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ABSTRACT

As concerns grow over the issue of large language models (LLMs) inadvertently
internalizing sensitive or erroneous information, unlearning—the selective re-
moval of undesired knowledge—has been drawing an increasing amount of at-
tention. Existing approaches to unlearning fail to account for scenarios requiring
immediate processing of knowledge removal requests, leaving services that rely
on LLMs vulnerable to prolonged leakage of sensitive information while the pro-
cess of unlearning is underway. Moreover, when such requests occur not just once,
but continuously over the period of deployment, current methods cause LLMs to
suffer increasingly degraded utility performance with the processing of each re-
quest. To address these issues, we propose Continual Real-time Unlearning with
Ensured Preservation of LLM Knowledge (CaRE). Prior to LLM deployment,
we train an unlearning sentence embedder with a synthetically generated dataset
designed to enable the formation of sharp decision boundaries for determining
whether a given input query corresponds to any forget requests in the database.
At inference, an embedding is generated for the input query and compared with
the embedding of each forget request using a distance metric and the maximum
score is compared to a threshold which is used to decide whether to answer the
query or to refuse. Since our method does not modify any weights of the language
model, it avoids catastrophic forgetting and is able to achieve near perfect knowl-
edge preservation after an arbitrary number of updates. Our experiments on four
benchmarks demonstrate that CaRE achieves a superior balance of forgetting and
knowledge preservation over all existing methods in the continual setting while
also being the only method capable of processing forget requests in real-time.

1 INTRODUCTION

With the rapid advancement of Large Language Models (LLMs), their applications have been swiftly
expanding across society and into various aspects of daily life. However, many unforeseen chal-
lenges regarding their reliability are also coming to light (Ji et al., 2023; Chang et al., 2024; Gallegos
et al., 2024; Zhao et al., 2024). One of these issues is the need for a way to reliably erase targeted
pieces of information from an LLM in a localized manner. During the pre-training or finetuning of
LLMs on large-scale datasets, they are at risk of incorporating and disseminating sensitive informa-
tion (Carlini et al., 2021), including copyrighted or privacy-related content (Das et al., 2025), as well
as incorrect knowledge (De Angelis et al., 2023). Not only does this raise significant ethical issues,
but it also entails legal risk for developers of LLMs as ‘the Right to be Forgotten’ is mandated by
regulations such as the General Data Protection Regulation (GDPR) (Mantelero, 2013) in the EU
and the California Consumer Privacy Act (CCPA) (de la Torre, 2018) in the US.

As a countermeasure, LLM unlearning (Jang et al., 2022; Liu et al., 2025) has been introduced with
the aim of efficiently removing inappropriate information while preserving the existing knowledge
and capabilities of the model—without requiring full retraining. Most approaches to LLM unlearn-
ing (Zhang et al., 2024; Jia et al., 2024) apply a training algorithm to the LLM, utilizing a forget
set—the data to be removed—and a retain set—the data used to preserve the model’s utility. The
training objective is typically to either maximize the loss on the original input–output pairs of the
forget set or minimize the loss on the same inputs paired with refusal responses, while also mini-
mizing the loss on the retain set to preserve the model’s knowledge with respect to items that are
not the subject of any forget requests.
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However, existing approaches remain inadequate for deployment in real world scenarios for the fol-
lowing reasons. First, prior methods have mainly been designed and evaluated under the assumption
of a single, unchanging set of forget requests, and their performance is unlikely to hold up under
circumstances that require the sequential processing of a continual stream of new requests. In par-
ticular, most existing methods operate by modifying the weights of the target LLM, which impairs
its general ability and knowledge due to the phenomenon of catastrophic forgetting (Luo et al.,
2023), and this problem is only compounded by the accumulating forget requests in the continual
setting. Furthermore, while some prior studies have explored the continual setting, they still suffer
from catastrophic forgetting on non-target data, and exhibit poor generalization with respect to para-
phrased variants of questions in the forget set. This indicates that with existing continual unlearning
methods, LLMs not only experience utility degradation, but also fail to fully eliminate the informa-
tion specified in the forget requests. Finally, the nature of many such requests necessitates immediate
action to prevent further harm—as in the case of sensitive or dangerous information—while most
existing approaches rely on expensive and time-consuming optimization procedures applied to the
target LLM. In addition to the heavy cost in time and compute incurred by the training process it-
self, optimization-based methods typically entail some degree of hyper-parameter search (Bergstra
& Bengio, 2012) to find an acceptable balance between effectiveness of forgetting and preservation
of knowledge. In cases where a retain set is required, securing a sufficient quantity of high-quality
data fit for the task can cause even further delay (Gao et al., 2025).

To tackle these challenges, we introduce Continual Real-time Unlearning with Ensured Preserva-
tion of LLM Knowledge (CaRE). Prior to LLM deployment, CaRE trains an unlearning sentence
embedder on a synthetically generated dataset with hard negatives designed to enable fine-grained
classification between user queries related to the forget set, and those that are unrelated. After the
LLM is deployed, CaRE continuously adds the embeddings of any received forget requests to its
embedding database in real-time and compares them with the embedding of the current user query.
Then based on this comparison, we decide whether the LLM should provide a response to the user
query or refuse. Importantly, since the unlearning embedder does not require any additional training
post-deployment—and in particular, does not need to use either the forget set or the retain set for
training, the entire process achieves significantly faster unlearning compared to prior approaches.
Moreover, because the weights of the LLM remain unmodified, CaRE allows for near perfect utility
preservation. As a result, not only does our method substantially outperform all other unlearning
methods in the continual setting (which is the setting most relevant to real world applications), it is
the first method we are aware of that is capable of processing ongoing forget requests in real-time
with minimal degradation of model performance as requests accumulate over time.

In summary, the contributions of our work are as follows:

• We introduce CaRE, an unlearning framework that entails virtually no overhead for processing
new forget requests and thus constitutes the first unlearning method capable of handling continual,
sequential forget requests in real-time.

• Through experiments across multiple benchmark datasets, we demonstrate that by leaving the
weights of the LLM unmodified, CaRE is able to largely circumvent the catastrophic forgetting
problem faced by existing methods and achieve near perfect preservation of LLM knowledge,
even after processing a long succession of continual forget requests.

• We demonstrate superiority over prior state-of-the-art (SOTA) unlearning methods in additional
aspects such as the ability of our method to generalize to any unlearning task after training on
a single dataset (whereas existing methods typically require retraining on every new forget and
retain set), and robustness to paraphrased variants of sentences in the forget set.

2 RELATED WORK

Conventional Unlearning. Methods that only use the forget set for training are called Gradient
Ascent (GA) (Jang et al., 2022). These methods train the target LLM to minimize a loss on the
forget set defined as the positive log likelihood of the text in the forget set, thereby minimizing the
likelihood of generating the information contained in the forget set. Other methods add to this loss by
including a term for the negative log likelihood of the text in the retain set, which acts as a regularizer
forcing the LLM to not only forget the information in the forget set but to also explicitly remember
the information in the retain set. These methods are known as Gradient Difference (GradDiff) (Liu
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et al., 2022). A third approach, called Preference Optimization (PO) (Maini et al., 2024), uses a loss
that encompasses terms for both the forget set and the retain set, but instead of using the positive
log likelihood on the forget set, it uses the negative log likelihood on alternate refusal responses to
the questions in the forget set. Negative Preference Optimization (NPO) (Zhang et al., 2024) uses
the loss from Direct Preference Optimization (DPO) (Rafailov et al., 2023) but with only negative
examples (instead of pairs of positive and negative examples). More recent work includes SOUL (Jia
et al., 2024), which is not of itself a distinct unlearning method, but rather an improvement that adds
second-order optimization to existing methods. These methods tend to have weak performance on
knowledge preservation metrics as modifying weights inevitably results in catastrophic forgetting.

Weight Preserving Unlearning. Existing approaches that avoid modifying LLM weights include
In-Context Unlearning (ICUL) (Pawelczyk et al., 2023) which adds data points from the forget
set with perturbed labels as in-context examples to the LLM prompt, and guardrail methods (Thaker
et al., 2024) that add a filtering step by querying an auxiliary LLM to detect whether the output of the
target LLM is related to any data in the forget set. These methods generally have low performance
except for very large foundation models and they are not scalable as the increasing size of the forget
set will eventually cause issues due to context length limitations (Liu et al., 2023). Perhaps the
method that bears the greatest resemblance to our own is GUARD (Deng et al., 2025). This method
also trains a model to classify user queries as being either related or unrelated to the forget set.
However, the classifier they use is specific to the forget set it was trained on and thus needs to be
retrained for every new set of forget requests, which precludes the possibility of real-time unlearning
and makes it less suitable for the continual setting.

Continual Unlearning. Two methods that are particularly relevant to the present work are O3 (Gao
et al., 2025) and UniErase (Yu et al., 2025), both of which were designed specifically to address
unlearning in the continual setting. The former works by training an orthogonal low-rank adapter
(LoRA) (Hu et al., 2021) to unlearn the information in the forget set, and then trains an out-of-
distribution (OOD) detector to determine how much weight to give to the adapter during inference
based on how close the input query is to the data in the forget set. The latter method adds an
unlearning token “<UNL>” to the tokenizer vocabulary of the LLM and uses prompt tuning (Lester
et al., 2021) to train the model to output refusal responses whenever an input query is followed by
“<UNL>”. It then uses model editing methods (Meng et al., 2022) to modify the weights of the LLM
such that when questions from the forget set are input to the language model, it generates “<UNL>”
as the first token. As these methods both modify the weights of the target LLM (or its adapter), they
are still subject to the problem of catastrophic forgetting.

3 METHOD FOR REAL-TIME CONTINUAL UNLEARNING

To guarantee not only the preservation of LLMs’ existing capabilities, but also to enable effec-
tive real-time processing of successive forget requests in a continual unlearning setting, we pro-
pose CaRE (Continual Real-time Unlearning with Ensured Preservation of LLM Knowledge). Our
method begins by training an unlearning sentence embedder U that learns to generate embedding
vectors for user queries q and forget requests f whose distance can be used to form a decision bound-
ary for whether to answer the query or to refuse (Sec. 3.2). After the deployment of the LLM, we
perform real-time unlearning by asynchronously updating the forget set (via generating embeddings
for new forget requests U(f) as they are received and adding them to our embedding database) and
handling user queries to the LLM through our proposed inference pipeline in conjunction with the
trained U (Sec. 3.3). The overall framework of CaRE is illustrated in Figure 1.

3.1 PROBLEM FORMULATION

To formalize our task, we begin by denoting D as the entirety of the data used to train the large
language model G that serves as the starting point for unlearning. D can be partitioned into two
splits, the forget split Df and the retain split Dr, where the former represents all the data that needs
to be forgotten and Dr = D\Df represents the rest of the data, which needs to be preserved by the
language model. The gold standard of what we are trying to achieve with unlearning is a model G∗
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Figure 1: An overview of the CaRE framework. CaRE consists of a training phase carried out
prior to deployment (upper part) and a three-step inference process after deployment (lower part).
In the training phase, the embedder U is trained on three types of synthetic data generated from a
seed dataset (training does not require any data from the forget set or retain set). For inference,
real-time continual unlearning is enabled through three steps: (i) embed q, embed-and-store f , (ii)
retrieval and thresholding, and (iii) decision on whether the LLM responds or refuses. Since the
LLM’s weights remain unchanged, we are able to maintain a high level of utility preservation.

that has been trained in the same manner as G, but on Dr only. Such a model would not contain any
knowledge of the data in Df since it was never trained on Df and it could be expected to contain
roughly the same amount of knowledge about Dr as G, since it is assumed to have undergone the
same training process on those data points.

In most real world applications, G∗ is just a theoretical ideal that cannot be obtained in practice since
modern LLMs are too large and costly to retrain from scratch. Hence, this objective is approximated
by performance metrics on Df that gauge how effectively the data in Df has been forgotten and
performance metrics on Dr that measure how well the rest of the data has been preserved. Most
unlearning techniques involve modifying the weights of G to obtain an approximation Ĝ ≈ G∗,
which subjects the language model to heavy drops in performance on Dr as the weight updates
give rise to catastrophic forgetting (Luo et al., 2023), a problem that is worsened in the continual
setting described below. Our method on the other hand, does not modify G at all, thus preserving
its existing knowledge in tact and leaving the potential for achieving the same performance on Dr

as G an open possibility.

Continual setting. To closer align our task with scenarios likely to be encountered in the real world,
we additionally extend the unlearning task to the continual setting where the forget requests arrive
successively and need to be processed cumulatively in sequence. Hence, we start with an initial
partition Df0 , Dr0 = D\Df0 to which we apply our unlearning techniques and evaluate. Then
the forget set is expanded to include new requests resulting in a new partition Df1 , Dr1 = D\Df1
such that Df0 ⊂ Df1 and we perform further unlearning on the same model to reflect the additional
requests and evaluate once more. The goal is to maintain high performance on the forget and retain
objectives over each stage until the final set of forget requests and final partition DfN , DrN =
D\DfN . If finetuning is applied to G post-deployment to add new information, D itself may also
expand, but for simplicity we assume that D is fixed.

Most existing unlearning methods use the entire forget split for training, hence the forget set used
for training is simply Df . Methods that also make use of the retain split for training cannot use the
entire split since it is too vast, so they typically use a small subset consisting of counterexamples
to the forget set which is termed the retain set Dretain ⊂ Dr. For evaluation, again typically
the entire forget split Df is used to test forgetting effectiveness, whereas to test preservation of
knowledge, various subsets of Dr are used, including the retain set as well as utility datasets that are
completely unrelated to the forget set to test general knowledge capacity, such as “World Facts” in
the TOFU benchmark (Maini et al., 2024) and WinoGrande (Sakaguchi et al., 2019) in the RETURN
benchmark (Liu et al., 2024).
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3.2 PRE-DEPLOYMENT TRAINING

We now describe the first step of the CaRE framework, which involves training the unlearning
sentence embedder U . Before deployment of the large language model G, it is unknown what
removal requests f may arise, or what queries q may be issued to G. Therefore, U must learn a
representation that effectively distinguishes and generalizes over any possible future q and f , taking
this uncertainty into account. It must also be robust to variations of the forget set, e.g., paraphrased
sentences that convey the same information as those in the forget set should still trigger refusal to
respond. To meet the above requirements, we build training data of three types through the following
process.

First, we collect the questions from a seed QA dataset Q = {qs1, qs2, . . . , qsn}, e.g., Natural Ques-
tions (Kwiatkowski et al., 2019), where each qsi represents the question from the question-answer
pair (qsi , a

s
i ). For each question qs, we apply transformations as illustrated in Figure 1 to generate

two variants of the question, Gs(τ1(q
s)) = (qp, qc), where τ1(·) is an input prompt template for a

surrogate LLM Gs. Here qp represents a paraphrased variant of qs and qc represents a contrastive
variant. qp is thus a rephrasing of qs that should elicit the same response from the target LLM G.
Coupled with qs, (qs, qp) constitutes a positive pair with label yp = 1, which we term type-1 data.
In contrast, qc is a question designed to exhibit high lexical or syntactic overlap with qs but differ in
semantic meaning. Together with qs, the pair (qs, qc) serves as a hard-negative example with label
yc = 0, which we term type-2 data. Following the same procedure, we obtain the contrastive sample
of qp via τ2(·), denoted as q′c = Gs(τ2(q

p)), which paired with qp as (qp, q′c) forms an instance of
type-3 data labeled with y′c = 0, thereby functioning as an additional hard-negative sample along
with the type-2 data. We apply the three types of data augmentation to every sample in Q, and con-
struct the dataset T ∗ = {[(qsi , q

p
i ), y

p
i ], [(q

s
i , q

c
i ), y

c
i ], [(q

p
i , q

′c
i ), y

′c
i ]}ni=1 for training the embedder U .

We use T ∗ to finetune a pre-trained sentence embedding model (Reimers & Gurevych, 2019) using
the following contrastive loss (Hadsell et al., 2006):

L(T ) = 1

2|T |
∑

(q,q′,y)∈T

[
y · dU (q, q′)2 + (1− y) ·max

(
0,m− dU (q, q

′)
)2]

, (1)

where dU denotes a distance metric in the embedding space of U(·), which is the cosine distance in
our case defined as dU (q, q′) = 1− U(q)·U(q′)

∥U(q)∥ ∥U(q′)∥ . T ⊂ T ∗ is a batch of samples from the training
dataset and m is an appropriately chosen margin. The loss serves to decrease the distance between
positive examples and increase the distance between negative examples up to the margin m. The
hard-negative samples in our dataset are designed to represent difficult edge cases, thereby enabling
the embedder to form more fine-grained and precise decision boundaries in the embedding space.
It should be noted that all of the above training is conducted without requiring either the forget set
or retain set, and that it is carried out prior to the deployment of G. After deployment, the single
trained U model can operate across any given forgetting task and domain without any additional
training and its effectiveness is not limited to any particular forget and retain set.

3.3 POST-DEPLOYMENT INFERENCE

Once G is deployed, CaRE performs unlearning and inference through the following three steps.
(i): Given the m-th forget sample fm, its embedding f emb

m = U(fm) is generated and stored in the
set of forget embeddings F . The update of F is carried out immediately in real-time upon arrival of
fm and can be expressed as

F = {f emb
1 , f emb

2 , . . . , f emb
m−1} ⇒ F ← F ∪ {f emb

m }. (2)

This instantaneous operation constitutes the entirety of our unlearning process post-deployment and
stands in stark contrast to the heavy optimization procedures employed by other methods to unlearn
a given set of forget requests. Asynchronously, whenever a user query q is input to G, it is projected
into the embedding space as qemb = U(q). (ii): For each embedding f emb

i in F , we compute
its cosine similarity score si with respect to qemb, and obtain the score set S = {si}mi=1, where
si ∈ [−1, 1]. Using S, we identify the element fj ∈ F most related to q by taking an element with
the maximum score sj = smax, and check whether it exceeds a given threshold δ. In this process,
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the user queries sent to the LLM and requests for information removal are all handled continuously
and in real-time, without mutual interference. (iii): The final response rres returned to the user is
defined as follows:

rres =

{
G(q), if smax < δ ,

a sampled element from R, if smax ≥ δ ,
(3)

where R is a predefined set of refusal expressions such as “I don’t know” or “I can’t answer that
question”. If smax < δ, we determine that q is unrelated to any information in the current forget set,
and thus return the regular generated output for q using G. In contrast, if smax ≥ δ, we determine
that q is closely related to some information in the forget set and therefore decline to answer q.
In this case, a refusal response is sampled from R and returned as rres (Appendix F). Note that the
parameters of G are not modified at any step of this process. This guarantees knowledge preservation
within G thereby preventing the occurrence of catastrophic forgetting, which is key to our method
being able to maintain such high performance on the retain and utility datasets after processing an
arbitrary number of successive forget requests.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Benchmarks. We conduct unlearning experiments in the continual setting using four widely used
benchmarks. (1) Privacy Data Unlearning: The RETURN benchmark (Liu et al., 2024) consists
of synthetically generated question-answer pairs related to real world individuals with Wikipedia
pages. The goal is to forget selected details (not all) about a subset of the individuals. We posit a
scenario where out of the 30 target individuals, three individuals issue forget requests at each stage,
resulting in a total of 10 stages of continual unlearning. (2) General Science Knowledge Unlearn-
ing: We adopt the setting in Gao et al. (2025) which uses a subset of the ScienceQA dataset (Lu
et al., 2022) as the forget set to sequentially unlearn four scientific topics: biology, physics, chem-
istry, and economics. At each stage, one topic is added to the forget set and the remaining topics
make up the retain set. (3) Fictitious Authors Unlearning: TOFU (Maini et al., 2024) is an unlearn-
ing benchmark that fine-tunes a pre-trained language model on QA pairs about completely fabricated
authors to ensure that none of the data in the forget set exists in the pre-training data. The task is
then to unlearn information about a selection of the fake authors. We divide the authors into three
groups, resulting in a three-stage continual unlearning setup. (4) False Information Unlearning:
TruthfulQA (Lin et al., 2021) is a benchmark designed to assess whether LLMs provide factually
grounded answers to misleading questions across diverse topics (i.e., whether they avoid generating
misinformation). We adopt a continual unlearning setting in which all the questions are partitioned
into three stages and used as the forget set. Further details about the evaluation datasets can be found
in Appendix C.1

It should be noted that for the forget set used for evaluation, we replace the questions with para-
phrased variants as this is a more realistic assumption for real world use cases and using the same
questions verbatim from the original forget set would be trivial for our method to solve with 100%
accuracy by setting the decision boundary threshold δ to 1. Also, for each benchmark we add a syn-
thetically generated near utility dataset containing examples designed to be similar in appearance to
sentences in the forget set, but distinct in meaning (and hence should not be subject to removal—they
are edge cases designed to test the locality of the forgetting mechanism). The detailed procedure for
generating these datasets is outlined in Appendix E.

Evaluation Metrics. As our method does not modify any weights of the LLM, it does not alter
the probability distribution output by the LLM, which renders probability-based metrics such as the
Truth Ratio (Maini et al., 2024) meaningless for our case. Hence for most evaluation datasets we
use ROUGE-L (Lin, 2004) to measure the similarity between the generated response and the ground
truth answer. In cases where we are able to extract an exact answer from the generated response
using simple parsing, such as the WinoGrande dataset (Sakaguchi et al., 2019) and the ScienceQA
benchmark (Lu et al., 2022), we calculate accuracy using an exact match criterion.

Baselines. We selected GA (Jang et al., 2022), GradDiff (Liu et al., 2022), PO (Maini et al., 2024),
NPO (Zhang et al., 2024), SO-PO (Jia et al., 2024), GUARD (Deng et al., 2025), O3 (Gao et al.,
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2025), and UniErase (Yu et al., 2025) as our baselines. Base indicates the target model prior to
unlearning, which serves as an upper bound for knowledge preservation performance. UniErase
only works on data given in (subject, relation, object) triplet form i.e. questions and answers about
people, so we exclude it from our experiments for TruthfulQA and ScienceQA.

The training configuration of U , the details of τ1 and τ2, and results for other models are presented
in Appendices C.2, D, and H respectively.

4.2 PRIVACY DATA UNLEARNING

(a) Forget set↓ (b) Retain set used↑ (c) Retain set not used↑

(d) Non-target↑ (e) Near utility↑ (f) WinoGrande↑

Figure 2: Continual unlearning results on RETURN. (a) indicates performance on the unlearning
target, while (b)–(f) indicate performance on data that we aim to preserve (details in Appendix C.1).

Figure 2 presents our experimental results on the RETURN benchmark. The gradient-based and
preference optimization methods exhibit a strong tendency towards overforgetting—they are suc-
cessful in removing the knowledge related to the forget set but at the cost of significant degradation
in performance on unrelated knowledge. We can clearly see a sharp drop-off from the base model
as the stages progress—as expected due to catastrophic forgetting. GUARD, O3 and UniErase pre-
serve knowledge to some extent, but fail to sufficiently remove the target knowledge. CaRE, on the
other hand, achieves effective removal of the data from the forget set with negligible degradation in
performance on the other datasets across all ten stages of evaluation.

4.3 GENERAL SCIENCE KNOWLEDGE UNLEARNING

(a) Forget set↓ (b) Retain set↑ (c) Near utility↑

(d) OpenbookQA↑ (e) CommonsenseQA↑

Figure 3: Continual unlearn-
ing results on ScienceQA. (a)
shows the unlearning target,
while (b)–(e) illustrate perfor-
mance on data that should be
preserved.

Figure 3 presents our results on the ScienceQA benchmark. The only method that is able to main-
tain comparable performance to CaRE on the knowledge preservation datasets across all stages of
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evaluation is O3. However, we can see that its performance on the forget set is unusually poor. We
found that this is due to O3 being unable to generalize to paraphrased variants of the questions in
the forget set. While it is able to achieve much lower scores of 20.7%, 4.6%, 10.1%, and 11.8%
across the four stages of the original forget set, it is surprisingly brittle against even slight changes
in wording and thus cannot be said to have truly forgotten the information in the forget set. So
again CaRE is the only method able to achieve effective forgetting while maintaining near perfect
knowledge preservation across each stage of evaluation.

4.4 FICTITIOUS AUTHORS UNLEARNING

Table 1: Results on the TOFU benchmark. F.G. (forget set), R.T. (retain set), N.U. (near utility),
R.A. (Real-Authors), and W.F. (World Facts) are reported; the best results are highlighted in blue,
and the second-best are underlined, excluding near-zero values on F.G. caused by over-forgetting.

TOFU dataset for LLaMA2-7B-chat
Stage 1 Stage 2 Stage 3

Method F.G.↓ R.T.↑ N.U.↑ R.A.↑ W.F.↑ F.G.↓ R.T.↑ N.U.↑ R.A.↑ W.F.↑ F.G.↓ R.T.↑ N.U.↑ R.A.↑ W.F.↑
Base 0.496 0.973 0.620 0.940 0.913 0.518 0.973 0.617 0.940 0.913 0.509 0.973 0.599 0.940 0.913

GA 0.390 0.715 0.574 0.855 0.821 0.211 0.320 0.488 0.576 0.785 0.003 0.003 0.005 0.000 0.006
GradDiff 0.242 0.424 0.550 0.763 0.812 0.001 0.002 0.003 0.000 0.003 0.000 0.000 0.000 0.000 0.000
PO 0.110 0.873 0.598 0.923 0.883 0.111 0.801 0.533 0.692 0.862 0.181 0.860 0.570 0.897 0.877
NPO 0.072 0.874 0.608 0.930 0.892 0.031 0.796 0.601 0.912 0.900 0.065 0.815 0.593 0.914 0.895
SO-PO 0.094 0.837 0.586 0.899 0.896 0.118 0.808 0.592 0.922 0.868 0.120 0.791 0.562 0.916 0.873
GUARD 0.121 0.773 0.573 0.909 0.896 0.112 0.798 0.536 0.872 0.883 0.129 0.775 0.553 0.891 0.876
O3 0.128 0.338 0.564 0.651 0.905 0.070 0.093 0.198 0.095 0.282 0.083 0.093 0.163 0.079 0.219
UniErase 0.047 0.947 0.603 0.906 0.930 0.058 0.943 0.610 0.899 0.930 0.062 0.942 0.587 0.889 0.905

CaRE 0.046 0.969 0.620 0.940 0.913 0.055 0.969 0.615 0.940 0.913 0.043 0.961 0.597 0.940 0.913

Table 1 presents our results on the TOFU benchmark. The only method that appears to remain
competitive with our method across all three stages is UniErase. However, the apparent strength
of this method—which still lags CaRE in overall performance—should be weighed against the
inability of UniErase to handle any data that does not conform to its strict (subject, object, relation)
format, which is a significant limitation, as well as its inability to process forget requests in real-time.

4.5 FALSE INFORMATION UNLEARNING

Table 2: Results on TruthfulQA benchmark. R.F. (refusal
answers), N.U. (near utility), and C.Q. (CommonsenseQA)
are reported; best: blue; second-best: underlined

.
TruthfulQA dataset for LLaMA2-7B-chat

Stage 1 Stage 2 Stage 3
Method R.F.↑ N.U.↑ C.Q.↑ R.F.↑ N.U.↑ C.Q.↑ R.F.↑ N.U.↑ C.Q.↑
Base 0.5351 0.6919 0.8256 0.5378 0.7067 0.8256 0.5367 0.7006 0.8256

PO 0.9030 0.0637 0.3790 0.9389 0.0373 0.2968 0.9792 0.0340 0.3243
SO-PO 0.9019 0.2195 0.6059 0.8634 0.3115 0.4962 0.8216 0.3144 0.5392
O3 0.9869 0.3691 0.2685 0.9980 0.2585 0.2010 0.9995 0.3702 0.2647

CaRE 0.9942 0.6068 0.8231 0.9882 0.6072 0.8190 0.9855 0.5932 0.8149

Table 2 reports the results for Truth-
fulQA. The objective in this case is
to prevent the dissemination of false
information contained in the forget
set. However, minimizing similarity
to a particular incorrect answer can
be gamed: the model may simply
produce a different incorrect response
while remaining untruthful. Hence,
instead of measuring the similarity of
the response to the answers in the for-
get set, we measure its similarity to a
set of refusal responses (the pairwise maximum from the set) such as “I don’t know” as our indica-
tion of success. This inherently restricts our evaluation to methods that are capable of optimizing
towards a desired response (i.e. it excludes gradient ascent methods that only optimize away from an
undesirable response). From the table we can see again that CaRE has much stronger performance
than existing methods and that its advantage grows with each stage of evaluation.

4.6 ABLATION STUDY

Table 3 presents a comparison of the classification performance of U in the first and final stages of
all benchmarks under various ablations, in order to examine the importance of each component of
our method.

Contribution of the Proposed Dataset. As we can see from the table, training with our datasets
(bottom row) improved the F1 score over the baseline (top row) by 15.05% in the first stage and
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Table 3: Classification performance of U on the four benchmarks (RETURN, ScienceQA, TOFU,
and TruthfulQA). In Config, the columns indicate whether the three data types (one positive, two
negative) setting is used, whether hard-negative samples are used, the size of the training dataset,
and which dataset was used as the seed (NQ denotes Natural Questions, TQ denotes TriviaQA).
The top row corresponds to the vanilla sentence embedding model without any finetuning, gray
regions correspond to settings with all components of our method being applied, and the best F1
performance is emphasized in bold.

Config First Stage Last Stage

All types H.N. Size Seed Precision Recall F1 Precision Recall F1

✗ ✗ 0k ✗ 0.7026 0.8538 0.7709 0.6939 0.8954 0.7819
✗ ✗ 12k NQ 0.4847 0.9994 0.6528 0.5031 0.9988 0.6691
✓ ✗ 18k NQ 0.5535 0.9994 0.7124 0.5512 0.9986 0.7104
✗ ✓ 12k NQ 0.8094 0.9727 0.8836 0.8171 0.9493 0.8783
✓ ✓ 12k NQ 0.8455 0.9524 0.8958 0.8526 0.9321 0.8906
✓ ✓ 18k TQ 0.8497 0.9379 0.8916 0.8548 0.9225 0.8874
✓ ✓ 18k NQ 0.8114 0.9780 0.8869 0.8246 0.9581 0.8863

13.35% in the last stage. This improvement can be attributed to the use of contrastive loss on
the three types of augmented data, which enables the formation of sharper decision boundaries
on unlearning data and thereby enhances classification performance. Dropping any component of
our proposed training data configuration still allows our model U to correctly classify queries that
should be refused (forgotten) as indicated by the high recall, but it also leads to over-forgetting as
indicated by the precipitous drops in precision. Therefore, all components of our proposed training
data configuration are necessary to achieve an effective balance between forgetting and knowledge
preservation. A more detailed analysis of these results and comparison of classification performance
with GUARD are provided in Appendix B.

4.7 UNLEARNING EFFICIENCY

Table 4: Measured efficiency of un-
learning and inference post-LLM de-
ployment on RETURN. Our method
highlighted in bold (gray region).

Post-deployment efficiency (s)
Method Unlearning time Inference overhead
GA 195.6 0
GradDiff 229.5 0
PO 178.8 0
NPO 249.4 0
SO-PO 209.4 0
GUARD 2.8 25.5
O3 327.6 0.05
UniErase 323.2 0
CaRE 0.04 0.01

In Table 4 we show the average unlearning time per stage
on the RETURN benchmark as well as any extra process-
ing time for inference as an average per query for the fi-
nal stage of RETURN. From the table we can see that
CaRE exhibits overwhelmingly faster unlearning time
compared to all other baselines and is the only method
capable of real-time processing of both forget requests
and user queries. Due to the required search and retrieval
of related forget requests, CaRE does incur additional
overhead for inference, but as reported in the table this
cost is negligible. GUARD comes relatively close, but is
not quite real-time for unlearning, while incurring signif-
icant latency for inference due to its heavy use of beam
search—a cost that will grow dramatically with the size
of the LLM being deployed. It should be noted that these
times do not include the additional delay incurred by the baselines due to hyperparameter search.

5 CONCLUSION

We showed that existing LLM unlearning approaches suffer from catastrophic forgetting and are
inadequate for the continual real-time processing required in real world settings. To address this,
we proposed CaRE, which trains an unlearning sentence embedder on a three-type dataset with
hard-negative samples, prior to LLM deployment, without requiring a forget set or a retain set.
At inference time, CaRE works in three steps to handle new forget requests and user queries in
real-time without modifying the LLM weights. Experiments on four benchmarks demonstrate that
CaRE maintains performance on utility datasets nearly identical to the pre-unlearning base model
while achieving effective generalization in forgetting, establishing it as the most reliable method
among all baselines and the first method capable of operating in real-time.
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APPENDIX

This appendix provides supplementary materials and additional experimental results. It is organized
as follows:

• Section A: Discussion on the Cost of Retain Sets

• Section B: Details of the Ablation Study

• Section C: Experimental Setup Details

– Section C.1: Datasets and Split
– Section C.2: Training Configuration
– Section C.3: Unlearning Target Base Models

• Section D: Prompt for Three Type Dataset Generation

• Section E: Prompt for Near Utility Data Generation

• Section F: Refusal Response Sampling

• Section G: Dataset Statistics

• Section H: Additional Experimental Results

– Section H.1: Privacy Data Unlearning
– Section H.2: General Science Knowledge Unlearning
– Section H.3: Fictitious Authors Unlearning
– Section H.4: False Information Unlearning

• Section I: Qualitative Results

A DISCUSSION ON THE COST OF RETAIN SETS

Table 5: Retain set sizes for methods requiring them in unlearning experiments on four benchmarks.

Retain set RETURN ScienceQA TOFU TruthfulQA Total

Size 150 1827 3800 817 6594

The retain set is a dataset that, paired with the forget set, is used by some unlearning methods to train
the target LLM. Its role is to act as a regularizer to preserve existing knowledge during training and
as such, it consists of a collection of representative examples of the knowledge or information that
should be preserved. For example, GradDiff, NPO, PO, and SO-PO all employ a loss on the retain
set during optimization for unlearning. In GUARD, a classifier is trained by using samples from
the forget set as positive examples and samples from the retain set as negative examples. However,
employing a retain set necessitates the securing of data of sufficient quantity and quality (Gao et al.,
2025), which can be highly time consuming. This introduces an additional source of latency to the
post-deployment unlearning process and thus, avoiding reliance on a retain set is crucial in real-time
scenarios. Our approach does away with the need for a retain set and thus entirely dispenses with
the cost of collecting and training the datasets shown in Table 5, thereby enabling unlearning that is
both efficient and effective.

B DETAILS OF THE ABLATION STUDY

In this section, we provide a more detailed explanation of Table 3 and describe Table 6, which
compares our classification performance with that of GUARD.

Impact of the Three Data Types. We tested the importance of having the three types of data
augmentation by training with only two types. As the resulting dataset contained only two thirds
(12k samples) the number of samples in the original dataset, we conducted an additional experiment
using only 12k samples from the original dataset (with all three data types) to control for the effect
of dataset size. As we can see from the table, using only two data types leads to a slight drop in
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F1 score and this drop is not due to the reduction in number of samples as the performance of the
12k control dataset does not show a similar drop (and even slightly improves upon the original 18k
dataset).

Effectiveness of Hard Negatives. To evaluate the impact of generating hard-negative samples for
the type-2 and type-3 data, we constructed an alternate dataset where qc and q′c were semantically
distinct from qs and qp, but also had no lexical or structural overlap with the latter. Specifically, qc
and q′c were randomly sampled from the seed dataset excluding qs. Experimental results show that
constructing hard-negative samples with our proposed method improves the F1 score by 24.49% in
the first stage and by 24.76% in the final stage, compared to the case without hard negatives.

Generalization across Seed Datasets. To test the robustness of our method across different seed
datasets, we tried switching the seed dataset to TriviaQA (Joshi et al., 2017). From the table we can
see that switching the seed dataset does not compromise the classification performance and in fact,
using TriviaQA shows slightly improved performance over Natural Questions.

Table 6: Classification performance of U and GUARD on the three benchmarks RETURN, Sci-
enceQA, and TOFU.

First Stage Last Stage

Method Precision Recall F1 Precision Recall F1

GUARD 0.2049 0.9518 0.3372 0.2708 0.9326 0.4198
CaRE 0.8436 0.9325 0.8858 0.8572 0.9142 0.8848

Performance Comparison with GUARD. From Table 6 we can see that GUARD has high recall
but very low precision, indicating a strong tendency towards overforgetting. Thus the classifier is
fairly inaccurate and the reason its performance on ROUGE-L and accuracy metrics do not show
as severe a drop is that, upon predicting a positive example, it does not block the response of G
entirely as we do, but only the words from the retrieved forget request. This is a safer, albeit slower,
method of inference that to some extent offsets the weak performance of the classifier, and it could
be combined with our more accurate classifier for even more selective blockage of information.

C EXPERIMENTAL SETUP DETAILS

C.1 DATASETS AND SPLIT

In this section we provide more details about the datasets used for evaluation (and for training in the
case of baselines that use the forget set and retain set for training).

(1) Privacy Data Unlearning: For each individual in the RETURN benchmark (Liu et al., 2024),
there are 20 synthetically generated QA pairs. Among the 60 sampled individuals, half are desig-
nated as targets and the other half as non-targets. For each target individual, 10 QA pairs are assigned
to the forget set (assumed to contain sensitive information about the target individual) and the re-
maining 10 QA pairs are assigned to the retain set (assumed not to contain any sensitive information
about the target individual). The retain set is further split into two subsets with 5 QA pairs apiece:
retain set used, which is used for training (if required by the unlearning method), and retain set not
used, which is excluded from training. We create 10 stages of continual unlearning by assigning 3
of the 30 target individuals to each stage. For utility data, we use WinoGrande (Sakaguchi et al.,
2019).

(2) General Science Knowledge Unlearning: The ScienceQA dataset (Lu et al., 2022) consists of
26 topics in total. Of these we unlearn biology, physics, chemistry, and economics sequentially in
that order. At each stage, all of the remaining topics (that have not been added to the forget set) make
up the retain set. The utility data are drawn from the validation split of CommonsenseQA (Talmor
et al., 2018) and test split of OpenbookQA (Mihaylov et al., 2018).

(3) Fictitious Authors Unlearning: For TOFU (Maini et al., 2024), we divide the 20 authors from
the largest forget split, ’forget10’ into groups of 10, 5, and 5, resulting in a three-stage continual
unlearning setup. The retain set consists of 400 samples from authors outside of the forget set, and
the utility data used are the Real Authors and World Facts datasets.
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(4) False Information Unlearning: From TruthfulQA (Lin et al., 2021) we split all the questions
into three stages for continual unlearning and add them sequentially to the forget set. The retain set
is separately generated using prompts for near utility as described in Appendix E, while the general
utility evaluation is conducted on the CommonsenseQA validation split.

C.2 TRAINING CONFIGURATION

Component Setting
Base sentence encoder sentence-transformers/multi-qa-mpnet-base-dot-v1
Training objective Contrastive loss (sentence transformers.losses.ContrastiveLoss)
Distance metric Cosine distance (SiameseDistanceMetric.COSINE DISTANCE)
Margin 0.5
Optimizer LR 2e-5
Warmup steps 100
Epochs 1
Batch size 16
Dataloader shuffle=True

Table 7: Complete training configuration for the unlearning sentence embedder U .

We employed ‘multi-qa-mpnet-base-dot-v1’ (Reimers & Gurevych, 2019) as the base model for
the unlearning sentence embedder U . This model has only around 109 million parameters so our
training cost is orders of magnitude smaller than existing gradient-based approaches, which train
the target LLM. We used 6,000 seed samples from the Natural Questions dataset (Kwiatkowski
et al., 2019) to generate the data for training U . The parameter δ was set to 0.9 for RETURN and
ScienceQA, and 0.8 for TOFU and TruthfulQA.

In Table 7 we list all the hyperparameter settings we used to train the unlearning sentence embedder
U . We trained U with three types of augmented data as described above, using the Natural Questions
dataset as the seed. In our approach, model training is conducted prior to LLM deployment.

C.3 UNLEARNING TARGET BASE MODELS

Benchmark Model Size Unlearning Target

RETURN
1B meta-llama/Llama-3.2-1B-Instruct
7B meta-llama/Llama-2-7b-chat-hf

ScienceQA
1B laurel1313/llama3.2 base scienceqa
7B gcyzsl/O3 LLAMA2 ScienceQA

TOFU
1B open-unlearning/tofu Llama-3.2-1B-Instruct full
7B open-unlearning/tofu Llama-2-7b-chat-hf full

TruthfulQA
1B meta-llama/Llama-3.2-1B-Instruct
7B meta-llama/Llama-2-7b-chat-hf

Table 8: Benchmarks, model sizes, and unlearning targets used in our experiments.

For the unlearning target, we used finetuned versions of Llama2-7B (Touvron et al., 2023) on the
TOFU and ScienceQA benchmarks and the pre-trained version on all other benchmarks as detailed
in Table 8. Experiments were carried out on two A100 GPUs.
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D PROMPT FOR THREE TYPE DATASET GENERATION

Figure 4 illustrates the core Python code and input prompt templates used for generating the three-
type datasets. To enhance generalization, not only interrogative sentences but also declarative sen-
tences are generated with a certain probability. The blue text in the upper figure represents the core
prompt of τ1(·), while the blue text in the lower figure represents the core prompt of τ2(·).

Figure 4: Prompt and code for generating the three types of data based on the seed dataset. The
input prompt of Gs required for generation is highlighted in blue.
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E PROMPT FOR NEAR UTILITY DATA GENERATION

The near utility datasets are constructed by using the questions in the forget set as a seed and prompt-
ing GPT-4o to generate new questions that are lexically or structurally similar while remaining se-
mantically distinct (and thus having a different answer from the original question).

Figure 5 presents the core GPT-4o input prompts required for generating the near utility dataset. For
datasets related to people, such as RETURN and TOFU, additional prompts were incorporated to
prevent the generation of false information about the original persons mentioned in the sentences.
In the case of ScienceQA, the data were generated in accordance with its original format, where one
option must be selected among multiple choices. For instance, starting from the seed question of
TruthfulQA: “What are some EU countries with big reserves of oil?”, which is selected as a knowl-
edge removal target, we constructed a near utility variant: “What are some EU countries known for
their large wine production?”. This transformation preserves the structural form and domain simi-
larity to the seed, while shifting the semantic focus to a closely related but distinct topic. In contrast,
a more general utility dataset such as CommonsenseQA contains broader knowledge-based ques-
tions, for example: “What continent has the most castles?”. Unlike near utility data, which stays
in close proximity to the seed data, questions from CommonsenseQA are used to evaluate general
knowledge that is not necessarily tied to the original seed data.

Figure 5: Core prompt and code for generating the near utility evaluation datasets on the four bench-
marks RETURN, TOFU, ScienceQA and TruthfulQA
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F REFUSAL RESPONSE SAMPLING

Figure 6 presents the 229 samples used as the refusal expression set R. We generated diverse expres-
sions using GPT-4o. These expressions are utilized not only for our model but also for approaches
such as PO and O3, which minimize the loss of refusal responses for inputs in the forget set.

Figure 6: The set R consists of 229 refusal expressions, all generated using GPT-4o.

G DATASET STATISTICS

Table 9: Size of datasets used for unlearning and evaluation

ScienceQA TOFU
biology physics chemistry economic forget10 retain real-authors world facts

Size 1192 595 403 237 400 400 100 117

RETURN TruthfulQA WinoGrande CommonsenseQA OpenbookQA
Size 1200 817 1267 1221 500

Table 9 shows the sizes of the datasets we used in our experiments.
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H ADDITIONAL EXPERIMENTAL RESULTS

This section reports additional experimental results using the smaller LLaMA-3.2-1B model (Meta
AI, 2024) on four benchmark datasets (RETURN, ScienceQA, TOFU, TruthfulQA).

H.1 PRIVACY DATA UNLEARNING

(a) Forget set↓ (b) Retain set used↑ (c) Retain set not used↑

(d) Non-target↑ (e) Near utility↑ (f) WinoGrande↑

Figure 7: Continual unlearning results on RETURN. (a) indicates performance on the unlearning
target, while (b)–(f) indicate performance on data that we aim to preserve.

In Figure 7 we can see that gradient-based methods exhibit the same phenomenon of overforgetting
as in the case of the 7B model. O3 shows even worse performance on the forget set, indicating
greater difficulty in forgetting the necessary information. Of all baselines, UniErase seems to have
the best performance on the forget set and on distant utility datasets (i.e. WinoGrande), but suffers
increasingly worse performance as the knowledge preservation datasets move closer to the forget set
in distribution. This indicates an inability to distinguish between examples belonging to the forget
set and edge cases outside the forget set. Our method, again, shows the most consistent results with
near perfect utility preservation.

H.2 GENERAL SCIENCE KNOWLEDGE UNLEARNING

(a) Forget set↓ (b) Retain set↑ (c) Near utility↑

(d) OpenbookQA↑ (e) CommonsenseQA↑

Figure 8: Continual unlearn-
ing results on ScienceQA. (a)
shows the unlearning target,
while (b)–(e) illustrate perfor-
mance on data that should be
preserved.

In Figure 8 we see again that O3 is the only method able to maintain comparable performance with
our method on the knowledge preservation datasets but it is not robust to paraphrased variants of the
forget set. Again our method shows the strongest knowledge preservation performance, hugging the
baseline on most datasets, while showing highly effective performance on the forget set across all
stages.
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H.3 FICTITIOUS AUTHORS UNLEARNING

Table 10: Continual unlearning results on the TOFU. F.G. (forget set), R.T. (retain set), N.U. (near
utility), R.A. (Real-Authors), and W.F. (World Facts) are reported; the best results are highlighted
in blue, and the second-best are underlined, excluding near-zero values on F.G. caused by over-
forgetting.

TOFU dataset for LLaMA-3.2-1B-Instruct
Stage 1 Stage 2 Stage 3

Method F.G.↓ R.T.↑ N.U.↑ R.A.↑ W.F.↑ F.G.↓ R.T.↑ N.U.↑ R.A.↑ W.F.↑ F.G.↓ R.T.↑ N.U.↑ R.A.↑ W.F.↑
Base 0.415 0.767 0.575 0.840 0.821 0.440 0.767 0.575 0.840 0.821 0.434 0.769 0.554 0.840 0.821

GA 0.307 0.499 0.434 0.449 0.551 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
GradDiff 0.321 0.508 0.450 0.459 0.598 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
PO 0.069 0.673 0.523 0.757 0.828 0.072 0.602 0.456 0.590 0.783 0.090 0.626 0.472 0.620 0.768
NPO 0.350 0.696 0.565 0.764 0.819 0.325 0.645 0.551 0.654 0.802 0.240 0.606 0.523 0.355 0.798
SO-PO 0.106 0.624 0.543 0.762 0.828 0.116 0.594 0.501 0.687 0.781 0.146 0.590 0.490 0.647 0.791
GUARD 0.142 0.583 0.484 0.799 0.781 0.146 0.608 0.491 0.802 0.780 0.148 0.618 0.504 0.797 0.788
O3 0.067 0.256 0.542 0.627 0.798 0.047 0.069 0.237 0.110 0.439 0.030 0.036 0.174 0.014 0.373
UniErase 0.042 0.472 0.561 0.747 0.802 0.039 0.276 0.550 0.757 0.818 0.038 0.167 0.541 0.722 0.801

CaRE 0.042 0.765 0.575 0.840 0.821 0.052 0.765 0.573 0.840 0.821 0.043 0.759 0.552 0.840 0.821

From Table 10 we can see that UniErase has much worse performance, particularly on the retain
set, as compared with its results for the 7B model. This indicates that UniErase, along with its
other limitations, does not generalize well to smaller models. No other method comes close to the
performance of CaRE, which again outperforms all baselines on almost all metrics.

H.4 FALSE INFORMATION UNLEARNING

Table 11: Continual unlearning results on TruthfulQA, where R.F. denotes refusal answers, N.U.
denotes near utility, and C.Q. denotes, CommonsenseQA; the best results are shown in blue, and
the second-best are underlined.

TruthfulQA dataset for LLaMA-3.2-1B-Instruct
Stage 1 Stage 2 Stage 3

Method R.F.↑ N.U.↑ C.Q.↑ R.F.↑ N.U.↑ C.Q.↑ R.F.↑ N.U.↑ C.Q.↑
Base 0.5412 0.6666 0.6535 0.5376 0.6781 0.6535 0.5370 0.6626 0.6535

PO 0.9822 0.0476 0.2439 0.9535 0.0726 0.2198 0.8918 0.0589 0.2180
SO-PO 0.9780 0.0620 0.4174 0.8961 0.0975 0.1936 0.9018 0.0741 0.2103
O3 0.9883 0.0726 0.1309 0.9985 0.0618 0.0493 0.9988 0.0588 0.1203

CaRE 0.9924 0.5839 0.6506 0.9880 0.5830 0.6474 0.9847 0.5575 0.6438

From Table 11 we can see that, although the refusal scores for the baselines improved in some cases
compared with the 7B model, knowledge preservation scores dropped precipitously all across the
board. Our method, on the other hand, was able to maintain nearly identical scores to the Base model
on the CommonsenseQA utility dataset, while being the only method able to avoid total performance
collapse on the near utility datasets.
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I QUALITATIVE RESULTS

In this section we show the text responses from all methods to some sample queries taken from the
final stage of the RETURN benchmark.

Figure 9: Generated responses from CaRE and other baselines on the forget set from stage 10 of the
RETURN benchmark.

As mentioned above, we use a paraphrased variant of the original query to test performance on the
forget set as using the original query would be trivial for our method to solve (and using the para-
phrased query is a good way to test robustness of forgetting against changes in wording). In Figure 9
we can observe first-hand the effects of catastrophic forgetting as after 10 stages of unlearning, the
gradient-based methods have degraded to the point of generating no output at all. The PO-based
methods are still able to generate a coherent response and O3 gives an acceptable, albeit repetitive,
refusal response. We can see GUARD’s beam search with penalty is causing it to generate rambling
text, and UniErase, although it refuses to answer at first, later attempts to give an answer—an incor-
rect answer, but an answer nonetheless. Our method gives a clean, coherent refusal, as expected.
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Figure 10: Generated responses from CaRE and other baselines on the retain set (used) from stage
10 of the RETURN benchmark.

In Figure 10 we can see that after 10 stages of unlearning, almost all the baselines have forgotten the
information related to this query from the retain set that was used for training. GUARD produces
a partially correct answer by naming Gunnar Fischer as one of Bergman’s cinematographers, but it
also hallucinates, naming Ingrid Thulin as another cinematographer (whereas Ingrid Thulin was an
actress, not a cinematographer). The only method that is able to produce a correct answer is CaRE.

Figure 11: Generated responses from CaRE and other baselines on the retain set (not used) from
stage 10 of the RETURN benchmark.

Figure 11 shows the responses to a query from the retain set that was not used for training. Again
almost all baselines fail to produce an answer—CaRE and GUARD are the only methods able to
provide an acceptable response.
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Figure 12: Generated responses from CaRE and other baselines on the non-target dataset from stage
10 of the RETURN benchmark.

In Figure 12 we show the responses to a query from the non-target dataset, which means it relates
to an individual who is presumed not to have made any forget requests. In this case a few more
methods were able to recall the required information but now GUARD is unable to remember.

Figure 13: Generated responses from CaRE and other baselines on the near utility dataset from
stage 10 of the RETURN benchmark.

Figure 13 shows a query from the near utility dataset and we can see that it is designed to resemble
the original query from the forget set (“How many films did Ingmar Bergman direct?”) in Figure 9
while remaining distinct in meaning. The methods that haven’t completely collapsed from catas-
trophic forgetting are able to answer correctly in this case.
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Figure 14: Generated responses from CaRE and other baselines on the WinoGrande dataset from
stage 10 of the RETURN benchmark.

Finally, in Figure 14 we show a query from the WinoGrande utility dataset, which in our experi-
ments is intended to detect any decline in general capabilities. The gradient-based methods generate
repetitive, incoherent text, while the rest of the methods are able to produce the correct answer.
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