E+E+W+N: a combination of the above four
types of data. In addition, we also included an expert dataset E, consisting only of expert data as a
baseline. The configuration of each mixed dataset is further detailed in Appendix C.

4.2 PU learning results
This section presents the accuracy of our PU learning method, comparing it to traditional PU learning
approaches, including Unbiased PU learning and Non-negative (NN) PU learning. The mathematical
formulations for Unbiased PU and NN PU learning methodologies are provided in Appendix F.1
for reference. To maintain a balanced comparison, we also employed the techniques delineated in
Section 3.4 to the baselines.

As illustrated in Table 1, there is no significant difference between the performances of the two
baseline methods, while our approach shows a significant increase in accuracy compared to these
methods. The baseline methods. This could potentially be attributed to the relatively complex data
distribution produced by the RRC III environment. In locomotion tasks, both the environment and
the task are relatively stable, typically involving the operation of a simulated body to complete the
single task of moving forward. However, in the RRC III manipulation environment, there is a high
degree of randomness; both the initial position of the object and the target are randomly initialized,
meaning the tasks completed in each trajectory vary. This results in a more complex data distribution.
Furthermore, we observed that generally, in real-world environments, the performance of traditional
algorithms tends to be inferior to their performance in simulators. This is due to non-ideal hardware
in physical environments introducing substantial environmental noise, making the data distribution
even more complex.

In unbiased PU learning, introducing a reweighting operation to mitigate positive label data bias
can shift the data distribution, resulting in poor model generalization, especially in complex data
distributions like the RRC III environment.

In the Non-negative PU learning, the weight of the positive samples are enforced to non-negative,
however, this may hinder the model from capturing essential nuances in the data. For some intricate
data distributions, permitting the model to allocate negative weights to positive samples could be
instrumental in uncovering the data’s inherent structure and relationships more effectively.

In contrast to this, the method we propose can effectively tackle these issues, demonstrating both
high accuracy and strong robustness.

4.3 Offline policy learning
We present the evaluated policy performance in Table 2, where we compare our PUBC with other
relevant baseline algorithms, including a naive reward-based filter before performing BC, CRR[32],

6



Table 1: Comparing our method’s accuracy to baselines in classifying expert vs. non-expert trajec-
tories. Accuracy formula: (TP + TN)/(TP + TN + FP + FN), where TP (True Positive) and
TN (True Negative) denote the correct classification of expert trajectories and non-expert trajectories
respectively. FP (False Positive) denotes that non-expert trajectories are incorrectly classified as
expert, FN (False Negative) denotes that expert trajectories are incorrectly classified as non-expert.

Dataset Unbiased PU NN-PU Ours
RRC-Sim-Lift/mixed 82.5% 79.2% 99.7%
RRC-Sim-Push/mixed 94.3% 90.5% 100.0%
RRC-Sim Avg 88.4% 84.9% 99.9%
RRC-Real-Lift/mixed 69.4% 64.8% 99.2%
RRC-Real-Push/mixed 88.7% 90.0% 100.0%
RRC-Real Avg 79.1% 77.4% 99.6%
Ant - E+E 98.1% 95.3% 99.0%
Ant - E+W 100.0% 99.2% 100.0%
Ant - E+N 99.3% 100.0% 100.0%
Ant - E+E+W+N 98.1% 96.9% 98.8%
Ant Avg 98.9% 97.9% 99.5%
Humanoid - E+E 93.4% 94.9% 99.7%
Humanoid - E+W 93.7% 94.6% 100%
Humanoid - E+N 92.1% 93.6% 100%
Humanoid - E+E+W+N 91.0% 89.7% 99.0%
Humanoid Avg 92.6% 93.2% 99.7%
Overall Avg 89.7% 88.3% 99.6%

DWBC[38] and IQL[24]. We provide a detailed description of these baselines in Appendix F.2 for
reference. It is evident that our PUBC consistently outperforms the baseline approaches across all
domains. From the overall scores, we can observe that our method demonstrates a performance
advantage of over 12% compared to the second-best performing approach.

Employing naive reward-based techniques like 10% BC and 50% BC can extract sufficient expert
data from mixed-quality datasets in some cases. This is evident from the performance on the Sim- and
Real-Push/mixed datasets, and the E+W dataset for both locomotion tasks. However, naive filtering
works well only if there’s a large performance difference between expert and non-expert policies, the
fraction of expert data is known, and reward noise is low. Therefore, BC performs poorly on other
datasets lacking these conditions.

The advantage-based CRR algorithm performs relatively poorly. This ineffectiveness stems from
the challenging nature of estimating advantages in the offline RL setting, particularly when the
environment is stochastic and/or the given rewards are sparse or noisy. In contrast, by considering
behaviors over an entire trajectory, our method more accurately identifies target expert trajectories.

While IQL is considered one of the top-performing offline RL algorithms, our experiments have shown
that its performance is not satisfactory on the selected problems. Although offline RL theoretically
has the ability to handle various types of data, including mixed-quality datasets, it is preferable to use
high-quality datasets in any scenario. Previous research has demonstrated that offline RL algorithms
generally struggle to handle suboptimal robotics data effectively [50]. Furthermore, the additional
experiments in Appendix E show that our PU method can improve the performance of offline RL on
a range of D4RL benchmarks by enhancing the quality of the training data.

The GPT-based policy generation method DT, demonstrates strong performance in most RRC tasks,
but it falls short in the Real Lift/Mixed tasks. We have noticed that DT requires about 6ms to generate
an action at each time step. However, considering the demanding dexterity requirements of the Real
Lift task, it can only tolerate a maximum delay of 2ms. This computational delay presents a limitation
that would hinder the practical extension of DT into real-world scenarios. Another constraint is
its reliance on high-quality data; its effectiveness reduces with noisy datasets, though it performs
robustly on the expert’s locomotion tasks.

7



Table 2: Averaged normalized scores of our method and the baselines. Each result is averaged over
three training seeds, and training lasts 106 time steps. We evaluate each learned policy for 100 trajec-
tories. The score is normalized by scorenorm = (score− scoremin)/(scoremax − scoremin).

Dataset Data 10% BC 50% BC BC DT IQL CRR DWBC PUBC (Ours)
RRC-Sim-Lift/mixed 0.83 0.39 0.40 0.56 0.73 0.63 0.49 0.71 0.87
RRC-Sim-Push/mixed 0.61 0.64 0.84 0.59 0.80 0.71 0.82 0.80 0.85
RRC-Sim total 1.44 1.02 1.24 1.15 1.53 1.34 1.32 1.51 1.72
RRC-Real-Lift/mixed 0.60 0.32 0.31 0.31 0.44 0.36 0.40 0.54 0.65
RRC-Real-Push/mixed 0.44 0.67 0.85 0.58 0.82 0.79 0.79 0.81 0.83
RRC-Real total 1.04 1.00 1.15 0.89 1.26 1.15 1.20 1.36 1.49
Ant - E 0.80 - - 0.84 0.87 0.82 0.76 - -
Ant - E+E 0.78 0.70 0.68 0.73 0.84 0.80 0.68 0.71 0.79
Ant - E+W 0.53 0.82 0.80 0.53 0.73 0.79 0.41 0.80 0.79
Ant - E+N 0.42 0.62 0.54 0.47 0.52 0.74 0.73 0.76 0.79
Ant - E+E+W+N 0.48 0.70 0.53 0.31 0.67 0.67 0.29 0.69 0.78
Ant total 2.22 2.84 2.56 2.03 2.76 3.00 2.12 2.95 3.16
Humanoid - E 0.92 - - 0.87 0.91 0.78 0.23 - -
Humanoid - E+E 0.90 0.34 0.73 0.69 0.88 0.72 0.26 0.69 0.85
Humanoid - E+W 0.58 0.87 0.92 0.29 0.83 0.45 0.46 0.78 0.86
Humanoid - E+N 0.63 0.45 0.37 0.25 0.59 0.11 0.60 0.81 0.86
Humanoid - E+E+W+N 0.65 0.57 0.45 0.25 0.72 0.29 0.53 0.60 0.82
Humanoid total 2.76 2.23 2.48 1.47 3.02 1.57 1.85 2.88 3.40
Overall 7.46 7.09 7.43 5.55 8.57 7.06 6.48 8.70 9.76

DWBC demonstrates the second-best overall performance in our experiment. Nonetheless, its efficacy
is notably limited in challenging RRC Sim- and Real- Lift/mixed datasets. The filtering/weighting
component of DWBC shares similarities with classical PU learning methods. However, these
approaches have limitations when dealing with complex data distributions, as mentioned previously.

5 Discussion
In summary, our PUBC method demonstrates superior accuracy and stability compared to conven-
tional approaches in filtering the expert trajectories from the mixed-quality datasets. Furthermore, our
PUBC can effectively learn policies from mixed-quality continuous control datasets, outperforming a
variety of sophisticated state-of-the-art algorithms.

For certain applications, annotating rewards for all transitions can be a costly endeavor, especially in
complex, real-world scenarios. Therefore, an alternative approach is to leverage our method to extract
high-performing trajectories from a mixed-quality dataset by incorporating a few demonstration
samples instead of manually crafting a reward function.

Of course, our methodology has certain limitations that should be acknowledged. Firstly, it is not
applicable when the initial seed-positive dataset is unattainable. Secondly, when the data is not group
in trajectories but consists of disorganized transitions, the performance of PUBC will be harmed.
Lastly, our policy learning algorithm BC is inherently upper bounded by the performance of the
expert behavior policy. Indeed, sophisticated RL related algorithms can often learn policies that
generalize better and are able to directly learn from unknown datasets. In our future endeavors,
we strive to enhance the performance of the trained policy by integrating the principles of our PU
learning method with subsequent RL paradigms. Furthermore, we have plans to tackle more complex
scenarios, including environments with partial observability and non-Markovian dynamics.

6 Conclusion
This paper introduces a new offline policy learning method termed PUBC, an effective approach to
identifying transition behaviors generated by a specific expert policy in order to improve the quality of
the dataset used for subsequent offline policy learning. This approach allows a learning algorithm to
disregard low-skill behaviours, hence improving the performance of the learned policy. In our work,
the PU learning method allows a naive BC learning algorithm to outperform other state-of-the-art
offline RL algorithms in challenging physical problem domains.

8



Acknowledgments

This publication has emanated from research conducted with the financial support of China Scholar-
ship Council under grant number CSC202006540003 and of Science Foundation Ireland under grant
numbers 17/FRL/4832 and SFI/12/RC/2289_P2. We are grateful about the invaluable suggestions
and comments that reviewers given to help to imporve the quality of this paper. We extend our
heartfelt gratitude to Dr. Kevin McGuinness for his invaluable contributions and expertise to this
research. It is with deep sorrow that we note he did not live to see the completion of this work. His
exceptional insights and unwavering dedication will forever be etched in our memories.

References
[1] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra, and M. Riedmiller.

Playing Atari with deep reinforcement learning. arXiv preprint arXiv:1312.5602, 2013.

[2] D. Silver, T. Hubert, J. Schrittwieser, I. Antonoglou, M. Lai, A. Guez, M. Lanctot, L. Sifre,
D. Kumaran, T. Graepel, et al. Mastering chess and shogi by self-play with a general reinforce-
ment learning algorithm. arXiv preprint arXiv:1712.01815, 2017.

[3] Q. Wang, F. R. Sanchez, R. McCarthy, D. C. Bulens, K. McGuinness, N. O’Connor,
M. Wüthrich, F. Widmaier, S. Bauer, and S. J. Redmond. Dexterous robotic manipulation using
deep reinforcement learning and knowledge transfer for complex sparse reward-based tasks.
arXiv preprint arXiv:2205.09683, 2022.

[4] A. Nagabandi, K. Konolige, S. Levine, and V. Kumar. Deep dynamics models for learning
dexterous manipulation. In Conference on Robot Learning, pages 1101–1112. PMLR, 2020.

[5] D. Yarats, A. Zhang, I. Kostrikov, B. Amos, J. Pineau, and R. Fergus. Improving sample
efficiency in model-free reinforcement learning from images. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 35, pages 10674–10681, 2021.

[6] Y. Tassa, Y. Doron, A. Muldal, T. Erez, Y. Li, D. d. L. Casas, D. Budden, A. Abdolmaleki,
J. Merel, A. Lefrancq, et al. DeepMind control suite. arXiv preprint arXiv:1801.00690, 2018.

[7] R. McCarthy, F. R. Sanchez, Q. Wang, D. C. Bulens, K. McGuinness, N. O’Connor, and S. J.
Redmond. Solving the Real Robot Challenge using deep reinforcement learning. arXiv preprint
arXiv:2109.15233, 2021.

[8] A. Mandlekar, D. Xu, J. Wong, S. Nasiriany, C. Wang, R. Kulkarni, L. Fei-Fei, S. Savarese,
Y. Zhu, and R. Martín-Martín. What matters in learning from offline human demonstrations for
robot manipulation. arXiv preprint arXiv:2108.03298, 2021.

[9] P. Sermanet, C. Lynch, J. Hsu, and S. Levine. Time-contrastive networks: Self-supervised
learning from multi-view observation. In 2017 IEEE Conference on Computer Vision and
Pattern Recognition Workshops (CVPRW), pages 486–487. IEEE, 2017.

[10] S. Fujimoto, D. Meger, and D. Precup. Off-policy deep reinforcement learning without explo-
ration. In International conference on machine learning, pages 2052–2062. PMLR, 2019.

[11] J. Merel, L. Hasenclever, A. Galashov, A. Ahuja, V. Pham, G. Wayne, Y. W. Teh, and N. Heess.
Neural probabilistic motor primitives for humanoid control. arXiv preprint arXiv:1811.11711,
2018.

[12] S. Levine. Supervised Learning of Behaviors, 2022. URL http://rail.eecs.berkeley.
edu/deeprlcourse-fa21/static/slides/lec-2.pdf. (Accessed 2022, Oct 10).

[13] A. Hussein, M. M. Gaber, E. Elyan, and C. Jayne. Imitation learning: A survey of learning
methods. ACM Computing Surveys (CSUR), 50(2):1–35, 2017.

9

http://rail.eecs.berkeley.edu/deeprlcourse-fa21/static/slides/lec-2.pdf
http://rail.eecs.berkeley.edu/deeprlcourse-fa21/static/slides/lec-2.pdf


[14] S. Levine, A. Kumar, G. Tucker, and J. Fu. Offline reinforcement learning: Tutorial, review,
and perspectives on open problems. arXiv preprint arXiv:2005.01643, 2020.

[15] J. Fu, A. Kumar, O. Nachum, G. Tucker, and S. Levine. D4rl: Datasets for deep data-driven
reinforcement learning. arXiv preprint arXiv:2004.07219, 2020.

[16] C. Gulcehre, Z. Wang, A. Novikov, T. Paine, S. Gómez, K. Zolna, R. Agarwal, J. S. Merel, D. J.
Mankowitz, C. Paduraru, et al. Rl unplugged: A suite of benchmarks for offline reinforcement
learning. Advances in Neural Information Processing Systems, 33:7248–7259, 2020.

[17] S. Fujimoto, E. Conti, M. Ghavamzadeh, and J. Pineau. Benchmarking batch deep reinforcement
learning algorithms. arXiv preprint arXiv:1910.01708, 2019.

[18] P. Florence, C. Lynch, A. Zeng, O. A. Ramirez, A. Wahid, L. Downs, A. Wong, J. Lee,
I. Mordatch, and J. Tompson. Implicit behavioral cloning. In Conference on Robot Learning,
pages 158–168. PMLR, 2022.

[19] Y. LeCun, S. Chopra, R. Hadsell, M. Ranzato, and F. Huang. A tutorial on energy-based
learning. Predicting structured data, 1(0), 2006.

[20] A. Y. Ng, S. Russell, et al. Algorithms for inverse reinforcement learning. In ICML, volume 1,
page 2, 2000.

[21] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and
Y. Bengio. Generative adversarial networks. Communications of the ACM, 63(11):139–144,
2020.

[22] J. Ho and S. Ermon. Generative adversarial imitation learning. Advances in neural information
processing systems, 29, 2016.

[23] M. Uehara, C. Shi, and N. Kallus. A review of off-policy evaluation in reinforcement learning.
arXiv preprint arXiv:2212.06355, 2022.

[24] I. Kostrikov, A. Nair, and S. Levine. Offline reinforcement learning with implicit q-learning.
arXiv preprint arXiv:2110.06169, 2021.

[25] W. Zhou, S. Bajracharya, and D. Held. Plas: Latent action space for offline reinforcement
learning. In Conference on Robot Learning, pages 1719–1735. PMLR, 2021.

[26] S. Fujimoto and S. S. Gu. A minimalist approach to offline reinforcement learning. Advances
in neural information processing systems, 34:20132–20145, 2021.

[27] A. Kumar, A. Zhou, G. Tucker, and S. Levine. Conservative q-learning for offline reinforcement
learning. Advances in Neural Information Processing Systems, 33:1179–1191, 2020.

[28] G. An, S. Moon, J.-H. Kim, and H. O. Song. Uncertainty-based offline reinforcement learning
with diversified q-ensemble. Advances in neural information processing systems, 34:7436–7447,
2021.

[29] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser, and
I. Polosukhin. Attention is all you need. Advances in neural information processing systems,
30, 2017.

[30] L. Chen, K. Lu, A. Rajeswaran, K. Lee, A. Grover, M. Laskin, P. Abbeel, A. Srinivas, and
I. Mordatch. Decision transformer: Reinforcement learning via sequence modeling. Advances
in neural information processing systems, 34:15084–15097, 2021.

[31] M. Janner, Q. Li, and S. Levine. Offline reinforcement learning as one big sequence modeling
problem. Advances in neural information processing systems, 34:1273–1286, 2021.

10



[32] Z. Wang, A. Novikov, K. Zolna, J. S. Merel, J. T. Springenberg, S. E. Reed, B. Shahriari,
N. Siegel, C. Gulcehre, N. Heess, et al. Critic regularized regression. Advances in Neural
Information Processing Systems, 33:7768–7778, 2020.

[33] Q. Wang, J. Xiong, L. Han, H. Liu, T. Zhang, et al. Exponentially weighted imitation learning
for batched historical data. Advances in Neural Information Processing Systems, 31, 2018.

[34] X. B. Peng, A. Kumar, G. Zhang, and S. Levine. Advantage-weighted regression: Simple and
scalable off-policy reinforcement learning. arXiv preprint arXiv:1910.00177, 2019.

[35] X. Chen, Z. Zhou, Z. Wang, C. Wang, Y. Wu, and K. Ross. Bail: Best-action imitation learning
for batch deep reinforcement learning. Advances in Neural Information Processing Systems, 33:
18353–18363, 2020.

[36] N. Y. Siegel, J. T. Springenberg, F. Berkenkamp, A. Abdolmaleki, M. Neunert, T. Lampe,
R. Hafner, N. Heess, and M. Riedmiller. Keep doing what worked: Behavioral modelling priors
for offline reinforcement learning. arXiv preprint arXiv:2002.08396, 2020.

[37] G. Neumann and J. Peters. Fitted q-iteration by advantage weighted regression. Advances in
neural information processing systems, 21, 2008.

[38] H. Xu, X. Zhan, H. Yin, and H. Qin. Discriminator-weighted offline imitation learning from
suboptimal demonstrations. In International Conference on Machine Learning, pages 24725–
24742. PMLR, 2022.

[39] A. Kaboutari, J. Bagherzadeh, and F. Kheradmand. An evaluation of two-step techniques
for positive-unlabeled learning in text classification. Int. J. Comput. Appl. Technol. Res, 3(9):
592–594, 2014.

[40] C. Elkan and K. Noto. Learning classifiers from only positive and unlabeled data. In Proceedings
of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,
pages 213–220, 2008.

[41] F. Mordelet and J.-P. Vert. A bagging svm to learn from positive and unlabeled examples.
Pattern Recognition Letters, 37:201–209, 2014.

[42] M. Du Plessis, G. Niu, and M. Sugiyama. Convex formulation for learning from positive and
unlabeled data. In International Conference on Machine Learning, pages 1386–1394. PMLR,
2015.

[43] R. Kiryo, G. Niu, M. C. Du Plessis, and M. Sugiyama. Positive-unlabeled learning with
non-negative risk estimator. Advances in Neural Information Processing Systems, 30, 2017.

[44] J. Bekker and J. Davis. Learning from positive and unlabeled data: A survey. Machine Learning,
109:719–760, 2020.

[45] M. L. Puterman. Markov decision processes. Handbooks in operations research and manage-
ment science, 2:331–434, 1990.

[46] Q. Wang, R. McCarthy, D. C. Bulens, and S. J. Redmond. Winning solution of real robot
challenge iii. arXiv preprint arXiv:2301.13019, 2023.

[47] E. Todorov, T. Erez, and Y. Tassa. Mujoco: A physics engine for model-based control. In 2012
IEEE/RSJ international conference on intelligent robots and systems, pages 5026–5033. IEEE,
2012.

[48] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman, J. Tang, and W. Zaremba.
Openai gym. arXiv preprint arXiv:1606.01540, 2016.

11



[49] M. Wüthrich, F. Widmaier, F. Grimminger, J. Akpo, S. Joshi, V. Agrawal, B. Hammoud,
M. Khadiv, M. Bogdanovic, V. Berenz, et al. Trifinger: An open-source robot for learning
dexterity. arXiv preprint arXiv:2008.03596, 2020.

[50] N. Gürtler, S. Blaes, P. Kolev, F. Widmaier, M. Wuthrich, S. Bauer, B. Schölkopf, and G. Mar-
tius. Benchmarking offline reinforcement learning on real-robot hardware. In The Eleventh
International Conference on Learning Representations, 2023.

[51] T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine. Soft actor-critic: Off-policy maximum entropy
deep reinforcement learning with a stochastic actor. In International conference on machine
learning, pages 1861–1870. PMLR, 2018.

[52] S. Fujimoto, H. Hoof, and D. Meger. Addressing function approximation error in actor-critic
methods. In International conference on machine learning, pages 1587–1596. PMLR, 2018.

[53] A. Raffin, A. Hill, A. Gleave, A. Kanervisto, M. Ernestus, and N. Dormann. Stable-baselines3:
Reliable reinforcement learning implementations. Journal of Machine Learning Research, 22
(268):1–8, 2021. URL http://jmlr.org/papers/v22/20-1364.html.

[54] T. Seno and M. Imai. d3rlpy: An offline deep reinforcement learning library. arXiv preprint
arXiv:2111.03788, 2021.

12

http://jmlr.org/papers/v22/20-1364.html


A Environments

The environments of the tasks considered in our work are illustrated in Figure 2.

(a) TriFinger robot (b) Ant (c) Humanoid

Figure 2: (a) The physical TriFinger robot from the RRC III competition, where three identical
robotic fingers are equally spaced 120◦ apart around the circular arena; the coloured cube is the object
to be moved. (c)-(b) Illustrate the MuJoCo locomotion task environments.

B Description of how the adaptive confidence threshold is set

We use an adaptive mechanism to adjust the confidence threshold, thconf , which is used in Section 3.5
to convert the continuous classifier output probability to a discrete binary label. Figure 3 shows an
example of selecting the thconf value over the PU training iterations for the RRC III competition
Push/mixed and Lift/mixed datasets. Furthermore, we presented the filtering accuracy across
iterations for these two examples to better depict the convergence of accuracy.

We firstly apply the trained classifier to Dmix to get confidence scores (a probability, as the final layer
activation function is sigmoidal) that each trajectory was generated by an expert policy. Secondly, we
calculate the histogram of these confidence scores across all trajectories. Finally, we use a polynomial
to fit the confidence score histogram. The threshold is determined by identifying the confidence score
at which the maximum local minimum on the x-axis occurs. This point is marked with a blue dot in
the bottom row of subplots. As the iterative training process proceeds, the trajectories selected by the
PU learning changes and eventually the filter output converges. In our work, we define convergence
as the condition where the change in trajectory memberships between two consecutive iterations is
within a threshold of 2%.

Table 3: Illustration of the convergence process of filtering the RRC Lift/mixed and Push/mixed
dataset. Each iteration lasts for 20 epochs. The TP (True Positive) represents an expert-collected
trajectories that are correctly classified as expert-collected. FP (False Positive) represents a non-
expert-collected trajectories that are incorrectly classified as expert-collected. FN (False Negative)
represents expert-collected trajectories that are incorrectly classified as non-expert-collected, and TN
(True Negative) represents non-expert-collected trajectories that are correctly classified as non-expert-
collected.

Iteration TP FP FN TN

Lift/mixed

1 200 4 998 1193
2 1005 97 193 1100
3 1195 37 3 1160
4 1194 9 4 1188

Push/mixed
1 1421 2 429 1918
2 1915 0 5 1100
3 1920 0 0 1920

13



(a) Push/mixed

(b) Lift/mixed

Figure 3: A demonstration of selecting the adaptive confidence threshold, thconf , for the Push/mixed
and Lift/mixed datasets. The top row of each subplot shows the confidence score counts for all
trajectories in the larger dataset, Dmix. The bottom row displays polynomial curves fitted to these
histograms. The position of the blue dot indicates the rightmost local minimum of the polynomial,
which determines the confidence value, thconf , used for the subsequent dataset filtering iteration.

C Configurations used to collect the locomotion datasets

This section describes the acquisition process of the datasets used in Section 4. We selected two Mu-
JoCo locomotion domains, namely Ant-v3 and Humanoid-v3, which have relatively high dimensional
state and action spaces, as well as high levels of difficulty.

Initially, we trained three different agents: target expert policy (E+); additional expert policy (E−);
and weaker performing policy (W). We utilized online RL algorithms for each domain. We trained
each agent using different random seeds to ensure that the resulting agents can exhibit diverse
behaviors or habits[3]. These trained agents were then deployed to interact with their corresponding
environments. The interaction data was recorded in the form of {(st, at, rt, yt)t=1...n}, where y
represents the ground truth label for each policy, indicating whether the data was collected by the
target expert or not.

14



Table 4: Configuration details on the collection of MuJoCo datasets. We utilized the Soft Actor
Critic (SAC) [51] and Twin Delayed Deep Deterministic Policy Gradient Algorithm (TD3) [52], as
implemented in stable-baselines3 [53], using recommended hyperparameters. In the Humanoid - v3
environment, the reset_noise_scale was set to 10−2.

Subject Ant Humanoid
E+ E− W N E+ E− W N

Algorithm TD3 TD3 TD3 - SAC SAC SAC -
Train length 106 106 2× 105 - 106 106 3× 105 -
Mean return 3034 2910 920 - 5725 5330 1576 -
Data amount 5× 105 5× 105 5× 105 5× 105 5× 105 5× 105 5× 105 5× 105

Positive example amount 2× 103 - - - 2× 103 - - -

In addition to these datasets, we also included noise data (N), in which the state, action, and reward
were sampled using a uniform distribution within the range of minimum reward to maximum reward.
Further details about the online training process, the performance of the trained agents, and the size
of the collected datasets are provided in Table 4.

D Ablation study
In this section, we conduct an ablation study to examine the impact of various factors on the
performance of our PU learning method. We have structured our study into several groups of
ablations. Firstly, we aim to examine the techniques presented in Section 3.4. For each group in the
study, we remove one technique to assess its effect on the overall performance. Additionally, we
conduct an investigation into the size of the dataset of seed-positive dataset D+. In this part of the
study, we gradually increase the size of the D+ starting from 0.1% to 1% of the unlabeled dataset
Dmix.

From the results shown in Table 5, it is easy to see that adaptive thresholds play a significant role
in these relatively challenging physical robotic manipulation domains. Additionally, performing
classification at the trajectory level can boost overall accuracy. The bagging is not the primary
determinant of accuracy, but it can serve as a beneficial complement. Looking at the impact of the
size of the positive dataset on PU learning, there were several direct failures when the dataset was
extremely small. However, once the size increases to 0.4%, it is sufficient for PU learning to achieve
optimal performance.

D.1 Guidance on tuning the parameters
Based on our experience, an appropriately chosen set of hyperparameters can result in distinct dual
peaks in the output histogram within as few as three iterations, as depicted in Figure.3. Among these
peaks, the peak representing a higher probability corresponds to the expert data. Otherwise, it might
indicate a set of poorly chosen hyperparameters; in which case, the following suggestions based on
our experience may be helpful:

1. Setting an adaptive threshold is a critical technique that we highly recommend enabling, especially
in scenarios where the expert policy and supposedly non-expert policy (or policies) used to generate
the dataset exhibit similar behaviours. In adaptive thresholding, one crucial hyperparameter to
consider is the order of the polynomial used to fit the histogram. If the order is set too high, it may
lead to overfitting the histogram, causing the adaptive threshold to select thresholds at extremely
high probabilities, which could fail to effectively distinguish a sufficient amount of expert data.
On the other hand, if the order is set too low, it may miss the optimal threshold by not fitting
the shape of the histogram well enough. We have found that a 10th-order polynomial yields the
best results for our case. Empirically, when dealing with complex mixed datasets, such as our
real-life-mixed dataset, we suggest slightly increasing the order to a range between 10 and 20.
Conversely, in cases of simpler composite datasets, we recommend reducing the order to a range
between 5 and 10.

2. If you observe that the histogram generated during training consistently exhibits a unimodal peak,
this might be because you have not classified the trajectory by aggregating the state-actions within

15



Table 5: Results of the ablation study. Group 1 represents the removal of trajectory-based classifica-
tion, instead opting for individual state-action pair classification. Group 2 employs a non-adaptive
confidence threshold, using a fixed threshold set at 0.5 (considering the sigmoid interval of [0,1], the
midpoint of 0.5 is arbitrarily chosen). Group 3 involves using a single classifier model instead of an
ensemble (i.e., no bagging). Lastly, the 0.1% - 1% range refers to varying sizes of the D+, where the
Dmix size is a fixed value. Examples of failure in classification are indicated by ✗, which signifies
that the neural network’s learning process has completely collapsed, rendering it unable to learn any
meaningful information.

Datasets Ours Group 1 Group 2 Group 3 D+ size / Dmix size
0.1% 0.4% 1%

RRC-Real-Lift/mixed 99.2% ✗ ✗ 92.8% ✗ 99.2% 99.2%
RRC-Real-Push/mixed 100.0% 77.8% ✗ 100.0% 89.8% 100.0% 100.0%
Humanoid - E+E 99.7% 89.3% 99.7% 94.8% ✗ 99.7% 99.7%
Humanoid - E+W 100.0% 94.8% 100.0% 100.0% 69.7% 100.0% 100.0%
Humanoid - E+N 100.0% 98.7% 100.0% 100.0% 100.0% 100.0% 100.0%
Humanoid - E+E+W+N 99.0% 83.2% 99.0% 91.0% ✗ 99.0% 99.0%

it. Classifying single state-action pairs may not effectively capture the inherent policy behavior.
On the other hand, classification based on trajectories can take into account the correlation within
the data to create a more precise classification relationship. This approach not only improves the
model’s accuracy but also accelerates the iterative process. Therefore, we recommend enabling
this feature when applicable, such as in datasets that follow the D4RL protocol. Another potential
reason might be that the initial amount of seed data you collected/separated was insufficient. This
could prevent the neural network from effectively capturing the behavioral characteristics of the
target expert data.

3. If you notice a converging trend in the number of expert trajectories being filtered out, but also
observe substantial fluctuations (instability or lack of convergence) over subsequent iterations, you
might consider increasing the number of classifier models in the ensemble. The quantity of models
in the ensemble is a relatively straightforward hyperparameter that can be adjusted to ascertain the
optimal value. This procedure is similar to the typical strategy of adjusting the learning rate.

E Benefits of PU learning in offline RL
This section aims to demonstrate the advantages of employing PU learning in stochastic offline RL
algorithms. We utilize three medium-expert datasets available from the D4RL benchmark, specifically,
halfcheetah-medium-expert-v0, hopper-medium-expert-v0, and walker2d-medium-expert-v0. These
datasets have previously served as benchmarks in numerous studies [24, 26, 25] and have been
effectively addressed by a range of algorithms. Our objective is to show that the application of PU
learning can further enhance the performance of offline RL on these datasets.

The aforementioned datasets are all of mixed-quality, each of which was collected by two agents
exhibiting different skill levels, specifically, medium and expert. Given that our approach requires a
very small-scale seed-positive dataset, we extract the top 0.2% of trajectories based on cumulative
reward from each mixed dataset to constitute the seed-positive data subset.

Our results, as displayed in Table 6, include comparisons with various state-of-the-art offline RL
algorithms such as IQL [24], TD3+BC [26], and PLAS [25], with BC acting as the baseline. It is
evident that the implementation of PU learning enhances agent performance. Examining the learning
curves (shown in Figure 4), we can see that PU learning not only accelerates the learning process but
also enhances the stability of all the investigated offline RL algorithms.

F Descriptions of compared algorithms
F.1 PU learning
• Unbiased PU learning [42]: Traditional PU methods train classifiers by minimizing empirical risk,

wherein unlabeled examples are directly treated as negative examples. This approach, however,

16



Table 6: Averaged normalized scores [15] with PU vs without PU for three D4RL benchmark tasks.
Each result includes three random seed values and each model training session lasts for 106 time
steps. We evaluate each learned policy for 100 environmental trajectories.

PU BC PLAS IQL TD3+BC Total

Halfcheetah-medium-expert-v0 ✓ 0.93 0.92 0.93 0.94 3.72
✗ 0.56 0.74 0.69 0.93 2.92

Hopper-medium-expert-v0 ✓ 1.11 0.66 0.64 1.10 3.51
✗ 0.51 0.32 0.35 0.89 2.07

Walker2d-medium-expert-v0 ✓ 1.08 1.09 1.10 1.10 4.37
✗ 0.76 0.99 1.06 1.11 3.92

Figure 4: Training curves of Table 6; curves are averaged over three random seeds, with the shaded
areas representing the minimum/maximum values across these three seeds. Each data point refers to
the average normalised score [15] of 10 environmental episodes.

may lead to a high empirical risk for the negative class. To address this issue, Du Plessis et al.
[42] re-weighted the losses for positive and unlabeled examples. Hence the training objective of
Unbiased PU learning becomes minimizing the following, where δ is the proportion of positive
examples to unlabeled examples in the unlabeled dataset (same as our approach, we set it to 0.4%
here):

Lunbiased = δ E
(st,at)∼D+

[− log(F(st, at))] + E
(st,at)∼D−

[− log(1−F(st, at))]

−δ E
(st,at)∼D+

[− log(1−F(st, at))] ,
(3)

• Non-negative PU learning[43]: While as the complexity of the model increases, the risk (Equa-
tion 3) on the training set may approach or even become negative, while the corresponding risk on
the test set increases. This suggests that the model is overfitting. To tackle this problem, Kiryo et al.

17



[43] introduced non-negative PU learning, in which the training objective is modified as follows,
where again δ is the proportion of positive examples to unlabeled examples in the unlabeled dataset
(same as our approach, we set it to 0.4% here):

Lnon−neg = δ E
(st,at)∼D+

[− log(F(st, at))] + max(0, E
(st,at)∼D−

[− log(1−F(st, at))]

−δ E
(st,at)∼D+

[− log(1−F(st, at))]),
(4)

Compared to Unbiased PU learning and Non-negative PU learning, the PU method introduced in this
paper offers a more decent approach for generating negative examples, with improved diversity and
logical correctness. Additionally, our method employs a simpler loss function.

F.2 Policy learning algorithms
• Naive reward-based filter + BC: Reward may be used for filtering expert data for policy training,

as experts are more likely to achieve higher rewards. Our results show two variations of this
approach: 10%BC and 50%BC, which involve selecting trajectories with the top 10% and 50%
highest cumulative (over the trajectory) returns, respectively, then using the filtered subsets to train
BC.

• Critic Regularized Regression (CRR) [32]: A state-of-the-art filter/weight-based BC algorithm.
It utilizes a reward-based advantage function to weight the significance of training examples in the
dataset. In fact, the CRR method can be imagined as a soft-weighting process, while our method is
a hard-weighting process.

• Discriminator Weighted Behaviour Cloning (DWBC) [38]: This is similar to our approch.
DWBC employs a discriminator to distinguish high-quality data from mixed datasets. Additionally,
it use a small seed-positive dataset to initiate the training process. The discriminator used here
is similar to Unbiased PU learning, but they introduce the additional policy function as input.
This approach combines the training process of BC with the discriminator to create a GAN-like
architecture to improve performance. DWBC can be seen as a fusion of Unbiased PU learning and
BC, whereas our approach introduces a novel PU learning method to guide BC.

• Implicit Q-learning (IQL) [24]: IQL is an offline reinforcement learning method that solves the
OOD problem by setting implicit constraints. It has previously been used to address the problem of
learning strategies in mixed-quality data.

• Decision Transformer (DT) [30]: In DT, a causal transformer is employed to model policy
trajectories, taking as input the sequence {R0, s0, a0, R1, s1, a1, ..., RK−1, sK−1, aK−1}, where
R represents the desired return-to-go in a trajectory; we specifically set this value to the maximum
attainable reward for each domain. s denotes the state and a represents the action taken at each
time step. At each time-step t, the first 3 ∗ t tokens are fed into the transformer to predict the action
at time t, denoted as p(at|R0, s0, a0, ..., Rt−1, st−1, at−1).

G Additional classification function
Here, we introduce an alternative option for the classification function discussed in Section3.5. In
this approach, we employ logistic operations to calculate the product of F :

f := 1

[
K∑

k=1

1

[(
T∑

t=1

log(Fk(st, at))

)
≥ thconf

]
>

K

2

]
. (5)

This would introduces a trade-off between disregarding positive data by being overly strict and
incorporating non-positive data by being too lenient.

H Implementations and training
The neural network architecture for PU learning of the PUBC is illustrated in Figure 5. The PU
training for the RRC Sim- and Real-Lift/mixed datasets lasted for 4 iterations; for the Sim- and

18



Table 7: Hyperparameters of algorithms used in our experiments

Algorithm Hyperparameter

PU
learning_rate=0.001; batch_size=1024; optimizer = adam;
epochs_per_iteration=20; models_in_ensemble=3; polynomial_order=10

BC learning_rate=0.001; batch_size=100; optimizer = adam; epochs=200

CRR
actor_learning = critic_learning_rate = 0.0003; batch_size=256;
optimizer = adam; beta=1.0

IQL
actor_learning_rate=critic_learning_rate=0.0003; batch_size=256;
optimizer = adam; expectile=0.7; weight_temp=3.0

DWBC learning_rate=0.0001; batch_size=256; alpha=7.5; eta=0.5; no_pu=False

TD3+BC actor_learning = critic_learning_rate = 0.0003; batch_size=256; alpha=2.5

PLAS actor_learning_rate=0.0001; critic_learning_rate=0.001; optimizer = adam;
warmup_steps=500000; beta=0.5

Real-Push/mixed datasets, 3 iterations; and for each MoJoCo dataset, 3 iterations. In each iteration,
the subset of negative examples, D−, is set to have the same size as the subset of positive examples,
D+. Furthermore, the number of each type of negative example, (n1 − n7), remains consistent
throughout the subset of negative examples, D−.

Once our work is accepted, we plan to open-source our full implementations of PUBC on GitHub. The
implementations of the baseline PU learning algorithms from https://github.com/cimeister/
pu-learning. All the offline RL and BC algorithms used in our study are sourced from d3rlpy [54].
The implementation of DWBC [38] is based on the original authors’ work at https://github.
com/ryanxhr/DWBC.

The key hyperparameters for training each algorithm involved in our experiment are displayed in
Table 7. Our experiments ran on a PC with an Intel I9-12900F CPU (2.40 GHz × 16, 32 GB RAM)
and an NVIDIA 3090 GPU.

Figure 5: The neural network structure of classifier, illustrating the details of Figure 1(b).

19

https://github.com/cimeister/pu-learning
https://github.com/cimeister/pu-learning
https://github.com/ryanxhr/DWBC
https://github.com/ryanxhr/DWBC

	Introduction
	Our work

	Related work
	Offline policy learning
	Positive unlabeled learning

	Positive Unlabeled Behavioural Cloning
	Preliminaries
	Generating the training examples
	Classifier structure
	Additional methods for optimizing PU learning performance
	Using the trained classifier and learning the policy

	Experimental results
	Environments, tasks and datasets
	Robotic manipulation tasks
	MuJoCo locomotion tasks

	PU learning results
	Offline policy learning

	Discussion
	Conclusion
	Environments
	Description of how the adaptive confidence threshold is set
	Configurations used to collect the locomotion datasets
	Ablation study
	Guidance on tuning the parameters

	Benefits of PU learning in offline RL
	Descriptions of compared algorithms
	PU learning
	Policy learning algorithms

	Additional classification function
	Implementations and training

