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Abstract
Variational families with full-rank covariance ap-
proximations are known not to work well in black-
box variational inference (BBVI), both empiri-
cally and theoretically. In fact, recent compu-
tational complexity results for BBVI have es-
tablished that full-rank variational families scale
poorly with the dimensionality of the problem
compared to e.g. mean-field families. This is
particularly critical to hierarchical Bayesian mod-
els with local variables; their dimensionality in-
creases with the size of the datasets. Conse-
quently, one gets an iteration complexity with
an explicit 𝒪(𝑁2) dependence on the dataset size
𝑁. In this paper, we explore a theoretical middle
ground between mean-field variational families
and full-rank families: structured variational fami-
lies. We rigorously prove that certain scale matrix
structures can achieve a better iteration complex-
ity of 𝒪 (𝑁), implying better scaling with respect
to 𝑁. We empirically verify our theoretical results
on large-scale hierarchical models.

1. Introduction
A decade has passed since black-box variational inference
(BBVI; Ranganath et al., 2014; Titsias & Lázaro-Gredilla,
2014), also known as Monte Carlo variational inference and
stochastic gradient variational Bayes, has emerged. Among
various approaches to variational inference (VI; Jordan et al.,
1999; Blei et al., 2017; Zhang et al., 2019), BBVI has been
immensely successful in various fields such as statistics, ma-
chine learning, signal processing, and many more, thanks to
its general black-box nature and scalability to large datasets.

One of the promises of BBVI has been that we can better
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model correlations in the posterior by using full-rank co-
variance approximations (Kucukelbir et al., 2017). That
way, we should have been able to move away from mean-
field (Peterson & Anderson, 1987; Hinton & van Camp,
1993), or diagonal covariance, approximations traditionally
required when performing coordinate-ascent VI (CAVI; see
the review by Blei et al. 2017). However, this promise has
shown to be elusive. Despite their theoretical and occasional
empirical superiority of “expressiveness,” going full-rank
does not always improve over mean-field. See, for exam-
ple, the experiments in §3 by Zhang et al. (2022), §B.1 by
Agrawal et al. (2020), Footnote 2 by Giordano et al. (2018).

A common explanation for the underwhelming performance
of full-rank approximations has been their excessive gradi-
ent variance. Indeed, recent results by Kim et al. (2023a);
Domke et al. (2023) establishing the computational com-
plexity of BBVI confirm this intuition. Due to gradient
variance, full-rank covariance approximations result in a
𝒪
(
𝑑𝜅2𝜖−1

)
iteration complexity for finding an 𝜖-accurate

solution on strongly log-concave posteriors with a condition
number of 𝜅. This contrasts with mean-field for which a
𝒪
(√

𝑑
)

dimensional dependence (Kim et al., 2023b) has
been established. The poor 𝑑 dependence explains why the
full-rank approximation is underwhelming in practice.

Furthermore, for models with local variables (Hoffman &
Blei, 2015), the 𝒪 (𝑑) dimension dependence is especially
concerning; for these models, the dimensionality 𝑑 scales
with the size of the dataset 𝑁. This means that for a model
taking Θ (𝑁) datapoint queries to evaluate the joint likeli-
hood, the sample complexity of BBVI will be 𝒪

(
𝑁2𝜅2𝜖−1

)
,

where 𝜅 also increases linearly with 𝑁 for Bayesian posteri-
ors as 𝜅 = 𝒪(𝑁) due to posterior contraction. In terms of
scalability with respect to 𝑁, this 𝒪(𝑁4) complexity high-
lights a clear challenge for BBVI with full-rank variational
families. (Note that, with our alternative proof technique,
this can be tightened to an 𝒪(𝑁3) explicit dependence.)

While mean-field is scalable, it is a crude approximation
as it fails to model correlations in the posterior. Therefore,
a natural question is, “Can we find a variational family
more expressive than mean-field families while maintaining
computational tractability?” In this paper, based on the
theoretical framework of Kim et al. (2023a); Domke et al.
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(2023), we answer this question by revisiting the idea of
structured scale matrices.

Structured scale matrices, or more broadly, structured varia-
tional families, exploit structural assumptions about the fac-
tor graph of the posterior and have been a widely explored
concept in VI ( Saul & Jordan, 1995; Hoffman & Blei, 2015;
Tan & Nott, 2018; Ranganath et al., 2016; Lin et al., 2019;
for a short representative list; see Section 5 for a more exten-
sive list). However, why and when structured families can
outperform full-rank ones has not been rigorously analyzed.
For instance, Tan & Nott, who first performed a detailed
investigation into structured scales in BBVI, only mentioned
that “unrestricted (full-rank) Gaussian variational approx-
imation . . . can be prohibitively slow for large data since
the number of variational parameters scales as the square
of the length of 𝒛.” However, given the incredible success
of stochastic optimization in the over-parameterized regime,
simply having fewer parameters cannot fully explain why
structured families work well.

Based on the framework of Domke et al. (2023); Kim et al.
(2023a), we rigorously prove that, for likelihoods consti-
tuting of a finite-sum of 𝑁 components, each associated
to a single datapoint, structured location-scale families can
improve the dimensional dependence of full-rank families.
For Hierarchical Bayesian models with local variables, we
provide a scale matrix structure that reduces the order of
the dependence on the dataset size 𝑁. For the canonical
1-level hierarchy where the variables can be split into global
and local variables, we show that a triangular scale matrix
with a bordered block-diagonal structure achieves an iter-
ation complexity of 𝒪 (𝑁). This, in turn, corresponds to
approximating the posterior with the generative process

𝙯 ∼ 𝑞𝝀 (𝙯 ) and 𝙮𝑛 ∼ 𝑞𝝀 (𝙮𝑛 ∣ 𝙯 ) ,
where 𝙯 are the global variables, 𝙮𝑛 are the local variables
belonging to the 𝑛th datapoint, and 𝑞𝝀 is some location-
scale distribution. Agrawal & Domke (2021) called this,
where the local variables are assumed to be conditionally
independent, a “hierarchical branched distribution.”

Overall, this work extends the current line of work of prov-
ing that the choice of the variational family performs a
trade-off between statistical accuracy and computational
efficiency (Bhatia et al., 2022; Kim et al., 2023b).

1. General Analysis: Theorem 2 establishes that, for
finite-sum likelihoods, manipulating the structure of
the scale matrix in location-scale variational families
can improve the dimensional dependence of BBVI.

2. Scalable Solution: For hierarchical models with local
variables, Corollary 2 establishes that the scale matrix
structure previously proposed by Tan (2021); Tan et al.
(2020) achieves an iteration complexity with a better
dependence of the dataset size.

3. Analysis of Parameterizations: Furthermore, among
different ways to parameterize structured variational
families, Theorem 5 shows that “non-standardized” pa-
rameterizations rule out the convexity of the ELBO, un-
like the “standardized” parameterization of Tan (2021);
Tan et al. (2020), and is therefore suboptimal.

2. Preliminaries
Notation Random variables are denoted in sans-serif, vec-
tors in bold, and matrices in bold capitals. (i.e., 𝘹 , 𝙭 , and
𝑨 respectively.) Given a vector 𝒙 ∈ ℝ𝑑, we denote its Eu-
clidean norm as ‖𝒙‖2 =

√
⟨𝒙,𝒙⟩ =

√
𝒙⊤𝒙. For a matrix 𝑨,

we denote its Frobenius norm as ‖𝑨‖F =
√
tr (𝑨⊤𝑨), where

tr (𝑨) =
∑𝑑

𝑖=1𝐴𝑖𝑖, and the 𝓁2-operator norm as ‖𝑨‖2,2.
Lastly, 𝕃𝑑++ denotes the set of 𝑑-dimensional lower triangu-
lar matrices with strictly positive eigenvalues.

2.1. Variational Inference
Variational inference (VI; Jordan et al., 1999; Blei et al.,
2017; Zhang et al., 2019) is a method for approximating
an intractable probability distribution through optimization.
In general, we aim to minimize the Kullback-Leibler (KL;
Kullback & Leibler, 1951) divergence through:

minimize
𝝀∈Λ

DKL (𝑞𝝀, 𝜋) ,

where DKL is the KL divergence,
𝜋 is the (target) posterior distribution, and
𝑞𝝀 is the variational approximation.

Evidence Lower Bound In the context of Bayesian infer-
ence, we only have access to the joint likelihood 𝑝 (𝒛,𝒙) ∝
𝜋 (𝒛), where 𝒛 are the model parameters and 𝒙 is the data.
This results in the KL divergence also being intractable due
to the intractable normalizer. Therefore, we instead rely
on minimizing a surrogate objective called the negative ev-
idence lower bound (ELBO, Jordan et al., 1999) function
𝐹(𝝀):

minimize
𝝀∈Λ

𝐹 (𝝀) ≜ −𝔼𝙯∼𝑞𝝀 log𝑝 (𝙯 ,𝒙) − ℍ (𝑞𝝀) ,

where 𝑝 (𝒛,𝒙) is the joint likelihood,
ℍ is the differential entropy.

Without loss of generality, we will also separately denote
the negative log joint likelihood as

𝓁 (𝒛) ≜ − log𝑝 (𝒛,𝒙) .
Under this notation, the ELBO can be represented as a
composite optimization problem. (See the taxonomization
in §2.4 by Kim et al. 2023a.)

𝐹 (𝝀) = 𝑓 (𝝀) + ℎ (𝝀) ,
where 𝑓(𝝀) ≜ 𝔼𝙯∼𝑞𝝀𝓁 (𝙯 ) , is called the energy and ℎ (𝝀) ≜
−ℍ (𝑞𝝀) is an entropic regularizer.
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Finite-Sum Likelihood In this work, we will focus on
log(-joint) likelihoods of the structure

𝓁 (𝒛) =
𝑁∑

𝑛=1
𝓁𝑛 (𝒛) (1)

for 𝑛 = 1,… , 𝑁, where each component likelihood 𝓁𝑛. It
is common for each component to use only subsets of the
variables constituting 𝒛.

2.2. Variational Family
We focus on the location-scale variational family:

Definition 1 (Location-Scale Family). Let 𝜑 be some
𝑑-variate distribution. Then, 𝑞𝝀 that can be equivalently
represented as

𝙯 ∼ 𝑞𝝀 ⇔ 𝙯 𝑑= 𝒯𝝀 (𝙪) ; 𝙪 ∼ 𝜑,
where

𝑑= is equivalence in distribution, is said to be
part of the location-scale family generated by the base
distribution 𝜑 and the reparameterization function 𝒯 ∶
Λ ×ℝ𝑑 → ℝ𝑑 defined as

𝒯𝝀 (𝒖) ≜ 𝑪𝒖 +𝒎
with 𝝀 ∈ Λ ⊆ ℝ𝑝 containing the parameters for forming
the location 𝒎 ∈ ℝ𝑑 and scale 𝑪 ∈ ℝ𝑑×𝑑.

Since the reparameterization function is differentiable, this
enables the use of the 𝑀-sample reparameterization gradi-
ent (Kingma & Welling, 2014; Rezende et al., 2014; Titsias
& Lázaro-Gredilla, 2014), which is an unbiased estimator
of the gradient of the energy ∇𝑓 (𝝀), defined as:

𝙜𝑀 (𝝀) ≜ 1
𝑀

𝑀∑

𝑚=1
∇𝝀𝓁(𝒯𝝀(𝙪𝑚)), 𝙪1,… , 𝙪𝑚

i.i.d.∼ 𝜑. (2)

The reparameterization gradient is empirically known to re-
sult in lower variance compared to other gradient estimators
(Mohamed et al., 2020; Xu et al., 2019) and is presently
de-facto standard for BBVI.

For the base distribution 𝜑, the choice of distribution gener-
ates various other families (Titsias & Lázaro-Gredilla, 2014)
used in practice: mean-field Gaussian, full-rank Gaussian,
Laplace, Student-𝑡, and many more. For our analysis, we im-
pose mild assumptions on the base distribution 𝜑:

Assumption 1 (Base Distribution). 𝜑 is a 𝑑-
dimensional distribution such that 𝙪 ∼ 𝜑 and 𝙪 =
(𝘶1,… , 𝘶𝑑) with indepedently and identically distributed
components. Furthermore, 𝜑 is (i) symmetric and stan-
dardized such that 𝔼𝘶𝑖 = 0, 𝔼𝘶2𝑖 = 1, 𝔼𝘶3𝑖 = 0, and
(ii) has finite kurtosis 𝔼𝘶4𝑖 = 𝑘𝜑 <∞.

These assumptions are satisfied by most practically used
location-scale families. In summary:

Assumption 2. The variational family is the location-
scale family formed by Definition 1 with the base distri-
bution 𝜑 satisfying Assumption 1.

2.3. Scale Parameterization
The parameterization of the scale matrix in location-scale
families 𝑪 can result in vastly different statistical and com-
putational performance results. In principle, the only restric-
tion is that it needs to result in a proper covariance matrix
such that 𝑪𝑪⊤ ≻ 0. However, how many low-rank factors
we include into 𝑪 corresponds to a statistical-computational
trade-off (Bhatia et al., 2022; Ong et al., 2018). A common
choice is to restrict 𝑪 to be a diagonal matrix, resulting in
the mean-field approximation (Peterson & Anderson, 1987;
Hinton & van Camp, 1993).
Triangular Scale While mean-field results in fast conver-
gence (Kim et al., 2023b) and stable optimization, it is a
crude approximation as it ignores correlations in the poste-
rior. Therefore, we are interested in scale matrices that are
more complex than mean-field. For this, we will first restrict
our interest to triangular scale matrices with strictly positive
eigenvalues such that 𝑪 ∈ 𝕃𝑑++. Compared to other choices,
such as the “matrix square-root” analyzed by Domke et al.
(2023), this “Cholesky” parameterization has the following
benefits:
(a) It results in lower gradient variance (Kim et al., 2023b),
(b) the entropy term ℎ can be computed in Θ (𝑑) time,
(c) the positive definiteness of 𝑪 can be enforced only by

manipulating the 𝑑 diagonal elements, and
(d) the conditional dependence between the coordinates

can easily be manipulated.
Naturally, Item (d) is essential in the context of structured
variational families.

2.4. Stochastic Proximal Gradient Descent
While 𝐹 (𝝀) is commonly optimized using stochastic gradi-
ent descent (SGD; Robbins & Monro, 1951; Bottou, 1999;
Nemirovski et al., 2009). In this work, we will focus on a
“proximal” variant of SGD, which has favorable theoretical
properties (Domke et al., 2023; Domke, 2020) compared to
projected SGD, which is more commonly used in practice.
Proximal SGD Proximal SGD, or stochastic proximal
gradient descent, aims to minimize a composite objective
expressed as a sum 𝑓 + ℎ, where 𝑓 is smooth and convex,
while ℎ might convex as well but non-smooth. Given initial
parameters 𝝀0 and a step size schedule (𝛾𝑡)𝑇−1𝑡=0 , proximal
SGD repeats the update:

𝝀𝑡+1 = prox𝛾𝑡 ,ℎ (𝝀𝑡 − 𝛾𝑡 𝙜𝑀 (𝝀𝑡))
until convergence, where 𝙜𝑀 (𝝀𝑡) is a stochastic estimate of
∇𝑓 not ∇𝐹, and prox is a proximal operator defined as:

prox𝛾𝑡 ,ℎ ≜ argmin
𝒗

[ℎ(𝒗) + 1
2𝛾𝑡

‖𝝀 − 𝒗‖22] .

The precise proximal operator we use is that by Domke
(2020) and discussed in Appendix B.4.1.

Proximal SGD in BBVI Proximal SGD has been pro-
posed for variational inference under different motiva-
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tions (Altosaar et al., 2018; Khan et al., 2015; 2016; Diao
et al., 2023). However, Domke (2020) first suggested prox-
imal SGD to circumvent the fact that the ELBO is non-
smooth due to the entropic regularizer ℎ being non-smooth.
While the non-smoothness of the ELBO can be solved
through alternative means–e.g., projected SGD, nonlinear
parameterizations–projected SGD necessitate the choice of
a restricted domain, and nonlinear parameterizations result
in slower convergence rate (Kim et al., 2023a). Furthermore,
projected and proximal SGD perform very similarly both in
theory (Domke et al., 2023) and in practice. As such, while
we focus on proximal SGD, most guarantees will also hold
with projected SGD with the projection operator considered
by Kim et al. (2024).

3. Theoretical Analysis
3.1. Fundamental Limits of Being Full-Rank
First, we will discuss what we currently know about the
dimensional dependence of BBVI. We will also illustrate
exactly where the dimensional dependence is coming from.
This should make the solution more clear.

Iteration Complexity of Full-Rank Families Domke
et al. (2023); Kim et al. (2023a) show that, with stochastic
proximal gradient descent, full-rank variational families,
and the 1-sample reparameterization gradient estimator, the
iteration complexity is as follows:

Theorem 1 (Domke et al., 2023; Kim et al., 2023a). Let
𝓁 be 𝜇-strongly convex and 𝐿-smooth. Then, the itera-
tion complexity of being 𝜖-close to the global minimizer
with proximal SGD BBVI is

𝒪 (𝑑 𝜅2 1𝜖 log (∆
2
0
1
𝜖 )) ,

where 𝜅 = 𝐿∕𝜇, ∆0 = ‖𝝀0 − 𝝀∗‖2 is the distance
between the initial point 𝝀0 and the global optimum
𝝀∗ = argmin𝝀∈Λ 𝐹 (𝝀).

Local Variables In probabilistic modeling, some Hierar-
chical models have latent variables, 𝒚𝑛 for 𝑛 = 1,… , 𝑁,
unique to each datapoint 𝒙𝑛 (Hoffman & Blei, 2015). For
example, in mixture and mixed-membership models, each
datapoint has a latent variable indicating from which mix-
ture component it was generated. In state space models, at
each time point 𝑡, the state is often not observed directly and
is a latent variable local to 𝑡.
More abstractly, consider a model with local variables
𝒚1,… ,𝒚𝑁 and a global variable 𝒛 such that 𝒚𝑛 ∈ ℝ𝑑𝑦 and
𝒛 ∈ ℝ𝑑𝑧 . The total dimension of the model is

𝑑 = 𝑁𝑑𝑦 + 𝑑𝑧.
Then, for these models, the complexity ends up with a de-
pendence on the size of the dataset.

Corollary (Informal). For a Hierarchical Bayesian
model with 𝒪 (𝑁) variables, a 𝜇-strongly log-concave
posterior, and 𝐿𝑛-smooth component likelihoods 𝓁𝑛 for
𝑛 = 1,… , 𝑁 the iteration complexity is

𝒪 (𝑁3 𝐿
2
max
𝜇2

1
𝜖 log (∆

2
0
1
𝜖 )) ,

where 𝐿max = max {𝐿1,… , 𝐿𝑛}.

For Bayesian models, the smoothness of the full posterior is
𝑁𝐿max since Eq. (1) is a sum, not an average as in empirical
risk minimization. Therefore, the 𝑁3 factor in the corollary
follows from plugging in 𝜅 = 𝑁𝐿max∕𝜇 and 𝑑 = 𝑁𝑑𝑦 + 𝑑𝑧
in Theorem 1.

Remark 1 (Sample Complexity). While the cost of eval-
uating the gradient of the joint likelihood is at least Ω(𝑁)
datapoint queries, we will assume it is Θ(𝑛) throughout the
paper, as it is the most common case. Then, the sample
complexity of BBVI with proximal SGD scales as 𝒪

(
𝑁4).

Clearly, full-rank families do not scale even if we ignore the
Θ
(
𝑁2) storage requirement of the scale matrix.

Remark 2 (Are fewer parameters obviously better?). The
number of variational parameters 𝑝 enters the complexity
statement through ∆0. Therefore, the dependence on the
number of parameters alone is only logarithmic. This im-
plies that simply reducing the number of parameters does
not obviously improve the dimensional dependence.

Remark 3 (Where does 𝑑 come from?). The 𝒪 (𝑑) di-
mension dependence directly comes from gradient variance.
(See Theorem 3 and 7 of Domke (2019).) Therefore, reduc-
ing the gradient variance is key to improving the complexity.

3.2. Complexity of BBVI on Finite-Sum Likelihoods

Before presenting our result, we generalize the notation
we have introduced so far. Since we consider hierarchical
models with local variables, each component 𝓁𝑛 will use
a subset of the variables returned by 𝒯𝝀. We express this
through 𝒯𝑛

𝝀 ∶ ℝ𝑑 → ℝ𝑑𝑛 , the parameterization function
specific to 𝓁𝑛, such that

𝒯𝑛
𝝀 (𝒖) ≜ 𝑪𝑛𝒖 +𝒎𝑛,

where 𝑪𝑛 ∈ ℝ𝑑×𝑑𝑛 is a subset of rows 𝑪 and 𝒎𝑛 ∈ ℝ𝑑𝑛 is a
subset of components of𝒎 corresponding to the coordinates
of 𝒛 = 𝒯𝝀 (𝒖) used by 𝓁𝑛.

Furthermore, we are interested in the structure of 𝑪𝑛 (and
correspondingly 𝑪). That is, whether the columns of 𝑪𝑛 are
zero or non-zero. For this, we introduce the indicator

𝛿𝑛,𝑗 ≜ { 1 if the 𝑗th column of 𝑪𝑛 is non-zero
0 otherwise.

Notice that 𝛿𝑛,𝑗 is also implicitly encoding the structure of
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𝓁𝑛: if 𝓁𝑛 uses a certain coordinate of 𝒛, say 𝑧𝑘 = [𝒛]𝑘, then
𝛿𝑛,𝑘 has to be non-zero, since the original matrix 𝑪 has a
non-zero diagonal to qualify as a Cholesky factor. Therefore,
for the case of a two-level hierarchical model,

∑
𝑗 𝛿𝑛,𝑗 is at

least 𝑑𝑦 + 𝑑𝑧, where “turning-on” additional rows allows
for representing of additional correlations.

Upper Bound on the Gradient Variance We will see
how this block structure affects the gradient variance.

Theorem 2. Let 𝓁𝑛 be 𝐿𝑛-smooth for some 𝑛 = 1,… , 𝑁
and Assumption 2 hold. Then, the gradient variance of
𝙜𝑀 is bounded as

tr𝕍 𝙜𝑀 (𝝀) ≤
𝑁
𝑀

(
𝑑∗ + 𝑘𝜑

) 𝑁∑

𝑛=1
𝐿2𝑛

(
‖𝒎𝑛 − �̄�𝑛‖

2
2 + ‖𝑪𝑛‖

2
F

)
,

where �̄�𝑛 is a stationary point of 𝓁𝑛 and

𝑑∗ ≜ max
𝑛

∑
𝑗𝛿𝑛,𝑗

is the effective dimensionality.

See the full proof in page 27.

Remark 4. When 𝑪 is dense, such as in full-rank variational
families, we have 𝑑∗ = 𝑑. Therefore, we exactly retrieve
Theorem 6 of Domke (2019).

Remark 5. 𝛿𝑛,𝑗 is related to dimension dependence for the
following reason: by setting the 𝑗th column of 𝑪𝑛 to be non-
zero (𝛿𝑛,𝑗 = 1), we are effectively deciding to use 𝘶𝑗 (the 𝑗th
component of the 𝑑-dimensional vector 𝙪) when computing
𝒯𝑛
𝝀 . The exact number of components of 𝙪 mixed by 𝑪𝑛 is

the “effective” dimension dependence 𝑑∗.

Remark 6. Since the gradient variance dominates the com-
putational complexity, Theorem 2 answers Remark 2. That
is, the structure of 𝑪𝑛, which depends on 𝓁𝑛, affects the
complexity, not the number of parameters.

Notice that Theorem 2 is pointing towards a trivial way to
improve the dimensional dependence of mean-field:

Corollary 1. Let the posterior 𝜋 factorize into inde-
pendent univariate sub-posteriors such that 𝜋(𝒛) =∏𝑁

𝑛 𝜋𝑛 (𝑧𝑛), where each 𝜋𝑛 is 𝐿𝑛-log-smooth for 𝑛 =
1,… , 𝑁. Then, the gradient variance of the mean-field
approximation is dimension-independent.

Remark 7. While Corollary 1 partially answers Conjecture
1 of Kim et al. (2023a), the general case for jointly-𝐿-log-
smooth posteriors remains open.

Improving the Dimension Dependence Admittedly,
Corollary 1 is not very interesting since posteriors do not fac-
torize as such for interesting problems. However, Theorem 2
does suggest that we can shape the resulting dimension de-
pendence of realistic problems by designing the structure
of 𝑪𝑛. We will later show a specific structure for models
with local variables that can improve the dependence on the
number of datapoints.

Complexity of BBVI Now, based on Theorem 2, we can
prove an iteration complexity bound on BBVI with proxi-
mal SGD (Section 2.4) and the reparameterization gradient
(Section 2.2). The proof is based on the general results on
proximal SGD by Gorbunov et al. (2020), recently refined
by Garrigos & Gower (2023).

Theorem 3. Let 𝓁 be 𝜇-strongly convex and 𝐿-smooth,
𝓁𝑛 be 𝐿𝑛-smooth for 𝑛 = 1,… , 𝑁, and Assumption 2
hold. Then, the last iterate 𝝀𝑇+1 of BBVI with proximal
SGD and 𝙜𝑀 is 𝜖-close as 𝔼‖𝝀𝑇+1 − 𝝀∗‖22 ≤ 𝜖 to the
global optimum 𝝀∗ = argmin𝐹 (𝝀) if

𝑇 ≥ max (𝐶var
1
𝜖 , 𝐶bias) log (2∆

2
0
1
𝜖 )

for some fixed stepsize 𝛾, where ∆0 = ‖𝝀0 − 𝝀∗‖2 is the
distance to the optimum,

𝐶var = 4𝑁𝑀
(
𝑑∗ + 𝑘𝜑

)∑𝑁
𝑛=1 𝜅

2
𝑛
(
‖𝒎∗

𝑛 − �̄�𝑛‖
2
2 + ‖𝑪∗𝑛‖

2
F

)

𝐶bias = 2𝑁𝑀
(
𝑑∗ + 𝑘𝜑

)∑𝑁
𝑛=1𝜅

2
𝑛 + 𝜅,

𝜅𝑛 = 𝐿𝑛∕𝜇, 𝜅 = 𝐿∕𝜇 are the condition numbers, 𝑑∗ is
the effective dimensionality defined in Theorem 2, �̄�𝑛 is
a stationary point of 𝓁𝑛, and 𝒎∗

𝑛,𝑪∗𝑛 are part of 𝝀∗.

See the full proof in page 30.

Remark 8. Since each evaluation of 𝙜𝑀 takes Θ (𝑁𝑀) time,
Theorem 3 implies a sample complexity of

𝒪 (𝑁2 𝑑∗∑𝑁
𝑛=1 𝜅

2
𝑛
1
𝜖 log

1
𝜖 ) ,

or equivalently, a complexity of 𝒪
(
𝑑∗𝑁3) after taking∑

𝑛 𝜅
2
𝑛 ≤ 𝑁max𝑛 𝜅2𝑛.

Remark 9. It also possible to prove a 𝒪 (1∕𝜖) complexity us-
ing the decreasing stepsize schedules of Gower et al. (2019);
Stich (2019).

3.3. Hierarchical Branched Structured Families

Equipped with the results of Section 3.2, we present a scale
matrix structure that is more scalable in terms of dataset
size dependence. Consider a canonical 2-level Hierarchical
model with local variables 𝒚1,… ,𝒚𝑁 and a global variable
𝒛 such that 𝒚𝑛 ∈ ℝ𝑑𝑦 and 𝒛 ∈ ℝ𝑑𝑧 . (All local variables are
assumed to have the same dimensionality.) Then,

𝓁𝑛 (𝒚𝑛, 𝒛) = − log𝑝 (𝒙𝑛,𝒚𝑛 ∣ 𝒛) −
1
𝑁 log𝑝 (𝒛) ,

where 𝒙𝑛 is the 𝑛th datapoint and 𝑑𝑛 = 𝑑𝒛 + 𝑑𝒚.

Structured Covariance Matrices We assume the vari-
ables are structured as

[
𝒛⊤ 𝒚⊤1 … 𝒚⊤𝑛 … 𝒚⊤𝑁

]⊤, (3)

with the noise vector 𝙪 correspondingly structured as
[
𝙪⊤𝒛 𝙪⊤𝒚1 … 𝙪⊤𝒚𝑛 … 𝙪⊤𝒚𝑁

]⊤
. (4)
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Figure 1: Visualization of 𝑪 under the proposed struc-
ture. The colored entries are non-zero, while the white
entries are filled with zeros.

Now for the 𝑪𝑛 ∈ ℝ(𝑑𝒛+𝑑𝒚)×𝑑, we propose the following
structure:

𝑪𝑛 = [ 𝑪𝒛,𝒛 𝟎 … 𝟎 𝟎 𝟎 … 𝟎
𝑪𝒚𝑛 ,𝒛 𝟎 … 𝟎 𝑪𝒚𝑛 ,𝒚𝑛 𝟎 … 𝟎] ,

where 𝟎 is a zero block,
𝑪𝒛,𝒛 transforms 𝙪𝒛 into 𝙯 ,
𝑪𝒚𝑛 ,𝒚𝑛 transforms 𝙪𝒚𝑛 into 𝙮𝑛, and
𝑪𝒚𝑛 ,𝒛 correlates 𝙪𝒛 with 𝙮𝑛.

We are essentially assuming 𝙮𝑛 and 𝙯 are correlated, but
𝙮1,… , 𝙮𝑁 are conditionally independent such that (𝙮𝑛 ∣ 𝙯 ) ⟂
⟂ (𝙮𝑚 ∣ 𝙯 ) for 𝑛 ≠ 𝑚. Agrawal & Domke (2021) called this
a “hierarchical branched distribution” approximation. Also,
combined with Eqs. (3) and (4), the full matrix 𝑪 exhibits a
bordered block-diagonal structure as visualized in Fig. 1.

Remark 10. The proposed structure has a space/storage
complexity of Θ

((
𝑑𝒛𝑑𝒚 + 𝑑2𝒚

)
𝑁
)
. This improves over full-

rank, which has a storage complexity of Θ (
(
𝑑𝒚 + 𝑑𝒛𝑁

)2).

Structured Variational Family Perspective By the prop-
erty of triangular matrices, this implicitly forms a structured
variational family of the form of

𝑞 (𝒛,𝒚1,… ,𝒚𝑁) = 𝑞 (𝒛)
∏𝑁

𝑛=1𝑞 (𝒚𝑛 ∣ 𝒛) .
Furthermore, when 𝜑 is chosen to be Gaussian, 𝑞 becomes

𝑞 (𝒛,𝒚1,… ,𝒚𝑁) =𝒩
(
𝒛;𝒎𝒛,𝑪𝒛,𝒛𝑪⊤𝒛,𝒛

)

×∏𝑁
𝑛=1𝒩

(
𝒚𝑛; 𝒎𝒚𝑛 + 𝑪𝒚𝑛 ,𝒛𝑪

−1
𝒛,𝒛
(
𝒛 −𝒎𝒛

)
, 𝑪𝒚𝑛 ,𝒚𝑛𝑪

⊤
𝒚𝑛 ,𝒚𝑛

)

(5)

Note that we do not actually compute 𝑪−1𝒛,𝒛 , and one can
avoid it by directly accessing 𝙪𝒛. Also, Eq. (5) is identical
to the structure proposed by Tan (2021, §3) and Tan et al.
(2020). However, they did not consider the scalability aspect
of this parameterization.

Standardized Parameterization Notice that, in Eq. (5),
𝙯 is first “standardized” before interacting with 𝙮𝑛. (Again,
this happens implicitly as we directly use 𝙪𝒛 instead of

explicitly standardizing 𝙯 .) Under this parameterization,
the existence of the “full” scale matrix 𝑪 guarantees the
ELBO to be “regular” according to Domke (2020); Titsias
& Lázaro-Gredilla (2014); Challis & Barber (2013):

Theorem 4 (Theorem 9; Domke, 2020). Let Assump-
tion 2 hold and the standardized parameterization be
used. Then, if the posterior 𝜋 is log-concave, then the
ELBO is convex. If the posterior is also 𝜇-strongly log-
concave, the ELBO is then 𝜇-strongly convex.

Non-Standardized Parameterization On the other hand,
it is also possible to not standardize 𝒛. This parameterization
was considered by Agrawal & Domke (2021, Table 1):

𝑞 (𝒛,𝒚1,… ,𝒚𝑁) =𝒩
(
𝒛; 𝒎𝒛, 𝑪𝒛,𝒛𝑪⊤𝒛,𝒛

)

×∏𝑁
𝑛=1𝒩

(
𝒚𝑛; 𝒎𝒚𝑛 + 𝑨𝑛 𝒛, 𝑪𝒚𝑛 ,𝒚𝑛𝑪

⊤
𝒚𝑛 ,𝒚𝑛

)
, (6)

where 𝑨𝑛 is also an optimized parameter. The “expres-
siveness” of this parameterization is equivalent to Eq. (5).
However, the loss-landscape is vastly different:

Theorem 5. Let Assumption 2 hold. Then, under the non-
standardized parameterization, there exists a strongly
log-concave posterior for which the ELBO is not convex.

See the full proof in page 31.

Remark 11. Even if the target posterior is strongly log-
concave, the ELBO will fail to be strongly convex under the
non-standardized parameterization. Therefore, convergence
will be slower.
Overall, we have the following results:

Lemma 1. The effective dimensionality 𝑑∗ of the bor-
dered block-diagonal scale matrix structure is

𝑑∗ = 𝑑𝒛 + 𝑑𝒚.

This leads to our key result:

Corollary 2. Let the assumptions of Theorem 3 hold and
the structured variational family with a bordered block-
diagonal structure matching that of 𝓁1,… ,𝓁𝑛 be used.
Then, the iteration complexity of finding an 𝜖-accurate
solution using BBVI with proximal SGD, 𝙜𝑀 , and some
fixed stepsize is

𝒪
⎛
⎜
⎝

𝑁
𝑀

(
𝑑𝒛 + 𝑑𝒚 + 𝑘𝜑

) 𝑁∑

𝑛=1
𝜅2𝑛

1
𝜖 log (2∆

2
0
1
𝜖 )
⎞
⎟
⎠
.

Remark 12. Using the bordered block-diagonal scale matrix
structure the sample complexity of BBVI is

𝒪 (𝑁2∑𝑁
𝑛=1 𝜅

2
𝑛
1
𝜖 log (

1
𝜖 )) .

and equivalently 𝒪
(
𝑁3) after taking

∑𝑁
𝑛=1 𝜅

2
𝑛 ≤

𝑁max𝑛 𝜅2𝑛. This is a factor of 𝑁 improvement from full-
rank families (Remark 1).
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Figure 2: Number of iterations 𝑇 required to obtain 𝜖 accuracy of variational
families for a given stepsize 𝛾. structured behaves similarly to mean-field, while
full-rank requires significantly more number of iterations, which also scales worse with
respect to the number of datapoints 𝑛.
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Figure 3: Scaling of variational
families with respect to the
number of datapoints 𝑛. full-
rank exhibits a worst scaling than
structured and mean-field.

4. Experiments
We now empirically evaluate our theoretical analysis in
Section 3. Mainly, we will compare the scalability of mean-
field, full-rank, and the structured variational family de-
scribed in Section 3.3.

4.1. Synthetic Experiments

4.1.1. SETUP

To quantitatively verify the theoretical results in Section 3,
we use proximal SGD with the proximal operator de-
scribed in Appendix B.4.1 to match the theory. For the
target distribution, we use an isotropic Gaussian target
distribution of 𝓁𝑛 (𝒚𝑛, 𝒛) = log𝒩

(
𝒚𝑛; 5𝟏𝑑𝑦 , 0.1𝐈𝑑𝑦

)
+

log𝒩
(
𝒛𝑛; 5𝟏𝑑𝑧 , 0.1𝐈𝑑𝑧

)
(mean 5 and variance 0.1) where

we set 𝑑𝑧 = 5, 𝑑𝑦 = 3, and vary the “number of datapoints”
𝑛. All variational families are initialized with a standard
Gaussian. We then run BBVI with 𝑀 = 8 Monte Carlo step-
sizes, 50 different stepsizes in the interval of [10−6, 1], and
estimate the sequence of expected distance to the optimum

(𝑟1)𝑡≥0, where 𝑟𝑡 ≜ 𝔼‖𝝀𝑡 − 𝝀∗‖22. We then estimate the
minimum number of iterations 𝑇 required to hit 𝜖 accuracy
such that 𝑟𝑇−1 > 𝜖 and 𝑟𝑇 ≤ 𝜖. We set 𝜖 = 1 in all cases.

4.1.2. RESULTS

Effect of Stepsize We demonstrate the effect of stepsize
on the number of iterations required to achieve 𝜖-accuracy
in Fig. 2. Under our setup, the distance to the optimum
scales as ‖𝝀0 − 𝝀∗‖22 = Θ(𝑛). Therefore, all methods show
an increase in the minimum 𝑇 as 𝑛 increases. However, the
𝑇 required by full-rank appears to increase much faster than
structured and mean-field. This is because, as predicted
in Section 3, the variance of full-rank also increases in 𝑛,
forcing the use of a smaller stepsize 𝛾. Clearly, the range
of stepsizes full-rank achieves the 𝜖 accuracy threshold is
much narrower and shrinks faster as 𝑛 increases. In sharp
contrast, structured behaves very similarly to mean-field.

Scaling w.r.t. 𝑁 Now, by picking the stepsize that
achieves the lowest 𝑇 for hitting the 𝜖 accuracy target for
each curve in Fig. 2, we can directly evaluate the iteration

Table 1: Models and Datasets used in the Experiments

Problem Dimensions # of Variational Parameters (𝑝)

𝑁 𝑑𝑦 𝑑𝑧 𝑑 mean-field structured full-rank

rpoisson-small 1,961
1 16

1,977 3,954 35,450 1,957,230
rpoisson-middle 3,922 3,938 7,876 70,748 7,759,829
rpoisson-large 19,609 19,625 39,282 353,114

volatility-small 262
6 33

1,605 3,210 59,544 1,290,420
volatility-middle 522 3,165 6,210 118,044 4,825,170
volatility-large 2,579 15,507 31,014 580,869

irt-small 3,348
1 193

3,541 7,082 671,774 6,274,652
irt-middle 6,695 6,888 13,776 1,324,439 23,732,604
irt-large 33,475 33,668 67,336 6,546,539
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Figure 4: ELBO at 𝑇 = 5×104 versus the optimizer stepsize (𝛾) on the considered problems with varying dataset sizes.
The solid lines are the median over 8 independent replications, while the colored bands mark the 80% empirical percentiles.

complexity bounds in Section 3. For this, we examine the
scaling with respect to 𝑛, which is shown in Fig. 3. We
can see that full-rank scales much worse than both mean-
field and structured. In fact, full-rank exhibits a quadratic
scaling while mean-field and structured exhibit a linear
scaling. This confirms our theory Section 3 that structured
is able to shave off a polynomial order in iteration com-
plexity. Now, one may notice that the scaling observed in
Section 3 are all a polynomial order better than what the
theory in Section 3 predicts (𝒪(𝑁3) for full-rank and 𝒪(𝑁2)
for structured when taking

∑𝑁
𝑛=1 𝜅𝑛 = Θ(𝑁)). This is be-

cause our target posterior is an isotropic Gaussian; there
are no correlations between the gradient estimator of each
component. Therefore, our theory is a polynomial-order
pessimistic due to the use of Lemma 4 in Appendix B.2.

Note that, in principle, since the dimensionality of the poste-
rior is increasing, 𝜖 needs to be increased at a rate of 𝑛 so that
we allocate an equal “accuracy” budget to each coordinate.
Therefore, considering the fact that we fix 𝜖 irrespective of
𝑛, the linear scaling of 𝑇 w.r.t. to 𝑛 is actually benign.

4.2. Realistic Experiments

We will now qualitatively verify our theory on more complex
models and real-world datasets. For a fixed budget of gradi-
ent evaluations, we will compare the ELBO value obtained
at the end of BBVI for the three variational families. Recall
that, in SGD, the stepsize 𝛾 performs a trade-off between the
accuracy of the final solution versus the convergence speed.
We will demonstrate that, as the theory predicts, structured
provide a more favorable trade-off compared to full-rank
and mean-field, especially in the large data regime (large 𝑛).

4.2.1. SETUP

Stochastic Optimization While our theoretical results use
proximal SGD, we use regular SGD without projection for
our experiments. In practice, as long as the initialization is
sensible, proximal SGD does not provide additional benefits
both in practice (Kim et al., 2023a) and in theory (Domke
et al., 2023), and simple SGD is the most common method
for performing BBVI in practice. Furthermore, we will con-
sider only fixed stepsizes. In practice, step-decay stepsize
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schedules (Goffin, 1977) are believed to be superior to poly-
nomial decay schedules or naive fixed stepsizes. However,
the theoretical evidence for this is not yet clear. (See Wang
et al. 2021; Ge et al. 2019 for related investigations.) Also,
for the sake of experimentation, step-decay stepsizes are
hard to control due to the additional number of configura-
tions, such as the number of stages, amount of decay per
stage, and such.

Implementation We implemented our experiments using
the Turing ecosystem (Ge et al., 2018) in the Julia lan-
guage (Bezanson et al., 2017). The structured covariances
were implemented using the compressed sparse column
(CSC) sparse matrix interface provided by the CUDA.jl li-
brary (Besard et al., 2019), while the sparse derivatives were
implemented using the Zygote.jl framework (Innes,
2018). We use 8 Monte Carlo samples and the Adam op-
timizer (Kingma & Ba, 2015) for all problems, while the
reported ELBOs are estimated using 1024 Monte Carlo
samples every 100 iterations. The variational families are
Gaussian such that 𝜑 =𝒩 (0, 1).

Models and Dataset We use three different Hierarchi-
cal Bayesian models, volatility, rpoisson, and irt, which
have local variables. rpoisson is a robust generalized
linear regression model known as the Poisson-log-normal
model (Cameron & Trivedi, 2013, §4.2.4). We treat the re-
gression coefficients and the hyperparameters as global vari-
ables, while the individual-level response, which is modeled
to include log-normal noise, is treated as the local variable.
volatility is a multivariate stochastic volatility model (Chib
et al., 2009; Naesseth et al., 2018). We treat the hyperparam-
eters as the global variables, while the latent volatilities are
treated as the local variables. Lastly, irt is a two-parameter
logistic item response theory (IRT) model (Lord et al., 2008;
Wu et al., 2020). We treat the “ability” of each student as
local variables, while the hyperparameters and item-level
variables are treated as global variables. The full description
of these models can be found in Appendix C. To evalu-
ate the effect of dataset size, we use subsets of the full
datasets, as shown in Table 1. For the initial point, we use
𝑞𝝀0 =𝒩

(
𝟎, 10−2𝐈

)
for all experiments.

4.2.2. RESULTS

The effect of the stepsize 𝛾 are shown in Fig. 4. Additional
results can be found in Appendix D. Notice that full-rank is
much more sensitive to the stepsize compared to structured
and mean-field. This exactly aligns with the theory: larger
gradient variance means that the size of the stationary region
of SGD is wider. Therefore, the quality of the solution is
much more sensitive to the stepsize. Since full-rank has the
largest amount of gradient variance, followed by structured,
and then mean-field, the sensitivity to the stepsize follows
the same ordering.

Overall, our experimental results demonstrate that, for fixed
stepsize SGD, the complexity of the variational family
trades optimization speed for the statistical accuracy of the
variational approximation. This re-affirms the results of
Bhatia et al. (2022) on a more realistic setup.

5. Discussions
Conclusions In this work, we have theoretically inves-
tigated the limitations of full-rank variational families in
BBVI. Specifically, the dimensional scaling of the gradient
variance of full-rank variational families. This is particu-
larly problematic for Bayesian models with local variables,
implying that BBVI with full-rank variational families do
not scale to larger datasets. Fortunately, we have rigorously
shown that variational families with structured scale matri-
ces are able to improve this scaling issue. We have evaluated
this theoretical insight on large-scale Hierarchical Bayesian
models and have confirmed that practice agrees with the
theory. Furthermore, our analysis provides a precise quanti-
tative analysis of how certain scale matrix structures would
improve the computational complexity of BBVI.

Related Works Structured variational approximations
have a long history since their use in hidden Markov mod-
els (Saul & Jordan, 1995; Ghahramani & Jordan, 1997),
CAVI (Hoffman & Blei, 2015; Mimno et al., 2012; Ro-
hde & W, 2016), fixed-form variational Bayes (Salimans &
Knowles, 2013), BBVI (Ong et al., 2018; Quiroz et al., 2023;
Ranganath et al., 2016; Tan, 2021; Tan et al., 2020), natural
gradient VI (Lin et al., 2019), and now modern approaches
such as amortized VI (Archer et al., 2015; Johnson et al.,
2016; Webb et al., 2018; Sø nderby et al., 2016; Agrawal &
Domke, 2021; Maaløe et al., 2016; Gao et al., 2016; Yu et al.,
2022) and normalizing flows (Ambrogioni et al., 2021b;a).
Our proposed covariance structure is identical to that of
Tan (2021); Tan et al. (2020). But, they did not consider
the computational complexity of this parameterization, for
which we rigorously prove its scalability with respect to 𝑁.

Limitations of the Current Theory In the 𝒪(𝑁3) sam-
ple complexity we obtained (after making the implicit 𝑁
dependence in

∑
𝑛 𝜅𝑛 = 𝒪(𝑁) explicit), an excess factor of

𝑁 comes from the fact that the gradient variance analysis
strategy of Domke (2019) results in an 𝒪

(
𝐿2
)

dependence
on the smoothness constant 𝐿 = 𝒪 (𝑁). We conjecture that
an 𝒪(𝐿) dependence is realistic, which would match that of
empirical risk minimization and also imply a dataset size
dependence of 𝒪(𝑁2) for hierarchical models. This also
matches the following intuition: computing the gradient
costs Θ(𝑁), while, by posterior contraction, the smooth-
ness naturally scales as 𝒪(𝑁). Therefore, we conjecture a
𝒪(𝑁2) complexity. Note that this is also closely related to
the fact that the complexity of BBVI currently has a 𝒪

(
𝜅2
)

dependence on 𝜅, which is believed to be loose.
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A. Computational Resources

Table 2: Computational Resources

Type Model and Specifications

System Topology 1 socket with 8 physical cores
Processor 1 Intel i9-11900F, 2.5 GHz (maximum 5.2 GHz) per socket
Cache 80 KB L1, 512 KB L2, and 16 MB L3
Memory 64 GiB RAM
Accelerator 1 NVIDIA GeForce RTX 3090 per node, 1.7 GHZ, 24GiB RAM

All of the experiments took approximately 1 week to run.

B. Proofs
B.1. Definitions

Definition (𝐿-Smoothness). A function 𝑓 ∶ 𝒳 → ℝ is 𝐿-smooth if it satisfies

‖∇𝑓 (𝒙) − ∇𝑓 (𝒚)‖2 ≤ 𝐿‖𝒙 − 𝒚‖2

for all 𝒙,𝒚 ∈ 𝒳 and some 𝐿 > 0.

Remark 13. Equivalently, we say a function 𝑓 is 𝐿-log-smooth if log𝑓 is 𝐿-smooth.

Definition (𝜇-Strong Convexity). A function 𝑓 ∶ 𝒳 → ℝ is 𝜇-strongly convex if it satisfies

𝜇
2 ‖𝒙 − 𝒚‖22 ≤ 𝑓 (𝒚) − 𝑓 (𝒙) − ⟨∇𝑓 (𝒙) ,𝒚 − 𝒙⟩

for all 𝒙,𝒚 ∈ 𝒳 and some 𝜇 > 0.

Remark 14. Equivalently, we say a function 𝑓 is only convex if it satisfies the strong convexity inequality with 𝜇 = 0.

Remark 15 (Log-Concave Measures). For a probability measure Π, we say it is 𝜇-strongly log-concave if, in a 𝑑-
dimensional Euclidean measurable space (ℝ𝑑,ℬ

(
ℝ𝑑) ,ℙ), where ℬ

(
ℝ𝑑) is the 𝜎-algebra of Borel-measurable subsets of

ℝ𝑑 and ℙ is the Lebesgue measure, its log probability density function 𝑥 ↦ − log𝜋 (𝑥) is 𝜇-strongly convex.

Definition (Bregman Divergence). Let 𝒳 be a convex set. Then, we define the function

D𝜙
(
𝒙,𝒙′

)
≜ 𝜙 (𝒙) − 𝜙

(
𝒙′
)
−
⟨
∇𝜙

(
𝒙′
)
,𝒙 − 𝒙′

⟩

to be the Bregman divergence generated by some continuously differentiable function 𝜙 ∶ 𝒳 → ℝ convex on 𝒳.

Definition 2 (Subspace Identity Matrix of 𝓁𝑛). We define 𝐈𝑛 ∈ ℝ𝑑×𝑑, where the entries are set as

[ 𝐈𝑛 ]𝑖𝑗 = { 1 if 𝑖 = 𝑗 and the 𝑖th element of 𝒛 is used by 𝓁𝑛
0 otherwise,

where [⋅]𝑖𝑗 denotes the 𝑖th row and 𝑗th column, which is a variation of the standard identity matrix.

Definition 2 can also be understood as a “masking matrix.” That is, 𝐈𝑛𝒛 effectively “selects” the entries of 𝒛 used by 𝓁𝑛 by
setting the remaining entries to 0.
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B.2. Auxiliary Lemmas

Lemma 2. Let 𝙪 = (𝘶1, 𝘶2,… , 𝘶𝑑) be a 𝑑-dimensional vector-valued random variable satisfying Assumption 1. Then,

1. 𝔼𝙪𝙪⊤ = 𝐈 and 2. 𝔼𝘶2𝑖 𝙪 = 𝟎

for any 𝑖 = 1,… , 𝑑.

Proof. The first identity is derived by Domke (2019, Lemma 9).

𝔼𝘶2𝑖 𝙪 = 𝔼
[
𝘶1 … 𝘶𝑖−1 𝘶3𝑖 𝘶𝑖+1 … 𝘶𝑑

]⊤
=
[
𝔼𝘶1 … 𝔼𝘶𝑖−1 𝔼𝘶3𝑖 𝔼𝘶𝑖+1 … 𝔼𝘶𝑑

]⊤
= 𝟎,

where the last equality follows from Assumption 1.

Lemma 3. Let 𝑨 ∈ ℝ𝑑×𝑑 be some matrix and 𝙪 be a 𝑑-dimensional vector-valued random variable satisfying Assump-
tion 1. Then,

𝔼‖𝑨𝙪‖22 = ‖𝑨‖2F.

Proof.

𝔼‖𝑨𝙪‖22 = 𝔼 tr 𝙪⊤𝑨⊤𝑨𝙪 (quadratic form is equal to its trace)

= tr𝑨⊤𝑨𝔼𝙪𝙪⊤ (cyclic property of trace)

= tr𝑨⊤𝑨 (Assumption 1)

= ‖𝑨‖2F (definition of Frobenius norm).

Lemma 4. Let 𝙭1,… , 𝙭𝑁 be vector-variate random variables. Then, the variance of the sum is upper-bounded as

tr𝕍
⎡
⎢
⎣

𝑁∑

𝑖=1
𝙭𝑖
⎤
⎥
⎦
≤ 𝑁

𝑁∑

𝑖=1
tr𝕍 𝙭𝑖 .

Proof.

tr𝕍
⎡
⎢
⎣

𝑁∑

𝑖=1
𝙭𝑖
⎤
⎥
⎦
= 𝔼

‖‖‖‖‖‖‖‖‖‖

𝑁∑

𝑖=1
(𝙭𝑖 − 𝔼𝙭𝑖)

‖‖‖‖‖‖‖‖‖‖

2

2

= 𝔼
𝑁∑

𝑖=1

𝑁∑

𝑗=1
(𝙭𝑖 − 𝔼𝙭𝑖)

⊤ (𝙭𝑗 − 𝔼𝙭𝑗
)

≤
𝑁∑

𝑖=1

𝑁∑

𝑗=1

1
2
(
𝔼‖𝙭𝑖 − 𝔼𝙭𝑖‖

2
2 + 𝔼‖𝙭𝑗 − 𝔼𝙭𝑗‖

2
2

)
(Young’s inequality)

= 1
2

𝑁∑

𝑗=1

𝑁∑

𝑖=1
𝔼‖𝙭𝑖 − 𝔼𝙭𝑖‖

2
2 +

1
2

𝑁∑

𝑖=1

𝑁∑

𝑗=1
𝔼‖𝙭𝑗 − 𝔼𝙭𝑗‖

2
2 (Distributing the sums)

= 𝑁
2

𝑁∑

𝑖=1
𝔼‖𝙭𝑖 − 𝔼𝙭𝑖‖

2
2 +

𝑁
2

𝑁∑

𝑗=1
𝔼‖𝙭𝑗 − 𝔼𝙭𝑗‖

2
2 (Solving the sums)

= 𝑁
𝑁∑

𝑖=1
𝔼‖𝙭𝑖 − 𝔼𝙭𝑖‖

2
2

= 𝑁
𝑁∑

𝑖=1
tr𝕍 𝙭𝑖 .
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Lemma 5. Let 𝙭 be some 𝑑-dimensional vector-variate random variables. Then, the variance is upper-bounded as

tr𝕍𝙭 ≤ 𝔼‖𝙭 − 𝒚‖22

for any vector 𝒚 ∈ ℝ𝑑.

Proof.

tr𝕍𝙭 = 𝔼‖𝙭 − 𝔼𝙭‖22
= 𝔼‖𝙭 − 𝒚 + 𝒚 − 𝔼𝙭‖22
= 𝔼‖𝙭 − 𝒚‖22 + 2𝔼 ⟨𝙭 − 𝒚,𝒚 − 𝔼𝙭 ⟩ + ‖𝒚 − 𝔼𝙭‖22 (expanding the quadratic)

= 𝔼‖𝙭 − 𝒚‖22 − 2 ⟨𝒚 − 𝔼𝙭 ,𝒚 − 𝔼𝙭 ⟩ + ‖𝒚 − 𝔼𝙭‖22 (linearity of expectation)

= 𝔼‖𝙭 − 𝒚‖22 − 2‖𝒚 − 𝔼𝙭‖22 + ‖𝒚 − 𝔼𝙭‖22

= 𝔼‖𝙭 − 𝒚‖22 − ‖𝒚 − 𝔼𝙭‖22

≤ 𝔼‖𝙭 − 𝒚‖22.

Lemma 6 (Rammus, 2021). Consider 𝑨,𝑩 ∈ ℝ𝑑×𝑑, where 𝑩 is positive semidefinite such that 𝑩 ≻ 0. Then,

tr (𝑨𝑩) ≤ ‖𝑨‖2,2tr (𝑩) .

Proof. We restate the proof of Rammus (2021) for completeness.

Consider an inner product space of matrices, where, for 𝑿,𝒀 ∈ ℂ𝑑×𝑑, its inner product is defined as ⟨𝑿,𝒀⟩ = tr (𝑿∗𝒀).
Here, 𝑿∗ is the conjugate transpose of 𝑿. This generates a 𝑝-norm as

‖𝑿‖𝑝 ≜ (
∑

𝑖
𝜎𝑖 (𝑿)

𝑝)
1∕𝑝

,

where 𝜎𝑖 (𝑿) is the 𝑖th singular value of 𝑿. This norm is known as the Schatten norm, where its limiting case 𝑝 →∞ is, in
fact, the 𝓁2 operator norm.

We can now apply Hölder’s inequality
|⟨𝑨,𝑩⟩| ≤ ‖𝑨‖𝑝‖𝑩‖𝑞,

which is valid for 1
𝑝
+ 1

𝑞
= 1. By choosing 𝑝 →∞ and 𝑞 → 1, we have

tr (𝑨𝑩) =
⟨
𝑨⊤,𝑩

⟩
≤ ‖𝑨‖∞‖𝑩‖1 = ‖𝑨‖2,2‖𝑩‖1 = ‖𝑨‖∞tr (𝑩) ,

where the last equality follows from the fact that, for positive semidefinite matrices such as 𝑩, it follows that

tr (𝑩) =
∑

𝑖
𝜆𝑖 (𝑩) =

∑

𝑖
𝜎𝑖 (𝑩) ,

where 𝜆𝑖 (𝑩) is the 𝑖th eigenvalue of 𝑩.
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Lemma 7. Let 𝛿𝑗 be an indicator such that 𝛿𝑗 ∈ {0, 1} depending on the index 𝑗 = 1,… , 𝑑, 𝙪 satisfy Assumption 1, and
all expectations be respect to 𝙪 . Then,

‖‖‖‖‖𝔼
∑

𝑗𝛿𝑗 𝘶
2
𝑗𝙪𝙪

⊤‖‖‖‖‖2,2 ≤
∑

𝑗
𝛿𝑗 + 𝑘𝜑 − 1.

Proof. Let us denote
𝑨 = 𝔼∑𝑗𝛿𝑗 𝘶

2
𝑗𝙪𝙪

⊤.

Then, we have

𝐴𝑖𝑗 = 𝔼∑𝑘𝛿𝑘 𝘶
2
𝑘 (𝙪𝙪

⊤)𝑖𝑗
=∑

𝑘𝛿𝑘 𝔼𝘶
2
𝑘𝘶𝑖𝘶𝑗 .

Especially for the diagonal elements, we have

𝐴𝑖𝑖 =
∑

𝑘
𝛿𝑘 𝔼𝘶2𝑘𝔼𝘶

2
𝑖

=
⎛
⎜
⎝

∑

𝑘≠𝑖
𝛿𝑘 𝔼𝘶2𝑘𝔼𝘶

2
𝑖
⎞
⎟
⎠
+ 𝛿𝑖𝔼𝘶4𝑖 (𝘶𝑖 ⟂⟂ 𝘶𝑘)

=
⎛
⎜
⎝

∑

𝑘≠𝑖
𝛿𝑘
⎞
⎟
⎠
+ 𝛿𝑖 𝑘𝜑 (Assumption 1)

≤
⎛
⎜
⎝

∑

𝑘≠𝑖
𝛿𝑘

⎞
⎟
⎠
+ 𝛿𝑖 𝑘𝜑 +

(
𝑘𝜑 − 𝛿𝑖 𝑘𝜑 + 𝛿𝑖 − 1

)
⏟⎴⎴⎴⎴⎴⎴⏟⎴⎴⎴⎴⎴⎴⏟

≥ 0 since 𝑘𝜑 ≥ 1

= (
∑

𝑘
𝛿𝑘) + 𝑘𝜑 − 1.

For the off-diagonal elements,

𝐴𝑖𝑗 =
∑

𝑘
𝛿𝑘 𝔼𝘶2𝑘𝘶𝑖𝘶𝑗

= 𝔼
⎛
⎜
⎝

∑

(𝑘≠𝑖)∧(𝑘≠𝑗)
𝛿𝑘 𝘶2𝑘𝘶𝑖𝘶𝑗

⎞
⎟
⎠
+ 𝔼𝛿𝑖 𝘶2𝑖 𝘶𝑖𝘶𝑗 + 𝔼𝛿𝑗 𝘶2𝑗𝘶𝑖𝘶𝑗

=
⎛
⎜
⎝

∑

(𝑘≠𝑖)∧(𝑘≠𝑗)
𝛿𝑘 𝔼𝘶2𝑘𝔼𝘶𝑖𝔼𝘶𝑗

⎞
⎟
⎠
+ 𝛿𝑖 𝔼𝘶3𝑖 𝔼𝘶𝑗 + 𝛿𝑗 𝔼𝘶𝑖𝔼𝘶3𝑗 (𝘶𝑖 ⟂⟂ 𝘶𝑗 , 𝘶𝑖 ⟂⟂ 𝘶𝑘, and 𝘶𝑗 ⟂⟂ 𝘶𝑘)

= 0. (Assumption 1)

Therefore, 𝑨 is a diagonal matrix and the 𝓁2 matrix norm follows as the maximal diagonal element such that

‖𝑨‖2,2 ≤
∑

𝑗
𝛿𝑗 + 𝑘𝜑 − 1.
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B.3. Convergence of Stochastic Proximal Gradient Descent

B.3.1. OVERVIEW

Consider a general class of optimization problems of the form

minimize
𝝀∈Λ

𝐹 (𝝀) ≜ 𝑓 (𝝀) + ℎ (𝝀) ,

where 𝑓 is convex and smooth while ℎ is a possibly non-smooth but convex regularizer. Stochastic proximal gradient descent
is a family of methods aimed to solve these types of problems by employing a proximal operator denoted as

prox𝛾,ℎ (𝝀) = argmin
𝝀′∈Λ

[ℎ (𝝀) + 1
2𝛾‖𝝀 − 𝝀′‖22] .

Naturally, we expect the proximal operator to have closed form expression that can easily be computed.

Stochastic proximal gradient descent performs a gradient descent step on 𝑓, followed by a proximal step on ℎ such that

𝝀𝑡+1 = prox𝛾𝑡 ,ℎ (𝝀𝑡 − 𝛾𝑡𝙜 (𝝀𝑡)) ,

where 𝙜 is some unbiased stochastic estimate of ∇𝑓. This type of algorithm has first been studied by Duchi et al. (2011);
Ghadimi et al. (2016) followed by many more.

B.3.2. TECHNICAL ASSUMPTIONS

Any proximal operator needs to satisfy the following basic property:

Assumption 3 (Non-Expansiveness). The proximal operator is non-expansive such that

‖prox𝛾,ℎ (𝝀) − prox𝛾,ℎ
(
𝝀′
)
‖ ≤ ‖𝝀 − 𝝀′‖

for all 𝝀,𝝀′ ∈ Λ.

This assumption can be satisfied as long as ℎ is lower semi-continuous and convex.

For the convergence guarantee of proximal SGD, we follow the “variance transfer” strategy. That is, instead of directly
bounding the gradient variance on an arbitrary point 𝝀, Moulines & Bach (2011); Nguyen et al. (2018) “transfer” the gradient
variance to the global optimum 𝝀∗, proving convergence for gradient estimators with variance that grows with 𝑓(𝝀). The
key assumptions are as follows:

Assumption 4 (Convex Expected Smoothness). The gradient estimator 𝙜 is an unbiased estimator of 𝑓 and is convex-
smooth in expectation such that

𝔼‖‖‖‖𝙜 (𝝀) − 𝙜
(
𝝀′
)‖‖‖‖
2
2 ≤ 2ℒD𝑓

(
𝝀,𝝀′

)
,

for any 𝝀,𝝀′ ∈ Λ and some constant 0 < ℒ <∞, where D𝑓 is the Bregman divergence generated by 𝑓.

This assumption has first been used by Gower et al. (2021) and since has been popularly used throughout stochastic
optimization. (See Khaled & Richtárik (2023) for an overview of conditions on the gradient variance.)

Assumption 5 (Bounded Gradient Variance). The variance of the gradient estimator 𝙜 is bounded as

tr𝕍𝙜 (𝝀∗) ≤ 𝜎2

for some constant 0 ≤ 𝜎2 <∞, where 𝝀∗ = argmin𝐹 (𝝀) is the global optimum.

This assumption only requires the gradient variance on the global optimum to be finite.
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B.3.3. CONVERGENCE (LEMMA 8)

For completeness, we restate the proof by Garrigos & Gower (2023, Theorem 11.9), which is based on the more general
results of Gorbunov et al. (2020).

Lemma 8 (Gorbunov et al., 2020). Let 𝐹 = 𝑓+ ℎ be a composite objective on a convex domain Λ, where 𝑓 is 𝜇-strongly
convex and ℎ satisfies Assumption 3. Also, the gradient estimator 𝙜 satisfies Assumption 4 and 5. The last iterate 𝝀𝑇
after 𝑇 iterations of the stochastic proximal gradient descent with a constant step size 𝛾 satisfying 𝛾 ∈ (0,min { 1

2ℒ
, 1
𝜇
}]

achieves the bound on the distance to the global optimum 𝝀∗ = argmin𝝀∈Λ 𝐹(𝝀) as

𝔼‖𝝀𝑇+1 − 𝝀∗‖22 ≤ (1 − 𝛾𝜇)𝑇 ‖𝝀0 − 𝝀∗‖22 +
2𝛾𝜎2
𝜇 .

Proof. First, the iterate at time 𝑡 satisfies

‖𝝀𝑡+1 − 𝝀∗‖22 = ‖prox𝛾ℎ (𝝀𝑡 − 𝛾𝙜 (𝝀𝑡)) − prox𝛾ℎ (𝝀∗ − 𝛾∇𝑓 (𝝀∗))‖2
2
,

and from Assumption 3,

≤ ‖(𝝀𝑡 − 𝛾𝙜 (𝝀𝑡)) − (𝝀∗ − 𝛾∇𝑓 (𝝀∗))‖22
= ‖𝝀𝑡 − 𝝀∗‖22 + 𝛾2‖𝙜 (𝝀𝑡) − ∇𝑓 (𝝀∗)‖22 − 2𝛾⟨𝙜 (𝝀𝑡) − ∇𝑓 (𝝀∗) ,𝝀𝑡 − 𝝀∗⟩.

Therefore, denoting the filtration as ℱ𝑡, which is the 𝜎-field generated by iterates up to 𝑡, the conditional expectation is
bounded as

𝔼
[
‖𝝀𝑡+1 − 𝝀∗‖22 ∣ ℱ𝑡

]

≤ 𝔼
[
‖𝝀𝑡 − 𝝀∗‖22 ∣ ℱ𝑡

]
+ 𝛾2𝔼 [‖𝙜 (𝝀𝑡) − ∇𝑓 (𝝀∗) ∣ ℱ𝑡‖]

2
2 − 2𝛾𝔼 [⟨𝙜 (𝝀𝑡) − ∇𝑓 (𝝀∗) ,𝝀𝑡 − 𝝀∗⟩ ∣ ℱ𝑡] . (7)

The second term, or the gradient variance term of Eq. (7), can be dealt with the “variance transfer” strategy pioneered
by (Nguyen et al., 2018):

𝛾2𝔼
[
‖𝙜 (𝝀𝑡) − ∇𝑓 (𝝀∗)‖22 ∣ ℱ𝑡

]
≤ 2𝛾2𝔼

[
‖𝙜 (𝝀𝑡) − 𝙜 (𝝀∗)‖22 ∣ ℱ𝑡

]
+ 2𝛾2𝔼

[
‖𝙜 (𝝀∗) − ∇𝑓 (𝝀∗)‖22 ∣ ℱ𝑡

]
,

and applying Assumption 4 and 5,
≤ 2𝛾2

(
2ℒD𝑓 (𝝀𝑡,𝝀∗)

)
+ 2𝛾2𝜎2. (8)

For the third term of Eq. (7), we have

−2𝛾𝔼 [⟨𝙜 (𝝀𝑡) − ∇𝑓 (𝝀∗) ,𝝀𝑡 − 𝝀∗⟩ ∣ ℱ𝑡] = −2𝛾 ⟨𝔼 [𝙜 (𝝀𝑡) ∣ ℱ𝑡] − ∇𝑓 (𝝀∗) ,𝝀𝑡 − 𝝀∗⟩
= −2𝛾 ⟨∇𝑓 (𝝀𝑡) − ∇𝑓 (𝝀∗) ,𝝀𝑡 − 𝝀∗⟩
= 2𝛾 ⟨∇𝑓 (𝝀𝑡) ,𝝀∗ − 𝝀𝑡⟩ + 2𝛾 ⟨∇𝑓 (𝝀∗) ,𝝀𝑡 − 𝝀∗⟩ ,

and applying the 𝜇-strong convexity of 𝑓,

≤ −𝛾𝜇‖𝝀𝑡 − 𝝀∗‖22 − 2𝛾D𝑓 (𝝀𝑡,𝝀∗) . (9)

Applying Eqs. (8) and (9) to Eq. (7) and taking the full expectation, we get

𝔼‖𝝀𝑡+1 − 𝝀∗‖22 ≤ 𝔼‖𝝀𝑡 − 𝝀∗‖22 + 4𝛾2ℒ𝔼
[
D𝑓 (𝝀𝑡,𝝀∗)

]
+ 2𝛾2𝜎2 − 𝛾𝜇𝔼‖𝝀𝑡 − 𝝀∗‖22 − 2𝛾𝔼

[
D𝑓 (𝝀𝑡,𝝀∗)

]

= (1 − 𝛾𝜇)𝔼‖𝝀𝑡 − 𝝀∗‖22 + 2𝛾 (2𝛾ℒ − 1)𝔼
[
D𝑓 (𝝀𝑡,𝝀∗)

]
+ 2𝛾2𝜎2,

by ensuring that 2𝛾ℒ ≤ 1, we have

≤ (1 − 𝛾𝜇)𝔼‖𝝀𝑡 − 𝝀∗‖22 + 2𝛾2𝜎2.

Provided that 1 − 𝛾𝜇 ≥ 0, we can solve the recursion above and get

𝔼‖𝝀𝑡+1 − 𝝀∗‖22 ≤ (1 − 𝛾𝜇)𝑡 ‖𝝀0 − 𝝀∗‖22 + 2𝛾2𝜎2
𝑡−1∑

𝑘=1
(1 − 𝛾𝜇)𝑘 .
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Since the geometric sum can be upper-bounded by

𝑡−1∑

𝑘=1
(1 − 𝛾𝜇)𝑘 =

1 − (1 − 𝛾𝜇)𝑡

𝛾𝜇 ≤ 1
𝛾𝜇 ,

which yields

𝔼‖𝝀𝑡+1 − 𝝀∗‖22 ≤ (1 − 𝛾𝜇)𝑡 ‖𝝀0 − 𝝀∗‖22 +
2𝛾𝜎2
𝜇 .

B.3.4. COMPLEXITY (COROLLARY 3)

Corollary 3. Let the assumptions of Lemma 8 be satisfied. Then, the last iterate 𝝀𝑇+1 of proximal SGD with a fixed
stepsize satisfies 𝔼‖𝝀𝑇+1 − 𝝀∗‖22 ≤ 𝜖, where 𝝀∗ = argmax𝝀∈Λ 𝐹 (𝝀) is the global optimum, if

𝛾 = min { 𝜖𝜇4𝜎2 ,
2ℒ
𝜇 , 𝜇} and

𝑇 ≥ max {4𝜎
2

𝜇2
1
𝜖 ,
2ℒ
𝜇 , 1} log (2‖𝝀∗ − 𝝀0‖22

1
𝜖 ) .

Proof. We can convert Lemma 8 to an iteration complexity guarantee for achieving an 𝜖-accurate solution using Lemma
A.2 of Garrigos & Gower (2023) where the constants are:

𝛼0 = ‖𝝀0 − 𝝀∗‖22, 𝐴 = 2𝜎2
𝜇 , and 𝐶 = max {2ℒ, 𝜇} .

That is, we can satisfy 𝔼‖𝝀𝑇+1 − 𝝀∗‖22 ≤ 𝜖 with

𝛾 = min { 𝜖2𝐴,
1
𝐶 } = min { 𝜖𝜇4𝜎2 , 2ℒ, 𝜇

}

and

𝑇 ≥ max {1𝜖
2𝐴
𝜇 , 𝐶𝜇 } log (2‖𝝀0 − 𝝀∗‖22

1
𝜖 )

= max {1𝜖
4𝜎2
𝜇2 ,

2ℒ
𝜇 , 1} log (2‖𝝀0 − 𝝀∗‖22

1
𝜖 ) .
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B.4. Convergence of Black-Box Variational Inference of Finite-Sum Likelihoods

B.4.1. OVERVIEW

Now, we establish the complexity of BBVI applied to finite-sum likelihoods of the form of Eq. (1).

Domain As discussed in Section 2.2, we restrict our interest to location-scale variational families with a Cholesky scale
parameterization. This effectively means we restrict 𝑪 to be lower triangular and have only positive diagonal entries. The
domain of the variational parameters is then

Λ ≜ {(𝒎,𝑪) ∣ (𝒎,𝑪) ∈ ℝ𝑑 × 𝕃𝑑++ (ℝ) and 𝐶𝑖𝑖 > 0 for all 𝑖 = 1,… , 𝑑},

which is convex. Furthermore, the negative entropy

ℎ (𝝀) = −ℍ (𝑞𝝀) = − log det𝑪 + 𝟙Λ (𝝀) = −
𝑑∑

𝑖=1
log𝐶𝑖𝑖 + 𝟙(0,+∞) (𝐶𝑖𝑖) ,

where 𝟙𝐴 (𝑥) is 0 if 𝑥 ∈ 𝐴 and ∞ otherwise, is closed and convex (Domke et al., 2023, Lemma 19).

Proximal Operator Also, as noted in Section 2.4, we leverage proximal SGD, for which we provide detailed analysis
in Appendix B.3 for completeness. We use the proximal operator proposed by Domke (2020), which, at each application
updates the diagonal of 𝑪 such that

prox𝛾,ℎ (𝝀) = (𝒎,𝑪 + ∆𝑪) , (10)

where 𝝀 = (𝒎,𝑪) and

∆𝐶𝑖𝑖 =
1
2 (

√
𝐶2𝑖𝑖 + 4𝛾 − 𝐶𝑖𝑖) ,

∆𝐶𝑖𝑗 = 0 for 𝑖 ≠ 𝑗. Conveniently, the complexity of applying this proximal operator is Θ (𝑑). Furthermore, this proximal
operator satisfies Assumption 3. (See the recent work by Domke et al. (2023) for more details.)

Proof Sketch The proof is based on the general analysis of proximal SGD in Appendix B.3. Specifically, we establish

1. Assumption 4 in Appendix B.4.4 and

2. Assumption 5 in Appendix B.4.3.

The key ingredients are in Appendix B.4.2.

1. Lemma 9 establishes the precise expression of the squared Jacobian of 𝒯𝑛
𝝀 .

2. Lemma 10 connects the properties of the gradient variance with 𝒯𝑛
𝝀 through its Jacobian.

3. Lemma 11 resolves the randomness by directly solving the expectations.

22



Provably Scalable BBVI with Structured Variational Families

B.4.2. KEY LEMMAS

Lemma 9. The squared Jacobian of the reparameterization function 𝒯𝑛
𝝀 for 𝓁𝑛, 𝑱𝑛, is a diagonal matrix given as

𝑱𝑛 (𝒖)
⊤𝑱𝑛 (𝒖) =

(
1 +∑

𝑗 𝛿𝑛,𝑗𝘶
2
𝑗

)
𝐈𝑛

where 𝐈𝑛 is the identity matrix of the subspace of 𝓁𝑛 (Definition 2) and 𝘶𝑗 is 𝑗th element of 𝙪 .

Proof. Given the location-scale reparameterization function, 𝒯𝝀, we define the function for 𝑛th datapoint as

𝒯𝑛
𝝀 (𝒖) = 𝑪𝑛𝒖 +𝒎𝑛,

where 𝑪𝑛 and 𝒎𝑛 has non-zero elements that are only related to the 𝑛th datapoint and makes all others zero.

For the derivatives, Domke (2019, Lemma 8) show that

𝜕𝒯𝝀 (𝒖)
𝜕𝒎𝑖

= 𝐞𝑖 and
𝜕𝒯𝝀 (𝒖)
𝜕𝑪𝑖,𝑗

= 𝐞𝑖𝘶𝑗 ,

where 𝐞𝑖 is the unit bases for the 𝑖th coordinate. Here, we are interested in the effect of the structure of 𝑪𝑛.

Using the indicator 𝛿, we have
𝜕𝒯𝑛

𝝀 (𝒖)
𝜕𝑪𝑛,𝑖,𝑗

= 𝛿𝑛,𝑖,𝑗 𝐞𝑛,𝑖 𝘶𝑗 (11)

where

𝛿𝑛,𝑖,𝑗 = { 1 if the 𝑖, 𝑗th element of 𝑪𝑛 is non-zero
0 otherwise.

Therefore,

𝜕𝒯𝑛
𝝀 (𝒖)

𝜕𝑪𝑛,𝑖,𝑗
(
𝜕𝒯𝑛

𝝀 (𝒖)
𝜕𝑪𝑛,𝑖,𝑗

)
⊤

=
(
𝛿𝑛,𝑖,𝑗 𝐞𝑛,𝑖 𝘶𝑗

) (
𝛿𝑛,𝑖,𝑗 𝐞𝑛,𝑖 𝘶𝑗

)⊤ = 𝛿𝑛,𝑖,𝑗 𝘶2𝑗
(
𝐞𝑛,𝑖 𝐞⊤𝑛,𝑖

)

and thus, now denoting the Jacobian as 𝑱𝑛, we have

𝑱𝑛 (𝒖)
⊤𝑱𝑛 (𝒖) = (

𝜕𝒯𝑛
𝝀 (𝒖)
𝜕𝝀 )

⊤ 𝜕𝒯𝑛
𝝀 (𝒖)
𝜕𝝀

=
∑

𝑖=1

𝜕𝒯𝑛
𝝀 (𝒖)
𝜕𝒎𝑖

(
𝜕𝒯𝑛

𝝀 (𝒖)
𝜕𝒎𝑖

)
⊤

+
∑

𝑖

∑

𝑗

𝜕𝒯𝑛
𝝀 (𝒖)

𝜕𝑪𝑛,𝑖,𝑗
(
𝜕𝒯𝑛

𝝀 (𝒖)
𝜕𝑪𝑛,𝑖,𝑗

)
⊤

=
∑

𝑖
𝐞𝑛,𝑖 𝐞⊤𝑛,𝑖 +

∑

𝑖

∑

𝑗
𝛿𝑛,𝑖,𝑗 𝘶2𝑗

(
𝐞𝑛,𝑖 𝐞⊤𝑛,𝑖

)

= 𝐈𝑛 +
∑

𝑖

∑

𝑗
𝛿𝑛,𝑖,𝑗 𝘶2𝑗

(
𝐞𝑛,𝑖 𝐞⊤𝑛,𝑖

)
,

assuming 𝛿𝑛,𝑖,𝑗 = 𝛿𝑛,𝑗 for all 𝑛, 𝑗, then

= 𝐈𝑛 +
∑

𝑗
𝛿𝑛,𝑗𝘶2𝑗 (

∑

𝑖
𝐞𝑛,𝑖 𝐞⊤𝑛,𝑖)

= 𝐈𝑛 +
∑

𝑗
𝛿𝑛,𝑗𝘶2𝑗 𝐈𝑛

where

𝛿𝑛,𝑗 = { 1 if the 𝑗th column of 𝑪𝑛 is non-zero
0 otherwise.
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Lemma 10. Let 𝓁𝑛 ∶ ℝ𝑑 → ℝ be a differentiable function and 𝒯𝑛 be the location-scale reparameterization function for
𝓁𝑛. Then, we have

‖∇𝝀𝓁𝑛(𝒯𝑛
𝝀(𝒖)) − ∇𝝀𝓁𝑛(𝒯𝑛

𝝀′(𝒖))‖
2
2
=
(
1 +∑

𝑗𝛿𝑛,𝑗𝘶
2
𝑗

)
‖∇𝓁𝑛(𝒯𝑛

𝝀(𝒖)) − ∇𝓁𝑛(𝒯𝑛
𝝀′(𝒖))‖

2
2

for any 𝝀,𝝀′ ∈ Λ and any 𝒖 ∈ ℝ𝑑.

Proof.

‖‖‖‖∇𝝀𝓁𝑛(𝒯𝑛
𝝀(𝒖)) − ∇𝝀𝓁𝑛(𝒯𝑛

𝝀′(𝒖))
‖‖‖‖
2
2

=
‖‖‖‖‖‖‖‖‖

𝜕𝒯𝑛
𝝀 (𝒖)
𝜕𝝀 ∇𝓁𝑛(𝒯𝑛

𝝀(𝒖)) −
𝜕𝒯𝑛

𝝀′ (𝒖)
𝜕𝝀′ ∇𝓁𝑛(𝒯𝑛

𝝀′(𝒖))
‖‖‖‖‖‖‖‖‖

2

2
.

Now notice that
𝜕𝒯𝑛

𝝀
𝜕𝝀

= 𝑱𝑛 independently of 𝝀. Then,

= ‖‖‖‖𝑱
𝑛 (𝒖) ∇𝓁𝑛(𝒯𝑛

𝝀(𝒖)) − 𝑱𝑛 (𝒖) ∇𝓁𝑛(𝒯𝑛
𝝀′(𝒖))

‖‖‖‖
2
2

= ‖‖‖‖‖𝑱
𝑛 (𝒖)

(
∇𝓁𝑛(𝒯𝑛

𝝀(𝒖)) − ∇𝓁𝑛(𝒯𝑛
𝝀′(𝒖))

)‖‖‖‖‖
2

2

=
(
∇𝓁𝑛(𝒯𝑛

𝝀(𝒖)) − ∇𝓁𝑛(𝒯𝑛
𝝀′(𝒖))

)⊤
𝑱𝑛 (𝒖)⊤𝑱𝑛 (𝒖)

(
∇𝓁𝑛(𝒯𝑛

𝝀(𝒖)) − ∇𝓁𝑛(𝒯𝑛
𝝀′(𝒖))

)
,

and applying Lemma 9,

=
(
∇𝓁𝑛(𝒯𝑛

𝝀(𝒖)) − ∇𝓁𝑛(𝒯𝑛
𝝀′(𝒖))

)⊤ ⎛
⎜
⎝

⎛
⎜
⎝
1 +

∑

𝑗
𝛿𝑛,𝑗𝑢2𝑗

⎞
⎟
⎠
𝐈𝑛
⎞
⎟
⎠

(
∇𝓁𝑛(𝒯𝑛

𝝀(𝒖)) − ∇𝓁𝑛(𝒯𝑛
𝝀′(𝒖))

)

=
⎛
⎜
⎝
1 +

∑

𝑗
𝛿𝑛,𝑗𝑢2𝑗

⎞
⎟
⎠

‖‖‖‖∇𝓁𝑛(𝒯
𝑛
𝝀(𝒖)) − ∇𝓁𝑛(𝒯𝑛

𝝀′(𝒖))
‖‖‖‖
2
2
.
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Lemma 11. Let 𝒯𝑛
𝝀 be the location-scale reparameterization function for 𝓁𝑛 and let the vector-valued random variable

𝙪 =
(
𝘶1,… , 𝘶𝑗

)
satisfy Assumption 1. Then,

𝔼
(
1 +∑

𝑗𝛿𝑛,𝑗𝘶
2
𝑗

)
‖𝒯𝑛

𝝀 (𝙪) − �̄�𝑛‖
2
2
≤
(∑

𝑗𝛿𝑛,𝑗 + 1
)
‖𝒎𝑛 − �̄�𝑛‖

2
2 +

(∑
𝑗𝛿𝑛,𝑗 + 𝑘𝜑

)
‖𝑪𝑛‖

2
F

for any vector �̄�𝑛 matching the output dimension of 𝒯𝑛
𝝀 and any 𝝀 ∈ Λ.

Proof. First,

𝔼
(
1 +∑

𝑗𝛿𝑛,𝑗𝘶
2
𝑗

)
‖𝒯𝑛

𝝀 (𝙪) − �̄�𝑛‖
2
2
= 𝔼

(
1 +∑

𝑗𝛿𝑛,𝑗𝘶
2
𝑗

)
‖𝑪𝑛𝙪 +𝒎𝑛 − �̄�𝑛‖

2
2,

expanding the square,

= 𝔼
(
1 +∑

𝑗𝛿𝑛,𝑗𝘶
2
𝑗

) (
𝙪⊤𝑪⊤𝑛 𝑪𝑛𝙪 − 2 (𝒎𝑛 − �̄�𝑛)

⊤𝑪𝑛𝙪 + ‖𝒎𝑛 − �̄�𝑛‖
2
2

)

= 𝔼
(
1 +∑

𝑗𝛿𝑛,𝑗𝘶
2
𝑗

)
𝙪⊤𝑪⊤𝑛 𝑪𝑛𝙪

⏟⎴⎴⎴⎴⎴⎴⎴⎴⏟⎴⎴⎴⎴⎴⎴⎴⎴⏟
𝑇(1)

−2𝔼
(
1 +∑

𝑗𝛿𝑛,𝑗𝘶
2
𝑗

)
(𝒎𝑛 − �̄�𝑛)

⊤𝑪𝑛𝙪
⏟⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⏟⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⏟

𝑇(2)

+ 𝔼
(
1 +∑

𝑗𝛿𝑛,𝑗𝘶
2
𝑗

)
‖𝒎𝑛 − �̄�𝑛‖

2
2.

⏟⎴⎴⎴⎴⎴⎴⎴⎴⎴⏟⎴⎴⎴⎴⎴⎴⎴⎴⎴⏟
𝑇(3)

(12)

We now solve for the individual terms 𝑇(1), 𝑇(2), and 𝑇(3).

Derivation of 𝑇(1) First,

𝑇(1) = 𝔼
(
1 +∑

𝑗𝛿𝑛,𝑗𝘶
2
𝑗

)
𝙪⊤𝑪⊤𝑛 𝑪𝑛𝙪

= 𝔼
(
1 +∑

𝑗𝛿𝑛,𝑗𝘶
2
𝑗

)
tr
(
𝙪⊤𝑪⊤𝑛 𝑪𝑛𝙪

)

= 𝔼
(
𝙪⊤𝑪⊤𝑛 𝑪𝑛𝙪

)
+ 𝔼

(∑
𝑗𝛿𝑛,𝑗𝘶

2
𝑗

)
tr
(
𝙪⊤𝑪⊤𝑛 𝑪𝑛𝙪

)
,

applying Lemma 3 on the first term,

= ‖𝑪𝑛‖
2
F + 𝔼

(∑
𝑗𝛿𝑛,𝑗𝘶

2
𝑗

)
tr
(
𝙪⊤𝑪⊤𝑛 𝑪𝑛𝙪

)
,

rotating the elements in the trace and pushing the scalar coefficient into the trace,

= ‖𝑪𝑛‖
2
F + tr

(
𝑪⊤𝑛 𝑪𝑛𝔼

(∑
𝑗𝛿𝑛,𝑗𝘶

2
𝑗𝙪𝙪

⊤
))
.

Since we only deal with real matrices, we have 𝑪⊤𝑛 𝑪𝑛 ⪰ 0, enabling the use of Lemma 6 as

≤ ‖𝑪𝑛‖
2
F +

‖‖‖‖‖𝔼
∑

𝑗𝛿𝑛,𝑗 𝘶
2
𝑗𝙪𝙪

⊤‖‖‖‖‖2,2tr
(
𝑪⊤𝑛 𝑪𝑛

)

= ‖𝑪𝑛‖
2
F +

‖‖‖‖‖𝔼
∑

𝑗𝛿𝑛,𝑗 𝘶
2
𝑗𝙪𝙪

⊤‖‖‖‖‖2,2‖𝑪𝑛‖
2
F

= (1 + ‖‖‖‖‖𝔼
∑

𝑗𝛿𝑛,𝑗 𝘶
2
𝑗𝙪𝙪

⊤‖‖‖‖‖2,2) ‖𝑪𝑛‖
2
F. (13)

By using Lemma 7, we have

‖‖‖‖‖𝔼
∑

𝑗𝛿𝑛,𝑗 𝘶
2
𝑗𝙪𝙪

⊤‖‖‖‖‖2,2 ≤
∑

𝑗𝛿𝑛,𝑗 + 𝑘𝜑 − 1

Therefore, back to Eq. (13),

𝑇(1) = (1 + ‖‖‖‖‖𝔼
∑

𝑗𝛿𝑛,𝑗 𝘶
2
𝑗𝙪𝙪

⊤‖‖‖‖‖2,2) ‖𝑪𝑛‖
2
F ≤

(∑
𝑗𝛿𝑛,𝑗 + 𝑘𝜑

)
‖𝑪𝑛‖

2
F. (14)
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Derivation of 𝑇(2) Meanwhile, for 𝑇(2),

𝑇(2) = 𝔼
(
1 +∑

𝑗𝛿𝑛,𝑗 𝑢
2
𝑗

)
(𝒎𝑛 − �̄�𝑛)𝑪𝑛𝙪 ,

and from Assumption 1 and Lemma 2,

= (𝒎𝑛 − �̄�𝑛)𝑪𝑛𝔼𝙪 + (𝒎𝑛 − �̄�𝑛)𝑪𝑛
(∑

𝑗𝛿𝑛,𝑗 𝔼𝘶
2
𝑗𝙪
)

= 0. (15)

Derivation of 𝑇(3) Finally,

𝑇(3) = 𝔼
(
1 +∑

𝑗𝛿𝑛,𝑗 𝑢
2
𝑗

)
‖𝒎𝑛 − �̄�𝑛‖

2
2

=
(
1 +∑

𝑗𝛿𝑛,𝑗 𝔼𝑢
2
𝑗

)
‖𝒎𝑛 − �̄�𝑛‖

2
2,

and from Assumption 1,

=
(
1 +∑

𝑗𝛿𝑛,𝑗
)
‖𝒎𝑛 − �̄�𝑛‖

2
2. (16)

Combining all the results to Eq. (12),

𝔼
(
1 +∑

𝑗𝛿𝑛,𝑗 𝘶
2
𝑗

) ‖‖‖‖𝒯
𝑛
𝝀 (𝙪) − �̄�𝑛

‖‖‖‖
2
2
≤ 𝑇(1) − 2𝑇(2) + 𝑇(3),

applying Eqs. (14) to (16),

≤
(∑

𝑗𝛿𝑛,𝑗 + 1
)
‖𝒎𝑛 − �̄�𝑛‖

2
2 +

(∑
𝑗𝛿𝑛,𝑗 + 𝑘𝜑

)
‖𝑪𝑛‖

2
F.

Corollary 4. Let the assumptions of Lemma 11 hold. Then,

𝔼
(
1 +∑

𝑗𝛿𝑛,𝑗𝘶
2
𝑗

)
‖𝒯𝑛

𝝀 (𝙪) −𝒯𝑛
𝝀′ (𝙪)‖

2
2
≤
(∑

𝑗𝛿𝑛,𝑗 + 𝑘𝜑
)
‖𝝀 − 𝝀′‖

2
2.

Proof. From the linearity of 𝒯𝑛, it follows that

𝒯𝑛
𝝀−𝝀′ (𝙪) =

(
𝑪𝑛 − 𝑪′𝑛

)
𝙪 + (𝒎𝑛 −𝒎′

𝑛),

where 𝒎𝑛,𝑪𝑛 are part of 𝝀 and 𝒎′
𝑛,𝑪′𝑛 are part of 𝝀′. Then, the result immediately follow from applying Lemma 11 with

𝒛 = 𝟎 as

𝔼
(
1 +∑

𝑗𝛿𝑛,𝑗𝘶
2
𝑗

)
‖𝒯𝑛

𝝀−𝝀′ (𝙪)‖
2
2
≤
(∑

𝑗𝛿𝑛,𝑗 + 1
) ‖‖‖‖𝒎𝑛 −𝒎′

𝑛
‖‖‖‖
2
2 +

(∑
𝑗𝛿𝑛,𝑗 + 𝑘𝜑

) ‖‖‖‖𝑪𝑛 − 𝑪′𝑛
‖‖‖‖
2
F

=
(∑

𝑗𝛿𝑛,𝑗 + 1
) ‖‖‖‖𝒎𝑛 −𝒎′

𝑛
‖‖‖‖
2
2 +

(∑
𝑗𝛿𝑛,𝑗 + 𝑘𝜑

) ‖‖‖‖𝑪𝑛 − 𝑪′𝑛
‖‖‖‖
2
F,

since the kurtosis always satisfies 𝑘𝜑 ≥ 1,

≤
(∑

𝑗𝛿𝑛,𝑗 + 𝑘𝜑
)
(‖‖‖‖𝒎𝑛 −𝒎′

𝑛
‖‖‖‖
2
2 +

‖‖‖‖𝑪𝑛 − 𝑪′𝑛
‖‖‖‖
2
F)

and since adding more components into a squared 𝓁2-norm always results in an upper bound,

≤
(∑

𝑗𝛿𝑛,𝑗 + 𝑘𝜑
) (
‖𝒎 −𝒎′‖22 + ‖𝑪 − 𝑪′‖2F

)

=
(∑

𝑗𝛿𝑛,𝑗 + 𝑘𝜑
)
‖𝝀 − 𝝀′‖22.
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B.4.3. GRADIENT VARIANCE BOUND (THEOREM 2)
Theorem 2. Let 𝓁𝑛 be 𝐿𝑛-smooth for some 𝑛 = 1,… , 𝑁 and Assumption 2 hold. Then, the gradient variance of 𝙜𝑀 is
bounded as

tr𝕍 𝙜𝑀 (𝝀) ≤
𝑁
𝑀

(
𝑑∗ + 𝑘𝜑

) 𝑁∑

𝑛=1
𝐿2𝑛

(
‖𝒎𝑛 − �̄�𝑛‖

2
2 + ‖𝑪𝑛‖

2
F

)
,

where �̄�𝑛 is a stationary point of 𝓁𝑛 and

𝑑∗ ≜ max
𝑛

∑
𝑗𝛿𝑛,𝑗

is the effective dimensionality.

Proof. The proof can be seen as a generalization of Domke (2019, Theorem 1) to the case where 𝑪 is structured. Firstly,

tr𝕍𝙜𝑀 (𝝀) ≤ tr𝕍
⎡
⎢
⎣

1
𝑀

𝑀∑

𝑚=1

𝑁∑

𝑛=1
∇𝝀𝓁𝑛

(
𝒯𝑛
𝝀 (𝙪𝑚)

)⎤
⎥
⎦

= 1
𝑀 tr𝕍

⎡
⎢
⎣

𝑁∑

𝑛=1
∇𝝀𝓁𝑛

(
𝒯𝑛
𝝀 (𝙪)

)⎤
⎥
⎦

(𝙪1,… , 𝙪𝑀 are i.i.d.)

≤ 𝑁
𝑀

𝑁∑

𝑛=1
tr𝕍

[
∇𝝀𝓁𝑛

(
𝒯𝑛
𝝀 (𝙪)

)]
(Lemma 4)

≤ 𝑁
𝑀

𝑁∑

𝑛=1
𝔼‖‖‖‖‖∇𝝀𝓁𝑛

(
𝒯𝑛
𝝀 (𝙪)

)‖‖‖‖‖
2

2
.

Now, the individual expected-squared norms can be bounded as

𝔼‖‖‖‖‖∇𝝀𝓁𝑛
(
𝒯𝑛
𝝀 (𝙪)

)‖‖‖‖‖
2

2
= 𝔼

(
1 +∑

𝑗𝛿𝑛,𝑗𝘶
2
𝑗

) ‖‖‖‖‖∇𝓁𝑛
(
𝒯𝑛
𝝀 (𝙪)

)‖‖‖‖‖
2

2
(Lemma 10)

= 𝔼
(
1 +∑

𝑗𝛿𝑛,𝑗𝘶
2
𝑗

) ‖‖‖‖‖∇𝓁𝑛
(
𝒯𝑛
𝝀 (𝙪)

)
− ∇𝓁𝑛 (�̄�𝑛)

‖‖‖‖‖
2

2
(since ∇𝓁𝑛 (�̄�𝑛) = 𝟎)

≤ 𝐿2𝑛 𝔼
(
1 +∑

𝑗𝛿𝑛,𝑗𝘶
2
𝑗

) ‖‖‖‖𝒯
𝑛
𝝀 (𝙪) − �̄�𝑛

‖‖‖‖
2
2

(𝐿𝑛-smoothness)

≤ 𝐿2𝑛
(∑

𝑗𝛿𝑛,𝑗 + 𝑘𝜑
) (
‖𝒎𝑛 − �̄�𝑛‖

2
2 + ‖𝑪𝑛‖

2
F

)
. (Lemma 11)

The sum of all the datapoints can then be bounded as

tr𝕍𝙜𝑀 (𝝀) = 𝑁
𝑀

𝑁∑

𝑛=1
𝐿2𝑛

(∑
𝑗𝛿𝑛,𝑗 + 𝑘𝜑

) (
‖𝒎𝑛 − �̄�𝑛‖

2
2 + ‖𝑪𝑛‖

2
F

)

≤ 𝑁
𝑀

(
𝑑∗ + 𝑘𝜑

) 𝑁∑

𝑛=1
𝐿2𝑛

(
‖𝒎𝑛 − �̄�𝑛‖

2
2 + ‖𝑪𝑛‖

2
F

)
.

27



Provably Scalable BBVI with Structured Variational Families

B.4.4. CONVEX EXPECTED SMOOTHNESS (LEMMA 12)
Lemma 12 (Convex Expected Smoothness). Let 𝓁 be 𝜇-strongly convex and 𝐿-smooth, 𝓁𝑛 be 𝐿𝑛-smooth for 𝑛 =
1,… , 𝑁, and Assumption 2 hold. Then, we have

𝔼‖𝙜𝑀 (𝝀) − 𝙜𝑀
(
𝝀′
)
‖22 ≤ 2

⎛
⎜
⎝

𝑁
𝑀

(
𝑑∗ + 𝑘𝜑

) 𝑁∑

𝑛=1

𝐿2𝑛
𝜇 + 𝐿

⎞
⎟
⎠
D𝑓

(
𝝀,𝝀′

)

for any 𝝀,𝝀′ ∈ Λ, where D𝑓 is the Bregman divergence generated by 𝑓, and 𝑑∗ = max𝑛
∑

𝑗 𝛿𝑛,𝑗 is the effective
dimensionality.

Proof. The proof is a generalization of Lemma 3 by Kim et al. (2023a), which a strategy of applying smoothness (Domke,
2019) and then applying “quadratic functional growth” (Kim et al., 2023b).

First notice that if 𝓁 is 𝐿-smooth, then the energy is also 𝐿-smooth by virtue of Domke (2020, Theorem 1). In our case, 𝓁 is
𝑁𝐿max smooth. Therefore,

𝔼‖𝙜𝑀 (𝝀) − 𝙜𝑀
(
𝝀′
)
‖22 = tr𝕍

[
𝙜𝑀 (𝝀) − 𝙜𝑀

(
𝝀′
)]
+ ‖‖‖‖∇𝑓 (𝝀) − ∇𝑓

(
𝝀′
)‖‖‖‖
2
2

≤ tr𝕍
[
𝙜𝑀 (𝝀) − 𝙜𝑀

(
𝝀′
)]
+ 2𝐿

(
𝑓(𝝀) − 𝑓

(
𝝀′
)
−
⟨
∇𝑓(𝝀′),𝝀 − 𝝀′

⟩)
(𝐿-smoothness of 𝓁)

= tr𝕍
[
𝙜𝑀 (𝝀) − 𝙜𝑀

(
𝝀′
)]
+ 2𝐿D𝑓

(
𝝀,𝝀′

)
.

The variance term can be bounded as

tr𝕍
[
𝙜𝑀 (𝝀) − 𝙜𝑀

(
𝝀′
)]
= 1
𝑀2 tr𝕍

⎡
⎢
⎣

𝑀∑

𝑚=1

𝑁∑

𝑛=1
𝓁𝑛

(
𝒯𝑛
𝝀 (𝙪𝑚)

)
− 𝓁𝑛

(
𝒯𝑛
𝝀′ (𝙪𝑚)

)⎤
⎥
⎦

= 1
𝑀 tr𝕍

⎡
⎢
⎣

𝑁∑

𝑛=1
𝓁𝑛

(
𝒯𝑛
𝝀 (𝙪)

)
− 𝓁𝑛

(
𝒯𝑛
𝝀′ (𝙪)

)⎤
⎥
⎦

(𝙪1,… , 𝙪𝑚 are i.i.d.)

≤ 𝑁
𝑀

𝑁∑

𝑛=1
tr𝕍

[
𝓁𝑛

(
𝒯𝑛
𝝀 (𝙪)

)
− 𝓁𝑛

(
𝒯𝑛
𝝀′ (𝙪)

)]
(Lemma 4)

≤ 𝑁
𝑀

𝑁∑

𝑛=1
𝔼‖‖‖‖‖𝓁𝑛

(
𝒯𝑛
𝝀 (𝙪)

)
− 𝓁𝑛

(
𝒯𝑛
𝝀′ (𝙪)

)‖‖‖‖‖
2

2

= 𝑁
𝑀

𝑁∑

𝑛=1
𝔼
(
1 +∑

𝑗𝛿𝑛,𝑗𝘶
2
𝑗

)
‖∇𝓁𝑛(𝒯𝑛

𝝀(𝙪)) − ∇𝓁𝑛(𝒯𝑛
𝝀′(𝙪))‖

2
2

(Lemma 10)

≤ 𝑁
𝑀

𝑁∑

𝑛=1
𝐿2𝑛𝔼

(
1 +∑

𝑗𝛿𝑛,𝑗𝘶
2
𝑗

)
‖𝒯𝑛

𝝀 (𝙪) −𝒯𝑛
𝝀′ (𝙪)‖

2
2

(𝐿𝑛-smoothness)

≤ 𝑁
𝑀

⎧

⎨
⎩

𝑁∑

𝑛=1
𝐿2𝑛

(∑
𝑗𝛿𝑛,𝑗 + 𝑘𝜑

)⎫

⎬
⎭

‖𝝀 − 𝝀′‖22. (Corollary 4)

Now, we bound ‖𝝀 − 𝝀′‖ by the Bregman divergence generated by 𝑓 as done by Kim et al. (2023b, Theorem 1). For this, we
convert the squared distance of the variational parameters (𝝀-space) into the squared distance in model parameters (𝒛-space).
That is,

‖𝝀 − 𝝀′‖22 = ‖𝑪 − 𝑪′‖2F + ‖𝒎 −𝒎′‖22,
using the identity in Lemma 3,

= 𝔼‖‖‖‖
(
𝑪 − 𝑪′

)
𝙪‖‖‖‖

2
2 + ‖𝒎 −𝒎′‖22

= 𝔼‖𝒯𝝀 (𝙪) −𝒯𝝀′ (𝙪)‖
2
2
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by the 𝜇-strong log-concavity of the posterior,

≤ 2
𝜇𝔼

(
𝓁 (𝒯𝝀 (𝙪)) − 𝓁 (𝒯𝝀 (𝙪)) − ⟨∇𝓁 (𝒯𝝀′ (𝙪)) ,𝒯𝝀 (𝙪) −𝒯𝝀′ (𝙪)⟩

)

= 2
𝜇
(
𝑓 (𝝀) − 𝑓

(
𝝀′
)
− 𝔼⟨∇𝓁 (𝒯𝝀′ (𝙪)) ,𝒯𝝀 (𝙪) −𝒯𝝀′ (𝙪)⟩

)
,

and applying Lemma 10 by Kim et al. (2023a) on the inner product term,

= 2
𝜇
(
𝑓 (𝝀) − 𝑓

(
𝝀′
)
− ⟨∇𝑓

(
𝝀′
)
,𝝀 − 𝝀′⟩

)

= 2
𝜇D𝑓

(
𝝀,𝝀′

)
. (17)

Combining the results,

𝔼‖𝙜𝑀 (𝝀) − 𝙜𝑀
(
𝝀′
)
‖22 = tr𝕍

[
𝙜𝑀 (𝝀) − 𝙜𝑀

(
𝝀′
)]
+ 2𝐿D𝑓

(
𝝀,𝝀′

)

= 𝑁
𝑀

⎧

⎨
⎩

𝑁∑

𝑛=1
𝐿2𝑛

(∑
𝑗𝛿𝑛,𝑗 + 𝑘𝜑

)⎫

⎬
⎭

‖𝝀 − 𝝀′‖22 + 2𝐿D𝑓
(
𝝀,𝝀′

)

≤ 𝑁
𝑀

⎧

⎨
⎩

𝑁∑

𝑛=1
𝐿2𝑛

(∑
𝑗𝛿𝑛,𝑗 + 𝑘𝜑

)⎫

⎬
⎭

2
𝜇D𝑓

(
𝝀,𝝀′

)
+ 2𝐿D𝑓

(
𝝀,𝝀′

)
(Eq. (17))

= 2
⎛
⎜
⎝

𝑁
𝑀

𝑁∑

𝑛=1

𝐿2𝑛
𝜇
(∑

𝑗𝛿𝑛,𝑗 + 𝑘𝜑
)
+ 𝐿

⎞
⎟
⎠
D𝑓

(
𝝀,𝝀′

)
, (Reorganized)

≤ 2
⎛
⎜
⎝

𝑁
𝑀

𝑁∑

𝑛=1

𝐿2𝑛
𝜇
(
𝑑∗ + 𝑘𝜑

)
+ 𝐿

⎞
⎟
⎠
D𝑓

(
𝝀,𝝀′

)
(
∑

𝑗
𝛿𝑛,𝑗 ≤ 𝑑∗ for all 𝑛 = 1,… , 𝑁)

= 2
⎛
⎜
⎝

𝑁
𝑀

(
𝑑∗ + 𝑘𝜑

)
∑𝑁

𝑛=1 𝐿
2
𝑛

𝜇 + 𝐿
⎞
⎟
⎠
D𝑓

(
𝝀,𝝀′

)
. (Pushed-in the summation)
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B.4.5. COMPLEXITY WITH GENERAL LOCATION-SCALE FAMILIES (THEOREM 3)
Theorem 3. Let 𝓁 be 𝜇-strongly convex and 𝐿-smooth, 𝓁𝑛 be 𝐿𝑛-smooth for 𝑛 = 1,… , 𝑁, and Assumption 2 hold.
Then, the last iterate 𝝀𝑇+1 of BBVI with proximal SGD and 𝙜𝑀 is 𝜖-close as 𝔼‖𝝀𝑇+1 − 𝝀∗‖22 ≤ 𝜖 to the global optimum
𝝀∗ = argmin𝐹 (𝝀) if

𝑇 ≥ max (𝐶var
1
𝜖 , 𝐶bias) log (2∆

2
0
1
𝜖 )

for some fixed stepsize 𝛾, where ∆0 = ‖𝝀0 − 𝝀∗‖2 is the distance to the optimum,

𝐶var = 4𝑁𝑀
(
𝑑∗ + 𝑘𝜑

)∑𝑁
𝑛=1 𝜅

2
𝑛
(
‖𝒎∗

𝑛 − �̄�𝑛‖
2
2 + ‖𝑪∗𝑛‖

2
F

)

𝐶bias = 2𝑁𝑀
(
𝑑∗ + 𝑘𝜑

)∑𝑁
𝑛=1𝜅

2
𝑛 + 𝜅,

𝜅𝑛 = 𝐿𝑛∕𝜇, 𝜅 = 𝐿∕𝜇 are the condition numbers, 𝑑∗ is the effective dimensionality defined in Theorem 2, �̄�𝑛 is a
stationary point of 𝓁𝑛, and 𝒎∗

𝑛,𝑪∗𝑛 are part of 𝝀∗.

Proof. First,

1. Assumption 3 is satisfied as discussed in Appendix B.4.1,

2. Assumption 4 is satisfied by Lemma 12, while

3. Assumption 5 is satisfied by Theorem 2.

Furthermore, the constants are

ℒ = 𝑁
𝑀

(
𝑑∗ + 𝑘𝜑

)
∑𝑁

𝑛=1 𝐿
2
𝑛

𝜇 + 𝐿 and 𝜎2 = 𝑁
𝑀

(
𝑑∗ + 𝑘𝜑

) 𝑁∑

𝑛=1
𝐿2𝑛

(
‖𝒎∗

𝑛 − �̄�𝑛‖
2
2 + ‖𝑪∗𝑛‖

2
F

)
.

Therefore, we can apply the results of Lemma 8 and consequently Corollary 3, which states that an 𝜖-accurate solution can
be achieved by a number of iterations of at least

𝑇 ≥ max (4𝜎
2

𝜇2
1
𝜖 ,
2ℒ
𝜇 , 1) log (2‖𝝀0 − 𝝀∗‖22

1
𝜖 )

= max
⎛
⎜
⎝

4𝑁
𝑀

(
𝑑∗ + 𝑘𝜑

) 𝑁∑

𝑛=1

𝐿2𝑛
𝜇2

(
‖𝒎∗

𝑛 − �̄�𝑛‖
2
2 + ‖𝑪∗𝑛‖

2
F

) 1
𝜖 ,

2𝑁
𝑀

(
𝑑∗ + 𝑘𝜑

) 𝑁∑

𝑛=1

𝐿2𝑛
𝜇2 +

𝐿
𝜇 , 1

⎞
⎟
⎠
log (2‖𝝀0 − 𝝀∗‖22

1
𝜖 ) ,

noticing that the second entry of the max function is always larger than 1, we have

= max
⎛
⎜
⎝

4𝑁
𝑀

(
𝑑∗ + 𝑘𝜑

) 𝑁∑

𝑛=1

𝐿2𝑛
𝜇2

(
‖𝒎∗

𝑛 − �̄�𝑛‖
2
2 + ‖𝑪∗𝑛‖

2
F

) 1
𝜖 ,

2𝑁
𝑀

(
𝑑∗ + 𝑘𝜑

) 𝑁∑

𝑛=1

𝐿2𝑛
𝜇2 +

𝐿
𝜇
⎞
⎟
⎠
log (2‖𝝀0 − 𝝀∗‖22

1
𝜖 ) .
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B.5. Properties of the Non-Standardized Parameterization (Theorem 5)
Theorem 5. Let Assumption 2 hold. Then, under the non-standardized parameterization, there exists a strongly
log-concave posterior for which the ELBO is not convex.

Proof. Our proof is based on a negative example of the global convexity of the energy 𝝀 ↦ 𝔼𝓁 (𝒯𝝀 (𝙪)). This directly
implies that the ELBO may not be convex even if the posterior is log-concave.

The non-standardized parameterization applies reparameterization as

𝙯 = 𝑪𝒛,𝒛𝙪𝒛 +𝒎𝒛 and 𝙮 ∣ 𝙯 = 𝑪𝒚,𝒚𝙪𝒚 +𝒎𝒚 + 𝑪𝒚,𝒛𝙯 (18)

Now, consider the negative log-joint likelihood 𝓁(𝒛,𝒚) = ‖𝒛‖22 + ‖𝒚‖22, which corresponds to a standard Gaussian posterior.
Naturally, the corresponding (normalized) posterior is strongly convex. This model can also be viewed as a 2-level
hierarchical model with a single data point such that 𝑁 = 1.

Now, the energy can be computed as

𝔼𝓁(𝒯𝝀 (𝙪)) = 𝔼‖𝙯‖22 + ‖𝙮‖22
= 𝔼‖𝑪𝒛,𝒛𝙪𝒛 +𝒎𝒛‖

2
2 + 𝔼‖𝑪𝒚,𝒚𝙪𝒚 +𝒎𝒚 + 𝑪𝒚,𝒛𝙯‖

2
2 (Eq. (18))

= 𝔼‖𝑪𝒛,𝒛𝙪𝒛 +𝒎𝒛‖
2
2 + 𝔼‖𝑪𝒚,𝒚𝙪𝒚 +𝒎𝒚 + 𝑪𝒚,𝒛 (𝑪𝒛,𝒛𝙪𝒛 +𝒎𝒛)‖

2
2. (Eq. (18))

For clarity, we will set 𝒎𝒛 = 𝟎 and 𝒎𝒚 = 𝟎. Then,

𝔼𝓁(𝒯𝝀 (𝙪)) = 𝔼‖𝑪𝒛,𝒛𝙪𝒛‖
2
2 + 𝔼‖𝑪𝒚,𝒚𝙪𝒚 + 𝑪𝒚,𝒛𝑪𝒛,𝒛𝙪𝒛‖

2
2.

For the first term,

𝔼‖𝑪𝒛,𝒛𝙪𝒛‖
2
2 = ‖𝑪𝒛,𝒛‖

2
F. (Assumption 1 and Lemma 3)

And for the second term,

𝔼‖𝑪𝒚,𝒚𝙪𝒚 + 𝑪𝒚,𝒛𝑪𝒛,𝒛𝙪𝒛‖
2
2 = 𝔼‖𝑪𝒚,𝒚𝙪𝒚‖

2
2 + 2𝔼

⟨
𝑪𝒚,𝒚𝙪𝒚,𝑪𝒚,𝒛𝑪𝒛,𝒛𝙪𝒛

⟩
+ 𝔼‖𝑪𝒚,𝒛𝑪𝒛,𝒛𝙪𝒛‖

2
2

= 𝔼‖𝑪𝒚,𝒚𝙪𝒚‖
2
2 + 2

⟨
𝑪𝒚,𝒚𝔼𝙪𝒚,𝑪𝒚,𝒛𝑪𝒛,𝒛𝔼𝙪𝒛

⟩
+ 𝔼‖𝑪𝒚,𝒛𝑪𝒛,𝒛𝙪𝒛‖

2
2 (since 𝙪𝒚 ⟂⟂ 𝙪𝒛)

= 𝔼‖𝑪𝒚,𝒚𝙪𝒚‖
2
2 + 𝔼‖𝑪𝒚,𝒛𝑪𝒛,𝒛𝙪𝒛‖

2
2 (Assumption 1)

= ‖𝑪𝒚,𝒚‖
2
F + ‖𝑪𝒚,𝒛𝑪𝒛,𝒛‖

2
F. (Assumption 1 and Lemma 3)

Therefore,

𝔼𝓁(𝒯𝝀 (𝙪)) = ‖𝑪𝒛,𝒛‖
2
F + ‖𝑪𝒚,𝒚‖

2
F + ‖𝑪𝒚,𝒛𝑪𝒛,𝒛‖

2
F.

Now, consider the case where 𝑑𝒚 = 1 and 𝑑𝙯 = 1. Then, the scale matrices are all scalars such that

𝔼𝓁(𝒯𝝀 (𝙪)) = 𝐶2𝑧,𝑧 + 𝐶2𝑦,𝑦 +
(
𝐶𝑦,𝑧𝐶𝑧,𝑧

)2.

The convexity of this function with respect to (𝐶𝑧,𝑧, 𝐶𝑦,𝑦 , 𝐶𝑦,𝑧) is equivalent to the convexity of

𝑓(𝑥, 𝑦, 𝑧) = 𝑥2 + 𝑧2 + 𝑥2𝑦2

on ℝ+ ×ℝ+ ×ℝ+. Unfortunately, this function is not convex: notice that the Hessian determinant is given as

det∇2𝑓 (𝑥, 𝑦, 𝑧) = 8𝑥2(1 − 3𝑦2),

which is negative for some 𝑦 ∈ ℝ+. Specifically, for 0 < 𝑦 < 1∕
√
3. The fact that the determinant is negative implies that,

for this region, some of the eigenvalues of ∇2𝑓 are negative, ruling out convexity.
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C. Probabilistic Models and Datasets
C.1. Robust Poisson Regression

We use a robustified version of Poisson regression for modeling count data. This model is known as the Poisson-log-normal
model (Cameron & Trivedi, 2013, §4.2.4), which is a “localized” version of regular Poisson regression (Wang & Blei, 2018,
§3.2). That is, an additional hierarchy is added to model the local variations of each datapoint. A closely related model is
negative binomial regression, which is obtained by setting a conjugate prior to the local noise. Here, the noise is modeled to
be log-normal, resulting in a non-conjugate likelihood:

𝜂𝑖 ∼𝒩
(
𝒙𝑖𝜷 + 𝛼, 𝜎𝜂

)
𝑖 = 1,… , 𝑛

𝑦𝑖 ∼ Poisson (exp (𝜂𝑖)) 𝑖 = 1,… , 𝑛,

where (𝜂𝑖)𝑛𝑖=1 are the local variables. The global variables are given by the priors

𝜎𝛼 ∼ Student-t+ (4, 0, 1)
𝜎𝛽 ∼ Student-t+ (4, 0, 1)
𝜎𝜂 ∼ Student-t+ (4, 0, 1)
𝛼 ∼𝒩 (0, 𝜎𝛼)
𝜷 ∼𝒩

(
𝟎, 𝜎𝛽

)
.

We use the rwm5yr German health registry doctor visit dataset (Hilbe, 2011) from the COUNT package in R (Hilbe, 2016).

C.2. Item Response Theory

Item response theory (IRT) is a family of models for estimating the response of humans to a set of items, often in the form
of exams or questionnaires (Lord et al., 2008). BBVI has recently been shown to be very successful in estimating human
ability from large-scale educational examination datasets (Wu et al., 2020). We employ the so-called two-parameter logistic
model, or “2PL” model, for which the likelihood is given as

logit𝑖 = 𝛾item𝑖𝛼student𝑖 + 𝛽item𝑖 + 𝜇𝛽
𝑦𝑖 ∼ Bernoulli-logit

(
logit𝑖

)
𝑖 = 1,… , 𝑛.

The global variables are given as

𝜇𝛽 ∼ Student-t (4, 0, 1)
𝜎𝛽 ∼ Student-t+ (4, 0, 1)
𝜎𝛾 ∼ Student-t+ (4, 0, 1)
𝛾𝑘 ∼ log-normal

(
0, 𝜎𝛾

)
𝑘 = 1,… , 𝐾,

while the local variables are

𝛼𝑗 ∼𝒩 (0, 1) 𝑗 = 1,… , 𝐽.

The log-normal prior on 𝛾 is inspired by Patz & Junker (1999).

While here we only consider scaling with respect to the students, we can also consider scaling with respect to the number of
items by also making 𝑞 (𝜷) and 𝑞 (𝜸) factor out. While this is less important for our dataset of choice, which has a small 𝐾,
this is certainly attractive to other datasets where both 𝐾 and 𝐽 are large.

For the dataset, we take CritLangAcq from Wu et al. (2020). Unfortunately, this dataset is too large to fit in memory even
for the mean-field approximation. Therefore, we only use a 5% random subset of the full dataset. Scaling to the full dataset
will require additional strategies amortization (Kingma & Welling, 2014; Dayan et al., 1995) as done in the original work by
Wu et al..
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C.3. Multivariate Stochastic Volatility

Multivariate stochastic volatility (Chib et al., 2009) The likelihood is given as

𝒚1 ∼𝒩 (𝝁,𝑸)
𝒚𝑡 ∼𝒩 (𝝁 + 𝝓 (𝒚𝑡−1 − 𝝁) ,𝑸)
𝒙𝑡 ∼𝒩 (0, exp (𝒚𝑡∕2)) ,

where (𝒚𝑡)
𝑇
𝑡=1, the latent stochastic volatilities, are the local variables. For the hyperpriors, we develop a fully Bayesian

variant of the model used by Naesseth et al. (2018, §5) who perform empirical Bayes inference on the hyperparameters.
Notably, following modern Bayesian modeling practice (Gelman et al., 2020), we assign a Cauchy-LKJ prior to the
covariance 𝑸. The global variables are given as

𝑳𝜮 ∼ LKJ-Cholesky
(
𝑑𝒚, 1

)

𝝉 ∼ Cauchy+ (0, 5)
𝑳𝑸 = diag (𝝉)𝑳𝜮
𝑸 = 𝑳𝑸𝑳⊤𝑸
𝝁 ∼ Cauchy (0, 10)
𝝓 ∼ uniform (−1, 1) ,

where all vector operations are elementwise.

For the datasets, we use the exchange rate (“FX”) between 6 international currencies and the U.S. dollar. In particular,
we use the daily closing exchange rate of EUR, JPY, GBP, AUD, CAD, and KRW over the period from 2006-05-16 to
2023-08-30. For the subsets, we deterministically slice a continuous period starting from 2006-05-16.
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D. Additional Experimental Results
This section shows additional plots for the experimental results displayed in Section 4.2. In particular, we show convergence
plots with respect to the number of iterations for a fixed stepsize. Note that all methods use the same number of gradient
evaluations per iteration. Therefore, “iteration” is synonymous with “number of gradient queries.”

D.1. Results on rpoisson
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Figure 5: ELBO versus stepsize on rpoisson-small The solid lines are the median, while the shaded regions are the 80%
quantiles computed from 4 independent replications. Notice that the performance gap between full-rank and structured
becomes narrower as we reduce the stepsize.
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Figure 6: ELBO versus stepsize on rpoisson-middle The solid lines are the median, while the shaded regions are the 80%
quantiles computed from 4 independent replications. Notice that the performance gap between full-rank and structured
becomes narrower as we reduce the stepsize.
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Figure 7: ELBO versus stepsize on rpoisson-large) Full-rank is omitted as it didn’t fit in memory. The solid lines are
the median, while the shaded regions are the 80% quantiles computed from 4 independent replications.
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D.2. Results on volatility
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Figure 8: ELBO versus stepsize on volatility-small The solid lines are the median, while the shaded regions are the 80%
quantiles computed from 4 independent replications.
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Figure 9: ELBO versus stepsize on volatility-middle The solid lines are the median, while the shaded regions are the
80% quantiles computed from 4 independent replications.
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Figure 10: ELBO versus stepsize on volatility-large. Full-rank is omitted as it didn’t fit in memory. The solid lines are
the median, while the shaded regions are the 80% quantiles computed from 4 independent replications.
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D.3. Results on irt
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Figure 11: ELBO versus stepsize on irt-small. The solid lines are the median, while the shaded regions are the 80%
quantiles computed from 4 independent replications. Notice that structured performs worse than mean-field at the largest
stepsize (𝛾 = 10−3), but becomes comparable as we reduce the stepsize.
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Figure 12: ELBO versus stepsize on irt-middle. The solid lines are the median, while the shaded regions are the 80%
quantiles computed from 4 independent replications. Notice that structured performs slightly worse than mean-field at the
largest stepsize (𝛾 = 10−3), but becomes superior as we reduce the stepsize.
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Figure 13: ELBO versus stepsize on irt-large. Full-rank is omitted as it didn’t fit in memory. The solid lines are the
median, while the shaded regions are the 80% quantiles computed from 4 independent replications.
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