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Abstract

We tackle the problem of sequential brick assembly with LEGO bricks to create combinatorial
3D structures. This problem is challenging since this brick assembly task encompasses
the characteristics of combinatorial optimization problems. In particular, the number of
assemblable structures increases exponentially as the number of bricks used increases. To
solve this problem, we propose a new method to predict the scores of the next brick position
by employing a U-shaped sparse 3D convolutional neural network. Along with the 3D
convolutional network, a one-initialized brick-sized convolution filter is used to efficiently
validate assembly constraints between bricks without training itself. By the nature of this
one-initialized convolution filter, we can readily consider several different brick types by
benefiting from modern implementation of convolution operations. To generate a novel
structure, we devise a sampling strategy to determine the next brick position considering
the satisfaction of assembly constraints. Moreover, our method is designed for either budget-
free or budget-aware scenario where a budget may confine the number of bricks and their
types. We demonstrate that our method successfully generates a variety of brick structures
and outperforms existing methods with Bayesian optimization, deep graph generative model,
and reinforcement learning.

1 Introduction

Most real-world 3D structures are constructed with smaller primitives. A broad range of studies have tackled
interesting assembly problems such as molecule generation (Ertl et al., 2017; Neil et al., 2018; You et al.,
2018), building construction (Talton et al., 2011; Martinovic & Van Gool, 2013; Ritchie et al., 2015), and
assembly generation (Sung et al., 2017; Lee et al., 2021; Jones et al., 2021b; Lee et al., 2022).1 In particular,
if unit primitives are used to construct 3D structures we desire to assemble, this task becomes an instance
of combinatorial optimization problems, in which a search space increases exponentially as a search depth
increases. Formally, given n primitives with k possible connections between two primitives, the search space
increases by O(kn). In addition to the combinatorial property, the consideration of assembly constraints
between unit primitives makes the problem more challenging.

∗Equal contribution.
1The implementation of our method is available at https://github.com/joonahn/BrECS.
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Table 1: Comparisons of the existing approaches and our method. SA, BayesOpt, GGM, RL, and SL
stand for sequential assembly, Bayesian optimization, graph generative model, reinforcement learning, and
supervised learning, respectively.

Method Unit Algorithm Target Constraint
Primitives Conditioning Satisfaction

SA w/ BayesOpt Single BayesOpt Target volume Subsampling
DGMLG Single GGM Class label Masking
Brick-by-Brick Single RL Single- or multi-view images SL

BrECS (Ours) Multiple SL No target conditioning for a generation task Convolution
Incomplete target volume for a completion task operations

The problem of sequential assembly with LEGO bricks inherits the aforementioned properties, in that a
decision-making process sequentially determines where a brick is placed. Supposing that we are given many
bricks to assemble, there are a large number of assemblable combinations. Moreover, the decision-making
process must consider complex assembly constraints, i.e., the disallowance of overlap, no isolated bricks, and
LEGO-specific connections. Compared to generic 3D generation methods (Wu et al., 2016; Gadelha et al.,
2018; Achlioptas et al., 2018), our brick assembly task can generate 3D structures in an open space and
provide brick-wise instructions to build the structures.

Several attempts have been employed to solve sequential brick assembly by utilizing Bayesian optimiza-
tion (Kim et al., 2020), deep graph generative models (Thompson et al., 2020), and reinforcement learn-
ing (Chung et al., 2021), as summarized in Table 1. Those methods end with the consideration of the
assembly with only 2×4 LEGO bricks – they might be capable of assembling other brick types without
significant modification, though. Moreover, the previous literature has several respective limitations. The
Bayesian optimization-based method (Kim et al., 2020) requires heavy computations due to its iterative
optimization process. Another method (Thompson et al., 2020) has been proposed using masks to filter out
invalid actions along with their graph generative model, but the use of masks degrades assembly performance.
To predict a valid action, the recent work (Chung et al., 2021) utilizes an auxiliary neural network that often
fails to predict legitimate moves perfectly. More importantly, these methods share a common limitation:
they inevitably become slower in validating assembly constraints as the number of bricks increases, due to
the exponentially increasing search spaces.

To tackle the limitations mentioned above, we devise a novel brick assembly method with a U-shaped neural
network utilizing a one-initialized brick-sized convolution filter to validate complex constraints efficiently.
Notably, our one-initialized convolution filter enables our method to validate the constraints in a parallelizable
and scalable manner without training itself, where several different brick types are considered. Using the
sampling procedure proposed in this work, our method can create diverse sequences of LEGO bricks to
generate high-fidelity brick structures. Furthermore, we consider two scenarios, budget-free and budget-
aware assembly pipelines where a budget limits the number of bricks and their types. Henceforth, we refer
to our method as sequential Brick assembly with Efficient Constraint Satisfaction (BrECS).

In summary, the contributions of this work are as follows:

• We propose a novel sequential brick assembly model, which validates assembly constraints with a
one-initialized brick-sized convolution filter and generates high-fidelity 3D structures;

• We utilize a U-shaped sparse 3D convolutional neural network that is trained with a voxelized dataset
of ModelNet40 (Wu et al., 2015);

• We show that our model successfully assembles different brick types in various circumstances, in-
cluding a budget-aware scenario.
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2 Related Work

3D Shape Generation. Point cloud and voxel representations are widely used in 3D shape genera-
tion. Various methods with variational auto-encoders (Gadelha et al., 2018), generative adversarial net-
works (Achlioptas et al., 2018), and normalizing flows (Yang et al., 2019) have been proposed to generate
point clouds. On the other hand, voxel-based 3D shape generation has been studied. Wu et al. (2016) pro-
pose a generative adversarial network to generate voxel occupancy. Choy et al. (2019) generate 3D shapes on
voxel grids with a fully convolutional network that includes efficient sparse convolution. Zhang et al. (2021)
propose a method to generate high-quality voxel-based shapes applying 3D convolutional networks.

Sequential Part Assembly. Similar to the sequential brick assembly problem, sequential part assembly
shares common difficulties with a combinatorial optimization problem. Chen et al. (2022) introduce a
pairwise shape assembly model but the model is limited to the pairwise assembly. Jones et al. (2021a);
Willis et al. (2022) suggest CAD parts assembly model which assembles parts by exploiting semantic CAD
shape information and extracting features from it. Ghasemipour et al. (2022) aim to assemble multi-part
objects and tackle the problem with large-scale reinforcement learning and graph-based model architecture.
Sung et al. (2017) assemble incomplete 3D parts with a part retrieval network and a position prediction
network. Hu et al. (2020) propose a model that sequentially moves a piled box into another container with
different shapes. They tackle the problem by representing previous boxes into graphs and reinforcement
learning with rewards considering physical constraints in a new container.

Sequential Brick Assembly. Unlike generic 3D shape generation methods and part assembly methods,
the sequential brick assembly approaches (Kim et al., 2020; Thompson et al., 2020; Chung et al., 2021)
consider the assembly constraints that are introduced by attachable connections between two adjacent bricks
and the disallowance of brick overlap, as shown in Figure 2. As discussed in the work (Kim et al., 2020),
these constraints encourage us to accentuate the nature of combinatorial optimization since a huge number of
assemblable combinations exist in the presence of complex constraints. However, it is not trivial to validate
such constraints. As in Table 1, to overcome these difficulties, Kim et al. (2020) sample a subset of available
next brick positions, Thompson et al. (2020) mask out invalid positions by validating all possible positions,
and Chung et al. (2021) train an auxiliary network for validating positions.

Brick Assembly in Physical World. Luo et al. (2015) show a method to find LEGO brick structures in
consideration of physical constraints. Nägele et al. (2020) propose a two-layer planning approach for multi-
robot LEGO brick assembly. Li et al. (2021) suggest a bi-level robot framework to learn to design and build
bridges with blocks under the assumption that a blueprint is not accessible. Liu et al. (2023) develop a robot
system to learn assembly and disassembly processes from human demonstration. Liu et al. (2024) provide
analysis on the physical stability of 3D structures with LEGO bricks examining force balancing equations.

3 Budget-Aware Sequential Brick Assembly

In this section we introduce the brick assembly problem tackled in this paper.

Formulation. Similar to the previous work (Chung et al., 2021), a new brick is connected to one or
(possibly) more bricks of previously assembled bricks. It implies that the position of the next brick can be
determined as a relative displacement from a certain brick directly connected to the next brick. we denote
this indicator brick as a pivot brick. After choosing the pivot brick, we finally determine a relative position to
assemble from the pivot brick. Ultimately, the goal of this work is to predict a sequence of brick placements
from scratch or from an incomplete brick structure. In particular, in an inference stage, our model does not
utilize any guidance for final brick structures.

Objectives. Our sequential brick assembly aims at assembling LEGO bricks to 3D structures that resemble
the 3D structures used in the training of our proposed model. As described above, we do not provide any
guidance for final target structures in an inference stage and construct 3D structures from scratch or from
incomplete brick structures. Note that a scenario of building 3D structures from scratch is called a generation
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Figure 1: Illustration of the efficient constraint satisfaction method with convolution filters for sequential
brick assembly. U-Net and ⊙ denote a U-shaped neural network with sparse 3D convolutional layers and
element-wise multiplication, respectively.

task and a scenario of building 3D structures from incomplete brick structures is called a completion task.
Moreover, we consider a budget-free or budget-aware scenario in sequential brick assembly.

Constraints. Inspired by the standard LEGO bricks, we take into account three constraints in the brick
assembly problem: (i) bricks should not overlap with each other (no-overlap); (ii) all bricks of the current
structure should be connected to each other so that the current structure is represented as one connected
structure (no-isolation); (iii) a new brick must be directly attached to the upper or lower position of other
bricks (vertical-assemble).

Budgets. Suppose that a brick budget is predefined, where a budget indicates the number of assemblable
bricks for each brick type. For example, if we are given four 2×4 and two 2×2 LEGO bricks as a brick
budget, we can only assemble those six bricks in total. On the other hand, if we are given an infinite budget,
our framework can choose any brick type without restriction.

4 Proposed Approach

Here, we explain four steps of our method BrECS, which are illustrated in Figure 1. To sum up, we generate
a brick structure under assembly constraints by repeating the following steps: (i) score computation of next
brick positions, (ii) exclusion of invalid positions, (iii) sampling of a pivot brick, and (iv) determination of
a relative brick position. Note that a neural network for computing the scores of next brick positions is an
only learnable component in our framework.

4.1 Efficient Constraint Satisfaction

We propose a novel method to tackle the challenge of satisfying the following constraints: no-overlap, which
is validated by using convolution operations; no-isolation and vertical-assemble, which are satisfied by
following the brick assembly formulation with pivot bricks and relative brick positions. Borrowing the concept
of constraint satisfaction (Tsang, 1993), which is the problem of finding solutions that satisfy a predefined
set of constraints, our method is designed to establish an approach to efficient constraint satisfaction for
sequential brick assembly.

Predicting Next Brick Positions. Given a voxel representation of a structure at step t, which is denoted
as Bt ∈ {0, 1}a×a×a where a is the size of 3D space, we first feed the voxel representation Bt into a U-shaped
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(a)

(b)

(c)

Figure 2: Illustration of how one-initialized brick-size convolution filters work where a red brick is a pivot
brick and a green brick has been assembled to the red brick. The grid shows the validity Vt+1 of each
brick position on the red brick for a brick type 2×2. The pixels in a red rectangle indicate attachable brick
positions on the red brick. The green pixels indicate that overlap with the green brick will occur if a new brick
is attached to the corresponding position. Therefore, (a) and (c) violate no-overlap and no-isolation,
respectively, and (b) satisfies the assembly constraints.

sparse 3D convolutional neural network, inspired by Choy et al. (2019):

B′
t = U-Net(Bt), (1)

in order to capture global and local contexts effectively and retain the same dimensionality. Due to its
pyramidal feature extraction structure, the U-Net extracts robust features understanding multi-dimensional
contexts. In particular, we validate that the U-Net effectively extracts important contexts and thus improves
overall performance compared to other neural networks; see Table 6 for a thorough study on neural archi-
tectures. Moreover, we expect that our neural network produces a likely complete or potentially next-step
3D structure, which is represented by a probability of voxel occupancy. Note that the network parameters
in this U-Net are the only learnable component in our framework BrECS. In this section, we assume that
we are given the pretrained U-Net.

After obtaining B′
t ∈ Ra×a×a, scores for next brick positions At+1 ∈ Ra×a×a are computed by sliding a

convolution filter K ∈ Rwb×db×1 across B′
t:

At+1 = B′
t ∗K, (2)

where ∗ is a convolution operation. We match the size of At+1 to the size of Bt by applying zero padding. In
particular, the size of the convolution filter is the same as the brick size we assemble wb×db where wb and db

are the width and depth of the brick, respectively, so that we can determine the scores over all the possible
positions of the next brick by aggregating the corresponding voxels. For example, if we use 2×4 bricks, the
size of the convolution filter is 2× 4× 1. Moreover, K is always initialized as a tensor filled with 1 without
updating its values in a training stage to aggregate wbdb voxels equally with a single convolution operation.
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In the case of assembling a structure with r brick types, we use 2r convolution filters of the same size with r
brick types and repeat the above process for each convolution filter. Notably, for each brick type, we employ
two convolutional filters (i.e., wb × db × 1 and db × wb × 1) to consider brick rotation.

Filtering out Invalid Brick Positions. As shown in Figure 1, to predict the validity of the next brick
positions, a one-initialized brick-sized convolution filter is applied to Bt:

Vt = Bt ∗K. (3)
The filter K is identical to the filter used in computing the score for the next brick positions. After applying
the convolution filter across Bt, all attachable brick positions are determined if the value of the position of
interest is zero, which means that no overlap exists within the brick positions. As visualized in Figure 2,
the validity of each position in terms of overlap and the number of attachable positions with respect to the
brick of interest are readily determined by applying the convolution filter of the corresponding brick type.

Using these two branches for computing At+1 and Vt, which are shown in Equations (2) and (3), we can
define validated scores for next brick positions Ct+1. Each entry of Ct+1 is equal to its score for next brick
positions filtering out invalid brick positions. Formally, we describe Ct+1 of assembling a wb × db brick on a
pivot brick:

Ct+1 = 1[Vt]ijk=0 ∀i,j,k∈[a](Vt)⊙At+1

= 1[Bt∗K]ijk=0 ∀i,j,k∈[a](Bt ∗K)⊙ (U-Net(Bt) ∗K), (4)

where 1[Vt]ijk=0 ∀i,j,k∈[a] is an indicator function, K ∈ Rwb×db×1 is the one-initialized convolution filter,
and ∗ is a convolution operation. Since the calculation of the masked score tensor Ct+1 uses convolution
operations, we efficiently compute it with modern GPU devices. Specifically, while the validity check of
(64, 64, 64) voxels without parallelization takes 4.7 seconds, the identical validity check with our method
takes only 0.0021 seconds; ours yields approximately 2,300 times faster inference on the validity check.

Selecting Pivot Bricks by Sampling. To place a single brick, we need to choose one of previously
assembled bricks, i.e., a pivot brick, to attach a new brick. The motivation of our method to select a pivot
brick is that a pivot brick with higher sum of attachable brick scores should be preferable to one with
lower sum of attachable brick scores, rather than choosing a pivot brick that is connected to a position
with the highest score of Ct+1. Since a neural network tends to memorize training samples and their
assembly sequences, choosing a position with the highest score fails to create a novel structure. Instead of a
deterministic approach based on Ct+1, we alter a method to select a pivot brick into a sampling method. To
compare the number of attachable positions, we define a pivot score Tijk of the pivot of (i, j, k) to aggregate
scores of attachable positions:

Tijk =
i+(⌈w′⌉−1)∑

l=i−(⌊w′⌋−1)

j+(⌈d′⌉−1)∑
m=j−(⌊d′⌋−1)

∑
n∈{k−1,k+1}

Clmn, (5)

where w′ = wb+wp

2 , d′ = db+dp

2 , and wp × dp is the size of a pivot brick candidate. After computing pivot
scores, we employ a sampling strategy to determine a pivot brick:

(a, b, c) ∼ p, (6)
where

[p]ijk = Tijk∑
(l,m,n)∈pivots Tlmn

. (7)

Our sequential procedure for pivot brick predictions is inspired by Monte-Carlo tree search (MCTS) (Coulom,
2006). MCTS evaluates possible actions by expanding a search tree with Monte-Carlo simulations and back-
ups. Similar to this, our method also evaluates pivot brick candidates by aggregating their attachable brick
scores, so that pivot with more attachable bricks will more likely be selected. Our method utilizes the U-
shaped sparse 3D convolutional neural network to predict possible brick positions, which is analogous to a
policy network of the MCTS method (Silver et al., 2016), which employs a neural network to predict prior
distributions for search tree expansion.
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Algorithm 1 Assembly of a single brick
Input: Voxels of structure at current time step B, a list of assembled brick positions P, and brick size

wb × db

Output: Position of a pivot brick (a, b, c), a relative position of the next brick (x, y, z)
1: Initialize a one-initialized brick-sized convolution filter K ∈ Rwb×db×1, a list of pivot scores T = ϕ, and

possible relative connections N with values satisfying the conditions of Equations (8), (9), and (10).
2: Calculate C using Equation (4).
3: for each pivot (a, b, c) ∈ P do
4: Calculate Tabc using Equation (5).
5: T ← T ∪ {Tabc}.
6: end for
7: Sample a pivot brick (a, b, c) ∼ Tabc∑

T ∈T
T

.
8: Determine a relative position of the next brick: (x, y, z) = arg max(a,b,c)∈N Ca+x,b+y,c+z.

Determining Relative Brick Positions. After choosing a pivot brick, a relative brick position to the
pivot brick is determined to complete the brick placement. Possible relative brick positions (x, y, z) for
assembling a wb × db brick on a pivot brick of size wp × dp are inherently integer-valued positions satisfying
following conditions: ⌊

wb + wp

2

⌋
− 1 ≤ x ≤

⌈
wb + wp

2

⌉
− 1, (8)⌊

db + dp

2

⌋
− 1 ≤ y ≤

⌈
db + dp

2

⌉
− 1, (9)

z ∈ {−1, 1}. (10)

By considering the conditions described in Equations (8), (9), and (10), we choose the relative brick position
(x, y, z) with the highest score of Ct+1. A brick must be attached to the pivot brick as we add scores of
every attachable brick in Equation (5). In this step, we do not employ a sampling method due to its poor
empirical results.

As a result, Algorithm 1 presents the overall procedure to assemble a single brick. By repeating Algorithm 1,
we can assemble a number of bricks where either budget-free or budget-aware scenario is assumed.

4.2 Training Procedure of the Score Function

Similar to research on language modeling (Mikolov et al., 2010; Sutskever et al., 2014) and reinforcement
learning (Sutton & Barto, 2018), our model also predicts a next brick position sequentially. To train such a
prediction model, a pair of ground-truth state transition is required as a training sample. However, final voxel
occupancy is only available as ground-truth information. It implies that we cannot access intermediate states
explicitly. To resolve this issue, we generate an assembly sequence [B̃0, B̃1, . . . , B̃T −1] from the ground-truth
voxel occupancy following the procedure described in this section. Eventually, we can utilize this generated
sequence to train a model in an autoregressive manner. In addition, generated sequences are unique and
diverse, since the stochasticity is injected from the sampling strategy previously introduced.

Since there exist numerous possible sequences to assemble bricks to a certain 3D structure, a single-step
look-ahead with a pair of contiguous states, i.e., (B̃t, B̃t+1), is not enough to model practical assembly
scenarios. In addition, the training becomes unstable even though the training pairs slightly change. To
address these issues, we train our sequential model to predict a k-step look-ahead state using pairs of states
at step t and step t + k, i.e., (B̃t, B̃t+k). From now, we call this technique sequence skipping.

We employ a voxel-wise binary cross-entropy to train our model. By restricting the voxel prediction using
a sigmoid function and minimizing the voxel-wise binary cross-entropy, our model learns to predict valid
voxel-wise probabilities of the Bernoulli distribution. To sum up, we train our sequential prediction model
as follows:
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Algorithm 2 Model training for brick assembly
Input: Dataset D, a batch size M , a sequence skipping value k
Output: Model parameters for brick assembly θ

1: Generate ground-truth brick assembly sequences B̃(i)
0:T and store in Ds using voxel shapes xi ∈ D.

2: Initialize a buffer B with (B̃(j)
0:T , xj , 0) where xj ∼ D, B̃(j)

0:T ∈ Ds.
3: repeat
4: L ← 0.
5: Sample and remove a batch {(B̃(i)

0:T , xi, ti)}M
i=1 from B.

6: for (B̃(i)
0:T , xi, ti) in a batch do

7: L ← L+ log pθ(B̃(i)
ti+k|B̃

(i)
ti

).
8: if ti + k = T then
9: Push (B̃(j)

0:T , xj , 0) into B where xj ∼ D and B̃(j)
0:T ∈ Ds.

10: else
11: B ← B ∪ {(B̃(i)

0:T , xi, ti + 1)}.
12: end if
13: end for
14: θ ← θ + η ∂L

∂θ .
15: until convergence

1. We generate a sequence of voxel occupancy tensors [B̃0, B̃1, . . . , B̃T ] by running our brick assembly
method with the ground-truth voxel occupancy in a training dataset;

2. We generate multi-step pairs from [B̃0, B̃1, . . . , B̃T ] in a sliding-window fashion, i.e.,
{(B̃t, B̃t+k)}T −k

t=0 ;

3. We train a transition function pθ(B̃t+k|B̃t) with {(B̃t, B̃t+k)}T −k
t=0 and the voxel-wise cross-entropy.

To decorrelate the time steps of training pairs in a batch and shorten training time, we use a buffer throughout
training to store training pairs similar to the work (Zhang et al., 2021). The detailed process is described in
Algorithm 2.

4.3 Inference for Sequential Brick Assembly

In an inference stage, we determine the next brick positions by following our aforementioned procedure,
given B0. We provide a different form of B0 depending on a task, i.e., completion and generation, and
sequentially generate Bt until a terminal step T . For a completion task that is designed to assemble bricks
from a incomplete brick structure, we use an intermediate state, i.e., incomplete brick structure, as B0. For
a generation task that is designed to assemble bricks from scratch, we sample an initial brick position from
a discrete uniform distribution, i.e., (x, y, z) ∼ U({−2, 2}3). Then, we assemble bricks on a zero-centered
voxel grid of size (64, 64, 64) and use the voxel occupancy of the initial brick position sampled as B0.

4.4 Budget-Aware Sequential Brick Assembly

Suppose that we are given k brick types. Shape of i-th brick type is different to the other brick type shapes,
where the volume of i-th brick type is vi. For the sake of brevity, we define that the volume of the largest
brick type is v1 and the volume of the smallest brick type is vk. More concretely, vk ≤ vk−1 ≤ · · · ≤ v1. A
budget of brick types is represented as c = [c1, . . . , ck] and ∥c∥1 = n is the total budget of bricks we can
assemble, which implies that we have ci bricks for i-th brick type for i ∈ [k]. Then, a probability of the next
brick placement at over brick types is post-processed by the following:

p̄(at | Xt−1, ct−1) = g

(
ct−1 ⊙ v

c⊤
t−1v

⊙ p(at | Xt−1)
)

, (11)

where Xt−1 is a structure that has been assembled until iteration t − 1, ct−1 is the budget of brick types
at iteration t − 1, v = [v1, . . . , vk] is the volumes of k brick types, and g is a sum-to-one function. After
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choosing the brick type of the next brick and its placement, Xt−1 and ct−1 are updated. The rationale
behind Equation (11) is that larger and abundant bricks are assembled first. This helps to first build the
skeleton of a brick structure with larger bricks and then express the fine parts of the structure. In addition,
the consideration of abundance makes abundant bricks consume first.

5 Experimental Results

We demonstrate that our model generates diverse structures with high fidelity satisfying assembly constraints
in the experiments on the completion and generation of brick structures with distinct brick types. Moreover,
more elaborate studies are conducted in order to validate BrECS.

Dataset. To generate ground-truth assembly sequences and the training pairs based on the ground-truth
sequences, we use the ModelNet40 dataset (Wu et al., 2015). In particular, the categories of airplane, table,
and chair are used for assembly experiments. 3D meshes in the dataset are converted into (64, 64, 64)-sized
voxel grids, and then they are scaled down to 1/4 of the original size to reduce the number of required bricks.

Metrics. For the completion task, we use intersection over union (IoU) to evaluate the performance:

IoU(B(1), B(2)) =
∑a

i=1
∑a

j=1
∑a

k=1[B(1)]ijk ∩ [B(2)]ijk∑a
i=1

∑a
j=1

∑a
k=1[B(1)]ijk ∪ [B(2)]ijk

, (12)

where B(1), B(2) ∈ Ra×a×a. Along with IoU, we measure the ratio of valid structures to all the structures
assembled:

% valid = mvalid

m
, (13)

where mvalid is the number of brick structures that satisfy assembly constraints and m is the number of brick
structures assembled. In addition, we utilize a class probability of a target class, which is the softmax output
of the target class, in experiments on the generation of brick structures. The probability of the target class
is measured using a pretrained classifier with the ModelNet40 dataset. We generate 100 samples and report
averaged metrics over 100 samples for all experiments.

Baseline Methods. We compare the assembly performance of our method against a sequential assembly
method with Bayesian optimization (Kim et al., 2020), denoted as BayesOpt, Brick-by-Brick (Chung et al.,
2021), denoted as BBB, and the deep generative model of LEGO graphs (Thompson et al., 2020), denoted
as DGMLG, in Tables 2 and 3. BayesOpt optimizes brick positions to maximize IoU between assembled
shapes and target shapes. For the method by Kim et al. (2020), we provide exact target structures which
belong to a particular category. BBB learns to assemble bricks given multi-view images of target structures.
Following its formulation, we also provide three images (top, left, and front) of target structures in a test
dataset. DGMLG generates a structure by utilizing the graph representation of brick structures and a deep
graph generative model. Note that our approach does not provide any guidance (image or target shape) to
produce a new structure. It is noteworthy that such different formulation is inevitable due to their respective
assumptions. Importantly, we would claim that our method requires weaker guidance than other methods.

5.1 Completion of Brick Structures

We test our method on a completion task for sequential brick assembly where unseen partial structures are
given. To establish the completion task for brick assembly problems, we first assemble LEGO bricks using
a brute-force approach to filling voxel occupancy in a test dataset with LEGO bricks. Then, we remove a
fraction of bricks assembled without losing connectivity between bricks and provide it as an initial state B0.
Each model is trained with a training dataset and then complete brick structures from the initial states. We
compare the completion performance by measuring IoU between ground-truth voxel occupancy and complete
brick structure. In addition, we report valid assembly ratio and inference time.

As shown in Table 2, our method outperforms the other three baseline methods in terms of IoU. The results
show that our method creates high-fidelity brick structures compared to other methods, despite exhaustive
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Table 2: Quantitative results of the completion of brick structures. An asterisk after a method name denotes
that partial or full ground-truth information is given to the corresponding model.

Method IoU (↑) % valid (↑) Inference time (sec., ↓)

airplane table chair average airplane table chair average airplane table chair average

BayesOpt* 0.145 0.206 0.233 0.194 100.0 100.0 100.0 100.0 1.20e6 1.11e6 1.05e6 1.12e6
Brick-by-Brick* 0.455 0.440 0.434 0.443 12.0 7.0 16.0 11.7 305.6 1502.4 2785.2 1531.1
DGMLG 0.315 0.269 0.271 0.285 0.0 1.0 0.0 0.3 237.3 340.0 473.0 350.4
BrECS (2×4) 0.571 0.586 0.534 0.564 100.0 100.0 100.0 100.0 36.3 143.9 151.0 110.4
BrECS (2×4 + 2×2) 0.599 0.594 0.541 0.578 100.0 100.0 100.0 100.0 73.8 224.1 279.0 192.3

Table 3: Quantitative results of the generation of brick structures with distinct brick types. An asterisk
denotes a model with partial or full ground-truth information.

Method Class probablity of target class (↑) % valid (↑)

airplane table chair average airplane table chair average

BayesOpt* 0.039 0.043 0.069 0.050 100.0 100.0 100.0 100.0
Brick-by-Brick* 0.430 0.042 0.032 0.168 6.0 3.0 2.0 3.7
DGMLG 0.228 0.023 0.027 0.093 0.0 0.0 0.0 0.0
BrECS (2×4) 0.415 0.250 0.404 0.356 100.0 100.0 100.0 100.0
BrECS (2×4 + 2×2) 0.447 0.229 0.419 0.365 100.0 100.0 100.0 100.0

constraint satisfaction. Moreover, our method performs the best in validity ratio alongside BayesOpt, but
ours is also the best in inference time. We additionally test our model with distinct brick types by appending
2×2 bricks after assembling 2×4 brick type first. The performance of our method is further improved by
using two brick types since different brick types can fill brick positions more densely and express the fine
aspect of structures in consequence.

5.2 Generation of Brick Structures

As our method is a generative model, our brick assembly model can generate a brick structure that belongs
to a particular category. To compare the quality of generated structures semantically, we train a classifier
over voxel grids with a small number of 3D convolution layers using the ModelNet40 dataset; the detailed
architecture of the classifier is presented in Section F. Given a pretrained classifier over voxel grids, we
measure the class probability of generated brick structures for a target class. To feed the voxel grid of
generated structure into the classifier, we match the voxel grid size of generated structure with the grid size
of the training dataset for the classifier.

Quantitative results are presented in Tables 3 and 4. Our method achieves the best scores in terms of class
probabilities and coverage. The results indicate that our method generates diverse and high-quality brick
structures compared to the other methods. We also emphasize that the semantic generation quality can
be improved using additional 2×2 brick types. Brick structures with distinct brick types are generated by
assembling 2×4 bricks first and then 2×2 LEGO bricks. This performance gain is led by the additional
improvement on structure refinement that cannot be filled with a single brick type; see Figures 3 and 4.

5.3 Budget-Aware Generation

We further conduct experiments on budget-aware scenarios. In the budget-aware experiments, we measure
generation performance on various scenarios and analyze how our framework helps to generate 3D structures
closer to a target shape. To measure generation quality, we employ the target class probabilities predicted
by the pretrained voxel classifier following the evaluation procedure for the generation task.
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Table 4: Results on the diversity of generated samples from our method and baselines on 3 different ob-
ject classes. We generate 100 objects and then measure diversity using the coverage metric similar to the
work (Zhang et al., 2021)

Metric Class BayesOpt Brick-By-Brick DGMLG BrECS

Coverage
Airplane 0.11 0.33 0.24 0.39
Table 0.21 0.11 0.08 0.39
Chair 0.34 0.26 0.22 0.44

Ours

DGMLG

BBB

BO

chairtable

Figure 3: Qualitative results of structure generation. Best viewed in color.

We examine four different scenarios on brick budgets: even, shortage, many_big and many_small. To fairly
compare them, the same numbers of voxels are provided across the scenarios excluding the shortage case;
if four 2×4 bricks are given for one scenario, we provide eight 2×2 bricks for another scenario – the numbers
of voxels are all 32. We assume that we are given three brick types, i.e., 2×2, 2×4, and 2×8. For the even
case, we evenly distribute the number of voxels for each brick type; the total number of voxels is 400. For
the shortage case, we reduce the total number of voxels and evenly distribute the number of voxels for each
brick type so that it can fill up to 240 voxels. For the many_big case, we allot twice as many voxels to the
largest brick type, compared to the other brick types. On the contrary, the number of voxels for the smallest
brick type is twice as many as the other brick types in many_small.

As shown in Table 5, even, shortage, and many_big outperform 2×4 only and many_small. It is because
the use of diverse brick types can increase the number of possible connections and helps express the fine parts
of the structures. Notably, many_small fails to create structures since the number of attachable positions
for 2×2 bricks is less than the other brick types.
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chair table airplane

Figure 4: Qualitative results of BrECS with 2×2, 2×4, and 2×8 brick types for structure generation. Best
viewed in color.

Table 5: Quantitative result of budget-aware brick assembly. A budget is represented as (# 2×2 bricks, #
2×4 bricks, # 2×8 bricks).

Scenario # bricks Max # voxels Class probability (↑)

2×4 only (0, 150, 0) 1200 0.195
even (100, 50, 25) 1200 0.329
shortage (60, 30, 15) 720 0.283
many_big (50, 25, 50) 1200 0.317
many_small (200, 25, 12) 1200 0.123

5.4 Analysis on Our Proposed Model

We analyze the components included in BrECS by verifying each of them in completion or generation tasks,
as presented in Tables 6, 7, and 8.

Firstly, we compare different model architectures for a score prediction model. Specifically, we show the
comparisons between U-Net and fully convolutional networks. For fair comparisons, we use the same number
of convolutional filters. We present the results of generation and completion in Table 6. We find that the
U-Net performs better than the fully convolutional network in both generation and completion. We presume
that the U-Net is capable of extracting features more robustly because of the pyramidal structure of U-Net.

Secondly, we carry out a study on the impact of stochasticity in the selection process for brick positions by
comparing them in terms of completion and generation performance. As presented in Table 7, stochasticity
improves generation performance as expected. Interestingly, completion quality is also improved by stochas-
ticity. In the completion task, we remove half of the bricks, and the model completes partially-assembled
results, which lose a large amount of their information. Stochasticity may help infer its original shape by
making multiple candidates. Wan et al. (2021) also report that stochasticity improves the FID scores of
image completion tasks if they are masked out a part of the original image.

Moreover, we compare our original model to models without validity check or sequential skipping in the
completion task. As reported in Table 8, each component in our model is effective for improving the quality
of brick assembly. Similar to the previous completion experiments, we complete brick structures from the
intermediate states of the unseen structures in a test dataset. According to the results, the validity check
using convolution filters plays a critical role in constraint satisfaction. Moreover, the performance of our
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Table 6: Results of the study on model architectures. The U-Net architecture consistently outperforms the
fully convolutional network with the same number of convolutional filters in both completion and generation
scenarios.

Methods IoU (↑) Class probability of target class (↑)

airplane table chair average airplane table chair average

BrECS with U-Net 0.571 0.586 0.534 0.564 0.415 0.250 0.404 0.356
BrECS with Fully convolutional network 0.510 0.399 0.450 0.453 0.208 0.075 0.186 0.156

Table 7: Performance comparisons of BrECS with or without stochasticity. Stochasticity improves perfor-
mance in both completion and generation tasks.

Methods IoU (↑) Class probability of target class (↑)

airplane table chair average airplane table chair average

BrECS with stochasticity 0.571 0.586 0.534 0.564 0.415 0.250 0.404 0.356
BrECS without stochasticity 0.515 0.533 0.509 0.519 0.238 0.104 0.217 0.186

Table 8: Results of the study on two components, i.e., validity check and sequence skipping, where we
measure completion performance for the chair category. Ours without ablation performs better than ablated
variants.

IoU % valid # bricks Inference time (sec.)

Default setup 0.534 100.0 96.7 151.0
w/o validity check 0.441 0.0 141.6 335.8
w/o sequence skipping 0.437 100.0 59.3 6.0

model degrades significantly without sequence skipping as the number of bricks assembled decreases. It
implies that the sequence skipping encourages BrECS to predict diverse brick positions.

6 Conclusion

We have proposed a brick assembly method to efficiently validate complex assembly constraints and effectively
generate high-fidelity brick structures. To sequentially assemble LEGO bricks into 3D structures, our model
checks the validity of brick positions using one-initialized brick-sized convolution filters and calculates brick
scores utilizing the U-Net architecture. Finally, we showed that our method performs better than several
existing methods, tested our method in both budget-free and budget-aware scenarios, and analyzed the
components involved in our method through diverse empirical studies.

Broader Impact Statement

From the perspective that our model tackles an instance of combinatorial optimization problems, which is
an attractive problem in computer science, our work does not have any negative broader impact. However,
our approach might be used to generate unethical products, because ours can create novel structures in a
combinatorial manner. Thus, this negative ability should be carefully monitored and managed.
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A Overall Procedure of Our Method

Brick Score
Calculation

Budget-Aware 
Score Adjustment

Brick Position
Determination

Figure 5: Overall procedure of our method.

Figure 5 presents the overall procedure of our method BrECS. Our method starts from a brick score calcu-
lation step with a current brick structure. Then, we adjust brick scores to assemble within a given budget.
Finally, we determine a brick position using brick scores from the previous steps. These steps are repeated
for assembling a fixed number of bricks into a brick structure.

B Details of Implementation

We present the implementation details of baseline methods and our proposed method.

B.1 Bayesian Optimization

We employ Bayesian optimization to tackle a sequential brick assembly problem. We follow the setup
proposed by Kim et al. (2020). The number of bricks is limited to 160 bricks at most. Every brick position
is optimized by maximizing IoU between current and ground-truth structures. Note that we have to provide
ground-truth voxel information for this strategy.

B.2 Brick-by-Brick

We use Brick-by-Brick as a baseline method and compare it to our method in terms of the performance
of brick assembly. We follow the model architecture and training setup of the model described in the
work (Chung et al., 2021). Also, we would like to emphasize that partial ground-truth voxel information
have to be provided for this strategy, as the method requires three images of ground-truth shapes to create
target shapes. The number of bricks is limited to 75 bricks at most, which is the same as the original setup,
due to the excessively increasing memory requirements of the model. In an inference stage, a generation
sequence is halted when the newly placed brick violates the constraints, following the environment reset
condition of the method.

B.3 Deep Generative Model of LEGO Graphs

We solve the problem of brick assembly generation using the deep generative model of LEGO Graphs and
compare it against ours. We follow the model architecture and training setup described in the work (Thomp-
son et al., 2020). To train the graph generation model, we need the graph representations of target shapes.
We therefore create target shapes with ground-truth voxel shapes. Then we convert brick structures into
graphs by representing bricks as nodes and direct connections between bricks as edges, following the previous
work (Thompson et al., 2020). We train this model for 200 epochs.

B.4 BrECS

To efficiently train a model for 3D voxel generation, we utilize Minkowski Engine (Choy et al., 2019) and its 3D
sparse convolution operation. We train our model with a fixed learning rate of 5e-4, Adam optimizer (Kingma
& Ba, 2015), a batch size of 32, sequence skipping with a step size k = 8, a buffer size of 1024, and the
maximum number of bricks of 150. The input size of our model is (64, 64, 64), and the output size is also
(64, 64, 64). We train the model until reaching 100k steps.
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C Training

We train our model on a server with four NVIDIA GeForce RTX 2080 Ti GPUs.

D Details of Hyperparameters

We train our model using the Adam optimizer with a learning rate of 0.0005 and a weight decay of 0.0. We
set a batch size to 32, an internal buffer size to 1024, the number of steps to skip to 8, and a voxel size to
64. The numbers of convolution kernels in the score prediction model are 7, 5, 5, 3, 3, 3, 3, 3, 3, and 3 from
top to bottom. The number of output channels for the score prediction model is 1.

E Detailed Architecture of U-Net
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Figure 6: Model architecture of U-Net.

We design our score prediction network inspired by Choy et al. (2019). Detailed model architecture is
illustrated in Figure 6.

F Detailed Architecture of Voxel Classifier

Sp
ar

se
C

on
v 

3x
3x

3,
 4

8

Sp
ar

se
C

on
v 

3x
3x

3,
 6

4

Sp
ar

se
C

on
v 

3x
3x

3,
 9

6

Sp
ar

se
C

on
v 

3x
3x

3,
 1

28

Sp
ar

se
C

on
v 

3x
3x

3,
 2

56

Sp
ar

se
C

on
v 

3x
3x

3,
 5

12

Sp
ar

se
C

on
v 

3x
3x

3,
 1

02
4

M
ax

Po
ol

M
ax

Po
ol

M
ax

Po
ol

M
ax

Po
ol

M
ax

Po
ol

Av
gP

oo
l

C
on

ca
t

FC
, 5

12

FC
, N

so
ftm

ax

Figure 7: Model architecture of voxel classifier.
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We train a shallow voxel classification network to compare several models in terms of generation quality
semantically. We add a softmax layer at the end of the network. The detailed network structure is described
in Figure 7.

G Limitations

Our model can process any rectangular bricks with a small amount of modification. However, it is difficult
to deal with more diverse brick types such as a brick with a slope and circular brick. Assembling more
general brick types and even free-form brick types is left for future work; since non-rectangular materials are
common in real-world scenarios, it would make our work more effective. In addition, our model does not
consider the inefficiency that occurs when the next brick is attached to multiple bricks previously assembled.
More precisely, while different pivot bricks and the corresponding relative positions are selected, the same
structure can be produced. In future work, it will be considered to improve assembly efficiency by avoiding
such a possibility.
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