
Learning Macro Variables with Auto-encoders

Maitreyi Swaroop∗

Department of Mathematics
Indian Institute of Technology

Kharagpur,
maitreyi.swaroop@mila.quebec

Eric Elmoznino
Department of Computer Science

Mila & Université de Montréal
Montréal, QC H2S 3H1

eric.elmoznino@gmail.com

Dhanya Sridhar
Department of Computer Science

Mila & Université de Montréal
Montréal, QC H2S 3H1

dhanya.sridhar@mila.quebec

Abstract

Most causal variables that we reason over, in both science and everyday life, are
coarse abstractions of low-level data. However, despite their importance, the field
of causality lacks a precise theory of abstract “macro” variables and their relation
to low-level “micro” variables that can account for our intuitions. Here, we de-
fine a macro variable as something that (a) is simpler than its micro variable, (b)
shares mutual information with its micro variable, and (c) is related to other macro
variables via simple mechanisms. From this definition, we propose DeepCFL:
a simple self-supervised method that learns macro variables and their relations.
We empirically validate DeepCFL on synthetic tasks where the underlying macro
variables are known, and find that they can be recovered with high fidelity. Given
that the individual components of DeepCFL leverage standard and scalable tech-
niques in deep learning, our preliminary results are encouraging signs that it can be
successfully applied to real-world data.

1 Introduction

How does the kinetic energy of particles that make up an object affect our sensory neurons when
we touch these objects? We might notice that as the mean kinetic energy of the particles – call this
temperature – increases past a particular value, our sensory neurons send signals of a particular
configuration – call this pain. To summarize this relationship, we might say "high temperatures cause
pain when touched." Like with this example, often in science, the causal relationship between one
complex system and another is sufficiently captured in terms of coarse variables that we define.

Building on such long-standing intuitions, Chalupka et al. [2017] formalized the process of abstracting
such coarse summaries – called macro variables – from low-level measurements – called micro
variables – with a clustering-based approach termed causal feature learning (CFL). Concurrently,
in the field of deep learning, representation learning offers an alternative for compressing observed
variables into macro variables. In representation learning, the goal is to learn “generative factors” that
explain all of the observed variation.

CFL and representation learning output qualitatively different macro variables because of their
differing objectives. On one hand, representation learning seeks to reconstruct the observations

∗Corresponding author

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

perfectly and thus typically recovers macro variables that maximize the mutual information with the
observed micro variables. In contrast, CFL clusters micro variables that have the same effect on a
(potentially complex) outcome, constructing discrete macro variables that contain significantly less
information than the observations. On the other hand, interpreting the outputs of CFL is as hard as
deciphering which observed features a clustering algorithm focused on to produce each cluster. In
contrast, we can interpret variables inferred via representation learning by perturbing each one and
reconstructing the corresponding observation. The overarching goal of abstracting complex systems
may be best served if we could combine the differing advantages of CFL and deep learning: focusing
only on causal explanations versus on reconstructing low-level signals, admitting only discrete macro
variables or offering more generality, being less or more interpretable.

In this paper, we take the perspective that causal feature learning offers a useful definition of macro
variables, but propose a learning algorithm that extends standard representation learning approaches.
In doing so, we equip CFL with three new advantages: going beyond discrete macro variables,
learning complex macro variables that are nonlinear functions of their micro variables, and directly
interpreting macro variables via reconstruction. The practical contribution of this paper is a method
we call DeepCFL, an approach to learning macro variables that contain information about the
observed micro variables, but which also satisfy a key property of CFL: the macro variables output
by DeepCFL only capture enough information necessary to capture relationships between the space
of possible causes and the space of possible effects.

DeepCFL works by translating the desiderata of CFL into a differentiable constrained objective that
can be optimized using gradient-based approaches. DeepCFL learns to encode two sets of micro-level
observations (the "cause space" and the "effect space" in the parlance of CFL) into macro variables
so that the "cause" macro variables explain the "effect" ones in terms of simple functions 2. Sparse
linear functions are one such choice we explore in this work. The preference for simple explanations
guides the encoders to find macro variables that are summary functions of micro variables, just as
temperature and the concept of pain signaled by the brain offer simple explanations that would not be
possible to express in the low-level space. We constrain the prediction objective to find encodings
of macro variables that have some mutual information with the micro variables. Practically, this
constraint prevents the encoders from collapsing to trivial solutions.

In our preliminary experiments, we implement the DeepCFL objective by extending β-variational
auto-encoders (β-VAEs) [Higgins et al., 2016], which approximate mutual information between
observations and latents based on a modified evidence lower-bound. We evaluate DeepCFL on tasks
that explore the relationship between English and Kannada MNIST digits where we know the correct
macro variables, conducting ablation studies to study the impact of each component in DeepCFL. We
compare DeepCFL to the vanilla β-VAEs and show that the components of DeepCFL are important
for learning correct causal variables.

2 Background

We start by establishing some notation, and then reviewing CFL and representation learning in terms
of the notation we introduce.

Notation. We consider two matrices of observations termed Yl and Xl. Each observation in Xl,
called a micro variable, is a vector xl ∈ X dx (and correspondingly, yl ∈ Ydy). The goal is to learn
encoding functions xh = gx(xl) and yh = gy(yl) that map micro variables to latent macro variables
yh and xh that satisfy some desiderata.

Causal feature learning. In prior work [Chalupka et al., 2017], a macro variable xh ∈ {1 . . . C}
that captures one of C categories, or equivalence classes, satisfies the desiderata that,

xh = gx(xl) = gx(x
′
l) ⇔ p(yl|xl) = p(yl|x′

l), for allyl ∈ Ydy . (1)

Similarly, a macro variable yh ∈ {1 . . . E} captures one of E equivalence classes so that,

yh = gy(yl) = gy(y
′
l) ⇔ p(yl|xl) = p(y′

l|xl), for allxl ∈ X dx . (2)

The causal feature learning (CFL) algorithm described in Chalupka et al. [2017] first estimates the
conditional density p(yl|xl) and then performs clustering based on the criteria above to output macro

2Although CFL discusses "cause" and "effect" spaces, the algorithm can be used to explain associations
rather than causal relationships between micro variables.

2

variables. At a higher level, in CFL, macro variables explain all the variation in the distribution
p(yl|xl), both in terms of its outputs and its inputs. The learning algorithm outputs variables that
stand in bijective relation to the state space of the true discrete macro variables, assuming accurate
density estimation.

Representation learning. A macro variable xh ∈ Hdm , where dm ≤ dx, output by a representation
learning procedure (approximately) satisfies the property that,

xl = f ◦ gx(xl), (3)

where f : Hdm → X dx is a decoding function that maps macro variable values to their corresponding
micro variable state. The macro variable yh is defined analogously, with respect to yl. Notably,
representation learning methods aim to compress the variation in each set of observations indepen-
dently, not seeking to explain the modes of p(yl|xl) as CFL does. The decoding function f(·) also
provides a way of interpreting what macro variables xh or yh “mean”: perturb one dimension, decode
the new latent to an observation, and use domain knowledge to interpret what that axis of change
means. Although representation learning procedures do not place restrictions on Hdm , to leverage
auto-differentiation tools to optimize Eq. 3, we typically work with xh ∈ Rdm .

β-VAE. One approach to representation learning, which we extend in this work, is the β-VAE,
introduced by Higgins et al. [2016]. For micro variables Xl, a β-VAE assumes that the macro
variable xh ∼ gx(xl) is a stochastic function parameterized by the neural network qϕ(·|xl). The
decoding function f(xh) with parameters θ in a β-VAE is another neural network that parameterizes
px(xl|xh). β-VAEs implement Eq. 3 by maximizing the evidence lower bound (ELBO), a lower
bound to log px(xl). It is,

ELBO(ϕ, θ) = E[p(xl|xh; θ)]− βDKL(qϕ(xh|xl), p(xh)), (4)

where DKL(·) is the Kullback-Liebler (KL) divergence and p(xh)) is a prior on the macro variables.
Given xh ∈ Rdm , a standard choice for the prior is a multivariate standard Normal distribution.

In the next section, we introduce DeepCFL, a differentiable approach to learning macro variables that
combines the criteria underlying CFL with the flexibility of representation learning.

3 The DeepCFL approach

To introduce DeepCFL, we first lay out intuitions about what makes a good causal macro variable.
From these, we then derive the different components of our model and training objective.

A macro variable is simpler than its micro variable. By definition, a macro variable should be
a more abstract, coarse representation of its micro variable. Chalupka et al. [2017] frame macro
variables in CFL as discrete clusters of micro variables. While this can be true in particular situations,
we argue that in the general case a macro variable must simply (a) be a function of a micro variable and
(b) have lower representational complexity than it. Note that this subsumes the definition provided in
Chalupka et al. [2017], but also includes many other possibilities, such as continuous macro variables
with lower dimensionality than their micro variables. For instance, temperature is a 1-dimensional
continuous macro variable who’s value is a function of a high-dimensional micro variable (particle
velocities).

To satisfy this requirement in DeepCFL, we make each macro variable a function of its micro variable,
giving us xh = gx(xl) and yh = gy(yl). Importantly, we parameterize gx and gy using deep neural
networks (DNNs), given that they are universal function approximators and that we do not wish to
constrain the space of possible macro variables that our method can discover. To ensure that the
macro variables are simpler than their micro variables, we limit the output dimensionality of gx and
gy .

A macro variable shares mutual information with its micro variable While macro variables
are simple and abstract, they must nevertheless describe something about their micro variables. For
instance while temperature is a single summary statistic of particle motion, knowing the temperature
nevertheless drastically reduces the space of possible particle states – in other words, the mutual
information I(Xh;Xl) > 0 and I(Yh;Yl) > 0.

3

In deep learning, common approaches to maximizing the mutual information between an input
variable and its representation include (a) reconstruction [e.g., Kingma and Welling, 2013] and (b)
self-supervised learning [e.g., Chen et al., 2020, Grill et al., 2020]. To avoid specifying ad hoc data
augmentations that are typically required in self-supervised learning, in DeepCFL, we build on the
β-VAE, which Alemi et al. [2018] showed is a variational approximation to I(Xh;Xl). We use the
objective in Eq. 4 to simultaneously learn the macro variables xh ∼ gx(xl) and yh ∼ gy(yl).

Macro variables are related by a simple mechanism. Part of what makes abstractions useful is
that mechanisms at the high-level are simpler and more interpretable than those at the low-level. For
instance, there is certainly a relationship between the kinetic energy of all the particles that make up
an object and the activity of our sensory neurons when we touch it. However, it would be impossible
for a human to describe this relationship in its entirety at the low-level. At the same time, not all
possible abstractions are useful. For instance, we don’t construct concepts for “the variance in particle
kinetic energy” and “the variance of sensory neural activity” because there is either (a) no reliable
predictive relationship between these variables or (b) a complex relationship. We therefore require
that macro variables be related by simple and predictive mechanisms (e.g., temperature and pain).
This requirement extends the definition provided by Chalupka et al. [2017] (Eqs. 1 and 2).

To satisfy this requirement in DeepCFL, we model a mechanism ŷh = fxy(xh) that attempts to
predict yh from xh. Importantly, we restrict fxy to a simple class of functions (e.g., sparse linear
functions) and train all models end-to-end to minimize the prediction error between yh and ŷh.
Satisfying this objective thus constrains both gx and gy to discover macro variables that are related
by a simple mechanism.

1. Macro variables are simpler
 than their micro variables

2. Macro variables share MI
 with their micro variables

3. A simple mechanism
 relates macro variables

Macro variable desiderata
1 1

2 2

3

Figure 1: Desiderata for macro variables and our resulting model. Macro variables are constrained to be
simpler than micro variables through a dimensionality bottleneck (1). Mutual information between macro and
micro variables is maximized using β-VAEs (2). The mechanism relating macro variables must be simple, which
we enforce by restricting fxy to a simple class of functions (3).

Complete model. Taking all of the desiderata above, we end up with the model illustrated in
Fig. 1. The model consists of 2 β-VAEs (one for x and another for y) and a prediction function
ŷh = fxy(xh), which we parameterize here using sparse linear functions (W⊤xh where we penalize
the L1 norm of W). We then optimize all models end-to-end by minimizing the following loss (see
Fig. 1 to match colors with model components):

L = −ELBO(gx, px)− ELBO(gy, py) + λ
||f(xh)− yh||2

var(yh)
, (5)

where we divide by var(yh) in the last term so that the prediction loss is relative to the scale of
yh (which is arbitrary). In sum, successfully minimizing this loss should provide us with macro
variables that are simple abstractions of their micro variables and are related by a simple mechanism.
In addition, we also obtain encoders for abstracting the micro variables (gx and gy), a mechanism
that relates the macro variables of the two domains (fxy), and decoders that can be used to interpret
the macro variables through reconstruction (px and py).

4

4 Empirical Studies

Our preliminary empirical study of DeepCFL focuses on how important each loss term in the
DeepCFL objective (Eq. 5) is for learning macro variables that satisfy our aforementioned desiderata.
To design experiments where we know what the correct macro variables are, we use images of
handwritten digits in two languages as the micro variables Xl and Yl. The preliminary findings
suggest that the particular components of DeepCFL are crucial for finding the macro variables that
correctly relate two complex spaces of observations.

Dataset. For our preliminary studies and for ease of interpretability, in each experiment we use
images of handwritten English digits from the MNIST dataset (LeCun and Cortes [2010]) as Xl,
and images of handwritten Kannada digits (Prabhu [2019]) as Yl. Both are datasets of 28 × 28
dimensional images. The correct macro variables capture the digit identities, while other generative
factors of images like the stylistic differences in the handwritten digits are irrelevant in this setting.

We pair each English digit with a randomly chosen digit of the same number in Kannada, creating
a one-to-one correspondence between macro variables xh and yh. In the Appendix B, we include
results for a second experiment where we randomly pair all the odd English digits to one Kannada
digit, and all even English digits to another Kannada digit, creating a many-to-one mapping.

Model architecture We use the same architecture to parameterize both (gx, px) and (gy, py) - a
CNN VAE with 4 convolutional layers, a single linear layer, and a 10-dimensional latent space. Since
we are working with categorical macro variables, we also pass the latents through a softmax layer as
an inductive bias that encourages better distinction between different macro variables. The prediction
map fxy is a single linear layer with no bias or activation. For a comparison of experimental results
with and without the softmax layer, and for different values of the latent dimension, see Appendix A.

Metrics. To quantitatively measure how well our model recovers the true macro variables, we use
the silhouette score of the learned macro variable representations. The silhouette score measures
the goodness of clustering of the representations into digit classes. Silhouette scores lie in the range
(−1,+1), with +1 implying perfect clustering. We also perform a t-SNE analysis of the input data
and latent variables to qualitatively evaluate the learned representations.

4.1 Experiment

We set the dimensions of the learned latent representations to 10, i.e. xh ∈ R10,yh ∈ R10. Ideally,
the learned representations for both domains should only capture the digit identity for each digit.
Since we pass the latent representations through a softmax layer, the 10 dimensional latent vectors
should ideally be a one-hot-vector indicating digit identity or some permutation of a one-hot-vector,
for both xh and yh. Thus our benchmark is the case where fxy is the identity matrix.

Parameters xh yh ŷh
fxy as identity map (fixed)
and λ = 0 0.128 0.204 0.128
fxy as identity map (fixed)
and λ ̸= 0, βx = βy = 1.25 0.727 0.745 0.727
fxy as linear map (learned)
and λ ̸= 0, βx = 1.0, βy = 2.0 0.536 0.588 0.596

Table 1: Results for Experiment 1. Silhouette scores of learned representations. Here the learned macro variables
xh,yh are passed through a softmax layer and ŷh = fxy(xh). For the case where λ ̸= 0, we increase λ from 1
to 10 over the epochs using a sigmoid scheduler

We study DeepCFL without and with the prediction loss term (λ = 0 or otherwise) to evaluate
how the specific features of DeepCFL affect the learning of correct macro variables compared to
standard representation learning. In Table 1 we compare the results of experiments with fxy fixed as
the identity matrix to those where fxy is a trainable linear map.

Fig. 2 shows a comparison of the t-SNE plots for the learned macro variables xh,yh and the predicted
macro variables ŷh when using our method (fxy is either a fixed identity matrix or a learned linear

5

Figure 2: t-SNE plots for ex-
periment 1. Each row contains
the t-SNE plots for xh,yh and
ŷh respectively (left to right).
We observe that the learned rep-
resentations more easier to dis-
entangle when we include the
prediction loss in the training ob-
jective.

map) and when removing the prediction loss (λ = 0). Both the silhouette scores and the t-SNE plots
indicate that including the prediction loss leads more accurate recovery of the correct macro variables
xh and yh, which in this setting are the digit identities.

 	

Original Kannada MNIST Digits Reconstructions from when ̂yh λ ≠ 0

Figure 3: Reconstructions of
the digits obtained by passing
the predicted ŷh = fxy(xh)
through the trained y decoder,
py . Here fxy is a learned linear
map.

The results suggest that DeepCFL effectively recovers macro variables that are simpler than their
micro variables (due to a dimensionality bottleneck), but nevertheless share mutual information with
them (qualitatively shown by the accurate reconstructions of the digits from the latent vectors in
Fig.3). We also learn the simple mechanism (here, the linear function) that relates the macro variables
xh and yh (qualitatively shown by the accurate reconstructions of the digits using ŷh in Fig.3). The
learned xh can reconstruct the English MNIST digits and predict, via the simple mechanism of a
linear map, the macro variables of the other domain, which in turn successfully reconstruct their
corresponding digits. This demonstrates that our model has successfully learned the desired encoding

6

and prediction mechanisms. In Appendix B, we show that DeepCFL also works in a different setting,
where a many-to-one mapping relates xh and yh.

5 Conclusions and future work

We introduced DeepCFL, a differentiable method for learning flexible macro variables from low-
level micro variables which both satisfies and extends the desiderata of CFL [Chalupka et al.,
2017]. Our initial experiments suggest that DeepCFLeffectively learns simple macro variables and a
simple mechanism relating them, in particular with discrete macro variables. Our future work will
apply our model to real-world CFL benchmark datasets and different macro variable domains (eg.
continuous macro variables), explore different methods to maximise mutual information between
micro and macro variables, and consider more complex mechanisms (such as quadratic or higher-
order polynomials). Finally, our method is adaptable to scenarios with more than two micro variable
spaces and could be integrated with causal discovery to learn both the underlying macro variables of
a causal graphical model and the mechanisms relating these variables.

6 Acknowledgements

This work is supported by CIFAR.

References
Alexander Alemi, Ben Poole, Ian Fischer, Joshua Dillon, Rif A Saurous, and Kevin Murphy. Fixing a

broken elbo. In International conference on machine learning, 2018.

Krzysztof Chalupka, Frederick Eberhardt, and Pietro Perona. Causal feature learning: an overview.
Behaviormetrika, 44:137–164, 2017.

Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework for
contrastive learning of visual representations. In International conference on machine learning,
pages 1597–1607. PMLR, 2020.

Jean-Bastien Grill, Florian Strub, Florent Altché, Corentin Tallec, Pierre Richemond, Elena
Buchatskaya, Carl Doersch, Bernardo Avila Pires, Zhaohan Guo, Mohammad Gheshlaghi Azar,
et al. Bootstrap your own latent-a new approach to self-supervised learning. Advances in neural
information processing systems, 33:21271–21284, 2020.

Irina Higgins, Loic Matthey, Arka Pal, Christopher Burgess, Xavier Glorot, Matthew Botvinick,
Shakir Mohamed, and Alexander Lerchner. beta-vae: Learning basic visual concepts with a
constrained variational framework. In International conference on learning representations, 2016.

Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114, 2013.

Yann LeCun and Corinna Cortes. MNIST handwritten digit database. IEEE Signal Processing
Magazine, 2010. URL http://yann.lecun.com/exdb/mnist/.

Vinay Uday Prabhu. Kannada-mnist: A new handwritten digits dataset for the kannada language.
CoRR, abs/1908.01242, 2019. URL http://arxiv.org/abs/1908.01242.

7

http://yann.lecun.com/exdb/mnist/
http://arxiv.org/abs/1908.01242

A Experiment 1: One-to-one correspondence between macro variables

As our experiments are concerned with learning macro variable representations of micro variable data
whose true underlying macro variables are discrete and categorical, the primary inductive biases are
1) the use of the softmax layer applied to the learned latent variables in order to amplify the difference
between the learned macro variables of different categories and 2) setting the dimensions of the latent
variables to the number of categories in the true macro variable space.

In following sections we shall illustrate the validity of these assumptions and illustrate the performance
of our model upon their relaxation.

A.1 Use of reconstructions as a qualitative metric

In our experiments we use VAEs for learning the macro variables. The choice of a VAE is not
necessary. However, the image reconstructions from the VAE decoders allow us to visually inspect
our learned macro variables. As mentioned before, the stylistic differences in the handwritten digits
are not relevant macro variables in this setting. We are more concerned with the digit identities. Thus
a measure of whether our macro variables meet the competing objectives of being simpler than their
micro variables while sharing high mutual information with them, is how well the reconstructions
from the macro variables "smooth out" the stylistic differences between digits of the same class and
generalise over them. The reconstructions obtained by passing the predicted ŷh through the decoder
py also indicate the model’s proficiency in learning both the prediction mechanism as well as suitable
encoding mechanisms for xh (/ yh) which can successfully predict(/be predicted by) each other.

A.2 Effect of the softmax layer

fxy as identity map (fixed) fxy as a linear map (trainable)

With/without softmax xh yh ŷh xh yh ŷh

With softmax (λ ̸= 0) 0.712 0.738 0.712 0.330 0.413 0.436

Without softmax (λ ̸= 0) 0.331 0.3545 0.331 0.144 0.298 0.335

Table 2: Comparison of results for experiment 1 when we include/do not include a softmax layer in the forward
pass of the encoders gx, gy .

Table 2 shows that the inclusion of a softmax layer leads to a notably improved performance in terms
of distiguishing macro variables between different classes and encouraging the similarity of macro
variables within the same class, as evidenced by the silhouette scores.

It is to be noted that the t-SNE plots in Fig. (4) for both without and with softmax are quite similar,
despite the contrast in their silhouette scores. This similarity arises because t-SNE inherently performs
some level of disentanglement while mapping the learned latents to a new latent space. On the other
hand, silhouette scores consider the macro (latent) representations as they are, accounting for the
observed differences.

We see that additional information and assumptions about the nature of the macro variables can be
incorporated into the model design to aid learning macro variables having the desired properties.

A.3 Varying latent dimensions

The second inductive bias is configuring the dimensions of the macro variables to match the number
of underlying categories of our data. Our method performs best if the appropriate latent dimensions
are known, but is also fairly robust to overestimation, see Fig.5.

8

Without Softmax

With Softmax

xh yh ̂yh

Figure 4: t-SNE plots for experiments in 2 1 without the softmax layer (top row) and with it (bottom
row). Each row contains the t-SNE plots for xh,yh and ŷh respectively (left to right). Here fxy is a linear map
for both cases. While both models perform similarly in terms of t-SNE plots of the learned macro variables
and reconstructions of the digits, the latent variables learned from the model with the softmax layer are more
disentangled and are more desirable.

Si
lh

ou
et

te
 S

co
re

s

0

0.2

0.4

0.6

Latent Dimension

3 5 8 9 10 11 15 20

sil_xh sil_yh sil_yh_prime

1

Figure 5: Silhouette scores vs dimensions of macro variables

B Experiment 2: Many-to-one correspondence between macro variables

The causal micro variables Xl are the images of all the handwritten English digits xl ∈ R28×28.
Each odd number digit in the cause domain is (randomly) paired with an image of the number 1 in the
Kannada MNIST dataset. Each even number digit in the cause domain is paired with an image of the
digit 2 in the Kannada MNIST dataset. We set the dimensions of the learned latent representations to
10 and 2 in the cause and effect domains respectively, i.e. xh ∈ R10,yh ∈ R2.

The architecture design for the xl VAEs is identical across the two experiments while for the yl

VAEs the only difference is in the output(/input) dimension of the final(/first) linear layer of the
encoder(/decoder) (20 for the one-to-one experiment and 4 for the many-to-one experiment).

9

Figure 6: Setup for experiment 1 (left) and experiment 2 (right)

Our benchmark is the model with fxy fixed as the linear map which would map a one-hot-encoded
even digit to [1, 0]T and a one-hot-encoded odd digit to [0, 1]T

f (benchmark)
xy =

[
1 0 1 0 1 0 1 0 1 0
0 1 0 1 0 1 0 1 0 1

]
, (6)

.

Our baseline is once again the model learned with the weight of the prediction error λ in (5) set to
zero.

We observe that the learned macro variables of different classes are more disentangled when fxy is a
linear map than the fixed identity map. Fixing fxy to a sparse linear map forces the learned xh, to
compromise on the inter-digit distinctions in order to map to 2 possible yh. In contrast, a learned
linear map does not impose such constraints and offers more flexibility to the learned latent (macro)
variables.

10

λ = 0
fxy fixed

λ ≠ 0
fxy fixed

λ = ≠ 0
fxy trainable

xh yh ̂yh

Figure 7: t-SNE plots for experiment 2. Each row contains the t-SNE plots for xh,yh and ŷh respectively
(left to right). In the plots for yh and ŷh the different shades of green correspond with macro variables of the
digit 2 paired with even digits in x while the shades of pink correspond with macro variables of the digit 1 paired
with odd digits in x.

11

	Introduction
	Background
	The DeepCFL approach
	Empirical Studies
	Experiment

	Conclusions and future work
	Acknowledgements
	Experiment 1: One-to-one correspondence between macro variables
	Use of reconstructions as a qualitative metric
	Effect of the softmax layer
	Varying latent dimensions

	Experiment 2: Many-to-one correspondence between macro variables

